Experimental Results from the Active Aeroelastic Wing Wind Tunnel Test Program
NASA Technical Reports Server (NTRS)
Heeg, Jennifer; Spain, Charles V.; Florance, James R.; Wieseman, Carol D.; Ivanco, Thomas G.; DeMoss, Joshua; Silva, Walter A.; Panetta, Andrew; Lively, Peter; Tumwa, Vic
2005-01-01
The Active Aeroelastic Wing (AAW) program is a cooperative effort among NASA, the Air Force Research Laboratory and the Boeing Company, encompassing flight testing, wind tunnel testing and analyses. The objective of the AAW program is to investigate the improvements that can be realized by exploiting aeroelastic characteristics, rather than viewing them as a detriment to vehicle performance and stability. To meet this objective, a wind tunnel model was crafted to duplicate the static aeroelastic behavior of the AAW flight vehicle. The model was tested in the NASA Langley Transonic Dynamics Tunnel in July and August 2004. The wind tunnel investigation served the program goal in three ways. First, the wind tunnel provided a benchmark for comparison with the flight vehicle and various levels of theoretical analyses. Second, it provided detailed insight highlighting the effects of individual parameters upon the aeroelastic response of the AAW vehicle. This parameter identification can then be used for future aeroelastic vehicle design guidance. Third, it provided data to validate scaling laws and their applicability with respect to statically scaled aeroelastic models.
Wing Torsional Stiffness Tests of the Active Aeroelastic Wing F/A-18 Airplane
NASA Technical Reports Server (NTRS)
Lokos, William A.; Olney, Candida D.; Crawford, Natalie D.; Stauf, Rick; Reichenbach, Eric Y.
2002-01-01
The left wing of the Active Aeroelastic Wing (AAW) F/A-18 airplane has been ground-load-tested to quantify its torsional stiffness. The test has been performed at the NASA Dryden Flight Research Center in November 1996, and again in April 2001 after a wing skin modification was performed. The primary objectives of these tests were to characterize the wing behavior before the first flight, and provide a before-and-after measurement of the torsional stiffness. Two streamwise load couples have been applied. The wing skin modification is shown to have more torsional flexibility than the original configuration has. Additionally, structural hysteresis is shown to be reduced by the skin modification. Data comparisons show good repeatability between the tests.
Aeroelastic tailoring for oblique wing lateral trim
NASA Technical Reports Server (NTRS)
Bohlmann, Jonathan D.; Weisshaar, Terrence A.; Eckstrom, Clinton V.
1988-01-01
Composite material aeroelastic tailoring is presently explored as a means for the correction of the roll trim imbalance of oblique-wing aircraft configurations. The concept is demonstrated through the analysis of a realistic oblique wing by a static aeroelastic computational procedure encompassing the full potential transonic aerodynamic code FLO22 and a Ritz structural plate program that models the stiffness due to symmetrical-but-unbalanced composite wing skins. Results indicate that asymetric composite tailoring reduces the aileron deflection needed for roll equilibrium, and reduces control surface hinge moment and drag. Wing skin stresses are, however, very high.
Wing-Body Aeroelasticity on Parallel Computers
NASA Technical Reports Server (NTRS)
Guruswamy, Guru P.; Byun, Chansup
1996-01-01
This article presents a procedure for computing the aeroelasticity of wing-body configurations on multiple-instruction, multiple-data parallel computers. In this procedure, fluids are modeled using Euler equations discretized by a finite difference method, and structures are modeled using finite element equations. The procedure is designed in such a way that each discipline can be developed and maintained independently by using a domain decomposition approach. A parallel integration scheme is used to compute aeroelastic responses by solving the coupled fluid and structural equations concurrently while keeping modularity of each discipline. The present procedure is validated by computing the aeroelastic response of a wing and comparing with experiment. Aeroelastic computations are illustrated for a high speed civil transport type wing-body configuration.
Aeroelasticity Benchmark Assessment: Subsonic Fixed Wing Program
NASA Technical Reports Server (NTRS)
Florance, Jennifer P.; Chwalowski, Pawel; Wieseman, Carol D.
2010-01-01
Aeroelasticity Branch will examine other experimental efforts within the Subsonic Fixed Wing (SFW) program (such as testing of the NASA Common Research Model (CRM)) and other NASA programs and assess aeroelasticity issues and research topics.
Twist Model Development and Results from the Active Aeroelastic Wing F/A-18 Aircraft
NASA Technical Reports Server (NTRS)
Lizotte, Andrew M.; Allen, Michael J.
2007-01-01
Understanding the wing twist of the active aeroelastic wing (AAW) F/A-18 aircraft is a fundamental research objective for the program and offers numerous benefits. In order to clearly understand the wing flexibility characteristics, a model was created to predict real-time wing twist. A reliable twist model allows the prediction of twist for flight simulation, provides insight into aircraft performance uncertainties, and assists with computational fluid dynamic and aeroelastic issues. The left wing of the aircraft was heavily instrumented during the first phase of the active aeroelastic wing program allowing deflection data collection. Traditional data processing steps were taken to reduce flight data, and twist predictions were made using linear regression techniques. The model predictions determined a consistent linear relationship between the measured twist and aircraft parameters, such as surface positions and aircraft state variables. Error in the original model was reduced in some cases by using a dynamic pressure-based assumption. This technique produced excellent predictions for flight between the standard test points and accounted for nonlinearities in the data. This report discusses data processing techniques and twist prediction validation, and provides illustrative and quantitative results.
Ongoing Fixed Wing Research within the NASA Langley Aeroelasticity Branch
NASA Technical Reports Server (NTRS)
Bartels, Robert; Chwalowski, Pawel; Funk, Christie; Heeg, Jennifer; Hur, Jiyoung; Sanetrik, Mark; Scott, Robert; Silva, Walter; Stanford, Bret; Wiseman, Carol
2015-01-01
The NASA Langley Aeroelasticity Branch is involved in a number of research programs related to fixed wing aeroelasticity and aeroservoelasticity. These ongoing efforts are summarized here, and include aeroelastic tailoring of subsonic transport wing structures, experimental and numerical assessment of truss-braced wing flutter and limit cycle oscillations, and numerical modeling of high speed civil transport configurations. Efforts devoted to verification, validation, and uncertainty quantification of aeroelastic physics in a workshop setting are also discussed. The feasibility of certain future civil transport configurations will depend on the ability to understand and control complex aeroelastic phenomena, a goal that the Aeroelasticity Branch is well-positioned to contribute through these programs.
Aeroelastic Tailoring with Composites Applied to Forward Swept Wings
1981-11-01
wings a viable configo.-tion option for high perfotmance aircraft. Forward swept wings have an inherent -.endency to encounter a static aeroelastic...configuration option for high performance aircraft. Forward swept wings have an inherent tendency to encounter a static aeroelastic instability ialled divergence...conventional and super- critical airfoils. ....... ..................... 19 12 Static methods for subcritical divergence dynamic pressure projection. (a
Sensitivity Analysis of Wing Aeroelastic Responses
NASA Technical Reports Server (NTRS)
Issac, Jason Cherian
1995-01-01
Design for prevention of aeroelastic instability (that is, the critical speeds leading to aeroelastic instability lie outside the operating range) is an integral part of the wing design process. Availability of the sensitivity derivatives of the various critical speeds with respect to shape parameters of the wing could be very useful to a designer in the initial design phase, when several design changes are made and the shape of the final configuration is not yet frozen. These derivatives are also indispensable for a gradient-based optimization with aeroelastic constraints. In this study, flutter characteristic of a typical section in subsonic compressible flow is examined using a state-space unsteady aerodynamic representation. The sensitivity of the flutter speed of the typical section with respect to its mass and stiffness parameters, namely, mass ratio, static unbalance, radius of gyration, bending frequency, and torsional frequency is calculated analytically. A strip theory formulation is newly developed to represent the unsteady aerodynamic forces on a wing. This is coupled with an equivalent plate structural model and solved as an eigenvalue problem to determine the critical speed of the wing. Flutter analysis of the wing is also carried out using a lifting-surface subsonic kernel function aerodynamic theory (FAST) and an equivalent plate structural model. Finite element modeling of the wing is done using NASTRAN so that wing structures made of spars and ribs and top and bottom wing skins could be analyzed. The free vibration modes of the wing obtained from NASTRAN are input into FAST to compute the flutter speed. An equivalent plate model which incorporates first-order shear deformation theory is then examined so it can be used to model thick wings, where shear deformations are important. The sensitivity of natural frequencies to changes in shape parameters is obtained using ADIFOR. A simple optimization effort is made towards obtaining a minimum weight
Recent Applications of the Volterra Theory to Aeroelastic Phenomena
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Haji, Muhammad R; Prazenica, Richard J.
2005-01-01
The identification of nonlinear aeroelastic systems based on the Volterra theory of nonlinear systems is presented. Recent applications of the theory to problems in experimental aeroelasticity are reviewed. These results include the identification of aerodynamic impulse responses, the application of higher-order spectra (HOS) to wind-tunnel flutter data, and the identification of nonlinear aeroelastic phenomena from flight flutter test data of the Active Aeroelastic Wing (AAW) aircraft.
Static aeroelastic behavior of an adaptive laminated piezoelectric composite wing
NASA Technical Reports Server (NTRS)
Weisshaar, T. A.; Ehlers, S. M.
1990-01-01
The effect of using an adaptive material to modify the static aeroelastic behavior of a uniform wing is examined. The wing structure is idealized as a laminated sandwich structure with piezoelectric layers in the upper and lower skins. A feedback system that senses the wing root loads applies a constant electric field to the piezoelectric actuator. Modification of pure torsional deformaton behavior and pure bending deformation are investigated, as is the case of an anisotropic composite swept wing. The use of piezoelectric actuators to create an adaptive structure is found to alter static aeroelastic behavior in that the proper choice of the feedback gain can increase or decrease the aeroelastic divergence speed. This concept also may be used to actively change the lift effectiveness of a wing. The ability to modify static aeroelastic behavior is limited by physical limitations of the piezoelectric material and the manner in which it is integrated into the parent structure.
Active Aeroelastic Wing Aerodynamic Model Development and Validation for a Modified F/A-18A Airplane
NASA Technical Reports Server (NTRS)
Cumming, Stephen B.; Diebler, Corey G.
2005-01-01
A new aerodynamic model has been developed and validated for a modified F/A-18A airplane used for the Active Aeroelastic Wing (AAW) research program. The goal of the program was to demonstrate the advantages of using the inherent flexibility of an aircraft to enhance its performance. The research airplane was an F/A-18A with wings modified to reduce stiffness and a new control system to increase control authority. There have been two flight phases. Data gathered from the first flight phase were used to create the new aerodynamic model. A maximum-likelihood output-error parameter estimation technique was used to obtain stability and control derivatives. The derivatives were incorporated into the National Aeronautics and Space Administration F-18 simulation, validated, and used to develop new AAW control laws. The second phase of flights was used to evaluate the handling qualities of the AAW airplane and the control law design process, and to further test the accuracy of the new model. The flight test envelope covered Mach numbers between 0.85 and 1.30 and dynamic pressures from 600 to 1250 pound-force per square foot. The results presented in this report demonstrate that a thorough parameter identification analysis can be used to improve upon models that were developed using other means. This report describes the parameter estimation technique used, details the validation techniques, discusses differences between previously existing F/A-18 models, and presents results from the second phase of research flights.
Wing Weight Optimization Under Aeroelastic Loads Subject to Stress Constraints
NASA Technical Reports Server (NTRS)
Kapania, Rakesh K.; Issac, J.; Macmurdy, D.; Guruswamy, Guru P.
1997-01-01
A minimum weight optimization of the wing under aeroelastic loads subject to stress constraints is carried out. The loads for the optimization are based on aeroelastic trim. The design variables are the thickness of the wing skins and planform variables. The composite plate structural model incorporates first-order shear deformation theory, the wing deflections are expressed using Chebyshev polynomials and a Rayleigh-Ritz procedure is adopted for the structural formulation. The aerodynamic pressures provided by the aerodynamic code at a discrete number of grid points is represented as a bilinear distribution on the composite plate code to solve for the deflections and stresses in the wing. The lifting-surface aerodynamic code FAST is presently being used to generate the pressure distribution over the wing. The envisioned ENSAERO/Plate is an aeroelastic analysis code which combines ENSAERO version 3.0 (for analysis of wing-body configurations) with the composite plate code.
Inertial Force Coupling to Nonlinear Aeroelasticity of Flexible Wing Aircraft
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Ting, Eric
2016-01-01
This paper investigates the inertial force effect on nonlinear aeroelasticity of flexible wing aircraft. The geometric are nonlinearity due to rotational and tension stiffening. The effect of large bending deflection will also be investigated. Flutter analysis will be conducted for a truss-braced wing aircraft concept with tension stiffening and inertial force coupling.
Aeroservoelastic Model Validation and Test Data Analysis of the F/A-18 Active Aeroelastic Wing
NASA Technical Reports Server (NTRS)
Brenner, Martin J.; Prazenica, Richard J.
2003-01-01
Model validation and flight test data analysis require careful consideration of the effects of uncertainty, noise, and nonlinearity. Uncertainty prevails in the data analysis techniques and results in a composite model uncertainty from unmodeled dynamics, assumptions and mechanics of the estimation procedures, noise, and nonlinearity. A fundamental requirement for reliable and robust model development is an attempt to account for each of these sources of error, in particular, for model validation, robust stability prediction, and flight control system development. This paper is concerned with data processing procedures for uncertainty reduction in model validation for stability estimation and nonlinear identification. F/A-18 Active Aeroelastic Wing (AAW) aircraft data is used to demonstrate signal representation effects on uncertain model development, stability estimation, and nonlinear identification. Data is decomposed using adaptive orthonormal best-basis and wavelet-basis signal decompositions for signal denoising into linear and nonlinear identification algorithms. Nonlinear identification from a wavelet-based Volterra kernel procedure is used to extract nonlinear dynamics from aeroelastic responses, and to assist model development and uncertainty reduction for model validation and stability prediction by removing a class of nonlinearity from the uncertainty.
Nonlinear Aeroelastic Analysis of Joined-Wing Configurations
NASA Astrophysics Data System (ADS)
Cavallaro, Rauno
Aeroelastic design of joined-wing configurations is yet a relatively unexplored topic which poses several difficulties. Due to the overconstrained nature of the system combined with structural geometric nonlinearities, the behavior of Joined Wings is often counterintuitive and presents challenges not seen in standard layouts. In particular, instability observed on detailed aircraft models but never thoroughly investigated, is here studied with the aid of a theoretical/computational framework. Snap-type of instabilities are shown for both pure structural and aeroelastic cases. The concept of snap-divergence is introduced to clearly identify the true aeroelastic instability, as opposed to the usual aeroelastic divergence evaluated through eigenvalue approach. Multi-stable regions and isola-type of bifurcations are possible characterizations of the nonlinear response of Joined Wings, and may lead to branch-jumping phenomena well below nominal critical load condition. Within this picture, sensitivity to (unavoidable) manufacturing defects could have potential catastrophic effects. The phenomena studied in this work suggest that the design process for Joined Wings needs to be revisited and should focus, when instability is concerned, on nonlinear post-critical analysis since linear methods may provide wrong trend indications and also hide potentially catastrophical situations. Dynamic aeroelastic analyses are also performed. Flutter occurrence is critically analyzed with frequency and time-domain capabilities. Sensitivity to different-fidelity aeroelastic modeling (fluid-structure interface algorithm, aerodynamic solvers) is assessed showing that, for some configurations, wake modeling (rigid versus free) has a strong impact on the results. Post-flutter regimes are also explored. Limit cycle oscillations are observed, followed, in some cases, by flip bifurcations (period doubling) and loss of periodicity of the solution. Aeroelastic analyses are then carried out on a
NASA Astrophysics Data System (ADS)
Schuster, David M.
1993-04-01
An inverse method has been developed to compute the structural stiffness properties of wings given a specified wing loading and aeroelastic twist distribution. The method directly solves for the bending and torsional stiffness distribution of the wing using a modal representation of these properties. An aeroelastic design problem involving the use of a computational aerodynamics method to optimize the aeroelastic twist distribution of a tighter wing operating at maneuver flight conditions is used to demonstrate the application of the method. This exercise verifies the ability of the inverse scheme to accurately compute the structural stiffness distribution required to generate a specific aeroelastic twist under a specified aeroelastic load.
2015-01-05
The aeroelastic behavior of a finite aspect ratio (AR=6) NACA0018 wing is computationally analyzed. HPCMP CREATE(trademark)-AV Kestrel, a fully...aeroelastically deforming wing . Externally controlled blowing slots distributed along the span of the wing are used to inject mass into the flow field to...coefficients. For the rigid wing , the lift is increased, as are the pitching and rolling moments. When aeroelastic deformation is considered, the
Aeroelastic and Flight Dynamics Analysis of Folding Wing Systems
NASA Astrophysics Data System (ADS)
Wang, Ivan
This dissertation explores the aeroelastic stability of a folding wing using both theoretical and experimental methods. The theoretical model is based on the existing clamped-wing aeroelastic model that uses beam theory structural dynamics and strip theory aerodynamics. A higher-fidelity theoretical model was created by adding several improvements to the existing model, namely a structural model that uses ANSYS for individual wing segment modes and an unsteady vortex lattice aerodynamic model. The comparison with the lower-fidelity model shows that the higher-fidelity model typical provides better agreement between theory and experiment, but the predicted system behavior in general does not change, reinforcing the effectiveness of the low-fidelity model for preliminary design of folding wings. The present work also conducted more detailed aeroelastic analyses of three-segment folding wings, and in particular considers the Lockheed-type configurations to understand the existence of sudden changes in predicted aeroelastic behavior with varying fold angle for certain configurations. These phenomena were observed in carefully conducted experiments, and nonlinearities---structural and geometry---were shown to suppress the phenomena. Next, new experimental models with better manufacturing tolerances are designed to be tested in the Duke University Wind Tunnel. The testing focused on various configurations of three-segment folding wings in order to obtain higher quality data. Next, the theoretical model was further improved by adding aircraft longitudinal degrees of freedom such that the aeroelastic model may predict the instabilities for the entire aircraft and not just a clamped wing. The theoretical results show that the flutter instabilities typically occur at a higher air speed due to greater frequency separation between modes for the aircraft system than a clamped wing system, but the divergence instabilities occur at a lower air speed. Lastly, additional
Aeroelastic Tailoring of Transport Wings Including Transonic Flutter Constraints
NASA Technical Reports Server (NTRS)
Stanford, Bret K.; Wieseman, Carol D.; Jutte, Christine V.
2015-01-01
Several minimum-mass optimization problems are solved to evaluate the effectiveness of a variety of novel tailoring schemes for subsonic transport wings. Aeroelastic stress and panel buckling constraints are imposed across several trimmed static maneuver loads, in addition to a transonic flutter margin constraint, captured with aerodynamic influence coefficient-based tools. Tailoring with metallic thickness variations, functionally graded materials, balanced or unbalanced composite laminates, curvilinear tow steering, and distributed trailing edge control effectors are all found to provide reductions in structural wing mass with varying degrees of success. The question as to whether this wing mass reduction will offset the increased manufacturing cost is left unresolved for each case.
Optimal aeroelastic design of an oblique wing structure
NASA Technical Reports Server (NTRS)
Gwin, L. B.
1974-01-01
A procedure is presented for determining the optimal cover panel thickness of a wing structure to meet specified strength and static aeroelastic divergence requirements for minimum weight. Efficient reanalysis techniques using discrete structural and aerodynamic methods are used in conjunction with redesign algorithms driven by optimality criteria. The optimality conditions for the divergence constraint are established, and expressions are obtained for derivatives of the dynamic pressure at divergence with respect to design variables. The procedure is applied to an oblique wing aircraft where strength and stiffness are critical design considerations for sizing the cover thickness of the wing structure.
Aeroelastic Tailoring of a Plate Wing with Functionally Graded Materials
NASA Technical Reports Server (NTRS)
Dunning, Peter D.; Stanford, Bret K.; Kim, H. Alicia; Jutte, Christine V.
2014-01-01
This work explores the use of functionally graded materials for the aeroelastic tailoring of a metallic cantilevered plate-like wing. Pareto trade-off curves between dynamic stability (flutter) and static aeroelastic stresses are obtained for a variety of grading strategies. A key comparison is between the effectiveness of material grading, geometric grading (i.e., plate thickness variations), and using both simultaneously. The introduction of material grading does, in some cases, improve the aeroelastic performance. This improvement, and the physical mechanism upon which it is based, depends on numerous factors: the two sets of metallic material parameters used for grading, the sweep of the plate, the aspect ratio of the plate, and whether the material is graded continuously or discretely.
Application of the Finite Element Method to Rotary Wing Aeroelasticity
NASA Technical Reports Server (NTRS)
Straub, F. K.; Friedmann, P. P.
1982-01-01
A finite element method for the spatial discretization of the dynamic equations of equilibrium governing rotary-wing aeroelastic problems is presented. Formulation of the finite element equations is based on weighted Galerkin residuals. This Galerkin finite element method reduces algebraic manipulative labor significantly, when compared to the application of the global Galerkin method in similar problems. The coupled flap-lag aeroelastic stability boundaries of hingeless helicopter rotor blades in hover are calculated. The linearized dynamic equations are reduced to the standard eigenvalue problem from which the aeroelastic stability boundaries are obtained. The convergence properties of the Galerkin finite element method are studied numerically by refining the discretization process. Results indicate that four or five elements suffice to capture the dynamics of the blade with the same accuracy as the global Galerkin method.
Time-accurate unsteady aerodynamic and aeroelastic calculations for wings using Euler equations
NASA Technical Reports Server (NTRS)
Guruswamy, Guru P.
1988-01-01
A time-accurate approach to simultaneously solve the Euler flow equations and modal structural equations of motion is presented for computing aeroelastic responses of wings. The Euler flow eauations are solved by a time-accurate finite difference scheme with dynamic grids. The coupled aeroelastic equations of motion are solved using the linear acceleration method. The aeroelastic configuration adaptive dynamic grids are time accurately generated using the aeroelastically deformed shape of the wing. The unsteady flow calculations are validated wih experiment, both for a semi-infinite wing and a wall-mounted cantilever rectangular wings. Aeroelastic responses are computed for a rectangular wing using the modal data generated by the finite-element method. The robustness of the present approach in computing unsteady flows and aeroelastic responses that are beyond the capability of earlier approaches using the potential equations are demonstrated.
Static Aeroelastic Effects of Formation Flight for Slender Unswept Wings
NASA Technical Reports Server (NTRS)
Hanson, Curtis E.
2009-01-01
The static aeroelastic equilibrium equations for slender, straight wings are modified to incorporate the effects of aerodynamically-coupled formation flight. A system of equations is developed by applying trim constraints and is solved for component lift distribution, trim angle-of-attack, and trim aileron deflection. The trim values are then used to calculate the elastic twist distribution of the wing box. This system of equations is applied to a formation of two gliders in trimmed flight. Structural and aerodynamic properties are assumed for the gliders, and solutions are calculated for flexible and rigid wings in solo and formation flight. It is shown for a sample application of two gliders in formation flight, that formation disturbances produce greater twist in the wingtip immersed in the vortex than for either the opposing wingtip or the wings of a similar airplane in solo flight. Changes in the lift distribution, resulting from wing twist, increase the performance benefits of formation flight. A flexible wing in formation flight will require greater aileron deflection to achieve roll trim than a rigid wing.
Aeroelastic Wing Shaping Control Subject to Actuation Constraints.
NASA Technical Reports Server (NTRS)
Swei, Sean Shan-Min; Nguyen, Nhan
2014-01-01
This paper considers the control of coupled aeroelastic aircraft model which is configured with Variable Camber Continuous Trailing Edge Flap (VCCTEF) system. The relative deflection between two adjacent flaps is constrained and this actuation constraint is accounted for when designing an effective control law for suppressing the wing vibration. A simple tuned-mass damper mechanism with two attached masses is used as an example to demonstrate the effectiveness of vibration suppression with confined motion of tuned masses. In this paper, a dynamic inversion based pseudo-control hedging (PCH) and bounded control approach is investigated, and for illustration, it is applied to the NASA Generic Transport Model (GTM) configured with VCCTEF system.
Aeroelastic Analysis of a Distributed Electric Propulsion Wing
NASA Technical Reports Server (NTRS)
Massey, Steven J.; Stanford, Bret K.; Wieseman, Carol D.; Heeg, Jennifer
2017-01-01
An aeroelastic analysis of a prototype distributed electric propulsion wing is presented. Results using MSC Nastran (Registered Trademark) doublet lattice aerodynamics are compared to those based on FUN3D Reynolds Averaged Navier- Stokes aerodynamics. Four levels of grid refinement were examined for the FUN3D solutions and solutions were seen to be well converged. It was found that no oscillatory instability existed, only that of divergence, which occurred in the first bending mode at a dynamic pressure of over three times the flutter clearance condition.
Sensitivity Analysis of the Static Aeroelastic Response of a Wing
NASA Technical Reports Server (NTRS)
Eldred, Lloyd B.
1993-01-01
A technique to obtain the sensitivity of the static aeroelastic response of a three dimensional wing model is designed and implemented. The formulation is quite general and accepts any aerodynamic and structural analysis capability. A program to combine the discipline level, or local, sensitivities into global sensitivity derivatives is developed. A variety of representations of the wing pressure field are developed and tested to determine the most accurate and efficient scheme for representing the field outside of the aerodynamic code. Chebyshev polynomials are used to globally fit the pressure field. This approach had some difficulties in representing local variations in the field, so a variety of local interpolation polynomial pressure representations are also implemented. These panel based representations use a constant pressure value, a bilinearly interpolated value. or a biquadraticallv interpolated value. The interpolation polynomial approaches do an excellent job of reducing the numerical problems of the global approach for comparable computational effort. Regardless of the pressure representation used. sensitivity and response results with excellent accuracy have been produced for large integrated quantities such as wing tip deflection and trim angle of attack. The sensitivities of such things as individual generalized displacements have been found with fair accuracy. In general, accuracy is found to be proportional to the relative size of the derivatives to the quantity itself.
Smithornis broadbills produce loud wing song by aeroelastic flutter of medial primary wing feathers.
Clark, Christopher J; Kirschel, Alexander N G; Hadjioannou, Louis; Prum, Richard O
2016-04-01
Broadbills in the genus Smithornis produce a loud brreeeeet during a distinctive flight display. It has been posited that this klaxon-like sound is generated non-vocally with the outer wing feathers (P9, P10), but no scientific studies have previously addressed this hypothesis. Although most birds that make non-vocal communication sounds have feathers with a shape distinctively modified for sound production, Smithornis broadbills do not. We investigated whether this song is produced vocally or with the wings in rufous-sided broadbill (S. rufolateralis) and African broad bill (S. capensis). In support of the wing song hypothesis, synchronized high-speed video and sound recordings of displays demonstrated that sound pulses were produced during the downstroke, subtle gaps sometimes appeared between the outer primary feathers P6-P10, and wing tip speed reached 16â€…mâ€…s(-1) Tests of a spread wing in a wind tunnel demonstrated that at a specific orientation, P6 and P7 flutter and produce sound. Wind tunnel tests on individual feathers P5-P10 from a male of each species revealed that while all of these feathers can produce sound via aeroelastic flutter, P6 and P7 produce the loudest sounds, which are similar in frequency to the wing song, at airspeeds achievable by the wing tip during display flight. Consistent with the wind tunnel experiments, field manipulations of P6, P7 and P8 changed the timbre of the wing song, and reduced its tonality, demonstrating that P6 and P7 are together the sound source, and not P9 or P10. The resultant wing song appears to have functionally replaced vocal song.
Stability and Control Properties of an Aeroelastic Fixed Wing Micro Aerial Vehicle
NASA Technical Reports Server (NTRS)
Waszak, Martin R.; Jenkins, Luther N.; Ifju, Peter
2001-01-01
Micro aerial vehicles have been the subject of considerable interest and development over the last several years. The majority of current vehicle concepts rely on rigid fixed wings or rotors. An alternate design based on an aeroelastic membrane wing concept has also been developed that has exhibited desired characteristics in flight test demonstrations and competition. This paper presents results from a wind tunnel investigation that sought to quantify stability and control properties for a family of vehicles using the aeroelastic design. The results indicate that the membrane wing does exhibit potential benefits that could be exploited to enhance the design of future flight vehicles.
NASA Technical Reports Server (NTRS)
Stanford, Bret K.; Jutte, Christine V.
2014-01-01
Several minimum-mass aeroelastic optimization problems are solved to evaluate the effectiveness of a variety of novel tailoring schemes for subsonic transport wings. Aeroelastic strength and panel buckling constraints are imposed across a variety of trimmed maneuver loads. Tailoring with metallic thickness variations, functionally graded materials, composite laminates, tow steering, and distributed trailing edge control effectors are all found to provide reductions in structural wing mass with varying degrees of success. The question as to whether this wing mass reduction will offset the increased manufacturing cost is left unresolved for each case.
NASA Technical Reports Server (NTRS)
Jutte, Christine; Stanford, Bret K.
2014-01-01
This paper provides a brief overview of the state-of-the-art for aeroelastic tailoring of subsonic transport aircraft and offers additional resources on related research efforts. Emphasis is placed on aircraft having straight or aft swept wings. The literature covers computational synthesis tools developed for aeroelastic tailoring and numerous design studies focused on discovering new methods for passive aeroelastic control. Several new structural and material technologies are presented as potential enablers of aeroelastic tailoring, including selectively reinforced materials, functionally graded materials, fiber tow steered composite laminates, and various nonconventional structural designs. In addition, smart materials and structures whose properties or configurations change in response to external stimuli are presented as potential active approaches to aeroelastic tailoring.
NASA Technical Reports Server (NTRS)
Guruswamy, Guru P.; MacMurdy, Dale E.; Kapania, Rakesh K.
1994-01-01
Strong interactions between flow about an aircraft wing and the wing structure can result in aeroelastic phenomena which significantly impact aircraft performance. Time-accurate methods for solving the unsteady Navier-Stokes equations have matured to the point where reliable results can be obtained with reasonable computational costs for complex non-linear flows with shock waves, vortices and separations. The ability to combine such a flow solver with a general finite element structural model is key to an aeroelastic analysis in these flows. Earlier work involved time-accurate integration of modal structural models based on plate elements. A finite element model was developed to handle three-dimensional wing boxes, and incorporated into the flow solver without the need for modal analysis. Static condensation is performed on the structural model to reduce the structural degrees of freedom for the aeroelastic analysis. Direct incorporation of the finite element wing-box structural model with the flow solver requires finding adequate methods for transferring aerodynamic pressures to the structural grid and returning deflections to the aerodynamic grid. Several schemes were explored for handling the grid-to-grid transfer of information. The complex, built-up nature of the wing-box complicated this transfer. Aeroelastic calculations for a sample wing in transonic flow comparing various simple transfer schemes are presented and discussed.
Adaptive aeroelastic composite wings - Control and optimization issues
NASA Technical Reports Server (NTRS)
Weisshaar, Terrence A.; Ehlers, Steven M.
1992-01-01
High-performance aircraft are adaptive machines composed of internal structural skeletons to which are attached control surfaces operated by hydraulic muscles to allow them to maneuver. The flight crew, avionic sensors and systems function as the brain and nervous system to adapt the machine to changing flight conditions, such as take-off, cruise and landing. The development of new materials that can expand or contract on command or change stiffness on demand will blur the now distinct boundaries between the structure, actuators and the control system. This paper discusses the use of imbedded active piezoelectric materials to change the aeroelastic stiffness of a lifting surface to allow this surface to control the aircraft. Expressions are developed for the piezoelectric material effectiveness when these active materials are combined with advanced composite structural materials for a swept, high-aspect-ratio wing. The interaction between advanced composite material properties and piezoelectric electromechanical properties is examined. The importance of choosing the proper active control laws is also illustrated.
Aeroelastic analysis of wings using the Euler equations with a deforming mesh
NASA Technical Reports Server (NTRS)
Robinson, Brian A.; Batina, John T.; Yang, Henry T. Y.
1990-01-01
Modifications to the CFL3D three dimensional unsteady Euler/Navier-Stokes code for the aeroelastic analysis of wings are described. The modifications involve including a deforming mesh capability which can move the mesh to continuously conform to the instantaneous shape of the aeroelastically deforming wing, and including the structural equations of motion for their simultaneous time-integration with the governing flow equations. Calculations were performed using the Euler equations to verify the modifications to the code and as a first step toward aeroelastic analysis using the Navier-Stokes equations. Results are presented for the NACA 0012 airfoil and a 45 deg sweptback wing to demonstrate applications of CFL3D for generalized force computations and aeroelastic analysis. Comparisons are made with published Euler results for the NACA 0012 airfoil and with experimental flutter data for the 45 deg sweptback wing to assess the accuracy of the present capability. These comparisons show good agreement and, thus, the CFL3D code may be used with confidence for aeroelastic analysis of wings.
Aeroelastic analysis of wings using the Euler equations with a deforming mesh
NASA Technical Reports Server (NTRS)
Robinson, Brian A.; Batina, John T.; Yang, Henry T. Y.
1990-01-01
Modifications to the CFL3D three-dimensional unsteady Euler/Navier-Stokes code for the aeroelastic analysis of wings are described. The modifications involve including a deforming mesh capability which can move the mesh to continuously conform to the instantaneous shape of the aeroelastically deforming wing, and including the structural equations of motion for their simultaneous time-integration with the governing flow equations. Calculations were performed using the Euler equations to verify the modifications to the code and as a first-step toward aeroelastic analysis using the Navier-Stokes equations. Results are presented for the NACA 0012 airfoil and a 45 deg sweptback wing to demonstrate applications of CFL3D for generalized force computations and aeroelastic analysis. Comparisons are made with published Euler results for the NACA 0012 airfoil and with experimental flutter data for the 45 deg sweptback wing to assess the accuracy of the present capability. These comparisons show good agreement and, thus, the CFL3D code may be used with confidence for aeroelastic analysis of wings. The paper describes the modifications that were made to the code and presents results and comparisons which assess the capability.
Static Aeroelastic Scaling and Analysis of a Sub-Scale Flexible Wing Wind Tunnel Model
NASA Technical Reports Server (NTRS)
Ting, Eric; Lebofsky, Sonia; Nguyen, Nhan; Trinh, Khanh
2014-01-01
This paper presents an approach to the development of a scaled wind tunnel model for static aeroelastic similarity with a full-scale wing model. The full-scale aircraft model is based on the NASA Generic Transport Model (GTM) with flexible wing structures referred to as the Elastically Shaped Aircraft Concept (ESAC). The baseline stiffness of the ESAC wing represents a conventionally stiff wing model. Static aeroelastic scaling is conducted on the stiff wing configuration to develop the wind tunnel model, but additional tailoring is also conducted such that the wind tunnel model achieves a 10% wing tip deflection at the wind tunnel test condition. An aeroelastic scaling procedure and analysis is conducted, and a sub-scale flexible wind tunnel model based on the full-scale's undeformed jig-shape is developed. Optimization of the flexible wind tunnel model's undeflected twist along the span, or pre-twist or wash-out, is then conducted for the design test condition. The resulting wind tunnel model is an aeroelastic model designed for the wind tunnel test condition.
NASA Technical Reports Server (NTRS)
Nguyen, Nhan; Kaul, Upender; Lebofsky, Sonia; Ting, Eric; Chaparro, Daniel; Urnes, James
2015-01-01
This paper summarizes the recent development of an adaptive aeroelastic wing shaping control technology called variable camber continuous trailing edge flap (VCCTEF). As wing flexibility increases, aeroelastic interactions with aerodynamic forces and moments become an increasingly important consideration in aircraft design and aerodynamic performance. Furthermore, aeroelastic interactions with flight dynamics can result in issues with vehicle stability and control. The initial VCCTEF concept was developed in 2010 by NASA under a NASA Innovation Fund study entitled "Elastically Shaped Future Air Vehicle Concept," which showed that highly flexible wing aerodynamic surfaces can be elastically shaped in-flight by active control of wing twist and bending deflection in order to optimize the spanwise lift distribution for drag reduction. A collaboration between NASA and Boeing Research & Technology was subsequently funded by NASA from 2012 to 2014 to further develop the VCCTEF concept. This paper summarizes some of the key research areas conducted by NASA during the collaboration with Boeing Research and Technology. These research areas include VCCTEF design concepts, aerodynamic analysis of VCCTEF camber shapes, aerodynamic optimization of lift distribution for drag minimization, wind tunnel test results for cruise and high-lift configurations, flutter analysis and suppression control of flexible wing aircraft, and multi-objective flight control for adaptive aeroelastic wing shaping control.
NASA Astrophysics Data System (ADS)
Otsuka, Keisuke; Makihara, Kanjuro
2016-05-01
Morphing wings have been developed by several organizations for a variety of applications including the changing of flight ability while in the air and reducing the amount of space required to store an aircraft. One such example of morphing wings is the deployable wing that is expected to be used for Mars exploration. When designing wings, aeroelastic simulation is important to prevent the occurrence of destructive phenomena while the wing is in use. Flutter and divergence are typical issues to be addressed. However, it has been difficult to simulate the aeroelastic motion of deployable wings because of the significant differences between these deployable wings and conventional designs. The most apparent difference is the kinematic constraints of deployment, typically a hinge joint. These constraints lead not only to deformation but also to rigid body rotation. This research provides a novel method of overcoming the difficulties associated with handling these kinematic constraints. The proposed method utilizes flexible multibody dynamics and absolute nodal coordinate formulation to describe the dynamic motion of a deployable wing. This paper presents the simulation of the rigid body rotation around the kinematic constraints as induced by the aeroelasticity. The practicality of the proposed method is confirmed.
A numerical investigation of nonlinear aeroelastic effects on flexible high aspect ratio wings
NASA Astrophysics Data System (ADS)
Garcia, Joseph Avila
2002-01-01
A nonlinear aeroelastic analysis that couples a nonlinear structural model with an Euler/Navier-Stokes flow solver is developed for flexible high aspect ratio wings. To model the nonlinear structural characteristics of flexible high aspect ratio wings, a two-dimensional geometric nonlinear methodology, based on a 6 degree-of-freedom (DOF) beam finite element, is extended to three dimensions based on a 12 DOF beam finite element. The three-dimensional analysis is developed in order to capture the nonlinear torsion-bending coupling, which is not accounted for by the two-dimensional nonlinear methodology. Validation of the three-dimensional nonlinear structural approach against experimental data shows that the approach accurately predicts the geometric nonlinear bending and torsion due to bending for configurations of general interest. Torsion is slightly overpredicted in extreme cases and higher order modeling is then required. The three-dimensional nonlinear beam model is then coupled with an Euler/Navier-Stokes computational fluid dynamics (CFD) analysis. Solving the equations numerically for the two nonlinear systems results in an increase in computational time and cost needed to perform the aeroelastic analysis. To improve the computational efficiency of the nonlinear aeroelastic analysis, the nonlinear structural approach uses a second-order accurate predictor-corrector methodology to solve for the displacements. Static aeroelastic results are presented for an unswept and swept high aspect ratio wing in the transonic flow regime, using the developed nonlinear aeroelastic methodology. Unswept wing results show a reversal in twist due to the nonlinear torsion-bending coupling effects. Specifically, the torsional moments due to drag become large enough to cause the wing twist rotations to washin the wing tips, while the linear results show a washout twist rotation. The nonlinear twist results are attributed to the large bending displacements coupled with the large
The Wing-Body Aeroelastic Analyses Using the Inverse Design Method
NASA Astrophysics Data System (ADS)
Lee, Seung Jun; Im, Dong-Kyun; Lee, In; Kwon, Jang-Hyuk
Flutter phenomenon is one of the most dangerous problems in aeroelasticity. When it occurs, the aircraft structure can fail in a few second. In recent aeroelastic research, computational fluid dynamics (CFD) techniques become important means to predict the aeroelastic unstable responses accurately. Among various flow equations like Navier-Stokes, Euler, full potential and so forth, the transonic small disturbance (TSD) theory is widely recognized as one of the most efficient theories. However, the small disturbance assumption limits the applicable range of the TSD theory to the thin wings. For a missile which usually has small aspect ratio wings, the influence of body aerodynamics on the wing surface may be significant. Thus, the flutter stability including the body effect should be verified. In this research an inverse design method is used to complement the aerodynamic deficiency derived from the fuselage. MGM (modified Garabedian-McFadden) inverse design method is used to optimize the aerodynamic field of a full aircraft model. Furthermore, the present TSD aeroelastic analyses do not require the grid regeneration process. The MGM inverse design method converges faster than other conventional aerodynamic theories. Consequently, the inverse designed aeroelastic analyses show that the flutter stability has been lowered by the body effect.
Flight Test of the F/A-18 Active Aeroelastic Wing Airplane
NASA Technical Reports Server (NTRS)
Clarke, Robert; Allen, Michael J.; Dibley, Ryan P.; Gera, Joseph; Hodgkinson, John
2005-01-01
Successful flight-testing of the Active Aeroelastic Wing airplane was completed in March 2005. This program, which started in 1996, was a joint activity sponsored by NASA, Air Force Research Laboratory, and industry contractors. The test program contained two flight test phases conducted in early 2003 and early 2005. During the first phase of flight test, aerodynamic models and load models of the wing control surfaces and wing structure were developed. Design teams built new research control laws for the Active Aeroelastic Wing airplane using these flight-validated models; and throughout the final phase of flight test, these new control laws were demonstrated. The control laws were designed to optimize strategies for moving the wing control surfaces to maximize roll rates in the transonic and supersonic flight regimes. Control surface hinge moments and wing loads were constrained to remain within hydraulic and load limits. This paper describes briefly the flight control system architecture as well as the design approach used by Active Aeroelastic Wing project engineers to develop flight control system gains. Additionally, this paper presents flight test techniques and comparison between flight test results and predictions.
Development and Testing of Control Laws for the Active Aeroelastic Wing Program
NASA Technical Reports Server (NTRS)
Dibley, Ryan P.; Allen, Michael J.; Clarke, Robert; Gera, Joseph; Hodgkinson, John
2005-01-01
The Active Aeroelastic Wing research program was a joint program between the U.S. Air Force Research Laboratory and NASA established to investigate the characteristics of an aeroelastic wing and the technique of using wing twist for roll control. The flight test program employed the use of an F/A-18 aircraft modified by reducing the wing torsional stiffness and adding a custom research flight control system. The research flight control system was optimized to maximize roll rate using only wing surfaces to twist the wing while simultaneously maintaining design load limits, stability margins, and handling qualities. NASA Dryden Flight Research Center developed control laws using the software design tool called CONDUIT, which employs a multi-objective function optimization to tune selected control system design parameters. Modifications were made to the Active Aeroelastic Wing implementation in this new software design tool to incorporate the NASA Dryden Flight Research Center nonlinear F/A-18 simulation for time history analysis. This paper describes the design process, including how the control law requirements were incorporated into constraints for the optimization of this specific software design tool. Predicted performance is also compared to results from flight.
Aeroelastic Response of Nonlinear Wing Section by Functional Series Technique
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Marzocca, Piergiovanni
2001-01-01
This paper addresses the problem of the determination of the subcritical aeroelastic response and flutter instability of nonlinear two-dimensional lifting surfaces in an incompressible flow-field via indicial functions and Volterra series approach. The related aeroelastic governing equations are based upon the inclusion of structural and damping nonlinearities in plunging and pitching, of the linear unsteady aerodynamics and consideration of an arbitrary time-dependent external pressure pulse. Unsteady aeroelastic nonlinear kernels are determined, and based on these, frequency and time histories of the subcritical aeroelastic response are obtained, and in this context the influence of the considered nonlinearities is emphasized. Conclusions and results displaying the implications of the considered effects are supplied.
Aeroelastic Response of Nonlinear Wing Section By Functional Series Technique
NASA Technical Reports Server (NTRS)
Marzocca, Piergiovanni; Librescu, Liviu; Silva, Walter A.
2000-01-01
This paper addresses the problem of the determination of the subcritical aeroelastic response and flutter instability of nonlinear two-dimensional lifting surfaces in an incompressible flow-field via indicial functions and Volterra series approach. The related aeroelastic governing equations are based upon the inclusion of structural and damping nonlinearities in plunging and pitching, of the linear unsteady aerodynamics and consideration of an arbitrary time-dependent external pressure pulse. Unsteady aeroelastic nonlinear kernels are determined, and based on these, frequency and time histories of the subcritical aeroelastic response are obtained, and in this context the influence of the considered nonlinearities is emphasized. Conclusions and results displaying the implications of the considered effects are supplied.
Aeroelastic Studies of a Rectangular Wing with a Hole: Correlation of Theory and Experiment
NASA Technical Reports Server (NTRS)
Conyers, Howard J.; Dowell, Earl H.; Hall, Kenneth C.
2010-01-01
Two rectangular wing models with a hole have been designed and tested in the Duke University wind tunnel to better understand the effects of damage. A rectangular hole is used to simulate damage. The wing with a hole is modeled structurally as a thin elastic plate using the finite element method. The unsteady aerodynamics of the plate-like wing with a hole is modeled using the doublet lattice method. The aeroelastic equations of motion are derived using Lagrange's equation. The flutter boundary is found using the V-g method. The hole's location effects the wing's mass, stiffness, aerodynamics and therefore the aeroelastic behavior. Linear theoretical models were shown to be capable of predicting the critical flutter velocity and frequency as verified by wind tunnel tests.
A comparative study of serial and parallel aeroelastic computations of wings
NASA Technical Reports Server (NTRS)
Byun, Chansup; Guruswamy, Guru P.
1994-01-01
A procedure for computing the aeroelasticity of wings on parallel multiple-instruction, multiple-data (MIMD) computers is presented. In this procedure, fluids are modeled using Euler equations, and structures are modeled using modal or finite element equations. The procedure is designed in such a way that each discipline can be developed and maintained independently by using a domain decomposition approach. In the present parallel procedure, each computational domain is scalable. A parallel integration scheme is used to compute aeroelastic responses by solving fluid and structural equations concurrently. The computational efficiency issues of parallel integration of both fluid and structural equations are investigated in detail. This approach, which reduces the total computational time by a factor of almost 2, is demonstrated for a typical aeroelastic wing by using various numbers of processors on the Intel iPSC/860.
Aeroelastic response of an aircraft wing with mounted engine subjected to time-dependent thrust
NASA Astrophysics Data System (ADS)
Mazidi, A.; Kalantari, H.; Fazelzadeh, S. A.
2013-05-01
In this paper, the aeroelastic response of a wing containing an engine subjected to different types of time-dependent thrust excitations is presented. In order to precisely consider the spanwise and chordwise locations of the engine and the time-dependent follower force in governing equations, derived through Lagrange's method, the generalized function theory is used. Unsteady aerodynamic lift and moment in the time domain are considered in terms of Wagner's function. Numerical simulations of the aeroelastic response to different types of time-dependent thrust excitation and comparisons with the previously published results are supplied. Effects of the engine mass and location and also the type of time-dependent thrust on the wing aeroelastic response are studied and pertinent conclusions are outlined.
NASA Astrophysics Data System (ADS)
Qin, Z.; Librescu, L.
2003-08-01
An encompassing aeroelastic model developed toward investigating the influence of directionality property of advanced composite materials and non-classical effects such as transverse shear and warping restraint on the aeroelastic instability of composite aircraft wings is presented. Within the model developed herein, both divergence and flutter instabilities are simultaneously addressed. The aircraft wing is modelled as an anisotropic composite thin-walled beam featuring circumferentially asymmetric stiffness lay-up that generates, for the problem at hand, elastic coupling among plunging, pitching and transverse shear motions. The unsteady incompressible aerodynamics used here is based on the concept of indicial functions. Issues related to aeroelastic instability are discussed, the influence of warping restraint and transverse shear on the critical speed are evaluated, and pertinent conclusions are outlined.
1993-06-01
combat damage. The analysis was performed using the MSCANASTRAN Aeroelastic Code. Structural and aerodynamic models are based on the finite element...rudders) are considered as lifing and control surfaces in the aerodynamic model . Five different wing structural models , one undamaged and four damaged, are...of wing-body Interference, on the aircraft’s flight dynamics are discussed. 14. SUBJECT TERMS IS. NUMBER OF PAGES T-38 aircraft; auerodynamic model
Twist Model Development and Results From the Active Aeroelastic Wing F/A-18 Aircraft
NASA Technical Reports Server (NTRS)
Lizotte, Andrew; Allen, Michael J.
2005-01-01
Understanding the wing twist of the active aeroelastic wing F/A-18 aircraft is a fundamental research objective for the program and offers numerous benefits. In order to clearly understand the wing flexibility characteristics, a model was created to predict real-time wing twist. A reliable twist model allows the prediction of twist for flight simulation, provides insight into aircraft performance uncertainties, and assists with computational fluid dynamic and aeroelastic issues. The left wing of the aircraft was heavily instrumented during the first phase of the active aeroelastic wing program allowing deflection data collection. Traditional data processing steps were taken to reduce flight data, and twist predictions were made using linear regression techniques. The model predictions determined a consistent linear relationship between the measured twist and aircraft parameters, such as surface positions and aircraft state variables. Error in the original model was reduced in some cases by using a dynamic pressure-based assumption and by using neural networks. These techniques produced excellent predictions for flight between the standard test points and accounted for nonlinearities in the data. This report discusses data processing techniques and twist prediction validation, and provides illustrative and quantitative results.
Shock Location Dominated Transonic Flight Loads on the Active Aeroelastic Wing
NASA Technical Reports Server (NTRS)
Lokos, William A.; Lizotte, Andrew; Lindsley, Ned J.; Stauf, Rick
2005-01-01
During several Active Aeroelastic Wing research flights, the shadow of the over-wing shock could be observed because of natural lighting conditions. As the plane accelerated, the shock location moved aft, and as the shadow passed the aileron and trailing-edge flap hinge lines, their associated hinge moments were substantially affected. The observation of the dominant effect of shock location on aft control surface hinge moments led to this investigation. This report investigates the effect of over-wing shock location on wing loads through flight-measured data and analytical predictions. Wing-root and wing-fold bending moment and torque and leading- and trailing-edge hinge moments have been measured in flight using calibrated strain gages. These same loads have been predicted using a computational fluid dynamics code called the Euler Navier-Stokes Three Dimensional Aeroelastic Code. The computational fluid dynamics study was based on the elastically deformed shape estimated by a twist model, which in turn was derived from in-flight-measured wing deflections provided by a flight deflection measurement system. During level transonic flight, the shock location dominated the wing trailing-edge control surface hinge moments. The computational fluid dynamics analysis based on the shape provided by the flight deflection measurement system produced very similar results and substantially correlated with the measured loads data.
Internal Structural Design of the Common Research Model Wing Box for Aeroelastic Tailoring
NASA Technical Reports Server (NTRS)
Jutte, Christine V.; Stanford, Bret K.; Wieseman, Carol D.
2015-01-01
This work explores the use of alternative internal structural designs within a full-scale wing box structure for aeroelastic tailoring, with a focus on curvilinear spars, ribs, and stringers. The baseline wing model is a fully-populated, cantilevered wing box structure of the Common Research Model (CRM). Metrics of interest include the wing weight, the onset of dynamic flutter, and the static aeroelastic stresses. Twelve parametric studies alter the number of internal structural members along with their location, orientation, and curvature. Additional evaluation metrics are considered to identify design trends that lead to lighter-weight, aeroelastically stable wing designs. The best designs of the individual studies are compared and discussed, with a focus on weight reduction and flutter resistance. The largest weight reductions were obtained by removing the inner spar, and performance was maintained by shifting stringers forward and/or using curvilinear ribs: 5.6% weight reduction, a 13.9% improvement in flutter speed, but a 3.0% increase in stress levels. Flutter resistance was also maintained using straight-rotated ribs although the design had a 4.2% lower flutter speed than the curved ribs of similar weight and stress levels were higher. For some configurations, the differences between curved and straight ribs were smaller, which provides motivation for future optimization-based studies to fully exploit the trade-offs.
Material and Thickness Grading for Aeroelastic Tailoring of the Common Research Model Wing Box
NASA Technical Reports Server (NTRS)
Stanford, Bret K.; Jutte, Christine V.
2014-01-01
This work quantifies the potential aeroelastic benefits of tailoring a full-scale wing box structure using tailored thickness distributions, material distributions, or both simultaneously. These tailoring schemes are considered for the wing skins, the spars, and the ribs. Material grading utilizes a spatially-continuous blend of two metals: Al and Al+SiC. Thicknesses and material fraction variables are specified at the 4 corners of the wing box, and a bilinear interpolation is used to compute these parameters for the interior of the planform. Pareto fronts detailing the conflict between static aeroelastic stresses and dynamic flutter boundaries are computed with a genetic algorithm. In some cases, a true material grading is found to be superior to a single-material structure.
Dynamic Aeroelastic Analysis of Wing/Store Configurations
2005-12-01
for his assistance with Gridgen as well as Jacob Freeman, John Staples, and Dr. Charles Denegri for providing F-16 data. I would also like to thank my...ure 3.5) was created using Gridgen . A calculation of the flutter point was then made using the aeroelastic program. A dynamic pressure was chosen
Aeroelastic stability analysis of the AD-1 manned oblique-wing aircraft
NASA Technical Reports Server (NTRS)
Rutkowski, M. J.
1977-01-01
The AD-1 manned flight test program was conducted to evaluate the stability, control and handling characteristics of oblique wing aircraft. The results of the aeroelastic stability analysis are presented for both the wing alone and the wing with ailerons. A comparison was made between the results obtained using the traditional k-method of flutter analysis and the results using the PK or British method of flutter analysis. Studies were performed using the latest version of the NASTRAN computer code as well as the PASS/FLUT program.
Active Aeroelastic Tailoring of High-Aspect-Ratio Composite Wings
2005-09-01
34 - 26000 , ......... . . . ...... . . .... .. .......................... ... - - ----------- 21000 ... ........... ~0 50 LOAD... ISO 5: B s mission....f Figure 5: Basic mission profile 7 Figure 6: Baseline single-wing and joined-wing vehicles 3.1 Baseline vehicles Three sets
Loads Model Development and Analysis for the F/A-18 Active Aeroelastic Wing Airplane
NASA Technical Reports Server (NTRS)
Allen, Michael J.; Lizotte, Andrew M.; Dibley, Ryan P.; Clarke, Robert
2005-01-01
The Active Aeroelastic Wing airplane was successfully flight-tested in March 2005. During phase 1 of the two-phase program, an onboard excitation system provided independent control surface movements that were used to develop a loads model for the wing structure and wing control surfaces. The resulting loads model, which was used to develop the control laws for phase 2, is described. The loads model was developed from flight data through the use of a multiple linear regression technique. The loads model input consisted of aircraft states and control surface positions, in addition to nonlinear inputs that were calculated from flight-measured parameters. The loads model output for each wing consisted of wing-root bending moment and torque, wing-fold bending moment and torque, inboard and outboard leading-edge flap hinge moment, trailing-edge flap hinge moment, and aileron hinge moment. The development of the Active Aeroelastic Wing loads model is described, and the ability of the model to predict loads during phase 2 research maneuvers is demonstrated. Results show a good match to phase 2 flight data for all loads except inboard and outboard leading-edge flap hinge moments at certain flight conditions. The average load prediction errors for all loads at all flight conditions are 9.1 percent for maximum stick-deflection rolls, 4.4 percent for 5-g windup turns, and 7.7 percent for 4-g rolling pullouts.
Aeroelastic Modeling of X-56A Stiff-Wing Configuration Flight Test Data
NASA Technical Reports Server (NTRS)
Grauer, Jared A.; Boucher, Matthew J.
2017-01-01
Aeroelastic stability and control derivatives for the X-56A Multi-Utility Technology Testbed (MUTT), in the stiff-wing configuration, were estimated from flight test data using the output-error method. Practical aspects of the analysis are discussed. The orthogonal phase-optimized multisine inputs provided excellent data information for aeroelastic modeling. Consistent parameter estimates were determined using output error in both the frequency and time domains. The frequency domain analysis converged faster and was less sensitive to starting values for the model parameters, which was useful for determining the aeroelastic model structure and obtaining starting values for the time domain analysis. Including a modal description of the structure from a finite element model reduced the complexity of the estimation problem and improved the modeling results. Effects of reducing the model order on the short period stability and control derivatives were investigated.
Prediction of wing aeroelastic effects on aircraft life and pitching moment characteristics
NASA Technical Reports Server (NTRS)
Eckstrom, Clinton V.
1987-01-01
The distribution of flight loads on an aircraft structure determine the lift and pitching moment characteristics of the aircraft. When the load distribution changes due to the aeroelastic response of the structure, the lift and pitching moment characteristics also change. An estimate of the effect of aeroelasticity on stability and control characteristics is often required for the development of aircraft simulation models of evaluation of flight characteristics. This presentation outlines a procedure for incorporating calculated linear aeroelastic effects into measured nonlinear lift and pitching moment data from wind tunnel tests. Results are presented which were obtained from applying this procedure to data for an aircraft with a very flexible transport type research wing. The procedure described is generally applicable to all types of aircraft.
Aeroelasticity of Axially Loaded Aerodynamic Structures for Truss-Braced Wing Aircraft
NASA Technical Reports Server (NTRS)
Nguyen, Nhan; Ting, Eric; Lebofsky, Sonia
2015-01-01
This paper presents an aeroelastic finite-element formulation for axially loaded aerodynamic structures. The presence of axial loading causes the bending and torsional sitffnesses to change. For aircraft with axially loaded structures such as the truss-braced wing aircraft, the aeroelastic behaviors of such structures are nonlinear and depend on the aerodynamic loading exerted on these structures. Under axial strain, a tensile force is created which can influence the stiffness of the overall aircraft structure. This tension stiffening is a geometric nonlinear effect that needs to be captured in aeroelastic analyses to better understand the behaviors of these types of aircraft structures. A frequency analysis of a rotating blade structure is performed to demonstrate the analytical method. A flutter analysis of a truss-braced wing aircraft is performed to analyze the effect of geometric nonlinear effect of tension stiffening on the flutter speed. The results show that the geometric nonlinear tension stiffening effect can have a significant impact on the flutter speed prediction. In general, increased wing loading results in an increase in the flutter speed. The study illustrates the importance of accounting for the geometric nonlinear tension stiffening effect in analyzing the truss-braced wing aircraft.
Deflection-Based Structural Loads Estimation From the Active Aeroelastic Wing F/A-18 Aircraft
NASA Technical Reports Server (NTRS)
Lizotte, Andrew M.; Lokos, William A.
2005-01-01
Traditional techniques in structural load measurement entail the correlation of a known load with strain-gage output from the individual components of a structure or machine. The use of strain gages has proved successful and is considered the standard approach for load measurement. However, remotely measuring aerodynamic loads using deflection measurement systems to determine aeroelastic deformation as a substitute to strain gages may yield lower testing costs while improving aircraft performance through reduced instrumentation weight. This technique was examined using a reliable strain and structural deformation measurement system. The objective of this study was to explore the utility of a deflection-based load estimation, using the active aeroelastic wing F/A-18 aircraft. Calibration data from ground tests performed on the aircraft were used to derive left wing-root and wing-fold bending-moment and torque load equations based on strain gages, however, for this study, point deflections were used to derive deflection-based load equations. Comparisons between the strain-gage and deflection-based methods are presented. Flight data from the phase-1 active aeroelastic wing flight program were used to validate the deflection-based load estimation method. Flight validation revealed a strong bending-moment correlation and slightly weaker torque correlation. Development of current techniques, and future studies are discussed.
NASA Technical Reports Server (NTRS)
Mourey, D. J.
1979-01-01
The aspects of flight testing an aeroelastically tailored forward swept research wing on a BQM-34F drone vehicle are examined. The geometry of a forward swept wing, which is incorporated into the BQM-34F to maintain satisfactory flight performance, stability, and control is defined. A preliminary design of the aeroelastically tailored forward swept wing is presented.
Close-Range Photogrammetric Measurement of Static Deflections for an Aeroelastic Supercritical Wing
NASA Technical Reports Server (NTRS)
Byrdsong, Thomas A.; Adams, Richard R.; Sandford, Maynard C.
1990-01-01
Close range photogrammetric measurements were made for the lower wing surface of a full span aspect ratio 10.3 aeroelastic supercritical research wing. The measurements were made during wind tunnel tests for quasi-steady pressure distributions on the wing. The tests were conducted in the NASA Langley Transonic Dynamics Tunnel at Mach numbers up to 0.90 and dynamic pressures up to 300 pounds per square foot. Deflection data were obtained for 57 locations on the wing lower surface using dual non-metric cameras. Representative data are presented as graphical overview to show variations and trends of spar deflection with test variables. Comparative data are presented for photogrammetric and cathetometric results of measurements for the wing tip deflections. A tabulation of the basic measurements is presented in a supplement to this report.
Steady pressure measurements on an Aeroelastic Research Wing (ARW-2)
NASA Technical Reports Server (NTRS)
Sandford, Maynard C.; Seidel, David A.; Eckstrom, Clinton V.
1994-01-01
Transonic steady and unsteady pressure tests have been conducted in the Langley transonic dynamics tunnel on a large elastic wing known as the DAST ARW-2. The wing has a supercritical airfoil, an aspect ratio of 10.3, a leading-edge sweep back angle of 28.8 degrees, and two inboard and one outboard trailing-edge control surfaces. Only the outboard control surface was deflected to generate steady and unsteady flow over the wing during this study. Only the steady surface pressure, control-surface hinge moment, wing-tip deflection, and wing-root bending moment measurements are presented. The results from this elastic wing test are in tabulated form to assist in calibrating advanced computational fluid dynamics (CFD) algorithms.
NASA Technical Reports Server (NTRS)
Byun, Chansup; Guruswamy, Guru P.
1993-01-01
This paper presents a procedure for computing the aeroelasticity of wing-body configurations on multiple-instruction, multiple-data (MIMD) parallel computers. In this procedure, fluids are modeled using Euler equations discretized by a finite difference method, and structures are modeled using finite element equations. The procedure is designed in such a way that each discipline can be developed and maintained independently by using a domain decomposition approach. A parallel integration scheme is used to compute aeroelastic responses by solving the coupled fluid and structural equations concurrently while keeping modularity of each discipline. The present procedure is validated by computing the aeroelastic response of a wing and comparing with experiment. Aeroelastic computations are illustrated for a High Speed Civil Transport type wing-body configuration.
Effect of compressive force on aeroelastic stability of a strut-braced wing
NASA Astrophysics Data System (ADS)
Sulaeman, Erwin
2002-01-01
Recent investigations of a strut-braced wing (SBW) aircraft show that, at high positive load factors, a large tensile force in the strut leads to a considerable compressive axial force in the inner wing, resulting in a reduced bending stiffness and even buckling of the wing. Studying the influence of this compressive force on the structural response of SBW is thus of paramount importance in the early stage of SBW design. The purpose of the this research is to investigate the effect of compressive force on aeroelastic stability of the SBW using efficient structural finite element and aerodynamic lifting surface methods. A procedure is developed to generate wing stiffness distribution for detailed and simplified wing models and to include the compressive force effect in the SBW aeroelastic analysis. A sensitivity study is performed to generate response surface equations for the wing flutter speed as functions of several design variables. These aeroelastic procedures and response surface equations provide a valuable tool and trend data to study the unconventional nature of SBW. In order to estimate the effect of the compressive force, the inner part of the wing structure is modeled as a beam-column. A structural finite element method is developed based on an analytical stiffness matrix formulation of a non-uniform beam element with arbitrary polynomial variations in the cross section. By using this formulation, the number of elements to model the wing structure can be reduced without degrading the accuracy. The unsteady aerodynamic prediction is based on a discrete element lifting surface method. The present formulation improves the accuracy of existing lifting surface methods by implementing a more rigorous treatment on the aerodynamic kernel integration. The singularity of the kernel function is isolated by implementing an exact expansion series to solve an incomplete cylindrical function problem. A hybrid doublet lattice/doublet point scheme is devised to reduce
A review on non-linear aeroelasticity of high aspect-ratio wings
NASA Astrophysics Data System (ADS)
Afonso, Frederico; Vale, JosÃ©; Oliveira, Ã‰der; Lau, Fernando; Suleman, Afzal
2017-02-01
Current economic constraints and environmental regulations call for design of more efficient aircraft configurations. An observed trend in aircraft design to reduce the lift induced drag and improve fuel consumption and emissions is to increase the wing aspect-ratio. However, a slender wing is more flexible and subject to higher deflections under the same operating conditions. This effect may lead to changes in dynamic behaviour and in aeroelastic response, potentially resulting in instabilities. Therefore, it is important to take into account geometric non-linearities in the design of high aspect-ratio wings, as well as having accurate computational codes that couple the aerodynamic and structural models in the presence of non-linearities. Here, a review on the state-of-the-art on non-linear aeroelasticity of high aspect-ratio wings is presented. The methodologies employed to analyse high aspect-ratio wings are presented and their applications discussed. Important observations from the state-of-the-art studies are drawn and the current challenges in the field are identified.
Active aeroelastic control of aircraft composite wings impacted by explosive blasts
NASA Astrophysics Data System (ADS)
Librescu, Liviu; Na, Sungsoo; Qin, Zhanming; Lee, Bokhee
2008-11-01
In this paper, the dynamic aeroelastic response and the related robust control of aircraft swept wings exposed to gust and explosive type loads are examined. The structural model of the wing is in the form of a thin/thick-walled beam and incorporates a number of non-standard effects, such as transverse shear, material anisotropy, warping inhibition, the spanwise non-uniformity of the cross-section, and the rotatory inertias. The circumferentially asymmetric stiffness lay-up configuration is implemented to generate preferred elastic couplings, and in this context, the implications of the plunging-twist elastic coupling and of warping inhibition on the aeroelastic response are investigated. The unsteady incompressible aerodynamic theory adopted in this study is that by von-KÃ¡rmÃ¡n and Sears, applicable to arbitrary small motion in the time domain. The considered control methodology enabling one to enhance the aeroelastic response in the subcritical flight speed range and to suppress the occurrence of the flutter instability is based on a novel control approach that is aimed to improve the robustness to modeling uncertainties and external disturbances. To this end, a combined control based on Linear Quadratic Gaussian (LQG) controller coupled with the Sliding Mode Observer (SMO) is designed and its high efficiency is put into evidence.
Limit Cycle Oscillations (LCO) and Nonlinear Aeroelastic Wing Response.
2007-11-02
tpas jit Press, Cambridge, England, UK, 1955.search: NASA Lewis Research Center ( George Stetlo and Aparajil RAbramson, H. N. (Ed.), The Dynamic...Unsteady Flows About Airfoils, Cascades Dowell, E. H., Curtiss, H. C., Jr., Scanlan , R. H. and Sisto, F., A Modern and Wings," AIAA Journal. Vol. 32
NASA Astrophysics Data System (ADS)
O'Donnell, K.; Schober, S.; Stolk, M.; Marzocca, P.; De Breuker, R.; Abdalla, M.; Nicolini, E.; GÃ¼rdal, Z.
2007-04-01
This paper discusses modeling, simulations and experimental aspects of active aeroelastic control on aircraft wings by using Synthetic Jet Actuators (SJAs). SJAs, a particular class of zero-net mass-flux actuators, have shown very promising results in numerous aeronautical applications, such as boundary layer control and delay of flow separation. A less recognized effect resulting from the SJAs is a momentum exchange that occurs with the flow, leading to a rearrangement of the streamlines around the airfoil modifying the aerodynamic loads. Discussions pertinent to the use of SJAs for flow and aeroelastic control and how these devices can be exploited for flutter suppression and for aerodynamic performances improvement are presented and conclusions are outlined.
Parallel Nonlinear Aeroelastic Computation for Fighter Wings in the Transonic Region
NASA Astrophysics Data System (ADS)
Larsen, Bradley Robert
In this dissertation, a parallel three-dimensional aeroelastic simulation is applied to current and next generation fighter aircraft wings. The computational model is a nonlinear fluid and structural mesh coupled using the Direct Eulerian-Langrangian method. This method attaches unique local coordinates to each node and connects the fluid mesh to the structure in such a way that a transformation preserved to the global coordinates. This allows the fluid and structure to be updated in the same time step and maintains spatial accuracy at their interface. The structural mesh is modeled using modified nonlinear von Karman finite elements and is discretized using the Galerkin finite element method. The fluid mesh also used the Galerkin finite element method to discretize the unsteady Euler equations. Computational results over a large range of Mach numbers and densities are presented for two candidate fighter wing models for transonic wing tunnel testing. The FX-35 is a trapezoidal wing based on the F-35A, and the F-Wing is a truncated delta wing similar to the F-16. Both wings exhibit a variety of flutter behaviors including strong bending-torsion flutter, limit-cycle oscillations, and essentially single degree-of-freedom responses.
Modeling and analysis methodology for aeroelastically tailored chordwise deformable wings
NASA Technical Reports Server (NTRS)
Rehfield, Lawrence W.; Chang, Stephen; Zischka, Peter J.
1992-01-01
Structural concepts have been created which produce chordwise camber deformation that results in enhanced lift. A wing box can be tailored to utilize each of these with composites. In attempting to optimize the aerodynamic benefits, we have found there are two optimal designs that are of interest. There is a weight optimum which corresponds to the maximum lift per unit structural weight. There is also a lift optimum that corresponds to maximum absolute lift. New structural models, the basic deformation mechanisms that are utilized and typical analytical results are presented. It appears that lift enhancements of sufficient magnitude can be produced to render this type of wing tailoring of practical interest. Experiments and finite element correlations are performed which confirm the validity of the theoretical models utilized.
NASA Astrophysics Data System (ADS)
Knipfer, A.
1999-02-01
The nacelles of modern aeroengines are constantly increasing in size. Thus, engine air-loads are becoming more powerful and their importance for the aeroelastic stability is becoming more significant. The principal goal of this study is to answer the question of how unsteady airloads vary while shifting to transonic Mach numbers. The investigations are carried out by applying a finite volume Euler method to a harmonically oscillating annular wing. The results show that transonic effects in the case of an annular wing are essentially weaker than in the case of an airfoil. The order of magnitude of the variations is around 10%. Possible consequences for the aeroelastic stability are examined with the example of an elastically mounted annular wing in transonic flow. The shifts of the stability curves also remain within a range of 10%. In addition, an actuator disk method, which is frequently used for the simulation of the fan jet, is expanded in such a way that unsteady flows can be treated. Some unsteady air-loads are strongly dependent on the pressure jump across the fan.
Strain Gage Loads Calibration Testing of the Active Aeroelastic Wing F/A-18 Aircraft
NASA Technical Reports Server (NTRS)
Lokos, William A.; Olney, Candida D.; Chen, Tony; Crawford, Natalie D.; Stauf, Rick; Reichenbach, Eric Y.; Bessette, Denis (Technical Monitor)
2002-01-01
This report describes strain-gage calibration loading through the application of known loads of the Active Aeroelastic Wing F/A-18 airplane. The primary goal of this test is to produce a database suitable for deriving load equations for left and right wing root and fold shear; bending moment; torque; and all eight wing control-surface hinge moments. A secondary goal is to produce a database of wing deflections measured by string potentiometers and the onboard flight deflection measurement system. Another goal is to produce strain-gage data through both the laboratory data acquisition system and the onboard aircraft data system as a check of the aircraft system. Thirty-two hydraulic jacks have applied loads through whiffletrees to 104 tension-compression load pads bonded to the lower wing surfaces. The load pads covered approximately 60 percent of the lower wing surface. A series of 72 load cases has been performed, including single-point, double-point, and distributed load cases. Applied loads have reached 70 percent of the flight limit load. Maximum wingtip deflection has reached nearly 16 in.
Design of an Aeroelastic Composite Wing Wind Tunnel Model.
1987-12-01
140 J-1,NP SUMI-0.0 DO 130 K-I,NP 130 SUMI-SUMIEP(I,K)*EI3(K,J) 140 EE(I,J)- SUKI 150 CONTINUE DO 170 I-1,NP DO 160 J-1,NP 160 EE(I,J)-EE(I,J)*H(J)*(C...MUST PROVIDE THE INVERTED SYMMETRICAL AIC MATRIX [AIS] ’~*" c AND THE WING FLEXIBILITY MATRIX (S] DO 30 1l1,NP DO 20 J-l,NP SUKI -0.0 DO 10 Kml,NP 10
NASA Technical Reports Server (NTRS)
Curry, R. E.; Sim, A. G.
1984-01-01
A low-speed flight investigation has provided total force and moment coefficients and aeroelastic effects for the AD-1 oblique-wing research airplane. The results were interpreted and compared with predictions that were based on wind tunnel data. An assessment has been made of the aeroelastic wing bending design criteria. Lateral-directional trim requirements caused by asymmetry were determined. At angles of attack near stall, flow visualization indicated viscous flow separation and spanwise vortex flow. These effects were also apparent in the force and moment data.
A sequential, multi-complexity topology optimization process for aeroelastic wing structure design
NASA Astrophysics Data System (ADS)
Guiles, Mark A.
The design of structures is motivated by the requirement that performance goals must be met at the lowest possible cost. In the realm of aircraft design, the least-weight structure typically leads to the lowest cost vehicle. Therefore, the goal becomes that of supporting all flight loads at the minimum achievable weight. This study outlines a method to identify the optimal layout or topology of a wing structure that minimizes the wing's weight under multiple loads, subject to strength and aeroelastic constraints. The procedure was developed with the goal of using available, well-defined tools for structural sizing optimization to simplify the layout selection process. This approach uses a sequence of sizing optimization problems to identify and remove non-essential elements from an overpopulated structure. The optimization and deletion processes produce a series of improving feasible topologies for the set of flight loads imposed on the wing. These candidate structures are compared and the least-weight design is chosen as the optimum. The procedure was first applied to a plane truss problem and was able to reproduce the well-established Michell truss solution, providing validation of the approach. Then, the process was applied to wing models representing several different types of aircraft to illustrate its applicability across a wide range of wing design problems.
Reduced order modeling of aeroelasticity analysis for a wing under static deformation effect
NASA Astrophysics Data System (ADS)
Tamayama, Masato
2017-01-01
The full order analysis of aeroelasticity system, which solves the Euler or Navier Stokes equations in a time domain, is usually expensive in a sense of time consumed. To improve this situation, the Reduced Order Modeling (ROM) method has been developed. If there is a pressure difference between upper and lower surfaces of a wing, the aerodynamic forces loaded on the wing cause static deformations. The ROM, therefore, should have a capability to simulate wing vibrations under the static deformation effect. To include this effect, sequential processing of ROMs for two times is proposed in this study. The 1st step ROM predicts the flutter condition for the rigid wing. The 2nd step ROM predicts the flutter condition for the statically deformed wing under the aerodynamic load caused by the 1st step ROM flutter dynamic pressure. The accuracy of this method is verified by comparing the results with those predicted only by the full order analysis. In this study, the identification of aerodynamic forces is conducted by the Eigensystem Realization Algorithm (ERA). In the ERA, reduction of singular value matrix influences the accuracy of identification. Two methods are introduced to reduce the singular value matrix, and the flutter conditions acquired by these two methods are compared each other.
Real-Time Adaptive Least-Squares Drag Minimization for Performance Adaptive Aeroelastic Wing
NASA Technical Reports Server (NTRS)
Ferrier, Yvonne L.; Nguyen, Nhan T.; Ting, Eric
2016-01-01
This paper contains a simulation study of a real-time adaptive least-squares drag minimization algorithm for an aeroelastic model of a flexible wing aircraft. The aircraft model is based on the NASA Generic Transport Model (GTM). The wing structures incorporate a novel aerodynamic control surface known as the Variable Camber Continuous Trailing Edge Flap (VCCTEF). The drag minimization algorithm uses the Newton-Raphson method to find the optimal VCCTEF deflections for minimum drag in the context of an altitude-hold flight control mode at cruise conditions. The aerodynamic coefficient parameters used in this optimization method are identified in real-time using Recursive Least Squares (RLS). The results demonstrate the potential of the VCCTEF to improve aerodynamic efficiency for drag minimization for transport aircraft.
Automatic aeroelastic devices in the wings of a steppe eagle Aquila nipalensis.
Carruthers, Anna C; Thomas, Adrian L R; Taylor, Graham K
2007-12-01
Here we analyse aeroelastic devices in the wings of a steppe eagle Aquila nipalensis during manoeuvres. Chaotic deflections of the upperwing coverts observed using video cameras carried by the bird (50 frames s(-1)) indicate trailing-edge separation but attached flow near the leading edge during flapping and gust response, and completely stalled flows upon landing. The underwing coverts deflect automatically along the leading edge at high angle of attack. We use high-speed digital video (500 frames s(-1)) to analyse these deflections in greater detail during perching sequences indoors and outdoors. Outdoor perching sequences usually follow a stereotyped three-phase sequence comprising a glide, pitch-up manoeuvre and deep stall. During deep stall, the spread-eagled bird has aerodynamics reminiscent of a cross-parachute. Deployment of the underwing coverts is closely phased with wing sweeping during the pitch-up manoeuvre, and is accompanied by alula protraction. Surprisingly, active alula protraction is preceded by passive peeling from its tip. Indoor flights follow a stereotyped flapping perching sequence, with deployment of the underwing coverts closely phased with alula protraction and the end of the downstroke. We propose that the underwing coverts operate as an automatic high-lift device, analogous to a Kruger flap. We suggest that the alula operates as a strake, promoting formation of a leading-edge vortex on the swept hand-wing when the arm-wing is completely stalled, and hypothesise that its active protraction is stimulated by its initial passive deflection. These aeroelastic devices appear to be used for flow control to enhance unsteady manoeuvres, and may also provide sensory feedback.
NASA Technical Reports Server (NTRS)
Akaydin, H. Dogus; Moini-Yekta, Shayan; Housman, Jeffrey A.; Nguyen, Nhan
2015-01-01
In this paper, we present a static aeroelastic analysis of a wind tunnel test model of a wing in high-lift configuration using a viscous flow simulation code. The model wing was tailored to deform during the tests by amounts similar to a composite airliner wing in highlift conditions. This required use of a viscous flow analysis to predict the lift coefficient of the deformed wing accurately. We thus utilized an existing static aeroelastic analysis framework that involves an inviscid flow code (Cart3d) to predict the deformed shape of the wing, then utilized a viscous flow code (Overflow) to compute the aerodynamic loads on the deformed wing. This way, we reduced the cost of flow simulations needed for this analysis while still being able to predict the aerodynamic forces with reasonable accuracy. Our results suggest that the lift of the deformed wing may be higher or lower than that of the non-deformed wing, and the washout deformation of the wing is the key factor that changes the lift of the deformed wing in two distinct ways: while it decreases the lift at low to moderate angles of attack simply by lowering local angles of attack along the span, it increases the lift at high angles of attack by alleviating separation.
NASA Technical Reports Server (NTRS)
Lind, Rick
1999-01-01
The F/A-18 Active Aeroelastic Wing research aircraft will demonstrate technologies related to aeroservoelastic effects such as wing twist and load minimization. This program presents several challenges for control design that are often not considered for traditional aircraft. This paper presents a control design based on H-infinity synthesis that simultaneously considers the multiple objectives associated with handling qualities, actuator limitations, and loads. A point design is presented to demonstrate a controller and the resulting closed-loop properties.
Structural loads testing on the Active Aeroelastic Wing F-18 in the Flight Loads Laboratory at NASA'
NASA Technical Reports Server (NTRS)
2001-01-01
Structural loads testing on the Active Aeroelastic Wing F-18 in the Flight Loads Laboratory at NASA's Dryden flight Research Center, Edwards, California. The heavily modified and instrumented F-18A entered the Loads Lab in mid-March, 2001, for fit checks of loads hardware and instrumentation checkout prior to initiation of actual structural loads testing. The F-18A underwent loads testing on its modified wings for almost six months, followed by extensive systems tests and simulation before flight tests began.
NASA Technical Reports Server (NTRS)
Ting, Eric; Nguyen, Nhan; Trinh, Khanh
2014-01-01
This paper presents a static aeroelastic model and longitudinal trim model for the analysis of a flexible wing transport aircraft. The static aeroelastic model is built using a structural model based on finite-element modeling and coupled to an aerodynamic model that uses vortex-lattice solution. An automatic geometry generation tool is used to close the loop between the structural and aerodynamic models. The aeroelastic model is extended for the development of a three degree-of-freedom longitudinal trim model for an aircraft with flexible wings. The resulting flexible aircraft longitudinal trim model is used to simultaneously compute the static aeroelastic shape for the aircraft model and the longitudinal state inputs to maintain an aircraft trim state. The framework is applied to an aircraft model based on the NASA Generic Transport Model (GTM) with wing structures allowed to flexibly deformed referred to as the Elastically Shaped Aircraft Concept (ESAC). The ESAC wing mass and stiffness properties are based on a baseline "stiff" values representative of current generation transport aircraft.
NASA Technical Reports Server (NTRS)
Diederich, Franklin W; Foss, Kenneth A
1953-01-01
Charts and approximate formulas are presented for the estimation of aeroelastic effects on the spanwise lift distribution, lift-curve slope, aerodynamic center, and damping in roll of swept and unswept wings at subsonic and supersonic speeds. Some design considerations brought out by the results of this report are discussed.
Control Surface Interaction Effects of the Active Aeroelastic Wing Wind Tunnel Model
NASA Technical Reports Server (NTRS)
Heeg, Jennifer
2006-01-01
This paper presents results from testing the Active Aeroelastic Wing wind tunnel model in NASA Langley s Transonic Dynamics Tunnel. The wind tunnel test provided an opportunity to study aeroelastic system behavior under combined control surface deflections, testing for control surface interaction effects. Control surface interactions were observed in both static control surface actuation testing and dynamic control surface oscillation testing. The primary method of evaluating interactions was examination of the goodness of the linear superposition assumptions. Responses produced by independently actuating single control surfaces were combined and compared with those produced by simultaneously actuating and oscillating multiple control surfaces. Adjustments to the data were required to isolate the control surface influences. Using dynamic data, the task increases, as both the amplitude and phase have to be considered in the data corrections. The goodness of static linear superposition was examined and analysis of variance was used to evaluate significant factors influencing that goodness. The dynamic data showed interaction effects in both the aerodynamic measurements and the structural measurements.
NASA Astrophysics Data System (ADS)
Firouz-Abadi, R. D.; Askarian, A. R.; Zarifian, P.
2013-01-01
This paper aims to investigate aeroelastic stability boundary of subsonic wings under the effect of thrust of two engines. The wing structure is modeled as a tapered composite box-beam. Moreover, an indicial function based model is used to calculate the unsteady lift and moment distribution along the wing span in subsonic compressible flow. The two jet engines mounted on the wing are modeled as concentrated masses and the effect of thrust of each engine is applied as a follower force. Using Hamilton's principle along with Galerkin's method, the governing equations of motion are derived, then the obtained equations are solved in frequency domain using the K-method and the aeroelastic instability conditions are determined. The flutter analysis results of four example wings are compared with the experimental and analytical results in the literature and good agreements are achieved which validate the present model. Furthermore, based on several case studies on a reference wing, some attempts are performed to analyze the effect of thrust on the stability margin of the wing and some conclusions are outlined.
NASA Technical Reports Server (NTRS)
Bartels, Robert E.; Funk, Christie; Scott, Robert C.
2015-01-01
Research focus in recent years has been given to the design of aircraft that provide significant reductions in emissions, noise and fuel usage. Increases in fuel efficiency have also generally been attended by overall increased wing flexibility. The truss-braced wing (TBW) configuration has been forwarded as one that increases fuel efficiency. The Boeing company recently tested the Subsonic Ultra Green Aircraft Research (SUGAR) Truss-Braced Wing (TBW) wind-tunnel model in the NASA Langley Research Center Transonic Dynamics Tunnel (TDT). This test resulted in a wealth of accelerometer data. Other publications have presented details of the construction of that model, the test itself, and a few of the results of the test. This paper aims to provide a much more detailed look at what the accelerometer data says about the onset of aeroelastic instability, usually known as flutter onset. Every flight vehicle has a location in the flight envelope of flutter onset, and the TBW vehicle is not different. For the TBW model test, the flutter onset generally occurred at the conditions that the Boeing company analysis said it should. What was not known until the test is that, over a large area of the Mach number dynamic pressure map, the model displayed wing/engine nacelle aeroelastic limit cycle oscillation (LCO). This paper dissects that LCO data in order to provide additional insights into the aeroelastic behavior of the model.
Simulation and Flight Control of an Aeroelastic Fixed Wing Micro Aerial Vehicle
NASA Technical Reports Server (NTRS)
Waszak, Martin; Davidson, John B.; Ifju, Peter G.
2002-01-01
Micro aerial vehicles have been the subject of continued interest and development over the last several years. The majority of current vehicle concepts rely on rigid fixed wings or rotors. An alternate design based on an aeroelastic membrane wing has also been developed that exhibits desired characteristics in flight test demonstrations, competition, and in prior aerodynamics studies. This paper presents a simulation model and an assessment of flight control characteristics of the vehicle. Linear state space models of the vehicle associated with typical trimmed level flight conditions and which are suitable for control system design are presented as well. The simulation is used as the basis for the design of a measurement based nonlinear dynamic inversion control system and outer loop guidance system. The vehicle/controller system is the subject of ongoing investigations of autonomous and collaborative control schemes. The results indicate that the design represents a good basis for further development of the micro aerial vehicle for autonomous and collaborative controls research.
NASA Astrophysics Data System (ADS)
Pourtakdoust, Seid H.; Aliabadi, Saeed Karimain
Flapping micro air vehicle (FMAV) is considered to exhibit much better performance at low speeds and small sizes compared to fixed-wing MAVs. To maximize the potential and capabilities of FMAVs also to produce adequate design implications, a new aeroelastic model of a typical flexible FMAV is being developed utilizing Euler-Bernoulli torsion beam and quasi steady aerodynamic model. The new model accounts for all natural existing complex interactions between the mass, inertia, elastic properties, aerodynamic loading, flapping amplitude and frequency of the FMAV as well as the effects of several geometric and design parameters. To validate the proposed theoretical model, a typical FMAV as well as instrumented test stand for the online measurement of forces, flapping angle and power consumption have been constructed. The experimental results are initially utilized to validate the flight dynamic model, and several appropriate conclusions are drawn. The model is subsequently used to demonstrate the flapping propulsion characteristics of the FMAV via simulation. Using dimensionless parameters, a set of new generalized curves have been deduced. The results indicate that by proper adjustment of the wing stiffness parameter as a function of the reduced frequency, the FMAV will attain its optimum propulsive efficiency. This fact raises additional new ideas for further research in this area by utilizing intelligent variable stiffness materials and/or or active morphing technology for the sustained, high-performance flight of FMAVs. The generalized model can also be used to conduct a performance and stability analysis of FMAVs and to design and optimize flapping-wing structures.
NASA Technical Reports Server (NTRS)
Erickson, Gary E.
2013-01-01
A video-based photogrammetric model deformation system was established as a dedicated optical measurement technique at supersonic speeds in the NASA Langley Research Center Unitary Plan Wind Tunnel. This system was used to measure the wing twist due to aerodynamic loads of two supersonic commercial transport airplane models with identical outer mold lines but different aeroelastic properties. One model featured wings with deflectable leading- and trailing-edge flaps and internal channels to accommodate static pressure tube instrumentation. The wings of the second model were of single-piece construction without flaps or internal channels. The testing was performed at Mach numbers from 1.6 to 2.7, unit Reynolds numbers of 1.0 million to 5.0 million, and angles of attack from -4 degrees to +10 degrees. The video model deformation system quantified the wing aeroelastic response to changes in the Mach number, Reynolds number concurrent with dynamic pressure, and angle of attack and effectively captured the differences in the wing twist characteristics between the two test articles.
NASA Astrophysics Data System (ADS)
Nikbay, M.; Fakkusoglu, N.; Kuru, M. N.
2010-06-01
We consider reliability based aeroelastic optimization of a AGARD 445.6 composite aircraft wing with stochastic parameters. Both commercial engineering software and an in-house reliability analysis code are employed in this high-fidelity computational framework. Finite volume based flow solver Fluent is used to solve 3D Euler equations, while Gambit is the fluid domain mesh generator and Catia-V5-R16 is used as a parametric 3D solid modeler. Abaqus, a structural finite element solver, is used to compute the structural response of the aeroelastic system. Mesh based parallel code coupling interface MPCCI-3.0.6 is used to exchange the pressure and displacement information between Fluent and Abaqus to perform a loosely coupled fluid-structure interaction by employing a staggered algorithm. To compute the probability of failure for the probabilistic constraints, one of the well known MPP (Most Probable Point) based reliability analysis methods, FORM (First Order Reliability Method) is implemented in Matlab. This in-house developed Matlab code is embedded in the multidisciplinary optimization workflow which is driven by Modefrontier. Modefrontier 4.1, is used for its gradient based optimization algorithm called NBI-NLPQLP which is based on sequential quadratic programming method. A pareto optimal solution for the stochastic aeroelastic optimization is obtained for a specified reliability index and results are compared with the results of deterministic aeroelastic optimization.
NASA Technical Reports Server (NTRS)
Bradley, Marty K.; Allen, Timothy J.; Droney, Christopher
2014-01-01
This Test Report summarizes the Truss Braced Wing (TBW) Aeroelastic Test (Task 3.1) work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team, which includes the time period of February 2012 through June 2014. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, Virginia Tech, and NextGen Aeronautics. The model was fabricated by NextGen Aeronautics and designed to meet dynamically scaled requirements from the sized full scale TBW FEM. The test of the dynamically scaled SUGAR TBW half model was broken up into open loop testing in December 2013 and closed loop testing from January 2014 to April 2014. Results showed the flutter mechanism to primarily be a coalescence of 2nd bending mode and 1st torsion mode around 10 Hz, as predicted by analysis. Results also showed significant change in flutter speed as angle of attack was varied. This nonlinear behavior can be explained by including preload and large displacement changes to the structural stiffness and mass matrices in the flutter analysis. Control laws derived from both test system ID and FEM19 state space models were successful in suppressing flutter. The control laws were robust and suppressed flutter for a variety of Mach, dynamic pressures, and angle of attacks investigated.
NASA Technical Reports Server (NTRS)
Hodges, G. E.; Mcgehee, C. R.
1981-01-01
The final design and hardware fabrication was completed for an active control system capable of the required flutter suppression, compatible with and ready for installation in the NASA aeroelastic research wing number 1 (ARW-1) on Firebee II drone flight test vehicle. The flutter suppression system uses vertical acceleration at win buttock line 1.930 (76), with fuselage vertical and roll accelerations subtracted out, to drive wing outboard aileron control surfaces through appropriate symmetric and antisymmetric shaping filters. The goal of providing an increase of 20 percent above the unaugmented vehicle flutter velocity but below the maximum operating condition at Mach 0.98 is exceeded by the final flutter suppression system. Results indicate that the flutter suppression system mechanical and electronic components are ready for installation on the DAST ARW-1 wing and BQM-34E/F drone fuselage.
Real-Time Frequency Response Estimation Using Joined-Wing SensorCraft Aeroelastic Wind-Tunnel Data
NASA Technical Reports Server (NTRS)
Grauer, Jared A; Heeg, Jennifer; Morelli, Eugene A
2012-01-01
A new method is presented for estimating frequency responses and their uncertainties from wind-tunnel data in real time. The method uses orthogonal phase-optimized multi- sine excitation inputs and a recursive Fourier transform with a least-squares estimator. The method was first demonstrated with an F-16 nonlinear flight simulation and results showed that accurate short period frequency responses were obtained within 10 seconds. The method was then applied to wind-tunnel data from a previous aeroelastic test of the Joined- Wing SensorCraft. Frequency responses describing bending strains from simultaneous control surface excitations were estimated in a time-efficient manner.
NASA Technical Reports Server (NTRS)
Foss, Kenneth A; Diederich, Franklin W
1953-01-01
Charts and approximate formulas are presented for the estimation of static aeroelastic effects on the spanwise lift distribution, rolling-moment coefficient, and rate of roll due to the deflection of ailerons on swept and unswept wings at subsonic and supersonic speeds. Some design considerations brought out by the results of this report are discussed. This report treats the lateral-control case in a manner similar to that employed in NACA Report 1140 for the symmetric-flight case, and is intended to be used in conjunction with NACA Report 1140 and the charts and formulas presented therein.
NASA Astrophysics Data System (ADS)
Silva, Walter A.; Chwalowski, Pawel; Perry, Boyd, III
2014-03-01
Reduced-order modelling (ROM) methods are applied to the Computational Fluid Dynamics (CFD)-based aeroelastic analysis of the AGARD 445.6 wing in order to gain insight regarding well-known discrepancies between the aeroelastic analyses and the experimental results. The results presented include aeroelastic solutions using the inviscid Computational Aeroelasticity Programme-Transonic Small Disturbance (CAP-TSD) code and the FUN3D code (Euler and Navier-Stokes). Full CFD aeroelastic solutions and ROM aeroelastic solutions, computed at several Mach numbers, are presented in the form of root locus plots in order to better reveal the aeroelastic root migrations with increasing dynamic pressure. Important conclusions are drawn from these results including the ability of the linear CAP-TSD code to accurately predict the entire experimental flutter boundary (repeat of analyses performed in the 1980s), that the Euler solutions at supersonic conditions indicate that the third mode is always unstable, and that the FUN3D Navier-Stokes solutions stabilize the unstable third mode seen in the Euler solutions.
NASA Technical Reports Server (NTRS)
Ashley, H.
1984-01-01
Graduate research activity in the following areas is reported: the divergence of laminated composite lifting surfaces, subsonic propeller theory and aeroelastic analysis, and cross sectional resonances in wind tunnels.
NASA Technical Reports Server (NTRS)
Nguyen, Nhan; Ting, Eric; Lebofsky, Sonia
2015-01-01
This paper presents data analysis of a flexible wing wind tunnel model with a variable camber continuous trailing edge flap (VCCTEF) design for drag minimization tested at the University of Washington Aeronautical Laboratory (UWAL). The wind tunnel test was designed to explore the relative merit of the VCCTEF concept for improved cruise efficiency through the use of low-cost aeroelastic model test techniques. The flexible wing model is a 10%-scale model of a typical transport wing and is constructed of woven fabric composites and foam core. The wing structural stiffness in bending is tailored to be half of the stiffness of a Boeing 757-era transport wing while the torsional stiffness is about the same. This stiffness reduction results in a wing tip deflection of about 10% of the wing semi-span. The VCCTEF is a multi-segment flap design having three chordwise camber segments and five spanwise flap sections for a total of 15 individual flap elements. The three chordwise camber segments can be positioned appropriately to create a desired trailing edge camber. Elastomeric material is used to cover the gaps in between the spanwise flap sections, thereby creating a continuous trailing edge. Wind tunnel data analysis conducted previously shows that the VCCTEF can achieve a drag reduction of up to 6.31% and an improvement in the lift-to-drag ratio (L=D) of up to 4.85%. A method for estimating the bending and torsional stiffnesses of the flexible wingUWAL wind tunnel model from static load test data is presented. The resulting estimation indicates that the stiffness of the flexible wing is significantly stiffer in torsion than in bending by as much as 9 to 1. The lift prediction for the flexible wing is computed by a coupled aerodynamic-structural model. The coupled model is developed by coupling a conceptual aerodynamic tool Vorlax with a finite-element model of the flexible wing via an automated geometry deformation tool. Based on the comparison of the lift curve slope
NASA Technical Reports Server (NTRS)
Heeg, Jennifer; Chwalowski, Pawel; Wieseman, Carol D.; Florance, Jennifer P.; Schuster, David M.
2013-01-01
The Aeroelastic Prediction Workshop brought together an international community of computational fluid dynamicists as a step in defining the state of the art in computational aeroelasticity. The Rectangular Supercritical Wing (RSW) was chosen as the first configuration to study due to its geometric simplicity, perceived simple flow field at transonic conditions and availability of an experimental data set containing forced oscillation response data. Six teams performed analyses of the RSW; they used Reynolds-Averaged Navier-Stokes flow solvers exercised assuming that the wing had a rigid structure. Both steady-state and forced oscillation computations were performed by each team. The results of these calculations were compared with each other and with the experimental data. The steady-state results from the computations capture many of the flow features of a classical supercritical airfoil pressure distribution. The most dominant feature of the oscillatory results is the upper surface shock dynamics. Substantial variations were observed among the computational solutions as well as differences relative to the experimental data. Contributing issues to these differences include substantial wind tunnel wall effects and diverse choices in the analysis parameters.
NASA Technical Reports Server (NTRS)
Mullen, J., Jr.
1976-01-01
A comparison of program estimates of wing weight, material distribution. structural loads and elastic deformations with actual Northrop F-5A/B data is presented. Correlation coefficients obtained using data from a number of existing aircraft were computed for use in vehicle synthesis to estimate wing weights. The modifications necessary to adapt the WADES code for use in the ACSYNT program are described. Basic program flow and overlay structure is outlined. An example of the convergence of the procedure in estimating wing weights during the synthesis of a vehicle to satisfy F-5 mission requirements is given. A description of inputs required for use of the WADES program is included.
NASA Technical Reports Server (NTRS)
Nguyen, Nhan; Ting, Eric; Nguyen, Daniel; Dao, Tung; Trinh, Khanh
2013-01-01
This paper presents a coupled vortex-lattice flight dynamic model with an aeroelastic finite-element model to predict dynamic characteristics of a flexible wing transport aircraft. The aircraft model is based on NASA Generic Transport Model (GTM) with representative mass and stiffness properties to achieve a wing tip deflection about twice that of a conventional transport aircraft (10% versus 5%). This flexible wing transport aircraft is referred to as an Elastically Shaped Aircraft Concept (ESAC) which is equipped with a Variable Camber Continuous Trailing Edge Flap (VCCTEF) system for active wing shaping control for drag reduction. A vortex-lattice aerodynamic model of the ESAC is developed and is coupled with an aeroelastic finite-element model via an automated geometry modeler. This coupled model is used to compute static and dynamic aeroelastic solutions. The deflection information from the finite-element model and the vortex-lattice model is used to compute unsteady contributions to the aerodynamic force and moment coefficients. A coupled aeroelastic-longitudinal flight dynamic model is developed by coupling the finite-element model with the rigid-body flight dynamic model of the GTM.
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Perry, Boyd III; Chwalowski, Pawel
2014-01-01
Reduced-order modeling (ROM) methods are applied to the CFD-based aeroelastic analysis of the AGARD 445.6 wing in order to gain insight regarding well-known discrepancies between the aeroelastic analyses and the experimental results. The results presented include aeroelastic solutions using the inviscid CAP-TSD code and the FUN3D code (Euler and Navier-Stokes). Full CFD aeroelastic solutions and ROM aeroelastic solutions, computed at several Mach numbers, are presented in the form of root locus plots in order to better reveal the aeroelastic root migrations with increasing dynamic pressure. Important conclusions are drawn from these results including the ability of the linear CAP-TSD code to accurately predict the entire experimental flutter boundary (repeat of analyses performed in the 1980's), that the Euler solutions at supersonic conditions indicate that the third mode is always unstable, and that the FUN3D Navier-Stokes solutions stabilize the unstable third mode seen in the Euler solutions.
NASA Technical Reports Server (NTRS)
Chattopadhyay, Aditi
1996-01-01
The objective of this research is to develop analysis procedures to investigate the coupling of composite and smart materials to improve aeroelastic and vibratory response of aerospace structures. The structural modeling must account for arbitrarily thick geometries, embedded and surface bonded sensors and actuators and imperfections, such as delamination. Changes in the dynamic response due to the presence of smart materials and delaminations is investigated. Experiments are to be performed to validate the proposed mathematical model.
Summary Report of the Orbital X-34 Wing Static Aeroelastic Study
NASA Technical Reports Server (NTRS)
Prabhn, Ramadas K.; Weilmuenster, K. J. (Technical Monitor)
2001-01-01
This report documents the results of a computational study conducted on the Orbital Sciences X-34 vehicle to compute its inviscid aerodynamic characteristics taking into account the wing structural flexibility. This was a joint exercise between LaRC and SDRC of California. SDRC modeled the structural details of the wing, and provided the structural deformation for a given pressure distribution on its surfaces. This study was done for a Mach number of 1.35 and an angle of attack of 9 deg.; the freestream dynamic pressure was assumed to be 607 lb/sq ft. Only the wing and the body were simulated in the CFD computations. Two wing configurations were examined. The first had the elevons in the undeflected position and the second had the elevons deflected 20 deg. up. The results indicated that with elevon undeflected, the wing twists by about 1.5 deg. resulting in a reduction in the angle of attack at the wing tip to by 1.5 deg. The maximum vertical deflection of the wing is about 3.71 inches at the wing tip. For the wing with the undeflected elevons, the effect of this wing deformation is to reduce the normal force coefficient (C(sub N)) by 0.012 and introduce a noise up pitching moment coefficient (C(sub m)) of 0.042.
Unsteady-Pressure and Dynamic-Deflection Measurements on an Aeroelastic Supercritical Wing
NASA Technical Reports Server (NTRS)
Seidel, David A.; Sandford, Maynard C.; Eckstrom, Clinton V.
1991-01-01
Transonic steady and unsteady pressure tests were conducted on a large elastic wing. The wing has a supercritical airfoil, a full span aspect ratio of 10.3, a leading edge sweepback angle of 28.8 degrees, and two inboard and one outboard trailing edge control surfaces. Only the outboard control surface was deflected statically and dynamically to generate steady and unsteady flow over the wing. The unsteady surface pressure and dynamic deflection measurements of this elastic wing are presented to permit correlations of the experimental data with theoretical predictions.
Loads calibrations of strain gage bridges on the DAST project Aeroelastic Research Wing (ARW-1)
NASA Technical Reports Server (NTRS)
Eckstrom, C. V.
1980-01-01
The details of and results from the procedure used to calibrate strain gage bridges for measurement of wing structural loads for the DAST project ARW-1 wing are presented. Results are in the form of loads equations and comparison of computed loads vs. actual loads for two simulated flight loading conditions.
Supersonic aeroelastic instability results for a NASP-like wing model
NASA Technical Reports Server (NTRS)
Cole, Stanley R.; Florance, James R.; Thomason, Lee B.; Spain, Charles V.; Bullock, Ellen P.
1993-01-01
An experimental study and an analytical study have been conducted to examine static divergence for hypersonic-vehicle wing models at supersonic conditions. A supersonic test in the Langley Unitary Plan Wind Tunnel facility was conducted for two wind-tunnel models. These models were nearly identical with the exception of airfoil shape. One model had a four-percent maximum thickness airfoil and the other model had an eight-percent maximum thickness airfoil. The wing models had low-aspect ratios and highly swept leading edges. The all-movable wing models were supported by a single-pivot mechanism along the wing root. For both of the wind-tunnel models, configuration changes could be made in the wing-pivot location along the wing root and in the wing-pivot pitch stiffness. Three divergence conditions were measured for the four-percent thick airfoil model in the Mach number range of 2.6 to 3.6 and one divergence condition was measured for the eight-percent thick airfoil model at a Mach number of 2.9. Analytical divergence calculations were made for comparison with experimental results and to evaluate the parametric effects of wing-pivot stiffness, wing-pivot location, and airfoil thickness variations. These analyses showed that decreasing airfoil thickness, moving the wing-pivot location upstream, or increasing the pitch-pivot stiffness have the beneficial effect of increasing the divergence dynamic pressures. The calculations predicted the trend of experimental divergence dynamic pressure with Mach number accurately; however, the calculations were approximately 25 percent conservative with respect to dynamic pressure.
A Fundamental Study in Nonlinear Aeroelastic Phenomena in Flapping Wing Micro Air Vehicles
2008-11-30
obtained from an updated Lagrangian approach for flapping wings with prescribed root motion that resembles insect or hummingbird wing flapping...which account for evolution of the wake, provide a reasonable approximation to the development of the unsteady wake during a flapping cycle. A two...condition at the leading edge. The evolution of the wake is governed by the Rott-Birkhoff equation, which is derived from the Biot-Savart law for two
Supersonic aeroelastic instability results for a NASP-like wing model
NASA Technical Reports Server (NTRS)
Cole, Stanley R.; Florance, James R.; Thomason, Lee B.; Spain, Charles V.; Bullock, Ellen P.
1993-01-01
Two wing-alone wind-tunnel models were tested in the NASA Langley Unitary Plan Wind Tunnel facility to study the static divergence behavior of such configurations and to provide a data base for correlation with supersonic analytical predictions. One model had a four percent maximum thickness airfoil and the other had an eight-percent maximum thickness airfoil. The wing models had low aspect ratios and highly swept leading edges. Results show that decreasing airfoil thickness, moving the wing-pivot location upstream, or increasing the pitch-pivot stiffness have the beneficial effect of increasing the divergence dynamic pressures. The calculations accurately predicted the trend of experimental divergence dynamic pressure with Mach number.
A Static Aeroelastic Analysis of a Flexible Wing Mini Unmanned Aerial Vehicle
2008-03-27
Grids . . . . . . . 36 4.2 Building Surface Grids in Gridgen . . . . . . . . . . . . 36 4.3 Obtaining the Static Target Displacement...Appendix E. Gridgen . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Appendix F. Fluent Scripts . . . . . . . . . . . . . . . . . . . . . . . . 89...The geometry of the Nighthawk was defined in a SolidWorks model. This geometry was used to create the grid for the undeflected wing shape in Gridgen
Aeroelastic Optimization of Generalized Tube and Wing Aircraft Concepts Using HCDstruct Version 2.0
NASA Technical Reports Server (NTRS)
Quinlan, Jesse R.; Gern, Frank H.
2017-01-01
Major enhancements were made to the Higher-fidelity Conceptual Design and structural optimization (HCDstruct) tool developed at NASA Langley Research Center (LaRC). Whereas previous versions were limited to hybrid wing body (HWB) configurations, the current version of HCDstruct now supports the analysis of generalized tube and wing (TW) aircraft concepts. Along with significantly enhanced user input options for all air- craft configurations, these enhancements represent HCDstruct version 2.0. Validation was performed using a Boeing 737-200 aircraft model, for which primary structure weight estimates agreed well with available data. Additionally, preliminary analysis of the NASA D8 (ND8) aircraft concept was performed, highlighting several new features of the tool.
AGARD Standard Aeroelastic Configurations for Dynamic Response I - Wing 445.6
1988-07-01
data for the AGARD 3D swept tapered standard configuration "Wing 445.6", along with related descriptive data of the model properties required for...model properties required for comparative flutter caliculations. As part of a cooperative AGARD-SMP programme, guided by the Sub-Committee on... properties needed for flutter calculations. Reference 4 contains all of the flutter data and required information with the exception of the mode
Aeroelastic modeling of the active flexible wing wind-tunnel model
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Heeg, Jennifer; Bennett, Robert M.
1991-01-01
The primary issues involved in the generation of linear, state-space equations of motion of a flexible wind tunnel model, the Active Flexible Wing (AFW), are discussed. The codes that were used and their inherent assumptions and limitations are also briefly discussed. The application of the CAP-TSD code to the AFW for determination of the model's transonic flutter boundary is included as well.
Airloads, wakes, and aeroelasticity
NASA Technical Reports Server (NTRS)
Johnson, Wayne
1990-01-01
Fundamental considerations regarding the theory of modeling of rotary wing airloads, wakes, and aeroelasticity are presented. The topics covered are: airloads and wakes, including lifting-line theory, wake models and nonuniform inflow, free wake geometry, and blade-vortex interaction; aerodynamic and wake models for aeroelasticity, including two-dimensional unsteady aerodynamics and dynamic inflow; and airloads and structural dynamics, including comprehensive airload prediction programs. Results of calculations and correlations are presented.
NASA Technical Reports Server (NTRS)
Heeg, Jennifer; Morelli, Eugene A.
2011-01-01
Multiple mutually orthogonal signals comprise excitation data sets for aeroservoelastic system identification. A multisine signal is a sum of harmonic sinusoid components. A set of these signals is made orthogonal by distribution of the frequency content such that each signal contains unique frequencies. This research extends the range of application of an excitation method developed for stability and control flight testing to aeroservoelastic modeling from wind tunnel testing. Wind tunnel data for the Joined Wing SensorCraft model validates this method, demonstrating that these signals applied simultaneously reproduce the frequency response estimates achieved from one-at-a-time excitation.
NASA Technical Reports Server (NTRS)
Manro, M. E.
1983-01-01
Two separated flow computer programs and a semiempirical method for incorporating the experimentally measured separated flow effects into a linear aeroelastic analysis were evaluated. The three dimensional leading edge vortex (LEV) code is evaluated. This code is an improved panel method for three dimensional inviscid flow over a wing with leading edge vortex separation. The governing equations are the linear flow differential equation with nonlinear boundary conditions. The solution is iterative; the position as well as the strength of the vortex is determined. Cases for both full and partial span vortices were executed. The predicted pressures are good and adequately reflect changes in configuration.
NASA Technical Reports Server (NTRS)
Hopko, R. N.
1951-01-01
The damping in roll and rolling effectiveness of two models of a missile having cruciform, triangular, interdigitated wings and tails have been determined through a Mach number range of 0.8 to 1.8 by utilizing rocket-propelled test vehicles. Results indicate that the damping in roll was relatively constant over the Mach umber range investigated. The rolling effectiveness was essentially constant at low supersonic speeds and increased with increasing mach numbers in excess of 1.4 over the Mach number range investigated. Aeroelastic effects increase the rolling-effectiveness parameters pb/2V divided by delta and decrease both the rolling-moment coefficient due to wing deflection and the damping-in-roll coefficient.
NASA Technical Reports Server (NTRS)
Radovcich, N. A.
1984-01-01
The design experience associated with a benchmark aeroelastic design of an out of production transport aircraft is discussed. Current work being performed on a high aspect ratio wing design is reported. The Preliminary Aeroelastic Design of Structures (PADS) system is briefly summarized and some operational aspects of generating the design in an automated aeroelastic design environment are discussed.
NASA Technical Reports Server (NTRS)
Bartels, Robert E.; Scott, Robert C.; Allen, Timothy J.; Sexton, Bradley W.
2015-01-01
Considerable attention has been given in recent years to the design of highly flexible aircraft. The results of numerous studies demonstrate the significant performance benefits of strut-braced wing (SBW) and trussbraced wing (TBW) configurations. Critical aspects of the TBW configuration are its larger aspect ratio, wing span and thinner wings. These aspects increase the importance of considering fluid/structure and control system coupling. This paper presents high-fidelity Navier-Stokes simulations of the dynamic response of the flexible Boeing Subsonic Ultra Green Aircraft Research (SUGAR) truss-braced wing wind-tunnel model. The latest version of the SUGAR TBW finite element model (FEM), v.20, is used in the present simulations. Limit cycle oscillations (LCOs) of the TBW wing/strut/nacelle are simulated at angle-of-attack (AoA) values of -1, 0 and +1 degree. The modal data derived from nonlinear static aeroelastic MSC.Nastran solutions are used at AoAs of -1 and +1 degrees. The LCO amplitude is observed to be dependent on AoA. LCO amplitudes at -1 degree are larger than those at +1 degree. The LCO amplitude at zero degrees is larger than either -1 or +1 degrees. These results correlate well with both wind-tunnel data and the behavior observed in previous studies using linear aerodynamics. The LCO onset at zero degrees AoA has also been computed using unloaded v.20 FEM modes. While the v.20 model increases the dynamic pressure at which LCO onset is observed, it is found that the LCO onset at and above Mach 0.82 is much different than that produced by an earlier version of the FEM, v. 19.
NASA Technical Reports Server (NTRS)
Murrow, H. N.
1981-01-01
Results from flight tests of the ARW-1 research wing are presented. Preliminary loads data and experiences with the active control system for flutter suppression are included along with comparative results of test and prediction for the flutter boundary of the supercritical research wing and on performance of the flutter suppression system. The status of the ARW-2 research wing is given.
2007-11-01
actuation device in the wing will increase the model complexity considerably and very probably stiffen the wing considerably. Figure 6: Desing ...7] http://www.denel.co.za/Aerospace/UAV.asp [8] http://www.aoe.vt.edu/ research /groups/ucav/ [9] Kudva, J.N.: Overview of the DARPA Smart Wing
An analytical study of effects of aeroelasticity on control effectiveness
NASA Technical Reports Server (NTRS)
Mehrotra, S. C.
1975-01-01
Structural influence coefficients were calculated for various wing planforms using the KU Aeroelastic and NASTRAN programs. The resulting matrices are compared with experimental results. Conclusions are given.
Static Aeroelasticity in Combat Aircraft.
1986-01-01
aircraft design. Fuselage flexibility is, in general , a secondary consideration. The relatively high density of this structural component, designed to...representation of the structure. An effective beam representation of the total panel stiffness is generally applicable and appropriate for these needs and...loading effect Is to produce zero wing lift, but a large leading-edge-up wing torque. Aeroelastically, a significant wing lift is generated as the
Modeling Aircraft Wing Loads from Flight Data Using Neural Networks
NASA Technical Reports Server (NTRS)
Allen, Michael J.; Dibley, Ryan P.
2003-01-01
Neural networks were used to model wing bending-moment loads, torsion loads, and control surface hinge-moments of the Active Aeroelastic Wing (AAW) aircraft. Accurate loads models are required for the development of control laws designed to increase roll performance through wing twist while not exceeding load limits. Inputs to the model include aircraft rates, accelerations, and control surface positions. Neural networks were chosen to model aircraft loads because they can account for uncharacterized nonlinear effects while retaining the capability to generalize. The accuracy of the neural network models was improved by first developing linear loads models to use as starting points for network training. Neural networks were then trained with flight data for rolls, loaded reversals, wind-up-turns, and individual control surface doublets for load excitation. Generalization was improved by using gain weighting and early stopping. Results are presented for neural network loads models of four wing loads and four control surface hinge moments at Mach 0.90 and an altitude of 15,000 ft. An average model prediction error reduction of 18.6 percent was calculated for the neural network models when compared to the linear models. This paper documents the input data conditioning, input parameter selection, structure, training, and validation of the neural network models.
CFD for applications to aircraft aeroelasticity
NASA Technical Reports Server (NTRS)
Guruswamy, Guru P.
1989-01-01
Strong interactions of structures and fluids are common in many engineering environments. Such interactions can give rise to physically important phenomena such as those occurring for aircraft due to aeroelasticity. Aeroelasticity can significantly influence the safe performance of aircraft. At present exact methods are available for making aeroelastic computations when flows are in either the linear subsonic or supersonic range. However, for complex flows containing shock waves, vortices and flow separations, computational methods are still under development. Several phenomena that can be dangerous and limit the performance of an aircraft occur due to the interaction of these complex flows with flexible aircraft components such as wings. For example, aircraft with highly swept wings experience vortex induced aeroelastic oscillations. Correct understanding of these complex aeroelastic phenomena requires direct coupling of fluids and structural equations. Here, a summary is presented of the development of such coupled methods and applications to aeroelasticity since about 1978 to present. The successful use of the transonic small perturbation theory (TSP) coupled with structures is discussed. This served as a major stepping stone for the current stage of aeroelasticity using computational fluid dynamics. The need for the use of more exact Euler/Navier-Stokes (ENS) equations for aeroelastic problems is explained. The current development of unsteady aerodynamic and aeroelastic procedures based on the ENS equations are discussed. Aeroelastic results computed using both TSP and ENS equations are discussed.
Predicting Unsteady Aeroelastic Behavior
NASA Technical Reports Server (NTRS)
Strganac, Thomas W.; Mook, Dean T.
1990-01-01
New method for predicting subsonic flutter, static deflections, and aeroelastic divergence developed. Unsteady aerodynamic loads determined by unsteady-vortex-lattice method. Accounts for aspect ratio and angle of attack. Equations for motion of wing and flow field solved iteratively and simultaneously. Used to predict transient responses to initial disturbances, and to predict steady-state static and oscillatory responses. Potential application for research in such unsteady structural/flow interactions as those in windmills, turbines, and compressors.
A Taguchi study of the aeroelastic tailoring design process
NASA Technical Reports Server (NTRS)
Bohlmann, Jonathan D.; Scott, Robert C.
1991-01-01
A Taguchi study was performed to determine the important players in the aeroelastic tailoring design process and to find the best composition of the optimization's objective function. The Wing Aeroelastic Synthesis Procedure (TSO) was used to ascertain the effects that factors such as composite laminate constraints, roll effectiveness constraints, and built-in wing twist and camber have on the optimum, aeroelastically tailored wing skin design. The results show the Taguchi method to be a viable engineering tool for computational inquiries, and provide some valuable lessons about the practice of aeroelastic tailoring.
NASA Technical Reports Server (NTRS)
Sevart, F. D.; Patel, S. M.
1973-01-01
Testing and evaluation of a stability augmentation system for aircraft flight control were performed. The flutter suppression system and synthesis conducted on a scale model of a supersonic wing for a transport aircraft are discussed. Mechanization and testing of the leading and trailing edge surface actuation systems are described. The ride control system analyses for a 375,000 pound gross weight B-52E aircraft are presented. Analyses of the B-52E aircraft maneuver load control system are included.
Aeroelastic Tailoring via Tow Steered Composites
NASA Technical Reports Server (NTRS)
Stanford, Bret K.; Jutte, Christine V.
2014-01-01
The use of tow steered composites, where fibers follow prescribed curvilinear paths within a laminate, can improve upon existing capabilities related to aeroelastic tailoring of wing structures, though this tailoring method has received relatively little attention in the literature. This paper demonstrates the technique for both a simple cantilevered plate in low-speed flow, as well as the wing box of a full-scale high aspect ratio transport configuration. Static aeroelastic stresses and dynamic flutter boundaries are obtained for both cases. The impact of various tailoring choices upon the aeroelastic performance is quantified: curvilinear fiber steering versus straight fiber steering, certifiable versus noncertifiable stacking sequences, a single uniform laminate per wing skin versus multiple laminates, and identical upper and lower wing skins structures versus individual tailoring.
Dueholm, Morten Simonsen; Albertsen, Mads; Stokholm-Bjerregaard, Mikkel; McIlroy, Simon J; Karst, SÃ¸ren M; Nielsen, Per HalkjÃ¦r
2015-06-11
Here, we present the complete genome sequence of the candidate phylum SR1 bacterium Aalborg_AAW-1. Its 16S rRNA gene is only 85.5% similar to that of the closest relative, RAAC1_SR1, and the genome of Aalborg_AAW-1 consequently represents the first of a novel family within the candidate phylum SR1.
NASA Technical Reports Server (NTRS)
Adams, W. M., Jr.; Tiffany, S. H.
1983-01-01
A control law is developed to suppress symmetric flutter for a mathematical model of an aeroelastic research vehicle. An implementable control law is attained by including modified LQG (linear quadratic Gaussian) design techniques, controller order reduction, and gain scheduling. An alternate (complementary) design approach is illustrated for one flight condition wherein nongradient-based constrained optimization techniques are applied to maximize controller robustness.
Experimental aeroelasticity history, status and future in brief
NASA Technical Reports Server (NTRS)
Ricketts, Rodney H.
1990-01-01
NASA conducts wind tunnel experiments to determine and understand the aeroelastic characteristics of new and advanced flight vehicles, including fixed-wing, rotary-wing and space-launch configurations. Review and assessments are made of the state-of-the-art in experimental aeroelasticity regarding available facilities, measurement techniques, and other means and devices useful in testing. In addition, some past experimental programs are described which assisted in the development of new technology, validated new analysis codes, or provided needed information for clearing flight envelopes of unwanted aeroelastic response. Finally, needs and requirements for advances and improvements in testing capabilities for future experimental research and development programs are described.
NASA Dryden Flight Research Center
NASA Technical Reports Server (NTRS)
Navarro, Robert
2009-01-01
This DVD has several short videos showing some of the work that Dryden is involved in with experimental aircraft. These are: shots showing the Active AeroElastic Wing (AAW) loads calibration tests, AAW roll maneuvers, AAW flight control surface inputs, Helios flight, and takeoff, and Pathfinder takeoff, flight and landing.
Unified Formulation of the Aeroelasticity of Swept Lifting Surfaces
NASA Technical Reports Server (NTRS)
Silva, Walter; Marzocca, Piergiovanni; Librescu, Liviu
2001-01-01
An unified approach for dealing with stability and aeroelastic response to time-dependent pressure pulses of swept wings in an incompressible flow is developed. To this end the indicial function concept in time and frequency domains, enabling one to derive the proper unsteady aerodynamic loads is used. Results regarding stability in the frequency and time domains, and subcritical aeroelastic response to arbitrary time-dependent external excitation obtained via the direct use of the unsteady aerodynamic derivatives for 3-D wings are supplied. Closed form expressions for unsteady aerodynamic derivatives using this unified approach have been derived and used to illustrate their application to flutter and aeroelastic response to blast and sonic-boom signatures. In this context, an original representation of the aeroelastic response in the phase space was presented and pertinent conclusions on the implications of some basic parameters have been outlined.
Helicopter aeroelastic stability and response - Current topics and future trends
NASA Technical Reports Server (NTRS)
Friedmann, Peretz P.
1990-01-01
This paper presents several current topics in rotary wing aeroelasticity and concludes by attempting to anticipate future trends and developments. These topics are: (1) the role of geometric nonlinearities; (2) structural modeling, and aeroelastic analysis of composite rotor blades; (3) aeroelastic stability and response in forward flight; (4) modeling of coupled rotor/fuselage aeromechanical problems and their active control; and (5) the coupled rotor-fuselage vibration problem and its alleviation by higher harmonic control. Selected results illustrating the fundamental aspects of these topics are presented. Future developments are briefly discussed.
NASA Technical Reports Server (NTRS)
Radovcich, N. A.; Dreim, D.; Okeefe, D. A.; Linner, L.; Pathak, S. K.; Reaser, J. S.; Richardson, D.; Sweers, J.; Conner, F.
1985-01-01
Work performed in the design of a transport aircraft wing for maximum fuel efficiency is documented with emphasis on design criteria, design methodology, and three design configurations. The design database includes complete finite element model description, sizing data, geometry data, loads data, and inertial data. A design process which satisfies the economics and practical aspects of a real design is illustrated. The cooperative study relationship between the contractor and NASA during the course of the contract is also discussed.
NASA Technical Reports Server (NTRS)
Kelly, Thomas C.
1959-01-01
Results have been obtained in the Langley 8-foot transonic pressure tunnel at a Mach number of 1.43 and at angles of attack from 0 deg to about 24 deg which indicate the static-aerodynamic-loads characteristics for a 2-percent-thick trapezoidal wing in combination with a body. Included are the effects of changing Reynolds number and of fixing boundary-layer transition. The results show that aerodynamic loading characteristics at a Mach number of 1.43 are similar to those reported in NACA RM L56Jl2a for the same configuration at a Mach number of 1.115. Reducing the Reynolds number resulted in reductions in the deflection of the wing and caused a slight increase in the relative loading over the outboard wing sections since the deflections were in a direction to unload the tip sections. Little or no effects were seen to result from fixing boundary-layer transition at a tunnel stagnation pressure of 1,950 pounds per square foot.
NASA Technical Reports Server (NTRS)
Noor, Ahmed K. (Editor); Venneri, Samuel L. (Editor)
1993-01-01
Various papers on flight vehicle materials, structures, and dynamics are presented. Individual topics addressed include: general modeling methods, component modeling techniques, time-domain computational techniques, dynamics of articulated structures, structural dynamics in rotating systems, structural dynamics in rotorcraft, damping in structures, structural acoustics, structural design for control, structural modeling for control, control strategies for structures, system identification, overall assessment of needs and benefits in structural dynamics and controlled structures. Also discussed are: experimental aeroelasticity in wind tunnels, aeroservoelasticity, nonlinear aeroelasticity, aeroelasticity problems in turbomachines, rotary-wing aeroelasticity with application to VTOL vehicles, computational aeroelasticity, structural dynamic testing and instrumentation.
Technical activities of the configuration aeroelasticity branch
NASA Technical Reports Server (NTRS)
Cole, Stanley R. (Editor)
1991-01-01
A number of recent technical activities of the Configuration Aeroelasticity Branch of the NASA Langley Research Center are discussed in detail. The information on the research branch is compiled in twelve separate papers. The first of these topics is a summary of the purpose of the branch, including a full description of the branch and its associated projects and program efforts. The next ten papers cover specific projects and are as follows: Experimental transonic flutter characteristics of supersonic cruise configurations; Aeroelastic effects of spoiler surfaces mounted on a low aspect ratio rectangular wing; Planform curvature effects on flutter of 56 degree swept wing determined in Transonic Dynamics Tunnel (TDT); An introduction to rotorcraft testing in TDT; Rotorcraft vibration reduction research at the TDT; A preliminary study to determine the effects of tip geometry on the flutter of aft swept wings; Aeroelastic models program; NACA 0012 pressure model and test plan; Investigation of the use of extension twist coupling in composite rotor blades; and Improved finite element methods for rotorcraft structures. The final paper describes the primary facility operation by the branch, the Langley TDT.
Rotorcraft Technology for HALE Aeroelastic Analysis
NASA Technical Reports Server (NTRS)
Young, Larry; Johnson, Wayne
2008-01-01
Much of technology needed for analysis of HALE nonlinear aeroelastic problems is available from rotorcraft methodologies. Consequence of similarities in operating environment and aerodynamic surface configuration. Technology available - theory developed, validated by comparison with test data, incorporated into rotorcraft codes. High subsonic to transonic rotor speed, low to moderate Reynolds number. Structural and aerodynamic models for high aspect-ratio wings and propeller blades. Dynamic and aerodynamic interaction of wing/airframe and propellers. Large deflections, arbitrary planform. Steady state flight, maneuvers and response to turbulence. Linearized state space models. This technology has not been extensively applied to HALE configurations. Correlation with measured HALE performance and behavior required before can rely on tools.
NASA Technical Reports Server (NTRS)
Reed, W. H., III
1981-01-01
Testing of wind-tunnel aeroelastic models is a well established, widely used means of studying flutter trends, validating theory and investigating flutter margins of safety of new vehicle designs. The Langley Transonic Dynamics Tunnel was designed specifically for work on dynamics and aeroelastic problems of aircraft and space vehicles. A cross section of aeroelastic research and testing in the facility since it became operational more than two decades ago is presented. Examples selected from a large store of experience illustrate the nature and purpose of some major areas of work performed in the tunnel. These areas include: specialized experimental techniques; development testing of new aircraft and launch vehicle designs; evaluation of proposed "fixes" to solve aeroelastic problems uncovered during development testing; study of unexpected aeroelastic phenomena (i.e., "surprises"); control of aeroelastic effects by active and passive means; and, finally, fundamental research involving measurement of unsteady pressures on oscillating wings and control surface.
Design and Analysis of AN Static Aeroelastic Experiment
NASA Astrophysics Data System (ADS)
Hou, Ying-Yu; Yuan, Kai-Hua; Lv, Ji-Nan; Liu, Zi-Qiang
2016-06-01
Static aeroelastic experiments are very common in the United States and Russia. The objective of static aeroelastic experiments is to investigate deformation and loads of elastic structure in flow field. Generally speaking, prerequisite of this experiment is that the stiffness distribution of structure is known. This paper describes a method for designing experimental models, in the case where the stiffness distribution and boundary condition of a real aircraft are both uncertain. The stiffness distribution form of the structure can be calculated via finite element modeling and simulation calculation and F141 steels and rigid foam are used to make elastic model. In this paper, the design and manufacturing process of static aeroelastic models is presented and a set of experiment model was designed to simulate the stiffness of the designed wings, a set of experiments was designed to check the results. The test results show that the experimental method can effectively complete the design work of elastic model. This paper introduces the whole process of the static aeroelastic experiment, and the experimental results are analyzed. This paper developed a static aeroelasticity experiment technique and established an experiment model targeting at the swept wing of a certain kind of large aspect ratio aircraft.
A modified F/A-18A sporting a distinctive red, white and blue paint scheme is the test aircraft for
NASA Technical Reports Server (NTRS)
2001-01-01
A modified F/A-18A sporting a distinctive red, white and blue paint scheme is the test aircraft for the Active Aeroelastic Wing (AAW) project at NASA's Dryden Flight Research Center, Edwards, California.
This modified F/A-18A with its distinctive red, white and blue paint scheme is the test aircraft for
NASA Technical Reports Server (NTRS)
2001-01-01
This modified F/A-18A with its distinctive red, white and blue paint scheme is the test aircraft for the Active Aeroelastic Wing (AAW) project at NASA's Dryden Flight Research Center, Edwards, California.
With a long flight data probe extending from its nose, this F/A-18A has been modified to conduct fli
NASA Technical Reports Server (NTRS)
2001-01-01
With a long flight data probe extending from its nose, this F/A-18A has been modified to conduct flight research in the Active Aeroelastic Wing (AAW) project at NASA's Dryden Flight Research Center, Edwards, California.
Flight Dynamics of Flexible Aircraft with Aeroelastic and Inertial Force Interactions
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Tuzcu, Ilhan
2009-01-01
This paper presents an integrated flight dynamic modeling method for flexible aircraft that captures coupled physics effects due to inertial forces, aeroelasticity, and propulsive forces that are normally present in flight. The present approach formulates the coupled flight dynamics using a structural dynamic modeling method that describes the elasticity of a flexible, twisted, swept wing using an equivalent beam-rod model. The structural dynamic model allows for three types of wing elastic motion: flapwise bending, chordwise bending, and torsion. Inertial force coupling with the wing elasticity is formulated to account for aircraft acceleration. The structural deflections create an effective aeroelastic angle of attack that affects the rigid-body motion of flexible aircraft. The aeroelastic effect contributes to aerodynamic damping forces that can influence aerodynamic stability. For wing-mounted engines, wing flexibility can cause the propulsive forces and moments to couple with the wing elastic motion. The integrated flight dynamics for a flexible aircraft are formulated by including generalized coordinate variables associated with the aeroelastic-propulsive forces and moments in the standard state-space form for six degree-of-freedom flight dynamics. A computational structural model for a generic transport aircraft has been created. The eigenvalue analysis is performed to compute aeroelastic frequencies and aerodynamic damping. The results will be used to construct an integrated flight dynamic model of a flexible generic transport aircraft.
Three-Dimensional Aeroelastic and Aerothermoelastic Behavior in Hypersonic Flow
NASA Technical Reports Server (NTRS)
McNamara, Jack J.; Friedmann, Peretz P.; Powell, Kenneth G.; Thuruthimattam, Biju J.; Bartels, Robert E.
2005-01-01
The aeroelastic and aerothermoelastic behavior of three-dimensional configurations in hypersonic flow regime are studied. The aeroelastic behavior of a low aspect ratio wing, representative of a fin or control surface on a generic hypersonic vehicle, is examined using third order piston theory, Euler and Navier-Stokes aerodynamics. The sensitivity of the aeroelastic behavior generated using Euler and Navier-Stokes aerodynamics to parameters governing temporal accuracy is also examined. Also, a refined aerothermoelastic model, which incorporates the heat transfer between the fluid and structure using CFD generated aerodynamic heating, is used to examine the aerothermoelastic behavior of the low aspect ratio wing in the hypersonic regime. Finally, the hypersonic aeroelastic behavior of a generic hypersonic vehicle with a lifting-body type fuselage and canted fins is studied using piston theory and Euler aerodynamics for the range of 2.5 less than or equal to M less than or equal to 28, at altitudes ranging from 10,000 feet to 80,000 feet. This analysis includes a study on optimal mesh selection for use with Euler aerodynamics. In addition to the aeroelastic and aerothermoelastic results presented, three time domain flutter identification techniques are compared, namely the moving block approach, the least squares curve fitting method, and a system identification technique using an Auto-Regressive model of the aeroelastic system. In general, the three methods agree well. The system identification technique, however, provided quick damping and frequency estimations with minimal response record length, and therefore o ers significant reductions in computational cost. In the present case, the computational cost was reduced by 75%. The aeroelastic and aerothermoelastic results presented illustrate the applicability of the CFL3D code for the hypersonic flight regime.
Uncertainty Quantification in Aeroelasticity
NASA Astrophysics Data System (ADS)
Beran, Philip; Stanford, Bret; Schrock, Christopher
2017-01-01
Physical interactions between a fluid and structure, potentially manifested as self-sustained or divergent oscillations, can be sensitive to many parameters whose values are uncertain. Of interest here are aircraft aeroelastic interactions, which must be accounted for in aircraft certification and design. Deterministic prediction of these aeroelastic behaviors can be difficult owing to physical and computational complexity. New challenges are introduced when physical parameters and elements of the modeling process are uncertain. By viewing aeroelasticity through a nondeterministic prism, where key quantities are assumed stochastic, one may gain insights into how to reduce system uncertainty, increase system robustness, and maintain aeroelastic safety. This article reviews uncertainty quantification in aeroelasticity using traditional analytical techniques not reliant on computational fluid dynamics; compares and contrasts this work with emerging methods based on computational fluid dynamics, which target richer physics; and reviews the state of the art in aeroelastic optimization under uncertainty. Barriers to continued progress, for example, the so-called curse of dimensionality, are discussed.
Optimal Topology of Aircraft Rib and Spar Structures under Aeroelastic Loads
NASA Technical Reports Server (NTRS)
Stanford, Bret K.; Dunning, Peter D.
2014-01-01
Several topology optimization problems are conducted within the ribs and spars of a wing box. It is desired to locate the best position of lightening holes, truss/cross-bracing, etc. A variety of aeroelastic metrics are isolated for each of these problems: elastic wing compliance under trim loads and taxi loads, stress distribution, and crushing loads. Aileron effectiveness under a constant roll rate is considered, as are dynamic metrics: natural vibration frequency and flutter. This approach helps uncover the relationship between topology and aeroelasticity in subsonic transport wings, and can therefore aid in understanding the complex aircraft design process which must eventually consider all these metrics and load cases simultaneously.
Level-Set Topology Optimization with Aeroelastic Constraints
NASA Technical Reports Server (NTRS)
Dunning, Peter D.; Stanford, Bret K.; Kim, H. Alicia
2015-01-01
Level-set topology optimization is used to design a wing considering skin buckling under static aeroelastic trim loading, as well as dynamic aeroelastic stability (flutter). The level-set function is defined over the entire 3D volume of a transport aircraft wing box. Therefore, the approach is not limited by any predefined structure and can explore novel configurations. The Sequential Linear Programming (SLP) level-set method is used to solve the constrained optimization problems. The proposed method is demonstrated using three problems with mass, linear buckling and flutter objective and/or constraints. A constraint aggregation method is used to handle multiple buckling constraints in the wing skins. A continuous flutter constraint formulation is used to handle difficulties arising from discontinuities in the design space caused by a switching of the critical flutter mode.
An Overview of Recent Developments in Computational Aeroelasticity
NASA Technical Reports Server (NTRS)
Bennett, Robert M.; Edwards, John W.
2004-01-01
The motivation for Computational Aeroelasticity (CA) and the elements of one type of the analysis or simulation process are briefly reviewed. The need for streamlining and improving the overall process to reduce elapsed time and improve overall accuracy is discussed. Further effort is needed to establish the credibility of the methodology, obtain experience, and to incorporate the experience base to simplify the method for future use. Experience with the application of a variety of Computational Aeroelasticity programs is summarized for the transonic flutter of two wings, the AGARD 445.6 wing and a typical business jet wing. There is a compelling need for a broad range of additional flutter test cases for further comparisons. Some existing data sets that may offer CA challenges are presented.
Static Aeroelastic Analysis of Transonic Wind Tunnel Models Using Finite Element Methods
NASA Technical Reports Server (NTRS)
Hooker, John R.; Burner, Alpheus W.; Valla, Robert
1997-01-01
A computational method for accurately predicting the static aeroelastic deformations of typical transonic transport wind tunnel models is described. The method utilizes a finite element method (FEM) for predicting the deformations. Extensive calibration/validation of this method was carried out using a novel wind-off wind tunnel model static loading experiment and wind-on optical wing twist measurements obtained during a recent wind tunnel test in the National Transonic Facility (NTF) at NASA LaRC. Further validations were carried out using a Navier-Stokes computational fluid dynamics (CFD) flow solver to calculate wing pressure distributions about several aeroelastically deformed wings and comparing these predictions with NTF experimental data. Results from this aeroelastic deformation method are in good overall agreement with experimentally measured values. Including the predicted deformations significantly improves the correlation between CFD predicted and experimentally measured wing & pressures.
Data Comparisons and Summary of the Second Aeroelastic Prediction Workshop
NASA Technical Reports Server (NTRS)
Heeg, Jennifer; Wieseman, Carol D.; Chwalowski, Pawel
2016-01-01
This paper presents the computational results generated by participating teams of the second Aeroelastic Prediction Workshop and compare them with experimental data. Aeroelastic and rigid configurations of the Benchmark Supercritical Wing (BSCW) wind tunnel model served as the focus for the workshop. The comparison data sets include unforced ("steady") system responses, forced pitch oscillations and coupled fluid-structure responses. Integrated coefficients, frequency response functions, and flutter onset conditions are compared. The flow conditions studied were in the transonic range, including both attached and separated flow conditions. Some of the technical discussions that took place at the workshop are summarized.
New Flutter Analysis Technique for Time-Domain Computational Aeroelasticity
NASA Technical Reports Server (NTRS)
Pak, Chan-Gi; Lung, Shun-Fat
2017-01-01
A new time-domain approach for computing flutter speed is presented. Based on the time-history result of aeroelastic simulation, the unknown unsteady aerodynamics model is estimated using a system identification technique. The full aeroelastic model is generated via coupling the estimated unsteady aerodynamic model with the known linear structure model. The critical dynamic pressure is computed and used in the subsequent simulation until the convergence of the critical dynamic pressure is achieved. The proposed method is applied to a benchmark cantilevered rectangular wing.
Frequency-Domain Identification Of Aeroelastic Modes
NASA Technical Reports Server (NTRS)
Acree, C. W., Jr.; Tischler, Mark B.
1991-01-01
Report describes flight measurements and frequency-domain analyses of aeroelastic vibrational modes of wings of XV-15 tilt-rotor aircraft. Begins with description of flight-test methods. Followed by brief discussion of methods of analysis, which include Fourier-transform computations using chirp z transformers, use of coherence and other spectral functions, and methods and computer programs to obtain frequencies and damping coefficients from measurements. Includes brief description of results of flight tests and comparisions among various experimental and theoretical results. Ends with section on conclusions and recommended improvements in techniques.
Aeroelastic Analysis for Aeropropulsion Applications
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr.; Bakhle, Milind A.
2002-01-01
Aeroelastic codes with advanced capabilities for modeling flow require substantial computational time. On the other hand, fast-running linear aeroelastic codes lack the capability to model three-dimensional, transonic, vortical, and viscous flows. The goal of this work was to develop an aeroelastic code with accurate modeling capabilities and small computational requirements.
Predicting the aeroelastic behavior of a wind-tunnel model using transonic small disturbance theory
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Bennett, Robert M.
1990-01-01
The CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code, developed at the NASA-Langley Research Center, is applied to the Active Flexible Wing (AFW) wind-tunnel model for prediction of the model's transonic aeroelastic behavior. Static aeroelastic solutions using CAP-TSD are computed. Dynamic (flutter) analyses are then performed as perturbations about the static aeroelastic deformations of the AFW. The accuracy of the static aeroelastic procedure is investigated by comparing analytical results to those from AFW wind-tunnel experiments. Dynamic results are presented in the form of root loci at different Mach numbers for a heavy gas and for air test mediums. The resultant flutter boundaries for both gases, and the effects of viscous damping and angle of attack on the flutter boundary in air, are also presented.
Aeroelastic Tailoring for Stability Augmentation and Performance Enhancements of Tiltrotor Aircraft
NASA Technical Reports Server (NTRS)
Nixon, Mark W.; Piatak, David J.; Corso, Lawrence M.; Popelka, David A.
1999-01-01
The requirements for increased speed and productivity for tiltrotors has spawned several investigations associated with proprotor aeroelastic stability augmentation and aerodynamic performance enhancements. Included among these investigations is a focus on passive aeroelastic tailoring concepts which exploit the anisotropic capabilities of fiber composite materials. Researchers at Langley Research Center and Bell Helicopter have devoted considerable effort to assess the potential for using these materials to obtain aeroelastic responses which are beneficial to the important stability and performance considerations of tiltrotors. Both experimental and analytical studies have been completed to examine aeroelastic tailoring concepts for the tiltrotor, applied either to the wing or to the rotor blades. This paper reviews some of the results obtained in these aeroelastic tailoring investigations and discusses the relative merits associated with these approaches.
Adaptive neural control of aeroelastic response
NASA Astrophysics Data System (ADS)
Lichtenwalner, Peter F.; Little, Gerald R.; Scott, Robert C.
1996-05-01
The Adaptive Neural Control of Aeroelastic Response (ANCAR) program is a joint research and development effort conducted by McDonnell Douglas Aerospace (MDA) and the National Aeronautics and Space Administration, Langley Research Center (NASA LaRC) under a Memorandum of Agreement (MOA). The purpose of the MOA is to cooperatively develop the smart structure technologies necessary for alleviating undesirable vibration and aeroelastic response associated with highly flexible structures. Adaptive control can reduce aeroelastic response associated with buffet and atmospheric turbulence, it can increase flutter margins, and it may be able to reduce response associated with nonlinear phenomenon like limit cycle oscillations. By reducing vibration levels and loads, aircraft structures can have lower acquisition cost, reduced maintenance, and extended lifetimes. Phase I of the ANCAR program involved development and demonstration of a neural network-based semi-adaptive flutter suppression system which used a neural network for scheduling control laws as a function of Mach number and dynamic pressure. This controller was tested along with a robust fixed-gain control law in NASA's Transonic Dynamics Tunnel (TDT) utilizing the Benchmark Active Controls Testing (BACT) wing. During Phase II, a fully adaptive on-line learning neural network control system has been developed for flutter suppression which will be tested in 1996. This paper presents the results of Phase I testing as well as the development progress of Phase II.
Aeroelastic Characteristics of a Circulation Control Wing
1976-09-01
UNLIMITED 17. DISTRIBUTIO4 STATEMENT (of the absra.ct enleradin Block 20, It different from Report) IS. SUPPLEMENTARY NOTES Thesis topic for Master...general the trend of Figure 5 is typical in that it shows lower stiffness requirements, or higher values of qDo for more forward positions of the elastic
ASTROP2 users manual: A program for aeroelastic stability analysis of propfans
NASA Technical Reports Server (NTRS)
Narayanan, G. V.; Kaza, K. R. V.
1991-01-01
A user's manual is presented for the aeroelastic stability and response of propulsion systems computer program called ASTROP2. The ASTROP2 code preforms aeroelastic stability analysis of rotating propfan blades. This analysis uses a two-dimensional, unsteady cascade aerodynamics model and a three-dimensional, normal-mode structural model. Analytical stability results from this code are compared with published experimental results of a rotating composite advanced turboprop model and of nonrotating metallic wing model.
Development of a Composite Tailoring Technique for Airplane Wing
NASA Technical Reports Server (NTRS)
Chattopadhyay, Aditi; Jha, Ratneshwar
1996-01-01
Development of a new composite beam modeling technique to represent the principal load-carrying member in the wing is reported along with the development of a formal design optimization procedure to investigate the effect of composite tailoring on aeroelastic stability and structural characteristics of airplane wings. The developed procedure is used to perform design optimization studies on realistic airplane configurations to investigate the various aeroelastic/structural/dynamic design issues.
NASA Aeroelasticity Handbook Volume 2: Design Guides Part 2
NASA Technical Reports Server (NTRS)
Ramsey, John K. (Editor)
2006-01-01
The NASA Aeroelasticity Handbook comprises a database (in three formats) of NACA and NASA aeroelasticity flutter data through 1998 and a collection of aeroelasticity design guides. The Microsoft Access format provides the capability to search for specific data, retrieve it, and present it in a tabular or graphical form unique to the application. The full-text NACA and NASA documents from which the data originated are provided in portable document format (PDF), and these are hyperlinked to their respective data records. This provides full access to all available information from the data source. Two other electronic formats, one delimited by commas and the other by spaces, are provided for use with other software capable of reading text files. To the best of the author s knowledge, this database represents the most extensive collection of NACA and NASA flutter data in electronic form compiled to date by NASA. Volume 2 of the handbook contains a convenient collection of aeroelastic design guides covering fixed wings, turbomachinery, propellers and rotors, panels, and model scaling. This handbook provides an interactive database and design guides for use in the preliminary aeroelastic design of aerospace systems and can also be used in validating or calibrating flutter-prediction software.
Control Law Design in a Computational Aeroelasticity Environment
NASA Technical Reports Server (NTRS)
Newsom, Jerry R.; Robertshaw, Harry H.; Kapania, Rakesh K.
2003-01-01
A methodology for designing active control laws in a computational aeroelasticity environment is given. The methodology involves employing a systems identification technique to develop an explicit state-space model for control law design from the output of a computational aeroelasticity code. The particular computational aeroelasticity code employed in this paper solves the transonic small disturbance aerodynamic equation using a time-accurate, finite-difference scheme. Linear structural dynamics equations are integrated simultaneously with the computational fluid dynamics equations to determine the time responses of the structure. These structural responses are employed as the input to a modern systems identification technique that determines the Markov parameters of an "equivalent linear system". The Eigensystem Realization Algorithm is then employed to develop an explicit state-space model of the equivalent linear system. The Linear Quadratic Guassian control law design technique is employed to design a control law. The computational aeroelasticity code is modified to accept control laws and perform closed-loop simulations. Flutter control of a rectangular wing model is chosen to demonstrate the methodology. Various cases are used to illustrate the usefulness of the methodology as the nonlinearity of the aeroelastic system is increased through increased angle-of-attack changes.
Wind Tunnel to Atmospheric Mapping for Static Aeroelastic Scaling
NASA Technical Reports Server (NTRS)
Heeg, Jennifer; Spain, Charles V.; Rivera, J. A.
2004-01-01
Wind tunnel to Atmospheric Mapping (WAM) is a methodology for scaling and testing a static aeroelastic wind tunnel model. The WAM procedure employs scaling laws to define a wind tunnel model and wind tunnel test points such that the static aeroelastic flight test data and wind tunnel data will be correlated throughout the test envelopes. This methodology extends the notion that a single test condition - combination of Mach number and dynamic pressure - can be matched by wind tunnel data. The primary requirements for affecting this extension are matching flight Mach numbers, maintaining a constant dynamic pressure scale factor and setting the dynamic pressure scale factor in accordance with the stiffness scale factor. The scaling is enabled by capabilities of the NASA Langley Transonic Dynamics Tunnel (TDT) and by relaxation of scaling requirements present in the dynamic problem that are not critical to the static aeroelastic problem. The methodology is exercised in two example scaling problems: an arbitrarily scaled wing and a practical application to the scaling of the Active Aeroelastic Wing flight vehicle for testing in the TDT.
Aeroelastic Flight Data Analysis with the Hilbert-Huang Algorithm
NASA Technical Reports Server (NTRS)
Brenner, Martin J.; Prazenica, Chad
2006-01-01
This report investigates the utility of the Hilbert Huang transform for the analysis of aeroelastic flight data. It is well known that the classical Hilbert transform can be used for time-frequency analysis of functions or signals. Unfortunately, the Hilbert transform can only be effectively applied to an extremely small class of signals, namely those that are characterized by a single frequency component at any instant in time. The recently-developed Hilbert Huang algorithm addresses the limitations of the classical Hilbert transform through a process known as empirical mode decomposition. Using this approach, the data is filtered into a series of intrinsic mode functions, each of which admits a well-behaved Hilbert transform. In this manner, the Hilbert Huang algorithm affords time-frequency analysis of a large class of signals. This powerful tool has been applied in the analysis of scientific data, structural system identification, mechanical system fault detection, and even image processing. The purpose of this report is to demonstrate the potential applications of the Hilbert Huang algorithm for the analysis of aeroelastic systems, with improvements such as localized online processing. Applications for correlations between system input and output, and amongst output sensors, are discussed to characterize the time-varying amplitude and frequency correlations present in the various components of multiple data channels. Online stability analyses and modal identification are also presented. Examples are given using aeroelastic test data from the F-18 Active Aeroelastic Wing airplane, an Aerostructures Test Wing, and pitch plunge simulation.
The benchmark aeroelastic models program: Description and highlights of initial results
NASA Technical Reports Server (NTRS)
Bennett, Robert M.; Eckstrom, Clinton V.; Rivera, Jose A., Jr.; Dansberry, Bryan E.; Farmer, Moses G.; Durham, Michael H.
1992-01-01
An experimental effort was implemented in aeroelasticity called the Benchmark Models Program. The primary purpose of this program is to provide the necessary data to evaluate computational fluid dynamic codes for aeroelastic analysis. It also focuses on increasing the understanding of the physics of unsteady flows and providing data for empirical design. An overview is given of this program and some results obtained in the initial tests are highlighted. The tests that were completed include measurement of unsteady pressures during flutter of a rigid wing with an NACA 0012 airfoil section and dynamic response measurements of a flexible rectangular wing with a thick circular arc airfoil undergoing shock boundary layer oscillations.
The benchmark aeroelastic models program: Description and highlights of initial results
NASA Technical Reports Server (NTRS)
Bennett, Robert M.; Eckstrom, Clinton V.; Rivera, Jose A., Jr.; Dansberry, Bryan E.; Farmer, Moses G.; Durham, Michael H.
1991-01-01
An experimental effort was implemented in aeroelasticity called the Benchmark Models Program. The primary purpose of this program is to provide the necessary data to evaluate computational fluid dynamic codes for aeroelastic analysis. It also focuses on increasing the understanding of the physics of unsteady flows and providing data for empirical design. An overview is given of this program and some results obtained in the initial tests are highlighted. The tests that were completed include measurement of unsteady pressures during flutter of rigid wing with a NACA 0012 airfoil section and dynamic response measurements of a flexible rectangular wing with a thick circular arc airfoil undergoing shock boundary layer oscillations.
F-8 oblique wing structural feasibility study
NASA Technical Reports Server (NTRS)
Koltko, E.; Katz, A.; Bell, M. A.; Smith, W. D.; Lauridia, R.; Overstreet, C. T.; Klapprott, C.; Orr, T. F.; Jobe, C. L.; Wyatt, F. G.
1975-01-01
The feasibility of fitting a rotating oblique wing on an F-8 aircraft to produce a full scale manned prototype capable of operating in the transonic and supersonic speed range was investigated. The strength, aeroelasticity, and fatigue life of such a prototype are analyzed. Concepts are developed for a new wing, a pivot, a skewing mechanism, control systems that operate through the pivot, and a wing support assembly that attaches in the F-8 wing cavity. The modification of the two-place NTF-8A aircraft to the oblique wing configuration is discussed.
Coupled nonlinear aeroelasticity and flight dynamics of fully flexible aircraft
NASA Astrophysics Data System (ADS)
Su, Weihua
This dissertation introduces an approach to effectively model and analyze the coupled nonlinear aeroelasticity and flight dynamics of highly flexible aircraft. A reduced-order, nonlinear, strain-based finite element framework is used, which is capable of assessing the fundamental impact of structural nonlinear effects in preliminary vehicle design and control synthesis. The cross-sectional stiffness and inertia properties of the wings are calculated along the wing span, and then incorporated into the one-dimensional nonlinear beam formulation. Finite-state unsteady subsonic aerodynamics is used to compute airloads along lifting surfaces. Flight dynamic equations are then introduced to complete the aeroelastic/flight dynamic system equations of motion. Instead of merely considering the flexibility of the wings, the current work allows all members of the vehicle to be flexible. Due to their characteristics of being slender structures, the wings, tail, and fuselage of highly flexible aircraft can be modeled as beams undergoing three dimensional displacements and rotations. New kinematic relationships are developed to handle the split beam systems, such that fully flexible vehicles can be effectively modeled within the existing framework. Different aircraft configurations are modeled and studied, including Single-Wing, Joined-Wing, Blended-Wing-Body, and Flying-Wing configurations. The Lagrange Multiplier Method is applied to model the nodal displacement constraints at the joint locations. Based on the proposed models, roll response and stability studies are conducted on fully flexible and rigidized models. The impacts of the flexibility of different vehicle members on flutter with rigid body motion constraints, flutter in free flight condition, and roll maneuver performance are presented. Also, the static stability of the compressive member of the Joined-Wing configuration is studied. A spatially-distributed discrete gust model is incorporated into the time simulation
Rotorcraft aeroelastic stability
NASA Technical Reports Server (NTRS)
Ormiston, Robert A.; Warmbrodt, William G.; Hodges, Dewey H.; Peters, David A.
1988-01-01
Theoretical and experimental developments in the aeroelastic and aeromechanical stability of helicopters and tilt-rotor aircraft are addressed. Included are the underlying nonlinear structural mechanics of slender rotating beams, necessary for accurate modeling of elastic cantilever rotor blades, and the development of dynamic inflow, an unsteady aerodynamic theory for low-frequency aeroelastic stability applications. Analytical treatment of isolated rotor stability in hover and forward flight, coupled rotor-fuselage stability in hover and forward flight, and analysis of tilt-rotor dynamic stability are considered. Results of parametric investigations of system behavior are presented, and correlation between theoretical results and experimental data from small and large scale wind tunnel and flight testing are discussed.
Nonlinear, unsteady aerodynamic loads on rectangular and delta wings
NASA Technical Reports Server (NTRS)
Atta, E. H.; Kandil, O. A.; Mook, D. T.; Nayfeh, A. H.
1977-01-01
Nonlinear unsteady aerodynamic loads on rectangular and delta wings in an incompressible flow are calculated by using an unsteady vortex-lattice model. Examples include flows past fixed wings in unsteady uniform streams and flows past wings undergoing unsteady motions. The unsteadiness may be due to gusty winds or pitching oscillations. The present technique establishes a reliable approach which can be utilized in the analysis of problems associated with the dynamics and aeroelasticity of wings within a wide range of angles of attack.
NASA Technical Reports Server (NTRS)
Gern, Frank H.; Naghshineh, Amir H.; Sulaeman, Erwin; Kapania, Rakesh K.; Haftka, Raphael T.
2000-01-01
This paper describes a structural and aeroelastic model for wing sizing and weight calculation of a strut-braced wing. The wing weight is calculated using a newly developed structural weight analysis module considering the special nature of strut-braced wings. A specially developed aeroelastic model enables one to consider wing flexibility and spanload redistribution during in-flight maneuvers. The structural model uses a hexagonal wing-box featuring skin panels, stringers, and spar caps, whereas the aerodynamics part employs a linearized transonic vortex lattice method. Thus, the wing weight may be calculated from the rigid or flexible wing spanload. The calculations reveal the significant influence of the strut on the bending material weight of the wing. The use of a strut enables one to design a wing with thin airfoils without weight penalty. The strut also influences wing spanload and deformations. Weight savings are not only possible by calculation and iterative resizing of the wing structure according to the actual design loads. Moreover, as an advantage over the cantilever wing, employment of the strut twist moment for further load alleviation leads to increased savings in structural weight.
Response studies of rotors and rotor blades with application to aeroelastic tailoring
NASA Technical Reports Server (NTRS)
Friedmann, P. P.
1982-01-01
Various tools for the aeroelastic stability and response analysis of rotor blades in hover and forward flight were developed and incorporated in a comprehensive package capable of performing aeroelastic tailoring of rotor blades in forward flight. The results indicate that substantial vibration reductions, of order 15-40%, in the vibratory hub shears can be achieved by relatively small modifications of the initial design. Furthermore the optimized blade can be up to 20% lighter than the original design. Accomplishments are reported for the following tasks: (1) finite element modeling of rotary-wing aeroelastic problems in hover and forward flight; (2) development of numerical methods for calculating the aeroelastic response and stability of rotor blades in forward fight; (3) formulation of the helicopter air resonance problem in hover with active controls; and (4) optimum design of rotor blades for vibration reduction in forward flight.
Dynamic structural aeroelastic stability testing of the XV-15 tilt rotor research aircraft
NASA Technical Reports Server (NTRS)
Schroers, L. G.
1982-01-01
For the past 20 years, a significant effort has been made to understand and predict the structural aeroelastic stability characteristics of the tilt rotor concept. Beginning with the rotor-pylon oscillation of the XV-3 aircraft, the problem was identified and then subjected to a series of theoretical studies, plus model and full-scale wind tunnel tests. From this data base, methods were developed to predict the structural aeroelastic stability characteristics of the XV-15 Tilt Rotor Research Aircraft. The predicted aeroelastic characteristics are examined in light of the major parameters effecting rotor-pylon-wing stability. Flight test techniques used to obtain XV-15 aeroelastic stability are described. Flight test results are summarized and compared to the predicted values. Wind tunnel results are compared to flight test results and correlated with predicted values.
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Bennett, Robert M.
1992-01-01
The CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code, developed at the NASA Langley Research Center, is applied to the Active Flexible Wing wind-tunnel model for prediction of transonic aeroelastic behavior. A semi-span computational model is used for evaluation of symmetric motions, and a full-span model is used for evaluation of antisymmetric motions. Static aeroelastic solutions using CAP-TSD are computed. Dynamic (flutter) analyses then are performed as perturbations about the static aeroelastic deformations and presented as flutter boundaries in terms of Mach number and dynamic pressure. Flutter boundaries that take into account modal refinements, vorticity and entropy corrections, antisymmetric motions and sensitivity to the modeling of the wing tip ballast stores also are presented and compared with experimental flutter results.
A CFD/CSD Interaction Methodology for Aircraft Wings
NASA Technical Reports Server (NTRS)
Bhardwaj, Manoj K.
1997-01-01
With advanced subsonic transports and military aircraft operating in the transonic regime, it is becoming important to determine the effects of the coupling between aerodynamic loads and elastic forces. Since aeroelastic effects can contribute significantly to the design of these aircraft, there is a strong need in the aerospace industry to predict these aero-structure interactions computationally. To perform static aeroelastic analysis in the transonic regime, high fidelity computational fluid dynamics (CFD) analysis tools must be used in conjunction with high fidelity computational structural fluid dynamics (CSD) analysis tools due to the nonlinear behavior of the aerodynamics in the transonic regime. There is also a need to be able to use a wide variety of CFD and CSD tools to predict these aeroelastic effects in the transonic regime. Because source codes are not always available, it is necessary to couple the CFD and CSD codes without alteration of the source codes. In this study, an aeroelastic coupling procedure is developed which will perform static aeroelastic analysis using any CFD and CSD code with little code integration. The aeroelastic coupling procedure is demonstrated on an F/A-18 Stabilator using NASTD (an in-house McDonnell Douglas CFD code) and NASTRAN. In addition, the Aeroelastic Research Wing (ARW-2) is used for demonstration of the aeroelastic coupling procedure by using ENSAERO (NASA Ames Research Center CFD code) and a finite element wing-box code (developed as part of this research).
Wing design for a civil tiltrotor transport aircraft: A preliminary study
NASA Technical Reports Server (NTRS)
Rais-Rohani, Masoud
1993-01-01
A preliminary study was conducted on the design of the wing-box structure for a civil tiltrotor transport aircraft. The wing structural weight is to be minimized subject to structural and aeroelastic constraints. The composite wing-box structure is composed of skin, stringers, ribs, and spars. The design variables include skin ply thicknesses and orientations and spar cap and stringer cross-sectional areas. With the total task defined, an initial study was conducted to learn more about the intricate dynamic and aeroelastic characteristics of the tiltrotor aircraft and their roles in the wing design. Also, some work was done on the wing finite-element modeling (via PATRAN) which would be used in structural analysis and optimization. Initial studies indicate that in order to limit the wing/rotor aeroelastic and dynamic interactions in the preliminary design, the cruise speed, rotor system, and wing geometric attributes must all be held fixed.
NASA Technical Reports Server (NTRS)
Kandil, Osama A.
1993-01-01
Research on Navier-Stokes, dynamics, and aeroelastic computations for vortical flows, buffet, and flutter applications was performed. Progress during the period from 1 Oct. 1992 to 30 Sep. 1993 is included. Papers on the following topics are included: vertical tail buffet in vortex breakdown flows; simulation of tail buffet using delta wing-vertical tail configuration; shock-vortex interaction over a 65-degree delta wing in transonic flow; supersonic vortex breakdown over a delta wing in transonic flow; and prediction and control of slender wing rock.
FUN3D Analyses in Support of the Second Aeroelastic Prediction Workshop
NASA Technical Reports Server (NTRS)
Chwalowski, Pawel; Heeg, Jennifer
2016-01-01
This paper presents the computational aeroelastic results generated in support of the second Aeroelastic Prediction Workshop for the Benchmark Supercritical Wing (BSCW) configurations and compares them to the experimental data. The computational results are obtained using FUN3D, an unstructured grid Reynolds- Averaged Navier-Stokes solver developed at NASA Langley Research Center. The analysis results include aerodynamic coefficients and surface pressures obtained for steady-state, static aeroelastic equilibrium, and unsteady flow due to a pitching wing or flutter prediction. Frequency response functions of the pressure coefficients with respect to the angular displacement are computed and compared with the experimental data. The effects of spatial and temporal convergence on the computational results are examined.
Plans and Example Results for the 2nd AIAA Aeroelastic Prediction Workshop
NASA Technical Reports Server (NTRS)
Heeg, Jennifer; Chwalowski, Pawel; Schuster, David M.; Raveh, Daniella; Jirasek, Adam; Dalenbring, Mats
2015-01-01
This paper summarizes the plans for the second AIAA Aeroelastic Prediction Workshop. The workshop is designed to assess the state-of-the-art of computational methods for predicting unsteady flow fields and aeroelastic response. The goals are to provide an impartial forum to evaluate the effectiveness of existing computer codes and modeling techniques, and to identify computational and experimental areas needing additional research and development. This paper provides guidelines and instructions for participants including the computational aerodynamic model, the structural dynamic properties, the experimental comparison data and the expected output data from simulations. The Benchmark Supercritical Wing (BSCW) has been chosen as the configuration for this workshop. The analyses to be performed will include aeroelastic flutter solutions of the wing mounted on a pitch-and-plunge apparatus.
Aeroelastic Model Structure Computation for Envelope Expansion
NASA Technical Reports Server (NTRS)
Kukreja, Sunil L.
2007-01-01
Structure detection is a procedure for selecting a subset of candidate terms, from a full model description, that best describes the observed output. This is a necessary procedure to compute an efficient system description which may afford greater insight into the functionality of the system or a simpler controller design. Structure computation as a tool for black-box modeling may be of critical importance in the development of robust, parsimonious models for the flight-test community. Moreover, this approach may lead to efficient strategies for rapid envelope expansion that may save significant development time and costs. In this study, a least absolute shrinkage and selection operator (LASSO) technique is investigated for computing efficient model descriptions of non-linear aeroelastic systems. The LASSO minimises the residual sum of squares with the addition of an l(Sub 1) penalty term on the parameter vector of the traditional l(sub 2) minimisation problem. Its use for structure detection is a natural extension of this constrained minimisation approach to pseudo-linear regression problems which produces some model parameters that are exactly zero and, therefore, yields a parsimonious system description. Applicability of this technique for model structure computation for the F/A-18 (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) Active Aeroelastic Wing project using flight test data is shown for several flight conditions (Mach numbers) by identifying a parsimonious system description with a high percent fit for cross-validated data.
Toward efficient aeroelastic energy harvesting through limit cycle shaping
NASA Astrophysics Data System (ADS)
Kirschmeier, Benjamin; Bryant, Matthew
2016-04-01
Increasing demand to harvest energy from renewable resources has caused significant research interest in unsteady aerodynamic and hydrodynamic phenomena. Apart from the traditional horizontal axis wind turbines, there has been significant growth in the study of bio-inspired oscillating wings for energy harvesting. These systems are being built to harvest electricity for wireless devices, as well as for large scale mega-watt power generation. Such systems can be driven by aeroelastic flutter phenomena which, beyond a critical wind speed, will cause the system to enter into limitcycle oscillations. When the airfoil enters large amplitude, high frequency motion, leading and trailing edge vortices form and, when properly synchronized with the airfoil kinematics, enhance the energy extraction efficiency of the device. A reduced order dynamic stall model is employed on a nonlinear aeroelastic structural model to investigate whether the parameters of a fully passive aeroelastic device can be tuned to produce limit cycle oscillations at desired kinematics. This process is done through an optimization technique to find the necessary structural parameters to achieve desired structural forces and moments corresponding to a target limit cycle. Structural nonlinearities are explored to determine the essential nonlinearities such that the system's limit cycle closely matches the desired kinematic trajectory. The results from this process demonstrate that it is possible to tune system parameters such that a desired limit cycle trajectory can be achieved. The simulations also demonstrate that the high efficiencies predicted by previous computational aerodynamics studies can be achieved in fully passive aeroelastic devices.
Estimation of the Hopf Bifurcation Point for Aeroelastic Systems
NASA Astrophysics Data System (ADS)
SEDAGHAT, A.; COOPER, J. E.; LEUNG, A. Y. T.; WRIGHT, J. R.
2001-11-01
The estimation of the Hopf bifurcation point is an important prerequisite for the non-linear analysis of non-linear instabilities in aircraft using the classical normal form theory. For unsteady transonic aerodynamics, the aeroelastic response is frequency-dependent and therefore a very costly trial-and-error and iterative scheme, frequency-matching, is used to determine flutter conditions. Furthermore, the standard algebraic methods have usually been used for systems not bigger than two degrees of freedom and do not appear to have been applied for frequency-dependent aerodynamics. In this study, a procedure is developed to produce and solve algebraic equations for any order aeroelastic systems, with and without frequency-dependent aerodynamics, to predict the Hopf bifurcation point. The approach performs the computation in a single step using symbolic programming and does not require trial and error and repeated calculations at various speeds required when using classical iterative methods. To investigate the validity of the approach, a Hancock two-degrees-of-freedom aeroelastic wing model and a multi-degree-of-freedom cantilever wind model were studied in depth. Hancock experimental data was used for curve fitting the unsteady aerodynamic damping term as a function of frequency. Fairly close agreement was obtained between the analytical and simulated aeroelastic solutions with and without frequency-dependent aerodynamics.
Integrated aerodynamic-structural-control wing design
NASA Technical Reports Server (NTRS)
Rais-Rohani, M.; Haftka, R. T.; Grossman, B.; Unger, E. R.
1992-01-01
The aerodynamic-structural-control design of a forward-swept composite wing for a high subsonic transport aircraft is considered. The structural analysis is based on a finite-element method. The aerodynamic calculations are based on a vortex-lattice method, and the control calculations are based on an output feedback control. The wing is designed for minimum weight subject to structural, performance/aerodynamic and control constraints. Efficient methods are used to calculate the control-deflection and control-effectiveness sensitivities which appear as second-order derivatives in the control constraint equations. To suppress the aeroelastic divergence of the forward-swept wing, and to reduce the gross weight of the design aircraft, two separate cases are studied: (1) combined application of aeroelastic tailoring and active controls; and (2) aeroelastic tailoring alone. The results of this study indicated that, for this particular example, aeroelastic tailoring is sufficient for suppressing the aeroelastic divergence, and the use of active controls was not necessary.
In-flight aeroelastic measurement technique development
NASA Astrophysics Data System (ADS)
Burner, Alpheus W.; Lokos, William A.; Barrows, Danny A.
2003-11-01
The initial concept and development of a low-cost, adaptable method for the measurement of static and dynamic aeroelastic deformation of aircraft during flight testing is presented. The method is adapted from a proven technique used in wind tunnel testing to measure model deformation, often referred to as the videogrammetric model deformation (or VMD) technique. The requirements for in-flight measurements are compared and contrasted with those for wind tunnel testing. The methodology for the proposed measurements and differences compared with that used for wind tunnel testing is given. Several error sources and their effects are identified. Measurement examples using the new technique, including change in wing twist and deflection as a function of time, from an F/A-18 research aircraft at NASA's Dryden Flight Research Center are presented.
Static Aeroelastic Analysis with an Inviscid Cartesian Method
NASA Technical Reports Server (NTRS)
Rodriguez, David L.; Aftosmis, Michael J.; Nemec, Marian; Smith, Stephen C.
2014-01-01
An embedded-boundary, Cartesian-mesh flow solver is coupled with a three degree-of-freedom structural model to perform static, aeroelastic analysis of complex aircraft geometries. The approach solves a nonlinear, aerostructural system of equations using a loosely-coupled strategy. An open-source, 3-D discrete-geometry engine is utilized to deform a triangulated surface geometry according to the shape predicted by the structural model under the computed aerodynamic loads. The deformation scheme is capable of modeling large deflections and is applicable to the design of modern, very-flexible transport wings. The coupling interface is modular so that aerodynamic or structural analysis methods can be easily swapped or enhanced. After verifying the structural model with comparisons to Euler beam theory, two applications of the analysis method are presented as validation. The first is a relatively stiff, transport wing model which was a subject of a recent workshop on aeroelasticity. The second is a very flexible model recently tested in a low speed wind tunnel. Both cases show that the aeroelastic analysis method produces results in excellent agreement with experimental data.
Specification for a Program for an Interative Aeroelastic Solution (PIAS)
NASA Technical Reports Server (NTRS)
Manro, M. E.; Donahue, M. J.; Dreisbach, R. L.; Bussoletti, J. E.
1983-01-01
An engineering and software specification which was written for a computer program to calculate aeroelastic structural loads including the effects of nonlinear aerodynamics is presented. The procedure used in the program for an iterative aeroelastic solution (PIAS) is to alternately execute two computer codes: one to calculate aerodynamic loads for a specific wing shape, and another to calculate the deflected shape caused by this loading. A significant advantage to the design of PIAS is that the initial aerodynamic module can be replaced with others. The leading edge vortex (LEV) program is used as the aerodynamic module in PIAS. This provides the capability to calculate aeroelastic loads, including the effects of a separation induced leading edge vortex. The finite element method available in ATLAS Integrated structural analysis and design system is used to determine the deflected wing shape for the applied aerodynamics and inertia loads. The data management capabilities in ATLAS are used by the execution control monitor (ECM) of PIAS to control the solution process.
Aeroelastic Optimization Study Based on the X-56A Model
NASA Technical Reports Server (NTRS)
Li, Wesley W.; Pak, Chan-Gi
2014-01-01
One way to increase the aircraft fuel efficiency is to reduce structural weight while maintaining adequate structural airworthiness, both statically and aeroelastically. A design process which incorporates the object-oriented multidisciplinary design, analysis, and optimization (MDAO) tool and the aeroelastic effects of high fidelity finite element models to characterize the design space was successfully developed and established. This paper presents two multidisciplinary design optimization studies using an object-oriented MDAO tool developed at NASA Armstrong Flight Research Center. The first study demonstrates the use of aeroelastic tailoring concepts to minimize the structural weight while meeting the design requirements including strength, buckling, and flutter. Such an approach exploits the anisotropic capabilities of the fiber composite materials chosen for this analytical exercise with ply stacking sequence. A hybrid and discretization optimization approach improves accuracy and computational efficiency of a global optimization algorithm. The second study presents a flutter mass balancing optimization study for the fabricated flexible wing of the X-56A model since a desired flutter speed band is required for the active flutter suppression demonstration during flight testing. The results of the second study provide guidance to modify the wing design and move the design flutter speeds back into the flight envelope so that the original objective of X-56A flight test can be accomplished successfully. The second case also demonstrates that the object-oriented MDAO tool can handle multiple analytical configurations in a single optimization run.
NASA Technical Reports Server (NTRS)
Roskam, J.
1972-01-01
Expressions are derived for computing the aerodynamic influence coefficient matrix for nonplanar wing-body-tail configurations. An aerodynamic influence coefficient is defined as the load in lbs. induced on a panel as a result of a unit angle of attack on another panel. Fuselage, wing and tail thickness are assumed to be small with the result that the thickness effect on the flow-field is negligible. The method for determining the aerodynamic influence coefficient matrix is based on the lifting solution to the small perturbation, steady potential flow equation.
Aeroelastic Optimization Study Based on X-56A Model
NASA Technical Reports Server (NTRS)
Li, Wesley; Pak, Chan-Gi
2014-01-01
A design process which incorporates the object-oriented multidisciplinary design, analysis, and optimization (MDAO) tool and the aeroelastic effects of high fidelity finite element models to characterize the design space was successfully developed and established. Two multidisciplinary design optimization studies using an object-oriented MDAO tool developed at NASA Armstrong Flight Research Center were presented. The first study demonstrates the use of aeroelastic tailoring concepts to minimize the structural weight while meeting the design requirements including strength, buckling, and flutter. A hybrid and discretization optimization approach was implemented to improve accuracy and computational efficiency of a global optimization algorithm. The second study presents a flutter mass balancing optimization study. The results provide guidance to modify the fabricated flexible wing design and move the design flutter speeds back into the flight envelope so that the original objective of X-56A flight test can be accomplished.
Aeroelastic Flight Data Analysis with the Hilbert-Huang Algorithm
NASA Technical Reports Server (NTRS)
Brenner, Marty; Prazenica, Chad
2005-01-01
This paper investigates the utility of the Hilbert-Huang transform for the analysis of aeroelastic flight data. It is well known that the classical Hilbert transform can be used for time-frequency analysis of functions or signals. Unfortunately, the Hilbert transform can only be effectively applied to an extremely small class of signals, namely those that are characterized by a single frequency component at any instant in time. The recently-developed Hilbert-Huang algorithm addresses the limitations of the classical Hilbert transform through a process known as empirical mode decomposition. Using this approach, the data is filtered into a series of intrinsic mode functions, each of which admits a well-behaved Hilbert transform. In this manner, the Hilbert-Huang algorithm affords time-frequency analysis of a large class of signals. This powerful tool has been applied in the analysis of scientific data, structural system identification, mechanical system fault detection, and even image processing. The purpose of this paper is to demonstrate the potential applications of the Hilbert-Huang algorithm for the analysis of aeroelastic systems, with improvements such as localized/online processing. Applications for correlations between system input and output, and amongst output sensors, are discussed to characterize the time-varying amplitude and frequency correlations present in the various components of multiple data channels. Online stability analyses and modal identification are also presented. Examples are given using aeroelastic test data from the F/A-18 Active Aeroelastic Wing aircraft, an Aerostructures Test Wing, and pitch-plunge simulation.
Flutter and Divergence Analysis using the Generalized Aeroelastic Analysis Method
NASA Technical Reports Server (NTRS)
Edwards, John W.; Wieseman, Carol D.
2003-01-01
The Generalized Aeroelastic Analysis Method (GAAM) is applied to the analysis of three well-studied checkcases: restrained and unrestrained airfoil models, and a wing model. An eigenvalue iteration procedure is used for converging upon roots of the complex stability matrix. For the airfoil models, exact root loci are given which clearly illustrate the nature of the flutter and divergence instabilities. The singularities involved are enumerated, including an additional pole at the origin for the unrestrained airfoil case and the emergence of an additional pole on the positive real axis at the divergence speed for the restrained airfoil case. Inconsistencies and differences among published aeroelastic root loci and the new, exact results are discussed and resolved. The generalization of a Doublet Lattice Method computer code is described and the code is applied to the calculation of root loci for the wing model for incompressible and for subsonic flow conditions. The error introduced in the reduction of the singular integral equation underlying the unsteady lifting surface theory to a linear algebraic equation is discussed. Acknowledging this inherent error, the solutions of the algebraic equation by GAAM are termed 'exact.' The singularities of the problem are discussed and exponential series approximations used in the evaluation of the kernel function shown to introduce a dense collection of poles and zeroes on the negative real axis. Again, inconsistencies and differences among published aeroelastic root loci and the new 'exact' results are discussed and resolved. In all cases, aeroelastic flutter and divergence speeds and frequencies are in good agreement with published results. The GAAM solution procedure allows complete control over Mach number, velocity, density, and complex frequency. Thus all points on the computed root loci can be matched-point, consistent solutions without recourse to complex mode tracking logic or dataset interpolation, as in the k and p
NASA Technical Reports Server (NTRS)
Kvaternik, Raymond G.; Juang, Jer-Nan; Bennett, Richard L.
2000-01-01
The Aeroelasticity Branch at NASA Langley Research Center has a long and substantive history of tiltrotor aeroelastic research. That research has included a broad range of experimental investigations in the Langley Transonic Dynamics Tunnel (TDT) using a variety of scale models and the development of essential analyses. Since 1994, the tiltrotor research program has been using a 1/5-scale, semispan aeroelastic model of the V-22 designed and built by Bell Helicopter Textron Inc. (BHTI) in 1981. That model has been refurbished to form a tiltrotor research testbed called the Wing and Rotor Aeroelastic Test System (WRATS) for use in the TDT. In collaboration with BHTI, studies under the current tiltrotor research program are focused on aeroelastic technology areas having the potential for enhancing the commercial and military viability of tiltrotor aircraft. Among the areas being addressed, considerable emphasis is being directed to the evaluation of modern adaptive multi-input multi- output (MIMO) control techniques for active stability augmentation and vibration control of tiltrotor aircraft. As part of this investigation, a predictive control technique known as Generalized Predictive Control (GPC) is being studied to assess its potential for actively controlling the swashplate of tiltrotor aircraft to enhance aeroelastic stability in both helicopter and airplane modes of flight. This paper summarizes the exploratory numerical and experimental studies that were conducted as part of that investigation.
Studies in hypersonic aeroelasticity
NASA Astrophysics Data System (ADS)
Nydick, Ira Harvey
2000-11-01
This dissertation describes the aeroelastic analysis of a generic hypersonic vehicle, focusing on two specific problems: (1) hypersonic panel flutter, and (2) aeroelastic behavior of a complete unrestrained generic hypersonic vehicle operating at very high Mach numbers. The panels are modeled as shallow shells using Marguerre nonlinear shallow shell theory for orthotropic panels and the aerodynamic loads are obtained from third order piston theory. Two models of curvature, several applied temperature distributions, and the presence of a shock are also included in the model. Results indicate that the flutter speed of the panel is significantly reduced by temperature variations comparable to the buckling temperature and by the presence of a shock. A panel with initial curvature can be more stable than the flat panel but the increase in stability depends in a complex way on the material properties of the panel and the amount of curvature. At values of dynamic pressure above critical, aperiodic motion was observed. The value of dynamic pressure for which this occurs in both heated panels and curved panels is much closer to the critical dynamic pressure than for the flat, unheated panel. A comparison of piston theory aerodynamics and Euler and Navier-Stokes aerodynamics was performed for a two dimensional panel with prescribed motion and the results indicate that while 2nd or higher order piston theory agrees very well with the Euler solution for the frequencies seen in hypersonic panel flutter, it differs substantially from the Navier-Stokes solution. The aeroelastic behavior of the complete vehicle was simulated using the unrestrained equations of motion, utilizing the method of quasi-coordinates. The unrestrained mode shapes of the vehicle were obtained from an equivalent plate analysis using an available code (ELAPS). The effects of flexible trim and rigid body degrees of freedom are carefully incorporated in the mathematical model. This model was applied to a
Computational Aeroelasticity: Success, Progress, Challenge
NASA Technical Reports Server (NTRS)
Schuster, David M.; Liu, Danny D.; Huttsell, Lawrence J.
2003-01-01
The formal term Computational Aeroelasticity (CAE) has only been recently adopted to describe aeroelastic analysis methods coupling high-level computational fluid dynamics codes with structural dynamics techniques. However, the general field of aeroelastic computations has enjoyed a rich history of development and application since the first hand-calculations performed in the mid 1930 s. This paper portrays a much broader definition of Computational Aeroelasticity; one that encompasses all levels of aeroelastic computation from the simplest linear aerodynamic modeling to the highest levels of viscous unsteady aerodynamics, from the most basic linear beam structural models to state-of-the-art Finite Element Model (FEM) structural analysis. This paper is not written as a comprehensive history of CAE, but rather serves to review the development and application of aeroelastic analysis methods. It describes techniques and example applications that are viewed as relatively mature and accepted, the "successes" of CAE. Cases where CAE has been successfully applied to unique or emerging problems, but the resulting techniques have proven to be one-of-a-kind analyses or areas where the techniques have yet to evolve into a routinely applied methodology are covered as "progress" in CAE. Finally the true value of this paper is rooted in the description of problems where CAE falls short in its ability to provide relevant tools for industry, the so-called "challenges" to CAE.
Aeroelastic structural acoustic control.
Clark, R L; Frampton, K D
1999-02-01
Static, constant-gain, output-feedback control compensators were designed to increase the transmission loss across a panel subjected to mean flow on one surface and a stationary, acoustic half-space on the opposite surface. The multi-input, multi-output control system was based upon the use of an array of colocated transducer pairs. The performance of the static-gain, output-feedback controller was compared to that of the full state-feedback controller using the same control actuator arrays, and was found to yield comparable levels of performance for practical limitations on control effort. Additionally, the resulting static compensators proved to be dissipative in nature, and thus the design varied little as a function of the aeroelastic coupling induced by the fluid-structure interaction under subsonic flow conditions. Several parametric studies were performed, comparing the effects of control-effort penalty as well as the number of transducer pairs used in the control system.
A CFD/CSD interaction methodology for aircraft wings
NASA Astrophysics Data System (ADS)
Bhardwaj, Manoj Kumar
With advanced subsonic transports and military aircraft operating in the transonic regime, it is becoming important to determine the effects of the coupling between aerodynamic loads and elastic forces. Since aeroelastic effects can contribute significantly to the design of these aircraft, there is a strong need in the aerospace industry to predict these aero-structure interactions computationally. To perform static aeroelastic analysis in the transonic regime, high fidelity computational fluid dynamics (CFD) analysis tools must be used in conjunction with high fidelity computational structural dynamics (CSD) analysis tools due to the nonlinear behavior of the aerodynamics in the transonic regime. There is also a need to be able to use a wide variety of CFD and CSD tools to predict these aeroelastic effects in the transonic regime. Because source codes are not always available, it is necessary to couple the CFD and CSD codes without alteration of the source codes. In this study, an aeroelastic coupling procedure is developed which will perform static aeroelastic analysis using any CFD and CSD code with little code integration. The aeroelastic coupling procedure is demonstrated on an F/A-18 Stabilator using NASTD (an in-house McDonnell Douglas CFD code) and NASTRAN. In addition, the Aeroelastic Research Wing (ARW-2) is used for demonstration of the aeroelastic coupling procedure by using ENSAERO (NASA Ames Research Center CFD code) and a finite element wing-box code (developed as a part of this research). The results obtained from the present study are compared with those available from an experimental study conducted at NASA Langley Research Center and a study conducted at NASA Ames Research Center using ENSAERO and modal superposition. The results compare well with experimental data. Parallel computing power is used to investigate parallel static aeroelastic analysis because obtaining an aeroelastic solution using CFD/CSD methods is computationally intensive. A
NASA Technical Reports Server (NTRS)
Kroeger, R. A.
1977-01-01
A complete ground vibration and aeroelastic analysis was made of a modified version of the Grumman American Yankee. The aircraft had been modified for four empennage configurations, a wing boom was added, a spin chute installed and provisions included for large masses in the wing tip to vary the lateral and directional inertia. Other minor changes were made which have much less influence on the flutter and vibrations. Neither static divergence nor aileron reversal was considered since the wing structure was not sufficiently changed to affect its static aeroelastic qualities. The aircraft was found to be free from flutter in all of the normal modes explored in the ground shake test. The analysis demonstrated freedom from flutter up to 214 miles per hour.
Development of Unsteady Aerodynamic and Aeroelastic Reduced-Order Models Using the FUN3D Code
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Vatsa, Veer N.; Biedron, Robert T.
2009-01-01
Recent significant improvements to the development of CFD-based unsteady aerodynamic reduced-order models (ROMs) are implemented into the FUN3D unstructured flow solver. These improvements include the simultaneous excitation of the structural modes of the CFD-based unsteady aerodynamic system via a single CFD solution, minimization of the error between the full CFD and the ROM unsteady aero- dynamic solution, and computation of a root locus plot of the aeroelastic ROM. Results are presented for a viscous version of the two-dimensional Benchmark Active Controls Technology (BACT) model and an inviscid version of the AGARD 445.6 aeroelastic wing using the FUN3D code.
NASA Technical Reports Server (NTRS)
Lehman, L. L.
1981-01-01
A computational technique has been developed for performing preliminary design aeroelastic analyses of large aspect ratio lifting surfaces. This technique, applicable to both fixed and rotating wing configurations, is based upon a formulation of the structural equilibrium equations in terms of a hybrid state vector containing generalized force and displacement variables. An integrating matrix is employed to solve these equations for divergence and flutter eigenvalues and steady aeroelastic deformation. Results are presented for simple examples which verify the technique and demonstrate how it can be applied to analyze lifting surfaces, including those constructed from composite materials.
Navier-Stokes computations on swept-tapered wings, including flexibility
NASA Technical Reports Server (NTRS)
Guruswamy, Guru P.
1990-01-01
A procedure to couple the Navier-Stokes solutions with modal structural equations of motion is presented for computing aeroelastic responses of flexible fighter wings. The Navier-Stokes flow equations are solved by a finite-difference scheme with dynamic grids. The coupled aeroelastic equations of motion are solved using the linear-acceleration method. The configuration-adaptive dynamic grids are time-accurately generated using the aeroelastically deformed shape of the wing. The coupled calculations are compared with experiments when available. Effects of flexibility and pitch rate are demonstrated for flows with vortices. Turbulent flow computations are also compared with laminar flow computations.
NASA Technical Reports Server (NTRS)
Pak, Chan-gi; Lung, Shun-fat
2009-01-01
Modern airplane design is a multidisciplinary task which combines several disciplines such as structures, aerodynamics, flight controls, and sometimes heat transfer. Historically, analytical and experimental investigations concerning the interaction of the elastic airframe with aerodynamic and in retia loads have been conducted during the design phase to determine the existence of aeroelastic instabilities, so called flutter .With the advent and increased usage of flight control systems, there is also a likelihood of instabilities caused by the interaction of the flight control system and the aeroelastic response of the airplane, known as aeroservoelastic instabilities. An in -house code MPASES (Ref. 1), modified from PASES (Ref. 2), is a general purpose digital computer program for the analysis of the closed-loop stability problem. This program used subroutines given in the International Mathematical and Statistical Library (IMSL) (Ref. 3) to compute all of the real and/or complex conjugate pairs of eigenvalues of the Hessenberg matrix. For high fidelity configuration, these aeroelastic system matrices are large and compute all eigenvalues will be time consuming. A subspace iteration method (Ref. 4) for complex eigenvalues problems with nonsymmetric matrices has been formulated and incorporated into the modified program for aeroservoelastic stability (MPASES code). Subspace iteration method only solve for the lowest p eigenvalues and corresponding eigenvectors for aeroelastic and aeroservoelastic analysis. In general, the selection of p is ranging from 10 for wing flutter analysis to 50 for an entire aircraft flutter analysis. The application of this newly incorporated code is an experiment known as the Aerostructures Test Wing (ATW) which was designed by the National Aeronautic and Space Administration (NASA) Dryden Flight Research Center, Edwards, California to research aeroelastic instabilities. Specifically, this experiment was used to study an instability
Convergence acceleration of an aeroelastic Navier-Stokes solver
NASA Technical Reports Server (NTRS)
Obayashi, S.; Guruswamy, G.
1994-01-01
New capabilities have been added to a Navier-Stokes solver to perform steady-state simulations more efficiently. The flow solver for solving the Navier-Stokes equations is completely rewritten with a combination of the LU-SGS (Lower-Upper factored Symmetric Gauss-Seidel) implicit method and the modified HLLE (Harten-Lax-van Leer-Einfeldt) upwind scheme. A pseudo-time marching method is used for the directly coupled structural equations to improve overall convergence rates for static aeroelastic analysis. Results are demonstrated for transonic flows over rigid and flexible wings.
Aeroelastic airfoil smart spar
NASA Technical Reports Server (NTRS)
Greenhalgh, Skott; Pastore, Christopher M.; Garfinkle, Moishe
1993-01-01
Aircraft wings and rotor-blades are subject to undesirable bending and twisting excursions that arise from unsteady aerodynamic forces during high speed flight, abrupt maneuvers, or hard landings. These bending excursions can range in amplitude from wing-tip flutter to failure. A continuous-filament construction 'smart' laminated composite box-beam spar is described which corrects itself when subject to undesirable bending excursions or flutter. The load-bearing spar is constructed so that any tendency for the wing or rotor-blade to bend from its normal position is met by opposite twisting of the spar to restore the wing to its normal position. Experimental and theoretical characterization of these spars was made to evaluate the torsion-flexure coupling associated with symmetric lay-ups. The materials used were uniweave AS-4 graphite and a matrix comprised of Shell 8132 resin and U-40 hardener. Experimental tests were conducted on five spars to determine spar twist and bend as a function of load for 0, 17, 30, 45 and 60 deg fiber angle lay-ups. Symmetric fiber lay-ups do exhibit torsion-flexure couplings. Predictions of the twist and bend versus load were made for different fiber orientations in laminated spars using a spline function structural analysis. The analytical results were compared with experimental results for validation. Excellent correlation between experimental and analytical values was found.
Time efficient aeroelastic simulations based on radial basis functions
NASA Astrophysics Data System (ADS)
Liu, Wen; Huang, ChengDe; Yang, Guowei
2017-02-01
Aeroelasticity studies the interaction between aerodynamic forces and structural responses, and is one of the fundamental problems to be considered in the design of modern aircraft. The fluid-structure interpolation (FSI) and mesh deformation are two key issues in the CFD-CSD coupling approach (the partitioned approach), which is the mainstream numerical strategy in aeroelastic simulations. In this paper, a time efficient coupling scheme is developed based on the radial basis function interpolations. During the FSI process, the positive definite system of linear equations is constructed with the introduction of pseudo structural forces. The acting forces on the structural nodes can be calculated more efficiently via the solution of the linear system, avoiding the costly computations of the aerodynamic/structural coupling matrix. The multi-layer sequential mesh motion algorithm (MSM) is proposed to improve the efficiency of the volume mesh deformations, which is adequate for large-scale time dependent applications with frequent mesh updates. Two-dimensional mesh motion cases show that the MSM algorithm can reduce the computing cost significantly compared to the standard RBF-based method. The computations of the AGARD 445.6 wing flutter and the static deflections of the three-dimensional high-aspect-ratio aircraft demonstrate that the developed coupling scheme is applicable to both dynamic and static aeroelastic problems.
Nonlinear Krylov acceleration for CFD-based aeroelasticity
NASA Astrophysics Data System (ADS)
Feng, Z.; SoulaÄ±Â¨Mani, A.; Saad, Y.
2009-01-01
A nonlinear computational aeroelasticity model based on the Euler equations of compressible flows and the linear elastodynamic equations for structures is developed. The Euler equations are solved on dynamic meshes using the ALE kinematic description. Thus, the mesh constitutes another field governed by pseudo-elastodynamic equations. The three fields are discretized using proper finite element formulations which satisfy the geometric conservation law. A matcher module is incorporated for the purpose of pairing the grids on the fluid-structure interface and for transferring the loads and displacements between the fluid and structure solvers. Two solution strategies (Gauss-Seidel and Schur-complement) for solving the non-linear aeroelastic system are discussed. By using second-order time discretization scheme, we are able to utilize large time steps in the computations. The numerical results on the AGARD 445.6 aeroelastic wing compare well with the experimental results and show that the Schur-complement coupling algorithm is more robust than the Gauss-Seidel algorithm for relatively large oscillation amplitudes.
Aeroelastic Deformation Measurements of Flap, Gap, and Overhang on a Semispan Model
NASA Technical Reports Server (NTRS)
Burner, A. W.; Liu, Tianshu; Garg, Sanjay; Ghee, Terence A.; Taylor, Nigel J.
2000-01-01
Single-camera, single-view videogrammetry has been used to determine static aeroelastic deformation of a slotted flap configuration on a semispan model at the National Transonic Facility (NTF). Deformation was determined by comparing wind-off to wind-on spatial data from targets placed on the main element, shroud, and flap of the model. Digitized video images from a camera were recorded and processed to automatically determine target image plane locations that were then corrected for sensor, lens, and frame grabber spatial errors. The videogrammetric technique has been established at NASA facilities as the technique of choice when high-volume static aeroelastic data with minimum impact on data taking is required. The primary measurement at the NTF with this technique in the past has been the measurement of static aeroelastic wing twist on full span models. The first results using the videogrammetric technique for the measurement of component deformation during semispan testing at the NTF are presented.
NASA Technical Reports Server (NTRS)
Edwards, John W.; Malone, John B.
1992-01-01
The current status of computational methods for unsteady aerodynamics and aeroelasticity is reviewed. The key features of challenging aeroelastic applications are discussed in terms of the flowfield state: low-angle high speed flows and high-angle vortex-dominated flows. The critical role played by viscous effects in determining aeroelastic stability for conditions of incipient flow separation is stressed. The need for a variety of flow modeling tools, from linear formulations to implementations of the Navier-Stokes equations, is emphasized. Estimates of computer run times for flutter calculations using several computational methods are given. Applications of these methods for unsteady aerodynamic and transonic flutter calculations for airfoils, wings, and configurations are summarized. Finally, recommendations are made concerning future research directions.
Structural Dynamics Modeling of HIRENASD in Support of the Aeroelastic Prediction Workshop
NASA Technical Reports Server (NTRS)
Wieseman, Carol; Chwalowski, Pawel; Heeg, Jennifer; Boucke, Alexander; Castro, Jack
2013-01-01
An Aeroelastic Prediction Workshop (AePW) was held in April 2012 using three aeroelasticity case study wind tunnel tests for assessing the capabilities of various codes in making aeroelasticity predictions. One of these case studies was known as the HIRENASD model that was tested in the European Transonic Wind Tunnel (ETW). This paper summarizes the development of a standardized enhanced analytical HIRENASD structural model for use in the AePW effort. The modifications to the HIRENASD finite element model were validated by comparing modal frequencies, evaluating modal assurance criteria, comparing leading edge, trailing edge and twist of the wing with experiment and by performing steady and unsteady CFD analyses for one of the test conditions on the same grid, and identical processing of results.
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Bennett, Robert M.
1992-01-01
The Computational Aeroelasticity Program-Transonic Small Disturbance (CAP-TSD) code, developed at LaRC, is applied to the active flexible wing wind-tunnel model for prediction of transonic aeroelastic behavior. A semi-span computational model is used for evaluation of symmetric motions, and a full-span model is used for evaluation of antisymmetric motions, and a full-span model is used for evaluation of antisymmetric motions. Static aeroelastic solutions using CAP-TSD are computed. Dynamic deformations are presented as flutter boundaries in terms of Mach number and dynamic pressure. Flutter boundaries that take into account modal refinements, vorticity and entropy corrections, antisymmetric motion, and sensitivity to the modeling of the wing tip ballast stores are also presented with experimental flutter results.
Design of transonic airfoils and wings using a hybrid design algorithm
NASA Technical Reports Server (NTRS)
Campbell, Richard L.; Smith, Leigh A.
1987-01-01
A method has been developed for designing airfoils and wings at transonic speeds. It utilizes a hybrid design algorithm in an iterative predictor/corrector approach, alternating between analysis code and a design module. This method has been successfully applied to a variety of airfoil and wing design problems, including both transport and highly-swept fighter wing configurations. An efficient approach to viscous airfoild design and the effect of including static aeroelastic deflections in the wing design process are also illustrated.
A methodology for aeroelastic constraint analysis in a conceptual design environment
NASA Astrophysics Data System (ADS)
de Baets, Peter Wilfried Gaston
The objective of this study is the infusion of aeroelastic constraint knowledge into the design space. The mapping of such aeroelastic information in the conceptual design space has long been a desire of the design community. The conceptual design phase of an aircraft is a multidisciplinary environment and has the most influence on the future design of the vehicle. However, sufficient results cannot he obtained in a timely enough manner to materially contribute to early design decisions. Furthermore, the natural division of the engineering team into specialty groups is not well supported by the monolithic aerodynamic-structures codes typically used in modern aeroelastic analysis. The research examines how the Bi-Level Integrated System Synthesis decomposition technique can be adapted to perform as the conceptual aeroelastic design tool. The study describes a comprehensive solution of the aeroelastic coupled problem cast in this decomposition format and implemented in an integrated framework. The method is supported by application details of a proof of concept high speed vehicle. Physics-based codes such as finite element and an aerodynamic panel method are used to model the high-definition geometric characteristics of the vehicle. A synthesis and sizing code was added to referee the conflicts that arise between the two disciplines. This research's novelty lies in four points. First is the use of physics-based tools at the conceptual design phase to calculate the aeroelastic properties. Second is the projection of flutter and divergence velocity constraint lines in a power loading versus wing loading graph. Third is the aeroelastic assessment time reduction, which has moved from a matter of years to months. Lastly, this assessment allowed verification of the impact of changing velocity, altitude, and angle of attack on the aeroelastic properties. This then allowed identification of robust design space with respect to these three mission properties. The method
Plans for Aeroelastic Prediction Workshop
NASA Technical Reports Server (NTRS)
Heeg, Jennifer; Ballmann, Josef; Bhatia, Kumar; Blades, Eric; Boucke, Alexander; Chwalowski, Pawel; Dietz, Guido; Dowell, Earl; Florance, Jennifer P.; Hansen, Thorsten; Mani, Mori; Marvriplis, Dimitri; Perry, Boyd, III; Ritter, Markus; Schuster, David M.; Smith, Marilyn; Taylor, Paul; Whiting, Brent; Wieseman, Carol C.
2011-01-01
This paper summarizes the plans for the first Aeroelastic Prediction Workshop. The workshop is designed to assess the state of the art of computational methods for predicting unsteady flow fields and aeroelastic response. The goals are to provide an impartial forum to evaluate the effectiveness of existing computer codes and modeling techniques, and to identify computational and experimental areas needing additional research and development. Three subject configurations have been chosen from existing wind tunnel data sets where there is pertinent experimental data available for comparison. For each case chosen, the wind tunnel testing was conducted using forced oscillation of the model at specified frequencies
Aeroelastic Stability Computations for Turbomachinery
NASA Technical Reports Server (NTRS)
Srivastava, R.; Bakhle, M. A.; Keith, T. G., Jr.; Stefko, G. L.
2001-01-01
This paper describes an aeroelastic analysis program for turbomachines. Unsteady Navier-Stokes equations are solved on dynamically deforming, body fitted, grid to obtain the aeroelastic characteristics. Blade structural response is modeled using a modal representation of the blade and the work-per-cycle method is used to evaluate the stability characteristics. Nonzero interblade phase angle is modeled using phase-lagged boundary conditions. Results obtained showed good correlation with existing experimental, analytical, and numerical results. Numerical analysis also showed that given the computational resources available today, engineering solutions with good accuracy are possible using higher fidelity analyses.
Investigating the Transonic Flutter Boundary of the Benchmark Supercritical Wing
NASA Technical Reports Server (NTRS)
Heeg, Jennifer; Chwalowski, Pawel
2017-01-01
This paper builds on the computational aeroelastic results published previously and generated in support of the second Aeroelastic Prediction Workshop for the NASA Benchmark Supercritical Wing configuration. The computational results are obtained using FUN3D, an unstructured grid Reynolds-Averaged Navier-Stokes solver developed at the NASA Langley Research Center. The analysis results focus on understanding the dip in the transonic flutter boundary at a single Mach number (0.74), exploring an angle of attack range of ??1 to 8 and dynamic pressures from wind off to beyond flutter onset. The rigid analysis results are examined for insights into the behavior of the aeroelastic system. Both static and dynamic aeroelastic simulation results are also examined.
Multi-fidelity construction of explicit boundaries: Application to aeroelasticity
NASA Astrophysics Data System (ADS)
Dribusch, Christoph
Wings, control surfaces and rotor blades subject to aerodynamic forces may exhibit aeroelastic instabilities such as flutter, divergence and limit cycle oscillations which generally reduce their life and functionality. This possibility of instability must be taken into account during the design process and numerical simulation models may be used to predict aeroelastic stability. Aeroelastic stability is a design requirement that encompasses several difficulties also found in other areas of design. For instance, the large computational time associated with stability analysis is also found in computational fluid dynamics (CFD) models. It is a major hurdle in numerical optimization and reliability analysis, which generally require large numbers of call to the simulation code. Similarly, the presence of bifurcations and discontinuities is also encountered in structural impact analysis based on nonlinear dynamic simulations and renders traditional approximation techniques such as Kriging ineffective. Finally, for a given component or system, aeroelastic instability is only one of multiple failure modes which must be accounted for during design and reliability studies. To address the above challenges, this dissertation proposes a novel algorithm to predict, over a range of parameters, the qualitative outcomes (pass/fail) of simulations based on relatively few, classified (pass/fail) simulation results. This is different from traditional approximation techniques that seek to predict simulation outcomes quantitatively, for example by fitting a response surface. The predictions of the proposed algorithm are based on the theory of support vector machines (SVM), a machine learning method originated in the field of pattern recognition. This process yields an analytical function that explicitly defines the boundary between feasible and infeasible regions of the parameter space and has the ability to reproduce nonlinear, disjoint boundaries in n dimensions. Since training the
A CFD/CSD interaction methodology for aircraft wings
Bhardwaj, M.K.; Kapania, R.K.; Reichenbach, E.; Guruswamy, G.P.
1998-01-01
With advanced subsonic transports and military aircraft operating in the transonic regime, it is becoming important to determine the effects of the coupling between aerodynamic loads and elastic forces. Since aeroelastic effects can significantly impact the design of these aircraft, there is a strong need in the aerospace industry to predict these interactions computationally. Such an analysis in the transonic regime requires high fidelity computational fluid dynamics (CFD) analysis tools, due to the nonlinear behavior of the aerodynamics in the transonic regime and also high fidelity computational structural dynamics (CSD) analysis tools. Also, there is a need to be able to use a wide variety of CFD and CSD methods to predict aeroelastic effects. Since source codes are not always available, it is necessary to couple the CFD and CSD codes without alteration of the source codes. In this study, an aeroelastic coupling procedure is developed to determine the static aeroelastic response of aircraft wings using any CFD and CSD code with little code integration. The aeroelastic coupling procedure is demonstrated on an F/A-18 Stabilator using NASTD (an in-house McDonnell Douglas CFD code) and NASTRAN. In addition, the Aeroelastic Research Wing (ARW-2) is used for demonstration of the aeroelastic coupling procedure by using ENSAERO (NASA Ames Research Center CFD code) and a finite element wing-box code. The results obtained from the present study are compared with those available from an experimental study conducted at NASA Langley Research Center and a study conducted at NASA Ames Research Center using ENSAERO and modal superposition. The results compare well with experimental data.
NASA Technical Reports Server (NTRS)
Ippolito, Corey; Nguyen, Nhan; Lohn, Jason; Dolan, John
2014-01-01
The emergence of advanced lightweight materials is resulting in a new generation of lighter, flexible, more-efficient airframes that are enabling concepts for active aeroelastic wing-shape control to achieve greater flight efficiency and increased safety margins. These elastically shaped aircraft concepts require non-traditional methods for large-scale multi-objective flight control that simultaneously seek to gain aerodynamic efficiency in terms of drag reduction while performing traditional command-tracking tasks as part of a complete guidance and navigation solution. This paper presents results from a preliminary study of a notional multi-objective control law for an aeroelastic flexible-wing aircraft controlled through distributed continuous leading and trailing edge control surface actuators. This preliminary study develops and analyzes a multi-objective control law derived from optimal linear quadratic methods on a longitudinal vehicle dynamics model with coupled aeroelastic dynamics. The controller tracks commanded attack-angle while minimizing drag and controlling wing twist and bend. This paper presents an overview of the elastic aircraft concept, outlines the coupled vehicle model, presents the preliminary control law formulation and implementation, presents results from simulation, provides analysis, and concludes by identifying possible future areas for research
An overview of selected NASP aeroelastic studies at the NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Spain, Charles V.; Soistmann, David L.; Parker, Ellen C.; Gibbons, Michael D.; Gilbert, Michael G.
1990-01-01
Following an initial discussion of the NASP flight environment, the results of recent aeroelastic testing of NASP-type highly swept delta-wing models in Langley's Transonic Dynamics Tunnel (TDT) are summarized. Subsonic and transonic flutter characteristics of a variety of these models are described, and several analytical codes used to predict flutter of these models are evaluated. These codes generally provide good, but conservative predictions of subsonic and transonic flutter. Also, test results are presented on a nonlinear transonic phenomena known as aileron buzz which occurred in the wind tunnel on highly swept delta wings with full-span ailerons. An analytical procedure which assesses the effects of hypersonic heating on aeroelastic instabilities (aerothermoelasticity) is also described. This procedure accurately predicted flutter of a heated aluminum wing on which experimental data exists. Results are presented on the application of this method to calculate the flutter characteristics of a fine-element model of a generic NASP configuration. Finally, it is demonstrated analytically that active controls can be employed to improve the aeroelastic stability and ride quality of a generic NASP vehicle flying at hypersonic speeds.
NASA Technical Reports Server (NTRS)
Chwalowski, Pawel; Florance, Jennifer P.; Heeg, Jennifer; Wieseman, Carol D.; Perry, Boyd P.
2011-01-01
This paper presents preliminary computational aeroelastic analysis results generated in preparation for the first Aeroelastic Prediction Workshop (AePW). These results were produced using FUN3D software developed at NASA Langley and are compared against the experimental data generated during the HIgh REynolds Number Aero- Structural Dynamics (HIRENASD) Project. The HIRENASD wind-tunnel model was tested in the European Transonic Windtunnel in 2006 by Aachen University0s Department of Mechanics with funding from the German Research Foundation. The computational effort discussed here was performed (1) to obtain a preliminary assessment of the ability of the FUN3D code to accurately compute physical quantities experimentally measured on the HIRENASD model and (2) to translate the lessons learned from the FUN3D analysis of HIRENASD into a set of initial guidelines for the first AePW, which includes test cases for the HIRENASD model and its experimental data set. This paper compares the computational and experimental results obtained at Mach 0.8 for a Reynolds number of 7 million based on chord, corresponding to the HIRENASD test conditions No. 132 and No. 159. Aerodynamic loads and static aeroelastic displacements are compared at two levels of the grid resolution. Harmonic perturbation numerical results are compared with the experimental data using the magnitude and phase relationship between pressure coefficients and displacement. A dynamic aeroelastic numerical calculation is presented at one wind-tunnel condition in the form of the time history of the generalized displacements. Additional FUN3D validation results are also presented for the AGARD 445.6 wing data set. This wing was tested in the Transonic Dynamics Tunnel and is commonly used in the preliminary benchmarking of computational aeroelastic software.
Flutter analysis of low aspect ratio wings
NASA Technical Reports Server (NTRS)
Parnell, L. A.
1986-01-01
Several very low aspect ratio flat plate wing configurations are analyzed for their aerodynamic instability (flutter) characteristics. All of the wings investigated are delta planforms with clipped tips, made of aluminum alloy plate and cantilevered from the supporting vehicle body. Results of both subsonic and supersonic NASTRAN aeroelastic analyses as well as those from another version of the program implementing the supersonic linearized aerodynamic theory are presented. Results are selectively compared with the experimental data; however, supersonic predictions of the Mach Box method in NASTRAN are found to be erratic and erroneous, requiring the use of a separate program.
Aeroelastic stability of wind turbine blades
NASA Technical Reports Server (NTRS)
Kaza, K. R. V.
1928-01-01
The second degree nonlinear aeroelastic equations for a flexible, twisted, nonuniform wind turbine blade were developed using Hamilton's principle. The derivation of these equations has its basis in the geometric nonlinear theory of elasticity. These equations with periodic coefficients are suitable for determining the aeroelastic stability and response of large wind turbine blades. Methods for solving these equations are discussed.
Aeroelastic analysis of wind energy conversion systems
NASA Technical Reports Server (NTRS)
Dugundji, J.
1978-01-01
An aeroelastic investigation of horizontal axis wind turbines is described. The study is divided into two simpler areas; (1) the aeroelastic stability of a single blade on a rigid tower; and (2) the mechanical vibrations of the rotor system on a flexible tower. Some resulting instabilities and forced vibration behavior are described.
Aeroelastic stability and response of rotating structures
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr.
1993-01-01
A summary of the work performed during the progress period is presented. Analysis methods for predicting loads and instabilities of wind turbines were developed. Three new areas of research to aid the Advanced Turboprop Project (ATP) were initiated and developed. These three areas of research are aeroelastic analysis methods for cascades including blade and disk flexibility; stall flutter analysis; and computational aeroelasticity.
Active and passive techniques for tiltrotor aeroelastic stability augmentation
NASA Astrophysics Data System (ADS)
Hathaway, Eric L.
Tiltrotors are susceptible to whirl flutter, an aeroelastic instability characterized by a coupling of rotor-generated aerodynamic forces and elastic wing modes in high speed airplane-mode flight. The conventional approach to ensuring adequate whirl flutter stability will not scale easily to larger tiltrotor designs. This study constitutes an investigation of several alternatives for improving tiltrotor aerolastic stability. A whirl flutter stability analysis is developed that does not rely on more complex models to determine the variations in crucial input parameters with flight condition. Variation of blade flap and lag frequency, and pitch-flap, pitch-lag, and flap-lag couplings, are calculated from physical parameters, such as blade structural flap and lag stiffness distribution (inboard or outboard of pitch bearing), collective pitch, and precone. The analysis is used to perform a study of the influence of various design parameters on whirl flutter stability. While previous studies have investigated the individual influence of various design parameters, the present investigation uses formal optimization techniques to determine a unique combination of parameters that maximizes whirl flutter stability. The optimal designs require only modest changes in the key rotor and wing design parameters to significantly increase flutter speed. When constraints on design parameters are relaxed, optimized configurations are obtained that allow large values of kinematic pitch-flap (delta3) coupling without degrading aeroelastic stability. Larger values of delta3 may be desirable for advanced tiltrotor configurations. An investigation of active control of wing flaperons for stability augmentation is also conducted. Both stiff- and soft-inplane tiltrotor configurations are examined. Control systems that increase flutter speed and wing mode sub-critical damping are designed while observing realistic limits on flaperon deflection. The flaperon is shown to be particularly
NASA Technical Reports Server (NTRS)
Bartels, Robert E.
1999-01-01
This paper presents a modification of the spring analogy scheme which uses axial linear spring stiffness with selective spring stiffening/relaxation. An alternate approach to solving the geometric conservation law is taken which eliminates the need for storage of metric Jacobians at previous time steps. Efficiency and verification are illustrated with several unsteady 2-D airfoil Euler computations. The method is next applied to the computation of the turbulent flow about a 2-D airfoil and wing with two and three- dimensional moving spoiler surfaces, and the results compared with Benchmark Active Controls Technology (BACT) experimental data. The aeroelastic response at low dynamic pressure of an airfoil to a single large scale oscillation of a spoiler surface is computed. This study confirms that it is possible to achieve accurate solutions with a very large time step for aeroelastic problems using the fluid solver and aeroelastic integrator as discussed in this paper.
Some observations on four current subjects related to aeroelastic stability
NASA Technical Reports Server (NTRS)
Ashley, H.
1978-01-01
After introductory comments on the literature and the purposes of this paper, a table is presented summarizing the author's views on some currently solved vs partially unsolved problems related to aeroelastic stability. The term 'solved' is used in the practical sense that engineers are able to cope confidently with that problem during the process of structural design. Selected entries in the table are reviewed, partially to motivate the topics in the rest of the paper. The 'four current subjects' are chosen both for timeliness and because they are among the ongoing interests of the Stanford group. The first involves the prediction of linearized unsteady aerodynamic loads due to arbitrary motions of streamlined shapes. Some contributions by Edwards are refined, which were motivated by the requirements of active control system design. The second subject is nonlinear unsteady aerodynamics for the transonic regime. After describing a few useful developments from locally-linear theory and computational fluid dynamics, there is suggested an empirical procedure for interim-analysis purposes. The third and fourth subjects concern recent discoveries regarding the aeroelastic stability of large-aspect-ratio wings and wind turbines. The former work is mainly that of Petre and Boyd. The latter includes some of the author's own preliminary discoveries about the performance and dynamics of vertical-axis machines.
Aerodynamic effects of flexibility in flapping wings.
Zhao, Liang; Huang, Qingfeng; Deng, Xinyan; Sane, Sanjay P
2010-03-06
Recent work on the aerodynamics of flapping flight reveals fundamental differences in the mechanisms of aerodynamic force generation between fixed and flapping wings. When fixed wings translate at high angles of attack, they periodically generate and shed leading and trailing edge vortices as reflected in their fluctuating aerodynamic force traces and associated flow visualization. In contrast, wings flapping at high angles of attack generate stable leading edge vorticity, which persists throughout the duration of the stroke and enhances mean aerodynamic forces. Here, we show that aerodynamic forces can be controlled by altering the trailing edge flexibility of a flapping wing. We used a dynamically scaled mechanical model of flapping flight (Re approximately 2000) to measure the aerodynamic forces on flapping wings of variable flexural stiffness (EI). For low to medium angles of attack, as flexibility of the wing increases, its ability to generate aerodynamic forces decreases monotonically but its lift-to-drag ratios remain approximately constant. The instantaneous force traces reveal no major differences in the underlying modes of force generation for flexible and rigid wings, but the magnitude of force, the angle of net force vector and centre of pressure all vary systematically with wing flexibility. Even a rudimentary framework of wing veins is sufficient to restore the ability of flexible wings to generate forces at near-rigid values. Thus, the magnitude of force generation can be controlled by modulating the trailing edge flexibility and thereby controlling the magnitude of the leading edge vorticity. To characterize this, we have generated a detailed database of aerodynamic forces as a function of several variables including material properties, kinematics, aerodynamic forces and centre of pressure, which can also be used to help validate computational models of aeroelastic flapping wings. These experiments will also be useful for wing design for small
Aeroelastic Deformation Measurements of Flap, Gap, and Overhang on a Semispan Model
NASA Technical Reports Server (NTRS)
Burner, A. W.; Liu, Tian-Shu; Garg, Sanjay; Ghee, Terence A.; Taylor, Nigel J.
2001-01-01
Single-camera, single-view videogrammetry has been used for the first time to determine static aeroelastic deformation of a slotted flap configuration on a semispan model at the National Transonic Facility (NTF). Deformation was determined by comparing wind-off to wind-on spatial data from targets placed on the main element, shroud, and flap of the model. Digitized video images from a camera were recorded and processed to automatically determine target image plane locations that were then corrected for sensor, lens, and frame grabber spatial errors. The videogrammetric technique used for the measurements presented here has been established at NASA facilities as the technique of choice when high-volume static aeroelastic data with minimum impact on data taking is required. However, the primary measurement at the NTF with this technique in the past has been the measurement of the static aeroelastic wing twist of the main wing element on full span models rather than for the measurement of component deformation. Considerations for using the videogrammetric technique for semispan component deformation measurements as well as representative results are presented.
Results of including geometric nonlinearities in an aeroelastic model of an F/A-18
NASA Technical Reports Server (NTRS)
Buttrill, Carey S.
1989-01-01
An integrated, nonlinear simulation model suitable for aeroelastic modeling of fixed-wing aircraft has been developed. While the author realizes that the subject of modeling rotating, elastic structures is not closed, it is believed that the equations of motion developed and applied herein are correct to second order and are suitable for use with typical aircraft structures. The equations are not suitable for large elastic deformation. In addition, the modeling framework generalizes both the methods and terminology of non-linear rigid-body airplane simulation and traditional linear aeroelastic modeling. Concerning the importance of angular/elastic inertial coupling in the dynamic analysis of fixed-wing aircraft, the following may be said. The rigorous inclusion of said coupling is not without peril and must be approached with care. In keeping with the same engineering judgment that guided the development of the traditional aeroelastic equations, the effect of non-linear inertial effects for most airplane applications is expected to be small. A parameter does not tell the whole story, however, and modes flagged by the parameter as significant also need to be checked to see if the coupling is not a one-way path, i.e., the inertially affected modes can influence other modes.
Harmonic Balance Computations of Fan Aeroelastic Stability
NASA Technical Reports Server (NTRS)
Bakhle, Milind A.; Reddy, T. S. R.
2010-01-01
A harmonic balance (HB) aeroelastic analysis, which has been recently developed, was used to determine the aeroelastic stability (flutter) characteristics of an experimental fan. To assess the numerical accuracy of this HB aeroelastic analysis, a time-domain aeroelastic analysis was also used to determine the aeroelastic stability characteristics of the same fan. Both of these three-dimensional analysis codes model the unsteady flowfield due to blade vibrations using the Reynolds-averaged Navier-Stokes (RANS) equations. In the HB analysis, the unsteady flow equations are converted to a HB form and solved using a pseudo-time marching method. In the time-domain analysis, the unsteady flow equations are solved using an implicit time-marching approach. Steady and unsteady computations for two vibration modes were carried out at two rotational speeds: 100 percent (design) and 70 percent (part-speed). The steady and unsteady results obtained from the two analysis methods compare well, thus verifying the recently developed HB aeroelastic analysis. Based on the results, the experimental fan was found to have no aeroelastic instability (flutter) at the conditions examined in this study.
Development of Reduced-Order Models for Aeroelastic and Flutter Prediction Using the CFL3Dv6.0 Code
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Bartels, Robert E.
2002-01-01
A reduced-order model (ROM) is developed for aeroelastic analysis using the CFL3D version 6.0 computational fluid dynamics (CFD) code, recently developed at the NASA Langley Research Center. This latest version of the flow solver includes a deforming mesh capability, a modal structural definition for nonlinear aeroelastic analyses, and a parallelization capability that provides a significant increase in computational efficiency. Flutter results for the AGARD 445.6 Wing computed using CFL3D v6.0 are presented, including discussion of associated computational costs. Modal impulse responses of the unsteady aerodynamic system are then computed using the CFL3Dv6 code and transformed into state-space form. Important numerical issues associated with the computation of the impulse responses are presented. The unsteady aerodynamic state-space ROM is then combined with a state-space model of the structure to create an aeroelastic simulation using the MATLAB/SIMULINK environment. The MATLAB/SIMULINK ROM is used to rapidly compute aeroelastic transients including flutter. The ROM shows excellent agreement with the aeroelastic analyses computed using the CFL3Dv6.0 code directly.
NASA Astrophysics Data System (ADS)
KIM, DONG-HYUN; LEE, IN
2000-07-01
A two-degree-of-freedom airfoil with a freeplay non-linearity in the pitch and plunge directions has been analyzed in the transonic and low-supersonic flow region, where aerodynamic non-linearities also exist. The primary purpose of this study is to show aeroelastic characteristics due to freeplay structural non-linearity in the transonic and low-supersonic regions. The unsteady aerodynamic forces on the airfoil were evaluated using two-dimensional unsteady Euler code, and the resulting aeroelastic equations are numerically integrated to obtain the aeroelastic time responses of the airfoil motions and to investigate the dynamic instability. The present model has been considered as a simple aeroelastic model, which is equivalent to the folding fin of an advanced generic missile. From the results of the present study, characteristics of important vibration responses and aeroelastic instabilities can be observed in the transonic and supersonic regions, especially considering the effect of structural non-linearity in the pitch and plunge directions. The regions of limit-cycle oscillation are shown at much lower velocities, especially in the supersonic flow region, than the divergent flutter velocities of the linear structure model. It is also shown that even small freeplay angles can lead to severe dynamic instabilities and dangerous fatigue conditions for the flight vehicle wings and control fins.
NASA Technical Reports Server (NTRS)
Graves, Sharon S.; Burner, Alpheus W.; Edwards, John W.; Schuster, David M.
2001-01-01
The techniques used to acquire, reduce, and analyze dynamic deformation measurements of an aeroelastic semispan wind tunnel model are presented. Single-camera, single-view video photogrammetry (also referred to as videogrammetric model deformation, or VMD) was used to determine dynamic aeroelastic deformation of the semispan 'Models for Aeroelastic Validation Research Involving Computation' (MAVRIC) model in the Transonic Dynamics Tunnel at the NASA Langley Research Center. Dynamic deformation was determined from optical retroreflective tape targets at five semispan locations located on the wing from the root to the tip. Digitized video images from a charge coupled device (CCD) camera were recorded and processed to automatically determine target image plane locations that were then corrected for sensor, lens, and frame grabber spatial errors. Videogrammetric dynamic data were acquired at a 60-Hz rate for time records of up to 6 seconds during portions of this flutter/Limit Cycle Oscillation (LCO) test at Mach numbers from 0.3 to 0.96. Spectral analysis of the deformation data is used to identify dominant frequencies in the wing motion. The dynamic data will be used to separate aerodynamic and structural effects and to provide time history deflection data for Computational Aeroelasticity code evaluation and validation.
Nonlinear aeroelastic analysis, flight dynamics, and control of a complete aircraft
NASA Astrophysics Data System (ADS)
Patil, Mayuresh Jayawant
The focus of this research was to analyze a high-aspect-ratio wing aircraft flying at low subsonic speeds. Such aircraft are designed for high-altitude, long-endurance missions. Due to the high flexibility and associated wing deformation, accurate prediction of aircraft response requires use of nonlinear theories. Also strong interactions between flight dynamics and aeroelasticity are expected. To analyze such aircraft one needs to have an analysis tool which includes the various couplings and interactions. A theoretical basis has been established for a consistent analysis which takes into account, (i) material anisotropy, (ii) geometrical nonlinearities of the structure, (iii) rigid-body motions, (iv) unsteady flow behavior, and (v) dynamic stall. The airplane structure is modeled as a set of rigidly attached beams. Each of the beams is modeled using the geometrically exact mixed variational formulation, thus taking into account geometrical nonlinearities arising due to large displacements and rotations. The cross-sectional stiffnesses are obtained using an asymptotically exact analysis, which can model arbitrary cross sections and material properties. An aerodynamic model, consisting of a unified lift model, a consistent combination of finite-state inflow model and a modified ONERA dynamic stall model, is coupled to the structural system to determine the equations of motion. The results obtained indicate the necessity of including nonlinear effects in aeroelastic analysis. Structural geometric nonlinearities result in drastic changes in aeroelastic characteristics, especially in case of high-aspect-ratio wings. The nonlinear stall effect is the dominant factor in limiting the amplitude of oscillation for most wings. The limit cycle oscillation (LCO) phenomenon is also investigated. Post-flutter and pre-flutter LCOs are possible depending on the disturbance mode and amplitude. Finally, static output feedback (SOF) controllers are designed for flutter suppression
Aeroelastic flutter of feathers, flight and the evolution of non-vocal communication in birds.
Clark, Christopher J; Prum, Richard O
2015-11-01
Tonal, non-vocal sounds are widespread in both ordinary bird flight and communication displays. We hypothesized these sounds are attributable to an aerodynamic mechanism intrinsic to flight feathers: aeroelastic flutter. Individual wing and tail feathers from 35 taxa (from 13 families) that produce tonal flight sounds were tested in a wind tunnel. In the wind tunnel, all of these feathers could flutter and generate tonal sound, suggesting that the capacity to flutter is intrinsic to flight feathers. This result implies that the aerodynamic mechanism of aeroelastic flutter is potentially widespread in flight of birds. However, the sounds these feathers produced in the wind tunnel replicated the actual flight sounds of only 15 of the 35 taxa. Of the 20 negative results, we hypothesize that 10 are false negatives, as the acoustic form of the flight sound suggests flutter is a likely acoustic mechanism. For the 10 other taxa, we propose our negative wind tunnel results are correct, and these species do not make sounds via flutter. These sounds appear to constitute one or more mechanism(s) we call 'wing whirring', the physical acoustics of which remain unknown. Our results document that the production of non-vocal communication sounds by aeroelastic flutter of flight feathers is widespread in birds. Across all birds, most evolutionary origins of wing- and tail-generated communication sounds are attributable to three mechanisms: flutter, percussion and wing whirring. Other mechanisms of sound production, such as turbulence-induced whooshes, have evolved into communication sounds only rarely, despite their intrinsic ubiquity in ordinary flight.
Aeroelastic Scaling of a Joined Wing Aircraft Concept
2010-01-11
5 FIGURE 3 - LAMINATE SHEETS PRODUCED USING VARTM ...6 FIGURE 4 - LAMINATE SHEET IN VARTM PROCESS...sheets are produced using the Vacuum Assisted Resin Transfer Method ( VARTM ), some of which are shown in Figure 3 below. This method is a closed
Aeroelastic Scaling of a Joined Wing Sensorcraft Concept
2007-12-01
Generated with ICEM Software........................................................... 23 Figure 13 - Pressure Contours of Preliminary Analysis...analysis. Figure 12 - Surface Mesh of RPV Generated with ICEM Software Figure 13 - Pressure Contours of Preliminary Analysis Wind tunnel
A nonlinear computational aeroelasticity model for aircraft wings
NASA Astrophysics Data System (ADS)
Feng, Zhengkun
Cette these presente le developpement d'un code d'aeroelasticite nonlineaire base sur un solveur CFD robuste afin de l'appliquer aux ailes flexibles en ecoulement transsonique. Le modele mathematique complet est base sur les equations du mouvement des structures et les equations d'Euler pour les ecoulements transsoniques non-visqueux. La strategie de traiter tel systeme complexe par un couplage etage presente des avantages pour le developpement d'un code modulaire et facile a faire evoluer. La non-correspondance entre les deux grilles de calcul a l'interface fluide-structure, due aux differences des tailles et des types des elements utilises par la resolution de l'ecoulement et de la structure, est resolue par l'ajout d'un module specifique. Les transferts des informations entre ces deux grilles satisfont la loi de la conservation de l'energie. Le modele nonlineaire de la dynamique du fluide base sur la description Euler-Lagrange est discretise dans le maillage mobile. Le modele pour le calcul des structures est suppose lineaire dans lequel la methode de superposition modale est appliquee pour reduire le temps de calcul et la dimension de la memoire. Un autre modele pour la structure base directement sur la methode des elements finis est aussi developpe. Il est egalement couple dans le code pour prouver son extension future aux applications plus generales. La nonlinearite est une autre source de complexite du systeme bien que celle-ci est prevue uniquement dans le modele aerodynamique. L'algorithme GMRES nonlineaire avec le preconditioneur ILUT est implemente dans le solveur CFD ou un capteur de choc pour les ecoulements transsoniques et la technique de stabilisation numerique SUPG pour des ecoulements domines par la convection sont appliques. Un schema du second ordre est utilise pour la discretisation temporelle. Les composants de ce code sont valides par des tests numeriques. Le modele complet est applique et valide sur l'aile aeroelastique AGARD 445.6 dans le cas du nombre de Mach 0.96 qui est une valeur critique en flottement. Les simulations de flottement donnent des resultats numeriques satisfaisants en comparaison avec ceux experimentaux.
Control Augmented Structural Optimization of Aeroelasticity Tailored Fiber Composite Wings
1991-08-18
AD-"A241- 464 ..1 4 DOCUMENTATION PAGE Form Approved "I!IJ1 ’’ lb. RESTRICTIVE MARKINGS 2a. SECURITY CLASSIFICATION AUTHORITY , 3. DISTRIBUTION...continuous (M + (13) atmospheric turbulence arc calculated for different ’I fligTht conditions. Both l) ryden and rational approxi- where q and q0 arc
Static Aeroelastic Analysis of Flexible Wings via NASTRAN, Part I.
1982-12-01
revisions to the sequence would broaden its capabilities and applicability. 28 * Bibliography *1. NASA SP-222(04). The NASTRAN User’s Manual (Level 17.0...hi hi bi vih ih ihih ih i N re" c 1 16 1- ~ ~ ~ P a iihhhiiihhhiiihh IQ 33 333 in3 3 3 - hih62 -’a6 Kd 24 0W 00 0 ft6 40 19 49 W . 14 a a A 1 4 4
Active Suppression of Aeroelastic Instabilities for Forward Swept Wings.
1983-12-01
ballasted to create DD F 3 1473 Â£01TION OF I NOV 6S IS OBSOLTE UNCLASSIFIRn SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) UNCLASSIFIED...instabilities in lieu of conventional flutter prevention procedures (adding stiffness or ballast weights). The principles and procedures of applying... Waters " concluded that a:tie controls could prevent or delay the onset tat K: divergence using onIy displacement feedoack. and that body freedom
Comparison of supercritical and conventional wing flutter characteristics
NASA Technical Reports Server (NTRS)
Farmer, M. G.; Hanson, P. W.; Wynne, E. C.
1976-01-01
A wind-tunnel study was undertaken to directly compare the measured flutter boundaries of two dynamically similar aeroelastic models which had the same planform, maximum thickness-to-chord ratio, and as nearly identical stiffness and mass distributions as possible, with one wing having a supercritical airfoil and the other a conventional airfoil. The considerations and problems associated with flutter testing supercritical wing models at or near design lift coefficients are discussed, and the measured transonic boundaries of the two wings are compared with boundaries calculated with a subsonic lifting surface theory.
Determining XV-15 aeroelastic modes from flight data with frequency-domain methods
NASA Technical Reports Server (NTRS)
Acree, C. W., Jr.; Tischler, Mark B.
1993-01-01
The XV-15 tilt-rotor wing has six major aeroelastic modes that are close in frequency. To precisely excite individual modes during flight test, dual flaperon exciters with automatic frequency-sweep controls were installed. The resulting structural data were analyzed in the frequency domain (Fourier transformed). All spectral data were computed using chirp z-transforms. Modal frequencies and damping were determined by fitting curves to frequency-response magnitude and phase data. The results given in this report are for the XV-15 with its original metal rotor blades. Also, frequency and damping values are compared with theoretical predictions made using two different programs, CAMRAD and ASAP. The frequency-domain data-analysis method proved to be very reliable and adequate for tracking aeroelastic modes during flight-envelope expansion. This approach required less flight-test time and yielded mode estimations that were more repeatable, compared with the exponential-decay method previously used.
Optimization of composite tiltrotor wings with extensions and winglets
NASA Astrophysics Data System (ADS)
Kambampati, Sandilya
Tiltrotors suffer from an aeroelastic instability during forward flight called whirl flutter. Whirl flutter is caused by the whirling motion of the rotor, characterized by highly coupled wing-rotor-pylon modes of vibration. Whirl flutter is a major obstacle for tiltrotors in achieving high-speed flight. The conventional approach to assure adequate whirl flutter stability margins for tiltrotors is to design the wings with high torsional stiffness, typically using 23% thickness-to-chord ratio wings. However, the large aerodynamic drag associated with these high thickness-to-chord ratio wings decreases aerodynamic efficiency and increases fuel consumption. Wingtip devices such as wing extensions and winglets have the potential to increase the whirl flutter characteristics and the aerodynamic efficiency of a tiltrotor. However, wing-tip devices can add more weight to the aircraft. In this study, multi-objective parametric and optimization methodologies for tiltrotor aircraft with wing extensions and winglets are investigated. The objectives are to maximize aircraft aerodynamic efficiency while minimizing weight penalty due to extensions and winglets, subject to whirl flutter constraints. An aeroelastic model that predicts the whirl flutter speed and a wing structural model that computes strength and weight of a composite wing are developed. An existing aerodynamic model (that predicts the aerodynamic efficiency) is merged with the developed structural and aeroelastic models for the purpose of conducting parametric and optimization studies. The variables of interest are the wing thickness and structural properties, and extension and winglet planform variables. The Bell XV-15 tiltrotor aircraft the chosen as the parent aircraft for this study. Parametric studies reveal that a wing extension of span 25% of the inboard wing increases the whirl flutter speed by 10% and also increases the aircraft aerodynamic efficiency by 8%. Structurally tapering the wing of a tiltrotor
Aeroelastic Control of a Segmented Trailing Edge Using Fiber Optic Strain Sensing Technology
NASA Technical Reports Server (NTRS)
Graham, Corbin Jay; Martins, Benjamin; Suppanade, Nathan
2014-01-01
Currently, design of aircraft structures incorporate a safety factor which is essentially an over design to mitigate the risk of structure failure during operation. Typically this safety factor is to design the structure to withstand loads much greater than what is expected to be experienced during flight. NASA Dryden Flight Research Centers has developed a Fiber Optic Strain Sensing (FOSS) system which can measure strain values in real-time. The Aeroelastics Lab at the AERO Institute is developing a segmented trailing edged wing with multiple control surfaces that can utilize the data from the FOSS system, in conjunction with an adaptive controller to redistribute the lift across a wing. This redistribution can decrease the amount of strain experienced by the wing as well as be used to dampen vibration and reduce flutter.
Transonic Aeroelasticity Analysis For Helicopter Rotor Blade
NASA Technical Reports Server (NTRS)
Chang, I-Chung; Gea, Lie-Mine; Chow, Chuen-Yen
1991-01-01
Numerical-simulation method for aeroelasticity analysis of helicopter rotor blade combines established techniques for analysis of aerodynamics and vibrations of blade. Application of method clearly shows elasticity of blade modifies flow and, consequently, aerodynamic loads on blade.
NASA Astrophysics Data System (ADS)
Cavallaro, Rauno; Demasi, Luciano
2016-11-01
Diamond Wings, Strut- and Truss-Braced Wings, Box Wings, and PrandtlPlane, the so-called "JoinedWings", represent a dramatic departure from traditional configurations. Joined Wings are characterized by a structurally overconstrained layout which significantly increases the design space with multiple load paths and numerous solutions not available in classical wing systems. A tight link between the different disciplines (aerodynamics, flight mechanics, aeroelasticity, etc.) makes a Multidisciplinary Design and Optimization approach a necessity from the early design stages. Researchers showed potential in terms of aerodynamic efficiency, reduction of emissions and superior performances, strongly supporting the technical advantages of Joined Wings. This review will present these studies, with particular focus on the United States joined-wing SensorCraft, Strut- and Truss- Braced Wings, Box Wings and PrandtlPlane.
Overview of the Aeroelastic Prediction Workshop
NASA Technical Reports Server (NTRS)
Heeg, Jennifer; Chwalowski, Pawel; Schuster, David M.; Dalenbring, Mats
2013-01-01
The AIAA Aeroelastic Prediction Workshop (AePW) was held in April, 2012, bringing together communities of aeroelasticians and computational fluid dynamicists. The objective in conducting this workshop on aeroelastic prediction was to assess state-of-the-art computational aeroelasticity methods as practical tools for the prediction of static and dynamic aeroelastic phenomena. No comprehensive aeroelastic benchmarking validation standard currently exists, greatly hindering validation and state-of-the-art assessment objectives. The workshop was a step towards assessing the state of the art in computational aeroelasticity. This was an opportunity to discuss and evaluate the effectiveness of existing computer codes and modeling techniques for unsteady flow, and to identify computational and experimental areas needing additional research and development. Three configurations served as the basis for the workshop, providing different levels of geometric and flow field complexity. All cases considered involved supercritical airfoils at transonic conditions. The flow fields contained oscillating shocks and in some cases, regions of separation. The computational tools principally employed Reynolds-Averaged Navier Stokes solutions. The successes and failures of the computations and the experiments are examined in this paper.
An analytical model and scaling of chordwise flexible flapping wings in forward flight.
Kodali, Deepa; Kang, Chang-Kwon
2016-12-13
Aerodynamic performance of biological flight characterized by the fluid structure interaction of a flapping wing and the surrounding fluid is affected by the wing flexibility. One of the main challenges to predict aerodynamic forces is that the wing shape and motion are a priori unknown. In this study, we derive an analytical fluid-structure interaction model for a chordwise flexible flapping two-dimensional airfoil in forward flight. A plunge motion is imposed on the rigid leading-edge (LE) of teardrop shape and the flexible tail dynamically deforms. The resulting unsteady aeroelasticity is modeled with the Euler-Bernoulli-Theodorsen equation under a small deformation assumption. The two-way coupling is realized by considering the trailing-edge deformation relative to the LE as passive pitch, affecting the unsteady aerodynamics. The resulting wing deformation and the aerodynamic performance including lift and thrust agree well with high-fidelity numerical results. Under the dynamic balance, the aeroelastic stiffness decreases, whereas the aeroelastic stiffness increases with the reduced frequency. A novel aeroelastic frequency ratio is derived, which scales with the wing deformation, lift, and thrust. Finally, the dynamic similarity between flapping in water and air is established.
Oblique wing transonic transport configuration development
NASA Technical Reports Server (NTRS)
1977-01-01
Studies of transport aircraft designed for boom-free supersonic flight show the variable sweep oblique wing to be the most efficient configuration for flight at low supersonic speeds. Use of this concept leads to a configuration that is lighter, quieter, and more fuel efficient than symmetric aircraft designed for the same mission. Aerodynamic structural, weight, aeroelastic and flight control studies show the oblique wing concept to be technically feasible. Investigations are reported for wing planform and thickness, pivot design and weight estimation, engine cycle (bypass ratio), and climb, descent and reserve fuel. Results are incorporated into a final configuration. Performance, weight, and balance characteristics are evaluated. Flight control requirements are reviewed, and areas in which further research is needed are identified.
NASA Technical Reports Server (NTRS)
Jutte, Christine V.; Stanford, Bret K.; Wieseman, Carol D.; Moore, James B.
2014-01-01
This work explores the use of tow steered composite laminates, functionally graded metals (FGM), thickness distributions, and curvilinear rib/spar/stringer topologies for aeroelastic tailoring. Parameterized models of the Common Research Model (CRM) wing box have been developed for passive aeroelastic tailoring trade studies. Metrics of interest include the wing weight, the onset of dynamic flutter, and the static aeroelastic stresses. Compared to a baseline structure, the lowest aggregate static wing stresses could be obtained with tow steered skins (47% improvement), and many of these designs could reduce weight as well (up to 14%). For these structures, the trade-off between flutter speed and weight is generally strong, although one case showed both a 100% flutter improvement and a 3.5% weight reduction. Material grading showed no benefit in the skins, but moderate flutter speed improvements (with no weight or stress increase) could be obtained by grading the spars (4.8%) or ribs (3.2%), where the best flutter results were obtained by grading both thickness and material. For the topology work, large weight reductions were obtained by removing an inner spar, and performance was maintained by shifting stringers forward and/or using curvilinear ribs: 5.6% weight reduction, a 13.9% improvement in flutter speed, but a 3.0% increase in stress levels. Flutter resistance was also maintained using straightrotated ribs although the design had a 4.2% lower flutter speed than the curved ribs of similar weight and stress levels were higher. These results will guide the development of a future design optimization scheme established to exploit and combine the individual attributes of these technologies.
NASA Technical Reports Server (NTRS)
Liu, Tianshu; Kuykendoll, K.; Rhew, R.; Jones, S.
2004-01-01
This paper describes the avian wing geometry (Seagull, Merganser, Teal and Owl) extracted from non-contact surface measurements using a three-dimensional laser scanner. The geometric quantities, including the camber line and thickness distribution of airfoil, wing planform, chord distribution, and twist distribution, are given in convenient analytical expressions. Thus, the avian wing surfaces can be generated and the wing kinematics can be simulated. The aerodynamic characteristics of avian airfoils in steady inviscid flows are briefly discussed. The avian wing kinematics is recovered from videos of three level-flying birds (Crane, Seagull and Goose) based on a two-jointed arm model. A flapping seagull wing in the 3D physical space is re-constructed from the extracted wing geometry and kinematics.
Physical properties of the benchmark models program supercritical wing
NASA Technical Reports Server (NTRS)
Dansberry, Bryan E.; Durham, Michael H.; Bennett, Robert M.; Turnock, David L.; Silva, Walter A.; Rivera, Jose A., Jr.
1993-01-01
The goal of the Benchmark Models Program is to provide data useful in the development and evaluation of aeroelastic computational fluid dynamics (CFD) codes. To that end, a series of three similar wing models are being flutter tested in the Langley Transonic Dynamics Tunnel. These models are designed to simultaneously acquire model response data and unsteady surface pressure data during wing flutter conditions. The supercritical wing is the second model of this series. It is a rigid semispan model with a rectangular planform and a NASA SC(2)-0414 supercritical airfoil shape. The supercritical wing model was flutter tested on a flexible mount, called the Pitch and Plunge Apparatus, that provides a well-defined, two-degree-of-freedom dynamic system. The supercritical wing model and associated flutter test apparatus is described and experimentally determined wind-off structural dynamic characteristics of the combined rigid model and flexible mount system are included.
Using frequency-domain methods to identify XV-15 aeroelastic modes
NASA Technical Reports Server (NTRS)
Acree, C. W., Jr.; Tischler, Mark B.
1987-01-01
The XV-15 Tilt-Rotor wing has six major aeroelastic modes that are close in frequency. To precisely excite individual modes during flight test, dual flaperon exciters with automatic frequency-sweep controls were installed. The resulting structural data were analyzed in the frequency domain (Fourier transformed) with cross spectral and transfer function methods. Modal frequencies and damping were determined by performing curve fits to transfer function magnitude and phase data and to cross spectral magnitude data. Results are given for the XV-15 with its original metal rotor blades. Frequency and damping values are also compared with earlier predictions.
NASA Technical Reports Server (NTRS)
Doggett, R. V., Jr.; Abel, I.; Ruhlin, C. L.
1976-01-01
A status report and review of wind tunnel model experimental techniques that have been developed to study and validate the use of active control technology for the minimization of aeroelastic response are presented. Modeling techniques, test procedures, and data analysis methods used in three model studies are described. The studies include flutter mode suppression on a delta-wing model, flutter mode suppression and ride quality control on a 1/30-size model of the B-52 CCV airplane, and an active lift distribution control system on a 1/22 size C-5A model.
Identification of XV-15 aeroelastic modes using frequency-domain methods
NASA Technical Reports Server (NTRS)
Acree, Cecil W., Jr.; Tischler, Mark B.
1989-01-01
The XV-15 Tilt-Rotor wing has six major aeroelastic modes that are close in frequency. To precisely excite individual modes during flight test, dual flaperon exciters with automatic frequency-sweep controls were installed. The resulting structural data were analyzed in the frequency domain (Fourier transformed) with cross spectral and transfer function methods. Modal frequencies and damping were determined by performing curve fits to transfer function magnitude and phase data and to cross spectral magnitude data. Results are given for the XV-15 with its original metal rotor blades. Frequency and damping values are also compared with earlier predictions.
A flutter investigation of all-moveable NASP-like wings at hypersonic speeds
NASA Technical Reports Server (NTRS)
Spain, Charles V.; Zeiler, Thomas A.; Bullock, Ellen P.; Hodge, Jeffrey S.
1993-01-01
Six alternative all-moving wing configurations applicable to the NASP hypersonic/transatmospheric vehicle have undergone aeroelasticity testing in NASA-Langley's Mach-20-capable Helium Tunnel that yielded data for such parametric variations as airfoil profile and wing planform, wing-pivot flexure stiffness, and mass imbalance. While all wings fluttered at dynamic pressures lower than predicted by second-order piston-theory aerodynamics, this was of limited amplitude, suggesting nonlinear external-flow behavior. Slab airfoils were more stable than diamond-shaped ones; blunt leading edges enhance stability relative to sharp ones, and stiffer pivolts extert a stabilizing influence.
Wing design for a civil tiltrotor transport aircraft
NASA Technical Reports Server (NTRS)
Rais-Rohani, Masoud
1994-01-01
The goal of this research is the proper tailoring of the civil tiltrotor's composite wing-box structure leading to a minimum-weight wing design. With focus on the structural design, the wing's aerodynamic shape and the rotor-pylon system are held fixed. The initial design requirement on drag reduction set the airfoil maximum thickness-to-chord ratio to 18 percent. The airfoil section is the scaled down version of the 23 percent-thick airfoil used in V-22's wing. With the project goal in mind, the research activities began with an investigation of the structural dynamic and aeroelastic characteristics of the tiltrotor configuration, and the identification of proper procedures to analyze and account for these characteristics in the wing design. This investigation led to a collection of more than thirty technical papers on the subject, some of which have been referenced here. The review of literature on the tiltrotor revealed the complexity of the system in terms of wing-rotor-pylon interactions. The aeroelastic instability or whirl flutter stemming from wing-rotor-pylon interactions is found to be the most critical mode of instability demanding careful consideration in the preliminary wing design. The placement of wing fundamental natural frequencies in bending and torsion relative to each other and relative to the rotor 1/rev frequencies is found to have a strong influence on the whirl flutter. The frequency placement guide based on a Bell Helicopter Textron study is used in the formulation of frequency constraints. The analysis and design studies are based on two different finite-element computer codes: (1) MSC/NASATRAN and (2) WIDOWAC. These programs are used in parallel with the motivation to eventually, upon necessary modifications and validation, use the simpler WIDOWAC code in the structural tailoring of the tiltrotor wing. Several test cases were studied for the preliminary comparison of the two codes. The results obtained so far indicate a good overall
Probabilistic Aeroelastic Analysis Developed for Turbomachinery Components
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.; Mital, Subodh K.; Stefko, George L.; Pai, Shantaram S.
2003-01-01
Aeroelastic analyses for advanced turbomachines are being developed for use at the NASA Glenn Research Center and industry. However, these analyses at present are used for turbomachinery design with uncertainties accounted for by using safety factors. This approach may lead to overly conservative designs, thereby reducing the potential of designing higher efficiency engines. An integration of the deterministic aeroelastic analysis methods with probabilistic analysis methods offers the potential to design efficient engines with fewer aeroelastic problems and to make a quantum leap toward designing safe reliable engines. In this research, probabilistic analysis is integrated with aeroelastic analysis: (1) to determine the parameters that most affect the aeroelastic characteristics (forced response and stability) of a turbomachine component such as a fan, compressor, or turbine and (2) to give the acceptable standard deviation on the design parameters for an aeroelastically stable system. The approach taken is to combine the aeroelastic analysis of the MISER (MIStuned Engine Response) code with the FPI (fast probability integration) code. The role of MISER is to provide the functional relationships that tie the structural and aerodynamic parameters (the primitive variables) to the forced response amplitudes and stability eigenvalues (the response properties). The role of FPI is to perform probabilistic analyses by utilizing the response properties generated by MISER. The results are a probability density function for the response properties. The probabilistic sensitivities of the response variables to uncertainty in primitive variables are obtained as a byproduct of the FPI technique. The combined analysis of aeroelastic and probabilistic analysis is applied to a 12-bladed cascade vibrating in bending and torsion. Out of the total 11 design parameters, 6 are considered as having probabilistic variation. The six parameters are space-to-chord ratio (SBYC), stagger angle
Aeroelastic stability of wind turbine blade/aileron systems
NASA Technical Reports Server (NTRS)
Strain, J. C.; Mirandy, L.
1995-01-01
Aeroelastic stability analyses have been performed for the MOD-5A blade/aileron system. Various configurations having different aileron torsional stiffness, mass unbalance, and control system damping have been investigated. The analysis was conducted using a code recently developed by the General Electric Company - AILSTAB. The code extracts eigenvalues for a three degree of freedom system, consisting of: (1) a blade flapwise mode; (2) a blade torsional mode; and (3) an aileron torsional mode. Mode shapes are supplied as input and the aileron can be specified over an arbitrary length of the blade span. Quasi-steady aerodynamic strip theory is used to compute aerodynamic derivatives of the wing-aileron combination as a function of spanwise position. Equations of motion are summarized herein. The program provides rotating blade stability boundaries for torsional divergence, classical flutter (bending/torsion) and wing/aileron flutter. It has been checked out against fixed-wing results published by Theodorsen and Garrick. The MOD-5A system is stable with respect to divergence and classical flutter for all practical rotor speeds. Aileron torsional stiffness must exceed a minimum critical value to prevent aileron flutter. The nominal control system stiffness greatly exceeds this minimum during normal operation. The basic system, however, is unstable for the case of a free (or floating) aileron. The instability can be removed either by the addition of torsional damping or mass-balancing the ailerons. The MOD-5A design was performed by the General Electric Company, Advanced Energy Program Department under Contract DEN3-153 with NASA Lewis Research Center and sponsored by the Department of Energy.
A method for the design of transonic flexible wings
NASA Technical Reports Server (NTRS)
Smith, Leigh Ann; Campbell, Richard L.
1990-01-01
Methodology was developed for designing airfoils and wings at transonic speeds which includes a technique that can account for static aeroelastic deflections. This procedure is capable of designing either supercritical or more conventional airfoil sections. Methods for including viscous effects are also illustrated and are shown to give accurate results. The methodology developed is an interactive system containing three major parts. A design module was developed which modifies airfoil sections to achieve a desired pressure distribution. This design module works in conjunction with an aerodynamic analysis module, which for this study is a small perturbation transonic flow code. Additionally, an aeroelastic module is included which determines the wing deformation due to the calculated aerodynamic loads. Because of the modular nature of the method, it can be easily coupled with any aerodynamic analysis code.
Modern wing flutter analysis by computational fluid dynamics methods
NASA Technical Reports Server (NTRS)
Cunningham, Herbert J.; Batina, John T.; Bennett, Robert M.
1988-01-01
The application and assessment of the recently developed CAP-TSD transonic small-disturbance code for flutter prediction is described. The CAP-TSD code has been developed for aeroelastic analysis of complete aircraft configurations and was previously applied to the calculation of steady and unsteady pressures with favorable results. Generalized aerodynamic forces and flutter characteristics are calculated and compared with linear theory results and with experimental data for a 45 deg sweptback wing. These results are in good agreement with the experimental flutter data which is the first step toward validating CAP-TSD for general transonic aeroelastic applications. The paper presents these results and comparisons along with general remarks regarding modern wing flutter analysis by computational fluid dynamics methods.
Aeroelastic Sizing for High-Speed Research (HSR) Longitudinal Control Alternatives Project (LCAP)
NASA Technical Reports Server (NTRS)
Walsh, Joanne L.; Dunn, H. J.; Stroud, W. Jefferson; Barthelemy, J.-F.; Weston, Robert P.; Martin, Carl J.; Bennett, Robert M.
2005-01-01
The Longitudinal Control Alternatives Project (LCAP) compared three high-speed civil transport configurations to determine potential advantages of the three associated longitudinal control concepts. The three aircraft configurations included a conventional configuration with a layout having a horizontal aft tail, a configuration with a forward canard in addition to a horizontal aft tail, and a configuration with only a forward canard. The three configurations were aeroelastically sized and were compared on the basis of operational empty weight (OEW) and longitudinal control characteristics. The sized structure consisted of composite honeycomb sandwich panels on both the wing and the fuselage. Design variables were the core depth of the sandwich and the thicknesses of the composite material which made up the face sheets of the sandwich. Each configuration was sized for minimum structural weight under linear and nonlinear aeroelastic loads subject to strain, buckling, ply-mixture, and subsonic and supersonic flutter constraints. This report describes the methods that were used and the results that were generated for the aeroelastic sizing of the three configurations.
Hybrid state vector methods for structural dynamic and aeroelastic boundary value problems
NASA Technical Reports Server (NTRS)
Lehman, L. L.
1982-01-01
A computational technique is developed that is suitable for performing preliminary design aeroelastic and structural dynamic analyses of large aspect ratio lifting surfaces. The method proves to be quite general and can be adapted to solving various two point boundary value problems. The solution method, which is applicable to both fixed and rotating wing configurations, is based upon a formulation of the structural equilibrium equations in terms of a hybrid state vector containing generalized force and displacement variables. A mixed variational formulation is presented that conveniently yields a useful form for these state vector differential equations. Solutions to these equations are obtained by employing an integrating matrix method. The application of an integrating matrix provides a discretization of the differential equations that only requires solutions of standard linear matrix systems. It is demonstrated that matrix partitioning can be used to reduce the order of the required solutions. Results are presented for several example problems in structural dynamics and aeroelasticity to verify the technique and to demonstrate its use. These problems examine various types of loading and boundary conditions and include aeroelastic analyses of lifting surfaces constructed from anisotropic composite materials.
Centrifugal Compressor Aeroelastic Analysis Code
NASA Astrophysics Data System (ADS)
Keith, Theo G., Jr.; Srivastava, Rakesh
2002-01-01
Centrifugal compressors are very widely used in the turbomachine industry where low mass flow rates are required. Gas turbine engines for tanks, rotorcraft and small jets rely extensively on centrifugal compressors for rugged and compact design. These compressors experience problems related with unsteadiness of flowfields, such as stall flutter, separation at the trailing edge over diffuser guide vanes, tip vortex unsteadiness, etc., leading to rotating stall and surge. Considerable interest exists in small gas turbine engine manufacturers to understand and eventually eliminate the problems related to centrifugal compressors. The geometric complexity of centrifugal compressor blades and the twisting of the blade passages makes the linear methods inapplicable. Advanced computational fluid dynamics (CFD) methods are needed for accurate unsteady aerodynamic and aeroelastic analysis of centrifugal compressors. Most of the current day industrial turbomachines and small aircraft engines are designed with a centrifugal compressor. With such a large customer base and NASA Glenn Research Center being, the lead center for turbomachines, it is important that adequate emphasis be placed on this area as well. Currently, this activity is not supported under any project at NASA Glenn.
Aeroelastic Phenomena of Flight Vehicles in Transonic Region
NASA Astrophysics Data System (ADS)
Lee, In; Kim, Jong-Yun; Kim, Kyung-Seok; Lim, In-Gyu
Flight vehicles experience aeroelastic problems due to the interaction between structures and aerodynamic forces. Aeroelastic instability is usually a critical problem in transonic and lower supersonic regions. In present study, the aeroelastic analyses of several flight vehicles have been performed using the coupled techniques of computational fluid dynamics (CFD) and computational structural dynamics (CSD). The aeroelastic characteristics based on several aircraft models are investigated using the developed aeroelastic analysis system. On the other hand, structural nonlinearities always exist in flight vehicles. Structural nonlinearities such as freeplay and large deformation effects are considered in the present aeroelastic analysis system. Finally, aeroelastic characteristics of several flight vehicles will be explained considering both aerodynamic and structural nonlinearities.
Novel Control Effectors for Truss Braced Wing
NASA Technical Reports Server (NTRS)
White, Edward V.; Kapania, Rakesh K.; Joshi, Shiv
2015-01-01
At cruise flight conditions very high aspect ratio/low sweep truss braced wings (TBW) may be subject to design requirements that distinguish them from more highly swept cantilevered wings. High aspect ratio, short chord length and relative thinness of the airfoil sections all contribute to relatively low wing torsional stiffness. This may lead to aeroelastic issues such as aileron reversal and low flutter margins. In order to counteract these issues, high aspect ratio/low sweep wings may need to carry additional high speed control effectors to operate when outboard ailerons are in reversal and/or must carry additional structural weight to enhance torsional stiffness. The novel control effector evaluated in this study is a variable sweep raked wing tip with an aileron control surface. Forward sweep of the tip allows the aileron to align closely with the torsional axis of the wing and operate in a conventional fashion. Aft sweep of the tip creates a large moment arm from the aileron to the wing torsional axis greatly enhancing aileron reversal. The novelty comes from using this enhanced and controllable aileron reversal effect to provide roll control authority by acting as a servo tab and providing roll control through intentional twist of the wing. In this case the reduced torsional stiffness of the wing becomes an advantage to be exploited. The study results show that the novel control effector concept does provide roll control as described, but only for a restricted class of TBW aircraft configurations. For the configuration studied (long range, dual aisle, Mach 0.85 cruise) the novel control effector provides significant benefits including up to 12% reduction in fuel burn.
Design, realization and structural testing of a compliant adaptable wing
NASA Astrophysics Data System (ADS)
Molinari, G.; Quack, M.; Arrieta, A. F.; Morari, M.; Ermanni, P.
2015-10-01
This paper presents the design, optimization, realization and testing of a novel wing morphing concept, based on distributed compliance structures, and actuated by piezoelectric elements. The adaptive wing features ribs with a selectively compliant inner structure, numerically optimized to achieve aerodynamically efficient shape changes while simultaneously withstanding aeroelastic loads. The static and dynamic aeroelastic behavior of the wing, and the effect of activating the actuators, is assessed by means of coupled 3D aerodynamic and structural simulations. To demonstrate the capabilities of the proposed morphing concept and optimization procedure, the wings of a model airplane are designed and manufactured according to the presented approach. The goal is to replace conventional ailerons, thus to achieve controllability in roll purely by morphing. The mechanical properties of the manufactured components are characterized experimentally, and used to create a refined and correlated finite element model. The overall stiffness, strength, and actuation capabilities are experimentally tested and successfully compared with the numerical prediction. To counteract the nonlinear hysteretic behavior of the piezoelectric actuators, a closed-loop controller is implemented, and its capability of accurately achieving the desired shape adaptation is evaluated experimentally. Using the correlated finite element model, the aeroelastic behavior of the manufactured wing is simulated, showing that the morphing concept can provide sufficient roll authority to allow controllability of the flight. The additional degrees of freedom offered by morphing can be also used to vary the plane lift coefficient, similarly to conventional flaps. The efficiency improvements offered by this technique are evaluated numerically, and compared to the performance of a rigid wing.
Effect of low-amplitude vibrations on impulsively-started wings
NASA Astrophysics Data System (ADS)
Shang, Jessica; Babinsky, Holger
2010-11-01
The development and shedding of leading edge vortices (LEVs) over wings is crucial to lift generation in the flapping flight of birds and insects. Many studies have investigated the flow field empirically by means of wing models that approximate or reproduce the wing kinematics. Wing models are often made of stiff materials (e.g. aluminum, steel) or are intentionally flexible to examine aeroelastic properties. However, even stiff wings will vibrate under forces induced by accelerations, which may modify the flow field and the LEV shedding frequency. This study investigates the effects of start-up vibrations of impulsively started flat plates of different materials (Re = 60,000) at a post-stall angle of attack. Wing vibration was recorded with high-speed imaging and the flow field was analyzed with particle image velocimetry. Results do not eliminate the possibility of lock-on between the wing's natural frequency and the LEV shedding frequency.
NASA Technical Reports Server (NTRS)
Lind, RIck; Voracek, David F.; Doyle, Tim; Truax, Roger; Potter, Starr; Brenner, Marty; Voelker, Len; Freudinger, Larry; Stocjt. C (off)
2003-01-01
The Aerostructures Test Wing (ATW) was an apparatus used in a flight experiment during a program of research on aeroelastic instabilities. The ATW experiment was performed to study a specific instability known as flutter. Flutter is a destructive phenomenon caused by adverse coupling of structural dynamics and aerodynamics. The process of determining a flight envelope within which an aircraft will not experience flutter, known as flight flutter testing, is very dangerous and expensive because predictions of the instability are often unreliable. The ATW was a small-scale airplane wing that comprised an airfoil and boom (see upper part of Figure 1). For flight tests, the ATW was mounted on the F-15B/FTF-II testbed, which is a second-generation flight-test fixture described in Flight-Test Fixture for Aerodynamic Research (DRC- 95-27), NASA Tech Briefs, Vol. 19, No. 9, September 1995, page 84. The ATW was mounted horizontally on this fixture, and the entire assembly was attached to the undercarriage of the F-15B airplane (see lower part of Figure 1). The primary objective of the ATW project was to investigate traditional and advanced methodologies for predicting the onset of flutter. In particular, the ATW generated data that were used to evaluate a flutterometer. This particular flutterometer is an on-line computer program that uses method analysis to estimate worst-case flight conditions associated with flutter. This software was described in A Flutterometer Flight Test Tool NASA Tech Briefs, Vol. 23, No. 1, January 1999, page 52.
Role of HPC in Advancing Computational Aeroelasticity
NASA Technical Reports Server (NTRS)
Guruswamy, Guru P.
2004-01-01
On behalf of the High Performance Computing and Modernization Program (HPCMP) and NASA Advanced Supercomputing Division (NAS) a study is conducted to assess the role of supercomputers on computational aeroelasticity of aerospace vehicles. The study is mostly based on the responses to a web based questionnaire that was designed to capture the nuances of high performance computational aeroelasticity, particularly on parallel computers. A procedure is presented to assign a fidelity-complexity index to each application. Case studies based on major applications using HPCMP resources are presented.
Method of performing computational aeroelastic analyses
NASA Technical Reports Server (NTRS)
Silva, Walter A. (Inventor)
2011-01-01
Computational aeroelastic analyses typically use a mathematical model for the structural modes of a flexible structure and a nonlinear aerodynamic model that can generate a plurality of unsteady aerodynamic responses based on the structural modes for conditions defining an aerodynamic condition of the flexible structure. In the present invention, a linear state-space model is generated using a single execution of the nonlinear aerodynamic model for all of the structural modes where a family of orthogonal functions is used as the inputs. Then, static and dynamic aeroelastic solutions are generated using computational interaction between the mathematical model and the linear state-space model for a plurality of periodic points in time.
Renaissance of Aeroelasticity and Its Future
NASA Technical Reports Server (NTRS)
Friedmann, Peretz P.
1999-01-01
The primary objective of this paper is to demonstrate that the field of aeroelasticity continues to play a critical role in the design of modern aerospace vehicles, and several important problems are still far from being well understood. Furthermore, the emergence of new technologies, such as the use of adaptive materials (sometimes denoted as smart structures technology), providing new actuator and sensor capabilities, has invigorated aeroelasticity, and generated a host of new and challenging research topics that can have a major impact on the design of a new generation of aerospace vehicles.
Aeroelastic Stability and Response of Rotating Structures
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr.; Reddy, Tondapu
2004-01-01
A summary of the work performed under NASA grant is presented. More details can be found in the cited references. This grant led to the development of relatively faster aeroelastic analysis methods for predicting flutter and forced response in fans, compressors, and turbines using computational fluid dynamic (CFD) methods. These methods are based on linearized two- and three-dimensional, unsteady, nonlinear aerodynamic equations. During the period of the grant, aeroelastic analysis that includes the effects of uncertainties in the design variables has also been developed.
Improved Aerodynamic Influence Coefficients for Dynamic Aeroelastic Analyses
NASA Astrophysics Data System (ADS)
Gratton, Patrice
2011-12-01
Currently at Bombardier Aerospace, aeroelastic analyses are performed using the Doublet Lattice Method (DLM) incorporated in the NASTRAN solver. This method proves to be very reliable and fast in preliminary design stages where wind tunnel experimental results are often not available. Unfortunately, the geometric simplifications and limitations of the DLM, based on the lifting surfaces theory, reduce the ability of this method to give reliable results for all flow conditions, particularly in transonic flow. Therefore, a new method has been developed involving aerodynamic data from high-fidelity CFD codes which solve the Euler or Navier-Stokes equations. These new aerodynamic loads are transmitted to the NASTRAN aeroelastic module through improved aerodynamic influence coefficients (AIC). A cantilevered wing model is created from the Global Express structural model and a set of natural modes is calculated for a baseline configuration of the structure. The baseline mode shapes are then combined with an interpolation scheme to deform the 3-D CFD mesh necessary for Euler and Navier-Stokes analyses. An uncoupled approach is preferred to allow aerodynamic information from different CFD codes. Following the steady state CFD analyses, pressure differences ( DeltaCp), calculated between the deformed models and the original geometry, lead to aerodynamic loads which are transferred to the DLM model. A modal-based AIC method is applied to the aerodynamic matrices of NASTRAN based on a least-square approximation to evaluate aerodynamic loads of a different wing configuration which displays similar types of mode shapes. The methodology developed in this research creates weighting factors based on steady CFD analyses which have an equivalent reduced frequency of zero. These factors are applied to both the real and imaginary part of the aerodynamic matrices as well as all reduced frequencies used in the PK-Method which solves flutter problems. The modal-based AIC method
A Numerical Model of Unsteady, Subsonic Aeroelastic Behavior. Ph.D Thesis
NASA Technical Reports Server (NTRS)
Strganac, Thomas W.
1987-01-01
A method for predicting unsteady, subsonic aeroelastic responses was developed. The technique accounts for aerodynamic nonlinearities associated with angles of attack, vortex-dominated flow, static deformations, and unsteady behavior. The fluid and the wing together are treated as a single dynamical system, and the equations of motion for the structure and flow field are integrated simultaneously and interactively in the time domain. The method employs an iterative scheme based on a predictor-corrector technique. The aerodynamic loads are computed by the general unsteady vortex-lattice method and are determined simultaneously with the motion of the wing. Because the unsteady vortex-lattice method predicts the wake as part of the solution, the history of the motion is taken into account; hysteresis is predicted. Two models are used to demonstrate the technique: a rigid wing on an elastic support experiencing plunge and pitch about the elastic axis, and an elastic wing rigidly supported at the root chord experiencing spanwise bending and twisting. The method can be readily extended to account for structural nonlinearities and/or substitute aerodynamic load models. The time domain solution coupled with the unsteady vortex-lattice method provides the capability of graphically depicting wing and wake motion.
Trailed vorticity modeling for aeroelastic wind turbine simulations in stand still
NASA Astrophysics Data System (ADS)
Pirrung, Georg; Madsen, Helge; Schreck, Scott
2016-09-01
Current fast aeroelastic wind turbine codes suitable for certification lack an induction model for standstill conditions. A trailed vorticity model previously used as addition to a blade element momentum theory based aerodynamic model in normal operation has been extended to allow computing the induced velocities in standstill. The model is validated against analytical results for an elliptical wing in constant inflow and against stand still measurements from the NREL/NASA Phase VI unsteady experiment. The extended model obtains good results in case of the elliptical wing, but underpredicts the steady loading for the Phase VI blade in attached flow. The prediction of the dynamic force coefficient loops from the Phase VI experiment is improved by the trailed vorticity modeling in both attached flow and stall in most cases. The exception is the tangential force coefficient in stall, where the codes and measurements deviate and no clear improvement is visible.
Trailed vorticity modeling for aeroelastic wind turbine simulations in stand still
Pirrung, Georg; Madsen, Helge; Schreck, Scott
2016-10-03
Current fast aeroelastic wind turbine codes suitable for certification lack an induction model for standstill conditions. A trailed vorticity model previously used as addition to a blade element momentum theory based aerodynamic model in normal operation has been extended to allow computing the induced velocities in standstill. The model is validated against analytical results for an elliptical wing in constant inflow and against stand still measurements from the NREL/NASA Phase VI unsteady experiment. The extended model obtains good results in case of the elliptical wing, but underpredicts the steady loading for the Phase VI blade in attached flow. The prediction of the dynamic force coefficient loops from the Phase VI experiment is improved by the trailed vorticity modeling in both attached flow and stall in most cases. The exception is the tangential force coefficient in stall, where the codes and measurements deviate and no clear improvement is visible.
Trailed vorticity modeling for aeroelastic wind turbine simulations in stand still
Pirrung, Georg; Madsen, Helge; Schreck, Scott
2016-10-03
Current fast aeroelastic wind turbine codes suitable for certification lack an induction model for standstill conditions. A trailed vorticity model previously used as addition to a blade element momentum theory based aerodynamic model in normal operation has been extended to allow computing the induced velocities in standstill. The model is validated against analytical results for an elliptical wing in constant inflow and against stand still measurements from the NREL/NASA Phase VI unsteady experiment. The extended model obtains good results in case of the elliptical wing, but underpredicts the steady loading for the Phase VI blade in attached flow. The predictionmoreÂ Â» of the dynamic force coefficient loops from the Phase VI experiment is improved by the trailed vorticity modeling in both attached flow and stall in most cases. The exception is the tangential force coefficient in stall, where the codes and measurements deviate and no clear improvement is visible.Â«Â less
Integrated aerodynamic/structural design of a sailplane wing
NASA Technical Reports Server (NTRS)
Grossman, B.; Gurdal, Z.; Haftka, R. T.; Strauch, G. J.; Eppard, W. M.
1986-01-01
Using lifting-line theory and beam analysis, the geometry (planiform and twist) and composite material structural sizes (skin thickness, spar cap, and web thickness) were designed for a sailplane wing, subject to both structural and aerodynamic constraints. For all elements, the integrated design (simultaneously designing the aerodynamics and the structure) was superior in terms of performance and weight to the sequential design (where the aerodynamic geometry is designed to maximize the performance, following which a structural/aeroelastic design minimizes the weight). Integrated designs produced less rigid, higher aspect ratio wings with favorable aerodynamic/structural interactions.
Aeroelastic Stability of a Four-Bladed Semi-Articulated Soft-Inplane Tiltrotor Model
NASA Technical Reports Server (NTRS)
Nixon, Mark W.; Langston, Chester W.; Singleton, Jeffrey D.; Piatak, David J.; Kvaternik, Raymond G.; Corso, Lawrence M.; Brown, Ross
2003-01-01
A new four-bladed, semi-articulated, soft-inplane rotor system, designed as a candidate for future heavy-lift rotorcraft, was tested at model scale on the Wing and Rotor Aeroelastic Testing System (WRATS), a 1/5-size aeroelastic wind-tunnel model based on the V-22. The experimental investigation included a hover test with the model in helicopter mode subject to ground resonance conditions, and a forward flight test with the model in airplane mode subject to whirl-flutter conditions. An active control system designed to augment system damping was also tested as part of this investigation. Results of this study indicate that the new four-bladed, soft-inplane rotor system in hover has adequate damping characteristics and is stable throughout its rotor-speed envelope. However, in airplane mode it produces very low damping in the key wing beam-bending mode, and has a low whirl-flutter stability boundary with respect to airspeed. The active control system was successful in augmenting the damping of the fundamental system modes, and was found to be robust with respect to changes in rotor-speed and airspeed. Finally, conversion-mode dynamic loads were measured on the rotor and these were found to be significantly lower for the new soft-inplane hub than for the previous baseline stiff-inplane hub.
Aeroelastic Stability of a Four-Bladed Semi-Articulated Soft-Inplane Tiltrotor Model
NASA Technical Reports Server (NTRS)
Nixon, Mark W.; Langston, Chester W.; Singleton, Jeffrey D.; Piatak, David J.; Kvaternik, Raymond G.; Corso, Lawrence M.; Brown, Ross K.
2003-01-01
A new four-bladed, semi-articulated, soft-inplane rotor system, designed as a candidate for future heavy-lift rotorcraft, was tested at model scale on the Wing and Rotor Aeroelastic Testing System (WRATS), a 1/5-size aeroelastic wind-tunnel model based on the V-22. The experimental investigation included a hover test with the model in helicopter mode subject to ground resonance conditions, and a forward flight test with the model in airplane mode subject to whirl-flutter conditions. An active control system designed to augment system damping was also tested as part of this investigation. Results of this study indicate that the new four-bladed, soft-inplane rotor system in hover has adequate damping characteristics and is stable throughout its rotor-speed envelope. However, in airplane mode it produces very low damping in the key wing beam-bending mode, and has a low whirl-flutter stability boundary with respect to airspeed. The active control system was successful in augmenting the damping of the fundamental system modes, and was found to be robust with respect to changes in rotor speed and airspeed. Finally, conversion-mode dynamic loads were measured on the rotor and these were found to be signi.cantly lower for the new soft-inplane hub than for the previous baseline stiff - inplane hub.
Effects of leading-edge tubercles on wing flutter speeds.
Ng, B F; New, T H; Palacios, R
2016-04-12
The dynamic aeroelastic effects on wings modified with bio-inspired leading-edge (LE) tubercles are examined in this study. We adopt a state-space aeroelastic model via the coupling of unsteady vortex-lattice method and a composite beam to evaluate stability margins as a result of LE tubercles on a generic wing. The unsteady aerodynamics and spanwise mass variations due to LE tubercles have counteracting effects on stability margins with the former having dominant influence. When coupled, flutter speed is observed to be 5% higher, and this is accompanied by close to 6% decrease in reduced frequencies as an indication of lower structural stiffness requirements for wings with LE tubercles. Both tubercle amplitude and wavelength have similar influences over the change in flutter speeds, and such modifications to the LE would have minimal effect on stability margins when concentrated inboard of the wing. Lastly, when used in sweptback wings, LE tubercles are observed to have smaller impacts on stability margins as the sweep angle is increased.
Computerized Analysis Of Helicopter-Rotor Aeroelasticity
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.
1988-01-01
Analysis of aeroelastic stability of helicopter rotor automated. Symbolic-manipulation program, HESL, written in FORTRAN, used to aid in derivation of government equations of motion for elastic-bladed rotor. Operates both on expressions and matrices. By transferring some burden of algebraic manipulations from human analyst to computer, program reduces tedium analysis and conequent opportunity for errors.
Aeroelastic Stability and Response of Rotating Structures
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr.; Reddy, T. S. R.
1998-01-01
A summary of the work performed from 1996 to 1997 is presented. More details can be found in the cited references. This grant led to the development of aeroelastic analyses methods for predicting flutter and forced response in fans, compressors, and turbines using computational
Aeroelastic Stability & Response of Rotating Structures
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr.; Reddy, T. S. R.
2001-01-01
A summary of the work performed under NASA grant NCC3-605 is presented. More details can be found in the cited references. This grant led to the development of relatively faster aeroelastic analyses methods for predicting flutter and forced response in fans, compressors, and turbines using computational fluid dynamic (CFD) methods.
Aeroelastic Analysis of Counter Rotation Fans
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr.; Murthy, Durbha V.
1997-01-01
Aeroelastic problems in turbomachinery and propfans can be static or dynamic in nature. The analysis of static aeroelastic problems is involved primarily with determination: (a) of the shape of the blades and the steady aerodynamic loads on the blades (which are inter-dependent), (b) of the resultant steady stresses and (c) of the static instability (divergence) margin, if applicable. In this project, we were concerned exclusively with dynamic aeroelastic behavior. The analysis of dynamic aeroelastic problems is involved with the determination: (a) of the unsteady aerodynamic loads on blades and the dynamic motion of the blades (which are again inter-dependent), (b) of the resultant dynamic stresses and their effect on fatigue life and (c) of the dynamic instability (flutter), if applicable. There are two primary dynamic aeroelastic phenomena of interest to designers of turbomachinery and propfans: flutter and forced response. Flutter generally refers to the occurrence of rapidly growing self-excited oscillations leading to catastrophic failure of the blade. When certain nonlinear phenomena are present, flutter response may lead to a potentially dangerous limit cycle oscillation rather than an immediate catastrophic failure. Forced response generally refers to the steady-state oscillations that occur as a consequence of excitations external to the rotor in question. These excitations typically result from the presence of upstream obstructions, inflow distortions, downstream obstructions, or mechanical sources such as tip-casing contact or shaft and gear meshing. Significant forced response leads to blade fatigue, and at design conditions, generally contributes to a degradation of blade life. At other operating conditions, forced response may lead to catastrophic failure due to severe blade fatigue in a short duration of time.
NASA Technical Reports Server (NTRS)
Skillen, Michael D.; Crossley, William A.
2008-01-01
This report documents a series of investigations to develop an approach for structural sizing of various morphing wing concepts. For the purposes of this report, a morphing wing is one whose planform can make significant shape changes in flight - increasing wing area by 50% or more from the lowest possible area, changing sweep 30 or more, and / or increasing aspect ratio by as much as 200% from the lowest possible value. These significant changes in geometry mean that the underlying load-bearing structure changes geometry. While most finite element analysis packages provide some sort of structural optimization capability, these codes are not amenable to making significant changes in the stiffness matrix to reflect the large morphing wing planform changes. The investigations presented here use a finite element code capable of aeroelastic analysis in three different optimization approaches -a "simultaneous analysis" approach, a "sequential" approach, and an "aggregate" approach.
Static Aeroelastic Analysis with an Inviscid Cartesian Method
NASA Technical Reports Server (NTRS)
Rodriguez, David L.; Aftosmis, Michael J.; Nemec, Marian; Smith, Stephen C.
2014-01-01
An embedded-boundary Cartesian-mesh flow solver is coupled with a three degree-offreedom structural model to perform static, aeroelastic analysis of complex aircraft geometries. The approach solves the complete system of aero-structural equations using a modular, loosely-coupled strategy which allows the lower-fidelity structural model to deform the highfidelity CFD model. The approach uses an open-source, 3-D discrete-geometry engine to deform a triangulated surface geometry according to the shape predicted by the structural model under the computed aerodynamic loads. The deformation scheme is capable of modeling large deflections and is applicable to the design of modern, very-flexible transport wings. The interface is modular so that aerodynamic or structural analysis methods can be easily swapped or enhanced. This extended abstract includes a brief description of the architecture, along with some preliminary validation of underlying assumptions and early results on a generic 3D transport model. The final paper will present more concrete cases and validation of the approach. Preliminary results demonstrate convergence of the complete aero-structural system and investigate the accuracy of the approximations used in the formulation of the structural model.
New Flutter Analysis Technique for CFD-based Unsteady Aeroelasticity
NASA Technical Reports Server (NTRS)
Pak, Chan-gi; Jutte, Christine V.
2009-01-01
This paper presents a flutter analysis technique for the transonic flight regime. The technique uses an iterative approach to determine the critical dynamic pressure for a given mach number. Unlike other CFD-based flutter analysis methods, each iteration solves for the critical dynamic pressure and uses this value in subsequent iterations until the value converges. This process reduces the iterations required to determine the critical dynamic pressure. To improve the accuracy of the analysis, the technique employs a known structural model, leaving only the aerodynamic model as the unknown. The aerodynamic model is estimated using unsteady aeroelastic CFD analysis combined with a parameter estimation routine. The technique executes as follows. The known structural model is represented as a finite element model. Modal analysis determines the frequencies and mode shapes for the structural model. At a given mach number and dynamic pressure, the unsteady CFD analysis is performed. The output time history of the surface pressure is converted to a nodal aerodynamic force vector. The forces are then normalized by the given dynamic pressure. A multi-input multi-output parameter estimation software, ERA, estimates the aerodynamic model through the use of time histories of nodal aerodynamic forces and structural deformations. The critical dynamic pressure is then calculated using the known structural model and the estimated aerodynamic model. This output is used as the dynamic pressure in subsequent iterations until the critical dynamic pressure is determined. This technique is demonstrated on the Aerostructures Test Wing-2 model at NASA's Dryden Flight Research Center.
Fuzzy Model-based Pitch Stabilization and Wing Vibration Suppression of Flexible Wing Aircraft.
NASA Technical Reports Server (NTRS)
Ayoubi, Mohammad A.; Swei, Sean Shan-Min; Nguyen, Nhan T.
2014-01-01
This paper presents a fuzzy nonlinear controller to regulate the longitudinal dynamics of an aircraft and suppress the bending and torsional vibrations of its flexible wings. The fuzzy controller utilizes full-state feedback with input constraint. First, the Takagi-Sugeno fuzzy linear model is developed which approximates the coupled aeroelastic aircraft model. Then, based on the fuzzy linear model, a fuzzy controller is developed to utilize a full-state feedback and stabilize the system while it satisfies the control input constraint. Linear matrix inequality (LMI) techniques are employed to solve the fuzzy control problem. Finally, the performance of the proposed controller is demonstrated on the NASA Generic Transport Model (GTM).
Design, testing, and damage tolerance study of bonded stiffened composite wing cover panels
NASA Technical Reports Server (NTRS)
Madan, Ram C.; Sutton, Jason O.
1988-01-01
Results are presented from the application of damage tolerance criteria for composite panels to multistringer composite wing cover panels developed under NASA's Composite Transport Wing Technology Development contract. This conceptual wing design integrated aeroelastic stiffness constraints with an enhanced damage tolerance material system, in order to yield optimized producibility and structural performance. Damage tolerance was demonstrated in a test program using full-sized cover panel subcomponents; panel skins were impacted at midbay between stiffeners, directly over a stiffener, and over the stiffener flange edge. None of the impacts produced visible damage. NASTRAN analyses were performed to simulate NDI-detected invisible damage.
NASA Technical Reports Server (NTRS)
Abel, I.; Newsom, J. R.
1981-01-01
Two flutter suppression control laws were synthesized, implemented, and tested on a low speed aeroelastic wing model of a DC-10 derivative. The methodology used to design the control laws is described. Both control laws demonstrated increases in flutter speed in excess of 25 percent above the passive wing flutter speed. The effect of variations in gain and phase on the closed loop performance was measured and compared with analytical predictions. The analytical results are in good agreement with experimental data.
NASA Technical Reports Server (NTRS)
Sevart, F. D.; Patel, S. M.; Wattman, W. J.
1972-01-01
Testing and evaluation of stability augmentation systems for aircraft flight control were conducted. The flutter suppression system analysis of a scale supersonic transport wing model is described. Mechanization of the flutter suppression system is reported. The ride control synthesis for the B-52 aeroelastic model is discussed. Model analyses were conducted using equations of motion generated from generalized mass and stiffness data.
Probabilistic Aeroelastic Analysis of Turbomachinery Components
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.; Mital, S. K.; Stefko, G. L.
2004-01-01
A probabilistic approach is described for aeroelastic analysis of turbomachinery blade rows. Blade rows with subsonic flow and blade rows with supersonic flow with subsonic leading edge are considered. To demonstrate the probabilistic approach, the flutter frequency, damping and forced response of a blade row representing a compressor geometry is considered. The analysis accounts for uncertainties in structural and aerodynamic design variables. The results are presented in the form of probabilistic density function (PDF) and sensitivity factors. For subsonic flow cascade, comparisons are also made with different probabilistic distributions, probabilistic methods, and Monte-Carlo simulation. The approach shows that the probabilistic approach provides a more realistic and systematic way to assess the effect of uncertainties in design variables on the aeroelastic instabilities and response.
Gust response of aeroelastically tailored wind turbines
NASA Astrophysics Data System (ADS)
Scott, S.; Capuzzi, M.; Langston, D.; Bossanyi, E.; McCann, G.; Weaver, PM; Pirrera, A.
2016-09-01
Some interesting challenges arise from the drive to build larger, more durable rotors that produce cheaper energy. The rationale is that, with current wind turbine designs, the power generated is theoretically proportional to the square of blade length. One enabling technology is aeroelastic tailoring that offers enhanced combined energy capture and system durability. The design of two adaptive, aeroelastically tailored blade configurations is considered here. One uses material bend-twist coupling; the other combines both material and geometric coupling. Each structural design meets a predefined coupling distribution, whilst approximately matching the stiffness of an uncoupled baseline blade. A gust analysis shows beneficial flapwise load alleviation for both adaptive blades, with the additional benefits of smoothing variations in electrical power and rotational speed.
Aeroelastic flutter produces hummingbird feather songs.
Clark, Christopher J; Elias, Damian O; Prum, Richard O
2011-09-09
During courtship flights, males of some hummingbird species produce diverse sounds with tail feathers of varying shapes. We show that these sounds are produced by air flowing past a feather, causing it to aeroelastically flutter and generate flutter-induced sound. Scanning laser doppler vibrometery and high-speed video of individual feathers of different sizes and shapes in a wind tunnel revealed multiple vibratory modes that produce a range of acoustic frequencies and harmonic structures. Neighboring feathers can be aerodynamically coupled and flutter either at the same frequency, resulting in sympathetic vibrations that increase loudness, or at different frequencies, resulting in audible interaction frequencies. Aeroelastic flutter is intrinsic to stiff airfoils such as feathers and thus explains tonal sounds that are common in bird flight.
Advanced Aeroelastic Technologies for Turbomachinery Application
NASA Technical Reports Server (NTRS)
DeWitt, Kenneth; Srivastava, Rakesh; Reddy, T. S. R.
2004-01-01
A summary of the work performed under the grant NCC-1068 is presented. More details can be found in the cited references. The summary is presented in two parts to represent two areas of research. In the first part, methods to analyze a high temperature ceramic guide vane subjected to cooling jets are presented, and in the second part, the effect of unsteady aerodynamic forces on aeroelastic stability as implemented into the turbo-REDUCE code are presented
Dynamics and Aeroelasticity of Composite Structures.
1987-04-22
UNCLASSIFIED/UNLIMITEO SAME AS aPT Z OTIC USERS C3UNCLASSIFIED 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22c. OFFICE SYMBOL flncliads A’Wa...support related dynamic instability which could be eliminated by 3roper adjustment of the sutnport stiffness. Good agreement with linear thoery was found...Aeroelastic analysis 38 2.3 Wind Tunnel Support Stability Analysis 40 Chapter 3 Experiment 50 3.1 Wind Tunnel Model, Support System, and 50
Overview of the Aeroelastic Prediction Workshop
NASA Technical Reports Server (NTRS)
Heeg, Jennifer; Chwalowski, Pawel; Florance, Jennifer P.; Wieseman, Carol D.; Schuster, David M.; Perry, Raleigh B.
2013-01-01
The Aeroelastic Prediction Workshop brought together an international community of computational fluid dynamicists as a step in defining the state of the art in computational aeroelasticity. This workshop's technical focus was prediction of unsteady pressure distributions resulting from forced motion, benchmarking the results first using unforced system data. The most challenging aspects of the physics were identified as capturing oscillatory shock behavior, dynamic shock-induced separated flow and tunnel wall boundary layer influences. The majority of the participants used unsteady Reynolds-averaged Navier Stokes codes. These codes were exercised at transonic Mach numbers for three configurations and comparisons were made with existing experimental data. Substantial variations were observed among the computational solutions as well as differences relative to the experimental data. Contributing issues to these differences include wall effects and wall modeling, non-standardized convergence criteria, inclusion of static aeroelastic deflection, methodology for oscillatory solutions, post-processing methods. Contributing issues pertaining principally to the experimental data sets include the position of the model relative to the tunnel wall, splitter plate size, wind tunnel expansion slot configuration, spacing and location of pressure instrumentation, and data processing methods.
NASA Technical Reports Server (NTRS)
Walker, H. J. (Inventor)
1981-01-01
An annular wing particularly suited for use in supporting in flight an aircraft characterized by the absence of directional stabilizing surfaces is described. The wing comprises a rigid annular body of a substantially uniformly symmetrical configuration characterized by an annular positive lifting surface and cord line coincident with the segment of a line radiating along the surface of an inverted truncated cone. A decalage is established for the leading and trailing semicircular portions of the body, relative to instantaneous line of flight, and a dihedral for the laterally opposed semicircular portions of the body, relative to the line of flight. The direction of flight and climb angle or glide slope angle are established by selectively positioning the center of gravity of the wing ahead of the aerodynamic center along the radius coincident with an axis for a selected line of flight.
Fiber-optically sensorized composite wing
NASA Astrophysics Data System (ADS)
Costa, Joannes M.; Black, Richard J.; Moslehi, Behzad; Oblea, Levy; Patel, Rona; Sotoudeh, Vahid; Abouzeida, Essam; Quinones, Vladimir; Gowayed, Yasser; Soobramaney, Paul; Flowers, George
2014-04-01
Electromagnetic interference (EMI) immune and light-weight, fiber-optic sensor based Structural Health Monitoring (SHM) will find increasing application in aerospace structures ranging from aircraft wings to jet engine vanes. Intelligent Fiber Optic Systems Corporation (IFOS) has been developing multi-functional fiber Bragg grating (FBG) sensor systems including parallel processing FBG interrogators combined with advanced signal processing for SHM, structural state sensing and load monitoring applications. This paper reports work with Auburn University on embedding and testing FBG sensor arrays in a quarter scale model of a T38 composite wing. The wing was designed and manufactured using fabric reinforced polymer matrix composites. FBG sensors were embedded under the top layer of the composite. Their positions were chosen based on strain maps determined by finite element analysis. Static and dynamic testing confirmed expected response from the FBGs. The demonstrated technology has the potential to be further developed into an autonomous onboard system to perform load monitoring, SHM and Non-Destructive Evaluation (NDE) of composite aerospace structures (wings and rotorcraft blades). This platform technology could also be applied to flight testing of morphing and aero-elastic control surfaces.
Applications of a transonic wing design method
NASA Technical Reports Server (NTRS)
Campbell, Richard L.; Smith, Leigh A.
1989-01-01
A method for designing wings and airfoils at transonic speeds using a predictor/corrector approach was developed. The procedure iterates between an aerodynamic code, which predicts the flow about a given geometry, and the design module, which compares the calculated and target pressure distributions and modifies the geometry using an algorithm that relates differences in pressure to a change in surface curvature. The modular nature of the design method makes it relatively simple to couple it to any analysis method. The iterative approach allows the design process and aerodynamic analysis to converge in parallel, significantly reducing the time required to reach a final design. Viscous and static aeroelastic effects can also be accounted for during the design or as a post-design correction. Results from several pilot design codes indicated that the method accurately reproduced pressure distributions as well as the coordinates of a given airfoil or wing by modifying an initial contour. The codes were applied to supercritical as well as conventional airfoils, forward- and aft-swept transport wings, and moderate-to-highly swept fighter wings. The design method was found to be robust and efficient, even for cases having fairly strong shocks.
NASA Technical Reports Server (NTRS)
Gardner, J. E.
1983-01-01
Accomplishments of the past year and plans for the coming year are highlighted as they relate to five year plans and the objectives of the following technical areas: aerothermal loads; multidisciplinary analysis and optimization; unsteady aerodynamics; and configuration aeroelasticity. Areas of interest include thermal protection system concepts, active control, nonlinear aeroelastic analysis, aircraft aeroelasticity, and rotorcraft aeroelasticity and vibrations.
Fluid-structure interaction in compliant insect wings.
Eberle, A L; Reinhall, P G; Daniel, T L
2014-06-01
Insect wings deform significantly during flight. As a result, wings act as aeroelastic structures wherein both the driving motion of the structure and the aerodynamic loading of the surrounding fluid potentially interact to modify wing shape. We explore two key issues associated with the design of compliant wings: over a range of driving frequencies and phases of pitch-heave actuation, how does wing stiffness influence (1) the lift and thrust generated and (2) the relative importance of fluid loading on the shape of the wing? In order to examine a wide range of parameters relevant to insect flight, we develop a computationally efficient, two-dimensional model that couples point vortex methods for fluid force computations with structural finite element methods to model the fluid-structure interaction of a wing in air. We vary the actuation frequency, phase of actuation, and flexural stiffness over a range that encompasses values measured for a number of insect taxa (10-90Â Hz; 0-Ï€ rad; 10(-7)-10(-5)Â NÂ m(2)). We show that the coefficients of lift and thrust are maximized at the first and second structural resonant frequencies of the system. We also show that even in regions of structural resonance, fluid loading never contributes more than 20% to the development of flight forces.
Structural Design Exploration of an Electric Powered Multi-Propulsor Wing Configuration
NASA Technical Reports Server (NTRS)
Moore, James B.; Cutright, Steve
2017-01-01
Advancements in aircraft electric propulsion may enable an expanded operational envelope for electrically powered vehicles compared to their internal combustion engine counterparts. High aspect ratio wings provide additional lift and drag reduction for a proposed multi-propulsor design, however, the challenge is to reduce the weight of wing structures while maintaining adequate structural and aeroelastic margins. Design exploration using a conventional design-and-build philosophy coupled with a finite element method (FEM)-based design of experiments (DOE) strategy are presented to examine high aspect ratio wing structures that have spanwise distributed electric motors. Multiple leading-edge-mounted engine masses presented a challenge to design a wing within acceptable limits for dynamic and aeroelastic stability. Because the first four primary bending eigenmodes of the proposed wing structure are very sensitive to outboard motor placement, safety-of-flight requirements drove the need for multiple spars, rib attachments, and outboard structural reinforcements in the design. Global aeroelasticity became an increasingly important design constraint during the on-going design process, with outboard motor pod flutter ultimately becoming a primary design constraint. Designers successively generated models to examine stress, dynamics, and aeroelasticity concurrently. This research specifically addressed satisfying multi-disciplinary design criteria to generate fluid-structure interaction solution sets, and produced high aspect ratio primary structure designs for the NASA Scalable Convergent Electric Propulsion Technology and Operations Research (SCEPTOR) project in the Aeronautic Research Mission Directorate at NASA. In this paper, a dynamics-driven, quasi-inverse design methodology is presented to address aerodynamic performance goals and structural challenges encountered for the SCEPTOR demonstrator vehicle. These results are compared with a traditional computer aided
Reduced-Order Models for the Aeroelastic Analysis of Ares Launch Vehicles
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Vatsa, Veer N.; Biedron, Robert T.
2010-01-01
This document presents the development and application of unsteady aerodynamic, structural dynamic, and aeroelastic reduced-order models (ROMs) for the ascent aeroelastic analysis of the Ares I-X flight test and Ares I crew launch vehicles using the unstructured-grid, aeroelastic FUN3D computational fluid dynamics (CFD) code. The purpose of this work is to perform computationally-efficient aeroelastic response calculations that would be prohibitively expensive via computation of multiple full-order aeroelastic FUN3D solutions. These efficient aeroelastic ROM solutions provide valuable insight regarding the aeroelastic sensitivity of the vehicles to various parameters over a range of dynamic pressures.
APPLE - An aeroelastic analysis system for turbomachines and propfans
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.; Bakhle, Milind A.; Srivastava, R.; Mehmed, Oral
1992-01-01
This paper reviews aeroelastic analysis methods for propulsion elements (advanced propellers, compressors and turbines) being developed and used at NASA Lewis Research Center. These aeroelastic models include both structural and aerodynamic components. The structural models include the typical section model, the beam model with and without disk flexibility, and the finite element blade model with plate bending elements. The aerodynamic models are based on the solution of equations ranging from the two-dimensional linear potential equation for a cascade to the three-dimensional Euler equations for multi-blade configurations. Typical results are presented for each aeroelastic model. Suggestions for further research are indicated. All the available aeroelastic models and analysis methods are being incorporated into a unified computer program named APPLE (Aeroelasticity Program for Propulsion at LEwis).
Unsteady Aerodynamic Validation Experiences From the Aeroelastic Prediction Workshop
NASA Technical Reports Server (NTRS)
Heeg, Jennifer; Chawlowski, Pawel
2014-01-01
The AIAA Aeroelastic Prediction Workshop (AePW) was held in April 2012, bringing together communities of aeroelasticians, computational fluid dynamicists and experimentalists. The extended objective was to assess the state of the art in computational aeroelastic methods as practical tools for the prediction of static and dynamic aeroelastic phenomena. As a step in this process, workshop participants analyzed unsteady aerodynamic and weakly-coupled aeroelastic cases. Forced oscillation and unforced system experiments and computations have been compared for three configurations. This paper emphasizes interpretation of the experimental data, computational results and their comparisons from the perspective of validation of unsteady system predictions. The issues examined in detail are variability introduced by input choices for the computations, post-processing, and static aeroelastic modeling. The final issue addressed is interpreting unsteady information that is present in experimental data that is assumed to be steady, and the resulting consequences on the comparison data sets.
Gooding, Benjamin W. T.; Geoghegan, John M.; Wallace, W. Angus; Manning, Paul A.
2013-01-01
This review explores the causes of scapula winging, with overview of the relevant anatomy, proposed aetiology and treatment. Particular focus is given to lesions of the long thoracic nerve, which is reported to be the most common aetiological factor. PMID:27582902
NASA Technical Reports Server (NTRS)
Montoya, L. C.; Jacobs, P.; Flechner, S.; Sims, R.
1982-01-01
A full-scale winglet flight test on a KC-135 airplane with an upper winglet was conducted. Data were taken at Mach numbers from 0.70 to 0.82 at altitudes from 34,000 feet to 39,000 feet at stabilized flight conditions for wing/winglet configurations of basic wing tip, 15/-4 deg, 15/-2 deg, and 0/-4 deg winglet cant/incidence. An analysis of selected pressure distribution and data showed that with the basic wing tip, the flight and wind tunnel wing pressure distribution data showed good agreement. With winglets installed, the effects on the wing pressure distribution were mainly near the tip. Also, the flight and wind tunnel winglet pressure distributions had some significant differences primarily due to the oilcanning in flight. However, in general, the agreement was good. For the winglet cant and incidence configuration presented, the incidence had the largest effect on the winglet pressure distributions. The incremental flight wing deflection data showed that the semispan wind tunnel model did a reasonable job of simulating the aeroelastic effects at the wing tip. The flight loads data showed good agreement with predictions at the design point and also substantiated the predicted structural penalty (load increase) of the 15 deg cant/-2 deg incidence winglet configuration.
Proposed Wind Turbine Aeroelasticity Studies Using Helicopter Systems Analysis
NASA Technical Reports Server (NTRS)
Ladkany, Samaan G.
1998-01-01
Advanced systems for the analysis of rotary wing aeroelastic structures (helicopters) are being developed at NASA Ames by the Rotorcraft Aeromechanics Branch, ARA. The research has recently been extended to the study of wind turbines, used for electric power generation Wind turbines play an important role in Europe, Japan & many other countries because they are non polluting & use a renewable source of energy. European countries such as Holland, Norway & France have been the world leaders in the design & manufacture of wind turbines due to their historical experience of several centuries, in building complex wind mill structures, which were used in water pumping, grain grinding & for lumbering. Fossil fuel cost in Japan & in Europe is two to three times higher than in the USA due to very high import taxes. High fuel cost combined with substantial governmental subsidies, allow wind generated power to be competitive with the more traditional sources of power generation. In the USA, the use of wind energy has been limited mainly because power production from wind is twice as expensive as from other traditional sources. Studies conducted at the National Renewable Energy Laboratories (NREL) indicate that the main cost in the production of wind turbines is due to the materials & the labor intensive processes used in the construction of turbine structures. Thus, for the US to assume world leadership in wind power generation, new lightweight & consequently very flexible wind turbines, that could be economically mass produced, would have to be developed [4,5]. This effort, if successful, would result in great benefit to the US & the developing nations that suffer from overpopulation & a very high cost of energy.
NASA Technical Reports Server (NTRS)
Heeg, Jennifer; Gilbert, Michael G.; Pototzky, Anthony S.
1990-01-01
This work-in-progress presentation describes an ongoing research activity at the NASA Langley Research Center to develop analytical methods for the prediction of aerothermoelastic stability of hypersonic aircraft including active control systems. The objectives of this research include application of aerothermal loads to the structural finite element model, determination of the thermal effects on flutter, and assessment of active controls technology applied to overcome any potential adverse aeroelastic stability or response problems due to aerodynamic heating- namely flutter suppression and ride quality improvement. For this study, a generic hypersonic aircraft configuration was selected which incorporates wing flaps, ailerons and all-moveable fins to be used for active control purposes. The active control systems would use onboard sensors in a feedback loop through the aircraft flight control computers to move the surfaces for improved structural dynamic response as the aircraft encounters atmospheric turbulence.
Evaluation of an aeroelastic model technique for predicting airplane buffet loads
NASA Technical Reports Server (NTRS)
Hanson, P. W.
1973-01-01
A wind-tunnel technique which makes use of a dynamically scaled aeroelastic model to predict full-scale airplane buffet loads during buffet boundary penetration is evaluated. A 1/8-scale flutter model of a fighter airplane with remotely controllable variable-sweep wings and trimming surfaces was used for the evaluation. The model was flown on a cable-mount system which permitted high lift forces comparable to those in maneuvering flight. Bending moments and accelerations due to buffet were measured on the flutter model and compared with those measured on the full-scale airplane in an independent flight buffet research study. It is concluded that the technique can provide valuable information on airplane buffet load characteristics not available from any other source except flight test.
Priddy, Tommy G.
1988-01-01
An inflatable wing is formed from a pair of tapered, conical inflatable tubes in bonded tangential contact with each other. The tubes are further connected together by means of top and bottom reinforcement boards having corresponding longitudinal edges lying in the same central diametral plane passing through the associated tube. The reinforcement boards are made of a stiff reinforcement material, such as Kevlar, collapsible in a direction parallel to the spanwise wing axis upon deflation of the tubes. The stiff reinforcement material cooperates with the inflated tubes to impart structural I-beam characteristics to the composite structure for transferring inflation pressure-induced tensile stress from the tubes to the reinforcement boards. A plurality of rigid hoops shaped to provide airfoil definition are spaced from each other along the spanwise axis and are connected to the top and bottom reinforcement boards. Tension lines are employed for stabilizing the hoops along the trailing and leading edges thereof.
Applications of the unsteady vortex-lattice method in aircraft aeroelasticity and flight dynamics
NASA Astrophysics Data System (ADS)
Murua, Joseba; Palacios, Rafael; Graham, J. Michael R.
2012-11-01
The unsteady vortex-lattice method provides a medium-fidelity tool for the prediction of non-stationary aerodynamic loads in low-speed, but high-Reynolds-number, attached flow conditions. Despite a proven track record in applications where free-wake modelling is critical, other less-computationally expensive potential-flow models, such as the doublet-lattice method and strip theory, have long been favoured in fixed-wing aircraft aeroelasticity and flight dynamics. This paper presents how the unsteady vortex-lattice method can be implemented as an enhanced alternative to those techniques for diverse situations that arise in flexible-aircraft dynamics. A historical review of the methodology is included, with latest developments and practical applications. Different formulations of the aerodynamic equations are outlined, and they are integrated with a nonlinear beam model for the full description of the dynamics of a free-flying flexible vehicle. Nonlinear time-marching solutions capture large wing excursions and wake roll-up, and the linearisation of the equations lends itself to a seamless, monolithic state-space assembly, particularly convenient for stability analysis and flight control system design. The numerical studies emphasise scenarios where the unsteady vortex-lattice method can provide an advantage over other state-of-the-art approaches. Examples of this include unsteady aerodynamics in vehicles with coupled aeroelasticity and flight dynamics, and in lifting surfaces undergoing complex kinematics, large deformations, or in-plane motions. Geometric nonlinearities are shown to play an instrumental, and often counter-intuitive, role in the aircraft dynamics. The unsteady vortex-lattice method is unveiled as a remarkable tool that can successfully incorporate all those effects in the unsteady aerodynamics modelling.
Flutter of wings involving a locally distributed flexible control surface
NASA Astrophysics Data System (ADS)
Mozaffari-Jovin, S.; Firouz-Abadi, R. D.; Roshanian, J.
2015-11-01
This paper undertakes to facilitate appraisal of aeroelastic interaction of a locally distributed, flap-type control surface with aircraft wings operating in a subsonic potential flow field. The extended Hamilton's principle serves as a framework to ascertain the Euler-Lagrange equations for coupled bending-torsional-flap vibration. An analytical solution to this boundary-value problem is then accomplished by assumed modes and the extended Galerkin's method. The developed aeroelastic model considers both the inherent flexibility of the control surface displaced on the wing and the inertial coupling between these two flexible bodies. The structural deformations also obey the Euler-Bernoulli beam theory, along with the Kelvin-Voigt viscoelastic constitutive law. Meanwhile, the unsteady thin-airfoil and strip theories are the tools of producing the three-dimensional airloads. The origin of aerodynamic instability undergoes analysis in light of the oscillatory loads as well as the loads owing to arbitrary motions. After successful verification of the model, a systematic flutter survey was conducted on the theoretical effects of various control surface parameters. The results obtained demonstrate that the flapping modes and parameters of the control surface can significantly impact the flutter characteristics of the wings, which leads to a series of pertinent conclusions.
NASA Technical Reports Server (NTRS)
Kulfan, R. M.; Neumann, F. D.; Nisbet, J. W.; Mulally, A. R.; Murakami, J. K.; Noble, E. C.; Mcbarron, J. P.; Stalter, J. L.; Gimmestad, D. W.; Sussman, M. B.
1973-01-01
An initial design study of high-transonic-speed transport aircraft has been completed. Five different design concepts were developed. These included fixed swept wing, variable-sweep wing, delta wing, double-fuselage yawed-wing, and single-fuselage yawed-wing aircraft. The boomless supersonic design objectives of range=5560 Km (3000 nmi), payload-18 143 kg (40 000lb), Mach=1.2, and FAR Part 36 aircraft noise levels were achieved by the single-fuselage yawed-wing configuration with a gross weight of 211 828 Kg (467 000 lb). A noise level of 15 EPNdB below FAR Part 36 requirements was obtained with a gross weight increase to 226 796 Kg (500 000 lb). Although wing aeroelastic divergence was a primary design consideration for the yawed-wing concepts, the graphite-epoxy wings of this study were designed by critical gust and maneuver loads rather than by divergence requirements. The transonic nacelle drag is shown to be very sensitive to the nacelle installation. A six-degree-of-freedom dynamic stability analysis indicated that the control coordination and stability augmentation system would require more development than for a symmetrical airplane but is entirely feasible. A three-phase development plan is recommended to establish the full potential of the yawed-wing concept.
NASA Technical Reports Server (NTRS)
Kvaternik, Raymond G.; Piatak, David J.; Nixon, Mark W.; Langston, Chester W.; Singleton, Jeffrey D.; Bennett, Richard L.; Brown, Ross K.
2001-01-01
The results of a joint NASA/Army/Bell Helicopter Textron wind-tunnel test to assess the potential of Generalized Predictive Control (GPC) for actively controlling the swashplate of tiltrotor aircraft to enhance aeroelastic stability in the airplane mode of flight are presented. GPC is an adaptive time-domain predictive control method that uses a linear difference equation to describe the input-output relationship of the system and to design the controller. The test was conducted in the Langley Transonic Dynamics Tunnel using an unpowered 1/5-scale semispan aeroelastic model of the V-22 that was modified to incorporate a GPC-based multi-input multi-output control algorithm to individually control each of the three swashplate actuators. Wing responses were used for feedback. The GPC-based control system was highly effective in increasing the stability of the critical wing mode for all of the conditions tested, without measurable degradation of the damping in the other modes. The algorithm was also robust with respect to its performance in adjusting to rapid changes in both the rotor speed and the tunnel airspeed.
Study of the single body yawed-wing aircraft concept
NASA Technical Reports Server (NTRS)
Kulfan, R. M.; Nisbet, J. W.; Neuman, F. D.; Hamilton, E. J.; Murakami, J. K.; Mcbarron, J. P.; Kumasaka, K.
1974-01-01
Areas relating to the development and improvement of the single-fuselage, yawed-wing transonic transport concept were investigated. These included: (1) developing an alternate configuration with a simplified engine installation;(2) determining a structural design speed placard that would allow the engine-airframe match for optimum airplane performance; and (3) conducting an aeroelastic stability and control analysis of the yawed-wing configuration with a flexible wing. A two-engine, single-fuselage, yawed-wing configuration was developed that achieved the Mach 1.2 design mission at 5560 km (3000 nmi) and payload of 18,140 kg (40,000 lb) with a gross weight of 217,700 kg (480,000 lb). This airplane was slightly heavier than the aft-integrated four-engine configuration that had been developed in a previous study. A modified structural design speed placard, which was determined, resulted in a 6% to 8% reduction in the gross weight of the yawed-wing configurations. The dynamic stability characteristics of the single-fuselage yawed-wing configuration were found to be very dependent on the magnitude of the pitch/roll coupling, the static longitudinal stability, and the dihedral effect.
Computational Aeroelastic Analysis of the Ares Launch Vehicle During Ascent
NASA Technical Reports Server (NTRS)
Bartels, Robert E.; Chwalowski, Pawel; Massey, Steven J.; Vatsa, Veer N.; Heeg, Jennifer; Wieseman, Carol D.; Mineck, Raymond E.
2010-01-01
This paper presents the static and dynamic computational aeroelastic (CAE) analyses of the Ares crew launch vehicle (CLV) during atmospheric ascent. The influence of launch vehicle flexibility on the static aerodynamic loading and integrated aerodynamic force and moment coefficients is discussed. The ultimate purpose of this analysis is to assess the aeroelastic stability of the launch vehicle along the ascent trajectory. A comparison of analysis results for several versions of the Ares CLV will be made. Flexible static and dynamic analyses based on rigid computational fluid dynamic (CFD) data are compared with a fully coupled aeroelastic time marching CFD analysis of the launch vehicle.
Computational Aeroelastic Analyses of a Low-Boom Supersonic Configuration
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Sanetrik, Mark D.; Chwalowski, Pawel; Connolly, Joseph
2015-01-01
An overview of NASA's Commercial Supersonic Technology (CST) Aeroservoelasticity (ASE) element is provided with a focus on recent computational aeroelastic analyses of a low-boom supersonic configuration developed by Lockheed-Martin and referred to as the N+2 configuration. The overview includes details of the computational models developed to date including a linear finite element model (FEM), linear unsteady aerodynamic models, unstructured CFD grids, and CFD-based aeroelastic analyses. In addition, a summary of the work involving the development of aeroelastic reduced-order models (ROMs) and the development of an aero-propulso-servo-elastic (APSE) model is provided.
Aeroelastic simulation of higher harmonic control
NASA Technical Reports Server (NTRS)
Robinson, Lawson H.; Friedmann, Peretz P.
1994-01-01
This report describes the development of an aeroelastic analysis of a helicopter rotor and its application to the simulation of helicopter vibration reduction through higher harmonic control (HHC). An improved finite-state, time-domain model of unsteady aerodynamics is developed to capture high frequency aerodynamic effects. An improved trim procedure is implemented which accounts for flap, lead-lag, and torsional deformations of the blade. The effect of unsteady aerodynamics is studied and it is found that its impact on blade aeroelastic stability and low frequency response is small, but it has a significant influence on rotor hub vibrations. Several different HHC algorithms are implemented on a hingeless rotor and their effectiveness in reducing hub vibratory shears is compared. All the controllers are found to be quite effective, but very differing HHC inputs are required depending on the aerodynamic model used. Effects of HHC on rotor stability and power requirements are found to be quite small. Simulations of roughly equivalent articulated and hingeless rotors are carried out, and it is found that hingeless rotors can require considerably larger HHC inputs to reduce vibratory shears. This implies that the practical implementation of HHC on hingeless rotors might be considerably more difficult than on articulated rotors.
Aeroelastic Modeling of a Nozzle Startup Transient
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen
2014-01-01
Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a tightly coupled aeroelastic modeling algorithm by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed under the framework of modal analysis. Transient aeroelastic nozzle startup analyses at sea level were performed, and the computed transient nozzle fluid-structure interaction physics presented,
AEROELASTIC SIMULATION TOOL FOR INFLATABLE BALLUTE AEROCAPTURE
NASA Technical Reports Server (NTRS)
Liever, P. A.; Sheta, E. F.; Habchi, S. D.
2006-01-01
A multidisciplinary analysis tool is under development for predicting the impact of aeroelastic effects on the functionality of inflatable ballute aeroassist vehicles in both the continuum and rarefied flow regimes. High-fidelity modules for continuum and rarefied aerodynamics, structural dynamics, heat transfer, and computational grid deformation are coupled in an integrated multi-physics, multi-disciplinary computing environment. This flexible and extensible approach allows the integration of state-of-the-art, stand-alone NASA and industry leading continuum and rarefied flow solvers and structural analysis codes into a computing environment in which the modules can run concurrently with synchronized data transfer. Coupled fluid-structure continuum flow demonstrations were conducted on a clamped ballute configuration. The feasibility of implementing a DSMC flow solver in the simulation framework was demonstrated, and loosely coupled rarefied flow aeroelastic demonstrations were performed. A NASA and industry technology survey identified CFD, DSMC and structural analysis codes capable of modeling non-linear shape and material response of thin-film inflated aeroshells. The simulation technology will find direct and immediate applications with NASA and industry in ongoing aerocapture technology development programs.
Development of a composite tailoring procedure for airplane wing
NASA Technical Reports Server (NTRS)
Chattopadhyay, Aditi; Zhang, Sen
1995-01-01
The development of a composite wing box section using a higher order-theory is proposed for accurate and efficient estimation of both static and dynamic responses. The theory includes the effect of through-the-thickness transverse shear deformations which is important in laminated composites and is ignored in the classical approach. The box beam analysis is integrated with an aeroelastic analysis to investigate the effect of composite tailoring using a formal design optimization technique. A hybrid optimization procedure is proposed for addressing both continuous and discrete design variables.
NASA Technical Reports Server (NTRS)
Mullen, J., Jr.
1978-01-01
The implementation of the changes to the program for Wing Aeroelastic Design and the development of a program to estimate aircraft fuselage weights are described. The equations to implement the modified planform description, the stiffened panel skin representation, the trim loads calculation, and the flutter constraint approximation are presented. A comparison of the wing model with the actual F-5A weight material distributions and loads is given. The equations and program techniques used for the estimation of aircraft fuselage weights are described. These equations were incorporated as a computer code. The weight predictions of this program are compared with data from the C-141.
Transonic Unsteady Aerodynamics and Aeroelasticity 1987, part 1
NASA Technical Reports Server (NTRS)
Bland, Samuel R. (Compiler)
1989-01-01
Computational fluid dynamics methods have been widely accepted for transonic aeroelastic analysis. Previously, calculations with the TSD methods were used for 2-D airfoils, but now the TSD methods are applied to the aeroelastic analysis of the complete aircraft. The Symposium papers are grouped into five subject areas, two of which are covered in this part: (1) Transonic Small Disturbance (TSD) theory for complete aircraft configurations; and (2) Full potential and Euler equation methods.
Activities in Aeroelasticity at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Perry, Boyd, III; Noll, Thomas E.
1997-01-01
This paper presents the results of recently-completed research and presents status reports of current research being performed within the Aeroelasticity Branch of the NASA Langley Research Center. Within the paper this research is classified as experimental, analytical, and theoretical aeroelastic research. The paper also describes the Langley Transonic Dynamics Tunnel, its features, capabilities, a new open-architecture data acquisition system, ongoing facility modifications, and the subsequent calibration of the facility.
2005 PathfinderPlus Aero-Elastic Research Flight
NASA Technical Reports Server (NTRS)
Navarro, Robert
2005-01-01
This viewgraph presentation describes the 2005 Pathfinder along with an investigation of its aeroelastic responses. The contents include: 1) HALE Class of Vehicles; 2) Aero-elastic Research Flights Overall Objective; 3) General Arrangement; 4) Sensor Locations; 5) NASA Ramp Operations; 6) Lakebed Operations; 7) 1st Flight Data Set; 8) Tool development / data usage; 9) HALE Tool Development & Validation; 10) Building a HALE Foundation; 11) Compelling Needs Drive HALE Efforts; and 12) Team Photo
Triboelectret-based aeroelastic flutter energy harvesters
NASA Astrophysics Data System (ADS)
Perez, Matthias; Boisseau, Sebastien; Geisler, Matthias; Despesse, Ghislain; Reboud, Jean Luc
2016-11-01
This paper highlights some experimental results on several electrostatic membranes tested in a wind tunnel between 0 and 20m.s-1 for airflow energy harvesting. The main idea is to use the aeroelastic behavior of thin flexible films to induce simultaneously the capacitance variations and the polarization required by the triboelectric/electrostatic conversion. This technology provides thin and flexible devices and avoids the issue of electrets discharge. Our prototypes (<16cm2) allowed a quick startup (from 3ms-1), an electrical power-flux density from 0.1Î¼W.cm-2 to 60Î¼W.cm-2. In order to complete the energy harvesting chain, we have used a wireless sensor with temperature and acceleration measures coupled to a low power transmission (Bluetooth Low Energy) with reception on a smartphone.
Transonic aeroelasticity analysis for rotor blades
NASA Technical Reports Server (NTRS)
Chow, Chuen-Yen; Chang, I-Chung; Gea, Lie-Mine
1989-01-01
A numerical method is presented for calculating the unsteady transonic rotor flow with aeroelasticity effects. The blade structural dynamic equations based on beam theory were formulated by FEM and were solved in the time domain, instead of the frequency domain. For different combinations of precone, droop, and pitch, the correlations are very good in the first three flapping modes and the first twisting mode. However, the predicted frequencies are too high for the first lagging mode at high rotational speeds. This new structure code has been coupled into a transonic rotor flow code, TFAR2, to demonstrate the capability of treating elastic blades in transonic rotor flow calculations. The flow fields for a model-scale rotor in both hover and forward flight are calculated. Results show that the blade elasticity significantly affects the flow characteristics in forward flight.
Investigation and suppression of high dynamic response encountered on an elastic supercritical wing
NASA Technical Reports Server (NTRS)
Seidel, David A.; Adams, William M., Jr.; Eckstrom, Clinton V.; Sandford, Maynard C.
1989-01-01
The DAST Aeroelastic Research Wing had been previously in the NASA Langley TDT and an unusual instability boundary was predicted based upon supercritical response data. Contrary to the predictions, no instability was found during the present test. Instead a region of high dynamic wing response was observed which reached a maximum value between Mach numbers 0.92 and 0.93. The amplitude of the dynamic response increased directly with dynamic pressure. The reponse appears to be related to chordwise shock movement in conjunction with flow separation and reattachment on the upper and lower wing surfaces. The onset of flow separation coincided with the occurrence of strong shocks on a surface. A controller was designed to suppress the wing response. The control law attenuated the response as compared with the uncontrolled case and added a small but significant amount of damping for the lower density condition.
Unsteady fluid-structure interactions with a heaving compliant membrane wing
NASA Astrophysics Data System (ADS)
Alon Tzezana, Gali; Breuer, Kenneth
2016-11-01
Membrane wings have been shown to provide some benefits over rigid wings at the low Reynolds number regime (Re 103 to 105), specifically improved thrust in flapping flight. Here we present results from a theoretical framework used to characterize the unsteady aeroelastic behavior of compliant membrane wings executing a heaving motion. An analytical model is developed using 2D unsteady thin airfoil theory, coupled with an unsteady membrane equation. Chebyshev collocation methods are used to solve the coupled system efficiently. The model is used to explore the effects of wing compliance, inertia (including added mass effect) and flapping kinematics on the aerodynamic performance, identifying optimal conditions for maximum thrust and propulsive efficiency. A resonant frequency of the coupled system is identified and characterized for different fluid-structure interaction regimes. Extensions to pitching kinematics are also discussed.
Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings.
Wu, P; Stanford, B K; SÃ¤llstrÃ¶m, E; Ukeiley, L; Ifju, P G
2011-03-01
Flapping wing flight as seen in hummingbirds and insects poses an interesting unsteady aerodynamic problem: coupling of wing kinematics, structural dynamics and aerodynamics. There have been numerous studies on the kinematics and aerodynamics in both experimental and computational cases with both natural and artificial wings. These studies tend to ignore wing flexibility; however, observation in nature affirms that passive wing deformation is predominant and may be crucial to the aerodynamic performance. This paper presents a multidisciplinary experimental endeavor in correlating a flapping micro air vehicle wing's aeroelasticity and thrust production, by quantifying and comparing overall thrust, structural deformation and airflow of six pairs of hummingbird-shaped membrane wings of different properties. The results show that for a specific spatial distribution of flexibility, there is an effective frequency range in thrust production. The wing deformation at the thrust-productive frequencies indicates the importance of flexibility: both bending and twisting motion can interact with aerodynamic loads to enhance wing performance under certain conditions, such as the deformation phase and amplitude. By measuring structural deformations under the same aerodynamic conditions, beneficial effects of passive wing deformation can be observed from the visualized airflow and averaged thrust. The measurements and their presentation enable observation and understanding of the required structural properties for a thrust effective flapping wing. The intended passive responses of the different wings follow a particular pattern in correlation to their aerodynamic performance. Consequently, both the experimental technique and data analysis method can lead to further studies to determine the design principles for micro air vehicle flapping wings.
NASA Astrophysics Data System (ADS)
FÃ¶rsching, H.; Knaack, J. M.
1993-08-01
A parametric investigation is performed of the aeroelastic flutter stability behaviour of a semi-rigid 3-D wing-with-engine nacelle model in subsonic flow. The system under investigation is a wind tunnel model that was flutter tested some years ago. It consists of a swept-back half wing with a pylon-mounted engine nacelle, representative of modern large transport aircraft, and is elastically restrained at its wing root, so that it may execute decoupled (rigid body) rolling and pitching oscillations about two orthogonal axes. For this binary aeroelastic system, first the equations of motion and then the aeroelastic stability equations are set up in terms of generalized coordinates. In addition to the basic wind tunnel model configuration, two artificial configurations with other positions of the rotation axes and corresponding mode shapes are investigated. For the computation of the motion-induced generalized airloads, a panel technique is used for both the wing and the engine nacelle that is replaced by an annular wing. Numerical results are presented for several systematic parameter variations and Mach numbers, where special emphasis is placed on the effects of the motion-induced unsteady airloads acting on the engine nacelle, the position of the rotation axes, and the frequency ratio of the two modes in roll and pitch. Moreover, a comparison is made with some wind tunnel test results.
AD-1 multiple exposure showing wing sweep
NASA Technical Reports Server (NTRS)
1980-01-01
This photograph is a multiple exposure showing the AD-1 aircraft with its wing swept at different angles between zero and 60 degrees. The Ames-Dryden-1 (AD-1) aircraft was designed to investigate the concept of an oblique (pivoting) wing. The wing could be rotated on its center pivot, so that it could be set at its most efficient angle for the speed at which the aircraft was flying. NASA Ames Research Center Aeronautical Engineer Robert T. Jones conceived the idea of an oblique wing. His wind tunnel studies at Ames (Moffett Field, CA) indicated that an oblique wing design on a supersonic transport might achieve twice the fuel economy of an aircraft with conventional wings. The oblique wing on the AD-1 pivoted about the fuselage, remaining perpendicular to it during slow flight and rotating to angles of up to 60 degrees as aircraft speed increased. Analytical and wind tunnel studiesthat Jones conducted at Ames indicated that a transport-sized oblique-wing aircraft flying at speeds of up to Mach 1.4 (1.4 times the speed of sound) would have substantially better aerodynamic performance than aircraft with conventional wings. The AD-1 structure allowed the project to complete all of its technical objectives. The type of low-speed, low-cost vehicle - as expected - exhibited aeroelastic and pitch-roll-coupling effects that contributed to poor handling at sweep angles above 45 degrees. The fiberglass structure limited the wing stiffness that would have improved the handling qualities. Thus, after completion of the AD-1 project, there was still a need for a transonic oblique-wing research aircraft to assess the effects of compressibility, evaluate a more representative structure, and analyze flight performance at transonic speeds (those on either side of the speed of sound). The aircraft was delivered to the Dryden Flight Research Center, Edwards, CA, in March 1979 and its first flight was on December 21, 1979. Piloting the aircraft on that flight, as well as on its last
Numerical Investigations of the Benchmark Supercritical Wing in Transonic Flow
NASA Technical Reports Server (NTRS)
Chwalowski, Pawel; Heeg, Jennifer; Biedron, Robert T.
2017-01-01
This paper builds on the computational aeroelastic results published previously and generated in support of the second Aeroelastic Prediction Workshop for the NASA Benchmark Supercritical Wing (BSCW) configuration. The computational results are obtained using FUN3D, an unstructured grid Reynolds-Averaged Navier-Stokes solver developed at the NASA Langley Research Center. The analysis results show the effects of the temporal and spatial resolution, the coupling scheme between the flow and the structural solvers, and the initial excitation conditions on the numerical flutter onset. Depending on the free stream condition and the angle of attack, the above parameters do affect the flutter onset. Two conditions are analyzed: Mach 0.74 with angle of attack 0 and Mach 0.85 with angle of attack 5. The results are presented in the form of the damping values computed from the wing pitch angle response as a function of the dynamic pressure or in the form of dynamic pressure as a function of the Mach number.
Wing flutter boundary prediction using unsteady Euler aerodynamic method
NASA Technical Reports Server (NTRS)
Lee-Rausch, Elizabeth M.; Batina, John T.
1993-01-01
Modifications to an existing 3D implicit upwind Euler/Navier-Stokes code for the aeroelastic analysis of wings are described. These modifications include the incorporation of a deforming mesh algorithm and the addition of the structural equations of motion for their simultaneous time-integration with the governing flow equations. The paper gives a brief description of these modifications and presents unsteady calculations which check the modifications to the code. Euler flutter results for an isolated 45 deg swept-back wing are compared with experimental data for seven freestream Mach numbers which define the flutter boundary over a range of Mach number from 0.499 to 1.14. These comparisons show good agreement in flutter characteristics for freestream Mach numbers below unity. For freestream Mach numbers above unity, the computed aeroelastic results predict a premature rise in the flutter boundary as compared with the experimental boundary. Steady and unsteady contours of surface Mach number and pressure are included to illustrate the basic flow characteristics of the time-marching flutter calculations and to aid in identifying possible causes for the premature rise in the computational flutter boundary.
Wing flutter boundary prediction using an unsteady Euler aerodynamic method
NASA Technical Reports Server (NTRS)
Lee-Rausch, Elizabeth M.; Batina, John T.
1993-01-01
Modifications to an existing three-dimensional, implicit, upwind Euler/Navier-Stokes code (CFL3D Version 2.1) for the aeroelastic analysis of wings are described. These modifications, which were previously added to CFL3D Version 1.0, include the incorporation of a deforming mesh algorithm and the addition of the structural equations of motion for their simultaneous time-integration with the government flow equations. The paper gives a brief description of these modifications and presents unsteady calculations which check the modifications to the code. Euler flutter results for an isolated 45 degree swept-back wing are compared with experimental data for seven freestream Mach numbers which define the flutter boundary over a range of Mach number from 0.499 to 1.14. These comparisons show good agreement in flutter characteristics for freestream Mach numbers below unity. For freestream Mach numbers above unity, the computed aeroelastic results predict a premature rise in the flutter boundary as compared with the experimental boundary. Steady and unsteady contours of surface Mach number and pressure are included to illustrate the basic flow characteristics of the time-marching flutter calculations and to aid in identifying possible causes for the premature rise in the computational flutter boundary.
NASA Technical Reports Server (NTRS)
Bobbitt, P. J.; Manro, M. E.; Kulfan, R. M.
1980-01-01
Wind tunnel tests of an arrow wing body configuration consisting of flat, twisted, and cambered twisted wings were conducted at Mach numbers from 0.40 to 2.50 to provide an experimental data base for comparison with theoretical methods. A variety of leading and trailing edge control surface deflections were included in these tests, and in addition, the cambered twisted wing was tested with an outboard vertical fin to determine its effect on wing and control surface loads. Theory experiment comparisons show that current state of the art linear and nonlinear attached flow methods were adequate at small angles of attack typical of cruise conditions. The incremental effects of outboard fin, wing twist, and wing camber are most accurately predicted by the advanced panel method PANAIR. Results of the advanced panel separated flow method, obtained with an early version of the program, show promise that accurate detailed pressure predictions may soon be possible for an aeroelasticity deformed wing at high angles of attack.
Simplified aeroelastic modeling of horizontal axis wind turbines
NASA Technical Reports Server (NTRS)
Wendell, J. H.
1982-01-01
Certain aspects of the aeroelastic modeling and behavior of the horizontal axis wind turbine (HAWT) are examined. Two simple three degree of freedom models are described in this report, and tools are developed which allow other simple models to be derived. The first simple model developed is an equivalent hinge model to study the flap-lag-torsion aeroelastic stability of an isolated rotor blade. The model includes nonlinear effects, preconing, and noncoincident elastic axis, center of gravity, and aerodynamic center. A stability study is presented which examines the influence of key parameters on aeroelastic stability. Next, two general tools are developed to study the aeroelastic stability and response of a teetering rotor coupled to a flexible tower. The first of these tools is an aeroelastic model of a two-bladed rotor on a general flexible support. The second general tool is a harmonic balance solution method for the resulting second order system with periodic coefficients. The second simple model developed is a rotor-tower model which serves to demonstrate the general tools. This model includes nacelle yawing, nacelle pitching, and rotor teetering. Transient response time histories are calculated and compared to a similar model in the literature. Agreement between the two is very good, especially considering how few harmonics are used. Finally, a stability study is presented which examines the effects of support stiffness and damping, inflow angle, and preconing.
Aeroelastic flutter in axial flow-The continuum theory
NASA Astrophysics Data System (ADS)
Balakrishnan, A. V.; Tuffaha, A. M.
2012-11-01
We present a mathematical continuum model for aeroelastic flutter of a Goland type structure subject to axial airflow. The model consists of a linearized Euler full potential equation for the airflow and a second order linear structure equation in two degrees of freedom plunge and pitch (bending and torsion). These are coupled through velocity matching type conditions and Kutta type condition describing the pressure jump. The approach mimics the approach used to study aeroelastic flutter in the normal flow case [?], which deals with aircraft applications. We layout the theoretical framework for determining the aeroelastic modes and the flutter point of the structure at any given mode. We will focus on the torsion aeroelastic modes and consider bending modes in future work. The importance of studying aeroelastic flutter in the axial flow case has come to attention in the recent years in light of non aircraft applications of which we mention two: the problem of snoring or apnea, which can be characterized as palattal flutter and secondly power generation from structures placed in axial flow.
View east, showing Northwest Wing (Wing 5) and rear elevations ...
View east, showing Northwest Wing (Wing 5) and rear elevations of facade and tis flaking wings (Wings 1 and 2) - Hospital for Sick Children, 1731 Bunker Hill Road, Northeast, Washington, District of Columbia, DC
Pressure measurements on a rectangular wing with a NACA0012 airfoil during conventional flutter
NASA Technical Reports Server (NTRS)
Rivera, Jose A., Jr.; Dansberry, Bryan E.; Durham, Michael H.; Bennett, Robert M.; Silva, Walter A.
1992-01-01
The Structural Dynamics Division at NASA LaRC has started a wind tunnel activity referred to as the Benchmark Models Program. The primary objective of the program is to acquire measured dynamic instability and corresponding pressure data that will be useful for developing and evaluating aeroelastic type CFD codes currently in use or under development. The program is a multi-year activity that will involve testing of several different models to investigate various aeroelastic phenomena. The first model consisted of a rigid semispan wing having a rectangular planform and a NACA 0012 airfoil shape which was mounted on a flexible two degree-of-freedom mount system. Two wind-tunnel tests were conducted with the first model. Several dynamic instability boundaries were investigated such as a conventional flutter boundary, a transonic plunge instability region near Mach = 0.90, and stall flutter. In addition, wing surface unsteady pressure data were acquired along two model chords located at the 60 to 95-percent span stations during these instabilities. At this time, only the pressure data for the conventional flutter boundary is presented. The conventional flutter boundary and the wing surface unsteady pressure measurements obtained at the conventional flutter boundary test conditions in pressure coefficient form are presented. Wing surface steady pressure measurements obtained with the model mount system rigidized are also presented. These steady pressure data were acquired at essentially the same dynamic pressure at which conventional flutter had been encountered with the mount system flexible.
View east, showing Northwest Wing (Wing 5), west wall of ...
View east, showing Northwest Wing (Wing 5), west wall of the North Wing (Wing 2) and rear elevations of the facade and its flanking wings (Wings 1 and 2) - Hospital for Sick Children, 1731 Bunker Hill Road, Northeast, Washington, District of Columbia, DC
Aeroelastic Stability of Idling Wind Turbines
NASA Astrophysics Data System (ADS)
Wang, Kai; Riziotis, Vasilis A.; Voutsinas, Spyros G.
2016-09-01
Wind turbine rotors in idling operation mode can experience high angles of attack, within the post stall region that are capable of triggering stall-induced vibrations. In the present paper rotor stability in slow idling operation is assessed on the basis of non-linear time domain and linear eigenvalue analysis. Analysis is performed for a 10 MW conceptual wind turbine designed by DTU. First the flow conditions that are likely to favour stall induced instabilities are identified through non-linear time domain aeroelastic analysis. Next, for the above specified conditions, eigenvalue stability simulations are performed aiming at identifying the low damped modes of the turbine. Finally the results of the eigenvalue analysis are evaluated through computations of the work of the aerodynamic forces by imposing harmonic vibrations following the shape and frequency of the various modes. Eigenvalue analysis indicates that the asymmetric and symmetric out-of-plane modes have the lowest damping. The results of the eigenvalue analysis agree well with those of the time domain analysis.
Aeroelasticity of Nonlinear Tail / Rudder Systems with Freeplay
NASA Astrophysics Data System (ADS)
Rishel, Evan
This thesis details the development of a linear/nonlinear three degree of freedom aeroelastic system designed and manufactured at the University of Washington (UW). Describing function analysis was carried out in the frequency domain. Time domain simulations were carried out to account for all types of motion. Nonlinear aeroelastic behavior may lead to limit cycles which can be captured in the frequency domain using describing function approximation and numerically using Runga-Kutta integration. Linear and nonlinear aeroelastic tests were conducted in the UW 3x3 low-speed wind tunnel to determine the linear flutter speed and frequency of the system as well as its nonlinear behavior when freeplay is introduced. The test data is presented along with the results of the MATLAB-based simulations. The correlation between test and numerical results is very high.
Impact of Parallel Computing on Large Scale Aeroelastic Computations
NASA Technical Reports Server (NTRS)
Guruswamy, Guru P.; Kwak, Dochan (Technical Monitor)
2000-01-01
Aeroelasticity is computationally one of the most intensive fields in aerospace engineering. Though over the last three decades the computational speed of supercomputers have substantially increased, they are still inadequate for large scale aeroelastic computations using high fidelity flow and structural equations. In addition to reaching a saturation in computational speed because of changes in economics, computer manufactures are stopping the manufacturing of mainframe type supercomputers. This has led computational aeroelasticians to face the gigantic task of finding alternate approaches for fulfilling their needs. The alternate path to over come speed and availability limitations of mainframe type supercomputers is to use parallel computers. During this decade several different architectures have evolved. In FY92 the US Government started the High Performance Computing and Communication (HPCC) program. As a participant in this program NASA developed several parallel computational tools for aeroelastic applications. This talk describes the impact of those application tools on high fidelity based multidisciplinary analysis.
Benchmark Composite Wing Design Including Joint Analysis and Optimization
NASA Astrophysics Data System (ADS)
Albers, Robert G.
A composite wing panel software package, named WING Joint OpTimization and Analysis (WINGJOTA) featuring bolted joint analysis, is created and presented in this research. Three areas of focus were the development of an analytic composite bolted joint analysis suitable for fast evaluation; a more realistic wing design than what has been considered in the open literature; and the application of two optimization algorithms for composite wing design. Optimization results from 14 wing load cases applied to a composite wing panel with joints are presented. The composite bolted joint analysis consists of an elasticity solution that provides the stress state at a characteristic distance away from the bolt holes. The stresses at the characteristic distance are compared to a failure criterion on a ply-by-ply basis that not only determines first ply failure but also the failure mode. The loads in the multi-fastener joints used in this study were determined by an iterative scheme that provides the bearing-bypass loads to the elasticity analysis. A preliminary design of a composite subsonic transport wing was developed, based around a mid-size, twin-aisle aircraft. The benchmark design includes the leading and trailing edge structures and the center box inside the fuselage. Wing masses were included as point loads, and fuel loads were incorporated as distributed loads. The side-of-body boundary condition was modeled using high stiffness springs, and the aerodynamic loads were applied using an approximate point load scheme. The entire wing structure was modeled using the finite element code ANSYS to provide the internal loads needed as boundary conditions for the wing panel analyzed by WINGJOTA. The software package WINGJOTA combines the composite bolted joint analysis, a composite plate finite element analysis, a wing aeroelastic cycle, and two optimization algorithms to form the basis of a computer code for analysis and optimization. Both the Improving Hit-and-Run (IHR) and
Comprehensive modeling and control of flexible flapping wing micro air vehicles
NASA Astrophysics Data System (ADS)
Nogar, Stephen Michael
Flapping wing micro air vehicles hold significant promise due to the potential for improved aerodynamic efficiency, enhanced maneuverability and hover capability compared to fixed and rotary configurations. However, significant technical challenges exist to due the lightweight, highly integrated nature of the vehicle and coupling between the actuators, flexible wings and control system. Experimental and high fidelity analysis has demonstrated that aeroelastic effects can change the effective kinematics of the wing, reducing vehicle stability. However, many control studies for flapping wing vehicles do not consider these effects, and instead validate the control strategy with simple assumptions, including rigid wings, quasi-steady aerodynamics and no consideration of actuator dynamics. A control evaluation model that includes aeroelastic effects and actuator dynamics is developed. The structural model accounts for geometrically nonlinear behavior using an implicit condensation technique and the aerodynamic loads are found using a time accurate approach that includes quasi-steady, rotational, added mass and unsteady effects. Empirically based parameters in the model are fit using data obtained from a higher fidelity solver. The aeroelastic model and its ingredients are compared to experiments and computations using models of higher fidelity, and indicate reasonable agreement. The developed control evaluation model is implemented in a previously published, baseline controller that maintains stability using an asymmetric wingbeat, known as split-cycle, along with changing the flapping frequency and wing bias. The model-based controller determines the control inputs using a cycle-averaged, linear control design model, which assumes a rigid wing and no actuator dynamics. The introduction of unaccounted for dynamics significantly degrades the ability of the controller to track a reference trajectory, and in some cases destabilizes the vehicle. This demonstrates the
NASA Technical Reports Server (NTRS)
Hsu, C.-H.; Lan, C. E.
1985-01-01
Wing rock is one type of lateral-directional instabilities at high angles of attack. To predict wing rock characteristics and to design airplanes to avoid wing rock, parameters affecting wing rock characteristics must be known. A new nonlinear aerodynamic model is developed to investigate the main aerodynamic nonlinearities causing wing rock. In the present theory, the Beecham-Titchener asymptotic method is used to derive expressions for the limit-cycle amplitude and frequency of wing rock from nonlinear flight dynamics equations. The resulting expressions are capable of explaining the existence of wing rock for all types of aircraft. Wing rock is developed by negative or weakly positive roll damping, and sustained by nonlinear aerodynamic roll damping. Good agreement between theoretical and experimental results is obtained.
Survey of Army/NASA rotorcraft aeroelastic stability research
NASA Technical Reports Server (NTRS)
Ormiston, Robert A.; Warmbrodt, William G.; Hodges, Dewey H.; Peters, David A.
1988-01-01
Theoretical and experimental developments in the aeroelastic and aeromechanical stability of helicopters and tilt-rotor aircraft are addressed. Included are the underlying nonlinear structural mechanics of slender rotating beams, necessary for accurate modeling of elastic cantilever rotor blades, and the development of dynamic inflow, an unsteady aerodynamic theory for low frequency aeroelastic stability applications. Analytical treatment of isolated rotor stability in hover and forward flight, coupled rotor-fuselage stability are considered. Results of parametric investigations of system behavior are presented, and correlations between theoretical results and experimental data from small- and large-scale wind tunnel and flight testing are discussed.
Problems and progress in aeroelasticity for interdisciplinary design
NASA Technical Reports Server (NTRS)
Yates, E. Carson, Jr.
1987-01-01
Some problems and progress in the development of aerodynamic and aeroelastic computational capabilities are reviewed with emphasis on needs for use in current interdisciplinary design procedures as well as for stand-alone analyses. The primary focus is on integral-equation methods which are well suited for general, accurate, efficient, and unified treatment of flow around vehicles having arbitrary shapes, motions, and deformations at subsonic, transonic, and supersonic speeds up to high angles of attack. Computational methods for potential flows and viscous flows are discussed, and some applications are shown. Calculation of steady and unsteady aeroelastic characteristics of aircraft with nonlinear aerodynamic behavior is also addressed briefly.
A Parallel Multiblock Mesh Movement Scheme For Complex Aeroelastic Applications
NASA Technical Reports Server (NTRS)
Potsdam, Mark A.; Guruswamy, Guru P.
2000-01-01
A scheme has been developed for the movement of multiblock, structured grids due to surface deformation arising from aeroelastics, control surface movement, or design optimization. Elements of the method include a blending of a surface spline approximation and nearest surface point movement for block boundaries. Transfinite interpolation is employed for volume grid deformation. The scheme is demonstrated on a range of simple and complex aeroelastic aircraft applications using Navier-Stokes computational fluid dynamics and modal structural analyses on parallel processors. Results are robust and accurate, requiring only minimal user input specification.
Non-linear aeroelastic prediction for aircraft applications
NASA Astrophysics Data System (ADS)
de C. Henshaw, M. J.; Badcock, K. J.; Vio, G. A.; Allen, C. B.; Chamberlain, J.; Kaynes, I.; Dimitriadis, G.; Cooper, J. E.; Woodgate, M. A.; Rampurawala, A. M.; Jones, D.; Fenwick, C.; Gaitonde, A. L.; Taylor, N. V.; Amor, D. S.; Eccles, T. A.; Denley, C. J.
2007-05-01
Current industrial practice for the prediction and analysis of flutter relies heavily on linear methods and this has led to overly conservative design and envelope restrictions for aircraft. Although the methods have served the industry well, it is clear that for a number of reasons the inclusion of non-linearity in the mathematical and computational aeroelastic prediction tools is highly desirable. The increase in available and affordable computational resources, together with major advances in algorithms, mean that non-linear aeroelastic tools are now viable within the aircraft design and qualification environment. The Partnership for Unsteady Methods in Aerodynamics (PUMA) Defence and Aerospace Research Partnership (DARP) was sponsored in 2002 to conduct research into non-linear aeroelastic prediction methods and an academic, industry, and government consortium collaborated to address the following objectives: To develop useable methodologies to model and predict non-linear aeroelastic behaviour of complete aircraft. To evaluate the methodologies on real aircraft problems. To investigate the effect of non-linearities on aeroelastic behaviour and to determine which have the greatest effect on the flutter qualification process. These aims have been very effectively met during the course of the programme and the research outputs include: New methods available to industry for use in the flutter prediction process, together with the appropriate coaching of industry engineers. Interesting results in both linear and non-linear aeroelastics, with comprehensive comparison of methods and approaches for challenging problems. Additional embryonic techniques that, with further research, will further improve aeroelastics capability. This paper describes the methods that have been developed and how they are deployable within the industrial environment. We present a thorough review of the PUMA aeroelastics programme together with a comprehensive review of the relevant research
Illustration of airfoil shape effect on forward-swept wing divergence
NASA Technical Reports Server (NTRS)
Bland, S. R.
1980-01-01
A static aeroelastic analysis is presented of the divergence of untapered wings with conventional and supercritical airfoil sections at sweep angles of zero and -15 deg. One bending and one torsion mode were employed for a uniform rectangular cantilevered beam with the elastic axis at midchord, and calculations were based on a two-dimensional differential equations formulation in the structural coordinate system and in simple strip theory. A minimum divergence speed in the transonic range is obtained which is associated with the rearward shift of the aerodynamic center, and a 17% difference in minimum divergence dynamic pressure is found between a supercritical and a conventional wing. It is noted that although the strip method employed allows the assessment of the sensitivity of airfoil shapes to divergence, three-dimensional transonic aerodynamic methods should be used to predict wing divergence characteristics.
NASA Technical Reports Server (NTRS)
Diederich, Franklin W; Zlotnick, Martin
1955-01-01
Spanwise lift distributions have been calculated for nineteen unswept wings with various aspect ratios and taper ratios and with a variety of angle-of-attack or twist distributions, including flap and aileron deflections, by means of the Weissinger method with eight control points on the semispan. Also calculated were aerodynamic influence coefficients which pertain to a certain definite set of stations along the span, and several methods are presented for calculating aerodynamic influence functions and coefficients for stations other than those stipulated. The information presented in this report can be used in the analysis of untwisted wings or wings with known twist distributions, as well as in aeroelastic calculations involving initially unknown twist distributions.
Evaluation of structural design concepts for an arrow-wing supersonic cruise aircraft
NASA Technical Reports Server (NTRS)
Sakata, I. F.; Davis, G. W.
1977-01-01
An analytical study was performed to determine the best structural approach for design of primary wing and fuselage structure of a Mach 2.7 arrow wing supersonic cruise aircraft. Concepts were evaluated considering near term start of design. Emphasis was placed on the complex interactions between thermal stress, static aeroelasticity, flutter, fatigue and fail safe design, static and dynamic loads, and the effects of variations in structural arrangements, concepts and materials on these interactions. Results indicate that a hybrid wing structure incorporating low profile convex beaded and honeycomb sandwich surface panels of titanium alloy 6Al-4V were the most efficient. The substructure includes titanium alloy spar caps reinforced with boron polyimide composites. The fuselage shell consists of hat stiffened skin and frame construction of titanium alloy 6Al-4V. A summary of the study effort is presented, and a discussion of the overall logic, design philosophy and interaction between the analytical methods for supersonic cruise aircraft design are included.
NASA Technical Reports Server (NTRS)
Nixon, Mark W.
1993-01-01
There is a potential for improving the performance and aeroelastic stability of tiltrotors through the use of elastically-coupled composite rotor blades. To study the characteristics of tiltrotors with these types of rotor blades it is necessary to formulate a new analysis which has the capabilities of modeling both a tiltrotor configuration and an anisotropic rotor blade. Background for these formulations is established in two preliminary investigations. In the first, the influence of several system design parameters on tiltrotor aeroelastic stability is examined for the high-speed axial flight mode using a newly-developed rigid-blade analysis with an elastic wing finite element model. The second preliminary investigation addresses the accuracy of using a one-dimensional beam analysis to predict frequencies of elastically-coupled highly-twisted rotor blades. Important aspects of the new aeroelastic formulations are the inclusion of a large steady pylon angle which controls tilt of the rotor system with respect to the airflow, the inclusion of elastic pitch-lag coupling terms related to rotor precone, the inclusion of hub-related degrees of freedom which enable modeling of a gimballed rotor system and engine drive-train dynamics, and additional elastic coupling terms which enable modeling of the anisotropic features for both the rotor blades and the tiltrotor wing. Accuracy of the new tiltrotor analysis is demonstrated by a comparison of the results produced for a baseline case with analytical and experimental results reported in the open literature. Two investigations of elastically tailored blades on a baseline tiltrotor are then conducted. One investigation shows that elastic bending-twist coupling of the rotor blade is a very effective means for increasing the flutter velocity of a tiltrotor, and the magnitude of coupling required does not have an adverse effect on performance or blade loads. The second investigation shows that passive blade twist control via
NASA Astrophysics Data System (ADS)
Huang, Yangyang; Kanso, Eva
2015-11-01
Insects use flight muscles attached at the base of the wings to produce impressive wing flapping frequencies. Yet the effects of muscle stiffness on the performance of insect wings remain unclear. Here, we construct an insectile wing model, consisting of two rigid wings connected at their base by an elastic torsional spring and submerged in an oscillatory flow. The wing system is free to rotate and flap. We first explore the extent to which the flyer can withstand roll perturbations, then study its flapping behavior and performance as a function of spring stiffness. We find an optimal range of spring stiffness that results in large flapping amplitudes, high force generation and good storage of elastic energy. We conclude by conjecturing that insects may select and adjust the muscle spring stiffness to achieve desired movement. These findings may have significant implications on the design principles of wings in micro air-vehicles.
Fiddian, N J; King, R J
1984-05-01
Twenty-five patients with 23 different types of winging of the scapula are described. A simple clinical and etiologic classification of the winged scapula is proposed based on the study of these patients in conjunction with a review of the literature. Winging of the scapula is either static or dynamic. Static winging is due to fixed deformity in the shoulder girdle, spine, or ribs. Dynamic winging is due to a neuromuscular disorder. The great variety of lesions that produce winging of the scapula may be classified anatomically into four types: Type I, nerve; Type II, muscle; Type III, bone; and Type IV, joint. Winging of the scapula is a surprisingly common physical sign, but because it is often asymptomatic it receives little attention. However, symptoms of pain, weakness, or cosmetic deformity may demand attention, and it is hoped that this classification will help in the diagnosis and assessment of these patients.
Transonic Unsteady Aerodynamics and Aeroelasticity 1987, part 2
NASA Technical Reports Server (NTRS)
Bland, Samuel R. (Compiler)
1989-01-01
This two part document contains copies of the text and figures for the papers presented at the symposium held at NASA Langley on 20 to 22 May, 1987. The papers are grouped in five subject areas. The areas covered by this part includes the following: Methods for vortex and viscous flows; Aeroelastic applications, and Experimental results and cascade flows.
A Coupled Aeroelastic Model for Launch Vehicle Stability Analysis
NASA Technical Reports Server (NTRS)
Orr, Jeb S.
2010-01-01
A technique for incorporating distributed aerodynamic normal forces and aeroelastic coupling effects into a stability analysis model of a launch vehicle is presented. The formulation augments the linear state-space launch vehicle plant dynamics that are compactly derived as a system of coupled linear differential equations representing small angular and translational perturbations of the rigid body, nozzle, and sloshing propellant coupled with normal vibration of a set of orthogonal modes. The interaction of generalized forces due to aeroelastic coupling and thrust can be expressed as a set of augmenting non-diagonal stiffness and damping matrices in modal coordinates with no penalty on system order. While the eigenvalues of the structural response in the presence of thrust and aeroelastic forcing can be predicted at a given flight condition independent of the remaining degrees of freedom, the coupled model provides confidence in closed-loop stability in the presence of rigid-body, slosh, and actuator dynamics. Simulation results are presented that characterize the coupled dynamic response of the Ares I launch vehicle and the impact of aeroelasticity on control system stability margins.
Development of an Aeroelastic Analysis Including a Viscous Flow Model
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr.; Bakhle, Milind A.
2001-01-01
Under this grant, Version 4 of the three-dimensional Navier-Stokes aeroelastic code (TURBO-AE) has been developed and verified. The TURBO-AE Version 4 aeroelastic code allows flutter calculations for a fan, compressor, or turbine blade row. This code models a vibrating three-dimensional bladed disk configuration and the associated unsteady flow (including shocks, and viscous effects) to calculate the aeroelastic instability using a work-per-cycle approach. Phase-lagged (time-shift) periodic boundary conditions are used to model the phase lag between adjacent vibrating blades. The direct-store approach is used for this purpose to reduce the computational domain to a single interblade passage. A disk storage option, implemented using direct access files, is available to reduce the large memory requirements of the direct-store approach. Other researchers have implemented 3D inlet/exit boundary conditions based on eigen-analysis. Appendix A: Aeroelastic calculations based on three-dimensional euler analysis. Appendix B: Unsteady aerodynamic modeling of blade vibration using the turbo-V3.1 code.
Aeroelastic System Development Using Proper Orthogonal Decomposition and Volterra Theory
NASA Technical Reports Server (NTRS)
Lucia, David J.; Beran, Philip S.; Silva, Walter A.
2003-01-01
This research combines Volterra theory and proper orthogonal decomposition (POD) into a hybrid methodology for reduced-order modeling of aeroelastic systems. The out-come of the method is a set of linear ordinary differential equations (ODEs) describing the modal amplitudes associated with both the structural modes and the POD basis functions for the uid. For this research, the structural modes are sine waves of varying frequency, and the Volterra-POD approach is applied to the fluid dynamics equations. The structural modes are treated as forcing terms which are impulsed as part of the uid model realization. Using this approach, structural and uid operators are coupled into a single aeroelastic operator. This coupling converts a free boundary uid problem into an initial value problem, while preserving the parameter (or parameters) of interest for sensitivity analysis. The approach is applied to an elastic panel in supersonic cross ow. The hybrid Volterra-POD approach provides a low-order uid model in state-space form. The linear uid model is tightly coupled with a nonlinear panel model using an implicit integration scheme. The resulting aeroelastic model provides correct limit-cycle oscillation prediction over a wide range of panel dynamic pressure values. Time integration of the reduced-order aeroelastic model is four orders of magnitude faster than the high-order solution procedure developed for this research using traditional uid and structural solvers.
Optimum Aeroelastic Characteristics for Composite Supermaneuverable Aircraft.
1986-07-31
and twisting displacements respectively. It can be shown that when Equation (3) is substituted into Equation (1) and the variational calculus is...into Equation (3) the following equations of motion for the wing can be derived with the help of variational calculus . a h iv4a iV.a " a" Loa oo o 5...Equation (1) and the variational calculus is carried out for arbitrary ho and 09, the following equations of-motion are obtained: 1 6iv + a C9 iv + a Ciii+ o
Dynamics and Aeroelasticity of Composite Structures.
1986-03-01
VE OF F N SOSO NC S rT PA CE E S *AO, 19 PQC REEN:S7R m -- DENT F -A O N’YE: 5 P 4 N A - 7.’ PQ -. A V1336--’ SKA K _ ,2&-,P Or ana0R -3e~e c 7 :1E...Freedom Flutter of a 1/2 Scale Forward-Swept-Wing Model, An Experimetnal and Analytical Study", NASA CR 172-324, Grumman Aerospace Corporation, April
NASA Technical Reports Server (NTRS)
Chan, David T.; Hooker, John R.; Wick, Andrew; Plumley, Ryan W.; Zeune, Cale H.; Ol, Michael V.; DeMoss, Joshua A.
2017-01-01
A wind tunnel investigation of a 0.04-scale model of the Lockheed Martin Hybrid Wing Body (HWB) with Over Wing Nacelles (OWN) air mobility transport configuration was conducted in the National Transonic Facility at the NASA Langley Research Center under a collaborative partnership between NASA, the Air Force Research Laboratory, and Lockheed Martin Aeronautics Company. The wind tunnel test sought to validate the transonic aerodynamic performance of the HWB and to validate the efficiency benefits of the OWN installation as compared to the traditional under-wing installation. The semispan HWB model was tested in a clean wing configuration and also tested with two different nacelles representative of a modern turbofan engine and a future advanced high bypass ratio engine. The nacelles were installed in three different locations with two over-wing positions and one under-wing position. Five-component force and moment data, surface static pressure data, and aeroelastic deformation data were acquired. For the cruise configuration, the model was tested in an angle-of-attack range between -2 and 10 degrees at free-stream Mach numbers from 0.3 to 0.9 and at unit Reynolds numbers between 8 and 39 million per foot, achieving a maximum of 80% of flight Reynolds numbers across the Mach number range. The test results validated pretest computational fluid dynamic (CFD) simulations of the HWB performance including the OWN benefit and the results also exhibited excellent transonic drag data repeatability to within +/-1 drag count. This paper details the experimental setup and model overview, presents some sample data results, and describes the facility improvements that led to the success of the test.
Aeroelastic Calculations of Quiet High- Speed Fan Performed
NASA Technical Reports Server (NTRS)
Bakhle, Milind A.; Srivastava, Rakesh; Mehmed, Oral; Min, James B.
2002-01-01
An advanced high-speed fan was recently designed under a cooperative effort between the NASA Glenn Research Center and Honeywell Engines & Systems. The principal design goals were to improve performance and to reduce fan noise at takeoff. Scale models of the Quiet High-Speed Fan were tested for operability, performance, and acoustics. During testing, the fan showed significantly improved noise characteristics, but a self-excited aeroelastic vibration known as flutter was encountered in the operating range. Flutter calculations were carried out for the Quiet High-Speed Fan using a three-dimensional, unsteady aerodynamic, Reynolds-averaged Navier-Stokes turbomachinery code named "TURBO." The TURBO code can accurately model the viscous flow effects that can play an important role in various aeroelastic problems such as flutter with flow separation, flutter at high loading conditions near the stall line (stall flutter), and flutter in the presence of shock and boundary-layer interaction. Initially, calculations were performed with no blade vibrations. These calculations were at a constant rotational speed and a varying mass flow rate. The mass flow rate was varied by changing the backpressure at the exit boundary of the computational domain. These initial steady calculations were followed by aeroelastic calculations in which the blades were prescribed to vibrate harmonically in a natural mode, at a natural frequency, and with a fixed interblade phase angle between adjacent blades. The AE-prep preprocessor was used to interpolate the in-vacuum mode shapes from the structural dynamics mesh onto the computational fluid dynamics mesh and to smoothly propagate the grid deformations from the blade surface to the interior points of the grid. The aeroelastic calculations provided the unsteady aerodynamic forces on the blade surface due to blade vibrations. These forces were vector multiplied with the structural dynamic mode shape to calculate the work done on the blade during
The aeroelastic stability improvements of soft-inplane tiltrotors by active and passive approaches
NASA Astrophysics Data System (ADS)
Paik, Jinho
Soft-inplane tiltrotors in cruise mode have exhibited unacceptably low subcritical damping in the wing vertical bending mode as well as reduced critical whirl-flutter speed. However, soft-inplane rotor system is highly advantageous over stiff-inplane rotor system in terms of inplane dynamic hub loads which results in weight/performance penalties. Therefore, ensuring adequate aeroelastic stability characteristics is a prerequisite for soft-inplane rotor system to be used in future advanced tiltrotors. This dissertation constitutes fundamental studies of soft-inplane tiltrotors and appropriate methods to alleviate whirl-flutter instability. This study consists of four major investigations. The first investigation includes validation efforts of present analytical model against the recently available data for the Bell generic semi-span model in airplane mode and the SASIP model in hover mode. The second investigation addresses the approaches which have been employed to establish a physical understanding of the very low sub-critical damping phenomenon, which is consistently exhibited by soft-inplane tiltrotor configurations. Through analyses and comparison studies mainly between the Bell generic soft- and stiff-inplane semi-span models, the physics behind this phenomenon is emphasized. In the third investigation, parametric studies and design optimization of the rotor/wing design variables are performed in order to passively improve the whirl stability boundaries. For the last investigation, the effectiveness of active control through wing-flaperon and swashplate control inputs is examined in terms of stability improvement of soft-inplane tiltrotors. Scheduled gain and constant gain controllers are first compared for each actuation scheme and then output feedback controllers based on easily measurable wing states are compared with full-state feedback controllers. The baseline soft-inplane configurations used in passive and active studies are the full-scale Boeing Model
NASA Technical Reports Server (NTRS)
Kandil, Osama A.
1992-01-01
The accomplishments achieved during the period include conference and proceedings publications, journal papers, and abstracts which are either published, accepted for publication or under review. Conference presentations and NASA highlight publications are also included. Two of the conference proceedings publications are attached along with a Ph.D. dissertation abstract and table of contents. In the first publication, computational simulation of three-dimensional flows around a delta wing undergoing rock and roll-divergence motions is presented. In the second publication, the unsteady Euler equations and the Euler equations of rigid body motion, both written in the moving frame of reference, are sequetially solved to simulate the limit-cycle rock motion of slender delta wings. In the dissertation abstract, unsteady flows around rigid or flexible delta wings with and without oscillating leading-edge flaps are considered.
An Aeroelastic Analysis of a Thin Flexible Membrane
NASA Technical Reports Server (NTRS)
Scott, Robert C.; Bartels, Robert E.; Kandil, Osama A.
2007-01-01
Studies have shown that significant vehicle mass and cost savings are possible with the use of ballutes for aero-capture. Through NASA's In-Space Propulsion program, a preliminary examination of ballute sensitivity to geometry and Reynolds number was conducted, and a single-pass coupling between an aero code and a finite element solver was used to assess the static aeroelastic effects. There remain, however, a variety of open questions regarding the dynamic aeroelastic stability of membrane structures for aero-capture, with the primary challenge being the prediction of the membrane flutter onset. The purpose of this paper is to describe and begin addressing these issues. The paper includes a review of the literature associated with the structural analysis of membranes and membrane utter. Flow/structure analysis coupling and hypersonic flow solver options are also discussed. An approach is proposed for tackling this problem that starts with a relatively simple geometry and develops and evaluates analysis methods and procedures. This preliminary study considers a computationally manageable 2-dimensional problem. The membrane structural models used in the paper include a nonlinear finite-difference model for static and dynamic analysis and a NASTRAN finite element membrane model for nonlinear static and linear normal modes analysis. Both structural models are coupled with a structured compressible flow solver for static aeroelastic analysis. For dynamic aeroelastic analyses, the NASTRAN normal modes are used in the structured compressible flow solver and 3rd order piston theories were used with the finite difference membrane model to simulate utter onset. Results from the various static and dynamic aeroelastic analyses are compared.
Application of Aeroelastic Solvers Based on Navier Stokes Equations
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr.; Srivastava, Rakesh
2001-01-01
The propulsion element of the NASA Advanced Subsonic Technology (AST) initiative is directed towards increasing the overall efficiency of current aircraft engines. This effort requires an increase in the efficiency of various components, such as fans, compressors, turbines etc. Improvement in engine efficiency can be accomplished through the use of lighter materials, larger diameter fans and/or higher-pressure ratio compressors. However, each of these has the potential to result in aeroelastic problems such as flutter or forced response. To address the aeroelastic problems, the Structural Dynamics Branch of NASA Glenn has been involved in the development of numerical capabilities for analyzing the aeroelastic stability characteristics and forced response of wide chord fans, multi-stage compressors and turbines. In order to design an engine to safely perform a set of desired tasks, accurate information of the stresses on the blade during the entire cycle of blade motion is required. This requirement in turn demands that accurate knowledge of steady and unsteady blade loading is available. To obtain the steady and unsteady aerodynamic forces for the complex flows around the engine components, for the flow regimes encountered by the rotor, an advanced compressible Navier-Stokes solver is required. A finite volume based Navier-Stokes solver has been developed at Mississippi State University (MSU) for solving the flow field around multistage rotors. The focus of the current research effort, under NASA Cooperative Agreement NCC3- 596 was on developing an aeroelastic analysis code (entitled TURBO-AE) based on the Navier-Stokes solver developed by MSU. The TURBO-AE code has been developed for flutter analysis of turbomachine components and delivered to NASA and its industry partners. The code has been verified. validated and is being applied by NASA Glenn and by aircraft engine manufacturers to analyze the aeroelastic stability characteristics of modem fans, compressors
NASA Technical Reports Server (NTRS)
Wood, Richard M. (Inventor); Bauer, Steven X. S. (Inventor)
1992-01-01
The invention is a natural flow wing and a method for constructing the same. The method comprises contouring a three-dimensional upper surface and a three-dimensional lower surface of the natural flow wing independently of one another into a prescribed shape. Experimental data and theoretical analysis show that flow and pressure-loading over an upper surface of a wing tend to be conical about an apex of the wing, producing favorable and unfavorable regions of performance based on drag. The method reduces these unfavorable regions by shaping the upper surface such that the maximum thickness near a tip of the natural flow wing moves aft, thereby, contouring the wing to coincide more closely with the conical nature of the flow on the upper surface. Nearly constant compressive loading characterizes the flow field over a lower surface of the conventional wing. Magnitude of these compressive pressures on the lower surface depends on angle of attack and on a streamwise curvature of the lower surface of the wing and not on a cross-sectional spanwise curvature. The method, thereby, shapes the lower surface to create an area as large as possible with negative slopes. Any type of swept wing may be used to obtain the final, shaped geometry of the upper and lower surfaces of the natural flow wing.
Integrating aerodynamics and structures in the minimum weight design of a supersonic transport wing
NASA Technical Reports Server (NTRS)
Barthelemy, Jean-Francois M.; Wrenn, Gregory A.; Dovi, Augustine R.; Coen, Peter G.; Hall, Laura E.
1992-01-01
An approach is presented for determining the minimum weight design of aircraft wing models which takes into consideration aerodynamics-structure coupling when calculating both zeroth order information needed for analysis and first order information needed for optimization. When performing sensitivity analysis, coupling is accounted for by using a generalized sensitivity formulation. The results presented show that the aeroelastic effects are calculated properly and noticeably reduce constraint approximation errors. However, for the particular example selected, the error introduced by ignoring aeroelastic effects are not sufficient to significantly affect the convergence of the optimization process. Trade studies are reported that consider different structural materials, internal spar layouts, and panel buckling lengths. For the formulation, model and materials used in this study, an advanced aluminum material produced the lightest design while satisfying the problem constraints. Also, shorter panel buckling lengths resulted in lower weights by permitting smaller panel thicknesses and generally, by unloading the wing skins and loading the spar caps. Finally, straight spars required slightly lower wing weights than angled spars.
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Librescu, Liviu; Marzocca, Piergiovanni
2001-01-01
The control of the flutter instability and the conversion of the dangerous character of the flutter instability boundary into the undangerous one of a cross-sectional wing in a supersonic/hypersonic flow field is presented. The objective of this paper is twofold: i) to analyze the implications of nonlinear unsteady aerodynamics and physical nonlinearities on the character of the instability boundary in the presence of a control capability, and ii) to outline the effects played in the same respect by some important parameters of the aeroelastic system. As a by-product of this analysis, the implications of the active control on the linearized flutter behavior of the system are captured and emphasized. The bifurcation behavior of the open/closed loop aeroelastic system in the vicinity of the flutter boundary is studied via the use of a new methodology based on the Liapunov First Quantity. The expected outcome of this study is: a) to greatly enhance the scope and reliability of the aeroelastic analysis and design criteria of advanced supersonic/hypersonic flight vehicles and, b) provide a theoretical basis for the analysis of more complex nonlinear aeroelastic systems.
NASA Technical Reports Server (NTRS)
Marzocca, Piergiovanni; Librescu, Liviu; Silva, Walter A.
2000-01-01
The control of the flutter instability and the conversion of the dangerous character of the flutter instability boundary into the undangerous one of a cross-sectional wing in a supersonic/hypersonic flow field is presented. The objective of this paper is twofold: i) to analyze the implications of nonlinear unsteady aerodynamics and physical nonlinearities on the character of the instability boundary in the presence of a control capability, and ii) to outline the effects played in the same respect by some important parameters of the aeroelastic system. As a by-product of this analysis, the implications of the active control on the linearized flutter behavior of the system are captured and emphasized. The bifurcation behavior of the open/closed loop aeroelastic system in the vicinity of the flutter boundary is studied via the use of a new methodology based on the Liapunov First Quantity. The expected outcome of this study is: a) to greatly enhance the scope and reliability of the aeroelastic analysis and design criteria of advanced supersonic/hypersonic flight vehicles and, b) provide a theoretical basis for the analysis of more complex nonlinear aeroelastic systems.
Elastically Shaped Wing Optimization and Aircraft Concept for Improved Cruise Efficiency
NASA Technical Reports Server (NTRS)
Nguyen, Nhan; Trinh, Khanh; Reynolds, Kevin; Kless, James; Aftosmis, Michael; Urnes, James, Sr.; Ippolito, Corey
2013-01-01
This paper presents the findings of a study conducted tn 2010 by the NASA Innovation Fund Award project entitled "Elastically Shaped Future Air Vehicle Concept". The study presents three themes in support of meeting national and global aviation challenges of reducing fuel burn for present and future aviation systems. The first theme addresses the drag reduction goal through innovative vehicle configurations via non-planar wing optimization. Two wing candidate concepts have been identified from the wing optimization: a drooped wing shape and an inflected wing shape. The drooped wing shape is a truly biologically inspired wing concept that mimics a seagull wing and could achieve about 5% to 6% drag reduction, which is aerodynamically significant. From a practical perspective, this concept would require new radical changes to the current aircraft development capabilities for new vehicles with futuristic-looking wings such as this concept. The inflected wing concepts could achieve between 3% to 4% drag reduction. While the drag reduction benefit may be less, the inflected-wing concept could have a near-term impact since this concept could be developed within the current aircraft development capabilities. The second theme addresses the drag reduction goal through a new concept of elastic wing shaping control. By aeroelastically tailoring the wing shape with active control to maintain optimal aerodynamics, a significant drag reduction benefit could be realized. A significant reduction in fuel burn for long-range cruise from elastic wing shaping control could be realized. To realize the potential of the elastic wing shaping control concept, the third theme emerges that addresses the drag reduction goal through a new aerodynamic control effector called a variable camber continuous trailing edge flap. Conventional aerodynamic control surfaces are discrete independent surfaces that cause geometric discontinuities at the trailing edge region. These discontinuities promote
Saeed, M A; Gatens, P F; Singh, S
1981-10-01
Common neurogenic causes of scapular winging are serratus anterior, trapezius and rhomboid palsy. Deformity is minimal in serratus anterior palsy (long thoracic nerve); winging is accentuated by forward elevation and pushing with outstretched arms. In trapezius palsy (spinal accessory nerve), the shoulder droops and winging is accentuated by arm abduction at the shoulder level. Rhomboid weakness (dorsal scapular nerve or C5 root) is best demonstrated by slowly lowering the arms from the forward elevated position.
NASA Technical Reports Server (NTRS)
McLean, James D. (Inventor); Witkowski, David P. (Inventor); Campbell, Richard L. (Inventor)
2006-01-01
A swept aircraft wing includes a leading airfoil element and a trailing airfoil element. At least one full-span slot is defined by the wing during at least one transonic condition of the wing. The full-span slot allows a portion of the air flowing along the lower surface of the leading airfoil element to split and flow over the upper surface of the trailing airfoil element so as to achieve a performance improvement in the transonic condition.
NASA Technical Reports Server (NTRS)
Witkowski, David P.; Johnston, Robert T.; Sullivan, John P.
1989-01-01
The present experimental investigation of the steady-state and unsteady-state effects due to the interaction between a tractor propeller's wake and a wing employs, in the steady case, wind tunnel measurements at low subsonic speed; results are obtained which demonstrate wing performance response to variations in configuration geometry. Other steady-state results involve the propeller-hub lift and side-force due to the wing's influence on the propeller. The unsteady effects of interaction were studied through flow visualization of propeller-tip vortex distortion over a wing, again using a tractor-propeller configuration.
Volterra Series Approach for Nonlinear Aeroelastic Response of 2-D Lifting Surfaces
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Marzocca, Piergiovanni; Librescu, Liviu
2001-01-01
The problem of the determination of the subcritical aeroelastic response and flutter instability of nonlinear two-dimensional lifting surfaces in an incompressible flow-field via Volterra series approach is addressed. The related aeroelastic governing equations are based upon the inclusion of structural nonlinearities, of the linear unsteady aerodynamics and consideration of an arbitrary time-dependent external pressure pulse. Unsteady aeroelastic nonlinear kernels are determined, and based on these, frequency and time histories of the subcritical aeroelastic response are obtained, and in this context the influence of geometric nonlinearities is emphasized. Conclusions and results displaying the implications of the considered effects are supplied.
The active flexible wing aeroservoelastic wind-tunnel test program
NASA Technical Reports Server (NTRS)
Noll, Thomas; Perry, Boyd
1989-01-01
For a specific application of aeroservoelastic technology, Rockwell International Corporation developed a concept known as the Active Flexible Wing (AFW). The concept incorporates multiple active leading-and trailing-edge control surfaces with a very flexible wing such that wing shape is varied in an optimum manner resulting in improved performance and reduced weight. As a result of a cooperative program between the AFWAL's Flight Dynamics Laboratory, Rockwell, and NASA LaRC, a scaled aeroelastic wind-tunnel model of an advanced fighter was designed, fabricated, and tested in the NASA LaRC Transonic Dynamics Tunnel (TDT) to validate the AFW concept. Besides conducting the wind-tunnel tests NASA provided a design of an Active Roll Control (ARC) System that was implemented and evaluated during the tests. The ARC system used a concept referred to as Control Law Parameterization which involves maintaining constant performance, robustness, and stability while using different combinations of multiple control surface displacements. Since the ARC system used measured control surface stability derivatives during the design, the predicted performance and stability results correlated very well with test measurements.
Passive morphing of flying wing aircraft: Z-shaped configuration
NASA Astrophysics Data System (ADS)
Mardanpour, Pezhman; Hodges, Dewey H.
2014-01-01
High Altitude, Long Endurance (HALE) aircraft can achieve sustained, uninterrupted flight time if they use solar power. Wing morphing of solar powered HALE aircraft can significantly increase solar energy absorbency. An example of the kind of morphing considered in this paper requires the wings to fold so as to orient a solar panel to be hit more directly by the sun's rays at specific times of the day. An example of the kind of morphing considered in this paper requires the wings to fold so as to orient a solar panel that increases the absorption of solar energy by decreasing the angle of incidence of the solar radiation at specific times of the day. In this paper solar powered HALE flying wing aircraft are modeled with three beams with lockable hinge connections. Such aircraft are shown to be capable of morphing passively, following the sun by means of aerodynamic forces and engine thrusts. The analysis underlying NATASHA (Nonlinear Aeroelastic Trim And Stability of HALE Aircraft), a computer program that is based on geometrically exact, fully intrinsic beam equations and a finite-state induced flow model, was extended to include the ability to simulate morphing of the aircraft into a "Z" configuration. Because of the "long endurance" feature of HALE aircraft, such morphing needs to be done without relying on actuators and at as near zero energy cost as possible. The emphasis of this study is to substantially demonstrate the processes required to passively morph a flying wing into a Z-shaped configuration and back again.
Automated design optimization of supersonic airplane wing structures under dynamic constraints.
NASA Technical Reports Server (NTRS)
Fox, R. L.; Miura, H.; Rao, S. S.
1972-01-01
The problems of the preliminary and first level detail design of supersonic aircraft wings are stated as mathematical programs and solved using automated optimum design techniques. The problem is approached in two phases: the first is a simplified equivalent plate model in which the envelope, plan form and structural parameters are varied to produce a design, the second is a finite element model with fixed configuration in which the material distribution is varied. Constraints include flutter, aeroelastically computed stresses and deflections, natural frequency and a variety of geometric limitations. The Phase I objective is a combination of weight and drag while Phase II is a weight minimization.
NASA Technical Reports Server (NTRS)
Nguyen, Nhan; Ting, Eric; Chaparro, Daniel; Drew, Michael; Swei, Sean
2017-01-01
As aircraft wings become much more flexible due to the use of light-weight composites material, adverse aerodynamics at off-design performance can result from changes in wing shapes due to aeroelastic deflections. Increased drag, hence increased fuel burn, is a potential consequence. Without means for aeroelastic compensation, the benefit of weight reduction from the use of light-weight material could be offset by less optimal aerodynamic performance at off-design flight conditions. Performance Adaptive Aeroelastic Wing (PAAW) technology can potentially address these technical challenges for future flexible wing transports. PAAW technology leverages multi-disciplinary solutions to maximize the aerodynamic performance payoff of future adaptive wing design, while addressing simultaneously operational constraints that can prevent the optimal aerodynamic performance from being realized. These operational constraints include reduced flutter margins, increased airframe responses to gust and maneuver loads, pilot handling qualities, and ride qualities. All of these constraints while seeking the optimal aerodynamic performance present themselves as a multi-objective flight control problem. The paper presents a multi-objective flight control approach based on a drag-cognizant optimal control method. A concept of virtual control, which was previously introduced, is implemented to address the pair-wise flap motion constraints imposed by the elastomer material. This method is shown to be able to satisfy the constraints. Real-time drag minimization control is considered to be an important consideration for PAAW technology. Drag minimization control has many technical challenges such as sensing and control. An initial outline of a real-time drag minimization control has already been developed and will be further investigated in the future. A simulation study of a multi-objective flight control for a flight path angle command with aeroelastic mode suppression and drag
Integrated aerodynamic-structural design of a transport wing
NASA Technical Reports Server (NTRS)
Grossman, B.; Haftka, R. T.; Kao, P.-J.; Polen, D. M.; Rais-Rohani, M.; Sobieszczanski-Sobieski, J.
1989-01-01
The integrated aerodynamic-structural design of a subsonic transport wing for minimum weight subject to required range is formulated and solved. The problem requires large computational resources, and two methods are used to alleviate the computational burden. First, a modular sensitivity method that permits the usage of black-box disciplinary software packages, is used to reduce the cost of sensitivity derivatives. In particular, it is shown that derivatives of the aeroelastic response and divergence speed can be calculated without the costly computation of derivatives of aerodynamic influence coefficient and structural stiffness matrices. A sequential approximate optimization is used to further reduce computational cost. The optimization procedure is shown to require a relatively small number of analysis and sensitivity calculations.
Computational Transonic Flutter Solutions for Cranked Wings by the Direct Eulerian-Lagrangian Method
NASA Astrophysics Data System (ADS)
Mellquist, Erik Charles
In this dissertation, a three-dimensional computational aeroelastic simulation for cranked, highly-swept wings is developed, and solutions are presented for several wing models. The computational model is a fully nonlinear coupled fluid-structure simulation based on the Direct Eulerian-Lagrangian coupling methodology. The wing is modeled using nonlinear modified von Karman plate finite elements. Large deformation is accounted for through the use of element-attached local coordinate systems referenced to a single global coordinate system. The fluid is modeled using the mixed Eulerian-Lagrangian formulation of the classical Euler equations and is discretized using a Galerkin finite element approach on an unstructured tetrahedral mesh. The fluid and structural models are coupled by the Direct Eulerian-Lagrangian method where the finite-element shape functions and the local element coordinate systems are used to describe the fluid-structure boundary without approximation. Time synchronization and spatial accuracy are maintained to ensure accurate exchange of energy between the fluid and the structure. The computational solutions exhibit multiple types of aeroelastic response including transonic limit cycle flutter at a wide range of dynamic pressures, subsonic and supersonic bending-torsion flutter at higher dynamic pressures and a wide range of Mach numbers, and limit cycle oscillation dependent on both Mach number and angle of attack. Shock motion dependent on wing deformation is shown to play a major role in determining the response of the wings, and, depending on the flow conditions, can either stabilize or destabilize the response. Results from the simulations correlate closely with observed wind tunnel test responses.
Wing Shape Sensing from Measured Strain
NASA Technical Reports Server (NTRS)
Pak, Chan-Gi
2015-01-01
A new two-step theory is investigated for predicting the deflection and slope of an entire structure using strain measurements at discrete locations. In the first step, a measured strain is fitted using a piecewise least-squares curve fitting method together with the cubic spline technique. These fitted strains are integrated twice to obtain deflection data along the fibers. In the second step, computed deflection along the fibers are combined with a finite element model of the structure in order to interpolate and extrapolate the deflection and slope of the entire structure through the use of the System Equivalent Reduction and Expansion Process. The theory is first validated on a computational model, a cantilevered rectangular plate wing. The theory is then applied to test data from a cantilevered swept-plate wing model. Computed results are compared with finite element results, results using another strain-based method, and photogrammetry data. For the computational model under an aeroelastic load, maximum deflection errors in the fore and aft, lateral, and vertical directions are -3.2 percent, 0.28 percent, and 0.09 percent, respectively; and maximum slope errors in roll and pitch directions are 0.28 percent and -3.2 percent, respectively. For the experimental model, deflection results at the tip are shown to be accurate to within 3.8 percent of the photogrammetry data and are accurate to within 2.2 percent in most cases. In general, excellent matching between target and computed values are accomplished in this study. Future refinement of this theory will allow it to monitor the deflection and health of an entire aircraft in real time, allowing for aerodynamic load computation, active flexible motion control, and active induced drag reduction..
CFD and Aeroelastic Analysis of the MEXICO Wind Turbine
NASA Astrophysics Data System (ADS)
CarriÃ³n, M.; Woodgate, M.; Steijl, R.; Barakos, G.; GÃ³mez-Iradi, S.; Munduate, X.
2014-12-01
This paper presents an aerodynamic and aeroelastic analysis of the MEXICO wind turbine, using the compressible HMB solver of Liverpool. The aeroelasticity of the blade, as well as the effect of a low-Mach scheme were studied for the zero-yaw 15m/s wind case and steady- state computations. The wake developed behind the rotor was also extracted and compared with the experimental data, using the compressible solver and a low-Mach scheme. It was found that the loads were not sensitive to the Mach number effects, although the low-Mach scheme improved the wake predictions. The sensitivity of the results to the blade structural properties was also highlighted.
Aeroelastic stability analysis of flexible overexpanded rocket nozzle
NASA Astrophysics Data System (ADS)
Bekka, N.; Sellam, M.; Chpoun, A.
2016-07-01
The aim of this paper is to present a new aeroelastic stability model taking into account the viscous effects for a supersonic nozzle flow in overexpanded regimes. This model is inspired by the Pekkari model which was developed initially for perfect fluid flow. The new model called the "Modified Pekkari Model" (MPM) considers a more realistic wall pressure profile for the case of a free shock separation inside the supersonic nozzle using the free interaction theory of Chapman. To reach this objective, a code for structure computation coupled with aerodynamic excitation effects is developed that allows the analysis of aeroelastic stability for the overexpanded nozzles. The main results are presented in a comparative manner using existing models (Pekkari model and its extended version) and the modified Pekkari model developed in this work.
A Nonlinear Modal Aeroelastic Solver for FUN3D
NASA Technical Reports Server (NTRS)
Goldman, Benjamin D.; Bartels, Robert E.; Biedron, Robert T.; Scott, Robert C.
2016-01-01
A nonlinear structural solver has been implemented internally within the NASA FUN3D computational fluid dynamics code, allowing for some new aeroelastic capabilities. Using a modal representation of the structure, a set of differential or differential-algebraic equations are derived for general thin structures with geometric nonlinearities. ODEPACK and LAPACK routines are linked with FUN3D, and the nonlinear equations are solved at each CFD time step. The existing predictor-corrector method is retained, whereby the structural solution is updated after mesh deformation. The nonlinear solver is validated using a test case for a flexible aeroshell at transonic, supersonic, and hypersonic flow conditions. Agreement with linear theory is seen for the static aeroelastic solutions at relatively low dynamic pressures, but structural nonlinearities limit deformation amplitudes at high dynamic pressures. No flutter was found at any of the tested trajectory points, though LCO may be possible in the transonic regime.
Aeroelastic analysis for propellers - mathematical formulations and program user's manual
NASA Technical Reports Server (NTRS)
Bielawa, R. L.; Johnson, S. A.; Chi, R. M.; Gangwani, S. T.
1983-01-01
Mathematical development is presented for a specialized propeller dedicated version of the G400 rotor aeroelastic analysis. The G400PROP analysis simulates aeroelastic characteristics particular to propellers such as structural sweep, aerodynamic sweep and high subsonic unsteady airloads (both stalled and unstalled). Formulations are presented for these expanded propeller related methodologies. Results of limited application of the analysis to realistic blade configurations and operating conditions which include stable and unstable stall flutter test conditions are given. Sections included for enhanced program user efficiency and expanded utilization include descriptions of: (1) the structuring of the G400PROP FORTRAN coding; (2) the required input data; and (3) the output results. General information to facilitate operation and improve efficiency is also provided.
Structural dynamic and aeroelastic considerations for hypersonic vehicles
NASA Technical Reports Server (NTRS)
Cazier, F. W., Jr.; Doggett, Robert V., Jr.; Ricketts, Rodney H.
1991-01-01
The specific geometrical, structural, and operational environment characteristics of hypersonic vehicles are discussed with particular reference to aerospace plane type configurations. A discussion of the structural dynamic and aeroelastic phenomena that must be addressed for this class of vehicles is presented. These phenomena are in the aeroservothermoelasticity technical area. Some illustrative examples of recent experimental and analytical work are given. Some examples of current research are pointed out.
Aeroelastic stability analysis of a Darrieus wind turbine
Popelka, D.
1982-02-01
An aeroelastic stability analysis has been developed for predicting flutter instabilities on vertical axis wind turbines. The analytical model and mathematical formulation of the problem are described as well as the physical mechanism that creates flutter in Darrieus turbines. Theoretical results are compared with measured experimental data from flutter tests of the Sandia 2 Meter turbine. Based on this comparison, the analysis appears to be an adequate design evaluation tool.
Research of aerohydrodynamic and aeroelastic processes on PNRPU HPC system
NASA Astrophysics Data System (ADS)
Modorskii, V. Ya.; Shevelev, N. A.
2016-10-01
Research of aerohydrodynamic and aeroelastic processes with the High Performance Computing Complex in PNIPU is actively conducted within the university priority development direction "Aviation engine and gas turbine technology". Work is carried out in two areas: development and use of domestic software and use of well-known foreign licensed applied software packets. In addition, the third direction associated with the verification of computational experiments - physical modeling, with unique proprietary experimental installations is being developed.
Aeroelastic Airworthiness Assesment of the Adaptive Compliant Trailing Edge Flaps
NASA Technical Reports Server (NTRS)
Herrera, Claudia Y.; Spivey, Natalie D.; Lung, Shun-fat; Ervin, Gregory; Flick, Peter
2015-01-01
The Adaptive Compliant Trailing Edge (ACTE) demonstrator is a joint task under the National Aeronautics and Space Administration Environmentally Responsible Aviation Project in partnership with the Air Force Research Laboratory and FlexSys, Inc. (Ann Arbor, Michigan). The project goal is to develop advanced technologies that enable environmentally friendly aircraft, such as adaptive compliant technologies. The ACTE demonstrator flight-test program encompassed replacing the Fowler flaps on the SubsoniC Aircraft Testbed, a modified Gulfstream III (Gulfstream Aerospace, Savannah, Georgia) aircraft, with control surfaces developed by FlexSys. The control surfaces developed by FlexSys are a pair of uniquely-designed unconventional flaps to be used as lifting surfaces during flight-testing to validate their structural effectiveness. The unconventional flaps required a multidisciplinary airworthiness assessment to prove they could withstand the prescribed flight envelope. Several challenges were posed due to the large deflections experienced by the structure, requiring non-linear analysis methods. The aeroelastic assessment necessitated both conventional and extensive testing and analysis methods. A series of ground vibration tests (GVTs) were conducted to provide modal characteristics to validate and update finite element models (FEMs) used for the flutter analyses for a subset of the various flight configurations. Numerous FEMs were developed using data from FlexSys and the ground tests. The flap FEMs were then attached to the aircraft model to generate a combined FEM that could be analyzed for aeroelastic instabilities. The aeroelastic analysis results showed the combined system of aircraft and flaps were predicted to have the required flutter margin to successfully demonstrate the adaptive compliant technology. This paper documents the details of the aeroelastic airworthiness assessment described, including the ground testing and analyses, and subsequent flight
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Sanetrik, Mark D.; Chwalowski, Pawel; Connolly, Joseph; Kopasakis, George
2016-01-01
An overview of recent applications of the FUN3D CFD code to computational aeroelastic, sonic boom, and aeropropulsoservoelasticity (APSE) analyses of a low-boom supersonic configuration is presented. The overview includes details of the computational models developed including multiple unstructured CFD grids suitable for aeroelastic and sonic boom analyses. In addition, aeroelastic Reduced-Order Models (ROMs) are generated and used to rapidly compute the aeroelastic response and utter boundaries at multiple flight conditions.
On fluttering modes for aircraft wing model in subsonic air flow.
Shubov, Marianna A
2014-12-08
The paper deals with unstable aeroelastic modes for aircraft wing model in subsonic, incompressible, inviscid air flow. In recent author's papers asymptotic, spectral and stability analysis of the model has been carried out. The model is governed by a system of two coupled integrodifferential equations and a two-parameter family of boundary conditions modelling action of self-straining actuators. The Laplace transform of the solution is given in terms of the 'generalized resolvent operator', which is a meromorphic operator-valued function of the spectral parameter Î», whose poles are called the aeroelastic modes. The residues at these poles are constructed from the corresponding mode shapes. The spectral characteristics of the model are asymptotically close to the ones of a simpler system, which is called the reduced model. For the reduced model, the following result is shown: for each value of subsonic speed, there exists a radius such that all aeroelastic modes located outside the circle of this radius centred at zero are stable. Unstable modes, whose number is always finite, can occur only inside this 'circle of instability'. Explicit estimate of the 'instability radius' in terms of model parameters is given.
On fluttering modes for aircraft wing model in subsonic air flow
Shubov, Marianna A.
2014-01-01
The paper deals with unstable aeroelastic modes for aircraft wing model in subsonic, incompressible, inviscid air flow. In recent authorâ€™s papers asymptotic, spectral and stability analysis of the model has been carried out. The model is governed by a system of two coupled integrodifferential equations and a two-parameter family of boundary conditions modelling action of self-straining actuators. The Laplace transform of the solution is given in terms of the â€˜generalized resolvent operatorâ€™, which is a meromorphic operator-valued function of the spectral parameter Î», whose poles are called the aeroelastic modes. The residues at these poles are constructed from the corresponding mode shapes. The spectral characteristics of the model are asymptotically close to the ones of a simpler system, which is called the reduced model. For the reduced model, the following result is shown: for each value of subsonic speed, there exists a radius such that all aeroelastic modes located outside the circle of this radius centred at zero are stable. Unstable modes, whose number is always finite, can occur only inside this â€˜circle of instabilityâ€™. Explicit estimate of the â€˜instability radiusâ€™ in terms of model parameters is given. PMID:25484610
NASA Technical Reports Server (NTRS)
Bennett, Robert M.; Bland, Samuel R.; Batina, John T.; Gibbons, Michael D.; Mabey, Dennis G.
1987-01-01
A transonic unsteady aerodynamic and aeroelasticity code has been developed for application to realistic aircraft configurations. The new code is called CAP-TSD which is an acronym for Computational Aeroelasticity Program - Transonic Small Disturbance. The CAP-TSD code uses a time-accurate approximate factorization algorithm for solution of the unsteady transonic small-disturbance equation that is efficient for solution of steady and unsteady transonic flow problems including supersonic freestream flows. The new code can treat complete aircraft geometries with multiple lifting surfaces and bodies. Applications to wings in supersonic freestream flow are presented. Comparisons with selected exact solutions from linear theory are presented showing generally favorable results. Calculations for both steady and oscillatory cases for the F-5 and RAE tailplane models are compared with experimental data and also show good overall agreement. Selected steady calculations are further compared with a steady flow Euler code.
Recent Applications of Higher-Order Spectral Analysis to Nonlinear Aeroelastic Phenomena
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Hajj, Muhammad R.; Dunn, Shane; Strganac, Thomas W.; Powers, Edward J.; Stearman, Ronald
2005-01-01
Recent applications of higher-order spectral (HOS) methods to nonlinear aeroelastic phenomena are presented. Applications include the analysis of data from a simulated nonlinear pitch and plunge apparatus and from F-18 flight flutter tests. A MATLAB model of the Texas A&MUniversity s Nonlinear Aeroelastic Testbed Apparatus (NATA) is used to generate aeroelastic transients at various conditions including limit cycle oscillations (LCO). The Gaussian or non-Gaussian nature of the transients is investigated, related to HOS methods, and used to identify levels of increasing nonlinear aeroelastic response. Royal Australian Air Force (RAAF) F/A-18 flight flutter test data is presented and analyzed. The data includes high-quality measurements of forced responses and LCO phenomena. Standard power spectral density (PSD) techniques and HOS methods are applied to the data and presented. The goal of this research is to develop methods that can identify the onset of nonlinear aeroelastic phenomena, such as LCO, during flutter testing.
Multi-fractality in aeroelastic response as a precursor to flutter
NASA Astrophysics Data System (ADS)
Venkatramani, J.; Nair, Vineeth; Sujith, R. I.; Gupta, Sayan; Sarkar, Sunetra
2017-01-01
Wind tunnel tests on a NACA 0012 airfoil have been carried out to study the transition in aeroelastic response from an initial state characterised by low-amplitude aperiodic fluctuations to aeroelastic flutter when the system exhibits limit cycle oscillations. An analysis of the aeroelastic measurements reveals multi-fractal characteristics in the pre-flutter regime. This has not been studied in the literature. As the flow velocity approaches the flutter velocity from below, a gradual loss in multi-fractality is observed. Measures based on the generalised Hurst exponents are developed and are shown to have the potential to warn against impending aeroelastic flutter. The results of this study could be useful for health monitoring of aeroelastic structures.
NASA Technical Reports Server (NTRS)
Cole, Stanley R.; Garcia, Jerry L.
2000-01-01
The NASA Langley Transonic Dynamics Tunnel (TDT) has provided a unique capability for aeroelastic testing for forty years. The facility has a rich history of significant contributions to the design of many United States commercial transports, military aircraft, launch vehicles, and spacecraft. The facility has many features that contribute to its uniqueness for aeroelasticity testing, perhaps the most important feature being the use of a heavy gas test medium to achieve higher test densities. Higher test medium densities substantially improve model-building requirements and therefore simplify the fabrication process for building aeroelastically scaled wind tunnel models. Aeroelastic scaling for the heavy gas results in lower model structural frequencies. Lower model frequencies tend to a make aeroelastic testing safer. This paper will describe major developments in the testing capabilities at the TDT throughout its history, the current status of the facility, and planned additions and improvements to its capabilities in the near future.
A Review of Recent Aeroelastic Analysis Methods for Propulsion at NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.; Bakhle, Milind A.; Srivastava, R.; Mehmed, Oral; Stefko, George L.
1993-01-01
This report reviews aeroelastic analyses for propulsion components (propfans, compressors and turbines) being developed and used at NASA LeRC. These aeroelastic analyses include both structural and aerodynamic models. The structural models include a typical section, a beam (with and without disk flexibility), and a finite-element blade model (with plate bending elements). The aerodynamic models are based on the solution of equations ranging from the two-dimensional linear potential equation to the three-dimensional Euler equations for multibladed configurations. Typical calculated results are presented for each aeroelastic model. Suggestions for further research are made. Many of the currently available aeroelastic models and analysis methods are being incorporated in a unified computer program, APPLE (Aeroelasticity Program for Propulsion at LEwis).
A review of recent aeroelastic analysis methods for propulsion at NASA Lewis Research Center
NASA Astrophysics Data System (ADS)
Reddy, T. S. R.; Bakhle, Milind A.; Srivastava, R.; Mehmed, Oral; Stefko, George L.
1993-09-01
This report reviews aeroelastic analyses for propulsion components (propfans, compressors and turbines) being developed and used at NASA LeRC. These aeroelastic analyses include both structural and aerodynamic models. The structural models include a typical section, a beam (with and without disk flexibility), and a finite-element blade model (with plate bending elements). The aerodynamic models are based on the solution of equations ranging from the two-dimensional linear potential equation to the three-dimensional Euler equations for multibladed configurations. Typical calculated results are presented for each aeroelastic model. Suggestions for further research are made. Many of the currently available aeroelastic models and analysis methods are being incorporated in a unified computer program, APPLE (Aeroelasticity Program for Propulsion at LEwis).
Aeroelasticity at the NASA Langley Research Center Recent progress, new challenges
NASA Technical Reports Server (NTRS)
Hanson, P. W.
1985-01-01
Recent progress in aeroelasticity, particularly at the NASA Langley Research Center is reviewed to look at the questions answered and questions raised, and to attempt to define appropriate research emphasis needed in the near future and beyond. The paper is focused primarily on the NASA Langley Research Center (LaRC) Program because Langley is the lead NASA center for aerospace structures research, and essentially is the only one working in depth in the area of aeroelasticity. Historical trends in aeroelasticity are reviewed broadly in terms of technology and staffing particularly at the LaRC. Then, selected studies of the Loads and Aeroelasticity Division at LaRC and others over the past three years are presented with attention paid to unresolved questions. Finally, based on the results of these studies and on perceptions of design trends and aircraft operational requirements, future research needs in aeroelasticity are discussed.
NASA Technical Reports Server (NTRS)
1978-01-01
A structural design study was conducted to assess the relative merits of structural concepts using advanced composite materials for an advanced supersonic aircraft cruising at Mach 2.7. The configuration and structural arrangement developed during Task I and II of the study, was used as the baseline configuration. Allowable stresses and strains were established for boron and advanced graphite fibers based on projected fiber properties available in the next decade. Structural concepts were designed and analyzed using graphite polyimide and boron polyimide, applied to stiffened panels and conventional sandwich panels. The conventional sandwich panels were selected as the structural concept to be used on the wing structure. The upper and lower surface panels of the Task I arrow wing were redesigned using high-strength graphite polyimide sandwich panels over the titanium spars and ribs. The ATLAS computer system was used as the basis for stress analysis and resizing the surface panels using the loads from the Task II study, without adjustment for change in aeroelastic deformation. The flutter analysis indicated a decrease in the flutter speed compared to the baseline titanium wing design. The flutter analysis indicated a decrease in the flutter speed compared to the baseline titanium wing design. The flutter speed was increased to that of the titanium wing, with a weight penalty less than that of the metallic airplane.
NASA Technical Reports Server (NTRS)
Edwards, John W.
1996-01-01
A viscous-inviscid interactive coupling method is used for the computation of unsteady transonic flows involving separation and reattachment. A lag-entrainment integral boundary layer method is used with the transonic small disturbance potential equation in the CAP-TSDV (Computational Aeroelasticity Program - Transonic Small Disturbance) code. Efficient and robust computations of steady and unsteady separated flows, including steady separation bubbles and self-excited shock-induced oscillations are presented. The buffet onset boundary for the NACA 0012 airfoil is accurately predicted and shown computationally to be a Hopf bifurcation. Shock-induced oscillations are also presented for the 18 percent circular arc airfoil. The oscillation onset boundaries and frequencies are accurately predicted, as is the experimentally observed hysteresis of the oscillations with Mach number. This latter stability boundary is identified as a jump phenomenon. Transonic wing flutter boundaries are also shown for a thin swept wing and for a typical business jet wing, illustrating viscous effects on flutter and the effect of separation onset on the wing response at flutter. Calculations for both wings show limit cycle oscillations at transonic speeds in the vicinity of minimum flutter speed indices.
Trim angle of attack of flexible wings using non-linear aerodynamics
NASA Astrophysics Data System (ADS)
Cohen, David Erik
Multidisciplinary interactions are expected to play a significant role in the design of future high-performance aircraft (Blended-Wing Body, Truss-Braced wing; High Speed Civil transport, High-Altitude Long Endurance aircraft and future military aircraft). Also, the availability of supercomputers has made it now possible to employ high-fidelity models (Computational Fluid Dynamics for fluids and detailed finite element models for structures) at the preliminary design stage. A necessary step at that stage is to calculate the wing angle-of-attack at which the wing will generate the desired lift for the specific flight maneuver. Determination of this angle, a simple affair when the wing is rigid and the flow regime linear, becomes difficult when the wing is flexible and the flow regime non-linear. To solve this inherently nonlinear problem, a Newton's method type algorithm is developed to simultaneously calculate the deflection and the angle of attack. The developed algorithm is tested for a wing, used for in-house aeroelasticity research at Boeing (previously McDonnell Douglas) Long Beach. The trim angle of attack is calculated for a range of desired lift values. In addition to the Newton's method algorithm, a non derivative method (NDM) based on fixed point iteration, typical of fixed angle of attack calculations in aeroelasticity, is employed. The NDM, which has been extended to be able to calculate trim angle of attack, is used for one of the cases. The Newton's method calculation converges in fewer iterations, but requires more CPU time than the NDM method. The NDM, however, results in a slightly different value of the trim angle of attack. It should be noted that NDM will converge in a larger number of iterations as the dynamic pressure increases. For one value of the desired lift, both viscous and inviscid results were generated. The use of the inviscid flow model while not resulting in a markedly different value for the trim angle of attack, does result in a
Flying wings / flying fuselages
NASA Technical Reports Server (NTRS)
Wood, Richard M.; Bauer, Steven X. S.
2001-01-01
The present paper has documented the historical relationships between various classes of all lifting vehicles, which includes the flying wing, all wing, tailless, lifting body, and lifting fuselage. The diversity in vehicle focus was to ensure that all vehicle types that map have contributed to or been influenced by the development of the classical flying wing concept was investigated. The paper has provided context and perspective for present and future aircraft design studies that may employ the all lifting vehicle concept. The paper also demonstrated the benefit of developing an understanding of the past in order to obtain the required knowledge to create future concepts with significantly improved aerodynamic performance.
NASA Technical Reports Server (NTRS)
Vassberg, John C. (Inventor); Gea, Lie-Mine (Inventor); McLean, James D. (Inventor); Witowski, David P. (Inventor); Krist, Steven E. (Inventor); Campbell, Richard L. (Inventor)
2006-01-01
An aircraft wing includes a leading airfoil element and a trailing airfoil element. At least one slot is defined by the wing during at least one transonic condition of the wing. The slot may either extend spanwise along only a portion of the wingspan, or it may extend spanwise along the entire wingspan. In either case, the slot allows a portion of the air flowing along the lower surface of the leading airfoil element to split and flow over the upper surface of the trailing airfoil element so as to achieve a performance improvement in the transonic condition.
NASA Astrophysics Data System (ADS)
Bayati, I.; Belloli, M.; Bernini, L.; Mikkelsen, R.; Zasso, A.
2016-09-01
This paper illustrates the aero-elastic optimal design, the realization and the verification of the wind tunnel scale model blades for the DTU 10 MW wind turbine model, within LIFES50+ project. The aerodynamic design was focused on the minimization of the difference, in terms of thrust coefficient, with respect to the full scale reference. From the Selig low Reynolds database airfoils, the SD7032 was chosen for this purpose and a proper constant section wing was tested at DTU red wind tunnel, providing force and distributed pressure coefficients for the design, in the Reynolds range 30-250 E3 and for different angles of attack. The aero-elastic design algorithm was set to define the optimal spanwise thickness over chord ratio (t/c), the chord length and the twist to match the first flapwise scaled natural frequency. An aluminium mould for the carbon fibre was CNC manufactured based on B-Splines CAD definition of the external geometry. Then the wind tunnel tests at Politecnico di Milano confirmed successful design and manufacturing approaches.
Subsonic Ultra Green Aircraft Research. Phase II - Volume I; Truss Braced Wing Design Exploration
NASA Technical Reports Server (NTRS)
Bradley, Marty K.; Droney, Christopher K.; Allen, Timothy J.
2015-01-01
This report summarizes the Truss Braced Wing (TBW) work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team, consisting of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, Georgia Tech, Virginia Tech, NextGen Aeronautics, and Microcraft. A multi-disciplinary optimization (MDO) environment defined the geometry that was further refined for the updated SUGAR High TBW configuration. Airfoil shapes were tested in the NASA TCT facility, and an aeroelastic model was tested in the NASA TDT facility. Flutter suppression was successfully demonstrated using control laws derived from test system ID data and analysis models. Aeroelastic impacts for the TBW design are manageable and smaller than assumed in Phase I. Flutter analysis of TBW designs need to include pre-load and large displacement non-linear effects to obtain a reasonable match to test data. With the updated performance and sizing, fuel burn and energy use is reduced by 54% compared to the SUGAR Free current technology Baseline (Goal 60%). Use of the unducted fan version of the engine reduces fuel burn and energy by 56% compared to the Baseline. Technology development roadmaps were updated, and an airport compatibility analysis established feasibility of a folding wing aircraft at existing airports.
NASA Technical Reports Server (NTRS)
1992-01-01
Venture, a kit airplane designed and manufactured by Questair, is a high performance lightplane with excellent low speed characteristics and enhanced safety due to NASA technology incorporated in its unusual wing design. In 1987, North Carolina State graduate students and Langley Research Center spent seven months researching and analyzing the Venture. The result was a wing modification, improving control and providing more usable lift. The plane subsequently set 10 world speed records.
NASA Technical Reports Server (NTRS)
Kelly, G. L.; Berthold, G.; Abbott, L.
1982-01-01
A 5 MHZ single-board microprocessor system which incorporates an 8086 CPU and an 8087 Numeric Data Processor is used to implement the control laws for the NASA Drones for Aerodynamic and Structural Testing, Aeroelastic Research Wing II. The control laws program was executed in 7.02 msec, with initialization consuming 2.65 msec and the control law loop 4.38 msec. The software emulator execution times for these two tasks were 36.67 and 61.18, respectively, for a total of 97.68 msec. The space, weight and cost reductions achieved in the present, aircraft control application of this combination of a 16-bit microprocessor with an 80-bit floating point coprocessor may be obtainable in other real time control applications.
Blade mistuning coupled with shaft flexibility effects in rotor aeroelasticity
NASA Technical Reports Server (NTRS)
Khader, Naim; Loewy, Robert G.
1989-01-01
The effect of bladed-disk polar dissymmetry, resulting from variations in mass from one blade to another, on aeroelastic stability boundaries for a fan stage is presented. In addition to both in-plane and out-of-plane deformations of the bladed-disk, bending of the supporting shaft in two planes is considered, and the resulting Coriolis forces and gyroscopic moments are included in the analysis. A quasi-steady aerodynamics approach is combined with the Lagrangian method to develop the governing equations of motion for the flexible bladed-disk-shaft assembly. Calculations are performed for an actual fan stage.
NRT Rotor Structural / Aeroelastic Analysis for the Preliminary Design Review
Ennis, Brandon Lee; Paquette, Joshua A.
2015-10-01
This document describes the initial structural design for the National Rotor Testbed blade as presented during the preliminary design review at Sandia National Laboratories on October 28- 29, 2015. The document summarizes the structural and aeroelastic requirements placed on the NRT rotor for satisfactory deployment at the DOE/SNL SWiFT experimental facility to produce high-quality datasets for wind turbine model validation. The method and result of the NRT blade structural optimization is also presented within this report, along with analysis of its satisfaction of the design requirements.
Shape sensitivity analysis of flutter response of a laminated wing
NASA Technical Reports Server (NTRS)
Bergen, Fred D.; Kapania, Rakesh K.
1988-01-01
A method is presented for calculating the shape sensitivity of a wing aeroelastic response with respect to changes in geometric shape. Yates' modified strip method is used in conjunction with Giles' equivalent plate analysis to predict the flutter speed, frequency, and reduced frequency of the wing. Three methods are used to calculate the sensitivity of the eigenvalue. The first method is purely a finite difference calculation of the eigenvalue derivative directly from the solution of the flutter problem corresponding to the two different values of the shape parameters. The second method uses an analytic expression for the eigenvalue sensitivities of a general complex matrix, where the derivatives of the aerodynamic, mass, and stiffness matrices are computed using a finite difference approximation. The third method also uses an analytic expression for the eigenvalue sensitivities, but the aerodynamic matrix is computed analytically. All three methods are found to be in good agreement with each other. The sensitivities of the eigenvalues were used to predict the flutter speed, frequency, and reduced frequency. These approximations were found to be in good agreement with those obtained using a complete reanalysis.
Kinematics and wing shape across flight speed in the bat, Leptonycteris yerbabuenae.
Von Busse, Rhea; HedenstrÃ¶m, Anders; Winter, York; Johansson, L Christoffer
2012-12-15
The morphology and kinematics of a flying animal determines the resulting aerodynamic lift through the regulation of the speed of the air moving across the wing, the wing area and the lift coefficient. We studied the detailed three-dimensional wingbeat kinematics of the bat, Leptonycteris yerbabuenae, flying in a wind tunnel over a range of flight speeds (0-7â€…m/s), to determine how factors affecting the lift production vary across flight speed and within wingbeats. We found that the wing area, the angle of attack and the camber, which are determinants of the lift production, decreased with increasing speed. The camber is controlled by multiple mechanisms along the span, including the deflection of the leg relative to the body, the bending of the fifth digit, the deflection of the leading edge flap and the upward bending of the wing tip. All these measures vary throughout the wing beat suggesting active or aeroelastic control. The downstroke Strouhal number, St(d), is kept relatively constant, suggesting that favorable flow characteristics are maintained during the downstroke, across the range of speeds studied. The St(d) is kept constant through changes in the stroke plane, from a strongly inclined stroke plane at low speeds to a more vertical stroke plane at high speeds. The mean angular velocity of the wing correlates with the aerodynamic performance and shows a minimum at the speed of maximum lift to drag ratio, suggesting a simple way to determine the optimal speed from kinematics alone. Taken together our results show the high degree of adjustments that the bats employ to fine tune the aerodynamics of the wings and the correlation between kinematics and aerodynamic performance.
Nonlinear Time Delayed Feedback Control of Aeroelastic Systems: A Functional Approach
NASA Technical Reports Server (NTRS)
Marzocca, Piergiovanni; Librescu, Liviu; Silva, Walter A.
2003-01-01
In addition to its intrinsic practical importance, nonlinear time delayed feedback control applied to lifting surfaces can result in interesting aeroelastic behaviors. In this paper, nonlinear aeroelastic response to external time-dependent loads and stability boundary for actively controlled lifting surfaces, in an incompressible flow field, are considered. The structural model and the unsteady aerodynamics are considered linear. The implications of the presence of time delays in the linear/nonlinear feedback control and of geometrical parameters on the aeroelasticity of lifting surfaces are analyzed and conclusions on their implications are highlighted.
Bayesian analysis of the flutter margin method in aeroelasticity
NASA Astrophysics Data System (ADS)
Khalil, Mohammad; Poirel, Dominique; Sarkar, Abhijit
2016-12-01
A Bayesian statistical framework is presented for Zimmerman and Weissenburger flutter margin method which considers the uncertainties in aeroelastic modal parameters. The proposed methodology overcomes the limitations of the previously developed least-square based estimation technique which relies on the Gaussian approximation of the flutter margin probability density function (pdf). Using the measured free-decay responses at subcritical (preflutter) airspeeds, the joint non-Gaussain posterior pdf of the modal parameters is sampled using the Metropolis-Hastings (MH) Markov chain Monte Carlo (MCMC) algorithm. The posterior MCMC samples of the modal parameters are then used to obtain the flutter margin pdfs and finally the flutter speed pdf. The usefulness of the Bayesian flutter margin method is demonstrated using synthetic data generated from a two-degree-of-freedom pitch-plunge aeroelastic model. The robustness of the statistical framework is demonstrated using different sets of measurement data. It will be shown that the probabilistic (Bayesian) approach reduces the number of test points required in providing a flutter speed estimate for a given accuracy and precision.
Analytic investigation of helicopter rotor blade appended aeroelastic devices
NASA Technical Reports Server (NTRS)
Bielawa, Richard L.
1984-01-01
Analytic evaluations of four different passive aeroelastic devices appended to helicopter rotor blades are presented. The devices consist of a passive tuned tab, a control coupled tab, an all-flying tip and a harmonic dilational airfoil tip. Each device was conceived for improving either aerodynamic performance or reducing vibratory control loads or hub shears. The evaluation was performed using a comprehensive rotor aeroelastic analysis (the G400PA code with appropriate modifications), together with data for a realistic helicopter rotor blade (the UH-60A Blackhawk), in high speed flight (90 m/s, 175 kts). The results of this study show that significant performance (L/(D sub e)) gains can be achieved with the all-flying free tip. Results from the harmonic dilational airfoil tip show the potential for moderate improvements in L/(D sub e). Finally, the results for the passive tuned tab and the control coupled tab, as configured for this study, show these devices to be impractical. Sections are included which describe the operation of each device, the required G400PA modifications, and the detailed results obtained for each device.
Analyzing Aeroelastic Stability of a Tilt-Rotor Aircraft
NASA Technical Reports Server (NTRS)
Kvaternil, Raymond G.
2006-01-01
Proprotor Aeroelastic Stability Analysis, now at version 4.5 (PASTA 4.5), is a FORTRAN computer program for analyzing the aeroelastic stability of a tiltrotor aircraft in the airplane mode of flight. The program employs a 10-degree- of-freedom (DOF), discrete-coordinate, linear mathematical model of a rotor with three or more blades and its drive system coupled to a 10-DOF modal model of an airframe. The user can select which DOFs are included in the analysis. Quasi-steady strip-theory aerodynamics is employed for the aerodynamic loads on the blades, a quasi-steady representation is employed for the aerodynamic loads acting on the vibrational modes of the airframe, and a stability-derivative approach is used for the aerodynamics associated with the rigid-body DOFs of the airframe. Blade parameters that vary with the blade collective pitch can be obtained by interpolation from a user-defined table. Stability is determined by examining the eigenvalues that are obtained by solving the coupled equations of motions as a matrix eigenvalue problem. Notwithstanding the relative simplicity of its mathematical foundation, PASTA 4.5 and its predecessors have played key roles in a number of engineering investigations over the years.
Bayesian analysis of the flutter margin method in aeroelasticity
Khalil, Mohammad; Poirel, Dominique; Sarkar, Abhijit
2016-08-27
A Bayesian statistical framework is presented for Zimmerman and Weissenburger flutter margin method which considers the uncertainties in aeroelastic modal parameters. The proposed methodology overcomes the limitations of the previously developed least-square based estimation technique which relies on the Gaussian approximation of the flutter margin probability density function (pdf). Using the measured free-decay responses at subcritical (preflutter) airspeeds, the joint non-Gaussain posterior pdf of the modal parameters is sampled using the Metropolisâ€“Hastings (MH) Markov chain Monte Carlo (MCMC) algorithm. The posterior MCMC samples of the modal parameters are then used to obtain the flutter margin pdfs and finally the flutter speed pdf. The usefulness of the Bayesian flutter margin method is demonstrated using synthetic data generated from a two-degree-of-freedom pitch-plunge aeroelastic model. The robustness of the statistical framework is demonstrated using different sets of measurement data. In conclusion, it will be shown that the probabilistic (Bayesian) approach reduces the number of test points required in providing a flutter speed estimate for a given accuracy and precision.
Bayesian analysis of the flutter margin method in aeroelasticity
Khalil, Mohammad; Poirel, Dominique; Sarkar, Abhijit
2016-08-27
A Bayesian statistical framework is presented for Zimmerman and Weissenburger flutter margin method which considers the uncertainties in aeroelastic modal parameters. The proposed methodology overcomes the limitations of the previously developed least-square based estimation technique which relies on the Gaussian approximation of the flutter margin probability density function (pdf). Using the measured free-decay responses at subcritical (preflutter) airspeeds, the joint non-Gaussain posterior pdf of the modal parameters is sampled using the Metropolisâ€“Hastings (MH) Markov chain Monte Carlo (MCMC) algorithm. The posterior MCMC samples of the modal parameters are then used to obtain the flutter margin pdfs and finally the fluttermoreÂ Â» speed pdf. The usefulness of the Bayesian flutter margin method is demonstrated using synthetic data generated from a two-degree-of-freedom pitch-plunge aeroelastic model. The robustness of the statistical framework is demonstrated using different sets of measurement data. In conclusion, it will be shown that the probabilistic (Bayesian) approach reduces the number of test points required in providing a flutter speed estimate for a given accuracy and precision.Â«Â less
Faber, C G; Klaver, M M; Wokke, J H J
2002-09-14
Three patients, one woman aged 22 and two men aged 54 and 28, presented with scapular winging. In the first patient amyotrophic plexus neuralgia was diagnosed. The second patient most probably suffered from a stretch injury of the long thoracic nerve. The third patient had scapular winging due to an isolated paresis of the trapezius muscle, which was caused by an idiopathic lesion of the accessory nerve. In the first and second patient an improvement was noticeable after 9 months and 1.5 years respectively. There was no improvement in the third patient after 11 years. Paresis of the M. serratus anterior occurs due to paralysis of the N. thoracicus longus, as a result of direct compression, stump trauma, interventions such as thoracic operations, (repeated) stretch injuries or neuralgic brachial plexus amyotrophy; in these cases the scapular winging increases as the arm is lifted forwards. Paresis of the M. trapezius occurs due to the paralysis of the N. accessorius, due to trauma, interventions such as in the neck area, a space-occupying abnormality or an idiopathic abnormality; in these cases the scapular winging increases upon the arm being lifted sideways. Another possible cause of scapular winging is muscular dystrophy, especially fascioscapulohumeral muscular dystrophy (FSHD). Usually the prognosis for recovery from a neuropraxia and an idiopathic lesion of the N. thoracicus longus within a two-year period is good. The prognosis for an isolated lesion of the N. accessorius is much less favourable. An EMG is essential for establishing a diagnosis.
NASA Astrophysics Data System (ADS)
Jha, Ratneshwar
Multidisciplinary design optimization (MDO) procedures have been developed for smart composite wings and turbomachinery blades. The analysis and optimization methods used are computationally efficient and sufficiently rigorous. Therefore, the developed MDO procedures are well suited for actual design applications. The optimization procedure for the conceptual design of composite aircraft wings with surface bonded piezoelectric actuators involves the coupling of structural mechanics, aeroelasticity, aerodynamics and controls. The load carrying member of the wing is represented as a single-celled composite box beam. Each wall of the box beam is analyzed as a composite laminate using a refined higher-order displacement field to account for the variations in transverse shear stresses through the thickness. Therefore, the model is applicable for the analysis of composite wings of arbitrary thickness. Detailed structural modeling issues associated with piezoelectric actuation of composite structures are considered. The governing equations of motion are solved using the finite element method to analyze practical wing geometries. Three-dimensional aerodynamic computations are performed using a panel code based on the constant-pressure lifting surface method to obtain steady and unsteady forces. The Laplace domain method of aeroelastic analysis produces root-loci of the system which gives an insight into the physical phenomena leading to flutter/divergence and can be efficiently integrated within an optimization procedure. The significance of the refined higher-order displacement field on the aeroelastic stability of composite wings has been established. The effect of composite ply orientations on flutter and divergence speeds has been studied. The Kreisselmeier-Steinhauser (K-S) function approach is used to efficiently integrate the objective functions and constraints into a single envelope function. The resulting unconstrained optimization problem is solved using the
An integrated approach to the optimum design of actively controlled composite wings
NASA Technical Reports Server (NTRS)
Livne, E.
1989-01-01
The importance of interactions among the various disciplines in airplane wing design has been recognized for quite some time. With the introduction of high gain, high authority control systems and the design of thin, flexible, lightweight composite wings, the integrated treatment of control systems, flight mechanics and dynamic aeroelasticity became a necessity. A research program is underway now aimed at extending structural synthesis concepts and methods to the integrated synthesis of lifting surfaces, spanning the disciplines of structures, aerodynamics and control for both analysis and design. Mathematical modeling techniques are carefully selected to be accurate enough for preliminary design purposes of the complicated, built-up lifting surfaces of real aircraft with their multiple design criteria and tight constraints. The presentation opens with some observations on the multidisciplinary nature of wing design. A brief review of some available state of the art practical wing optimization programs and a brief review of current research effort in the field serve to illuminate the motivation and support the direction taken in our research. The goals of this research effort are presented, followed by a description of the analysis and behavior sensitivity techniques used. The presentation concludes with a status report and some forecast of upcoming progress.
NASA Technical Reports Server (NTRS)
Howard, Anna K. T.
1999-01-01
The tiltrotor offers the best mix of hovering and cruise flight of any of the current V/STOL configurations. One possible improvement on the tiltrotors of today designs would be using a soft-inplane hingeless hub. The advantages to a soft-inplane hingeless hub range from reduced weight and maintenance to reduced vibration and loads. However, soft-inplane rotor systems are inherently in danger of the aeromechanical instabilities of ground and air resonance. Furthermore tiltrotors can be subject to whirl flutter. At least in part because of the potential for air and ground resonance in a soft-inplane rotor, the Bell XV-15, the Bell-Boeing V-22 Osprey, and the new Bell Augusta 609 have stiff-inplane, gimballed rotors which do not experience these instabilities. In order to design soft-inplane V/STOL aircraft that do not experience ground or air resonance, it is important to be able to predict these instabilities accurately. Much of the research studying the stability of tiltrotors has been focused on the understanding and prediction of whirl flutter. As this instability is increasingly well understood, air and ground resonance for a tiltrotor need to be investigated. Once we understand the problems of air and ground resonance in a tiltrotor, we must look for solutions to these instabilities. Other researchers have found composite or kinematic couplings in the blades of a helicopter helpful for ground and air resonance stability. Tiltrotor research has shown composite couplings in the wing to be helpful for whirl flutter. Therefore, this project will undertake to model ground and air resonance of a soft-inplane hingeless tiltrotor to understand the mechanisms involved and to evaluate whether aeroelastic couplings in the wing or kinematic couplings in the blades would aid in stabilizing these instabilities in a tiltrotor.
NASA Technical Reports Server (NTRS)
Hsu, C. H.; Lan, C. E.
1984-01-01
A theory is developed for predicting wing rock characteristics. From available data, it can be concluded that wing rock is triggered by flow asymmetries, developed by negative or weakly positive roll damping, and sustained by nonlinear aerodynamic roll damping. A new nonlinear aerodynamic model that includes all essential aerodynamic nonlinearities is developed. The Beecham-Titchener method is applied to obtain approximate analytic solutions for the amplitude and frequency of the limit cycle based on the three degree-of-freedom equations of motion. An iterative scheme is developed to calculate the average aerodynamic derivatives and dynamic characteristics at limit cycle conditions. Good agreement between theoretical and experimental results is obtained.
NASTRAN level 16 programmer's manual updates for aeroelastic analysis of bladed discs
NASA Technical Reports Server (NTRS)
Gallo, A. M.; Dale, B.
1980-01-01
The programming routines for the NASTRAN Level 16program are presented. Particular emphasis is placed on its application to aeroelastic analyses, mode development, and flutter analysis for turbomachine blades.
Including Aeroelastic Effects in the Calculation of X-33 Loads and Control Characteristics
NASA Technical Reports Server (NTRS)
Zeiler, Thomas A.
1998-01-01
Up until now, loads analyses of the X-33 RLV have been done at Marshall Space Flight Center (MSFC) using aerodynamic loads derived from CFD and wind tunnel models of a rigid vehicle. Control forces and moments are determined using a rigid vehicle trajectory analysis and the detailed control load distributions for achieving the desired control forces and moments, again on the rigid vehicle, are determined by Lockheed Martin Skunk Works. However, static aeroelastic effects upon the load distributions are not known. The static aeroelastic effects will generally redistribute external loads thereby affecting both the internal structural loads as well as the forces and moments generated by aerodynamic control surfaces. Therefore, predicted structural sizes as well as maneuvering requirements can be altered by consideration of static aeroelastic effects. The objective of the present work is the development of models and solutions for including static aeroelasticity in the calculation of X-33 loads and in the determination of stability and control derivatives.
Aeroelastic and dynamic finite element analyses of a bladder shrouded disk
NASA Technical Reports Server (NTRS)
Smith, G. C. C.; Elchuri, V.
1980-01-01
The delivery and demonstration of a computer program for the analysis of aeroelastic and dynamic properties is reported. Approaches to flutter and forced vibration of mistuned discs, and transient aerothermoelasticity are described.
A Summary of Data and Findings from the First Aeroelastic Prediction Workshop
NASA Technical Reports Server (NTRS)
Schuster, David M.; Chwalowski, Pawel.; Heeg, Jennifer; Wieseman, Carol D.
2012-01-01
This paper summarizes data and findings from the first Aeroelastic Prediction Workshop (AePW) held in April, 2012. The workshop has been designed as a series of technical interchange meetings to assess the state of the art of computational methods for predicting unsteady flowfields and static and dynamic aeroelastic response. The goals are to provide an impartial forum to evaluate the effectiveness of existing computer codes and modeling techniques to simulate aeroelastic problems, and to identify computational and experimental areas needing additional research and development. For this initial workshop, three subject configurations have been chosen from existing wind tunnel data sets where there is pertinent experimental data available for comparison. Participant researchers analyzed one or more of the subject configurations and results from all of these computations were compared at the workshop. Keywords: Unsteady Aerodynamics, Aeroelasticity, Computational Fluid Dynamics, Transonic Flow, Separated Flow.
NASA Technical Reports Server (NTRS)
Woodrow Whitlow, Jr. (Editor); Todd, Emily N. (Editor)
1999-01-01
These proceedings represent a collection of the latest advances in aeroelasticity and structural dynamics from the world community. Research in the areas of unsteady aerodynamics and aeroelasticity, structural modeling and optimization, active control and adaptive structures, landing dynamics, certification and qualification, and validation testing are highlighted in the collection of papers. The wide range of results will lead to advances in the prediction and control of the structural response of aircraft and spacecraft.
PerjÃ©s, K
1990-01-01
Author describes the paralysis of the serratus muscle in consequence of the paralysis of the long thoracic nerve. The form of appearance is the winged of "flying" scapula. Beside the presentation of the literary and anatomical data the own cases are described. Only conservative therapy was made, an operation was in no case necessary.
SMA actuators for morphing wings
NASA Astrophysics Data System (ADS)
Brailovski, V.; Terriault, P.; Georges, T.; Coutu, D.
An experimental morphing laminar wing was developed to prove the feasibility of aircraft fuel consumption reduction through enhancement of the laminar flow regime over the wing extrados. The morphing wing prototype designed for subsonic cruise flight conditions (Mach 0.2 â€¦ 0.3; angle of attack - 1 â€¦ +2âˆ˜), combines three principal subsystems: (1) flexible extrados, (2) rigid intrados and (3) an actuator group located inside the wing box. The morphing capability of the wing relies on controlled deformation of the wing extrados under the action of shape memory alloys (SMA) actuators. A coupled fluid-structure model of the morphing wing was used to evaluate its mechanical and aerodynamic performances in different flight conditions. A 0.5 m chord and 1 m span prototype of the morphing wing was tested in a subsonic wind tunnel. In this work, SMA actuators for morphing wings were modeled using a coupled thermo-mechanical finite element model and they were windtunnel validated. If the thermo-mechanical model of SMA actuators presented in this work is coupled with the previously developed structureaerodynamic model of the morphing wing, it could serve for the optimization of the entire morphing wing system.
Design of an Aeroelastically Tailored 10 MW Wind Turbine Rotor
NASA Astrophysics Data System (ADS)
Zahle, Frederik; Tibaldi, Carlo; Pavese, Christian; McWilliam, Michael K.; Blasques, Jose P. A. A.; Hansen, Morten H.
2016-09-01
This work presents an integrated multidisciplinary wind turbine optimization framework utilizing state-of-the-art aeroelastic and strutural tools, capable of simultaneous design of the outer geometry and internal structure of the blade. The framework is utilized to design a 10 MW rotor constrained not to exceed the design loads of an existing reference wind turbine. The results show that through combined geometric tailoring of the internal structure and aerodynamic shape of the blade it is possible to achieve significant passive load alleviation that allows for a 9% longer blade with an increase in AEP of 8.7%, without increasing blade mass and without significant increases in ultimate and fatigue loads on the hub and tower.
Optimal mistuning for enhanced aeroelastic stability of transonic fans
NASA Technical Reports Server (NTRS)
Hall, K. C.; Crawley, E. F.
1983-01-01
An inverse design procedure was developed for the design of a mistuned rotor. The design requirements are that the stability margin of the eigenvalues of the aeroelastic system be greater than or equal to some minimum stability margin, and that the mass added to each blade be positive. The objective was to achieve these requirements with a minimal amount of mistuning. Hence, the problem was posed as a constrained optimization problem. The constrained minimization problem was solved by the technique of mathematical programming via augmented Lagrangians. The unconstrained minimization phase of this technique was solved by the variable metric method. The bladed disk was modelled as being composed of a rigid disk mounted on a rigid shaft. Each of the blades were modelled with a single tosional degree of freedom.
Aeroelastic Analysis Of Versatile Thermal Insulation Panels For Launchers Applications
NASA Astrophysics Data System (ADS)
Carrera, E.; Zappino, E.; Augello, G.; Ferrarese, A.; Montabone, M.
2011-05-01
The aeroelastic behavior of a Versatile Thermal Insulation (VTI) has been investigated. Among the various loadings acting on the panels in this work the attention is payed to fluid structure interaction. e.g. panel flutter phenomena. Known available results from open literature, related to similar problems, permit to analyze the effect of various Mach regimes, including boundary layers thickness effects, in-plane mechanical and thermal loadings, nonlinear effect and amplitude of so called limit cycle oscillations. Dedicated finite element model is developed for the supersonic regime. The model used for coupling orthotropic layered structural model with to Piston Theory aerodynamic models allows the calculations of flutter conditions in case of curved panels supported in a dis- crete number of points. Through this approach the flutter boundaries of the VTI-panel have been investigated.
Nonlinear Aeroelastic Analysis of UAVs: Deterministic and Stochastic Approaches
NASA Astrophysics Data System (ADS)
Sukut, Thomas Woodrow
Aeroelastic aspects of unmanned aerial vehicles (UAVs) is analyzed by treatment of a typical section containing geometrical nonlinearities. Equations of motion are derived and numerical integration of these equations subject to quasi-steady aerodynamic forcing is performed. Model properties are tailored to a high-altitude long-endurance unmanned aircraft. Harmonic balance approximation is employed based on the steady-state oscillatory response of the aerodynamic forcing. Comparisons are made between time integration results and harmonic balance approximation. Close agreement between forcing and displacement oscillatory frequencies is found. Amplitude agreement is off by a considerable margin. Additionally, stochastic forcing effects are examined. Turbulent flow velocities generated from the von Karman spectrum are applied to the same nonlinear structural model. Similar qualitative behavior is found between quasi-steady and stochastic forcing models illustrating the importance of considering the non-steady nature of atmospheric turbulence when operating near critical flutter velocity.
Optimal design application on the advanced aeroelastic rotor blade
NASA Technical Reports Server (NTRS)
Wei, F. S.; Jones, R.
1985-01-01
The vibration and performance optimization procedure using regression analysis was successfully applied to an advanced aeroelastic blade design study. The major advantage of this regression technique is that multiple optimizations can be performed to evaluate the effects of various objective functions and constraint functions. The data bases obtained from the rotorcraft flight simulation program C81 and Myklestad mode shape program are analytically determined as a function of each design variable. This approach has been verified for various blade radial ballast weight locations and blade planforms. This method can also be utilized to ascertain the effect of a particular cost function which is composed of several objective functions with different weighting factors for various mission requirements without any additional effort.
Development of an aeroelastic methodology for surface morphing rotors
NASA Astrophysics Data System (ADS)
Cook, James R.
Helicopter performance capabilities are limited by maximum lift characteristics and vibratory loading. In high speed forward flight, dynamic stall and transonic flow greatly increase the amplitude of vibratory loads. Experiments and computational simulations alike have indicated that a variety of active rotor control devices are capable of reducing vibratory loads. For example, periodic blade twist and flap excitation have been optimized to reduce vibratory loads in various rotors. Airfoil geometry can also be modified in order to increase lift coefficient, delay stall, or weaken transonic effects. To explore the potential benefits of active controls, computational methods are being developed for aeroelastic rotor evaluation, including coupling between computational fluid dynamics (CFD) and computational structural dynamics (CSD) solvers. In many contemporary CFD/CSD coupling methods it is assumed that the airfoil is rigid to reduce the interface by single dimension. Some methods retain the conventional one-dimensional beam model while prescribing an airfoil shape to simulate active chord deformation. However, to simulate the actual response of a compliant airfoil it is necessary to include deformations that originate not only from control devices (such as piezoelectric actuators), but also inertial forces, elastic stresses, and aerodynamic pressures. An accurate representation of the physics requires an interaction with a more complete representation of loads and geometry. A CFD/CSD coupling methodology capable of communicating three-dimensional structural deformations and a distribution of aerodynamic forces over the wetted blade surface has not yet been developed. In this research an interface is created within the Fully Unstructured Navier-Stokes (FUN3D) solver that communicates aerodynamic forces on the blade surface to University of Michigan's Nonlinear Active Beam Solver (UM/NLABS -- referred to as NLABS in this thesis). Interface routines are developed for
Aeroelastic Response of the Adaptive Compliant Trailing Edge Transtition Section
NASA Technical Reports Server (NTRS)
Herrera, Claudia Y.; Spivey, Natalie D.; Lung, Shun-fat
2016-01-01
The Adaptive Compliant Trailing Edge demonstrator was a joint task under the Environmentally Responsible Aviation Project in partnership with the Air Force Research Laboratory and FlexSys, Inc. (Ann Arbor, Michigan), chartered by the National Aeronautics and Space Administration to develop advanced technologies that enable environmentally friendly aircraft, such as continuous mold-line technologies. The Adaptive Compliant Trailing Edge demonstrator encompassed replacing the Fowler flaps on the SubsoniC Aircraft Testbed, a Gulfstream III (Gulfstream Aerospace, Savannah, Georgia) aircraft, with control surfaces developed by FlexSys, Inc., a pair of uniquely-designed, unconventional flaps to be used as lifting surfaces during flight-testing to substantiate their structural effectiveness. The unconventional flaps consisted of a main flap section and two transition sections, inboard and outboard, which demonstrated the continuous mold-line technology. Unique characteristics of the transition sections provided a challenge to the airworthiness assessment for this part of the structure. A series of build-up tests and analyses were conducted to ensure the data required to support the airworthiness assessment were acquired and applied accurately. The transition sections were analyzed both as individual components and as part of the flight-test article assembly. Instrumentation was installed in the transition sections based on the analysis to best capture the in-flight aeroelastic response. Flight-testing was conducted and flight data were acquired to validate the analyses. This paper documents the details of the aeroelastic assessment and in-flight response of the transition sections of the unconventional Adaptive Compliant Trailing Edge flaps.
Small Engine Technology (Set) Task 8 Aeroelastic Prediction Methods
NASA Technical Reports Server (NTRS)
Eick, Chris D.; Liu, Jong-Shang
1998-01-01
AlliedSignal Engines, in cooperation with NASA LeRC, completed an evaluation of recently developed aeroelastic computer codes using test cases from the AlliedSignal Engines fan blisk database. Test data for this task includes strain gage, light probe, performance, and steady-state pressure information obtained for conditions where synchronous or flutter vibratory conditions were found to occur. Aeroelastic codes evaluated include the quasi 3-D UNSFLO (developed at MIT and modified to include blade motion by AlliedSignal), the 2-D FREPS (developed by NASA LeRC), and the 3-D TURBO-AE (under development at NASA LeRC). Six test cases each where flutter and synchronous vibrations were found to occur were used for evaluation of UNSFLO and FREPS. In addition, one of the flutter cases was evaluated using TURBO-AE. The UNSFLO flutter evaluations were completed for 75 percent radial span and provided good agreement with the experimental test data. Synchronous evaluations were completed for UNSFLO but further enhancement needs to be added to the code before the unsteady pressures can be used to predict forced response vibratory stresses. The FREPS evaluations were hindered as the steady flow solver (SFLOW) was unable to converge to a solution for the transonic flow conditions in the fan blisk. This situation resulted in all FREPS test cases being attempted but no results were obtained during the present program. Currently, AlliedSignal is evaluating integrating FREPS with our existing steady flow solvers to bypass the SFLOW difficulties. ne TURBO-AE steady flow solution provided an excellent match with the AlliedSignal Engines calibrated DAWES 3-D viscous solver. Finally, the TURBO-AE unsteady analyses also matched experimental observations by predicting flutter for the single test case evaluated.
A wind turbine hybrid simulation framework considering aeroelastic effects
NASA Astrophysics Data System (ADS)
Song, Wei; Su, Weihua
2015-04-01
In performing an effective structural analysis for wind turbine, the simulation of turbine aerodynamic loads is of great importance. The interaction between the wake flow and the blades may impact turbine blades loading condition, energy yield and operational behavior. Direct experimental measurement of wind flow field and wind profiles around wind turbines is very helpful to support the wind turbine design. However, with the growth of the size of wind turbines for higher energy output, it is not convenient to obtain all the desired data in wind-tunnel and field tests. In this paper, firstly the modeling of dynamic responses of large-span wind turbine blades will consider nonlinear aeroelastic effects. A strain-based geometrically nonlinear beam formulation will be used for the basic structural dynamic modeling, which will be coupled with unsteady aerodynamic equations and rigid-body rotations of the rotor. Full wind turbines can be modeled by using the multi-connected beams. Then, a hybrid simulation experimental framework is proposed to potentially address this issue. The aerodynamic-dominant components, such as the turbine blades and rotor, are simulated as numerical components using the nonlinear aeroelastic model; while the turbine tower, where the collapse of failure may occur under high level of wind load, is simulated separately as the physical component. With the proposed framework, dynamic behavior of NREL's 5MW wind turbine blades will be studied and correlated with available numerical data. The current work will be the basis of the authors' further studies on flow control and hazard mitigation on wind turbine blades and towers.
Lehmann, Fritz-Olaf
2008-01-01
Understanding the fluid dynamics of force control in flying insects requires the exploration of how oscillating wings interact with the surrounding fluid. The production of vorticity and the shedding of vortical structures within the stroke cycle thus depend on two factors: the temporal structure of the flow induced by the wing's own instantaneous motion and the flow components resulting from both the force production in previous wing strokes and the motion of other wings flapping in close proximity. These wake-wing interactions may change on a stroke-by-stroke basis, confronting the neuro-muscular system of the animal with a complex problem for force control. In a single oscillating wing, the flow induced by the preceding half stroke may lower the wing's effective angle of attack but permits the recycling of kinetic energy from the wake via the wake capture mechanism. In two-winged insects, the acceleration fields produced by each wing may strongly interact via the clap-and-fling mechanism during the dorsal stroke reversal. Four-winged insects must cope with the fact that the flow over their hindwings is affected by the presence of the forewings. In these animals, a phase-shift between the stroke cycles of fore- and hindwing modulates aerodynamic performance of the hindwing via leading edge vortex destruction and changes in local flow condition including wake capture. Moreover, robotic wings demonstrate that phase-lag during peak performance and the strength of force modulation depend on the vertical spacing between the two stroke planes and the size ratio between fore- and hindwing. This study broadly summarizes the most prominent mechanisms of wake-wing and wing-wing interactions found in flapping insect wings and evaluates the consequences of these processes for the control of locomotor forces in the behaving animal.
Aeroelastic character of a National Aerospace Plane demonstrator concept
NASA Technical Reports Server (NTRS)
Spain, Charles V.; Zeiler, Thomas A.; Gibbons, Michael D.; Soistmann, David L.; Pozefsky, Peter; Dejesus, Rafael O.; Brannon, Cyprian P.
1993-01-01
The paper provides an analytical assessment of the flutter character of an unclassified National Aerospace Plane configuration known as the demonstrator. Linear subsonic, supersonic, and hypersonic analysis indicate that the vehicle is prone to body-freedom flutter resulting from the decrease in vibration frequency of the all-moveable wing at high flight dynamic pressures. As the wing-pivot frequency decreases, it couples with the vehicle short-period mode resulting in dynamic instability. A similar instability sometimes occurs when the pivot mode couples with the fuselage-bending mode. Also assessed, for supersonic flight conditions, are configuration variations that include relocation of the wing further aft on the lifting-body fuselage, and the addition of body flaps to the rear of the vehicle. These changes are destabilizing because they result in severe wing-pivot/fuselage-bending instabilities at dynamic pressures lower than the instabilities indicated for the original demonstrator. Finally, a two-point wing support and actuation system concept is proposed for the National Aerospace Plane, which if developed may (according to cursory analysis) enhance overall stability.
NASA Technical Reports Server (NTRS)
Mcgehee, C. R.
1986-01-01
A study was conducted under Drones for Aerodynamic and Structural Testing (DAST) program to accomplish the final design and hardware fabrication for four active control systems compatible with and ready for installation in the NASA Aeroelastic Research Wing No. 2 (ARW-2) and Firebee II drone flight test vehicle. The wing structure was designed so that Active Control Systems (ACS) are required in the normal flight envelope by integrating control system design with aerodynamics and structure technologies. The DAST ARW-2 configuration uses flutter suppression, relaxed static stability, and gust and maneuver load alleviation ACS systems, and an automatic flight control system. Performance goals and criteria were applied to individual systems and the systems collectively to assure that vehicle stability margins, flutter margins, flying qualities and load reductions are achieved.
NASA Technical Reports Server (NTRS)
Mcgehee, C. R.
1986-01-01
This is Part 2-Appendices of a study conducted under Drones for Aerodynamic and Structural Testing (DAST) Program to accomplish the final design and hardware fabrication for four active control systems compatible with and ready for installation in the NASA Aeroelastic Research Wing No. 2 (ARW-2) and Firebee II drone flight test vehicle. The wing structure was designed so that Active Control Systems (ACS) are required in the normal flight envelope by integrating control system design with aerodynamics and structure technologies. The DAST ARW-2 configuration uses flutter suppression, relaxed static stability, and gust and maneuver load alleviation ACS systems, and an automatic flight control system. Performance goals and criteria were applied to individual systems and the systems collectively to assure that vehicle stability margins, flutter margins, flying qualities, and load reductions were achieved.
NASA Astrophysics Data System (ADS)
Bou-Mosleh, Charbel Fouad
Survivability of an aircraft in combat is achieved by not getting hit or by withstanding the effects of some suffered hits. Combat damage is described by the removal of one or more portions of the wing or any other flight control surface. To determine whether a wing will survive a specific damage, the structural and aerodynamic response of the wing should be predicted and tested. The response of wings to battle-induced damage is currently addressed through live-fire testing on the ground. The loading methodology used in these live-fire tests does not reproduce the loads encountered during flight, and does not account for the changes in structural stiffness and mass of the wing after damage infliction. In addition, current live-fire tests fail to address the changes in the aerodynamic performance of the wing caused by the battle-induced damage. To better address the structural response of aircraft wings to combat damage, this thesis investigates a concept for an alternative loading methodology that exploits recent advances in nonlinear aeroelastic simulations and smart material actuators. The main idea behind this concept is to accurately predict the stress states of the wing before, during, and after sustaining a hit, for a given flight condition, and reproduce them on the ground by loading the spars and ribs of the wings with programmable actuators and/or a few external tethers. Mathematically, this entails solving an optimization problem to determine the locations and gains of the actuators. Two different types of actuators are investigated: 1D actuators or actuators with tension/compression capability and bimorph bender actuators. The potential of the investigated loading methodology is evaluated for "slender" wings (ARW-2 wing) and for "delta" wings (HSCT and F-16 wing) at a transonic flight condition. The obtained numerical results suggest that the investigated loading methodology can reproduce a desired stress state fairly accurately using external tethers
Aerolastic tailoring and integrated wing design
NASA Technical Reports Server (NTRS)
Love, Mike H.; Bohlmann, Jon
1989-01-01
Much has been learned from the TSO optimization code over the years in determining aeroelastic tailoring's place in the integrated design process. Indeed, it has become apparent that aeroelastic tailoring is and should be deeply embedded in design. Aeroelastic tailoring can have tremendous effects on the design loads, and design loads affect every aspect of the design process. While optimization enables the evaluation of design sensitivities, valid computational simulations are required to make these sensitivities valid. Aircraft maneuvers simulated must adequately cover the plane's intended flight envelope, realistic design criteria must be included, and models among the various disciplines must be calibrated among themselves and with any hard-core (e.g., wind tunnel) data available. The information gained and benefits derived from aeroelastic tailoring provide a focal point for the various disciplines to become involved and communicate with one another to reach the best design possible.
1995-11-01
warning at headquarters of Japanese planes approaching Clark Field. Despite all our warning systems and all the reconnaissance missions we had flown, the...late January 1942. 49 ON CELESTIAL WINGS Davao on 3 January 1942. They staged through Samarinda, Bomeo , and flew the 730 nautical miles to find the...knocking out our hydraulic system , our brakes, landing gear and bomb release mechanism. We kicked the bombs out manually over Bali and returned to Java
ERIC Educational Resources Information Center
Fitzgerald, Mike; Brand, Lance
2004-01-01
In this article, the authors present an activity that shows students how flight occurs. The "wing on a string" is a simple teacher-made frame that consists of PVC pipe, fishing line, and rubber bands--all readily available hardware store items. The only other materials/tools involved are a sheet of paper, some pieces of a soda straw, a stapler,â€¦
NASA Technical Reports Server (NTRS)
Horn, Nicholas R.
2015-01-01
The Adaptive Compliant Trailing Edge (ACTE) project modified a Gulfstream III (GIII) aircraft with a new flexible flap that creates a seamless transition between the flap and the wing. As with any new modification, it is crucial to ensure that the aircraft will not become overstressed in flight. To test this, Star CCM a computational fluid dynamics (CFD) software program was used to calculate aerodynamic data for the aircraft at given flight conditions.
Variable Camber Morphing Wings
2016-02-02
exploring smart materials , aiming at achieving more efficient morphing capability in terms of control authority and energy consump- tion. Other specific...collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION. 1. REPORT...methodology of variable camber morphing wings based on the use of active materials , namely piezoelectric materials and shape memory alloys. The research work
NASA Technical Reports Server (NTRS)
Gardner, Kevin D.; Liu, Jong-Shang; Murthy, Durbha V.; Kruse, Marlin J.; James, Darrell
1999-01-01
AlliedSignal Engines, in cooperation with NASA GRC (National Aeronautics and Space Administration Glenn Research Center), completed an evaluation of recently-developed aeroelastic computer codes using test cases from the AlliedSignal Engines fan blisk and turbine databases. Test data included strain gage, performance, and steady-state pressure information obtained for conditions where synchronous or flutter vibratory conditions were found to occur. Aeroelastic codes evaluated included quasi 3-D UNSFLO (MIT Developed/AE Modified, Quasi 3-D Aeroelastic Computer Code), 2-D FREPS (NASA-Developed Forced Response Prediction System Aeroelastic Computer Code), and 3-D TURBO-AE (NASA/Mississippi State University Developed 3-D Aeroelastic Computer Code). Unsteady pressure predictions for the turbine test case were used to evaluate the forced response prediction capabilities of each of the three aeroelastic codes. Additionally, one of the fan flutter cases was evaluated using TURBO-AE. The UNSFLO and FREPS evaluation predictions showed good agreement with the experimental test data trends, but quantitative improvements are needed. UNSFLO over-predicted turbine blade response reductions, while FREPS under-predicted them. The inviscid TURBO-AE turbine analysis predicted no discernible blade response reduction, indicating the necessity of including viscous effects for this test case. For the TURBO-AE fan blisk test case, significant effort was expended getting the viscous version of the code to give converged steady flow solutions for the transonic flow conditions. Once converged, the steady solutions provided an excellent match with test data and the calibrated DAWES (AlliedSignal 3-D Viscous Steady Flow CFD Solver). However, efforts expended establishing quality steady-state solutions prevented exercising the unsteady portion of the TURBO-AE code during the present program. AlliedSignal recommends that unsteady pressure measurement data be obtained for both test cases examined
Fog spontaneously folds mosquito wings
NASA Astrophysics Data System (ADS)
Dickerson, Andrew K.; Liu, Xing; Zhu, Ting; Hu, David L.
2015-02-01
The flexibility of insect wings confers aerodynamic benefits, but can also present a hazard if exposed to fog or dew. Fog can cause water to accumulate on wings, bending them into tight taco shapes and rendering them useless for flight. In this combined experimental and theoretical study, we use high-speed video to film the spontaneous folding of isolated mosquito wings due to the evaporation of a water drop. We predict shapes of the deformed wing using two-dimensional elastica theory, considering both surface tension and Laplace pressure. We also recommend fold-resistant geometries for the wings of flapping micro-aerial vehicles. Our work reveals the mechanism of insect wing folding and provides a framework for further study of capillarity-driven folding in both natural and biomimetic systems at small scales.
Supersonic aerodynamics of delta wings
NASA Technical Reports Server (NTRS)
Wood, Richard M.
1988-01-01
Through the empirical correlation of experimental data and theoretical analysis, a set of graphs has been developed which summarize the inviscid aerodynamics of delta wings at supersonic speeds. The various graphs which detail the aerodynamic performance of delta wings at both zero-lift and lifting conditions were then employed to define a preliminary wing design approach in which both the low-lift and high-lift design criteria were combined to define a feasible design space.
Simulation of iced wing aerodynamics
NASA Technical Reports Server (NTRS)
Potapczuk, M. G.; Bragg, M. B.; Kwon, O. J.; Sankar, L. N.
1991-01-01
The sectional and total aerodynamic load characteristics of moderate aspect ratio wings with and without simulated glaze leading edge ice were studied both computationally, using a three dimensional, compressible Navier-Stokes solver, and experimentally. The wing has an untwisted, untapered planform shape with NACA 0012 airfoil section. The wing has an unswept and swept configuration with aspect ratios of 4.06 and 5.0. Comparisons of computed surface pressures and sectional loads with experimental data for identical configurations are given. The abrupt decrease in stall angle of attack for the wing, as a result of the leading edge ice formation, was demonstrated numerically and experimentally.
NASA Technical Reports Server (NTRS)
Abbott, Frank T., Jr.; Kelley, H. Neale; Hampton, Kenneth D.
1963-01-01
A flexibly mounted aircraft engine may under certain conditions experience a self-excited whirling instability involving a coupling between the gyroscopic and aerodynamic forces acting on the propeller, and the inertial, elastic, and damping forces contributed by the power plant, nacelle, and wing. This phenomenon has been called autoprecession, or whirl instability. An experimental investigation was made in the Langley transonic dynamics tunnel at Mach numbers below 0.3 to study some of the pertinent parameters influencing the phenomenon. These parameters included propeller rotational speed, stiffness of the power-plant assembly in the pitch and yaw planes and the ratio of pitch stiffness to yaw stiffness, structural damping of the power-plant assembly in the pitch and yaw planes, simulated fuel load in the wings, and the location and number of autoprecessing powerplant assemblies. A large dynamic-aeroelastic model of a four-engine turboprop transport airplane mounted on a vertical rod in a manner which provided several limited body degrees of freedom was used in the investigation. It was found that the boundary for autoprecession decreased markedly with Increasing proreduction of power-plant stiffness and/or damping, and to a lesser degree decreased with reduction of simulated fuel load in the wings. peller rotational speed generally lowered the autoprecession boundary. This effect was more pronounced as the stiffness was increased. An inboard power plant was found to be more susceptible to autoprecession than an outboard one. Combinations in which two or more power plants had the same level of reduced stiffness resulted in autoprecession boundaries considerably lower than that of a single power plant with the same level of reduced stiffness.
Update on HCDstruct - A Tool for Hybrid Wing Body Conceptual Design and Structural Optimization
NASA Technical Reports Server (NTRS)
Gern, Frank H.
2015-01-01
HCDstruct is a MatlabÂ® based software tool to rapidly build a finite element model for structural optimization of hybrid wing body (HWB) aircraft at the conceptual design level. The tool uses outputs from a Flight Optimization System (FLOPS) performance analysis together with a conceptual outer mold line of the vehicle, e.g. created by Vehicle Sketch Pad (VSP), to generate a set of MSC NastranÂ® bulk data files. These files can readily be used to perform a structural optimization and weight estimation using Nastranâ€™sÂ® Solution 200 multidisciplinary optimization solver. Initially developed at NASA Langley Research Center to perform increased fidelity conceptual level HWB centerbody structural analyses, HCDstruct has grown into a complete HWB structural sizing and weight estimation tool, including a fully flexible aeroelastic loads analysis. Recent upgrades to the tool include the expansion to a full wing tip-to-wing tip model for asymmetric analyses like engine out conditions and dynamic overswings, as well as a fully actuated trailing edge, featuring up to 15 independently actuated control surfaces and twin tails. Several example applications of the HCDstruct tool are presented.
NASA Astrophysics Data System (ADS)
Kuhn, Lisa M.
2011-07-01
In recent years, much research has been motivated by the idea of biologically-inspired flight. It is a conjecture of the United States Air Force that incorporating characteristics of biological flight into air vehicles will significantly improve the maneuverability and performance of modern aircraft. Although there are studies which involve the aerodynamics, structural dynamics, modeling, and control of flexible wing micro aerial vehicles (MAVs), issues of control and vehicular modeling as a whole are largely unexplored. Modeling with such dynamics lends itself to systems of partial differential equations (PDEs) with nonlinearities, and limited control theory is available for such systems. In this work, a multiple component structure consisting of two Euler-Bernoulli beams connected to a rigid mass is used to model the heave dynamics of an aeroelastic wing MAV, which is acted upon by a nonlinear aerodynamic lift force. We seek to employ tools from distributed parameter modeling and linear control theory in an effort to achieve agile flight potential of flexible, morphable wing MAV airframes. Theoretical analysis of the model is conducted, which includes generating solutions to the eigenvalue problem for the system and determining well-posedness and the attainment of a C 0-semigroup for the linearly approximated model. In order to test the model's ability to track to a desired state and to gain insight into optimal morphing trajectories, two control objectives are employed on the model: target state tracking and morphing trajectory over time.
NASA Astrophysics Data System (ADS)
Yang, Weizhu; Yue, Zhufeng; Li, Lei; Wang, Peiyan
2016-01-01
An optimization procedure combining an automated finite element modelling (AFEM) technique with a ground structure approach (GSA) is proposed for structural layout and sizing design of aircraft wings. The AFEM technique, based on CATIA VBA scripting and PCL programming, is used to generate models automatically considering the arrangement of inner systems. GSA is used for local structural topology optimization. The design procedure is applied to a high-aspect-ratio wing. The arrangement of the integral fuel tank, landing gear and control surfaces is considered. For the landing gear region, a non-conventional initial structural layout is adopted. The positions of components, the number of ribs and local topology in the wing box and landing gear region are optimized to obtain a minimum structural weight. Constraints include tank volume, strength, buckling and aeroelastic parameters. The results show that the combined approach leads to a greater weight saving, i.e. 26.5%, compared with three additional optimizations based on individual design approaches.
Knowledge Discovery in Multidisciplinary Design Space for Regional-Jet Wings Using Data Mining
NASA Astrophysics Data System (ADS)
Chiba, Kazuhisa; Jeong, Shinkyu; Obayashi, Shigeru
Data mining is an important facet of solving multi-objective optimization problems. In the present study, two data mining techniques were applied to a large-scale, real-world multidisciplinary design optimization (MDO) problem to provide knowledge regarding the design space. The use of MDO in the aerodynamics, structure, and aeroelasticity of a regional-jet wing was carried out using high-fidelity evaluation models with an adaptive range multi-objective genetic algorithm. As a result, nine non-dominated solutions were generated and used for tradeoff analysis of three objectives. All solutions evaluated during the evolution were analyzed for the influence of design variables using a self-organizing map (SOM) and a functional analysis of variance (ANOVA) to extract key features of the design space. As SOM and ANOVA compensate for respective disadvantages, the design knowledge could be obtained more clearly by combinating them. Although the MDO results showed inverted gull-wings as non-dominated solutions, one of the key features found by data mining was a non-gull wing geometry. When this knowledge was applied to one optimum solution, the resulting design was found to have better performance compared with the original geometry designed in the conventional manner.
Knowledge Discovery for Transonic Regional-Jet Wing through Multidisciplinary Design Exploration
NASA Astrophysics Data System (ADS)
Chiba, Kazuhisa; Obayashi, Shigeru; Morino, Hiroyuki
Data mining is an important facet of solving multi-objective optimization problem. Because it is one of the effective manner to discover the design knowledge in the multi-objective optimization problem which obtains large data. In the present study, data mining has been performed for a large-scale and real-world multidisciplinary design optimization (MDO) to provide knowledge regarding the design space. The MDO among aerodynamics, structures, and aeroelasticity of the regional-jet wing was carried out using high-fidelity evaluation models on the adaptive range multi-objective genetic algorithm. As a result, nine non-dominated solutions were generated and used for tradeoff analysis among three objectives. All solutions evaluated during the evolution were analyzed for the tradeoffs and influence of design variables using a self-organizing map to extract key features of the design space. Although the MDO results showed the inverted gull-wings as non-dominated solutions, one of the key features found by data mining was the non-gull wing geometry. When this knowledge was applied to one optimum solution, the resulting design was found to have better performance compared with the original geometry designed in the conventional manner.
NASA Technical Reports Server (NTRS)
Schlosser, D. C.; Dominik, D. F.
1983-01-01
The static aeroelastic effects on the longitudinal stability and elevon/aileron effectiveness of the space transportation system (STS) Space Shuttle orbiter were estimated by a simplified approach called the elevon torsional stiffness (ETS) method. This method employs rigid model wind tunnel test results to predict aeroelastic effects. Lateral/directional stability and rudder effectiveness were based on results of a wind tunnel test in which a flexible tail model was used. Comparisons with selective flight data are made in this paper. Results of correlations with flight data (although limited at the present time) verify the predicted aeroelastic effects for the orbiter. The orbiter's structural characteristics are such that the effects of aeroelasticity, whether estimated using analytical techniques or simplified methods, do not appear to affect the vehicle performance to any great extent. The large amount of scatter in the flight-extracted data made verification of the aeroelastic corrections very difficult. Generally, the simplified elevon torsional stiffness method provided better correlation with flight test results than he analytical method and reduced the verification effort and cost.
Aeroelastic stability analyses of two counter rotating propfan designs for a cruise missile model
NASA Technical Reports Server (NTRS)
Mahajan, Aparajit J.; Lucero, John M.; Mehmed, Oral; Stefko, George L.
1992-01-01
Aeroelastic stability analyses were performed to insure structural integrity of two counterrotating propfan blade designs for a NAVY/Air Force/NASA cruise missile model wind tunnel test. This analysis predicted if the propfan designs would be flutter free at the operating conditions of the wind tunnel test. Calculated stability results are presented for the two blade designs with rotational speed and Mach number as the parameters. A aeroelastic analysis code ASTROP2 (Aeroelastic Stability and Response of Propulsion Systems - 2 Dimensional Analysis), developed at LeRC, was used in this project. The aeroelastic analysis is a modal method and uses the combination of a finite element structural model and two dimensional steady and unsteady cascade aerodynamic models. This code was developed to analyze single rotation propfans but was modified and applied to counterrotating propfans for the present work. Modifications were made to transform the geometry and rotation of the aft rotor to the same reference frame as the forward rotor, to input a non-uniform inflow into the rotor being analyzed, and to automatically converge to the least stable aeroelastic mode.
Aeroelastic Stability Investigations for Large-scale Vertical Axis Wind Turbines
NASA Astrophysics Data System (ADS)
Owens, B. C.; Griffith, D. T.
2014-06-01
The availability of offshore wind resources in coastal regions, along with a high concentration of load centers in these areas, makes offshore wind energy an attractive opportunity for clean renewable electricity production. High infrastructure costs such as the offshore support structure and operation and maintenance costs for offshore wind technology, however, are significant obstacles that need to be overcome to make offshore wind a more cost-effective option. A vertical-axis wind turbine (VAWT) rotor configuration offers a potential transformative technology solution that significantly lowers cost of energy for offshore wind due to its inherent advantages for the offshore market. However, several potential challenges exist for VAWTs and this paper addresses one of them with an initial investigation of dynamic aeroelastic stability for large-scale, multi-megawatt VAWTs. The aeroelastic formulation and solution method from the BLade Aeroelastic STability Tool (BLAST) for HAWT blades was employed to extend the analysis capability of a newly developed structural dynamics design tool for VAWTs. This investigation considers the effect of configuration geometry, material system choice, and number of blades on the aeroelastic stability of a VAWT, and provides an initial scoping for potential aeroelastic instabilities in large-scale VAWT designs.
Aeroelastic Uncertainty Quantification Studies Using the S4T Wind Tunnel Model
NASA Technical Reports Server (NTRS)
Nikbay, Melike; Heeg, Jennifer
2017-01-01
This paper originates from the joint efforts of an aeroelastic study team in the Applied Vehicle Technology Panel from NATO Science and Technology Organization, with the Task Group number AVT-191, titled "Application of Sensitivity Analysis and Uncertainty Quantification to Military Vehicle Design." We present aeroelastic uncertainty quantification studies using the SemiSpan Supersonic Transport wind tunnel model at the NASA Langley Research Center. The aeroelastic study team decided treat both structural and aerodynamic input parameters as uncertain and represent them as samples drawn from statistical distributions, propagating them through aeroelastic analysis frameworks. Uncertainty quantification processes require many function evaluations to asses the impact of variations in numerous parameters on the vehicle characteristics, rapidly increasing the computational time requirement relative to that required to assess a system deterministically. The increased computational time is particularly prohibitive if high-fidelity analyses are employed. As a remedy, the Istanbul Technical University team employed an Euler solver in an aeroelastic analysis framework, and implemented reduced order modeling with Polynomial Chaos Expansion and Proper Orthogonal Decomposition to perform the uncertainty propagation. The NASA team chose to reduce the prohibitive computational time by employing linear solution processes. The NASA team also focused on determining input sample distributions.
Controlled Aeroelastic Response and Airfoil Shaping Using Adaptive Materials and Integrated Systems
NASA Technical Reports Server (NTRS)
Pinkerton, Jennifer L.; McGowan, Anna-Maria R.; Moses, Robert W.; Scott, Robert C.; Heeg, Jennifer
1996-01-01
This paper presents an overview of several activities of the Aeroelasticity Branch at the NASA Langley Research Center in the area of applying adaptive materials and integrated systems for controlling both aircraft aeroelastic response and airfoil shape. The experimental results of four programs are discussed: the Piezoelectric Aeroelastic Response Tailoring Investigation (PARTI); the Adaptive Neural Control of Aeroelastic Response (ANCAR) program; the Actively Controlled Response of Buffet Affected Tails (ACROBAT) program; and the Airfoil THUNDER Testing to Ascertain Characteristics (ATTACH) project. The PARTI program demonstrated active flutter control and significant rcductions in aeroelastic response at dynamic pressures below flutter using piezoelectric actuators. The ANCAR program seeks to demonstrate the effectiveness of using neural networks to schedule flutter suppression control laws. Th,e ACROBAT program studied the effectiveness of a number of candidate actuators, including a rudder and piezoelectric actuators, to alleviate vertical tail buffeting. In the ATTACH project, the feasibility of using Thin-Layer Composite-Uimorph Piezoelectric Driver and Sensor (THUNDER) wafers to control airfoil aerodynamic characteristics was investigated. Plans for future applications are also discussed.
Computational Aeroelastic Modeling of Airframes and TurboMachinery: Progress and Challenges
NASA Technical Reports Server (NTRS)
Bartels, R. E.; Sayma, A. I.
2006-01-01
Computational analyses such as computational fluid dynamics and computational structural dynamics have made major advances toward maturity as engineering tools. Computational aeroelasticity is the integration of these disciplines. As computational aeroelasticity matures it too finds an increasing role in the design and analysis of aerospace vehicles. This paper presents a survey of the current state of computational aeroelasticity with a discussion of recent research, success and continuing challenges in its progressive integration into multidisciplinary aerospace design. This paper approaches computational aeroelasticity from the perspective of the two main areas of application: airframe and turbomachinery design. An overview will be presented of the different prediction methods used for each field of application. Differing levels of nonlinear modeling will be discussed with insight into accuracy versus complexity and computational requirements. Subjects will include current advanced methods (linear and nonlinear), nonlinear flow models, use of order reduction techniques and future trends in incorporating structural nonlinearity. Examples in which computational aeroelasticity is currently being integrated into the design of airframes and turbomachinery will be presented.
Sensitivity analysis for aeroacoustic and aeroelastic design of turbomachinery blades
NASA Technical Reports Server (NTRS)
Lorence, Christopher B.; Hall, Kenneth C.
1995-01-01
A new method for computing the effect that small changes in the airfoil shape and cascade geometry have on the aeroacoustic and aeroelastic behavior of turbomachinery cascades is presented. The nonlinear unsteady flow is assumed to be composed of a nonlinear steady flow plus a small perturbation unsteady flow that is harmonic in time. First, the full potential equation is used to describe the behavior of the nonlinear mean (steady) flow through a two-dimensional cascade. The small disturbance unsteady flow through the cascade is described by the linearized Euler equations. Using rapid distortion theory, the unsteady velocity is split into a rotational part that contains the vorticity and an irrotational part described by a scalar potential. The unsteady vorticity transport is described analytically in terms of the drift and stream functions computed from the steady flow. Hence, the solution of the linearized Euler equations may be reduced to a single inhomogeneous equation for the unsteady potential. The steady flow and small disturbance unsteady flow equations are discretized using bilinear quadrilateral isoparametric finite elements. The nonlinear mean flow solution and streamline computational grid are computed simultaneously using Newton iteration. At each step of the Newton iteration, LU decomposition is used to solve the resulting set of linear equations. The unsteady flow problem is linear, and is also solved using LU decomposition. Next, a sensitivity analysis is performed to determine the effect small changes in cascade and airfoil geometry have on the mean and unsteady flow fields. The sensitivity analysis makes use of the nominal steady and unsteady flow LU decompositions so that no additional matrices need to be factored. Hence, the present method is computationally very efficient. To demonstrate how the sensitivity analysis may be used to redesign cascades, a compressor is redesigned for improved aeroelastic stability and two different fan exit guide
Experimental Data from the Benchmark SuperCritical Wing Wind Tunnel Test on an Oscillating Turntable
NASA Technical Reports Server (NTRS)
Heeg, Jennifer; Piatak, David J.
2013-01-01
The Benchmark SuperCritical Wing (BSCW) wind tunnel model served as a semi-blind testcase for the 2012 AIAA Aeroelastic Prediction Workshop (AePW). The BSCW was chosen as a testcase due to its geometric simplicity and flow physics complexity. The data sets examined include unforced system information and forced pitching oscillations. The aerodynamic challenges presented by this AePW testcase include a strong shock that was observed to be unsteady for even the unforced system cases, shock-induced separation and trailing edge separation. The current paper quantifies these characteristics at the AePW test condition and at a suggested benchmarking test condition. General characteristics of the model's behavior are examined for the entire available data set.
X-29 Ship #2 in Flight at an Angle that Highlights the Forward Swept Wings
NASA Technical Reports Server (NTRS)
1990-01-01
aft-swept wing. Consequently, on the forward-swept wing, the ailerons remained unstalled at high angles of attack. This provided better airflow over the ailerons and prevented stalling (loss of lift) at high angles of attack. Introduction of composite materials in the 1970s opened a new field of aircraft construction. It also made possible the construction of the X-29's thin supercritical wing. State-of-the-art composites allowed aeroelastic tailoring which, in turn, allowed the wing some bending but limited twisting and eliminated structural divergence within the flight envelope (i.e. deformation of the wing or the wing breaking off in flight). Additionally, composite materials allowed the wing to be sufficiently rigid for safe flight without adding an unacceptable weight penalty. The X-29 project consisted of two phases plus the follow-on vortex-control phase. Phase 1 demonstrated that the forward sweep of the X-29 wings kept the wing tips unstalled at the moderate angles of attack flown in that phase (a maximum of 21 degrees). Phase I also demonstrated that the aeroelastic tailored wing prevented structural divergence of the wing within the flight envelope, and that the control laws and control-surface effectiveness were adequate to provide artificial stability for an otherwise unstable aircraft. Phase 1 further demonstrated that the X-29 configuration could fly safely and reliably, even in tight turns. During Phase 2 of the project, the X-29, flying at an angle of attack of up to 67 degrees, demonstrated much better control and maneuvering qualities than computational methods and simulation models had predicted . During 120 research flights in this phase, NASA, Air Force, and Grumman project pilots reported the X-29 aircraft had excellent control response to an angle of attack of 45 degrees and still had limited controllability at a 67-degree angle of attack. This controllability at high angles of attack can be attributed to the aircraft's unique forward
Freight Wing Trailer Aerodynamics
Graham, Sean; Bigatel, Patrick
2004-10-17
Freight Wing Incorporated utilized the opportunity presented by this DOE category one Inventions and Innovations grant to successfully research, develop, test, patent, market, and sell innovative fuel and emissions saving aerodynamic attachments for the trucking industry. A great deal of past scientific research has demonstrated that streamlining box shaped semi-trailers can significantly reduce a truck's fuel consumption. However, significant design challenges have prevented past concepts from meeting industry needs. Market research early in this project revealed the demands of truck fleet operators regarding aerodynamic attachments. Products must not only save fuel, but cannot interfere with the operation of the truck, require significant maintenance, add significant weight, and must be extremely durable. Furthermore, SAE/TMC J1321 tests performed by a respected independent laboratory are necessary for large fleets to even consider purchase. Freight Wing used this information to create a system of three practical aerodynamic attachments for the front, rear and undercarriage of standard semi trailers. SAE/TMC J1321 Type II tests preformed by the Transportation Research Center (TRC) demonstrated a 7% improvement to fuel economy with all three products. If Freight Wing is successful in its continued efforts to gain market penetration, the energy and environmental savings would be considerable. Each truck outfitted saves approximately 1,100 gallons of fuel every 100,000 miles, which prevents over 12 tons of CO2 from entering the atmosphere. If all applicable trailers used the technology, the country could save approximately 1.8 billion gallons of diesel fuel, 18 million tons of emissions and 3.6 billion dollars annually.
Soap film flow visualization investigations of oscillating wing energy harvesters
NASA Astrophysics Data System (ADS)
Kirschmeier, Benjamin; Bryant, Matthew
2015-03-01
With increasing population and proliferation of wireless electronics, significant research attention has turned to harvesting energy from ambient sources such as wind and water flows at scales ranging from micro-watt to mega-watt levels. One technique that has recently attracted attention is the application of bio-inspired flapping wings for energy harvesting. This type of system uses a heaving and pitching airfoil to extract flow energy and generate electricity. Such a device can be realized using passive devices excited by aeroelastic flutter phenomena, kinematic mechanisms driven by mechanical linkages, or semi-active devices that are actively controlled in one degree of freedom and passively driven in another. For these types of systems, numerical simulations have showed strong dependence on efficiency and vortex interaction. In this paper we propose a new apparatus for reproducing arbitrary pitch-heave waveforms to perform flow visualization experiments in a soap film tunnel. The vertically falling, gravity driven soap film tunnel is used to replicate flows with a chord Reynolds number on the order of 4x104. The soap film tunnel is used to investigate leading edge vortex (LEV) and trailing edge vortex (TEV) interactions for sinusoidal and non-sinusoidal waveforms. From a qualitative analysis of the fluid structure interaction, we have been able to demonstrate that the LEVs for non-sinusoidal motion convect faster over the airfoil compared with sinusoidal motion. Signifying that optimal flapping frequency is dependent on the motion profile.
Nonlinear aerodynamic wing design
NASA Technical Reports Server (NTRS)
Bonner, Ellwood
1985-01-01
The applicability of new nonlinear theoretical techniques is demonstrated for supersonic wing design. The new technology was utilized to define outboard panels for an existing advanced tactical fighter model. Mach 1.6 maneuver point design and multi-operating point compromise surfaces were developed and tested. High aerodynamic efficiency was achieved at the design conditions. A corollary result was that only modest supersonic penalties were incurred to meet multiple aerodynamic requirements. The nonlinear potential analysis of a practical configuration arrangement correlated well with experimental data.
The natural flow wing-design concept
NASA Technical Reports Server (NTRS)
Wood, Richard M.; Bauer, Steven X. S.
1992-01-01
A wing-design study was conducted on a 65 degree swept leading-edge delta wing in which the wing geometry was modified to take advantage of the naturally occurring flow that forms over a slender wing in a supersonic flow field. Three-dimensional nonlinear analysis methods were used in the study which was divided into three parts: preliminary design, initial design, and final design. In the preliminary design, the wing planform, the design conditions, and the near-conical wing-design concept were derived, and a baseline standard wing (conventional airfoil distribution) and a baseline near-conical wing were chosen. During the initial analysis, a full-potential flow solver was employed to determine the aerodynamic characteristics of the baseline standard delta wing and to investigate modifications to the airfoil thickness, leading-edge radius, airfoil maximum-thickness position, and wing upper to lower surface asymmetry on the baseline near-conical wing. The final design employed an Euler solver to analyze the best wing configurations found in the initial design and to extend the study of wing asymmetry to develop a more refined wing. Benefits resulting from each modification are discussed, and a final 'natural flow' wing geometry was designed that provides an improvement in aerodynamic performance compared with that of a baseline conventional uncambered wing, linear-theory cambered wing, and near-conical wing.
Computational aeroelastic modelling of airframes and turbomachinery: progress and challenges.
Bartels, R E; Sayma, A I
2007-10-15
Computational analyses such as computational fluid dynamics and computational structural dynamics have made major advances towards maturity as engineering tools. Computational aeroelasticity (CAE) is the integration of these disciplines. As CAE matures, it also finds an increasing role in the design and analysis of aerospace vehicles. This paper presents a survey of the current state of CAE with a discussion of recent research, success and continuing challenges in its progressive integration into multidisciplinary aerospace design. It approaches CAE from the perspective of the two main areas of application: airframe and turbomachinery design. An overview will be presented of the different prediction methods used for each field of application. Differing levels of nonlinear modelling will be discussed with insight into accuracy versus complexity and computational requirements. Subjects will include current advanced methods (linear and nonlinear), nonlinear flow models, use of order reduction techniques and future trends in incorporating structural nonlinearity. Examples in which CAE is currently being integrated into the design of airframes and turbomachinery will be presented.
Rapid Aeroelastic Analysis of Blade Flutter in Turbomachines
NASA Technical Reports Server (NTRS)
Trudell, J. J.; Mehmed, O.; Stefko, G. L.; Bakhle, M. A.; Reddy, T. S. R.; Montgomery, M.; Verdon, J.
2006-01-01
The LINFLUX-AE computer code predicts flutter and forced responses of blades and vanes in turbomachines under subsonic, transonic, and supersonic flow conditions. The code solves the Euler equations of unsteady flow in a blade passage under the assumption that the blades vibrate harmonically at small amplitudes. The steady-state nonlinear Euler equations are solved by a separate program, then equations for unsteady flow components are obtained through linearization around the steady-state solution. A structural-dynamics analysis (see figure) is performed to determine the frequencies and mode shapes of blade vibrations, a preprocessor interpolates mode shapes from the structural-dynamics mesh onto the LINFLUX computational-fluid-dynamics mesh, and an interface code is used to convert the steady-state flow solution to a form required by LINFLUX. Then LINFLUX solves the linearized equations in the frequency domain to calculate the unsteady aerodynamic pressure distribution for a given vibration mode, frequency, and interblade phase angle. A post-processor uses the unsteady pressures to calculate generalized aerodynamic forces, response amplitudes, and eigenvalues (which determine the flutter frequency and damping). In comparison with the TURBO-AE aeroelastic-analysis code, which solves the equations in the time domain, LINFLUX-AE is 6 to 7 times faster.
Aeroelastic Calculations Based on Three-Dimensional Euler Analysis
NASA Technical Reports Server (NTRS)
Bakhle, Milind A.; Srivastava, Rakesh; Keith, Theo G., Jr.; Stefko, George L.
1998-01-01
This paper presents representative results from an aeroelastic code (TURBO-AE) based on an Euler/Navier-Stokes unsteady aerodynamic code (TURBO). Unsteady pressure, lift, and moment distributions are presented for a helical fan test configuration which is used to verify the code by comparison to two-dimensional linear potential (flat plate) theory. The results are for pitching and plunging motions over a range of phase angles, Good agreement with linear theory is seen for all phase angles except those near acoustic resonances. The agreement is better for pitching motions than for plunging motions. The reason for this difference is not understood at present. Numerical checks have been performed to ensure that solutions are independent of time step, converged to periodicity, and linearly dependent on amplitude of blade motion. The paper concludes with an evaluation of the current state of development of the TURBO-AE code and presents some plans for further development and validation of the TURBO-AE code.
Aeroelastic characteristics of the AH-64 bearingless tail rotor
NASA Technical Reports Server (NTRS)
Banerjee, D.
1988-01-01
The results of a wind tunnel test program to determine the performance loads and dynamic characteristics of the Composite Flexbeam Tail Rotor (CFTR) for the AH-64 Advanced Attack Helicopter are reported. The CFTR uses an elastomeric shear attachment of the flexbeam to the hub to provide soft-inplane S-mode and stiff-inplane C-mode configuration. The properties of the elastomer were selected for proper frequency placement and scale damping of the inplane S-mode. Kinematic pitch-lag coupling was introduced to provide the first cyclic inplane C-mode damping at high collective pitch. The CFTR was tested in a wind tunnel over the full slideslip envelop of the AH-64. It is found that the rotor was aeroelastically stable throughout the complete collective pitch range and up to rotor speeds of 1403 rpm. The dynamic characteristics of the rotor were found to be satisfactory at all pitch angles and rotor speeds of the tunnel tests. The design characteristics of the rotor which permit the high performance characteristics are discussed. Several schematic drawings and photographs of the rotor are provided.
Aeroelastic stability and response of horizontal axis wind turbine blades
NASA Technical Reports Server (NTRS)
Kottapalli, S. B. R.; Friedmann, P. P.; Rosen, A.
1978-01-01
The coupled flap-lag-torsion equations of motion of an isolated horizontal axis wind turbine blade are formulated. Quasi-steady blade-element strip theory was applied to derive the aerodynamic operator which includes boundary layer type gradient winds. The final equations which have periodic coefficients were solved in order to obtain the aeroelastic response and stability of large horizontal axis wind turbine blade. A new method of generating an appropriate time-dependent equilibrium position (required for the stability analysis) has been implemented. Representative steady-state responses and stability boundaries, applicable mainly to an existing blade design (NASA/-ERDA MOD-0), are presented. The results indicate that the MOD-0 configuration is a basically stable design and that blade stability is not sensitive to offsets between blade elastic axis and aerodynamic center. Blade stability appears to be sensitive to precone. The tower shadow (or wake) has a considerable effect on the flap response but leaves blade stability unchanged. Finally, it was found that non linear terms in the equations of motion can significantly affect the linearized stability boundaries, however, these terms have a negligible effect on blade response at operating conditions.
Bridge aerodynamics and aeroelasticity: A comparison of modeling schemes
NASA Astrophysics Data System (ADS)
Wu, Teng; Kareem, Ahsan
2013-11-01
Accurate modeling of wind-induced loads on bridge decks is critical to ensure the functionality and survivability of long-span bridges. Over the last few decades, several schemes have emerged to model bridge behavior under winds from an aerodynamic/aeroelastic perspective. A majority of these schemes rely on the quasi-steady (QS) theory. This paper systematically compares and assesses the efficacy of five analytical models available in the literature with a new model presented herein. These models include: QS theory-based model, corrected QS theory-based model, linearized QS theory-based model, semi-empirical linear model, hybrid model, and the proposed modified hybrid model. The ability of these models to capture fluid memory and nonlinear effects either individually or collectively is examined. In addition, their ability to include the effects of turbulence in the approach flow on the bridge behavior is assessed. All models are compared in a consistent manner by utilizing the time domain approach. The underlying role of each model in capturing the physics of bridge behavior under winds is highlighted and the influence of incoming turbulence and its interaction with the bridge deck is examined. A discussion is included that focuses on a number of critical parameters pivotal to the effectiveness of corresponding models.
Unsteady Aerodynamic Models for Turbomachinery Aeroelastic and Aeroacoustic Applications
NASA Technical Reports Server (NTRS)
Verdon, Joseph M.; Barnett, Mark; Ayer, Timothy C.
1995-01-01
Theoretical analyses and computer codes are being developed for predicting compressible unsteady inviscid and viscous flows through blade rows of axial-flow turbomachines. Such analyses are needed to determine the impact of unsteady flow phenomena on the structural durability and noise generation characteristics of the blading. The emphasis has been placed on developing analyses based on asymptotic representations of unsteady flow phenomena. Thus, high Reynolds number flows driven by small amplitude unsteady excitations have been considered. The resulting analyses should apply in many practical situations and lead to a better understanding of the relevant flow physics. In addition, they will be efficient computationally, and therefore, appropriate for use in aeroelastic and aeroacoustic design studies. Under the present effort, inviscid interaction and linearized inviscid unsteady flow models have been formulated, and inviscid and viscid prediction capabilities for subsonic steady and unsteady cascade flows have been developed. In this report, we describe the linearized inviscid unsteady analysis, LINFLO, the steady inviscid/viscid interaction analysis, SFLOW-IVI, and the unsteady viscous layer analysis, UNSVIS. These analyses are demonstrated via application to unsteady flows through compressor and turbine cascades that are excited by prescribed vortical and acoustic excitations and by prescribed blade vibrations. Recommendations are also given for the future research needed for extending and improving the foregoing asymptotic analyses, and to meet the goal of providing efficient inviscid/viscid interaction capabilities for subsonic and transonic unsteady cascade flows.
NASA Technical Reports Server (NTRS)
Pierre, Christophe; Murthy, Durbha V.
1991-01-01
An investigation of the effects of small mistuning on the aeroelastic modes of bladed disk assemblies with aerodynamic coupling between blades is presented. The cornerstone of the approach is the use and development of perturbation methods that exhibit the crucial role of the interblade coupling and yield general findings regarding mistuning effects. It is shown that blade assemblies with weak aerodynamic interblade coupling are highly sensitive to small blade mistuning, and that their dynamics is quantitatively altered in the following ways: the regular pattern that characterizes the root locus of the tuned aeroelastic eigenvalues in the complex plane is totally lost; the aeroelastic mode shapes becomes severely localized to only a few blades of the assembly and lose their constant interblade phase angle feature; and curve veering phenomena take place when the eigenvalues are plotted versus a mistuning parameter.
Aeroelastic measurements and simulations of a small wind turbine operating in the built environment
NASA Astrophysics Data System (ADS)
Evans, S. P.; Bradney, D. R.; Clausen, P. D.
2016-09-01
Small wind turbines, when compared to large commercial scale wind turbines, often lag behind with respect to research investment, technological development, and experimental verification of design standards. In this study we assess the simplified load equations outlined in IEC 61400.2-2013 for use in determining fatigue loading of small wind turbine blades. We compare these calculated loads to fatigue damage cycles from both measured in-service operation, and aeroelastic modelling of a small 5 kW Aerogenesis wind turbine. Damage cycle ranges and corresponding stress ratios show good agreement when comparing both aeroelastic simulations and operational measurements. Loads calculated from simplified load equations were shown to significantly overpredict load ranges while underpredicting the occurrence of damage cycles per minute of operation by 89%. Due to the difficulty in measuring and acquiring operational loading, we recommend the use of aeroelastic modelling as a method of mitigating the over-conservative simplified load equation for fatigue loading.
Dynamic response and aeroelastic analysis of a propeller blade of a prop-fan engine
NASA Astrophysics Data System (ADS)
Joo, Gene; Lee, Hae-Kyung
Blades are modeled as cantilevered sandwich plates with Gr/Ep composite faces and orthotropic cores and also as curved twisted beams for the aeroelastic analysis. A free vibration analysis for the cantilevered sandwich plate model is performed using Rayleigh-Ritz method. Calculated results are compared with FEM codes and free vibration test results. A free vibration equation for the aeroelastic analysis is obtained by small linear perturbation about the nonlinear static equilibrium position of the curved and twisted beam model. An aeroelastic stability is analyzed along with unsteady aerodynamic analysis results with 2-D cascade effects. For analyzing dynamic response of the real prop-fan blade mode, F.E.M. codes are used. In order to verify computed results, SR-3 composite prop-fan blades with various stacking sequencies are manufactured. Natural frequencies of prop-fan specimen are obtained by modal testing method using impact hammer and FFT analyzer.
Simulation of Non-Linear Transonic Aeroelastic Behavior on the B-2
NASA Technical Reports Server (NTRS)
Dreim, D. R.; Jacobson, S. B.; Britt, R. T.
1999-01-01
At high subsonic flight speeds, large flexible aircraft begin to encounter unsteady airloads which are not predicted by most currently available aerodynamic analysis and design methods. With increasing speed and the development of transonic flow and shocks, viscous effects quickly become very important, and flow separation can occur. The Northrop Grumman USAF B-2 Bomber encountered a nonlinear aeroelastic Residual Pitch Oscillation (RPO) under these conditions. Simulation studies were performed with the Computational Aeroelasticity Program-Transonic Small Disturbance, Viscous (CAPTSDv) computer program to evaluate its ability to predict these nonlinear aeroelastic responses. Open and closed loop simulations were performed to assess the participation of the flight control system. Control, system actuator hysteresis characteristics were modeled and found to be a significant participant in the RPO phenomenon. Simulations were also performed for varying Mach numbers and altitudes to establish the stability boundaries and compare with flight test data. These CAPTSDv simulations compared well with flight data and revealed many potential further modeling enhancements.
Analysis of Test Case Computations and Experiments for the First Aeroelastic Prediction Workshop
NASA Technical Reports Server (NTRS)
Schuster, David M.; Heeg, Jennifer; Wieseman, Carol D.; Chwalowski, Pawel
2013-01-01
This paper compares computational and experimental data from the Aeroelastic Prediction Workshop (AePW) held in April 2012. This workshop was designed as a series of technical interchange meetings to assess the state of the art of computational methods for predicting unsteady flowfields and static and dynamic aeroelastic response. The goals are to provide an impartial forum to evaluate the effectiveness of existing computer codes and modeling techniques to simulate aeroelastic problems and to identify computational and experimental areas needing additional research and development. Three subject configurations were chosen from existing wind-tunnel data sets where there is pertinent experimental data available for comparison. Participant researchers analyzed one or more of the subject configurations, and results from all of these computations were compared at the workshop.
NASA Technical Reports Server (NTRS)
Abel, Irving
1997-01-01
An overview of recently completed programs in aeroelasticity and structural dynamics research at the NASA Langley Research Center is presented. Methods used to perform flutter clearance studies in the wind-tunnel on a high performance fighter are discussed. Recent advances in the use of smart structures and controls to solve aeroelastic problems, including flutter and gust response are presented. An aeroelastic models program designed to support an advanced high speed civil transport is described. An extension to transonic small disturbance theory that better predicts flows involving separation and reattachment is presented. The results of a research study to determine the effects of flexibility on the taxi and takeoff characteristics of a high speed civil transport are presented. The use of photogrammetric methods aboard Space Shuttle to measure spacecraft dynamic response is discussed. Issues associated with the jitter response of multi-payload spacecraft are discussed. Finally a Space Shuttle flight experiment that studied the control of flexible spacecraft is described.
NASA Astrophysics Data System (ADS)
Hussein, A. M. H.; Majid, D. L. Abdul; Abdullah, E. J.
2016-10-01
Shape memory alloy (SMA) is one of the smart materials that have unique properties and used recently in several aerospace applications. SMAs are metallic alloys that can recover permanent strains when they are heated above a certain temperature. In this study, the effects of SMA actuation on the composite plate under subsonic aeroelastic conditions are examined. The wind tunnel test is carried out for two configurations of a cantilever shape memory alloy composite plate with a single SMA wire fixed eccentrically. Strain gage data for both bending and torsional strain are recorded and demonstrated during the aeroelastic test for active and non-active SMA wire in two locations. The cyclic actuation of the SMA wire embedded inside the composite plate is also investigated during the aeroelastic test. The results show reduction in both bending and torsional strain of the composite plate after activation of the SMA wire during the wind tunnel test.
NASA Technical Reports Server (NTRS)
Yeager, William T., Jr.; Kvaternik, Raymond G.
2001-01-01
A historical account of the contributions of the Aeroelasticity Branch (AB) and the Langley Transonic Dynamics Tunnel (TDT) to rotorcraft technology and development since the tunnel's inception in 1960 is presented. The paper begins with a summary of the major characteristics of the TDT and a description of the unique capability offered by the TDT for testing aeroelastic models by virtue of its heavy gas test medium. This is followed by some remarks on the role played by scale models in the design and development of rotorcraft vehicles and a review of the basic scaling relationships important for designing and building dynamic aeroelastic models of rotorcraft vehicles for testing in the TDT. Chronological accounts of helicopter and tiltrotor research conducted in AB/TDT are then described in separate sections. Both experimental and analytical studies are reported and include a description of the various physical and mathematical models employed, the specific objectives of the investigations, and illustrative experimental and analytical results.