Science.gov

Sample records for aeroelastic wing flight

  1. Static Aeroelastic Effects of Formation Flight for Slender Unswept Wings

    NASA Technical Reports Server (NTRS)

    Hanson, Curtis E.

    2009-01-01

    The static aeroelastic equilibrium equations for slender, straight wings are modified to incorporate the effects of aerodynamically-coupled formation flight. A system of equations is developed by applying trim constraints and is solved for component lift distribution, trim angle-of-attack, and trim aileron deflection. The trim values are then used to calculate the elastic twist distribution of the wing box. This system of equations is applied to a formation of two gliders in trimmed flight. Structural and aerodynamic properties are assumed for the gliders, and solutions are calculated for flexible and rigid wings in solo and formation flight. It is shown for a sample application of two gliders in formation flight, that formation disturbances produce greater twist in the wingtip immersed in the vortex than for either the opposing wingtip or the wings of a similar airplane in solo flight. Changes in the lift distribution, resulting from wing twist, increase the performance benefits of formation flight. A flexible wing in formation flight will require greater aileron deflection to achieve roll trim than a rigid wing.

  2. Aeroelastic and Flight Dynamics Analysis of Folding Wing Systems

    NASA Astrophysics Data System (ADS)

    Wang, Ivan

    This dissertation explores the aeroelastic stability of a folding wing using both theoretical and experimental methods. The theoretical model is based on the existing clamped-wing aeroelastic model that uses beam theory structural dynamics and strip theory aerodynamics. A higher-fidelity theoretical model was created by adding several improvements to the existing model, namely a structural model that uses ANSYS for individual wing segment modes and an unsteady vortex lattice aerodynamic model. The comparison with the lower-fidelity model shows that the higher-fidelity model typical provides better agreement between theory and experiment, but the predicted system behavior in general does not change, reinforcing the effectiveness of the low-fidelity model for preliminary design of folding wings. The present work also conducted more detailed aeroelastic analyses of three-segment folding wings, and in particular considers the Lockheed-type configurations to understand the existence of sudden changes in predicted aeroelastic behavior with varying fold angle for certain configurations. These phenomena were observed in carefully conducted experiments, and nonlinearities---structural and geometry---were shown to suppress the phenomena. Next, new experimental models with better manufacturing tolerances are designed to be tested in the Duke University Wind Tunnel. The testing focused on various configurations of three-segment folding wings in order to obtain higher quality data. Next, the theoretical model was further improved by adding aircraft longitudinal degrees of freedom such that the aeroelastic model may predict the instabilities for the entire aircraft and not just a clamped wing. The theoretical results show that the flutter instabilities typically occur at a higher air speed due to greater frequency separation between modes for the aircraft system than a clamped wing system, but the divergence instabilities occur at a lower air speed. Lastly, additional

  3. Flight Test of the F/A-18 Active Aeroelastic Wing Airplane

    NASA Technical Reports Server (NTRS)

    Clarke, Robert; Allen, Michael J.; Dibley, Ryan P.; Gera, Joseph; Hodgkinson, John

    2005-01-01

    Successful flight-testing of the Active Aeroelastic Wing airplane was completed in March 2005. This program, which started in 1996, was a joint activity sponsored by NASA, Air Force Research Laboratory, and industry contractors. The test program contained two flight test phases conducted in early 2003 and early 2005. During the first phase of flight test, aerodynamic models and load models of the wing control surfaces and wing structure were developed. Design teams built new research control laws for the Active Aeroelastic Wing airplane using these flight-validated models; and throughout the final phase of flight test, these new control laws were demonstrated. The control laws were designed to optimize strategies for moving the wing control surfaces to maximize roll rates in the transonic and supersonic flight regimes. Control surface hinge moments and wing loads were constrained to remain within hydraulic and load limits. This paper describes briefly the flight control system architecture as well as the design approach used by Active Aeroelastic Wing project engineers to develop flight control system gains. Additionally, this paper presents flight test techniques and comparison between flight test results and predictions.

  4. Shock Location Dominated Transonic Flight Loads on the Active Aeroelastic Wing

    NASA Technical Reports Server (NTRS)

    Lokos, William A.; Lizotte, Andrew; Lindsley, Ned J.; Stauf, Rick

    2005-01-01

    During several Active Aeroelastic Wing research flights, the shadow of the over-wing shock could be observed because of natural lighting conditions. As the plane accelerated, the shock location moved aft, and as the shadow passed the aileron and trailing-edge flap hinge lines, their associated hinge moments were substantially affected. The observation of the dominant effect of shock location on aft control surface hinge moments led to this investigation. This report investigates the effect of over-wing shock location on wing loads through flight-measured data and analytical predictions. Wing-root and wing-fold bending moment and torque and leading- and trailing-edge hinge moments have been measured in flight using calibrated strain gages. These same loads have been predicted using a computational fluid dynamics code called the Euler Navier-Stokes Three Dimensional Aeroelastic Code. The computational fluid dynamics study was based on the elastically deformed shape estimated by a twist model, which in turn was derived from in-flight-measured wing deflections provided by a flight deflection measurement system. During level transonic flight, the shock location dominated the wing trailing-edge control surface hinge moments. The computational fluid dynamics analysis based on the shape provided by the flight deflection measurement system produced very similar results and substantially correlated with the measured loads data.

  5. Aeroelastic Modeling of X-56A Stiff-Wing Configuration Flight Test Data

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.; Boucher, Matthew J.

    2017-01-01

    Aeroelastic stability and control derivatives for the X-56A Multi-Utility Technology Testbed (MUTT), in the stiff-wing configuration, were estimated from flight test data using the output-error method. Practical aspects of the analysis are discussed. The orthogonal phase-optimized multisine inputs provided excellent data information for aeroelastic modeling. Consistent parameter estimates were determined using output error in both the frequency and time domains. The frequency domain analysis converged faster and was less sensitive to starting values for the model parameters, which was useful for determining the aeroelastic model structure and obtaining starting values for the time domain analysis. Including a modal description of the structure from a finite element model reduced the complexity of the estimation problem and improved the modeling results. Effects of reducing the model order on the short period stability and control derivatives were investigated.

  6. Study of the feasibility aspects of flight testing an aeroelastically tailored forward swept research wing on a BQM-34F drone vehicle

    NASA Technical Reports Server (NTRS)

    Mourey, D. J.

    1979-01-01

    The aspects of flight testing an aeroelastically tailored forward swept research wing on a BQM-34F drone vehicle are examined. The geometry of a forward swept wing, which is incorporated into the BQM-34F to maintain satisfactory flight performance, stability, and control is defined. A preliminary design of the aeroelastically tailored forward swept wing is presented.

  7. Structural loads testing on the Active Aeroelastic Wing F-18 in the Flight Loads Laboratory at NASA'

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Structural loads testing on the Active Aeroelastic Wing F-18 in the Flight Loads Laboratory at NASA's Dryden flight Research Center, Edwards, California. The heavily modified and instrumented F-18A entered the Loads Lab in mid-March, 2001, for fit checks of loads hardware and instrumentation checkout prior to initiation of actual structural loads testing. The F-18A underwent loads testing on its modified wings for almost six months, followed by extensive systems tests and simulation before flight tests began.

  8. In-flight total forces, moments and static aeroelastic characteristics of an oblique-wing research airplane

    NASA Technical Reports Server (NTRS)

    Curry, R. E.; Sim, A. G.

    1984-01-01

    A low-speed flight investigation has provided total force and moment coefficients and aeroelastic effects for the AD-1 oblique-wing research airplane. The results were interpreted and compared with predictions that were based on wind tunnel data. An assessment has been made of the aeroelastic wing bending design criteria. Lateral-directional trim requirements caused by asymmetry were determined. At angles of attack near stall, flow visualization indicated viscous flow separation and spanwise vortex flow. These effects were also apparent in the force and moment data.

  9. Simulation and Flight Control of an Aeroelastic Fixed Wing Micro Aerial Vehicle

    NASA Technical Reports Server (NTRS)

    Waszak, Martin; Davidson, John B.; Ifju, Peter G.

    2002-01-01

    Micro aerial vehicles have been the subject of continued interest and development over the last several years. The majority of current vehicle concepts rely on rigid fixed wings or rotors. An alternate design based on an aeroelastic membrane wing has also been developed that exhibits desired characteristics in flight test demonstrations, competition, and in prior aerodynamics studies. This paper presents a simulation model and an assessment of flight control characteristics of the vehicle. Linear state space models of the vehicle associated with typical trimmed level flight conditions and which are suitable for control system design are presented as well. The simulation is used as the basis for the design of a measurement based nonlinear dynamic inversion control system and outer loop guidance system. The vehicle/controller system is the subject of ongoing investigations of autonomous and collaborative control schemes. The results indicate that the design represents a good basis for further development of the micro aerial vehicle for autonomous and collaborative controls research.

  10. Aeroelasticity Benchmark Assessment: Subsonic Fixed Wing Program

    NASA Technical Reports Server (NTRS)

    Florance, Jennifer P.; Chwalowski, Pawel; Wieseman, Carol D.

    2010-01-01

    The fundamental technical challenge in computational aeroelasticity is the accurate prediction of unsteady aerodynamic phenomena and the effect on the aeroelastic response of a vehicle. Currently, a benchmarking standard for use in validating the accuracy of computational aeroelasticity codes does not exist. Many aeroelastic data sets have been obtained in wind-tunnel and flight testing throughout the world; however, none have been globally presented or accepted as an ideal data set. There are numerous reasons for this. One reason is that often, such aeroelastic data sets focus on the aeroelastic phenomena alone (flutter, for example) and do not contain associated information such as unsteady pressures and time-correlated structural dynamic deflections. Other available data sets focus solely on the unsteady pressures and do not address the aeroelastic phenomena. Other discrepancies can include omission of relevant data, such as flutter frequency and / or the acquisition of only qualitative deflection data. In addition to these content deficiencies, all of the available data sets present both experimental and computational technical challenges. Experimental issues include facility influences, nonlinearities beyond those being modeled, and data processing. From the computational perspective, technical challenges include modeling geometric complexities, coupling between the flow and the structure, grid issues, and boundary conditions. The Aeroelasticity Benchmark Assessment task seeks to examine the existing potential experimental data sets and ultimately choose the one that is viewed as the most suitable for computational benchmarking. An initial computational evaluation of that configuration will then be performed using the Langley-developed computational fluid dynamics (CFD) software FUN3D1 as part of its code validation process. In addition to the benchmarking activity, this task also includes an examination of future research directions. Researchers within the

  11. Coupled Vortex-Lattice Flight Dynamic Model with Aeroelastic Finite-Element Model of Flexible Wing Transport Aircraft with Variable Camber Continuous Trailing Edge Flap for Drag Reduction

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Ting, Eric; Nguyen, Daniel; Dao, Tung; Trinh, Khanh

    2013-01-01

    This paper presents a coupled vortex-lattice flight dynamic model with an aeroelastic finite-element model to predict dynamic characteristics of a flexible wing transport aircraft. The aircraft model is based on NASA Generic Transport Model (GTM) with representative mass and stiffness properties to achieve a wing tip deflection about twice that of a conventional transport aircraft (10% versus 5%). This flexible wing transport aircraft is referred to as an Elastically Shaped Aircraft Concept (ESAC) which is equipped with a Variable Camber Continuous Trailing Edge Flap (VCCTEF) system for active wing shaping control for drag reduction. A vortex-lattice aerodynamic model of the ESAC is developed and is coupled with an aeroelastic finite-element model via an automated geometry modeler. This coupled model is used to compute static and dynamic aeroelastic solutions. The deflection information from the finite-element model and the vortex-lattice model is used to compute unsteady contributions to the aerodynamic force and moment coefficients. A coupled aeroelastic-longitudinal flight dynamic model is developed by coupling the finite-element model with the rigid-body flight dynamic model of the GTM.

  12. Sensitivity Analysis of Wing Aeroelastic Responses

    NASA Technical Reports Server (NTRS)

    Issac, Jason Cherian

    1995-01-01

    Design for prevention of aeroelastic instability (that is, the critical speeds leading to aeroelastic instability lie outside the operating range) is an integral part of the wing design process. Availability of the sensitivity derivatives of the various critical speeds with respect to shape parameters of the wing could be very useful to a designer in the initial design phase, when several design changes are made and the shape of the final configuration is not yet frozen. These derivatives are also indispensable for a gradient-based optimization with aeroelastic constraints. In this study, flutter characteristic of a typical section in subsonic compressible flow is examined using a state-space unsteady aerodynamic representation. The sensitivity of the flutter speed of the typical section with respect to its mass and stiffness parameters, namely, mass ratio, static unbalance, radius of gyration, bending frequency, and torsional frequency is calculated analytically. A strip theory formulation is newly developed to represent the unsteady aerodynamic forces on a wing. This is coupled with an equivalent plate structural model and solved as an eigenvalue problem to determine the critical speed of the wing. Flutter analysis of the wing is also carried out using a lifting-surface subsonic kernel function aerodynamic theory (FAST) and an equivalent plate structural model. Finite element modeling of the wing is done using NASTRAN so that wing structures made of spars and ribs and top and bottom wing skins could be analyzed. The free vibration modes of the wing obtained from NASTRAN are input into FAST to compute the flutter speed. An equivalent plate model which incorporates first-order shear deformation theory is then examined so it can be used to model thick wings, where shear deformations are important. The sensitivity of natural frequencies to changes in shape parameters is obtained using ADIFOR. A simple optimization effort is made towards obtaining a minimum weight

  13. An inverse method for computation of structural stiffness distributions of aeroelastically optimized wings

    NASA Astrophysics Data System (ADS)

    Schuster, David M.

    1993-04-01

    An inverse method has been developed to compute the structural stiffness properties of wings given a specified wing loading and aeroelastic twist distribution. The method directly solves for the bending and torsional stiffness distribution of the wing using a modal representation of these properties. An aeroelastic design problem involving the use of a computational aerodynamics method to optimize the aeroelastic twist distribution of a tighter wing operating at maneuver flight conditions is used to demonstrate the application of the method. This exercise verifies the ability of the inverse scheme to accurately compute the structural stiffness distribution required to generate a specific aeroelastic twist under a specified aeroelastic load.

  14. Aeroelastic tailoring for oblique wing lateral trim

    NASA Technical Reports Server (NTRS)

    Bohlmann, Jonathan D.; Weisshaar, Terrence A.; Eckstrom, Clinton V.

    1988-01-01

    Composite material aeroelastic tailoring is presently explored as a means for the correction of the roll trim imbalance of oblique-wing aircraft configurations. The concept is demonstrated through the analysis of a realistic oblique wing by a static aeroelastic computational procedure encompassing the full potential transonic aerodynamic code FLO22 and a Ritz structural plate program that models the stiffness due to symmetrical-but-unbalanced composite wing skins. Results indicate that asymetric composite tailoring reduces the aileron deflection needed for roll equilibrium, and reduces control surface hinge moment and drag. Wing skin stresses are, however, very high.

  15. Wing-Body Aeroelasticity on Parallel Computers

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.; Byun, Chansup

    1996-01-01

    This article presents a procedure for computing the aeroelasticity of wing-body configurations on multiple-instruction, multiple-data parallel computers. In this procedure, fluids are modeled using Euler equations discretized by a finite difference method, and structures are modeled using finite element equations. The procedure is designed in such a way that each discipline can be developed and maintained independently by using a domain decomposition approach. A parallel integration scheme is used to compute aeroelastic responses by solving the coupled fluid and structural equations concurrently while keeping modularity of each discipline. The present procedure is validated by computing the aeroelastic response of a wing and comparing with experiment. Aeroelastic computations are illustrated for a high speed civil transport type wing-body configuration.

  16. Ongoing Fixed Wing Research within the NASA Langley Aeroelasticity Branch

    NASA Technical Reports Server (NTRS)

    Bartels, Robert; Chwalowski, Pawel; Funk, Christie; Heeg, Jennifer; Hur, Jiyoung; Sanetrik, Mark; Scott, Robert; Silva, Walter; Stanford, Bret; Wiseman, Carol

    2015-01-01

    The NASA Langley Aeroelasticity Branch is involved in a number of research programs related to fixed wing aeroelasticity and aeroservoelasticity. These ongoing efforts are summarized here, and include aeroelastic tailoring of subsonic transport wing structures, experimental and numerical assessment of truss-braced wing flutter and limit cycle oscillations, and numerical modeling of high speed civil transport configurations. Efforts devoted to verification, validation, and uncertainty quantification of aeroelastic physics in a workshop setting are also discussed. The feasibility of certain future civil transport configurations will depend on the ability to understand and control complex aeroelastic phenomena, a goal that the Aeroelasticity Branch is well-positioned to contribute through these programs.

  17. In-flight aeroelastic measurement technique development

    NASA Astrophysics Data System (ADS)

    Burner, Alpheus W.; Lokos, William A.; Barrows, Danny A.

    2003-11-01

    The initial concept and development of a low-cost, adaptable method for the measurement of static and dynamic aeroelastic deformation of aircraft during flight testing is presented. The method is adapted from a proven technique used in wind tunnel testing to measure model deformation, often referred to as the videogrammetric model deformation (or VMD) technique. The requirements for in-flight measurements are compared and contrasted with those for wind tunnel testing. The methodology for the proposed measurements and differences compared with that used for wind tunnel testing is given. Several error sources and their effects are identified. Measurement examples using the new technique, including change in wing twist and deflection as a function of time, from an F/A-18 research aircraft at NASA's Dryden Flight Research Center are presented.

  18. Aeroelastic Tailoring with Composites Applied to Forward Swept Wings

    DTIC Science & Technology

    1981-11-01

    wings a viable configo.-tion option for high perfotmance aircraft. Forward swept wings have an inherent -.endency to encounter a static aeroelastic...configuration option for high performance aircraft. Forward swept wings have an inherent tendency to encounter a static aeroelastic instability ialled divergence...conventional and super- critical airfoils. ....... ..................... 19 12 Static methods for subcritical divergence dynamic pressure projection. (a

  19. Stability and Control Properties of an Aeroelastic Fixed Wing Micro Aerial Vehicle

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.; Jenkins, Luther N.; Ifju, Peter

    2001-01-01

    Micro aerial vehicles have been the subject of considerable interest and development over the last several years. The majority of current vehicle concepts rely on rigid fixed wings or rotors. An alternate design based on an aeroelastic membrane wing concept has also been developed that has exhibited desired characteristics in flight test demonstrations and competition. This paper presents results from a wind tunnel investigation that sought to quantify stability and control properties for a family of vehicles using the aeroelastic design. The results indicate that the membrane wing does exhibit potential benefits that could be exploited to enhance the design of future flight vehicles.

  20. Design Considerations for a UCAV Wing for Subsonic and Transonic Aeroelastic and Flight Mechanic Wind Tunnel Tests

    DTIC Science & Technology

    2007-11-01

    actuation device in the wing will increase the model complexity considerably and very probably stiffen the wing considerably. Figure 6: Desing ...7] http://www.denel.co.za/Aerospace/UAV.asp [8] http://www.aoe.vt.edu/ research /groups/ucav/ [9] Kudva, J.N.: Overview of the DARPA Smart Wing

  1. Wing Torsional Stiffness Tests of the Active Aeroelastic Wing F/A-18 Airplane

    NASA Technical Reports Server (NTRS)

    Lokos, William A.; Olney, Candida D.; Crawford, Natalie D.; Stauf, Rick; Reichenbach, Eric Y.

    2002-01-01

    The left wing of the Active Aeroelastic Wing (AAW) F/A-18 airplane has been ground-load-tested to quantify its torsional stiffness. The test has been performed at the NASA Dryden Flight Research Center in November 1996, and again in April 2001 after a wing skin modification was performed. The primary objectives of these tests were to characterize the wing behavior before the first flight, and provide a before-and-after measurement of the torsional stiffness. Two streamwise load couples have been applied. The wing skin modification is shown to have more torsional flexibility than the original configuration has. Additionally, structural hysteresis is shown to be reduced by the skin modification. Data comparisons show good repeatability between the tests.

  2. Development and Testing of Control Laws for the Active Aeroelastic Wing Program

    NASA Technical Reports Server (NTRS)

    Dibley, Ryan P.; Allen, Michael J.; Clarke, Robert; Gera, Joseph; Hodgkinson, John

    2005-01-01

    The Active Aeroelastic Wing research program was a joint program between the U.S. Air Force Research Laboratory and NASA established to investigate the characteristics of an aeroelastic wing and the technique of using wing twist for roll control. The flight test program employed the use of an F/A-18 aircraft modified by reducing the wing torsional stiffness and adding a custom research flight control system. The research flight control system was optimized to maximize roll rate using only wing surfaces to twist the wing while simultaneously maintaining design load limits, stability margins, and handling qualities. NASA Dryden Flight Research Center developed control laws using the software design tool called CONDUIT, which employs a multi-objective function optimization to tune selected control system design parameters. Modifications were made to the Active Aeroelastic Wing implementation in this new software design tool to incorporate the NASA Dryden Flight Research Center nonlinear F/A-18 simulation for time history analysis. This paper describes the design process, including how the control law requirements were incorporated into constraints for the optimization of this specific software design tool. Predicted performance is also compared to results from flight.

  3. Flight Dynamics of Flexible Aircraft with Aeroelastic and Inertial Force Interactions

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Tuzcu, Ilhan

    2009-01-01

    This paper presents an integrated flight dynamic modeling method for flexible aircraft that captures coupled physics effects due to inertial forces, aeroelasticity, and propulsive forces that are normally present in flight. The present approach formulates the coupled flight dynamics using a structural dynamic modeling method that describes the elasticity of a flexible, twisted, swept wing using an equivalent beam-rod model. The structural dynamic model allows for three types of wing elastic motion: flapwise bending, chordwise bending, and torsion. Inertial force coupling with the wing elasticity is formulated to account for aircraft acceleration. The structural deflections create an effective aeroelastic angle of attack that affects the rigid-body motion of flexible aircraft. The aeroelastic effect contributes to aerodynamic damping forces that can influence aerodynamic stability. For wing-mounted engines, wing flexibility can cause the propulsive forces and moments to couple with the wing elastic motion. The integrated flight dynamics for a flexible aircraft are formulated by including generalized coordinate variables associated with the aeroelastic-propulsive forces and moments in the standard state-space form for six degree-of-freedom flight dynamics. A computational structural model for a generic transport aircraft has been created. The eigenvalue analysis is performed to compute aeroelastic frequencies and aerodynamic damping. The results will be used to construct an integrated flight dynamic model of a flexible generic transport aircraft.

  4. Static aeroelastic behavior of an adaptive laminated piezoelectric composite wing

    NASA Technical Reports Server (NTRS)

    Weisshaar, T. A.; Ehlers, S. M.

    1990-01-01

    The effect of using an adaptive material to modify the static aeroelastic behavior of a uniform wing is examined. The wing structure is idealized as a laminated sandwich structure with piezoelectric layers in the upper and lower skins. A feedback system that senses the wing root loads applies a constant electric field to the piezoelectric actuator. Modification of pure torsional deformaton behavior and pure bending deformation are investigated, as is the case of an anisotropic composite swept wing. The use of piezoelectric actuators to create an adaptive structure is found to alter static aeroelastic behavior in that the proper choice of the feedback gain can increase or decrease the aeroelastic divergence speed. This concept also may be used to actively change the lift effectiveness of a wing. The ability to modify static aeroelastic behavior is limited by physical limitations of the piezoelectric material and the manner in which it is integrated into the parent structure.

  5. Coupled nonlinear aeroelasticity and flight dynamics of fully flexible aircraft

    NASA Astrophysics Data System (ADS)

    Su, Weihua

    This dissertation introduces an approach to effectively model and analyze the coupled nonlinear aeroelasticity and flight dynamics of highly flexible aircraft. A reduced-order, nonlinear, strain-based finite element framework is used, which is capable of assessing the fundamental impact of structural nonlinear effects in preliminary vehicle design and control synthesis. The cross-sectional stiffness and inertia properties of the wings are calculated along the wing span, and then incorporated into the one-dimensional nonlinear beam formulation. Finite-state unsteady subsonic aerodynamics is used to compute airloads along lifting surfaces. Flight dynamic equations are then introduced to complete the aeroelastic/flight dynamic system equations of motion. Instead of merely considering the flexibility of the wings, the current work allows all members of the vehicle to be flexible. Due to their characteristics of being slender structures, the wings, tail, and fuselage of highly flexible aircraft can be modeled as beams undergoing three dimensional displacements and rotations. New kinematic relationships are developed to handle the split beam systems, such that fully flexible vehicles can be effectively modeled within the existing framework. Different aircraft configurations are modeled and studied, including Single-Wing, Joined-Wing, Blended-Wing-Body, and Flying-Wing configurations. The Lagrange Multiplier Method is applied to model the nodal displacement constraints at the joint locations. Based on the proposed models, roll response and stability studies are conducted on fully flexible and rigidized models. The impacts of the flexibility of different vehicle members on flutter with rigid body motion constraints, flutter in free flight condition, and roll maneuver performance are presented. Also, the static stability of the compressive member of the Joined-Wing configuration is studied. A spatially-distributed discrete gust model is incorporated into the time simulation

  6. Development of Variable Camber Continuous Trailing Edge Flap for Performance Adaptive Aeroelastic Wing

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Kaul, Upender; Lebofsky, Sonia; Ting, Eric; Chaparro, Daniel; Urnes, James

    2015-01-01

    This paper summarizes the recent development of an adaptive aeroelastic wing shaping control technology called variable camber continuous trailing edge flap (VCCTEF). As wing flexibility increases, aeroelastic interactions with aerodynamic forces and moments become an increasingly important consideration in aircraft design and aerodynamic performance. Furthermore, aeroelastic interactions with flight dynamics can result in issues with vehicle stability and control. The initial VCCTEF concept was developed in 2010 by NASA under a NASA Innovation Fund study entitled "Elastically Shaped Future Air Vehicle Concept," which showed that highly flexible wing aerodynamic surfaces can be elastically shaped in-flight by active control of wing twist and bending deflection in order to optimize the spanwise lift distribution for drag reduction. A collaboration between NASA and Boeing Research & Technology was subsequently funded by NASA from 2012 to 2014 to further develop the VCCTEF concept. This paper summarizes some of the key research areas conducted by NASA during the collaboration with Boeing Research and Technology. These research areas include VCCTEF design concepts, aerodynamic analysis of VCCTEF camber shapes, aerodynamic optimization of lift distribution for drag minimization, wind tunnel test results for cruise and high-lift configurations, flutter analysis and suppression control of flexible wing aircraft, and multi-objective flight control for adaptive aeroelastic wing shaping control.

  7. A Flight Investigation of the Damping in Roll and Rolling Effectiveness Including Aeroelastic Effects of Rocket Propelled Missile Models Having Cruciform, Triangular, Interdigitated Wings and Tails

    NASA Technical Reports Server (NTRS)

    Hopko, R. N.

    1951-01-01

    The damping in roll and rolling effectiveness of two models of a missile having cruciform, triangular, interdigitated wings and tails have been determined through a Mach number range of 0.8 to 1.8 by utilizing rocket-propelled test vehicles. Results indicate that the damping in roll was relatively constant over the Mach umber range investigated. The rolling effectiveness was essentially constant at low supersonic speeds and increased with increasing mach numbers in excess of 1.4 over the Mach number range investigated. Aeroelastic effects increase the rolling-effectiveness parameters pb/2V divided by delta and decrease both the rolling-moment coefficient due to wing deflection and the damping-in-roll coefficient.

  8. Wing Weight Optimization Under Aeroelastic Loads Subject to Stress Constraints

    NASA Technical Reports Server (NTRS)

    Kapania, Rakesh K.; Issac, J.; Macmurdy, D.; Guruswamy, Guru P.

    1997-01-01

    A minimum weight optimization of the wing under aeroelastic loads subject to stress constraints is carried out. The loads for the optimization are based on aeroelastic trim. The design variables are the thickness of the wing skins and planform variables. The composite plate structural model incorporates first-order shear deformation theory, the wing deflections are expressed using Chebyshev polynomials and a Rayleigh-Ritz procedure is adopted for the structural formulation. The aerodynamic pressures provided by the aerodynamic code at a discrete number of grid points is represented as a bilinear distribution on the composite plate code to solve for the deflections and stresses in the wing. The lifting-surface aerodynamic code FAST is presently being used to generate the pressure distribution over the wing. The envisioned ENSAERO/Plate is an aeroelastic analysis code which combines ENSAERO version 3.0 (for analysis of wing-body configurations) with the composite plate code.

  9. Aeroelastic Flight Data Analysis with the Hilbert-Huang Algorithm

    NASA Technical Reports Server (NTRS)

    Brenner, Martin J.; Prazenica, Chad

    2006-01-01

    This report investigates the utility of the Hilbert Huang transform for the analysis of aeroelastic flight data. It is well known that the classical Hilbert transform can be used for time-frequency analysis of functions or signals. Unfortunately, the Hilbert transform can only be effectively applied to an extremely small class of signals, namely those that are characterized by a single frequency component at any instant in time. The recently-developed Hilbert Huang algorithm addresses the limitations of the classical Hilbert transform through a process known as empirical mode decomposition. Using this approach, the data is filtered into a series of intrinsic mode functions, each of which admits a well-behaved Hilbert transform. In this manner, the Hilbert Huang algorithm affords time-frequency analysis of a large class of signals. This powerful tool has been applied in the analysis of scientific data, structural system identification, mechanical system fault detection, and even image processing. The purpose of this report is to demonstrate the potential applications of the Hilbert Huang algorithm for the analysis of aeroelastic systems, with improvements such as localized online processing. Applications for correlations between system input and output, and amongst output sensors, are discussed to characterize the time-varying amplitude and frequency correlations present in the various components of multiple data channels. Online stability analyses and modal identification are also presented. Examples are given using aeroelastic test data from the F-18 Active Aeroelastic Wing airplane, an Aerostructures Test Wing, and pitch plunge simulation.

  10. Loads Model Development and Analysis for the F/A-18 Active Aeroelastic Wing Airplane

    NASA Technical Reports Server (NTRS)

    Allen, Michael J.; Lizotte, Andrew M.; Dibley, Ryan P.; Clarke, Robert

    2005-01-01

    The Active Aeroelastic Wing airplane was successfully flight-tested in March 2005. During phase 1 of the two-phase program, an onboard excitation system provided independent control surface movements that were used to develop a loads model for the wing structure and wing control surfaces. The resulting loads model, which was used to develop the control laws for phase 2, is described. The loads model was developed from flight data through the use of a multiple linear regression technique. The loads model input consisted of aircraft states and control surface positions, in addition to nonlinear inputs that were calculated from flight-measured parameters. The loads model output for each wing consisted of wing-root bending moment and torque, wing-fold bending moment and torque, inboard and outboard leading-edge flap hinge moment, trailing-edge flap hinge moment, and aileron hinge moment. The development of the Active Aeroelastic Wing loads model is described, and the ability of the model to predict loads during phase 2 research maneuvers is demonstrated. Results show a good match to phase 2 flight data for all loads except inboard and outboard leading-edge flap hinge moments at certain flight conditions. The average load prediction errors for all loads at all flight conditions are 9.1 percent for maximum stick-deflection rolls, 4.4 percent for 5-g windup turns, and 7.7 percent for 4-g rolling pullouts.

  11. Static Aeroelastic Response of an Aircraft With Asymmetric Wing Planforms Representative of Combat Damage

    DTIC Science & Technology

    1993-06-01

    combat damage. The analysis was performed using the MSCANASTRAN Aeroelastic Code. Structural and aerodynamic models are based on the finite element...rudders) are considered as lifing and control surfaces in the aerodynamic model . Five different wing structural models , one undamaged and four damaged, are...of wing-body Interference, on the aircraft’s flight dynamics are discussed. 14. SUBJECT TERMS IS. NUMBER OF PAGES T-38 aircraft; auerodynamic model

  12. Twist Model Development and Results from the Active Aeroelastic Wing F/A-18 Aircraft

    NASA Technical Reports Server (NTRS)

    Lizotte, Andrew M.; Allen, Michael J.

    2007-01-01

    Understanding the wing twist of the active aeroelastic wing (AAW) F/A-18 aircraft is a fundamental research objective for the program and offers numerous benefits. In order to clearly understand the wing flexibility characteristics, a model was created to predict real-time wing twist. A reliable twist model allows the prediction of twist for flight simulation, provides insight into aircraft performance uncertainties, and assists with computational fluid dynamic and aeroelastic issues. The left wing of the aircraft was heavily instrumented during the first phase of the active aeroelastic wing program allowing deflection data collection. Traditional data processing steps were taken to reduce flight data, and twist predictions were made using linear regression techniques. The model predictions determined a consistent linear relationship between the measured twist and aircraft parameters, such as surface positions and aircraft state variables. Error in the original model was reduced in some cases by using a dynamic pressure-based assumption. This technique produced excellent predictions for flight between the standard test points and accounted for nonlinearities in the data. This report discusses data processing techniques and twist prediction validation, and provides illustrative and quantitative results.

  13. Twist Model Development and Results From the Active Aeroelastic Wing F/A-18 Aircraft

    NASA Technical Reports Server (NTRS)

    Lizotte, Andrew; Allen, Michael J.

    2005-01-01

    Understanding the wing twist of the active aeroelastic wing F/A-18 aircraft is a fundamental research objective for the program and offers numerous benefits. In order to clearly understand the wing flexibility characteristics, a model was created to predict real-time wing twist. A reliable twist model allows the prediction of twist for flight simulation, provides insight into aircraft performance uncertainties, and assists with computational fluid dynamic and aeroelastic issues. The left wing of the aircraft was heavily instrumented during the first phase of the active aeroelastic wing program allowing deflection data collection. Traditional data processing steps were taken to reduce flight data, and twist predictions were made using linear regression techniques. The model predictions determined a consistent linear relationship between the measured twist and aircraft parameters, such as surface positions and aircraft state variables. Error in the original model was reduced in some cases by using a dynamic pressure-based assumption and by using neural networks. These techniques produced excellent predictions for flight between the standard test points and accounted for nonlinearities in the data. This report discusses data processing techniques and twist prediction validation, and provides illustrative and quantitative results.

  14. Flight-vehicle materials, structures, and dynamics - Assessment and future directions. Vol. 5 - Structural dynamics and aeroelasticity

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Editor); Venneri, Samuel L. (Editor)

    1993-01-01

    Various papers on flight vehicle materials, structures, and dynamics are presented. Individual topics addressed include: general modeling methods, component modeling techniques, time-domain computational techniques, dynamics of articulated structures, structural dynamics in rotating systems, structural dynamics in rotorcraft, damping in structures, structural acoustics, structural design for control, structural modeling for control, control strategies for structures, system identification, overall assessment of needs and benefits in structural dynamics and controlled structures. Also discussed are: experimental aeroelasticity in wind tunnels, aeroservoelasticity, nonlinear aeroelasticity, aeroelasticity problems in turbomachines, rotary-wing aeroelasticity with application to VTOL vehicles, computational aeroelasticity, structural dynamic testing and instrumentation.

  15. Inertial Force Coupling to Nonlinear Aeroelasticity of Flexible Wing Aircraft

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Ting, Eric

    2016-01-01

    This paper investigates the inertial force effect on nonlinear aeroelasticity of flexible wing aircraft. The geometric are nonlinearity due to rotational and tension stiffening. The effect of large bending deflection will also be investigated. Flutter analysis will be conducted for a truss-braced wing aircraft concept with tension stiffening and inertial force coupling.

  16. Aeroelastic deployable wing simulation considering rotation hinge joint based on flexible multibody dynamics

    NASA Astrophysics Data System (ADS)

    Otsuka, Keisuke; Makihara, Kanjuro

    2016-05-01

    Morphing wings have been developed by several organizations for a variety of applications including the changing of flight ability while in the air and reducing the amount of space required to store an aircraft. One such example of morphing wings is the deployable wing that is expected to be used for Mars exploration. When designing wings, aeroelastic simulation is important to prevent the occurrence of destructive phenomena while the wing is in use. Flutter and divergence are typical issues to be addressed. However, it has been difficult to simulate the aeroelastic motion of deployable wings because of the significant differences between these deployable wings and conventional designs. The most apparent difference is the kinematic constraints of deployment, typically a hinge joint. These constraints lead not only to deformation but also to rigid body rotation. This research provides a novel method of overcoming the difficulties associated with handling these kinematic constraints. The proposed method utilizes flexible multibody dynamics and absolute nodal coordinate formulation to describe the dynamic motion of a deployable wing. This paper presents the simulation of the rigid body rotation around the kinematic constraints as induced by the aeroelasticity. The practicality of the proposed method is confirmed.

  17. Experimental Results from the Active Aeroelastic Wing Wind Tunnel Test Program

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Spain, Charles V.; Florance, James R.; Wieseman, Carol D.; Ivanco, Thomas G.; DeMoss, Joshua; Silva, Walter A.; Panetta, Andrew; Lively, Peter; Tumwa, Vic

    2005-01-01

    The Active Aeroelastic Wing (AAW) program is a cooperative effort among NASA, the Air Force Research Laboratory and the Boeing Company, encompassing flight testing, wind tunnel testing and analyses. The objective of the AAW program is to investigate the improvements that can be realized by exploiting aeroelastic characteristics, rather than viewing them as a detriment to vehicle performance and stability. To meet this objective, a wind tunnel model was crafted to duplicate the static aeroelastic behavior of the AAW flight vehicle. The model was tested in the NASA Langley Transonic Dynamics Tunnel in July and August 2004. The wind tunnel investigation served the program goal in three ways. First, the wind tunnel provided a benchmark for comparison with the flight vehicle and various levels of theoretical analyses. Second, it provided detailed insight highlighting the effects of individual parameters upon the aeroelastic response of the AAW vehicle. This parameter identification can then be used for future aeroelastic vehicle design guidance. Third, it provided data to validate scaling laws and their applicability with respect to statically scaled aeroelastic models.

  18. Smithornis broadbills produce loud wing song by aeroelastic flutter of medial primary wing feathers.

    PubMed

    Clark, Christopher J; Kirschel, Alexander N G; Hadjioannou, Louis; Prum, Richard O

    2016-04-01

    Broadbills in the genus Smithornis produce a loud brreeeeet during a distinctive flight display. It has been posited that this klaxon-like sound is generated non-vocally with the outer wing feathers (P9, P10), but no scientific studies have previously addressed this hypothesis. Although most birds that make non-vocal communication sounds have feathers with a shape distinctively modified for sound production, Smithornis broadbills do not. We investigated whether this song is produced vocally or with the wings in rufous-sided broadbill (S. rufolateralis) and African broad bill (S. capensis). In support of the wing song hypothesis, synchronized high-speed video and sound recordings of displays demonstrated that sound pulses were produced during the downstroke, subtle gaps sometimes appeared between the outer primary feathers P6-P10, and wing tip speed reached 16 m s(-1) Tests of a spread wing in a wind tunnel demonstrated that at a specific orientation, P6 and P7 flutter and produce sound. Wind tunnel tests on individual feathers P5-P10 from a male of each species revealed that while all of these feathers can produce sound via aeroelastic flutter, P6 and P7 produce the loudest sounds, which are similar in frequency to the wing song, at airspeeds achievable by the wing tip during display flight. Consistent with the wind tunnel experiments, field manipulations of P6, P7 and P8 changed the timbre of the wing song, and reduced its tonality, demonstrating that P6 and P7 are together the sound source, and not P9 or P10. The resultant wing song appears to have functionally replaced vocal song.

  19. Aeroelastic Phenomena of Flight Vehicles in Transonic Region

    NASA Astrophysics Data System (ADS)

    Lee, In; Kim, Jong-Yun; Kim, Kyung-Seok; Lim, In-Gyu

    Flight vehicles experience aeroelastic problems due to the interaction between structures and aerodynamic forces. Aeroelastic instability is usually a critical problem in transonic and lower supersonic regions. In present study, the aeroelastic analyses of several flight vehicles have been performed using the coupled techniques of computational fluid dynamics (CFD) and computational structural dynamics (CSD). The aeroelastic characteristics based on several aircraft models are investigated using the developed aeroelastic analysis system. On the other hand, structural nonlinearities always exist in flight vehicles. Structural nonlinearities such as freeplay and large deformation effects are considered in the present aeroelastic analysis system. Finally, aeroelastic characteristics of several flight vehicles will be explained considering both aerodynamic and structural nonlinearities.

  20. Prediction of wing aeroelastic effects on aircraft life and pitching moment characteristics

    NASA Technical Reports Server (NTRS)

    Eckstrom, Clinton V.

    1987-01-01

    The distribution of flight loads on an aircraft structure determine the lift and pitching moment characteristics of the aircraft. When the load distribution changes due to the aeroelastic response of the structure, the lift and pitching moment characteristics also change. An estimate of the effect of aeroelasticity on stability and control characteristics is often required for the development of aircraft simulation models of evaluation of flight characteristics. This presentation outlines a procedure for incorporating calculated linear aeroelastic effects into measured nonlinear lift and pitching moment data from wind tunnel tests. Results are presented which were obtained from applying this procedure to data for an aircraft with a very flexible transport type research wing. The procedure described is generally applicable to all types of aircraft.

  1. Nonlinear Aeroelastic Analysis of Joined-Wing Configurations

    NASA Astrophysics Data System (ADS)

    Cavallaro, Rauno

    Aeroelastic design of joined-wing configurations is yet a relatively unexplored topic which poses several difficulties. Due to the overconstrained nature of the system combined with structural geometric nonlinearities, the behavior of Joined Wings is often counterintuitive and presents challenges not seen in standard layouts. In particular, instability observed on detailed aircraft models but never thoroughly investigated, is here studied with the aid of a theoretical/computational framework. Snap-type of instabilities are shown for both pure structural and aeroelastic cases. The concept of snap-divergence is introduced to clearly identify the true aeroelastic instability, as opposed to the usual aeroelastic divergence evaluated through eigenvalue approach. Multi-stable regions and isola-type of bifurcations are possible characterizations of the nonlinear response of Joined Wings, and may lead to branch-jumping phenomena well below nominal critical load condition. Within this picture, sensitivity to (unavoidable) manufacturing defects could have potential catastrophic effects. The phenomena studied in this work suggest that the design process for Joined Wings needs to be revisited and should focus, when instability is concerned, on nonlinear post-critical analysis since linear methods may provide wrong trend indications and also hide potentially catastrophical situations. Dynamic aeroelastic analyses are also performed. Flutter occurrence is critically analyzed with frequency and time-domain capabilities. Sensitivity to different-fidelity aeroelastic modeling (fluid-structure interface algorithm, aerodynamic solvers) is assessed showing that, for some configurations, wake modeling (rigid versus free) has a strong impact on the results. Post-flutter regimes are also explored. Limit cycle oscillations are observed, followed, in some cases, by flip bifurcations (period doubling) and loss of periodicity of the solution. Aeroelastic analyses are then carried out on a

  2. Aeroelastic stability analysis of the AD-1 manned oblique-wing aircraft

    NASA Technical Reports Server (NTRS)

    Rutkowski, M. J.

    1977-01-01

    The AD-1 manned flight test program was conducted to evaluate the stability, control and handling characteristics of oblique wing aircraft. The results of the aeroelastic stability analysis are presented for both the wing alone and the wing with ailerons. A comparison was made between the results obtained using the traditional k-method of flutter analysis and the results using the PK or British method of flutter analysis. Studies were performed using the latest version of the NASTRAN computer code as well as the PASS/FLUT program.

  3. Deflection-Based Structural Loads Estimation From the Active Aeroelastic Wing F/A-18 Aircraft

    NASA Technical Reports Server (NTRS)

    Lizotte, Andrew M.; Lokos, William A.

    2005-01-01

    Traditional techniques in structural load measurement entail the correlation of a known load with strain-gage output from the individual components of a structure or machine. The use of strain gages has proved successful and is considered the standard approach for load measurement. However, remotely measuring aerodynamic loads using deflection measurement systems to determine aeroelastic deformation as a substitute to strain gages may yield lower testing costs while improving aircraft performance through reduced instrumentation weight. This technique was examined using a reliable strain and structural deformation measurement system. The objective of this study was to explore the utility of a deflection-based load estimation, using the active aeroelastic wing F/A-18 aircraft. Calibration data from ground tests performed on the aircraft were used to derive left wing-root and wing-fold bending-moment and torque load equations based on strain gages, however, for this study, point deflections were used to derive deflection-based load equations. Comparisons between the strain-gage and deflection-based methods are presented. Flight data from the phase-1 active aeroelastic wing flight program were used to validate the deflection-based load estimation method. Flight validation revealed a strong bending-moment correlation and slightly weaker torque correlation. Development of current techniques, and future studies are discussed.

  4. Aeroelastic Flight Data Analysis with the Hilbert-Huang Algorithm

    NASA Technical Reports Server (NTRS)

    Brenner, Marty; Prazenica, Chad

    2005-01-01

    This paper investigates the utility of the Hilbert-Huang transform for the analysis of aeroelastic flight data. It is well known that the classical Hilbert transform can be used for time-frequency analysis of functions or signals. Unfortunately, the Hilbert transform can only be effectively applied to an extremely small class of signals, namely those that are characterized by a single frequency component at any instant in time. The recently-developed Hilbert-Huang algorithm addresses the limitations of the classical Hilbert transform through a process known as empirical mode decomposition. Using this approach, the data is filtered into a series of intrinsic mode functions, each of which admits a well-behaved Hilbert transform. In this manner, the Hilbert-Huang algorithm affords time-frequency analysis of a large class of signals. This powerful tool has been applied in the analysis of scientific data, structural system identification, mechanical system fault detection, and even image processing. The purpose of this paper is to demonstrate the potential applications of the Hilbert-Huang algorithm for the analysis of aeroelastic systems, with improvements such as localized/online processing. Applications for correlations between system input and output, and amongst output sensors, are discussed to characterize the time-varying amplitude and frequency correlations present in the various components of multiple data channels. Online stability analyses and modal identification are also presented. Examples are given using aeroelastic test data from the F/A-18 Active Aeroelastic Wing aircraft, an Aerostructures Test Wing, and pitch-plunge simulation.

  5. Adaptive aeroelastic composite wings - Control and optimization issues

    NASA Technical Reports Server (NTRS)

    Weisshaar, Terrence A.; Ehlers, Steven M.

    1992-01-01

    High-performance aircraft are adaptive machines composed of internal structural skeletons to which are attached control surfaces operated by hydraulic muscles to allow them to maneuver. The flight crew, avionic sensors and systems function as the brain and nervous system to adapt the machine to changing flight conditions, such as take-off, cruise and landing. The development of new materials that can expand or contract on command or change stiffness on demand will blur the now distinct boundaries between the structure, actuators and the control system. This paper discusses the use of imbedded active piezoelectric materials to change the aeroelastic stiffness of a lifting surface to allow this surface to control the aircraft. Expressions are developed for the piezoelectric material effectiveness when these active materials are combined with advanced composite structural materials for a swept, high-aspect-ratio wing. The interaction between advanced composite material properties and piezoelectric electromechanical properties is examined. The importance of choosing the proper active control laws is also illustrated.

  6. Investigation of Aeroelastic Flow Control of a Fluttering Wing with HPCMP CREATE(trademark)-AV Kestrel

    DTIC Science & Technology

    2015-01-05

    The aeroelastic behavior of a finite aspect ratio (AR=6) NACA0018 wing is computationally analyzed. HPCMP CREATE(trademark)-AV Kestrel, a fully...aeroelastically deforming wing . Externally controlled blowing slots distributed along the span of the wing are used to inject mass into the flow field to...coefficients. For the rigid wing , the lift is increased, as are the pitching and rolling moments. When aeroelastic deformation is considered, the

  7. Aeroelastic Tailoring of Transport Wings Including Transonic Flutter Constraints

    NASA Technical Reports Server (NTRS)

    Stanford, Bret K.; Wieseman, Carol D.; Jutte, Christine V.

    2015-01-01

    Several minimum-mass optimization problems are solved to evaluate the effectiveness of a variety of novel tailoring schemes for subsonic transport wings. Aeroelastic stress and panel buckling constraints are imposed across several trimmed static maneuver loads, in addition to a transonic flutter margin constraint, captured with aerodynamic influence coefficient-based tools. Tailoring with metallic thickness variations, functionally graded materials, balanced or unbalanced composite laminates, curvilinear tow steering, and distributed trailing edge control effectors are all found to provide reductions in structural wing mass with varying degrees of success. The question as to whether this wing mass reduction will offset the increased manufacturing cost is left unresolved for each case.

  8. Optimal aeroelastic design of an oblique wing structure

    NASA Technical Reports Server (NTRS)

    Gwin, L. B.

    1974-01-01

    A procedure is presented for determining the optimal cover panel thickness of a wing structure to meet specified strength and static aeroelastic divergence requirements for minimum weight. Efficient reanalysis techniques using discrete structural and aerodynamic methods are used in conjunction with redesign algorithms driven by optimality criteria. The optimality conditions for the divergence constraint are established, and expressions are obtained for derivatives of the dynamic pressure at divergence with respect to design variables. The procedure is applied to an oblique wing aircraft where strength and stiffness are critical design considerations for sizing the cover thickness of the wing structure.

  9. Aeroelastic Tailoring of a Plate Wing with Functionally Graded Materials

    NASA Technical Reports Server (NTRS)

    Dunning, Peter D.; Stanford, Bret K.; Kim, H. Alicia; Jutte, Christine V.

    2014-01-01

    This work explores the use of functionally graded materials for the aeroelastic tailoring of a metallic cantilevered plate-like wing. Pareto trade-off curves between dynamic stability (flutter) and static aeroelastic stresses are obtained for a variety of grading strategies. A key comparison is between the effectiveness of material grading, geometric grading (i.e., plate thickness variations), and using both simultaneously. The introduction of material grading does, in some cases, improve the aeroelastic performance. This improvement, and the physical mechanism upon which it is based, depends on numerous factors: the two sets of metallic material parameters used for grading, the sweep of the plate, the aspect ratio of the plate, and whether the material is graded continuously or discretely.

  10. Application of the Finite Element Method to Rotary Wing Aeroelasticity

    NASA Technical Reports Server (NTRS)

    Straub, F. K.; Friedmann, P. P.

    1982-01-01

    A finite element method for the spatial discretization of the dynamic equations of equilibrium governing rotary-wing aeroelastic problems is presented. Formulation of the finite element equations is based on weighted Galerkin residuals. This Galerkin finite element method reduces algebraic manipulative labor significantly, when compared to the application of the global Galerkin method in similar problems. The coupled flap-lag aeroelastic stability boundaries of hingeless helicopter rotor blades in hover are calculated. The linearized dynamic equations are reduced to the standard eigenvalue problem from which the aeroelastic stability boundaries are obtained. The convergence properties of the Galerkin finite element method are studied numerically by refining the discretization process. Results indicate that four or five elements suffice to capture the dynamics of the blade with the same accuracy as the global Galerkin method.

  11. Time-accurate unsteady aerodynamic and aeroelastic calculations for wings using Euler equations

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.

    1988-01-01

    A time-accurate approach to simultaneously solve the Euler flow equations and modal structural equations of motion is presented for computing aeroelastic responses of wings. The Euler flow eauations are solved by a time-accurate finite difference scheme with dynamic grids. The coupled aeroelastic equations of motion are solved using the linear acceleration method. The aeroelastic configuration adaptive dynamic grids are time accurately generated using the aeroelastically deformed shape of the wing. The unsteady flow calculations are validated wih experiment, both for a semi-infinite wing and a wall-mounted cantilever rectangular wings. Aeroelastic responses are computed for a rectangular wing using the modal data generated by the finite-element method. The robustness of the present approach in computing unsteady flows and aeroelastic responses that are beyond the capability of earlier approaches using the potential equations are demonstrated.

  12. Aeroelastic flutter of feathers, flight and the evolution of non-vocal communication in birds.

    PubMed

    Clark, Christopher J; Prum, Richard O

    2015-11-01

    Tonal, non-vocal sounds are widespread in both ordinary bird flight and communication displays. We hypothesized these sounds are attributable to an aerodynamic mechanism intrinsic to flight feathers: aeroelastic flutter. Individual wing and tail feathers from 35 taxa (from 13 families) that produce tonal flight sounds were tested in a wind tunnel. In the wind tunnel, all of these feathers could flutter and generate tonal sound, suggesting that the capacity to flutter is intrinsic to flight feathers. This result implies that the aerodynamic mechanism of aeroelastic flutter is potentially widespread in flight of birds. However, the sounds these feathers produced in the wind tunnel replicated the actual flight sounds of only 15 of the 35 taxa. Of the 20 negative results, we hypothesize that 10 are false negatives, as the acoustic form of the flight sound suggests flutter is a likely acoustic mechanism. For the 10 other taxa, we propose our negative wind tunnel results are correct, and these species do not make sounds via flutter. These sounds appear to constitute one or more mechanism(s) we call 'wing whirring', the physical acoustics of which remain unknown. Our results document that the production of non-vocal communication sounds by aeroelastic flutter of flight feathers is widespread in birds. Across all birds, most evolutionary origins of wing- and tail-generated communication sounds are attributable to three mechanisms: flutter, percussion and wing whirring. Other mechanisms of sound production, such as turbulence-induced whooshes, have evolved into communication sounds only rarely, despite their intrinsic ubiquity in ordinary flight.

  13. 2005 PathfinderPlus Aero-Elastic Research Flight

    NASA Technical Reports Server (NTRS)

    Navarro, Robert

    2005-01-01

    This viewgraph presentation describes the 2005 Pathfinder along with an investigation of its aeroelastic responses. The contents include: 1) HALE Class of Vehicles; 2) Aero-elastic Research Flights Overall Objective; 3) General Arrangement; 4) Sensor Locations; 5) NASA Ramp Operations; 6) Lakebed Operations; 7) 1st Flight Data Set; 8) Tool development / data usage; 9) HALE Tool Development & Validation; 10) Building a HALE Foundation; 11) Compelling Needs Drive HALE Efforts; and 12) Team Photo

  14. Active aeroelastic control of aircraft composite wings impacted by explosive blasts

    NASA Astrophysics Data System (ADS)

    Librescu, Liviu; Na, Sungsoo; Qin, Zhanming; Lee, Bokhee

    2008-11-01

    In this paper, the dynamic aeroelastic response and the related robust control of aircraft swept wings exposed to gust and explosive type loads are examined. The structural model of the wing is in the form of a thin/thick-walled beam and incorporates a number of non-standard effects, such as transverse shear, material anisotropy, warping inhibition, the spanwise non-uniformity of the cross-section, and the rotatory inertias. The circumferentially asymmetric stiffness lay-up configuration is implemented to generate preferred elastic couplings, and in this context, the implications of the plunging-twist elastic coupling and of warping inhibition on the aeroelastic response are investigated. The unsteady incompressible aerodynamic theory adopted in this study is that by von-Kármán and Sears, applicable to arbitrary small motion in the time domain. The considered control methodology enabling one to enhance the aeroelastic response in the subcritical flight speed range and to suppress the occurrence of the flutter instability is based on a novel control approach that is aimed to improve the robustness to modeling uncertainties and external disturbances. To this end, a combined control based on Linear Quadratic Gaussian (LQG) controller coupled with the Sliding Mode Observer (SMO) is designed and its high efficiency is put into evidence.

  15. Strain Gage Loads Calibration Testing of the Active Aeroelastic Wing F/A-18 Aircraft

    NASA Technical Reports Server (NTRS)

    Lokos, William A.; Olney, Candida D.; Chen, Tony; Crawford, Natalie D.; Stauf, Rick; Reichenbach, Eric Y.; Bessette, Denis (Technical Monitor)

    2002-01-01

    This report describes strain-gage calibration loading through the application of known loads of the Active Aeroelastic Wing F/A-18 airplane. The primary goal of this test is to produce a database suitable for deriving load equations for left and right wing root and fold shear; bending moment; torque; and all eight wing control-surface hinge moments. A secondary goal is to produce a database of wing deflections measured by string potentiometers and the onboard flight deflection measurement system. Another goal is to produce strain-gage data through both the laboratory data acquisition system and the onboard aircraft data system as a check of the aircraft system. Thirty-two hydraulic jacks have applied loads through whiffletrees to 104 tension-compression load pads bonded to the lower wing surfaces. The load pads covered approximately 60 percent of the lower wing surface. A series of 72 load cases has been performed, including single-point, double-point, and distributed load cases. Applied loads have reached 70 percent of the flight limit load. Maximum wingtip deflection has reached nearly 16 in.

  16. Aeroelastic Wing Shaping Control Subject to Actuation Constraints.

    NASA Technical Reports Server (NTRS)

    Swei, Sean Shan-Min; Nguyen, Nhan

    2014-01-01

    This paper considers the control of coupled aeroelastic aircraft model which is configured with Variable Camber Continuous Trailing Edge Flap (VCCTEF) system. The relative deflection between two adjacent flaps is constrained and this actuation constraint is accounted for when designing an effective control law for suppressing the wing vibration. A simple tuned-mass damper mechanism with two attached masses is used as an example to demonstrate the effectiveness of vibration suppression with confined motion of tuned masses. In this paper, a dynamic inversion based pseudo-control hedging (PCH) and bounded control approach is investigated, and for illustration, it is applied to the NASA Generic Transport Model (GTM) configured with VCCTEF system.

  17. Aeroelastic Analysis of a Distributed Electric Propulsion Wing

    NASA Technical Reports Server (NTRS)

    Massey, Steven J.; Stanford, Bret K.; Wieseman, Carol D.; Heeg, Jennifer

    2017-01-01

    An aeroelastic analysis of a prototype distributed electric propulsion wing is presented. Results using MSC Nastran (Registered Trademark) doublet lattice aerodynamics are compared to those based on FUN3D Reynolds Averaged Navier- Stokes aerodynamics. Four levels of grid refinement were examined for the FUN3D solutions and solutions were seen to be well converged. It was found that no oscillatory instability existed, only that of divergence, which occurred in the first bending mode at a dynamic pressure of over three times the flutter clearance condition.

  18. Determining XV-15 aeroelastic modes from flight data with frequency-domain methods

    NASA Technical Reports Server (NTRS)

    Acree, C. W., Jr.; Tischler, Mark B.

    1993-01-01

    The XV-15 tilt-rotor wing has six major aeroelastic modes that are close in frequency. To precisely excite individual modes during flight test, dual flaperon exciters with automatic frequency-sweep controls were installed. The resulting structural data were analyzed in the frequency domain (Fourier transformed). All spectral data were computed using chirp z-transforms. Modal frequencies and damping were determined by fitting curves to frequency-response magnitude and phase data. The results given in this report are for the XV-15 with its original metal rotor blades. Also, frequency and damping values are compared with theoretical predictions made using two different programs, CAMRAD and ASAP. The frequency-domain data-analysis method proved to be very reliable and adequate for tracking aeroelastic modes during flight-envelope expansion. This approach required less flight-test time and yielded mode estimations that were more repeatable, compared with the exponential-decay method previously used.

  19. A sequential, multi-complexity topology optimization process for aeroelastic wing structure design

    NASA Astrophysics Data System (ADS)

    Guiles, Mark A.

    The design of structures is motivated by the requirement that performance goals must be met at the lowest possible cost. In the realm of aircraft design, the least-weight structure typically leads to the lowest cost vehicle. Therefore, the goal becomes that of supporting all flight loads at the minimum achievable weight. This study outlines a method to identify the optimal layout or topology of a wing structure that minimizes the wing's weight under multiple loads, subject to strength and aeroelastic constraints. The procedure was developed with the goal of using available, well-defined tools for structural sizing optimization to simplify the layout selection process. This approach uses a sequence of sizing optimization problems to identify and remove non-essential elements from an overpopulated structure. The optimization and deletion processes produce a series of improving feasible topologies for the set of flight loads imposed on the wing. These candidate structures are compared and the least-weight design is chosen as the optimum. The procedure was first applied to a plane truss problem and was able to reproduce the well-established Michell truss solution, providing validation of the approach. Then, the process was applied to wing models representing several different types of aircraft to illustrate its applicability across a wide range of wing design problems.

  20. Analysis of Limit Cycle Oscillation Data from the Aeroelastic Test of the SUGAR Truss-Braced Wing Model

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.; Funk, Christie; Scott, Robert C.

    2015-01-01

    Research focus in recent years has been given to the design of aircraft that provide significant reductions in emissions, noise and fuel usage. Increases in fuel efficiency have also generally been attended by overall increased wing flexibility. The truss-braced wing (TBW) configuration has been forwarded as one that increases fuel efficiency. The Boeing company recently tested the Subsonic Ultra Green Aircraft Research (SUGAR) Truss-Braced Wing (TBW) wind-tunnel model in the NASA Langley Research Center Transonic Dynamics Tunnel (TDT). This test resulted in a wealth of accelerometer data. Other publications have presented details of the construction of that model, the test itself, and a few of the results of the test. This paper aims to provide a much more detailed look at what the accelerometer data says about the onset of aeroelastic instability, usually known as flutter onset. Every flight vehicle has a location in the flight envelope of flutter onset, and the TBW vehicle is not different. For the TBW model test, the flutter onset generally occurred at the conditions that the Boeing company analysis said it should. What was not known until the test is that, over a large area of the Mach number dynamic pressure map, the model displayed wing/engine nacelle aeroelastic limit cycle oscillation (LCO). This paper dissects that LCO data in order to provide additional insights into the aeroelastic behavior of the model.

  1. Real-Time Adaptive Least-Squares Drag Minimization for Performance Adaptive Aeroelastic Wing

    NASA Technical Reports Server (NTRS)

    Ferrier, Yvonne L.; Nguyen, Nhan T.; Ting, Eric

    2016-01-01

    This paper contains a simulation study of a real-time adaptive least-squares drag minimization algorithm for an aeroelastic model of a flexible wing aircraft. The aircraft model is based on the NASA Generic Transport Model (GTM). The wing structures incorporate a novel aerodynamic control surface known as the Variable Camber Continuous Trailing Edge Flap (VCCTEF). The drag minimization algorithm uses the Newton-Raphson method to find the optimal VCCTEF deflections for minimum drag in the context of an altitude-hold flight control mode at cruise conditions. The aerodynamic coefficient parameters used in this optimization method are identified in real-time using Recursive Least Squares (RLS). The results demonstrate the potential of the VCCTEF to improve aerodynamic efficiency for drag minimization for transport aircraft.

  2. Sensitivity Analysis of the Static Aeroelastic Response of a Wing

    NASA Technical Reports Server (NTRS)

    Eldred, Lloyd B.

    1993-01-01

    A technique to obtain the sensitivity of the static aeroelastic response of a three dimensional wing model is designed and implemented. The formulation is quite general and accepts any aerodynamic and structural analysis capability. A program to combine the discipline level, or local, sensitivities into global sensitivity derivatives is developed. A variety of representations of the wing pressure field are developed and tested to determine the most accurate and efficient scheme for representing the field outside of the aerodynamic code. Chebyshev polynomials are used to globally fit the pressure field. This approach had some difficulties in representing local variations in the field, so a variety of local interpolation polynomial pressure representations are also implemented. These panel based representations use a constant pressure value, a bilinearly interpolated value. or a biquadraticallv interpolated value. The interpolation polynomial approaches do an excellent job of reducing the numerical problems of the global approach for comparable computational effort. Regardless of the pressure representation used. sensitivity and response results with excellent accuracy have been produced for large integrated quantities such as wing tip deflection and trim angle of attack. The sensitivities of such things as individual generalized displacements have been found with fair accuracy. In general, accuracy is found to be proportional to the relative size of the derivatives to the quantity itself.

  3. Automatic aeroelastic devices in the wings of a steppe eagle Aquila nipalensis.

    PubMed

    Carruthers, Anna C; Thomas, Adrian L R; Taylor, Graham K

    2007-12-01

    Here we analyse aeroelastic devices in the wings of a steppe eagle Aquila nipalensis during manoeuvres. Chaotic deflections of the upperwing coverts observed using video cameras carried by the bird (50 frames s(-1)) indicate trailing-edge separation but attached flow near the leading edge during flapping and gust response, and completely stalled flows upon landing. The underwing coverts deflect automatically along the leading edge at high angle of attack. We use high-speed digital video (500 frames s(-1)) to analyse these deflections in greater detail during perching sequences indoors and outdoors. Outdoor perching sequences usually follow a stereotyped three-phase sequence comprising a glide, pitch-up manoeuvre and deep stall. During deep stall, the spread-eagled bird has aerodynamics reminiscent of a cross-parachute. Deployment of the underwing coverts is closely phased with wing sweeping during the pitch-up manoeuvre, and is accompanied by alula protraction. Surprisingly, active alula protraction is preceded by passive peeling from its tip. Indoor flights follow a stereotyped flapping perching sequence, with deployment of the underwing coverts closely phased with alula protraction and the end of the downstroke. We propose that the underwing coverts operate as an automatic high-lift device, analogous to a Kruger flap. We suggest that the alula operates as a strake, promoting formation of a leading-edge vortex on the swept hand-wing when the arm-wing is completely stalled, and hypothesise that its active protraction is stimulated by its initial passive deflection. These aeroelastic devices appear to be used for flow control to enhance unsteady manoeuvres, and may also provide sensory feedback.

  4. Aeroservoelastic Model Validation and Test Data Analysis of the F/A-18 Active Aeroelastic Wing

    NASA Technical Reports Server (NTRS)

    Brenner, Martin J.; Prazenica, Richard J.

    2003-01-01

    Model validation and flight test data analysis require careful consideration of the effects of uncertainty, noise, and nonlinearity. Uncertainty prevails in the data analysis techniques and results in a composite model uncertainty from unmodeled dynamics, assumptions and mechanics of the estimation procedures, noise, and nonlinearity. A fundamental requirement for reliable and robust model development is an attempt to account for each of these sources of error, in particular, for model validation, robust stability prediction, and flight control system development. This paper is concerned with data processing procedures for uncertainty reduction in model validation for stability estimation and nonlinear identification. F/A-18 Active Aeroelastic Wing (AAW) aircraft data is used to demonstrate signal representation effects on uncertain model development, stability estimation, and nonlinear identification. Data is decomposed using adaptive orthonormal best-basis and wavelet-basis signal decompositions for signal denoising into linear and nonlinear identification algorithms. Nonlinear identification from a wavelet-based Volterra kernel procedure is used to extract nonlinear dynamics from aeroelastic responses, and to assist model development and uncertainty reduction for model validation and stability prediction by removing a class of nonlinearity from the uncertainty.

  5. Trim and Structural Optimization of Subsonic Transport Wings Using Nonconventional Aeroelastic Tailoring

    NASA Technical Reports Server (NTRS)

    Stanford, Bret K.; Jutte, Christine V.

    2014-01-01

    Several minimum-mass aeroelastic optimization problems are solved to evaluate the effectiveness of a variety of novel tailoring schemes for subsonic transport wings. Aeroelastic strength and panel buckling constraints are imposed across a variety of trimmed maneuver loads. Tailoring with metallic thickness variations, functionally graded materials, composite laminates, tow steering, and distributed trailing edge control effectors are all found to provide reductions in structural wing mass with varying degrees of success. The question as to whether this wing mass reduction will offset the increased manufacturing cost is left unresolved for each case.

  6. Nonlinear aeroelastic analysis, flight dynamics, and control of a complete aircraft

    NASA Astrophysics Data System (ADS)

    Patil, Mayuresh Jayawant

    The focus of this research was to analyze a high-aspect-ratio wing aircraft flying at low subsonic speeds. Such aircraft are designed for high-altitude, long-endurance missions. Due to the high flexibility and associated wing deformation, accurate prediction of aircraft response requires use of nonlinear theories. Also strong interactions between flight dynamics and aeroelasticity are expected. To analyze such aircraft one needs to have an analysis tool which includes the various couplings and interactions. A theoretical basis has been established for a consistent analysis which takes into account, (i) material anisotropy, (ii) geometrical nonlinearities of the structure, (iii) rigid-body motions, (iv) unsteady flow behavior, and (v) dynamic stall. The airplane structure is modeled as a set of rigidly attached beams. Each of the beams is modeled using the geometrically exact mixed variational formulation, thus taking into account geometrical nonlinearities arising due to large displacements and rotations. The cross-sectional stiffnesses are obtained using an asymptotically exact analysis, which can model arbitrary cross sections and material properties. An aerodynamic model, consisting of a unified lift model, a consistent combination of finite-state inflow model and a modified ONERA dynamic stall model, is coupled to the structural system to determine the equations of motion. The results obtained indicate the necessity of including nonlinear effects in aeroelastic analysis. Structural geometric nonlinearities result in drastic changes in aeroelastic characteristics, especially in case of high-aspect-ratio wings. The nonlinear stall effect is the dominant factor in limiting the amplitude of oscillation for most wings. The limit cycle oscillation (LCO) phenomenon is also investigated. Post-flutter and pre-flutter LCOs are possible depending on the disturbance mode and amplitude. Finally, static output feedback (SOF) controllers are designed for flutter suppression

  7. Aeroelastic Tailoring of Transport Aircraft Wings: State-of-the-Art and Potential Enabling Technologies

    NASA Technical Reports Server (NTRS)

    Jutte, Christine; Stanford, Bret K.

    2014-01-01

    This paper provides a brief overview of the state-of-the-art for aeroelastic tailoring of subsonic transport aircraft and offers additional resources on related research efforts. Emphasis is placed on aircraft having straight or aft swept wings. The literature covers computational synthesis tools developed for aeroelastic tailoring and numerous design studies focused on discovering new methods for passive aeroelastic control. Several new structural and material technologies are presented as potential enablers of aeroelastic tailoring, including selectively reinforced materials, functionally graded materials, fiber tow steered composite laminates, and various nonconventional structural designs. In addition, smart materials and structures whose properties or configurations change in response to external stimuli are presented as potential active approaches to aeroelastic tailoring.

  8. Static aeroelastic analysis of wings using Euler/Navier-Stokes equations coupled with improved wing-box finite element structures

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.; MacMurdy, Dale E.; Kapania, Rakesh K.

    1994-01-01

    Strong interactions between flow about an aircraft wing and the wing structure can result in aeroelastic phenomena which significantly impact aircraft performance. Time-accurate methods for solving the unsteady Navier-Stokes equations have matured to the point where reliable results can be obtained with reasonable computational costs for complex non-linear flows with shock waves, vortices and separations. The ability to combine such a flow solver with a general finite element structural model is key to an aeroelastic analysis in these flows. Earlier work involved time-accurate integration of modal structural models based on plate elements. A finite element model was developed to handle three-dimensional wing boxes, and incorporated into the flow solver without the need for modal analysis. Static condensation is performed on the structural model to reduce the structural degrees of freedom for the aeroelastic analysis. Direct incorporation of the finite element wing-box structural model with the flow solver requires finding adequate methods for transferring aerodynamic pressures to the structural grid and returning deflections to the aerodynamic grid. Several schemes were explored for handling the grid-to-grid transfer of information. The complex, built-up nature of the wing-box complicated this transfer. Aeroelastic calculations for a sample wing in transonic flow comparing various simple transfer schemes are presented and discussed.

  9. Aeroelastic analysis of wings using the Euler equations with a deforming mesh

    NASA Technical Reports Server (NTRS)

    Robinson, Brian A.; Batina, John T.; Yang, Henry T. Y.

    1990-01-01

    Modifications to the CFL3D three dimensional unsteady Euler/Navier-Stokes code for the aeroelastic analysis of wings are described. The modifications involve including a deforming mesh capability which can move the mesh to continuously conform to the instantaneous shape of the aeroelastically deforming wing, and including the structural equations of motion for their simultaneous time-integration with the governing flow equations. Calculations were performed using the Euler equations to verify the modifications to the code and as a first step toward aeroelastic analysis using the Navier-Stokes equations. Results are presented for the NACA 0012 airfoil and a 45 deg sweptback wing to demonstrate applications of CFL3D for generalized force computations and aeroelastic analysis. Comparisons are made with published Euler results for the NACA 0012 airfoil and with experimental flutter data for the 45 deg sweptback wing to assess the accuracy of the present capability. These comparisons show good agreement and, thus, the CFL3D code may be used with confidence for aeroelastic analysis of wings.

  10. Aeroelastic analysis of wings using the Euler equations with a deforming mesh

    NASA Technical Reports Server (NTRS)

    Robinson, Brian A.; Batina, John T.; Yang, Henry T. Y.

    1990-01-01

    Modifications to the CFL3D three-dimensional unsteady Euler/Navier-Stokes code for the aeroelastic analysis of wings are described. The modifications involve including a deforming mesh capability which can move the mesh to continuously conform to the instantaneous shape of the aeroelastically deforming wing, and including the structural equations of motion for their simultaneous time-integration with the governing flow equations. Calculations were performed using the Euler equations to verify the modifications to the code and as a first-step toward aeroelastic analysis using the Navier-Stokes equations. Results are presented for the NACA 0012 airfoil and a 45 deg sweptback wing to demonstrate applications of CFL3D for generalized force computations and aeroelastic analysis. Comparisons are made with published Euler results for the NACA 0012 airfoil and with experimental flutter data for the 45 deg sweptback wing to assess the accuracy of the present capability. These comparisons show good agreement and, thus, the CFL3D code may be used with confidence for aeroelastic analysis of wings. The paper describes the modifications that were made to the code and presents results and comparisons which assess the capability.

  11. Final design and fabrication of an active control system for flutter suppression on a supercritical aeroelastic research wing

    NASA Technical Reports Server (NTRS)

    Hodges, G. E.; Mcgehee, C. R.

    1981-01-01

    The final design and hardware fabrication was completed for an active control system capable of the required flutter suppression, compatible with and ready for installation in the NASA aeroelastic research wing number 1 (ARW-1) on Firebee II drone flight test vehicle. The flutter suppression system uses vertical acceleration at win buttock line 1.930 (76), with fuselage vertical and roll accelerations subtracted out, to drive wing outboard aileron control surfaces through appropriate symmetric and antisymmetric shaping filters. The goal of providing an increase of 20 percent above the unaugmented vehicle flutter velocity but below the maximum operating condition at Mach 0.98 is exceeded by the final flutter suppression system. Results indicate that the flutter suppression system mechanical and electronic components are ready for installation on the DAST ARW-1 wing and BQM-34E/F drone fuselage.

  12. Static Aeroelastic Scaling and Analysis of a Sub-Scale Flexible Wing Wind Tunnel Model

    NASA Technical Reports Server (NTRS)

    Ting, Eric; Lebofsky, Sonia; Nguyen, Nhan; Trinh, Khanh

    2014-01-01

    This paper presents an approach to the development of a scaled wind tunnel model for static aeroelastic similarity with a full-scale wing model. The full-scale aircraft model is based on the NASA Generic Transport Model (GTM) with flexible wing structures referred to as the Elastically Shaped Aircraft Concept (ESAC). The baseline stiffness of the ESAC wing represents a conventionally stiff wing model. Static aeroelastic scaling is conducted on the stiff wing configuration to develop the wind tunnel model, but additional tailoring is also conducted such that the wind tunnel model achieves a 10% wing tip deflection at the wind tunnel test condition. An aeroelastic scaling procedure and analysis is conducted, and a sub-scale flexible wind tunnel model based on the full-scale's undeformed jig-shape is developed. Optimization of the flexible wind tunnel model's undeflected twist along the span, or pre-twist or wash-out, is then conducted for the design test condition. The resulting wind tunnel model is an aeroelastic model designed for the wind tunnel test condition.

  13. Real-Time Frequency Response Estimation Using Joined-Wing SensorCraft Aeroelastic Wind-Tunnel Data

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A; Heeg, Jennifer; Morelli, Eugene A

    2012-01-01

    A new method is presented for estimating frequency responses and their uncertainties from wind-tunnel data in real time. The method uses orthogonal phase-optimized multi- sine excitation inputs and a recursive Fourier transform with a least-squares estimator. The method was first demonstrated with an F-16 nonlinear flight simulation and results showed that accurate short period frequency responses were obtained within 10 seconds. The method was then applied to wind-tunnel data from a previous aeroelastic test of the Joined- Wing SensorCraft. Frequency responses describing bending strains from simultaneous control surface excitations were estimated in a time-efficient manner.

  14. Charts and approximate formulas for the estimation of aeroelastic effects of the lateral control of swept and unswept wings

    NASA Technical Reports Server (NTRS)

    Foss, Kenneth A; Diederich, Franklin W

    1953-01-01

    Charts and approximate formulas are presented for the estimation of static aeroelastic effects on the spanwise lift distribution, rolling-moment coefficient, and rate of roll due to the deflection of ailerons on swept and unswept wings at subsonic and supersonic speeds. Some design considerations brought out by the results of this report are discussed. This report treats the lateral-control case in a manner similar to that employed in NACA Report 1140 for the symmetric-flight case, and is intended to be used in conjunction with NACA Report 1140 and the charts and formulas presented therein.

  15. An analytical model and scaling of chordwise flexible flapping wings in forward flight.

    PubMed

    Kodali, Deepa; Kang, Chang-Kwon

    2016-12-13

    Aerodynamic performance of biological flight characterized by the fluid structure interaction of a flapping wing and the surrounding fluid is affected by the wing flexibility. One of the main challenges to predict aerodynamic forces is that the wing shape and motion are a priori unknown. In this study, we derive an analytical fluid-structure interaction model for a chordwise flexible flapping two-dimensional airfoil in forward flight. A plunge motion is imposed on the rigid leading-edge (LE) of teardrop shape and the flexible tail dynamically deforms. The resulting unsteady aeroelasticity is modeled with the Euler-Bernoulli-Theodorsen equation under a small deformation assumption. The two-way coupling is realized by considering the trailing-edge deformation relative to the LE as passive pitch, affecting the unsteady aerodynamics. The resulting wing deformation and the aerodynamic performance including lift and thrust agree well with high-fidelity numerical results. Under the dynamic balance, the aeroelastic stiffness decreases, whereas the aeroelastic stiffness increases with the reduced frequency. A novel aeroelastic frequency ratio is derived, which scales with the wing deformation, lift, and thrust. Finally, the dynamic similarity between flapping in water and air is established.

  16. Performance Analysis of the Flapping Wing Propulsion Based on a New Experimentally Validated Aeroelastic Model

    NASA Astrophysics Data System (ADS)

    Pourtakdoust, Seid H.; Aliabadi, Saeed Karimain

    Flapping micro air vehicle (FMAV) is considered to exhibit much better performance at low speeds and small sizes compared to fixed-wing MAVs. To maximize the potential and capabilities of FMAVs also to produce adequate design implications, a new aeroelastic model of a typical flexible FMAV is being developed utilizing Euler-Bernoulli torsion beam and quasi steady aerodynamic model. The new model accounts for all natural existing complex interactions between the mass, inertia, elastic properties, aerodynamic loading, flapping amplitude and frequency of the FMAV as well as the effects of several geometric and design parameters. To validate the proposed theoretical model, a typical FMAV as well as instrumented test stand for the online measurement of forces, flapping angle and power consumption have been constructed. The experimental results are initially utilized to validate the flight dynamic model, and several appropriate conclusions are drawn. The model is subsequently used to demonstrate the flapping propulsion characteristics of the FMAV via simulation. Using dimensionless parameters, a set of new generalized curves have been deduced. The results indicate that by proper adjustment of the wing stiffness parameter as a function of the reduced frequency, the FMAV will attain its optimum propulsive efficiency. This fact raises additional new ideas for further research in this area by utilizing intelligent variable stiffness materials and/or or active morphing technology for the sustained, high-performance flight of FMAVs. The generalized model can also be used to conduct a performance and stability analysis of FMAVs and to design and optimize flapping-wing structures.

  17. A numerical investigation of nonlinear aeroelastic effects on flexible high aspect ratio wings

    NASA Astrophysics Data System (ADS)

    Garcia, Joseph Avila

    2002-01-01

    A nonlinear aeroelastic analysis that couples a nonlinear structural model with an Euler/Navier-Stokes flow solver is developed for flexible high aspect ratio wings. To model the nonlinear structural characteristics of flexible high aspect ratio wings, a two-dimensional geometric nonlinear methodology, based on a 6 degree-of-freedom (DOF) beam finite element, is extended to three dimensions based on a 12 DOF beam finite element. The three-dimensional analysis is developed in order to capture the nonlinear torsion-bending coupling, which is not accounted for by the two-dimensional nonlinear methodology. Validation of the three-dimensional nonlinear structural approach against experimental data shows that the approach accurately predicts the geometric nonlinear bending and torsion due to bending for configurations of general interest. Torsion is slightly overpredicted in extreme cases and higher order modeling is then required. The three-dimensional nonlinear beam model is then coupled with an Euler/Navier-Stokes computational fluid dynamics (CFD) analysis. Solving the equations numerically for the two nonlinear systems results in an increase in computational time and cost needed to perform the aeroelastic analysis. To improve the computational efficiency of the nonlinear aeroelastic analysis, the nonlinear structural approach uses a second-order accurate predictor-corrector methodology to solve for the displacements. Static aeroelastic results are presented for an unswept and swept high aspect ratio wing in the transonic flow regime, using the developed nonlinear aeroelastic methodology. Unswept wing results show a reversal in twist due to the nonlinear torsion-bending coupling effects. Specifically, the torsional moments due to drag become large enough to cause the wing twist rotations to washin the wing tips, while the linear results show a washout twist rotation. The nonlinear twist results are attributed to the large bending displacements coupled with the large

  18. The Wing-Body Aeroelastic Analyses Using the Inverse Design Method

    NASA Astrophysics Data System (ADS)

    Lee, Seung Jun; Im, Dong-Kyun; Lee, In; Kwon, Jang-Hyuk

    Flutter phenomenon is one of the most dangerous problems in aeroelasticity. When it occurs, the aircraft structure can fail in a few second. In recent aeroelastic research, computational fluid dynamics (CFD) techniques become important means to predict the aeroelastic unstable responses accurately. Among various flow equations like Navier-Stokes, Euler, full potential and so forth, the transonic small disturbance (TSD) theory is widely recognized as one of the most efficient theories. However, the small disturbance assumption limits the applicable range of the TSD theory to the thin wings. For a missile which usually has small aspect ratio wings, the influence of body aerodynamics on the wing surface may be significant. Thus, the flutter stability including the body effect should be verified. In this research an inverse design method is used to complement the aerodynamic deficiency derived from the fuselage. MGM (modified Garabedian-McFadden) inverse design method is used to optimize the aerodynamic field of a full aircraft model. Furthermore, the present TSD aeroelastic analyses do not require the grid regeneration process. The MGM inverse design method converges faster than other conventional aerodynamic theories. Consequently, the inverse designed aeroelastic analyses show that the flutter stability has been lowered by the body effect.

  19. Aeroelastic Response of Nonlinear Wing Section by Functional Series Technique

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Marzocca, Piergiovanni

    2001-01-01

    This paper addresses the problem of the determination of the subcritical aeroelastic response and flutter instability of nonlinear two-dimensional lifting surfaces in an incompressible flow-field via indicial functions and Volterra series approach. The related aeroelastic governing equations are based upon the inclusion of structural and damping nonlinearities in plunging and pitching, of the linear unsteady aerodynamics and consideration of an arbitrary time-dependent external pressure pulse. Unsteady aeroelastic nonlinear kernels are determined, and based on these, frequency and time histories of the subcritical aeroelastic response are obtained, and in this context the influence of the considered nonlinearities is emphasized. Conclusions and results displaying the implications of the considered effects are supplied.

  20. Aeroelastic Response of Nonlinear Wing Section By Functional Series Technique

    NASA Technical Reports Server (NTRS)

    Marzocca, Piergiovanni; Librescu, Liviu; Silva, Walter A.

    2000-01-01

    This paper addresses the problem of the determination of the subcritical aeroelastic response and flutter instability of nonlinear two-dimensional lifting surfaces in an incompressible flow-field via indicial functions and Volterra series approach. The related aeroelastic governing equations are based upon the inclusion of structural and damping nonlinearities in plunging and pitching, of the linear unsteady aerodynamics and consideration of an arbitrary time-dependent external pressure pulse. Unsteady aeroelastic nonlinear kernels are determined, and based on these, frequency and time histories of the subcritical aeroelastic response are obtained, and in this context the influence of the considered nonlinearities is emphasized. Conclusions and results displaying the implications of the considered effects are supplied.

  1. KC-135 wing and winglet flight pressure distributions, loads, and wing deflection results with some wind tunnel comparisons

    NASA Technical Reports Server (NTRS)

    Montoya, L. C.; Jacobs, P.; Flechner, S.; Sims, R.

    1982-01-01

    A full-scale winglet flight test on a KC-135 airplane with an upper winglet was conducted. Data were taken at Mach numbers from 0.70 to 0.82 at altitudes from 34,000 feet to 39,000 feet at stabilized flight conditions for wing/winglet configurations of basic wing tip, 15/-4 deg, 15/-2 deg, and 0/-4 deg winglet cant/incidence. An analysis of selected pressure distribution and data showed that with the basic wing tip, the flight and wind tunnel wing pressure distribution data showed good agreement. With winglets installed, the effects on the wing pressure distribution were mainly near the tip. Also, the flight and wind tunnel winglet pressure distributions had some significant differences primarily due to the oilcanning in flight. However, in general, the agreement was good. For the winglet cant and incidence configuration presented, the incidence had the largest effect on the winglet pressure distributions. The incremental flight wing deflection data showed that the semispan wind tunnel model did a reasonable job of simulating the aeroelastic effects at the wing tip. The flight loads data showed good agreement with predictions at the design point and also substantiated the predicted structural penalty (load increase) of the 15 deg cant/-2 deg incidence winglet configuration.

  2. Aeroelastic Studies of a Rectangular Wing with a Hole: Correlation of Theory and Experiment

    NASA Technical Reports Server (NTRS)

    Conyers, Howard J.; Dowell, Earl H.; Hall, Kenneth C.

    2010-01-01

    Two rectangular wing models with a hole have been designed and tested in the Duke University wind tunnel to better understand the effects of damage. A rectangular hole is used to simulate damage. The wing with a hole is modeled structurally as a thin elastic plate using the finite element method. The unsteady aerodynamics of the plate-like wing with a hole is modeled using the doublet lattice method. The aeroelastic equations of motion are derived using Lagrange's equation. The flutter boundary is found using the V-g method. The hole's location effects the wing's mass, stiffness, aerodynamics and therefore the aeroelastic behavior. Linear theoretical models were shown to be capable of predicting the critical flutter velocity and frequency as verified by wind tunnel tests.

  3. A comparative study of serial and parallel aeroelastic computations of wings

    NASA Technical Reports Server (NTRS)

    Byun, Chansup; Guruswamy, Guru P.

    1994-01-01

    A procedure for computing the aeroelasticity of wings on parallel multiple-instruction, multiple-data (MIMD) computers is presented. In this procedure, fluids are modeled using Euler equations, and structures are modeled using modal or finite element equations. The procedure is designed in such a way that each discipline can be developed and maintained independently by using a domain decomposition approach. In the present parallel procedure, each computational domain is scalable. A parallel integration scheme is used to compute aeroelastic responses by solving fluid and structural equations concurrently. The computational efficiency issues of parallel integration of both fluid and structural equations are investigated in detail. This approach, which reduces the total computational time by a factor of almost 2, is demonstrated for a typical aeroelastic wing by using various numbers of processors on the Intel iPSC/860.

  4. Aeroelastic response of an aircraft wing with mounted engine subjected to time-dependent thrust

    NASA Astrophysics Data System (ADS)

    Mazidi, A.; Kalantari, H.; Fazelzadeh, S. A.

    2013-05-01

    In this paper, the aeroelastic response of a wing containing an engine subjected to different types of time-dependent thrust excitations is presented. In order to precisely consider the spanwise and chordwise locations of the engine and the time-dependent follower force in governing equations, derived through Lagrange's method, the generalized function theory is used. Unsteady aerodynamic lift and moment in the time domain are considered in terms of Wagner's function. Numerical simulations of the aeroelastic response to different types of time-dependent thrust excitation and comparisons with the previously published results are supplied. Effects of the engine mass and location and also the type of time-dependent thrust on the wing aeroelastic response are studied and pertinent conclusions are outlined.

  5. Aeroelastic instability of aircraft wings modelled as anisotropic composite thin-walled beams in incompressible flow

    NASA Astrophysics Data System (ADS)

    Qin, Z.; Librescu, L.

    2003-08-01

    An encompassing aeroelastic model developed toward investigating the influence of directionality property of advanced composite materials and non-classical effects such as transverse shear and warping restraint on the aeroelastic instability of composite aircraft wings is presented. Within the model developed herein, both divergence and flutter instabilities are simultaneously addressed. The aircraft wing is modelled as an anisotropic composite thin-walled beam featuring circumferentially asymmetric stiffness lay-up that generates, for the problem at hand, elastic coupling among plunging, pitching and transverse shear motions. The unsteady incompressible aerodynamics used here is based on the concept of indicial functions. Issues related to aeroelastic instability are discussed, the influence of warping restraint and transverse shear on the critical speed are evaluated, and pertinent conclusions are outlined.

  6. Applications of the unsteady vortex-lattice method in aircraft aeroelasticity and flight dynamics

    NASA Astrophysics Data System (ADS)

    Murua, Joseba; Palacios, Rafael; Graham, J. Michael R.

    2012-11-01

    The unsteady vortex-lattice method provides a medium-fidelity tool for the prediction of non-stationary aerodynamic loads in low-speed, but high-Reynolds-number, attached flow conditions. Despite a proven track record in applications where free-wake modelling is critical, other less-computationally expensive potential-flow models, such as the doublet-lattice method and strip theory, have long been favoured in fixed-wing aircraft aeroelasticity and flight dynamics. This paper presents how the unsteady vortex-lattice method can be implemented as an enhanced alternative to those techniques for diverse situations that arise in flexible-aircraft dynamics. A historical review of the methodology is included, with latest developments and practical applications. Different formulations of the aerodynamic equations are outlined, and they are integrated with a nonlinear beam model for the full description of the dynamics of a free-flying flexible vehicle. Nonlinear time-marching solutions capture large wing excursions and wake roll-up, and the linearisation of the equations lends itself to a seamless, monolithic state-space assembly, particularly convenient for stability analysis and flight control system design. The numerical studies emphasise scenarios where the unsteady vortex-lattice method can provide an advantage over other state-of-the-art approaches. Examples of this include unsteady aerodynamics in vehicles with coupled aeroelasticity and flight dynamics, and in lifting surfaces undergoing complex kinematics, large deformations, or in-plane motions. Geometric nonlinearities are shown to play an instrumental, and often counter-intuitive, role in the aircraft dynamics. The unsteady vortex-lattice method is unveiled as a remarkable tool that can successfully incorporate all those effects in the unsteady aerodynamics modelling.

  7. Internal Structural Design of the Common Research Model Wing Box for Aeroelastic Tailoring

    NASA Technical Reports Server (NTRS)

    Jutte, Christine V.; Stanford, Bret K.; Wieseman, Carol D.

    2015-01-01

    This work explores the use of alternative internal structural designs within a full-scale wing box structure for aeroelastic tailoring, with a focus on curvilinear spars, ribs, and stringers. The baseline wing model is a fully-populated, cantilevered wing box structure of the Common Research Model (CRM). Metrics of interest include the wing weight, the onset of dynamic flutter, and the static aeroelastic stresses. Twelve parametric studies alter the number of internal structural members along with their location, orientation, and curvature. Additional evaluation metrics are considered to identify design trends that lead to lighter-weight, aeroelastically stable wing designs. The best designs of the individual studies are compared and discussed, with a focus on weight reduction and flutter resistance. The largest weight reductions were obtained by removing the inner spar, and performance was maintained by shifting stringers forward and/or using curvilinear ribs: 5.6% weight reduction, a 13.9% improvement in flutter speed, but a 3.0% increase in stress levels. Flutter resistance was also maintained using straight-rotated ribs although the design had a 4.2% lower flutter speed than the curved ribs of similar weight and stress levels were higher. For some configurations, the differences between curved and straight ribs were smaller, which provides motivation for future optimization-based studies to fully exploit the trade-offs.

  8. Material and Thickness Grading for Aeroelastic Tailoring of the Common Research Model Wing Box

    NASA Technical Reports Server (NTRS)

    Stanford, Bret K.; Jutte, Christine V.

    2014-01-01

    This work quantifies the potential aeroelastic benefits of tailoring a full-scale wing box structure using tailored thickness distributions, material distributions, or both simultaneously. These tailoring schemes are considered for the wing skins, the spars, and the ribs. Material grading utilizes a spatially-continuous blend of two metals: Al and Al+SiC. Thicknesses and material fraction variables are specified at the 4 corners of the wing box, and a bilinear interpolation is used to compute these parameters for the interior of the planform. Pareto fronts detailing the conflict between static aeroelastic stresses and dynamic flutter boundaries are computed with a genetic algorithm. In some cases, a true material grading is found to be superior to a single-material structure.

  9. Bat flight with bad wings: is flight metabolism affected by damaged wings?

    PubMed

    Voigt, Christian C

    2013-04-15

    Infection of North American bats with the keratin-digesting fungus Geomyces destructans often results in holes and ruptures of wing membranes, yet it is unknown whether flight performance and metabolism of bats are altered by such injuries. I conducted flight experiments in a circular flight arena with Myotis albescens and M. nigricans individuals with an intact or ruptured trailing edge of one of the plagiopatagial membranes. In both species, individuals with damaged wings were lighter, had a higher aspect ratio (squared wing span divided by wing area) and an increased wing loading (weight divided by wing area) than conspecifics with intact wings. Bats with an asymmetric reduction of the wing area flew at similar speeds to conspecifics with intact wings but performed fewer flight manoeuvres. Individuals with damaged wings showed lower metabolic rates during flight than conspecifics with intact wings, even when controlling for body mass differences; the difference in mass-specific metabolic rate may be attributable to the lower number of flight manoeuvres (U-turns) by bats with damaged wings compared with conspecifics with intact wings. Possibly, bats compensated for an asymmetric reduction in wing area by lowering their body mass and avoiding flight manoeuvres. In conclusion, it may be that bats suffer from moderate wing damage not directly, by experiencing increased metabolic rate, but indirectly, by a reduced manoeuvrability and foraging success. This could impede a bat's ability to gain sufficient body mass before hibernation.

  10. Dynamic Aeroelastic Analysis of Wing/Store Configurations

    DTIC Science & Technology

    2005-12-01

    for his assistance with Gridgen as well as Jacob Freeman, John Staples, and Dr. Charles Denegri for providing F-16 data. I would also like to thank my...ure 3.5) was created using Gridgen . A calculation of the flutter point was then made using the aeroelastic program. A dynamic pressure was chosen

  11. Active Aeroelastic Wing Aerodynamic Model Development and Validation for a Modified F/A-18A Airplane

    NASA Technical Reports Server (NTRS)

    Cumming, Stephen B.; Diebler, Corey G.

    2005-01-01

    A new aerodynamic model has been developed and validated for a modified F/A-18A airplane used for the Active Aeroelastic Wing (AAW) research program. The goal of the program was to demonstrate the advantages of using the inherent flexibility of an aircraft to enhance its performance. The research airplane was an F/A-18A with wings modified to reduce stiffness and a new control system to increase control authority. There have been two flight phases. Data gathered from the first flight phase were used to create the new aerodynamic model. A maximum-likelihood output-error parameter estimation technique was used to obtain stability and control derivatives. The derivatives were incorporated into the National Aeronautics and Space Administration F-18 simulation, validated, and used to develop new AAW control laws. The second phase of flights was used to evaluate the handling qualities of the AAW airplane and the control law design process, and to further test the accuracy of the new model. The flight test envelope covered Mach numbers between 0.85 and 1.30 and dynamic pressures from 600 to 1250 pound-force per square foot. The results presented in this report demonstrate that a thorough parameter identification analysis can be used to improve upon models that were developed using other means. This report describes the parameter estimation technique used, details the validation techniques, discusses differences between previously existing F/A-18 models, and presents results from the second phase of research flights.

  12. Active Aeroelastic Tailoring of High-Aspect-Ratio Composite Wings

    DTIC Science & Technology

    2005-09-01

    34 - 26000 , ......... . . . ...... . . .... .. .......................... ... - - ----------- 21000 ... ........... ~0 50 LOAD... ISO 5: B s mission....f Figure 5: Basic mission profile 7 Figure 6: Baseline single-wing and joined-wing vehicles 3.1 Baseline vehicles Three sets

  13. Recent Applications of the Volterra Theory to Aeroelastic Phenomena

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Haji, Muhammad R; Prazenica, Richard J.

    2005-01-01

    The identification of nonlinear aeroelastic systems based on the Volterra theory of nonlinear systems is presented. Recent applications of the theory to problems in experimental aeroelasticity are reviewed. These results include the identification of aerodynamic impulse responses, the application of higher-order spectra (HOS) to wind-tunnel flutter data, and the identification of nonlinear aeroelastic phenomena from flight flutter test data of the Active Aeroelastic Wing (AAW) aircraft.

  14. Aeroelasticity of Axially Loaded Aerodynamic Structures for Truss-Braced Wing Aircraft

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Ting, Eric; Lebofsky, Sonia

    2015-01-01

    This paper presents an aeroelastic finite-element formulation for axially loaded aerodynamic structures. The presence of axial loading causes the bending and torsional sitffnesses to change. For aircraft with axially loaded structures such as the truss-braced wing aircraft, the aeroelastic behaviors of such structures are nonlinear and depend on the aerodynamic loading exerted on these structures. Under axial strain, a tensile force is created which can influence the stiffness of the overall aircraft structure. This tension stiffening is a geometric nonlinear effect that needs to be captured in aeroelastic analyses to better understand the behaviors of these types of aircraft structures. A frequency analysis of a rotating blade structure is performed to demonstrate the analytical method. A flutter analysis of a truss-braced wing aircraft is performed to analyze the effect of geometric nonlinear effect of tension stiffening on the flutter speed. The results show that the geometric nonlinear tension stiffening effect can have a significant impact on the flutter speed prediction. In general, increased wing loading results in an increase in the flutter speed. The study illustrates the importance of accounting for the geometric nonlinear tension stiffening effect in analyzing the truss-braced wing aircraft.

  15. Close-Range Photogrammetric Measurement of Static Deflections for an Aeroelastic Supercritical Wing

    NASA Technical Reports Server (NTRS)

    Byrdsong, Thomas A.; Adams, Richard R.; Sandford, Maynard C.

    1990-01-01

    Close range photogrammetric measurements were made for the lower wing surface of a full span aspect ratio 10.3 aeroelastic supercritical research wing. The measurements were made during wind tunnel tests for quasi-steady pressure distributions on the wing. The tests were conducted in the NASA Langley Transonic Dynamics Tunnel at Mach numbers up to 0.90 and dynamic pressures up to 300 pounds per square foot. Deflection data were obtained for 57 locations on the wing lower surface using dual non-metric cameras. Representative data are presented as graphical overview to show variations and trends of spar deflection with test variables. Comparative data are presented for photogrammetric and cathetometric results of measurements for the wing tip deflections. A tabulation of the basic measurements is presented in a supplement to this report.

  16. Steady pressure measurements on an Aeroelastic Research Wing (ARW-2)

    NASA Technical Reports Server (NTRS)

    Sandford, Maynard C.; Seidel, David A.; Eckstrom, Clinton V.

    1994-01-01

    Transonic steady and unsteady pressure tests have been conducted in the Langley transonic dynamics tunnel on a large elastic wing known as the DAST ARW-2. The wing has a supercritical airfoil, an aspect ratio of 10.3, a leading-edge sweep back angle of 28.8 degrees, and two inboard and one outboard trailing-edge control surfaces. Only the outboard control surface was deflected to generate steady and unsteady flow over the wing during this study. Only the steady surface pressure, control-surface hinge moment, wing-tip deflection, and wing-root bending moment measurements are presented. The results from this elastic wing test are in tabulated form to assist in calibrating advanced computational fluid dynamics (CFD) algorithms.

  17. Wing-Body Aeroelasticity Using Finite-Difference Fluid/Finite-Element Structural Equations on Parallel Computers

    NASA Technical Reports Server (NTRS)

    Byun, Chansup; Guruswamy, Guru P.

    1993-01-01

    This paper presents a procedure for computing the aeroelasticity of wing-body configurations on multiple-instruction, multiple-data (MIMD) parallel computers. In this procedure, fluids are modeled using Euler equations discretized by a finite difference method, and structures are modeled using finite element equations. The procedure is designed in such a way that each discipline can be developed and maintained independently by using a domain decomposition approach. A parallel integration scheme is used to compute aeroelastic responses by solving the coupled fluid and structural equations concurrently while keeping modularity of each discipline. The present procedure is validated by computing the aeroelastic response of a wing and comparing with experiment. Aeroelastic computations are illustrated for a High Speed Civil Transport type wing-body configuration.

  18. Effect of compressive force on aeroelastic stability of a strut-braced wing

    NASA Astrophysics Data System (ADS)

    Sulaeman, Erwin

    2002-01-01

    Recent investigations of a strut-braced wing (SBW) aircraft show that, at high positive load factors, a large tensile force in the strut leads to a considerable compressive axial force in the inner wing, resulting in a reduced bending stiffness and even buckling of the wing. Studying the influence of this compressive force on the structural response of SBW is thus of paramount importance in the early stage of SBW design. The purpose of the this research is to investigate the effect of compressive force on aeroelastic stability of the SBW using efficient structural finite element and aerodynamic lifting surface methods. A procedure is developed to generate wing stiffness distribution for detailed and simplified wing models and to include the compressive force effect in the SBW aeroelastic analysis. A sensitivity study is performed to generate response surface equations for the wing flutter speed as functions of several design variables. These aeroelastic procedures and response surface equations provide a valuable tool and trend data to study the unconventional nature of SBW. In order to estimate the effect of the compressive force, the inner part of the wing structure is modeled as a beam-column. A structural finite element method is developed based on an analytical stiffness matrix formulation of a non-uniform beam element with arbitrary polynomial variations in the cross section. By using this formulation, the number of elements to model the wing structure can be reduced without degrading the accuracy. The unsteady aerodynamic prediction is based on a discrete element lifting surface method. The present formulation improves the accuracy of existing lifting surface methods by implementing a more rigorous treatment on the aerodynamic kernel integration. The singularity of the kernel function is isolated by implementing an exact expansion series to solve an incomplete cylindrical function problem. A hybrid doublet lattice/doublet point scheme is devised to reduce

  19. Modeling Aircraft Wing Loads from Flight Data Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Allen, Michael J.; Dibley, Ryan P.

    2003-01-01

    Neural networks were used to model wing bending-moment loads, torsion loads, and control surface hinge-moments of the Active Aeroelastic Wing (AAW) aircraft. Accurate loads models are required for the development of control laws designed to increase roll performance through wing twist while not exceeding load limits. Inputs to the model include aircraft rates, accelerations, and control surface positions. Neural networks were chosen to model aircraft loads because they can account for uncharacterized nonlinear effects while retaining the capability to generalize. The accuracy of the neural network models was improved by first developing linear loads models to use as starting points for network training. Neural networks were then trained with flight data for rolls, loaded reversals, wind-up-turns, and individual control surface doublets for load excitation. Generalization was improved by using gain weighting and early stopping. Results are presented for neural network loads models of four wing loads and four control surface hinge moments at Mach 0.90 and an altitude of 15,000 ft. An average model prediction error reduction of 18.6 percent was calculated for the neural network models when compared to the linear models. This paper documents the input data conditioning, input parameter selection, structure, training, and validation of the neural network models.

  20. A review on non-linear aeroelasticity of high aspect-ratio wings

    NASA Astrophysics Data System (ADS)

    Afonso, Frederico; Vale, José; Oliveira, Éder; Lau, Fernando; Suleman, Afzal

    2017-02-01

    Current economic constraints and environmental regulations call for design of more efficient aircraft configurations. An observed trend in aircraft design to reduce the lift induced drag and improve fuel consumption and emissions is to increase the wing aspect-ratio. However, a slender wing is more flexible and subject to higher deflections under the same operating conditions. This effect may lead to changes in dynamic behaviour and in aeroelastic response, potentially resulting in instabilities. Therefore, it is important to take into account geometric non-linearities in the design of high aspect-ratio wings, as well as having accurate computational codes that couple the aerodynamic and structural models in the presence of non-linearities. Here, a review on the state-of-the-art on non-linear aeroelasticity of high aspect-ratio wings is presented. The methodologies employed to analyse high aspect-ratio wings are presented and their applications discussed. Important observations from the state-of-the-art studies are drawn and the current challenges in the field are identified.

  1. Enhanced flight characteristics by heterogeneous autorotating wings

    NASA Astrophysics Data System (ADS)

    Vincent, Lionel; Zheng, Min; Kanso, Eva

    2015-11-01

    We investigate experimentally the effect of mass distribution and flexibility on the descent motion of thin rectangular auto-rotating wings. We vary the wing thickness and material density under carefully controlled initial conditions. We focus in particular on the flight characteristics and how it affects the dispersion properties, namely, the flight duration, descent angle, and flight range. We found that altering the mass distribution along the auto-rotation axis generally leads to a diminution of aerodynamic characteristics, in agreement with previous studies. On the other hand, changing the mass distribution width-wise can lead to enhanced flight characteristics, from beneficial aerodynamic effects.

  2. Limit Cycle Oscillations (LCO) and Nonlinear Aeroelastic Wing Response.

    DTIC Science & Technology

    2007-11-02

    tpas jit Press, Cambridge, England, UK, 1955.search: NASA Lewis Research Center ( George Stetlo and Aparajil RAbramson, H. N. (Ed.), The Dynamic...Unsteady Flows About Airfoils, Cascades 𔃽 Dowell, E. H., Curtiss, H. C., Jr., Scanlan , R. H. and Sisto, F., A Modern and Wings," AIAA Journal. Vol. 32

  3. Active aeroelastic control aspects of an aircraft wing by using synthetic jet actuators: modeling, simulations, experiments

    NASA Astrophysics Data System (ADS)

    O'Donnell, K.; Schober, S.; Stolk, M.; Marzocca, P.; De Breuker, R.; Abdalla, M.; Nicolini, E.; Gürdal, Z.

    2007-04-01

    This paper discusses modeling, simulations and experimental aspects of active aeroelastic control on aircraft wings by using Synthetic Jet Actuators (SJAs). SJAs, a particular class of zero-net mass-flux actuators, have shown very promising results in numerous aeronautical applications, such as boundary layer control and delay of flow separation. A less recognized effect resulting from the SJAs is a momentum exchange that occurs with the flow, leading to a rearrangement of the streamlines around the airfoil modifying the aerodynamic loads. Discussions pertinent to the use of SJAs for flow and aeroelastic control and how these devices can be exploited for flutter suppression and for aerodynamic performances improvement are presented and conclusions are outlined.

  4. Parallel Nonlinear Aeroelastic Computation for Fighter Wings in the Transonic Region

    NASA Astrophysics Data System (ADS)

    Larsen, Bradley Robert

    In this dissertation, a parallel three-dimensional aeroelastic simulation is applied to current and next generation fighter aircraft wings. The computational model is a nonlinear fluid and structural mesh coupled using the Direct Eulerian-Langrangian method. This method attaches unique local coordinates to each node and connects the fluid mesh to the structure in such a way that a transformation preserved to the global coordinates. This allows the fluid and structure to be updated in the same time step and maintains spatial accuracy at their interface. The structural mesh is modeled using modified nonlinear von Karman finite elements and is discretized using the Galerkin finite element method. The fluid mesh also used the Galerkin finite element method to discretize the unsteady Euler equations. Computational results over a large range of Mach numbers and densities are presented for two candidate fighter wing models for transonic wing tunnel testing. The FX-35 is a trapezoidal wing based on the F-35A, and the F-Wing is a truncated delta wing similar to the F-16. Both wings exhibit a variety of flutter behaviors including strong bending-torsion flutter, limit-cycle oscillations, and essentially single degree-of-freedom responses.

  5. Modeling and analysis methodology for aeroelastically tailored chordwise deformable wings

    NASA Technical Reports Server (NTRS)

    Rehfield, Lawrence W.; Chang, Stephen; Zischka, Peter J.

    1992-01-01

    Structural concepts have been created which produce chordwise camber deformation that results in enhanced lift. A wing box can be tailored to utilize each of these with composites. In attempting to optimize the aerodynamic benefits, we have found there are two optimal designs that are of interest. There is a weight optimum which corresponds to the maximum lift per unit structural weight. There is also a lift optimum that corresponds to maximum absolute lift. New structural models, the basic deformation mechanisms that are utilized and typical analytical results are presented. It appears that lift enhancements of sufficient magnitude can be produced to render this type of wing tailoring of practical interest. Experiments and finite element correlations are performed which confirm the validity of the theoretical models utilized.

  6. Numerical Investigations of the Aerodynamics and the Aeroelastic Stability of Oscillating Annular Wings

    NASA Astrophysics Data System (ADS)

    Knipfer, A.

    1999-02-01

    The nacelles of modern aeroengines are constantly increasing in size. Thus, engine air-loads are becoming more powerful and their importance for the aeroelastic stability is becoming more significant. The principal goal of this study is to answer the question of how unsteady airloads vary while shifting to transonic Mach numbers. The investigations are carried out by applying a finite volume Euler method to a harmonically oscillating annular wing. The results show that transonic effects in the case of an annular wing are essentially weaker than in the case of an airfoil. The order of magnitude of the variations is around 10%. Possible consequences for the aeroelastic stability are examined with the example of an elastically mounted annular wing in transonic flow. The shifts of the stability curves also remain within a range of 10%. In addition, an actuator disk method, which is frequently used for the simulation of the fan jet, is expanded in such a way that unsteady flows can be treated. Some unsteady air-loads are strongly dependent on the pressure jump across the fan.

  7. Design of an Aeroelastic Composite Wing Wind Tunnel Model.

    DTIC Science & Technology

    1987-12-01

    140 J-1,NP SUMI-0.0 DO 130 K-I,NP 130 SUMI-SUMIEP(I,K)*EI3(K,J) 140 EE(I,J)- SUKI 150 CONTINUE DO 170 I-1,NP DO 160 J-1,NP 160 EE(I,J)-EE(I,J)*H(J)*(C...MUST PROVIDE THE INVERTED SYMMETRICAL AIC MATRIX [AIS] ’~*" c AND THE WING FLEXIBILITY MATRIX (S] DO 30 1l1,NP DO 20 J-l,NP SUKI -0.0 DO 10 Kml,NP 10

  8. Bat wing sensors support flight control

    PubMed Central

    Sterbing-D'Angelo, Susanne; Chadha, Mohit; Chiu, Chen; Falk, Ben; Xian, Wei; Barcelo, Janna; Zook, John M.; Moss, Cynthia F.

    2011-01-01

    Bats are the only mammals capable of powered flight, and they perform impressive aerial maneuvers like tight turns, hovering, and perching upside down. The bat wing contains five digits, and its specialized membrane is covered with stiff, microscopically small, domed hairs. We provide here unique empirical evidence that the tactile receptors associated with these hairs are involved in sensorimotor flight control by providing aerodynamic feedback. We found that neurons in bat primary somatosensory cortex respond with directional sensitivity to stimulation of the wing hairs with low-speed airflow. Wing hairs mostly preferred reversed airflow, which occurs under flight conditions when the airflow separates and vortices form. This finding suggests that the hairs act as an array of sensors to monitor flight speed and/or airflow conditions that indicate stall. Depilation of different functional regions of the bats’ wing membrane altered the flight behavior in obstacle avoidance tasks by reducing aerial maneuverability, as indicated by decreased turning angles and increased flight speed. PMID:21690408

  9. Loads calibrations of strain gage bridges on the DAST project Aeroelastic Research Wing (ARW-1)

    NASA Technical Reports Server (NTRS)

    Eckstrom, C. V.

    1980-01-01

    The details of and results from the procedure used to calibrate strain gage bridges for measurement of wing structural loads for the DAST project ARW-1 wing are presented. Results are in the form of loads equations and comparison of computed loads vs. actual loads for two simulated flight loading conditions.

  10. An Experimental Evaluation of Generalized Predictive Control for Tiltrotor Aeroelastic Stability Augmentation in Airplane Mode of Flight

    NASA Technical Reports Server (NTRS)

    Kvaternik, Raymond G.; Piatak, David J.; Nixon, Mark W.; Langston, Chester W.; Singleton, Jeffrey D.; Bennett, Richard L.; Brown, Ross K.

    2001-01-01

    The results of a joint NASA/Army/Bell Helicopter Textron wind-tunnel test to assess the potential of Generalized Predictive Control (GPC) for actively controlling the swashplate of tiltrotor aircraft to enhance aeroelastic stability in the airplane mode of flight are presented. GPC is an adaptive time-domain predictive control method that uses a linear difference equation to describe the input-output relationship of the system and to design the controller. The test was conducted in the Langley Transonic Dynamics Tunnel using an unpowered 1/5-scale semispan aeroelastic model of the V-22 that was modified to incorporate a GPC-based multi-input multi-output control algorithm to individually control each of the three swashplate actuators. Wing responses were used for feedback. The GPC-based control system was highly effective in increasing the stability of the critical wing mode for all of the conditions tested, without measurable degradation of the damping in the other modes. The algorithm was also robust with respect to its performance in adjusting to rapid changes in both the rotor speed and the tunnel airspeed.

  11. Reduced order modeling of aeroelasticity analysis for a wing under static deformation effect

    NASA Astrophysics Data System (ADS)

    Tamayama, Masato

    2017-01-01

    The full order analysis of aeroelasticity system, which solves the Euler or Navier Stokes equations in a time domain, is usually expensive in a sense of time consumed. To improve this situation, the Reduced Order Modeling (ROM) method has been developed. If there is a pressure difference between upper and lower surfaces of a wing, the aerodynamic forces loaded on the wing cause static deformations. The ROM, therefore, should have a capability to simulate wing vibrations under the static deformation effect. To include this effect, sequential processing of ROMs for two times is proposed in this study. The 1st step ROM predicts the flutter condition for the rigid wing. The 2nd step ROM predicts the flutter condition for the statically deformed wing under the aerodynamic load caused by the 1st step ROM flutter dynamic pressure. The accuracy of this method is verified by comparing the results with those predicted only by the full order analysis. In this study, the identification of aerodynamic forces is conducted by the Eigensystem Realization Algorithm (ERA). In the ERA, reduction of singular value matrix influences the accuracy of identification. Two methods are introduced to reduce the singular value matrix, and the flutter conditions acquired by these two methods are compared each other.

  12. Wings: Women Entrepreneurs Take Flight.

    ERIC Educational Resources Information Center

    Baldwin, Fred D.

    1997-01-01

    Women's Initiative Networking Groups (WINGS) provides low- and moderate-income women in Appalachian Kentucky with training in business skills, contacts, and other resources they need to succeed as entrepreneurs. The women form informal networks to share business know-how and support for small business startup and operations. The program plans to…

  13. Use of a Viscous Flow Simulation Code for Static Aeroelastic Analysis of a Wing at High-Lift Conditions

    NASA Technical Reports Server (NTRS)

    Akaydin, H. Dogus; Moini-Yekta, Shayan; Housman, Jeffrey A.; Nguyen, Nhan

    2015-01-01

    In this paper, we present a static aeroelastic analysis of a wind tunnel test model of a wing in high-lift configuration using a viscous flow simulation code. The model wing was tailored to deform during the tests by amounts similar to a composite airliner wing in highlift conditions. This required use of a viscous flow analysis to predict the lift coefficient of the deformed wing accurately. We thus utilized an existing static aeroelastic analysis framework that involves an inviscid flow code (Cart3d) to predict the deformed shape of the wing, then utilized a viscous flow code (Overflow) to compute the aerodynamic loads on the deformed wing. This way, we reduced the cost of flow simulations needed for this analysis while still being able to predict the aerodynamic forces with reasonable accuracy. Our results suggest that the lift of the deformed wing may be higher or lower than that of the non-deformed wing, and the washout deformation of the wing is the key factor that changes the lift of the deformed wing in two distinct ways: while it decreases the lift at low to moderate angles of attack simply by lowering local angles of attack along the span, it increases the lift at high angles of attack by alleviating separation.

  14. An H-Infinity Approach to Control Synthesis with Load Minimization for the F/A-18 Active Aeroelastic Wing

    NASA Technical Reports Server (NTRS)

    Lind, Rick

    1999-01-01

    The F/A-18 Active Aeroelastic Wing research aircraft will demonstrate technologies related to aeroservoelastic effects such as wing twist and load minimization. This program presents several challenges for control design that are often not considered for traditional aircraft. This paper presents a control design based on H-infinity synthesis that simultaneously considers the multiple objectives associated with handling qualities, actuator limitations, and loads. A point design is presented to demonstrate a controller and the resulting closed-loop properties.

  15. Static Aeroelastic and Longitudinal Trim Model of Flexible Wing Aircraft Using Finite-Element Vortex-Lattice Coupled Solution

    NASA Technical Reports Server (NTRS)

    Ting, Eric; Nguyen, Nhan; Trinh, Khanh

    2014-01-01

    This paper presents a static aeroelastic model and longitudinal trim model for the analysis of a flexible wing transport aircraft. The static aeroelastic model is built using a structural model based on finite-element modeling and coupled to an aerodynamic model that uses vortex-lattice solution. An automatic geometry generation tool is used to close the loop between the structural and aerodynamic models. The aeroelastic model is extended for the development of a three degree-of-freedom longitudinal trim model for an aircraft with flexible wings. The resulting flexible aircraft longitudinal trim model is used to simultaneously compute the static aeroelastic shape for the aircraft model and the longitudinal state inputs to maintain an aircraft trim state. The framework is applied to an aircraft model based on the NASA Generic Transport Model (GTM) with wing structures allowed to flexibly deformed referred to as the Elastically Shaped Aircraft Concept (ESAC). The ESAC wing mass and stiffness properties are based on a baseline "stiff" values representative of current generation transport aircraft.

  16. Charts and approximate formulas for the estimation of aeroelastic effects on the loading of swept and unswept wings

    NASA Technical Reports Server (NTRS)

    Diederich, Franklin W; Foss, Kenneth A

    1953-01-01

    Charts and approximate formulas are presented for the estimation of aeroelastic effects on the spanwise lift distribution, lift-curve slope, aerodynamic center, and damping in roll of swept and unswept wings at subsonic and supersonic speeds. Some design considerations brought out by the results of this report are discussed.

  17. Experimental aeroelasticity history, status and future in brief

    NASA Technical Reports Server (NTRS)

    Ricketts, Rodney H.

    1990-01-01

    NASA conducts wind tunnel experiments to determine and understand the aeroelastic characteristics of new and advanced flight vehicles, including fixed-wing, rotary-wing and space-launch configurations. Review and assessments are made of the state-of-the-art in experimental aeroelasticity regarding available facilities, measurement techniques, and other means and devices useful in testing. In addition, some past experimental programs are described which assisted in the development of new technology, validated new analysis codes, or provided needed information for clearing flight envelopes of unwanted aeroelastic response. Finally, needs and requirements for advances and improvements in testing capabilities for future experimental research and development programs are described.

  18. Control Surface Interaction Effects of the Active Aeroelastic Wing Wind Tunnel Model

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer

    2006-01-01

    This paper presents results from testing the Active Aeroelastic Wing wind tunnel model in NASA Langley s Transonic Dynamics Tunnel. The wind tunnel test provided an opportunity to study aeroelastic system behavior under combined control surface deflections, testing for control surface interaction effects. Control surface interactions were observed in both static control surface actuation testing and dynamic control surface oscillation testing. The primary method of evaluating interactions was examination of the goodness of the linear superposition assumptions. Responses produced by independently actuating single control surfaces were combined and compared with those produced by simultaneously actuating and oscillating multiple control surfaces. Adjustments to the data were required to isolate the control surface influences. Using dynamic data, the task increases, as both the amplitude and phase have to be considered in the data corrections. The goodness of static linear superposition was examined and analysis of variance was used to evaluate significant factors influencing that goodness. The dynamic data showed interaction effects in both the aerodynamic measurements and the structural measurements.

  19. Flapping Wing Flight Dynamic Modeling

    DTIC Science & Technology

    2011-08-22

    Hummingbird [5]. This particular study focuses on the diculty of determining what models are most impor- tant to consider when trying to accurately...Projects Agency TTO Document, 1996. [5] Nano Hummingbird , Website, 2011. [6] Fry, S. N., Sayaman, R., and Dickinson, M. H., The Aerodynamics of Free...and Jategaonkar, R. V., Evolution of Flight Vehicle System Identication, Journal of Aircraft , Vol. 33, 1996, pp. 928. [40] Hedrick, T. L

  20. Effect of thrust on the aeroelastic instability of a composite swept wing with two engines in subsonic compressible flow

    NASA Astrophysics Data System (ADS)

    Firouz-Abadi, R. D.; Askarian, A. R.; Zarifian, P.

    2013-01-01

    This paper aims to investigate aeroelastic stability boundary of subsonic wings under the effect of thrust of two engines. The wing structure is modeled as a tapered composite box-beam. Moreover, an indicial function based model is used to calculate the unsteady lift and moment distribution along the wing span in subsonic compressible flow. The two jet engines mounted on the wing are modeled as concentrated masses and the effect of thrust of each engine is applied as a follower force. Using Hamilton's principle along with Galerkin's method, the governing equations of motion are derived, then the obtained equations are solved in frequency domain using the K-method and the aeroelastic instability conditions are determined. The flutter analysis results of four example wings are compared with the experimental and analytical results in the literature and good agreements are achieved which validate the present model. Furthermore, based on several case studies on a reference wing, some attempts are performed to analyze the effect of thrust on the stability margin of the wing and some conclusions are outlined.

  1. Multi-Objective Flight Control for Drag Minimization and Load Alleviation of High-Aspect Ratio Flexible Wing Aircraft

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Ting, Eric; Chaparro, Daniel; Drew, Michael; Swei, Sean

    2017-01-01

    As aircraft wings become much more flexible due to the use of light-weight composites material, adverse aerodynamics at off-design performance can result from changes in wing shapes due to aeroelastic deflections. Increased drag, hence increased fuel burn, is a potential consequence. Without means for aeroelastic compensation, the benefit of weight reduction from the use of light-weight material could be offset by less optimal aerodynamic performance at off-design flight conditions. Performance Adaptive Aeroelastic Wing (PAAW) technology can potentially address these technical challenges for future flexible wing transports. PAAW technology leverages multi-disciplinary solutions to maximize the aerodynamic performance payoff of future adaptive wing design, while addressing simultaneously operational constraints that can prevent the optimal aerodynamic performance from being realized. These operational constraints include reduced flutter margins, increased airframe responses to gust and maneuver loads, pilot handling qualities, and ride qualities. All of these constraints while seeking the optimal aerodynamic performance present themselves as a multi-objective flight control problem. The paper presents a multi-objective flight control approach based on a drag-cognizant optimal control method. A concept of virtual control, which was previously introduced, is implemented to address the pair-wise flap motion constraints imposed by the elastomer material. This method is shown to be able to satisfy the constraints. Real-time drag minimization control is considered to be an important consideration for PAAW technology. Drag minimization control has many technical challenges such as sensing and control. An initial outline of a real-time drag minimization control has already been developed and will be further investigated in the future. A simulation study of a multi-objective flight control for a flight path angle command with aeroelastic mode suppression and drag

  2. Aeroelastic stability consideration of supersonic flight vehicle using nonlinear aerodynamic response surfaces

    NASA Astrophysics Data System (ADS)

    Fathi Jegarkandi, M.; Nobari, A. S.; Sabzehparvar, M.; Haddadpour, H.

    2009-08-01

    Aeroelastic stability of a flexible supersonic flight vehicle is considered using nonlinear dynamics, nonlinear aerodynamics, and a linear structural model. Response surfaces including global multivariate orthogonal modeling functions are invoked to derive applied nonlinear aerodynamic coefficients. A modified Gram-Schmidt method is utilized to orthogonalize the produced polynomial multivariate functions, selected and ranked by predicted squared error metric. Local variation of angle-of-attack and side-slip angle is applied to the analytical model. Identification of nonlinear aerodynamic coefficients of the flight vehicle is conducted employing a CFD code and the required analytical model for simulation purposes is constructed. The method is used to determine the aeroelastic instability and response of a selected flight vehicle.

  3. Integrated Flight Mechanic and Aeroelastic Modelling and Control of a Flexible Aircraft Considering Multidimensional Gust Input

    DTIC Science & Technology

    2000-05-01

    INTEGRATED FLIGHT MECHANIC AND AEROELASTIC MODELLING AND CONTROL OF A FLEXIBLE AIRCRAFT CONSIDERING MULTIDIMENSIONAL GUST INPUT Patrick Teufel, Martin Hanel...the lateral separation distance have been developed by ’ = matrix of two dimensional spectrum function Eichenbaum 4 and are described by Bessel...Journal of Aircraft, Vol. 30, No. 5, Sept.-Oct. 1993 Relations to Risk Sensitivity, System & Control Letters 11, [4] Eichenbaum F.D., Evaluation of 3D

  4. Experimental Investigation of Aeroelastic Deformation of Slender Wings at Supersonic Speeds Using a Video Model Deformation Measurement Technique

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2013-01-01

    A video-based photogrammetric model deformation system was established as a dedicated optical measurement technique at supersonic speeds in the NASA Langley Research Center Unitary Plan Wind Tunnel. This system was used to measure the wing twist due to aerodynamic loads of two supersonic commercial transport airplane models with identical outer mold lines but different aeroelastic properties. One model featured wings with deflectable leading- and trailing-edge flaps and internal channels to accommodate static pressure tube instrumentation. The wings of the second model were of single-piece construction without flaps or internal channels. The testing was performed at Mach numbers from 1.6 to 2.7, unit Reynolds numbers of 1.0 million to 5.0 million, and angles of attack from -4 degrees to +10 degrees. The video model deformation system quantified the wing aeroelastic response to changes in the Mach number, Reynolds number concurrent with dynamic pressure, and angle of attack and effectively captured the differences in the wing twist characteristics between the two test articles.

  5. Status and future plans of the Drones for Aerodynamic and Structural Testing (DAST) program. [Aeroelastic Research Wing (ARW)

    NASA Technical Reports Server (NTRS)

    Murrow, H. N.

    1981-01-01

    Results from flight tests of the ARW-1 research wing are presented. Preliminary loads data and experiences with the active control system for flutter suppression are included along with comparative results of test and prediction for the flutter boundary of the supercritical research wing and on performance of the flutter suppression system. The status of the ARW-2 research wing is given.

  6. X-29 Ship #2 in Flight at an Angle that Highlights the Forward Swept Wings

    NASA Technical Reports Server (NTRS)

    1990-01-01

    aft-swept wing. Consequently, on the forward-swept wing, the ailerons remained unstalled at high angles of attack. This provided better airflow over the ailerons and prevented stalling (loss of lift) at high angles of attack. Introduction of composite materials in the 1970s opened a new field of aircraft construction. It also made possible the construction of the X-29's thin supercritical wing. State-of-the-art composites allowed aeroelastic tailoring which, in turn, allowed the wing some bending but limited twisting and eliminated structural divergence within the flight envelope (i.e. deformation of the wing or the wing breaking off in flight). Additionally, composite materials allowed the wing to be sufficiently rigid for safe flight without adding an unacceptable weight penalty. The X-29 project consisted of two phases plus the follow-on vortex-control phase. Phase 1 demonstrated that the forward sweep of the X-29 wings kept the wing tips unstalled at the moderate angles of attack flown in that phase (a maximum of 21 degrees). Phase I also demonstrated that the aeroelastic tailored wing prevented structural divergence of the wing within the flight envelope, and that the control laws and control-surface effectiveness were adequate to provide artificial stability for an otherwise unstable aircraft. Phase 1 further demonstrated that the X-29 configuration could fly safely and reliably, even in tight turns. During Phase 2 of the project, the X-29, flying at an angle of attack of up to 67 degrees, demonstrated much better control and maneuvering qualities than computational methods and simulation models had predicted . During 120 research flights in this phase, NASA, Air Force, and Grumman project pilots reported the X-29 aircraft had excellent control response to an angle of attack of 45 degrees and still had limited controllability at a 67-degree angle of attack. This controllability at high angles of attack can be attributed to the aircraft's unique forward

  7. Supercritical Wing Technology: A Progress Report on Flight Evaluations

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The papers in this compilation were presented at the NASA Symposium on "Supercritical Wing Technology: A Progress Report on Flight Evaluation" held at the NASA Flight Research Center, Edwards, Calif., on February 29, 1972. The purpose of the symposium was to present timely information on flight results obtained with the F-8 and T-2C supercritical wing configurations, discuss comparisons with wind-tunnel predictions, and project [ ] flight programs planned for the F-8 and F-III (TACT) airplanes.

  8. Reliability-based aeroelastic optimization of a composite aircraft wing via fluid-structure interaction of high fidelity solvers

    NASA Astrophysics Data System (ADS)

    Nikbay, M.; Fakkusoglu, N.; Kuru, M. N.

    2010-06-01

    We consider reliability based aeroelastic optimization of a AGARD 445.6 composite aircraft wing with stochastic parameters. Both commercial engineering software and an in-house reliability analysis code are employed in this high-fidelity computational framework. Finite volume based flow solver Fluent is used to solve 3D Euler equations, while Gambit is the fluid domain mesh generator and Catia-V5-R16 is used as a parametric 3D solid modeler. Abaqus, a structural finite element solver, is used to compute the structural response of the aeroelastic system. Mesh based parallel code coupling interface MPCCI-3.0.6 is used to exchange the pressure and displacement information between Fluent and Abaqus to perform a loosely coupled fluid-structure interaction by employing a staggered algorithm. To compute the probability of failure for the probabilistic constraints, one of the well known MPP (Most Probable Point) based reliability analysis methods, FORM (First Order Reliability Method) is implemented in Matlab. This in-house developed Matlab code is embedded in the multidisciplinary optimization workflow which is driven by Modefrontier. Modefrontier 4.1, is used for its gradient based optimization algorithm called NBI-NLPQLP which is based on sequential quadratic programming method. A pareto optimal solution for the stochastic aeroelastic optimization is obtained for a specified reliability index and results are compared with the results of deterministic aeroelastic optimization.

  9. Subsonic Ultra Green Aircraft Research: Phase II- Volume III-Truss Braced Wing Aeroelastic Test Report

    NASA Technical Reports Server (NTRS)

    Bradley, Marty K.; Allen, Timothy J.; Droney, Christopher

    2014-01-01

    This Test Report summarizes the Truss Braced Wing (TBW) Aeroelastic Test (Task 3.1) work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team, which includes the time period of February 2012 through June 2014. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, Virginia Tech, and NextGen Aeronautics. The model was fabricated by NextGen Aeronautics and designed to meet dynamically scaled requirements from the sized full scale TBW FEM. The test of the dynamically scaled SUGAR TBW half model was broken up into open loop testing in December 2013 and closed loop testing from January 2014 to April 2014. Results showed the flutter mechanism to primarily be a coalescence of 2nd bending mode and 1st torsion mode around 10 Hz, as predicted by analysis. Results also showed significant change in flutter speed as angle of attack was varied. This nonlinear behavior can be explained by including preload and large displacement changes to the structural stiffness and mass matrices in the flutter analysis. Control laws derived from both test system ID and FEM19 state space models were successful in suppressing flutter. The control laws were robust and suppressed flutter for a variety of Mach, dynamic pressures, and angle of attacks investigated.

  10. Kinematics and wing shape across flight speed in the bat, Leptonycteris yerbabuenae.

    PubMed

    Von Busse, Rhea; Hedenström, Anders; Winter, York; Johansson, L Christoffer

    2012-12-15

    The morphology and kinematics of a flying animal determines the resulting aerodynamic lift through the regulation of the speed of the air moving across the wing, the wing area and the lift coefficient. We studied the detailed three-dimensional wingbeat kinematics of the bat, Leptonycteris yerbabuenae, flying in a wind tunnel over a range of flight speeds (0-7 m/s), to determine how factors affecting the lift production vary across flight speed and within wingbeats. We found that the wing area, the angle of attack and the camber, which are determinants of the lift production, decreased with increasing speed. The camber is controlled by multiple mechanisms along the span, including the deflection of the leg relative to the body, the bending of the fifth digit, the deflection of the leading edge flap and the upward bending of the wing tip. All these measures vary throughout the wing beat suggesting active or aeroelastic control. The downstroke Strouhal number, St(d), is kept relatively constant, suggesting that favorable flow characteristics are maintained during the downstroke, across the range of speeds studied. The St(d) is kept constant through changes in the stroke plane, from a strongly inclined stroke plane at low speeds to a more vertical stroke plane at high speeds. The mean angular velocity of the wing correlates with the aerodynamic performance and shows a minimum at the speed of maximum lift to drag ratio, suggesting a simple way to determine the optimal speed from kinematics alone. Taken together our results show the high degree of adjustments that the bats employ to fine tune the aerodynamics of the wings and the correlation between kinematics and aerodynamic performance.

  11. Aerodynamic role of dynamic wing morphing in hummingbird maneuvering flight

    NASA Astrophysics Data System (ADS)

    Ren, Yan; Shallcross, Gregory; Dong, Haibo; Deng, Xinyan; Tobalske, Bret; Flow Simulation Research Group Team; Bio-robotics lab Collaboration; University of Montana Flight Laboratory Collaboration

    2014-11-01

    The flexibility and deformation of hummingbird wing gives hummingbird a great degree of control over fluid forces in flapping flight. Unlike insect wing's passive deformation, hummingbird wing employs a more complicated wing morphing mechanism through both active muscle control and passive feather-air interaction, which results in highly complex 3D wing topology variations during the unsteady flight. Three camera high speed (1000 fps) high resolution digital video was taken and digitized to measure 3D wing conformation in all its complexity during steady flying and maneuvering. Results have shown that the dynamic wing morphing is more prominent in maneuvering flight. Complicated cambering and twisting patterns are observed along the wing pitching axis. A newly developed immersed boundary method which realistically models wing-joint-body of the hummingbird is then employed to simulate the flow associated with dynamic morphing. The simulations provide a first of its kind glimpse of the fluid and vortex dynamics associated with dynamic wing morphing and aerodynamic force computations allow us to gain a better understanding of force producing mechanisms in hummingbird maneuvering flight. This work is supported by AFOSR FA9550-12-1-007 and NSF CEBT-1313217.

  12. Evaluation of Simultaneous Multisine Excitation of the Joined Wing SensorCraft Aeroelastic Wind Tunnel Model

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Morelli, Eugene A.

    2011-01-01

    Multiple mutually orthogonal signals comprise excitation data sets for aeroservoelastic system identification. A multisine signal is a sum of harmonic sinusoid components. A set of these signals is made orthogonal by distribution of the frequency content such that each signal contains unique frequencies. This research extends the range of application of an excitation method developed for stability and control flight testing to aeroservoelastic modeling from wind tunnel testing. Wind tunnel data for the Joined Wing SensorCraft model validates this method, demonstrating that these signals applied simultaneously reproduce the frequency response estimates achieved from one-at-a-time excitation.

  13. Aeroelastic Analysis for Rotorcraft in Flight or in a Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1977-01-01

    An analytical model is developed for the aeroelastic behavior of a rotorcraft in flight or in a wind tunnel. A unified development is presented for a wide class of rotors, helicopters, and operating conditions. The equations of motion for the rotor are derived using an integral Newtonian method, which gives considerable physical insight into the blade inertial and aerodynamic forces. The rotor model includes coupled flap-lag bending and blade torsion degrees of freedom, and is applicable to articulated, hingeless, gimballed, and teetering rotors with an arbitrary number of blades. The aerodynamic model is valid for both high and low inflow, and for axial and nonaxial flight. The rotor rotational speed dynamics, including engine inertia and damping, and the perturbation inflow dynamics are included. For a rotor on a wind-tunnel support, a normal mode representation of the test module, strut, and balance system is used. The aeroelastic analysis for the rotorcraft in flight is applicable to a general two-rotor aircraft, including single main-rotor and tandem helicopter configurations, and side-by-side or tilting proprotor aircraft configurations.

  14. With a long flight data probe extending from its nose, this F/A-18A has been modified to conduct fli

    NASA Technical Reports Server (NTRS)

    2001-01-01

    With a long flight data probe extending from its nose, this F/A-18A has been modified to conduct flight research in the Active Aeroelastic Wing (AAW) project at NASA's Dryden Flight Research Center, Edwards, California.

  15. Wing Flexion and Aerodynamics Performance of Insect Free Flights

    NASA Astrophysics Data System (ADS)

    Dong, Haibo; Liang, Zongxian; Ren, Yan

    2010-11-01

    Wing flexion in flapping flight is a hallmark of insect flight. It is widely thought that wing flexibility and wing deformation would potentially provide new aerodynamic mechanisms of aerodynamic force productions over completely rigid wings. However, there are lack of literatures on studying fluid dynamics of freely flying insects due to the presence of complex shaped moving boundaries in the flow domain. In this work, a computational study of freely flying insects is being conducted. High resolution, high speed videos of freely flying dragonflies and damselflies is obtained and used as a basis for developing high fidelity geometrical models of the dragonfly body and wings. 3D surface reconstruction technologies are used to obtain wing topologies and kinematics. The wing motions are highly complex and a number of different strategies including singular vector decomposition of the wing kinematics are used to examine the various kinematical features and their impact on the wing performance. Simulations are carried out to examine the aerodynamic performance of all four wings and understand the wake structures of such wings.

  16. An aeroelastic instability provides a possible basis for the transition from gliding to flapping flight

    PubMed Central

    Curet, Oscar M.; Swartz, Sharon M.; Breuer, Kenneth S.

    2013-01-01

    The morphology, kinematics and stiffness properties of lifting surfaces play a key role in the aerodynamic performance of vertebrate flight. These surfaces, as a result of their flexible nature, may move both actively, owing to muscle contraction, and passively, in reaction to fluid forces. However, the nature and implications of this fluid–structure interaction are not well understood. Here, we study passive flight (flight with no active wing actuation) and explore a physical mechanism that leads to the emergence of a natural flapping motion. We model a vertebrate wing with a compliant shoulder and the ability to camber with an idealized physical model consisting of a cantilevered flat plate with a hinged trailing flap. We find that at low wind speed the wing is stationary, but at a critical speed the wing spontaneously flaps. The lift coefficient is significantly enhanced once the wing starts to oscillate, although this increase in lift generation is accompanied by an increase in drag. Flow visualization suggests that a strong leading edge vortex attached to the wing during downstroke is the primary mechanism responsible for the enhanced lift. The flapping instability we observe suggests a possible scenario for an evolutionary transition from gliding to powered flapping flight in animals that possess compliant wings capable of passive camber. Although the flapping state is accompanied by a lower lift-to-drag ratio, the increased lifting capability it confers might have enabled increased body mass, improved foraging performance and/or flight at lower speeds, any of which might have been selectively advantageous. PMID:23303221

  17. An aeroelastic instability provides a possible basis for the transition from gliding to flapping flight.

    PubMed

    Curet, Oscar M; Swartz, Sharon M; Breuer, Kenneth S

    2013-03-06

    The morphology, kinematics and stiffness properties of lifting surfaces play a key role in the aerodynamic performance of vertebrate flight. These surfaces, as a result of their flexible nature, may move both actively, owing to muscle contraction, and passively, in reaction to fluid forces. However, the nature and implications of this fluid-structure interaction are not well understood. Here, we study passive flight (flight with no active wing actuation) and explore a physical mechanism that leads to the emergence of a natural flapping motion. We model a vertebrate wing with a compliant shoulder and the ability to camber with an idealized physical model consisting of a cantilevered flat plate with a hinged trailing flap. We find that at low wind speed the wing is stationary, but at a critical speed the wing spontaneously flaps. The lift coefficient is significantly enhanced once the wing starts to oscillate, although this increase in lift generation is accompanied by an increase in drag. Flow visualization suggests that a strong leading edge vortex attached to the wing during downstroke is the primary mechanism responsible for the enhanced lift. The flapping instability we observe suggests a possible scenario for an evolutionary transition from gliding to powered flapping flight in animals that possess compliant wings capable of passive camber. Although the flapping state is accompanied by a lower lift-to-drag ratio, the increased lifting capability it confers might have enabled increased body mass, improved foraging performance and/or flight at lower speeds, any of which might have been selectively advantageous.

  18. Evaluation of linear, inviscid, viscous, and reduced-order modelling aeroelastic solutions of the AGARD 445.6 wing using root locus analysis

    NASA Astrophysics Data System (ADS)

    Silva, Walter A.; Chwalowski, Pawel; Perry, Boyd, III

    2014-03-01

    Reduced-order modelling (ROM) methods are applied to the Computational Fluid Dynamics (CFD)-based aeroelastic analysis of the AGARD 445.6 wing in order to gain insight regarding well-known discrepancies between the aeroelastic analyses and the experimental results. The results presented include aeroelastic solutions using the inviscid Computational Aeroelasticity Programme-Transonic Small Disturbance (CAP-TSD) code and the FUN3D code (Euler and Navier-Stokes). Full CFD aeroelastic solutions and ROM aeroelastic solutions, computed at several Mach numbers, are presented in the form of root locus plots in order to better reveal the aeroelastic root migrations with increasing dynamic pressure. Important conclusions are drawn from these results including the ability of the linear CAP-TSD code to accurately predict the entire experimental flutter boundary (repeat of analyses performed in the 1980s), that the Euler solutions at supersonic conditions indicate that the third mode is always unstable, and that the FUN3D Navier-Stokes solutions stabilize the unstable third mode seen in the Euler solutions.

  19. Refined methods of aeroelastic analysis and optimization. [swept wings, propeller theory, and subsonic flutter

    NASA Technical Reports Server (NTRS)

    Ashley, H.

    1984-01-01

    Graduate research activity in the following areas is reported: the divergence of laminated composite lifting surfaces, subsonic propeller theory and aeroelastic analysis, and cross sectional resonances in wind tunnels.

  20. Aeroelastic Analysis of a Flexible Wing Wind Tunnel Model with Variable Camber Continuous Trailing Edge Flap Design

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Ting, Eric; Lebofsky, Sonia

    2015-01-01

    This paper presents data analysis of a flexible wing wind tunnel model with a variable camber continuous trailing edge flap (VCCTEF) design for drag minimization tested at the University of Washington Aeronautical Laboratory (UWAL). The wind tunnel test was designed to explore the relative merit of the VCCTEF concept for improved cruise efficiency through the use of low-cost aeroelastic model test techniques. The flexible wing model is a 10%-scale model of a typical transport wing and is constructed of woven fabric composites and foam core. The wing structural stiffness in bending is tailored to be half of the stiffness of a Boeing 757-era transport wing while the torsional stiffness is about the same. This stiffness reduction results in a wing tip deflection of about 10% of the wing semi-span. The VCCTEF is a multi-segment flap design having three chordwise camber segments and five spanwise flap sections for a total of 15 individual flap elements. The three chordwise camber segments can be positioned appropriately to create a desired trailing edge camber. Elastomeric material is used to cover the gaps in between the spanwise flap sections, thereby creating a continuous trailing edge. Wind tunnel data analysis conducted previously shows that the VCCTEF can achieve a drag reduction of up to 6.31% and an improvement in the lift-to-drag ratio (L=D) of up to 4.85%. A method for estimating the bending and torsional stiffnesses of the flexible wingUWAL wind tunnel model from static load test data is presented. The resulting estimation indicates that the stiffness of the flexible wing is significantly stiffer in torsion than in bending by as much as 9 to 1. The lift prediction for the flexible wing is computed by a coupled aerodynamic-structural model. The coupled model is developed by coupling a conceptual aerodynamic tool Vorlax with a finite-element model of the flexible wing via an automated geometry deformation tool. Based on the comparison of the lift curve slope

  1. Celebrating 100 Years of Flight: Testing Wing Designs in Aircraft

    ERIC Educational Resources Information Center

    Pugalee, David K.; Nusinov, Chuck; Giersch, Chris; Royster, David; Pinelli, Thomas E.

    2005-01-01

    This article describes an investigation involving several designs of airplane wings in trial flight simulations based on a NASA CONNECT program. Students' experiences with data collection and interpretation are highlighted. (Contains 5 figures.)

  2. Survival of the fastest: Evolving wings for flapping flight

    NASA Astrophysics Data System (ADS)

    Ramananarivo, Sophie; Mitchel, Thomas; Ristroph, Leif

    2014-11-01

    To optimize flapping flight with regard to wing shape, we use an evolutionary or genetic algorithm to improve the forward speed of 3d-printed wings or hydrofoils that heave up-and-down and self-propel within water. In this scheme, ``genes'' are mathematical parameters specifying wing shape, and ``breeding'' involves the merging and mutation of genes from two parent wings to form a child. A wing's swimming speed is its ``fitness'', which dictates the likelihood of breeding and thus passing on its genes to the next generation. We find that this iterative process leads to marked improvements in relatively few generations, and several distinct shape features are shared among the fastest wings. We also investigate the favorable flow structures produced by these elite swimmers and compare their shape and performance to biologically evolved wings, fins, tails, and flippers.

  3. Lessons Learned in the Selection and Development of Test Cases for the Aeroelastic Prediction Workshop: Rectangular Supercritical Wing

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Chwalowski, Pawel; Wieseman, Carol D.; Florance, Jennifer P.; Schuster, David M.

    2013-01-01

    The Aeroelastic Prediction Workshop brought together an international community of computational fluid dynamicists as a step in defining the state of the art in computational aeroelasticity. The Rectangular Supercritical Wing (RSW) was chosen as the first configuration to study due to its geometric simplicity, perceived simple flow field at transonic conditions and availability of an experimental data set containing forced oscillation response data. Six teams performed analyses of the RSW; they used Reynolds-Averaged Navier-Stokes flow solvers exercised assuming that the wing had a rigid structure. Both steady-state and forced oscillation computations were performed by each team. The results of these calculations were compared with each other and with the experimental data. The steady-state results from the computations capture many of the flow features of a classical supercritical airfoil pressure distribution. The most dominant feature of the oscillatory results is the upper surface shock dynamics. Substantial variations were observed among the computational solutions as well as differences relative to the experimental data. Contributing issues to these differences include substantial wind tunnel wall effects and diverse choices in the analysis parameters.

  4. Ground Vibration and Flight Flutter Tests of the Single-seat F-16XL Aircraft with a Modified Wing

    NASA Technical Reports Server (NTRS)

    Voracek, David F.

    1993-01-01

    The NASA single-seat F-16XL aircraft was modified by the addition of a glove to the left wing. Vibration tests were conducted on the ground to assess the changes to the aircraft caused by the glove. Flight Luther testing was conducted on the aircraft with the glove installed to ensure that the flight envelope was free of aeroelastic or aeroservoelastic instabilities. The ground vibration tests showed that above 20 Hz, several modes that involved the control surfaces were significantly changed. Flight test data showed that modal damping levels and trends were satisfactory where obtainable. The data presented in this report include estimated modal parameters from the ground vibration and flight flutter test.

  5. Impact of aeroelasticity on propulsion and longitudinal flight dynamics of an air-breathing hypersonic vehicle

    NASA Technical Reports Server (NTRS)

    Raney, David L.; Mcminn, John D.; Pototzky, Anthony S.; Wooley, Christine L.

    1993-01-01

    Many air-breathing hypersonic aerospacecraft design concepts incorporate an elongated fuselage forebody acting as the aerodynamic compression surface for a hypersonic combustion module, or scram jet. This highly integrated design approach creates the potential for an unprecedented form of aero-propulsive-elastic interaction in which deflections of the vehicle fuselage give rise to propulsion transients, producing force and moment variations that may adversely impact the rigid body flight dynamics and/or further excite the fuselage bending modes. To investigate the potential for such interactions, a math model was developed which included the longitudinal flight dynamics, propulsion system, and first seven elastic modes of a hypersonic air-breathing vehicle. Perturbation time histories from a simulation incorporating this math model are presented that quantify the propulsive force and moment variations resulting from aeroelastic vehicle deflections. Root locus plots are presented to illustrate the effect of feeding the propulsive perturbations back into the aeroelastic model. A concluding section summarizes the implications of the observed effects for highly integrated hypersonic air-breathing vehicle concepts.

  6. Impact of aeroelasticity on propulsion and longitudinal flight dynamics of an air-breathing hypersonic vehicle

    NASA Astrophysics Data System (ADS)

    Raney, David L.; McMinn, John D.; Pototzky, Anthony S.; Wooley, Christine L.

    1993-04-01

    Many air-breathing hypersonic aerospacecraft design concepts incorporate an elongated fuselage forebody acting as the aerodynamic compression surface for a hypersonic combustion module, or scram jet. This highly integrated design approach creates the potential for an unprecedented form of aero-propulsive-elastic interaction in which deflections of the vehicle fuselage give rise to propulsion transients, producing force and moment variations that may adversely impact the rigid body flight dynamics and/or further excite the fuselage bending modes. To investigate the potential for such interactions, a math model was developed which included the longitudinal flight dynamics, propulsion system, and first seven elastic modes of a hypersonic air-breathing vehicle. Perturbation time histories from a simulation incorporating this math model are presented that quantify the propulsive force and moment variations resulting from aeroelastic vehicle deflections. Root locus plots are presented to illustrate the effect of feeding the propulsive perturbations back into the aeroelastic model. A concluding section summarizes the implications of the observed effects for highly integrated hypersonic air-breathing vehicle concepts.

  7. Coupled nonlinear flight dynamics, aeroelasticity, and control of very flexible aircraft

    NASA Astrophysics Data System (ADS)

    Shearer, Christopher M.

    Flight dynamics and control of rigid aircraft motion coupled with linearized structural dynamics has been studied for several decades. However, new requirements for very flexible aircraft are challenging the validity of most rigid body coupled linearized structural motion formulations, due to the presence of large elastic motions. This dissertation presents, the flight dynamics, integration, and control of the six degree-of-freedom equations of motion of a reference point on a very flexible aircraft coupled with the aeroelastic equations which govern the geometrically nonlinear structural response of the vehicle. A low-order strain-based nonlinear structural analysis coupled with unsteady finite-state potential flow aerodynamics form the basis for the aeroelastic formulation. The nonlinear beam structural model is based upon the finite strain approach. Kinematic differential equations are used to provide orientation and position of the fixed reference point. The resulting governing differential equations are non-linear, first- and second-order differential algebraic equations and provide a low-order complete nonlinear aircraft formulation. The resulting equations are integrated using an implicit Modified Newmark Method. The method incorporates both first- and second-order nonlinear equations without the necessity of transforming second-order equations to first-order form. The method also incorporates a Newton-Raphson sub-iteration scheme to reduce residual error. Due to the inherent flexibility of these aircraft, the low order structural modes couple directly with the rigid body modes. This creates a system which cannot be separated as in traditional control schemes. Trajectory control techniques are developed based upon a combination of linear and nonlinear inner-loop tracking and an outer-loop nonlinear transformation from desired trajectories to reference frame velocities. Numerical simulations are presented validating the proposed integration scheme and the

  8. Integration of a code for aeroelastic design of conventional and composite wings into ACSYNT, an aircraft synthesis program. [wing aeroelastic design (WADES)

    NASA Technical Reports Server (NTRS)

    Mullen, J., Jr.

    1976-01-01

    A comparison of program estimates of wing weight, material distribution. structural loads and elastic deformations with actual Northrop F-5A/B data is presented. Correlation coefficients obtained using data from a number of existing aircraft were computed for use in vehicle synthesis to estimate wing weights. The modifications necessary to adapt the WADES code for use in the ACSYNT program are described. Basic program flow and overlay structure is outlined. An example of the convergence of the procedure in estimating wing weights during the synthesis of a vehicle to satisfy F-5 mission requirements is given. A description of inputs required for use of the WADES program is included.

  9. Helicopter aeroelastic stability and response - Current topics and future trends

    NASA Technical Reports Server (NTRS)

    Friedmann, Peretz P.

    1990-01-01

    This paper presents several current topics in rotary wing aeroelasticity and concludes by attempting to anticipate future trends and developments. These topics are: (1) the role of geometric nonlinearities; (2) structural modeling, and aeroelastic analysis of composite rotor blades; (3) aeroelastic stability and response in forward flight; (4) modeling of coupled rotor/fuselage aeromechanical problems and their active control; and (5) the coupled rotor-fuselage vibration problem and its alleviation by higher harmonic control. Selected results illustrating the fundamental aspects of these topics are presented. Future developments are briefly discussed.

  10. Effects of wing flexibility on aerodynamic performance in hovering flight

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Wei, Mingjun

    2012-11-01

    In this study, we use a strong-coupling approach to simulate three dimensional flexible flapping wings in hovering flight. The approach is based on a uniform description of both fluid and solid in global Eulerian framework. There has been extensive validation of the current approach with other numerical simulation and experiments. Then we apply our approach to simulate flapping wings with different flexibility and other control parameters. The simulation results allow us to study directly the effects of wing flexibility on the aerodynamic performance of hovering flight. Supported by ARL.

  11. Atmospheric reentry flight test of winged space vehicle

    NASA Astrophysics Data System (ADS)

    Inatani, Yoshifumi; Akiba, Ryojiro; Hinada, Motoki; Nagatomo, Makoto

    A summary of the atmospheric reentry flight experiment of winged space vehicle is presented. The test was conducted and carried out by the Institute of Space and Astronautical Science (ISAS) in Feb. 1992 in Kagoshima Space Center. It is the first Japanese atmospheric reentry flight of the controlled lifting vehicle. A prime objective of the flight is to demonstrate a high speed atmospheric entry flight capability and high-angle-of-attack flight capability in terms of aerodynamics, flight dynamics and flight control of these kind of vehicles. The launch of the winged vehicle was made by balloon and solid propellant rocket booster which was also the first trial in Japan. The vehicle accomplishes the lfight from space-equivalent condition to the atmospheric flight condition where reaction control system (RCS) attitude stabilization and aerodynamic control was used, respectively. In the flight, the vehicle's attitude was measured by both an inertial measurement unit (IMU) and an air data sensor (ADS) which were employed into an auto-pilot flight control loop. After completion of the entry transient flight, the vehicle experienced unexpected instability during the atmospheric decelerating flight; however, it recovered the attitude orientation and completed the transonic flight after that. The latest analysis shows that it is due to the ADS measurement error and the flight control gain scheduling; what happened was all understood. Some details of the test and the brief summary of the current status of the post flight analysis are presented.

  12. Aeroelastic Deformation: Adaptation of Wind Tunnel Measurement Concepts to Full-Scale Vehicle Flight Testing

    NASA Technical Reports Server (NTRS)

    Burner, Alpheus W.; Lokos, William A.; Barrows, Danny A.

    2005-01-01

    The adaptation of a proven wind tunnel test technique, known as Videogrammetry, to flight testing of full-scale vehicles is presented. A description is presented of the technique used at NASA's Dryden Flight Research Center for the measurement of the change in wing twist and deflection of an F/A-18 research aircraft as a function of both time and aerodynamic load. Requirements for in-flight measurements are compared and contrasted with those for wind tunnel testing. The methodology for the flight-testing technique and differences compared to wind tunnel testing are given. Measurement and operational comparisons to an older in-flight system known as the Flight Deflection Measurement System (FDMS) are presented.

  13. Evaluation of Linear, Inviscid, Viscous, and Reduced-Order Modeling Aeroelastic Solutions of the AGARD 445.6 Wing Using Root Locus Analysis

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Perry, Boyd III; Chwalowski, Pawel

    2014-01-01

    Reduced-order modeling (ROM) methods are applied to the CFD-based aeroelastic analysis of the AGARD 445.6 wing in order to gain insight regarding well-known discrepancies between the aeroelastic analyses and the experimental results. The results presented include aeroelastic solutions using the inviscid CAP-TSD code and the FUN3D code (Euler and Navier-Stokes). Full CFD aeroelastic solutions and ROM aeroelastic solutions, computed at several Mach numbers, are presented in the form of root locus plots in order to better reveal the aeroelastic root migrations with increasing dynamic pressure. Important conclusions are drawn from these results including the ability of the linear CAP-TSD code to accurately predict the entire experimental flutter boundary (repeat of analyses performed in the 1980's), that the Euler solutions at supersonic conditions indicate that the third mode is always unstable, and that the FUN3D Navier-Stokes solutions stabilize the unstable third mode seen in the Euler solutions.

  14. Upstroke wing flexion and the inertial cost of bat flight.

    PubMed

    Riskin, Daniel K; Bergou, Attila; Breuer, Kenneth S; Swartz, Sharon M

    2012-08-07

    Flying vertebrates change the shapes of their wings during the upstroke, thereby decreasing wing surface area and bringing the wings closer to the body than during downstroke. These, and other wing deformations, might reduce the inertial cost of the upstroke compared with what it would be if the wings remained fully extended. However, wing deformations themselves entail energetic costs that could exceed any inertial energy savings. Using a model that incorporates detailed three-dimensional wing kinematics, we estimated the inertial cost of flapping flight for six bat species spanning a 40-fold range of body masses. We estimate that folding and unfolding comprises roughly 44 per cent of the inertial cost, but that the total inertial cost is only approximately 65 per cent of what it would be if the wing remained extended and rigid throughout the wingbeat cycle. Folding and unfolding occurred mostly during the upstroke; hence, our model suggests inertial cost of the upstroke is not less than that of downstroke. The cost of accelerating the metacarpals and phalanges accounted for around 44 per cent of inertial costs, although those elements constitute only 12 per cent of wing weight. This highlights the energetic benefit afforded to bats by the decreased mineralization of the distal wing bones.

  15. Features of owl wings that promote silent flight.

    PubMed

    Wagner, Hermann; Weger, Matthias; Klaas, Michael; Schröder, Wolfgang

    2017-02-06

    Owls are an order of birds of prey that are known for the development of a silent flight. We review here the morphological adaptations of owls leading to silent flight and discuss also aerodynamic properties of owl wings. We start with early observations (until 2005), and then turn to recent advances. The large wings of these birds, resulting in low wing loading and a low aspect ratio, contribute to noise reduction by allowing slow flight. The serrations on the leading edge of the wing and the velvet-like surface have an effect on noise reduction and also lead to an improvement of aerodynamic performance. The fringes at the inner feather vanes reduce noise by gliding into the grooves at the lower wing surface that are formed by barb shafts. The fringed trailing edge of the wing has been shown to reduce trailing edge noise. These adaptations to silent flight have been an inspiration for biologists and engineers for the development of devices with reduced noise production. Today several biomimetic applications such as a serrated pantograph or a fringed ventilator are available. Finally, we discuss unresolved questions and possible future directions.

  16. Flexibility and inertia of flapping wings in forward flight

    NASA Astrophysics Data System (ADS)

    Tian, Fang-Bao; Luo, Haoxiang; Lu, Xi-Yun

    2011-11-01

    Insect wings typically deform passively in flight under the combined aerodynamic force and inertia of the wing. To study the effect of the wing flexibility on the aerodynamic performance, a two-dimensional numerical study is employed to simulate the fluid-structure interaction of an elastic plate performing forward flight. The leading edge of the plate is clamped, while the rest of the chord is free to deform, leading to passive pitching and a dynamic camber. The wing stiffness and mass ratio are varied, and their effects on the lift, thrust, and aerodynamic power are investigated. The results shows that the moderate chordwise deformation can improve both lift and thrust performance significantly. The instantaneous passive pitching angle and consequently the forces are largely affected by the mass ratio that determines whether the deformation is caused by the wing inertia or the aerodynamic force. The high mass ratio wings, whose deformation is due to the wing inertia, can produce more thrust than the low mass ratio wing at the same amount of deformation. However, the high thrust is gained at a price of more power requirement. This work is sponsored by the U.S. NSF and the NSF of China.

  17. Flight feather attachment in rock pigeons (Columba livia): covert feathers and smooth muscle coordinate a morphing wing.

    PubMed

    Hieronymus, Tobin L

    2016-11-01

    Mechanisms for passively coordinating forelimb movements and flight feather abduction and adduction have been described separately from both in vivo and ex vivo studies. Skeletal coordination has been identified as a way for birds to simplify the neuromotor task of controlling flight stroke, but an understanding of the relationship between skeletal coordination and the coordination of the aerodynamic control surface (the flight feathers) has been slow to materialize. This break between the biomechanical and aerodynamic approaches - between skeletal kinematics and airfoil shape - has hindered the study of dynamic flight behaviors. Here I use dissection and histology to identify previously overlooked interconnections between musculoskeletal elements and flight feathers. Many of these structures are well-placed to directly link elements of the passive musculoskeletal coordination system with flight feather movements. Small bundles of smooth muscle form prominent connections between upper forearm coverts (deck feathers) and the ulna, as well as the majority of interconnections between major flight feathers of the hand. Abundant smooth muscle may play a role in efficient maintenance of folded wing posture, and may also provide an autonomically regulated means of tuning wing shape and aeroelastic behavior in flight. The pattern of muscular and ligamentous linkages of flight feathers to underlying muscle and bone may provide predictable passive guidance for the shape of the airfoil during flight stroke. The structures described here provide an anatomical touchstone for in vivo experimental tests of wing surface coordination in an extensively researched avian model species.

  18. Wing attachment position of fruit fly minimizes flight cost

    NASA Astrophysics Data System (ADS)

    Noest, Robert; Wang, Jane

    Flight is energetically costly which means insects need to find ways to reduce their energy expenditure during sustained flight. Previous work has shown that insect muscles can recover some of the energy used for producing flapping motion. Moreover the form of flapping motions are efficient for generating the required force to balance the weight. In this talk, we show that one of the morphological parameters, the wing attachment point on a fly, is suitably located to further reduce the cost for flight, while allowing the fly to be close to stable. We investigate why this is the case and attempt to find a general rule for the optimal location of the wing hinge. Our analysis is based on computations of flapping free flight together with the Floquet stability analysis of periodic flight for descending, hovering and ascending cases.

  19. The Effect of Wing Scales on Monarch Butterfly Flight Characteristics

    NASA Astrophysics Data System (ADS)

    Shaw, Angela; Jones, Robert; Lang, Amy

    2010-11-01

    Recent research has shown that the highly flexible wings of butterflies in flapping flight develop vortices along their leading and trailing edges. Butterfly scales (approximately 100 microns in length) have a shingled pattern and extend into the boundary layer. These scales, which make up approximately 3% of the body weight or less, could play a part in controlling separation and vortex formation in this unsteady, three-dimensional complex flow field. A better understanding of this mechanism may lead to bio-inspired applications for flapping wing micro-air vehicles. In this study, the flight performance of Monarch (Danaus plexippus) butterflies with and without scales was analyzed. Scales were removed from the upper and lower wing surfaces and specimens were videotaped at 600 frames per second. Variation in flapping patterns and flight fitness were observed.

  20. Avian wing proportions and flight styles: first step towards predicting the flight modes of mesozoic birds.

    PubMed

    Wang, Xia; McGowan, Alistair J; Dyke, Gareth J

    2011-01-01

    We investigated the relationship between wing element proportions and flight mode in a dataset of living avian species to provide a framework for making basic estimates of the range of flight styles evolved by Mesozoic birds. Our results show that feather length (f(prim)) and total arm length (ta) (sum of the humerus, ulna and manus length) ratios differ significantly between four flight style groups defined and widely used for living birds and as a result are predictive for fossils. This was confirmed using multivariate ordination analyses, with four wing elements (humerus, ulna/radius, manus, primary feathers), that discriminate the four broad flight styles within living birds. Among the variables tested, manus length is closely correlated with wing size, yet is the poorest predictor for flight style, suggesting that the shape of the bones in the hand wing is most important in determining flight style. Wing bone thickness (shape) must vary with wing beat strength, with weaker forces requiring less bone. Finally, we show that by incorporating data from Mesozoic birds, multivariate ordination analyses can be used to predict the flight styles of fossils.

  1. Avian Wing Proportions and Flight Styles: First Step towards Predicting the Flight Modes of Mesozoic Birds

    PubMed Central

    Wang, Xia; McGowan, Alistair J.; Dyke, Gareth J.

    2011-01-01

    We investigated the relationship between wing element proportions and flight mode in a dataset of living avian species to provide a framework for making basic estimates of the range of flight styles evolved by Mesozoic birds. Our results show that feather length (fprim) and total arm length (ta) (sum of the humerus, ulna and manus length) ratios differ significantly between four flight style groups defined and widely used for living birds and as a result are predictive for fossils. This was confirmed using multivariate ordination analyses, with four wing elements (humerus, ulna/radius, manus, primary feathers), that discriminate the four broad flight styles within living birds. Among the variables tested, manus length is closely correlated with wing size, yet is the poorest predictor for flight style, suggesting that the shape of the bones in the hand wing is most important in determining flight style. Wing bone thickness (shape) must vary with wing beat strength, with weaker forces requiring less bone. Finally, we show that by incorporating data from Mesozoic birds, multivariate ordination analyses can be used to predict the flight styles of fossils. PMID:22163324

  2. Flight mechanics of a tailless articulated wing aircraft.

    PubMed

    Paranjape, Aditya A; Chung, Soon-Jo; Selig, Michael S

    2011-06-01

    This paper investigates the flight mechanics of a micro aerial vehicle without a vertical tail in an effort to reverse-engineer the agility of avian flight. The key to stability and control of such a tailless aircraft lies in the ability to control the incidence angles and dihedral angles of both wings independently. The dihedral angles can be varied symmetrically on both wings to control aircraft speed independently of the angle of attack and flight path angle, while asymmetric dihedral can be used to control yaw in the absence of a vertical stabilizer. It is shown that wing dihedral angles alone can effectively regulate sideslip during rapid turns and generate a wide range of equilibrium turn rates while maintaining a constant flight speed and regulating sideslip. Numerical continuation and bifurcation analysis are used to compute trim states and assess their stability. This paper lays the foundation for design and stability analysis of a flapping wing aircraft that can switch rapidly from flapping to gliding flight for agile manoeuvring in a constrained environment.

  3. Flight in slow motion: aerodynamics of the pterosaur wing

    PubMed Central

    Palmer, Colin

    2011-01-01

    The flight of pterosaurs and the extreme sizes of some taxa have long perplexed evolutionary biologists. Past reconstructions of flight capability were handicapped by the available aerodynamic data, which was unrepresentative of possible pterosaur wing profiles. I report wind tunnel tests on a range of possible pterosaur wing sections and quantify the likely performance for the first time. These sections have substantially higher profile drag and maximum lift coefficients than those assumed before, suggesting that large pterosaurs were aerodynamically less efficient and could fly more slowly than previously estimated. In order to achieve higher efficiency, the wing bones must be faired, which implies extensive regions of pneumatized tissue. Whether faired or not, the pterosaur wings were adapted to low-speed flight, unsuited to marine style dynamic soaring but adapted for thermal/slope soaring and controlled, low-speed landing. Because their thin-walled bones were susceptible to impact damage, slow flight would have helped to avoid injury and may have contributed to their attaining much larger sizes than fossil or extant birds. The trade-off would have been an extreme vulnerability to strong or turbulent winds both in flight and on the ground, akin to modern-day paragliders. PMID:21106584

  4. Flight in slow motion: aerodynamics of the pterosaur wing.

    PubMed

    Palmer, Colin

    2011-06-22

    The flight of pterosaurs and the extreme sizes of some taxa have long perplexed evolutionary biologists. Past reconstructions of flight capability were handicapped by the available aerodynamic data, which was unrepresentative of possible pterosaur wing profiles. I report wind tunnel tests on a range of possible pterosaur wing sections and quantify the likely performance for the first time. These sections have substantially higher profile drag and maximum lift coefficients than those assumed before, suggesting that large pterosaurs were aerodynamically less efficient and could fly more slowly than previously estimated. In order to achieve higher efficiency, the wing bones must be faired, which implies extensive regions of pneumatized tissue. Whether faired or not, the pterosaur wings were adapted to low-speed flight, unsuited to marine style dynamic soaring but adapted for thermal/slope soaring and controlled, low-speed landing. Because their thin-walled bones were susceptible to impact damage, slow flight would have helped to avoid injury and may have contributed to their attaining much larger sizes than fossil or extant birds. The trade-off would have been an extreme vulnerability to strong or turbulent winds both in flight and on the ground, akin to modern-day paragliders.

  5. RSRA/X-Wing flight control system development - Lessons learned

    NASA Technical Reports Server (NTRS)

    Corliss, Lloyd D.; Dunn, William R.; Morrison, Michael A.

    1989-01-01

    The X-Wing, in concept, marries the efficiencies of a helicopter and fixed wing aircraft through the use of a four-bladed wing/rotor that can be rotated or stopped in flight. The RSRA/X-Wing flight test program was a technology demonstration of this concept which, after three successful flights, was discontinued in late 1987. In spite of many technical challenges in this program, such as the use of circulation control, the fabrication of a large all-composite rotor, the development of an advanced, quadruplex digital flight control system, and the need for higher harmonic control, no major technical problems had been encountered at the time of the stop-work order. This paper addresses the issues of flight control system development and focuses on lessons learned. As with other such programs, software development was the most consuming issue. Other subjects of discussion include the problems of balancing program goals with technical goals, software- and hard-ware-related problems, safety issues, and system testing.

  6. Modeling and Analysis of Composite Wing Sections for Improved Aeroelastic and Vibration Characteristics Using Smart Materials

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi

    1996-01-01

    The objective of this research is to develop analysis procedures to investigate the coupling of composite and smart materials to improve aeroelastic and vibratory response of aerospace structures. The structural modeling must account for arbitrarily thick geometries, embedded and surface bonded sensors and actuators and imperfections, such as delamination. Changes in the dynamic response due to the presence of smart materials and delaminations is investigated. Experiments are to be performed to validate the proposed mathematical model.

  7. Flapping wing flight can save aerodynamic power compared to steady flight.

    PubMed

    Pesavento, Umberto; Wang, Z Jane

    2009-09-11

    Flapping flight is more maneuverable than steady flight. It is debated whether this advantage is necessarily accompanied by a trade-off in the flight efficiency. Here we ask if any flapping motion exists that is aerodynamically more efficient than the optimal steady motion. We solve the Navier-Stokes equation governing the fluid dynamics around a 2D flapping wing, and determine the minimal aerodynamic power needed to support a specified weight. While most flapping wing motions are more costly than the optimal steady wing motion, we find that optimized flapping wing motions can save up to 27% of the aerodynamic power required by the optimal steady flight. We explain the cause of this energetic advantage.

  8. Summary Report of the Orbital X-34 Wing Static Aeroelastic Study

    NASA Technical Reports Server (NTRS)

    Prabhn, Ramadas K.; Weilmuenster, K. J. (Technical Monitor)

    2001-01-01

    This report documents the results of a computational study conducted on the Orbital Sciences X-34 vehicle to compute its inviscid aerodynamic characteristics taking into account the wing structural flexibility. This was a joint exercise between LaRC and SDRC of California. SDRC modeled the structural details of the wing, and provided the structural deformation for a given pressure distribution on its surfaces. This study was done for a Mach number of 1.35 and an angle of attack of 9 deg.; the freestream dynamic pressure was assumed to be 607 lb/sq ft. Only the wing and the body were simulated in the CFD computations. Two wing configurations were examined. The first had the elevons in the undeflected position and the second had the elevons deflected 20 deg. up. The results indicated that with elevon undeflected, the wing twists by about 1.5 deg. resulting in a reduction in the angle of attack at the wing tip to by 1.5 deg. The maximum vertical deflection of the wing is about 3.71 inches at the wing tip. For the wing with the undeflected elevons, the effect of this wing deformation is to reduce the normal force coefficient (C(sub N)) by 0.012 and introduce a noise up pitching moment coefficient (C(sub m)) of 0.042.

  9. ``Schooling'' of wing pairs in flapping flight

    NASA Astrophysics Data System (ADS)

    Ramananarivo, Sophie; Zhang, Jun; Ristroph, Leif; AML, Courant Collaboration; Physics NYU Collaboration

    2015-11-01

    The experimental setup implements two independent flapping wings swimming in tandem. Both are driven with the same prescribed vertical heaving motion, but the horizontal motion is free, which means that the swimmers can take up any relative position and forward speed. Experiments show however clearly coordinated motions, where the pair of wings `crystallize' into specific stable arrangements. The follower wing locks into the path of the leader, adopting its speed, and with a separation distance that takes on one of several discrete values. By systematically varying the kinematics and wing size, we show that the set of stable spacings is dictated by the wavelength of the periodic wake structure. The forces maintaining the pair cohesion are characterized by applying an external force to the follower to perturb it away from the `stable wells'. These results show that hydrodynamics alone is sufficient to induce cohesive and coordinated collective locomotion through a fluid, and we discuss the hypothesis that fish schools and bird flocks also represent stable modes of motion.

  10. NASA Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Navarro, Robert

    2009-01-01

    This DVD has several short videos showing some of the work that Dryden is involved in with experimental aircraft. These are: shots showing the Active AeroElastic Wing (AAW) loads calibration tests, AAW roll maneuvers, AAW flight control surface inputs, Helios flight, and takeoff, and Pathfinder takeoff, flight and landing.

  11. Modified Matrix Method for Calculating Steady-State Span Loading on Flexible Wings in Subsonic Flight

    NASA Technical Reports Server (NTRS)

    Gainer, Patrick A.; Aiken, William S., Jr.

    1959-01-01

    A method is presented for shortening the computations required to determine the steady-state span loading on flexible wings in subsonic flight. The method makes use of tables of downwash factors to find the necessary aerodynamic-influence coefficients for the application of lifting-line theory. Explicit matrix equations of equilibrium are converted into a matrix power series with a finite number of terms by utilizing certain characteristic properties of matrices. The number of terms in the series is determined by a trial-and-error process dependent upon the required accuracy of the solution. Spanwise distributions of angle of attack, airload, shear, bending moment, and pitching moment are readily obtained as functions of qm(sub R) where q denotes the dynamic pressure and mR denotes the lift-curve slope of a rigid wing. This method is intended primarily to make it practical to solve steady-state aeroelastic problems on the ordinary manually operated desk calculators, but the method is also readily adaptable to automatic computing equipment.

  12. Unsteady-Pressure and Dynamic-Deflection Measurements on an Aeroelastic Supercritical Wing

    NASA Technical Reports Server (NTRS)

    Seidel, David A.; Sandford, Maynard C.; Eckstrom, Clinton V.

    1991-01-01

    Transonic steady and unsteady pressure tests were conducted on a large elastic wing. The wing has a supercritical airfoil, a full span aspect ratio of 10.3, a leading edge sweepback angle of 28.8 degrees, and two inboard and one outboard trailing edge control surfaces. Only the outboard control surface was deflected statically and dynamically to generate steady and unsteady flow over the wing. The unsteady surface pressure and dynamic deflection measurements of this elastic wing are presented to permit correlations of the experimental data with theoretical predictions.

  13. Design of a candidate flutter suppression control law for DAST ARW-2. [Drones for Aerodynamic and Structural Testing Aeroelastic Research Wing

    NASA Technical Reports Server (NTRS)

    Adams, W. M., Jr.; Tiffany, S. H.

    1983-01-01

    A control law is developed to suppress symmetric flutter for a mathematical model of an aeroelastic research vehicle. An implementable control law is attained by including modified LQG (linear quadratic Gaussian) design techniques, controller order reduction, and gain scheduling. An alternate (complementary) design approach is illustrated for one flight condition wherein nongradient-based constrained optimization techniques are applied to maximize controller robustness.

  14. Lift estimation of Half-Rotating Wing in hovering flight

    NASA Astrophysics Data System (ADS)

    Wang, X. Y.; Dong, Y. P.; Qiu, Z. Z.; Zhang, Y. Q.; Shan, J. H.

    2016-11-01

    Half-Rotating Wing (HRW) is a new kind of flapping wing system with rotating flapping instead of oscillating flapping. Estimating approach of hovering lift which generated in hovering flight was important theoretical foundation to design aircraft using HRW. The working principle of HRW based on Half-Rotating Mechanism (HRM) was firstly introduced in this paper. Generating process of lift by HRW was also given. The calculating models of two lift mechanisms for HRW, including Lift of Flow Around Wing (LFAW) and Lift of Flow Dragging Wing (LFDW), were respectively established. The lift estimating model of HRW was further deduced, by which hovering lift for HRW with different angular velocity could be calculated. Case study using XFLOW software simulation indicates that the above estimating method was effective and feasible to predict roughly the hovering lift for a new HRW system.

  15. The Physics of Flight: I. Fixed and Rotating Wings

    ERIC Educational Resources Information Center

    Linton, J. Oliver

    2007-01-01

    Almost all elementary textbook explanations of the theory of flight rely heavily on Bernoulli's principle and the fact that air travels faster over a wing than below it. In recent years the inadequacies and, indeed, fallacies in this explanation have been exposed (see Babinsky's excellent article in 2003 Phys. Educ. 38 497-503) and it is now…

  16. Effect of wing mass in free flight by a butterfly-like 3D flapping wing-body model

    NASA Astrophysics Data System (ADS)

    Suzuki, Kosuke; Okada, Iori; Yoshino, Masato

    2016-11-01

    The effect of wing mass in free flight of a flapping wing is investigated by numerical simulations based on an immersed boundary-lattice Boltzmann method. We consider a butterfly-like 3D flapping wing-model consisting of two square wings with uniform mass density connected by a rod-shaped body. We simulate free flights of the wing-body model with various mass ratios of the wing to the whole of the model. As a result, it is found that the lift and thrust forces decrease as the mass ratio increases, since the body with a large mass ratio experiences large vertical and horizontal oscillations in one period and consequently the wing tip speed relatively decreases. In addition, we find the critical mass ratio between upward flight and downward flight for various Reynolds numbers. This work was supported by JSPS KAKENHI Grant Number JP16K18012.

  17. Response studies of rotors and rotor blades with application to aeroelastic tailoring

    NASA Technical Reports Server (NTRS)

    Friedmann, P. P.

    1982-01-01

    Various tools for the aeroelastic stability and response analysis of rotor blades in hover and forward flight were developed and incorporated in a comprehensive package capable of performing aeroelastic tailoring of rotor blades in forward flight. The results indicate that substantial vibration reductions, of order 15-40%, in the vibratory hub shears can be achieved by relatively small modifications of the initial design. Furthermore the optimized blade can be up to 20% lighter than the original design. Accomplishments are reported for the following tasks: (1) finite element modeling of rotary-wing aeroelastic problems in hover and forward flight; (2) development of numerical methods for calculating the aeroelastic response and stability of rotor blades in forward fight; (3) formulation of the helicopter air resonance problem in hover with active controls; and (4) optimum design of rotor blades for vibration reduction in forward flight.

  18. Supersonic aeroelastic instability results for a NASP-like wing model

    NASA Technical Reports Server (NTRS)

    Cole, Stanley R.; Florance, James R.; Thomason, Lee B.; Spain, Charles V.; Bullock, Ellen P.

    1993-01-01

    An experimental study and an analytical study have been conducted to examine static divergence for hypersonic-vehicle wing models at supersonic conditions. A supersonic test in the Langley Unitary Plan Wind Tunnel facility was conducted for two wind-tunnel models. These models were nearly identical with the exception of airfoil shape. One model had a four-percent maximum thickness airfoil and the other model had an eight-percent maximum thickness airfoil. The wing models had low-aspect ratios and highly swept leading edges. The all-movable wing models were supported by a single-pivot mechanism along the wing root. For both of the wind-tunnel models, configuration changes could be made in the wing-pivot location along the wing root and in the wing-pivot pitch stiffness. Three divergence conditions were measured for the four-percent thick airfoil model in the Mach number range of 2.6 to 3.6 and one divergence condition was measured for the eight-percent thick airfoil model at a Mach number of 2.9. Analytical divergence calculations were made for comparison with experimental results and to evaluate the parametric effects of wing-pivot stiffness, wing-pivot location, and airfoil thickness variations. These analyses showed that decreasing airfoil thickness, moving the wing-pivot location upstream, or increasing the pitch-pivot stiffness have the beneficial effect of increasing the divergence dynamic pressures. The calculations predicted the trend of experimental divergence dynamic pressure with Mach number accurately; however, the calculations were approximately 25 percent conservative with respect to dynamic pressure.

  19. Methodologies for reproducing in-flight loads of aircraft wings on the ground and predicting their response to battle-induced damage

    NASA Astrophysics Data System (ADS)

    Bou-Mosleh, Charbel Fouad

    Survivability of an aircraft in combat is achieved by not getting hit or by withstanding the effects of some suffered hits. Combat damage is described by the removal of one or more portions of the wing or any other flight control surface. To determine whether a wing will survive a specific damage, the structural and aerodynamic response of the wing should be predicted and tested. The response of wings to battle-induced damage is currently addressed through live-fire testing on the ground. The loading methodology used in these live-fire tests does not reproduce the loads encountered during flight, and does not account for the changes in structural stiffness and mass of the wing after damage infliction. In addition, current live-fire tests fail to address the changes in the aerodynamic performance of the wing caused by the battle-induced damage. To better address the structural response of aircraft wings to combat damage, this thesis investigates a concept for an alternative loading methodology that exploits recent advances in nonlinear aeroelastic simulations and smart material actuators. The main idea behind this concept is to accurately predict the stress states of the wing before, during, and after sustaining a hit, for a given flight condition, and reproduce them on the ground by loading the spars and ribs of the wings with programmable actuators and/or a few external tethers. Mathematically, this entails solving an optimization problem to determine the locations and gains of the actuators. Two different types of actuators are investigated: 1D actuators or actuators with tension/compression capability and bimorph bender actuators. The potential of the investigated loading methodology is evaluated for "slender" wings (ARW-2 wing) and for "delta" wings (HSCT and F-16 wing) at a transonic flight condition. The obtained numerical results suggest that the investigated loading methodology can reproduce a desired stress state fairly accurately using external tethers

  20. Frequency-Domain Identification Of Aeroelastic Modes

    NASA Technical Reports Server (NTRS)

    Acree, C. W., Jr.; Tischler, Mark B.

    1991-01-01

    Report describes flight measurements and frequency-domain analyses of aeroelastic vibrational modes of wings of XV-15 tilt-rotor aircraft. Begins with description of flight-test methods. Followed by brief discussion of methods of analysis, which include Fourier-transform computations using chirp z transformers, use of coherence and other spectral functions, and methods and computer programs to obtain frequencies and damping coefficients from measurements. Includes brief description of results of flight tests and comparisions among various experimental and theoretical results. Ends with section on conclusions and recommended improvements in techniques.

  1. A Fundamental Study in Nonlinear Aeroelastic Phenomena in Flapping Wing Micro Air Vehicles

    DTIC Science & Technology

    2008-11-30

    obtained from an updated Lagrangian approach for flapping wings with prescribed root motion that resembles insect or hummingbird wing flapping...which account for evolution of the wake, provide a reasonable approximation to the development of the unsteady wake during a flapping cycle. A two...condition at the leading edge. The evolution of the wake is governed by the Rott-Birkhoff equation, which is derived from the Biot-Savart law for two

  2. Wavelet Analyses of F/A-18 Aeroelastic and Aeroservoelastic Flight Test Data

    NASA Technical Reports Server (NTRS)

    Brenner, Martin J.

    1997-01-01

    Time-frequency signal representations combined with subspace identification methods were used to analyze aeroelastic flight data from the F/A-18 Systems Research Aircraft (SRA) and aeroservoelastic data from the F/A-18 High Alpha Research Vehicle (HARV). The F/A-18 SRA data were produced from a wingtip excitation system that generated linear frequency chirps and logarithmic sweeps. HARV data were acquired from digital Schroeder-phased and sinc pulse excitation signals to actuator commands. Nondilated continuous Morlet wavelets implemented as a filter bank were chosen for the time-frequency analysis to eliminate phase distortion as it occurs with sliding window discrete Fourier transform techniques. Wavelet coefficients were filtered to reduce effects of noise and nonlinear distortions identically in all inputs and outputs. Cleaned reconstructed time domain signals were used to compute improved transfer functions. Time and frequency domain subspace identification methods were applied to enhanced reconstructed time domain data and improved transfer functions, respectively. Time domain subspace performed poorly, even with the enhanced data, compared with frequency domain techniques. A frequency domain subspace method is shown to produce better results with the data processed using the Morlet time-frequency technique.

  3. Analysis and testing of aeroelastic model stability augmentation systems. [for supersonic transport aircraft wing and B-52 aircraft control system

    NASA Technical Reports Server (NTRS)

    Sevart, F. D.; Patel, S. M.

    1973-01-01

    Testing and evaluation of a stability augmentation system for aircraft flight control were performed. The flutter suppression system and synthesis conducted on a scale model of a supersonic wing for a transport aircraft are discussed. Mechanization and testing of the leading and trailing edge surface actuation systems are described. The ride control system analyses for a 375,000 pound gross weight B-52E aircraft are presented. Analyses of the B-52E aircraft maneuver load control system are included.

  4. Effect of aeroelastic-propulsive interactions on flight dynamics of a hypersonic vehicle

    NASA Technical Reports Server (NTRS)

    Raney, David L.; Mcminn, John D.; Pototzky, Anthony S.; Wooley, Christine L.

    1993-01-01

    The desire to achieve orbit-on-demand access to space with rapid turn-around capability and aircraft-like processing operations has given rise to numerous hypersonic aerospace plane design concepts which would take off horizontally from a conventional runway and employ air-breathing scramjet propulsion systems for acceleration to orbital speeds. Most of these air-breathing hypersonic vehicle concepts incorporate an elongated fuselage forebody to act as the aerodynamic compression surface for a scramjet combustor module. This type of airframe-integrated scramjet propulsion system tends to be highly sensitive to inlet conditions and angle-of-attack perturbations. Furthermore, the basic configuration of the fuselage, with its elongated and tapered forebody, produces relatively low frequency elastic modes which will cause perturbations in the combustor inlet conditions due to the oscillation of the forebody compression surface. The flexibility of the forebody compression surface, together with sensitivity of scramjet propulsion systems to inlet conditions, creates the potential for an unprecedented form of aeroelastic-propulsive interaction in which deflections of the vehicle fuselage give rise to propulsion transients, producing force and moment variations that may adversely impact the longitudinal flight dynamics and/or excite the elastic modes. These propulsive force and moment variations may have an appreciable impact on the performance, guidance, and control of a hypersonic aerospace plane. The objectives of this research are to quantify the magnitudes of propulsive force and moment perturbations resulting from elastic deformation of a representative hypersonic vehicle, and to assess the potential impact of these perturbations on the vehicle's longitudinal flight dynamics.

  5. Rotorcraft Technology for HALE Aeroelastic Analysis

    NASA Technical Reports Server (NTRS)

    Young, Larry; Johnson, Wayne

    2008-01-01

    Much of technology needed for analysis of HALE nonlinear aeroelastic problems is available from rotorcraft methodologies. Consequence of similarities in operating environment and aerodynamic surface configuration. Technology available - theory developed, validated by comparison with test data, incorporated into rotorcraft codes. High subsonic to transonic rotor speed, low to moderate Reynolds number. Structural and aerodynamic models for high aspect-ratio wings and propeller blades. Dynamic and aerodynamic interaction of wing/airframe and propellers. Large deflections, arbitrary planform. Steady state flight, maneuvers and response to turbulence. Linearized state space models. This technology has not been extensively applied to HALE configurations. Correlation with measured HALE performance and behavior required before can rely on tools.

  6. Flight control system development and flight test experience with the F-111 mission adaptive wing aircraft

    NASA Technical Reports Server (NTRS)

    Larson, R. R.

    1986-01-01

    The wing on the NASA F-111 transonic aircraft technology airplane was modified to provide flexible leading and trailing edge flaps. This wing is known as the mission adaptive wing (MAW) because aerodynamic efficiency can be maintained at all speeds. Unlike a conventional wing, the MAW has no spoilers, external flap hinges, or fairings to break the smooth contour. The leading edge flaps and three-segment trailing edge flaps are controlled by a redundant fly-by-wire control system that features a dual digital primary system architecture providing roll and symmetric commands to the MAW control surfaces. A segregated analog backup system is provided in the event of a primary system failure. This paper discusses the design, development, testing, qualification, and flight test experience of the MAW primary and backup flight control systems.

  7. Supersonic aeroelastic instability results for a NASP-like wing model

    NASA Technical Reports Server (NTRS)

    Cole, Stanley R.; Florance, James R.; Thomason, Lee B.; Spain, Charles V.; Bullock, Ellen P.

    1993-01-01

    Two wing-alone wind-tunnel models were tested in the NASA Langley Unitary Plan Wind Tunnel facility to study the static divergence behavior of such configurations and to provide a data base for correlation with supersonic analytical predictions. One model had a four percent maximum thickness airfoil and the other had an eight-percent maximum thickness airfoil. The wing models had low aspect ratios and highly swept leading edges. Results show that decreasing airfoil thickness, moving the wing-pivot location upstream, or increasing the pitch-pivot stiffness have the beneficial effect of increasing the divergence dynamic pressures. The calculations accurately predicted the trend of experimental divergence dynamic pressure with Mach number.

  8. Dynamic structural aeroelastic stability testing of the XV-15 tilt rotor research aircraft

    NASA Technical Reports Server (NTRS)

    Schroers, L. G.

    1982-01-01

    For the past 20 years, a significant effort has been made to understand and predict the structural aeroelastic stability characteristics of the tilt rotor concept. Beginning with the rotor-pylon oscillation of the XV-3 aircraft, the problem was identified and then subjected to a series of theoretical studies, plus model and full-scale wind tunnel tests. From this data base, methods were developed to predict the structural aeroelastic stability characteristics of the XV-15 Tilt Rotor Research Aircraft. The predicted aeroelastic characteristics are examined in light of the major parameters effecting rotor-pylon-wing stability. Flight test techniques used to obtain XV-15 aeroelastic stability are described. Flight test results are summarized and compared to the predicted values. Wind tunnel results are compared to flight test results and correlated with predicted values.

  9. Measuring wing kinematics, flight trajectory and body attitude during forward flight and turning maneuvers in dragonflies.

    PubMed

    Wang, Hao; Zeng, Lijiang; Liu, Hao; Yin, Chunyong

    2003-02-01

    A robust technique for determining the wing kinematics, body position and attitude of a free-flight dragonfly is described. The new method is based on a projected comb-fringe technique combined with the natural landmarks on a dragonfly, allowing us to establish the local body-centered coordinate system with high accuracy, and to measure the body attitude at any instant. The kinematic parameters, including wingbeat frequency, flapping angle, angle of attack, torsional angle and camber deformation, required no assumptions to be made with respect to wing geometry, deformability (except the assumption of rigid leading edges) or bilateral wing symmetry. Two typical flight behaviors, forward flight and turning maneuvers, of dragonflies Polycanthagyna melanictera Selys were measured and analyzed.

  10. Transition Flight Experiments on a Swept Wing with Suction

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.; Collier, F. S., Jr.; Montoya, L. C.; Putnam, R. J.

    1989-01-01

    Flight boundary-layer transition experiments were conducted on a 30 degree swept wing with a perforated leading-edge suction panel. The transition location on the panel was changed by systematically varying the location and amount of suction. Transition from laminar to turbulent flow was due to leading-edge turbulence contamination or crossflow disturbance growth and/or Tollmien-Schlichting disturbance growth, depending on flight condition and suction variation. Amplification factor correlations with transition location were made for various suction configurations using a state-of-the-art linear stability theory which accounts for body and streamline curvature and compressibility.

  11. Transition flight experiments on a swept wing with suction

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.; Collier, F. S., Jr.; Montoya, L. C.; Putnam, R. J.

    1989-01-01

    Flight boundary-layer transition experiments were conducted on a 30-degree swept wing with a perforated leading-edge suction panel. The transition location on the panel was changed by systematically varying the location and amount of suction. Transition from laminar to turbulent flow was due to leading-edge turbulence contamination or crossflow disturbance growth and/or Tollmien-Schlichting disturbance growth, depending on flight condition and suction variation. Amplification factor correlations with transition location were made for various suction configurations using a state-of-the-art linear stability theory which accounts for body and streamline curvature and compressibility.

  12. Environment identification in flight using sparse approximation of wing strain

    NASA Astrophysics Data System (ADS)

    Manohar, Krithika; Brunton, Steven L.; Kutz, J. Nathan

    2017-04-01

    This paper addresses the problem of identifying different flow environments from sparse data collected by wing strain sensors. Insects regularly perform this feat using a sparse ensemble of noisy strain sensors on their wing. First, we obtain strain data from numerical simulation of a Manduca sexta hawkmoth wing undergoing different flow environments. Our data-driven method learns low-dimensional strain features originating from different aerodynamic environments using proper orthogonal decomposition (POD) modes in the frequency domain, and leverages sparse approximation to classify a set of strain frequency signatures using a dictionary of POD modes. This bio-inspired machine learning architecture for dictionary learning and sparse classification permits fewer costly physical strain sensors while being simultaneously robust to sensor noise. A measurement selection algorithm identifies frequencies that best discriminate the different aerodynamic environments in low-rank POD feature space. In this manner, sparse and noisy wing strain data can be exploited to robustly identify different aerodynamic environments encountered in flight, providing insight into the stereotyped placement of neurons that act as strain sensors on a Manduca sexta hawkmoth wing.

  13. A Static Aeroelastic Analysis of a Flexible Wing Mini Unmanned Aerial Vehicle

    DTIC Science & Technology

    2008-03-27

    Grids . . . . . . . 36 4.2 Building Surface Grids in Gridgen . . . . . . . . . . . . 36 4.3 Obtaining the Static Target Displacement...Appendix E. Gridgen . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Appendix F. Fluent Scripts . . . . . . . . . . . . . . . . . . . . . . . . 89...The geometry of the Nighthawk was defined in a SolidWorks model. This geometry was used to create the grid for the undeflected wing shape in Gridgen

  14. Flight test of passive wing/store flutter suppression

    NASA Technical Reports Server (NTRS)

    Cazier, F. W., Jr.; Kehoe, M. W.

    1986-01-01

    Flight tests were performed on an F-16 airplane carrying on each wing an AIM-9J wingtip missile, a GBU-8 bomb near midspan, and an external fuel tank. Baseline flights with the GBU-8 mounted on a standard pylon established that this configuration is characterized by an antisymmetric limited amplitude flutter oscillation within the operational envelope. The airplane was then flown with GBU-8 mounted on the decoupler pylon. The decoupler pylon is a NASA concept of passive wing-store flutter suppression achieved by providing a low store-pylon pitch frequency. The decoupler pylon successfully suppressed wing-store flutter throughout the flight envelope. A 37 percent increase in flutter velocity over the standard pylon was demonstrated. Maneuvers with load factors to 4g were performed. Although the static store displacements during maneuvers were not sufficiently large to be of concern, a store pitch alignment system was tested and performed successfully. One GBU-8 was ejected demonstrating that weapon separation from the decoupler pylon is normal.

  15. In-Flight Aeroelastic Stability of the Thermal Protection System on the NASA HIAD, Part I: Linear Theory

    NASA Technical Reports Server (NTRS)

    Goldman, Benjamin D.; Dowell, Earl H.; Scott, Robert C.

    2014-01-01

    Conical shell theory and piston theory aerodynamics are used to study the aeroelastic stability of the thermal protection system (TPS) on the NASA Hypersonic Inflatable Aerodynamic Decelerator (HIAD). Structural models of the TPS consist of single or multiple orthotropic conical shell systems resting on several circumferential linear elastic supports. The shells in each model may have pinned (simply-supported) or elastically-supported edges. The Lagrangian is formulated in terms of the generalized coordinates for all displacements and the Rayleigh-Ritz method is used to derive the equations of motion. The natural modes of vibration and aeroelastic stability boundaries are found by calculating the eigenvalues and eigenvectors of a large coefficient matrix. When the in-flight configuration of the TPS is approximated as a single shell without elastic supports, asymmetric flutter in many circumferential waves is observed. When the elastic supports are included, the shell flutters symmetrically in zero circumferential waves. Structural damping is found to be important in this case. Aeroelastic models that consider the individual TPS layers as separate shells tend to flutter asymmetrically at high dynamic pressures relative to the single shell models. Several parameter studies also examine the effects of tension, orthotropicity, and elastic support stiffness.

  16. Aeroelastic Optimization of Generalized Tube and Wing Aircraft Concepts Using HCDstruct Version 2.0

    NASA Technical Reports Server (NTRS)

    Quinlan, Jesse R.; Gern, Frank H.

    2017-01-01

    Major enhancements were made to the Higher-fidelity Conceptual Design and structural optimization (HCDstruct) tool developed at NASA Langley Research Center (LaRC). Whereas previous versions were limited to hybrid wing body (HWB) configurations, the current version of HCDstruct now supports the analysis of generalized tube and wing (TW) aircraft concepts. Along with significantly enhanced user input options for all air- craft configurations, these enhancements represent HCDstruct version 2.0. Validation was performed using a Boeing 737-200 aircraft model, for which primary structure weight estimates agreed well with available data. Additionally, preliminary analysis of the NASA D8 (ND8) aircraft concept was performed, highlighting several new features of the tool.

  17. AGARD Standard Aeroelastic Configurations for Dynamic Response I - Wing 445.6

    DTIC Science & Technology

    1988-07-01

    data for the AGARD 3D swept tapered standard configuration "Wing 445.6", along with related descriptive data of the model properties required for...model properties required for comparative flutter caliculations. As part of a cooperative AGARD-SMP programme, guided by the Sub-Committee on... properties needed for flutter calculations. Reference 4 contains all of the flutter data and required information with the exception of the mode

  18. Aeroelastic modeling of the active flexible wing wind-tunnel model

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Heeg, Jennifer; Bennett, Robert M.

    1991-01-01

    The primary issues involved in the generation of linear, state-space equations of motion of a flexible wind tunnel model, the Active Flexible Wing (AFW), are discussed. The codes that were used and their inherent assumptions and limitations are also briefly discussed. The application of the CAP-TSD code to the AFW for determination of the model's transonic flutter boundary is included as well.

  19. Ground and Flight Evaluation of a Small-Scale Inflatable-Winged Aircraft

    NASA Technical Reports Server (NTRS)

    Murray, James E.; Pahle, Joseph W.; Thornton, Stephen V.; Vogus, Shannon; Frackowiak, Tony; Mello, Joe; Norton, Brook; Bauer, Jeff (Technical Monitor)

    2002-01-01

    A small-scale, instrumented research aircraft was flown to investigate the night characteristics of innersole wings. Ground tests measured the static structural characteristics of the wing at different inflation pressures, and these results compared favorably with analytical predictions. A research-quality instrumentation system was assembled, largely from commercial off-the-shelf components, and installed in the aircraft. Initial flight operations were conducted with a conventional rigid wing having the same dimensions as the inflatable wing. Subsequent flights were conducted with the inflatable wing. Research maneuvers were executed to identify the trim, aerodynamic performance, and longitudinal stability and control characteristics of the vehicle in its different wing configurations. For the angle-of-attack range spanned in this flight program, measured flight data demonstrated that the rigid wing was an effective simulator of the lift-generating capability of the inflatable wing. In-flight inflation of the wing was demonstrated in three flight operations, and measured flight data illustrated the dynamic characteristics during wing inflation and transition to controlled lifting flight. Wing inflation was rapid and the vehicle dynamics during inflation and transition were benign. The resulting angles of attack and of sideslip ere small, and the dynamic response was limited to roll and heave motions.

  20. Physiological trade-off between cellular immunity and flight capability in the wing-dimorphic cricket, Gryllus firmus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sand cricket, Gryllus firmus, is a wing-dimorphic species with long-wing (LW) and short wing (LW) morphs. The LW forms have very well developed wings and flight muscles and their SW counterparts have reduced wings and flight muscles, coupled with greater resource allocations to reproduction. Thi...

  1. In-flight measurements of wing ice shapes and wing section drag increases caused by natural icing conditions

    NASA Technical Reports Server (NTRS)

    Mikkelsen, K.; Juhasz, N.; Ranaudo, R.; Mcknight, R.; Freedman, R.; Greissing, J.

    1986-01-01

    Aircraft icing flight research was performed in natural icing conditions with a twin engine computer type STOL aircraft. In-flight measurements were made of the icing cloud environment, the shape of the ice accretion on the wing, and the corresponding increase in the wing section drag. Results are presented for three icing encounters. On one flight, the wing section drag coefficient increased 35 percent over the uniced baseline for cruise conditions while a 43 percent increase was observed at an aircraft angle of attack of 6.2 degrees.

  2. Airloads, wakes, and aeroelasticity

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    1990-01-01

    Fundamental considerations regarding the theory of modeling of rotary wing airloads, wakes, and aeroelasticity are presented. The topics covered are: airloads and wakes, including lifting-line theory, wake models and nonuniform inflow, free wake geometry, and blade-vortex interaction; aerodynamic and wake models for aeroelasticity, including two-dimensional unsteady aerodynamics and dynamic inflow; and airloads and structural dynamics, including comprehensive airload prediction programs. Results of calculations and correlations are presented.

  3. Aeroelastic loads prediction for an arrow wing. Task 3: Evaluation of the Boeing three-dimensional leading-edge vortex code

    NASA Technical Reports Server (NTRS)

    Manro, M. E.

    1983-01-01

    Two separated flow computer programs and a semiempirical method for incorporating the experimentally measured separated flow effects into a linear aeroelastic analysis were evaluated. The three dimensional leading edge vortex (LEV) code is evaluated. This code is an improved panel method for three dimensional inviscid flow over a wing with leading edge vortex separation. The governing equations are the linear flow differential equation with nonlinear boundary conditions. The solution is iterative; the position as well as the strength of the vortex is determined. Cases for both full and partial span vortices were executed. The predicted pressures are good and adequately reflect changes in configuration.

  4. Wind Tunnel Analysis And Flight Test of A Wing Fence On A T-38

    DTIC Science & Technology

    2009-03-26

    WIND TUNNEL ANALYSIS AND FLIGHT TEST OF A WING FENCE ON A T-38 THESIS Michael D...GAE/ENY/09-M20 WIND TUNNEL ANALYSIS AND FLIGHT TEST OF A WING FENCE ON A T-38 THESIS Presented to the Faculty Department of...study and flight tests were performed to examine the effects of a wing fence on the T-38A. Wind tunnel results were based upon force and moment

  5. Improvement of the aerodynamic performance by wing flexibility and elytra–hind wing interaction of a beetle during forward flight

    PubMed Central

    Le, Tuyen Quang; Truong, Tien Van; Park, Soo Hyung; Quang Truong, Tri; Ko, Jin Hwan; Park, Hoon Cheol; Byun, Doyoung

    2013-01-01

    In this work, the aerodynamic performance of beetle wing in free-forward flight was explored by a three-dimensional computational fluid dynamics (CFDs) simulation with measured wing kinematics. It is shown from the CFD results that twist and camber variation, which represent the wing flexibility, are most important when determining the aerodynamic performance. Twisting wing significantly increased the mean lift and camber variation enhanced the mean thrust while the required power was lower than the case when neither was considered. Thus, in a comparison of the power economy among rigid, twisting and flexible models, the flexible model showed the best performance. When the positive effect of wing interaction was added to that of wing flexibility, we found that the elytron created enough lift to support its weight, and the total lift (48.4 mN) generated from the simulation exceeded the gravity force of the beetle (47.5 mN) during forward flight. PMID:23740486

  6. Wind Tunnel to Atmospheric Mapping for Static Aeroelastic Scaling

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Spain, Charles V.; Rivera, J. A.

    2004-01-01

    Wind tunnel to Atmospheric Mapping (WAM) is a methodology for scaling and testing a static aeroelastic wind tunnel model. The WAM procedure employs scaling laws to define a wind tunnel model and wind tunnel test points such that the static aeroelastic flight test data and wind tunnel data will be correlated throughout the test envelopes. This methodology extends the notion that a single test condition - combination of Mach number and dynamic pressure - can be matched by wind tunnel data. The primary requirements for affecting this extension are matching flight Mach numbers, maintaining a constant dynamic pressure scale factor and setting the dynamic pressure scale factor in accordance with the stiffness scale factor. The scaling is enabled by capabilities of the NASA Langley Transonic Dynamics Tunnel (TDT) and by relaxation of scaling requirements present in the dynamic problem that are not critical to the static aeroelastic problem. The methodology is exercised in two example scaling problems: an arbitrarily scaled wing and a practical application to the scaling of the Active Aeroelastic Wing flight vehicle for testing in the TDT.

  7. Transition Flight Experiments on a Swept Wing With Suction

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.; Collier, F. S., Jr.; Montoya, L. C.; Land, C. K.

    1989-01-01

    Flight experiments were conducted on a 30 degree swept wing with a perforated leading edge by systematically varying the location and amount of suction over a range of Mach number and Reynolds number. Suction was varied chordwise ahead of the front spar from either the front or rear direction by sealing spanwise perforated strips. Transition from laminar to turbulent flow was due to leading edge turbulence contamination or crossflow disturbance growth and/or Tollmien-Schlichting disturbance growth-depending on the test configuration, flight condition, and suction location. A state-of-the-art linear stability theory which accounts for body and streamline curvature and compressibility was used to study the boundary layer stability as suction location and magnitude varied. N-factor correlations with transition location were made for various suction configurations.

  8. Transition flight experiments on a swept wing with suction

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.; Land, C. K.; Collier, F. S.; Montoya, L. C.

    1989-01-01

    Flight experiments were conducted on a 30 degree swept wing with a perforated leading edge by systematically varying the location and amount of suction over a range of Mach number and Reynolds number. Suction was varied chordwise ahead of the front spar from either the front or rear direction by sealing spanwise perforated strips. Transition from laminar to turbulent flow was due to leading edge turbulence contamination or crossflow disturbance growth and/or Tollmien-Schlichting disturbance growth, depending on the test configuration, flight condition, and suction location. A state-of-the-art linear stability theory which accounts for body and streamline curvature and compressibility was used to study the boundary layer stability as suction location and magnitude varied. N-factor correlations with transition location were made for various suction configurations.

  9. Postnatal development in Andersen's leaf-nosed bat Hipposideros pomona: flight, wing shape, and wing bone lengths.

    PubMed

    Lin, Ai-Qing; Jin, Long-Ru; Shi, Li-Min; Sun, Ke-Ping; Berquist, Sean W; Liu, Ying; Feng, Jiang

    2011-04-01

    Postnatal changes in flight development, wing shape and wing bone lengths of 56 marked neonate Hipposideros pomona were investigated under natural conditions in southwest China. Flight experiments showed that pups began to flutter with a short horizontal displacement at 10 days and first took flight at 19 days, with most achieving sustained flight at 1 month old. Analysis of covariance on wingspan, wing area, and the other seven wing characteristics between 'pre-flight' and 'post-volancy' periods supports the hypothesis that growth had one 'pre-flight' trajectory and a different 'post-volancy' trajectory in bats. Wingspan, handwing length and area, armwing length and area, and total wing area increased linearly until the age of first flight, after which the growth rates decreased (all P < 0.001). Wing loading declined linearly until day 19 before ultimately decreasing to adult levels (P < 0.001). Additionally, the relationship of different pairwise combinations of bony components composing span-wise length and chord-wise length was evaluated to test the hypothesis that compensatory growth of wing bones in H. pomona occurred in both 'pre-flight' and 'post-volancy' periods. The frequency of short-long and long-short pairs was significantly greater than that of short-short, long-long pairs in most pairs of bone elements in adults. The results indicate that a bone 'shorter than expected' would be compensated by a bone or bones 'longer than expected', suggesting compensatory growth in H. pomona. The pairwise comparisons conducted in adults were also performed in young bats during 'pre-flight' and 'post-volancy' periods, demonstrating that compensatory growth occurred throughout postnatal ontogeny.

  10. Optimum Wing Shape Determination of Highly Flexible Morphing Aircraft for Improved Flight Performance

    NASA Technical Reports Server (NTRS)

    Su, Weihua; Swei, Sean Shan-Min; Zhu, Guoming G.

    2016-01-01

    In this paper, optimum wing bending and torsion deformations are explored for a mission adaptive, highly flexible morphing aircraft. The complete highly flexible aircraft is modeled using a strain-based geometrically nonlinear beam formulation, coupled with unsteady aerodynamics and six-degrees-of-freedom rigid-body motions. Since there are no conventional discrete control surfaces for trimming the flexible aircraft, the design space for searching the optimum wing geometries is enlarged. To achieve high performance flight, the wing geometry is best tailored according to the specific flight mission needs. In this study, the steady level flight and the coordinated turn flight are considered, and the optimum wing deformations with the minimum drag at these flight conditions are searched by utilizing a modal-based optimization procedure, subject to the trim and other constraints. The numerical study verifies the feasibility of the modal-based optimization approach, and shows the resulting optimum wing configuration and its sensitivity under different flight profiles.

  11. Aerostructures Test Wing (ATW) experiment in flight during an intentional failure

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This thirty second video shows the Aerostructures Test Wing (ATW) experiment, which consisted of an 18-inch carbon fiber test wing with surface-mounted pieizoelectric strain actuators, during intentional failure on April 24, 2001. The test wing was mounted on a special ventral flight test fixture and flown on Dryden's F-15B Research Testbed aircraft.

  12. Force measurements of flexible tandem wings in hovering and forward flights.

    PubMed

    Zheng, Yingying; Wu, Yanhua; Tang, Hui

    2015-02-06

    Aerodynamic forces, power consumptions and efficiencies of flexible and rigid tandem wings undergoing combined plunging/pitching motion were measured in a hovering flight and two forward flights with Strouhal numbers of 0.6 and 0.3. Three flexible dragonfly-like tandem wing models termed Wing I, Wing II, and Wing III which are progressively less flexible, as well as a pair of rigid wings as the reference were operated at three phase differences of 0°, 90° and 180°. The results showed that both the flexibility and phase difference have significant effects on the aerodynamic performances. In both hovering and forward flights at a higher oscillation frequency of 1 Hz (St = 0.6), the Wing III model outperformed the other wing models with larger total horizontal force coefficient and efficiency. In forward flight at the lower frequency of 0.5 Hz (St = 0.3), Wing III, rigid wings and Wing II models performed best at 0°, 90° and 180° phase difference, respectively. From the time histories of force coefficients of fore- and hind-wings, different peak values, phase lags, and secondary peaks were found to be the important reasons to cause the differences in the average horizontal force coefficients. Particle image velocimetry and deformation measurements were performed to provide the insights into how the flexibility affects the aerodynamic performance of the tandem wings. The spanwise bending deformation was found to contribute to the horizontal force, by offering a more beneficial position to make LEV more attached to the wing model in both hovering and forward flights, and inducing a higher-velocity region in forward flight.

  13. Fruit Flies Modulate Passive Wing Pitching to Generate In-Flight Turns

    NASA Astrophysics Data System (ADS)

    Bergou, Attila J.; Ristroph, Leif; Guckenheimer, John; Cohen, Itai; Wang, Z. Jane

    2010-04-01

    Flying insects execute aerial maneuvers through subtle manipulations of their wing motions. Here, we measure the free-flight kinematics of fruit flies and determine how they modulate their wing pitching to induce sharp turns. By analyzing the torques these insects exert to pitch their wings, we infer that the wing hinge acts as a torsional spring that passively resists the wing’s tendency to flip in response to aerodynamic and inertial forces. To turn, the insects asymmetrically change the spring rest angles to generate asymmetric rowing motions of their wings. Thus, insects can generate these maneuvers using only a slight active actuation that biases their wing motion.

  14. Three-Dimensional Aeroelastic and Aerothermoelastic Behavior in Hypersonic Flow

    NASA Technical Reports Server (NTRS)

    McNamara, Jack J.; Friedmann, Peretz P.; Powell, Kenneth G.; Thuruthimattam, Biju J.; Bartels, Robert E.

    2005-01-01

    The aeroelastic and aerothermoelastic behavior of three-dimensional configurations in hypersonic flow regime are studied. The aeroelastic behavior of a low aspect ratio wing, representative of a fin or control surface on a generic hypersonic vehicle, is examined using third order piston theory, Euler and Navier-Stokes aerodynamics. The sensitivity of the aeroelastic behavior generated using Euler and Navier-Stokes aerodynamics to parameters governing temporal accuracy is also examined. Also, a refined aerothermoelastic model, which incorporates the heat transfer between the fluid and structure using CFD generated aerodynamic heating, is used to examine the aerothermoelastic behavior of the low aspect ratio wing in the hypersonic regime. Finally, the hypersonic aeroelastic behavior of a generic hypersonic vehicle with a lifting-body type fuselage and canted fins is studied using piston theory and Euler aerodynamics for the range of 2.5 less than or equal to M less than or equal to 28, at altitudes ranging from 10,000 feet to 80,000 feet. This analysis includes a study on optimal mesh selection for use with Euler aerodynamics. In addition to the aeroelastic and aerothermoelastic results presented, three time domain flutter identification techniques are compared, namely the moving block approach, the least squares curve fitting method, and a system identification technique using an Auto-Regressive model of the aeroelastic system. In general, the three methods agree well. The system identification technique, however, provided quick damping and frequency estimations with minimal response record length, and therefore o ers significant reductions in computational cost. In the present case, the computational cost was reduced by 75%. The aeroelastic and aerothermoelastic results presented illustrate the applicability of the CFL3D code for the hypersonic flight regime.

  15. Some experiences in aircraft aeroelastic design using Preliminary Aeroelastic Design of Structures (PAD)

    NASA Technical Reports Server (NTRS)

    Radovcich, N. A.

    1984-01-01

    The design experience associated with a benchmark aeroelastic design of an out of production transport aircraft is discussed. Current work being performed on a high aspect ratio wing design is reported. The Preliminary Aeroelastic Design of Structures (PADS) system is briefly summarized and some operational aspects of generating the design in an automated aeroelastic design environment are discussed.

  16. The Redder the Better: Wing Color Predicts Flight Performance in Monarch Butterflies

    PubMed Central

    Davis, Andrew K.; Chi, Jean; Bradley, Catherine; Altizer, Sonia

    2012-01-01

    The distinctive orange and black wings of monarchs (Danaus plexippus) have long been known to advertise their bitter taste and toxicity to potential predators. Recent work also showed that both the orange and black coloration of this species can vary in response to individual-level and environmental factors. Here we examine the relationship between wing color and flight performance in captive-reared monarchs using a tethered flight mill apparatus to quantify butterfly flight speed, duration and distance. In three different experiments (totaling 121 individuals) we used image analysis to measure body size and four wing traits among newly-emerged butterflies prior to flight trials: wing area, aspect ratio (length/width), melanism, and orange hue. Results showed that monarchs with darker orange (approaching red) wings flew longer distances than those with lighter orange wings in analyses that controlled for sex and other morphometric traits. This finding is consistent with past work showing that among wild monarchs, those sampled during the fall migration are darker in hue (redder) than non-migratory monarchs. Together, these results suggest that pigment deposition onto wing scales during metamorphosis could be linked with traits that influence flight, such as thorax muscle size, energy storage or metabolism. Our results reinforce an association between wing color and flight performance in insects that is suggested by past studies of wing melansim and seasonal polyphenism, and provide an important starting point for work focused on mechanistic links between insect movement and color. PMID:22848463

  17. Power of the wingbeat: modelling the effects of flapping wings in vertebrate flight

    PubMed Central

    Heerenbrink, M. Klein; Johansson, L. C.; Hedenström, A.

    2015-01-01

    Animal flight performance has been studied using models developed for man-made aircraft. For an aeroplane with fixed wings, the energetic cost as a function of flight speed can be expressed in terms of weight, wing span, wing area and body area, where more details are included in proportionality coefficients. Flying animals flap their wings to produce thrust. Adopting the fixed wing flight model implicitly incorporates the effects of wing flapping in the coefficients. However, in practice, these effects have been ignored. In this paper, the effects of reciprocating wing motion on the coefficients of the fixed wing aerodynamic power model for forward flight are explicitly formulated in terms of thrust requirement, wingbeat frequency and stroke-plane angle, for optimized wingbeat amplitudes. The expressions are obtained by simulating flights over a large parameter range using an optimal vortex wake method combined with a low-level blade element method. The results imply that previously assumed acceptable values for the induced power factor might be strongly underestimated. The results also show the dependence of profile power on wing kinematics. The expressions introduced in this paper can be used to significantly improve animal flight models. PMID:27547098

  18. Power of the wingbeat: modelling the effects of flapping wings in vertebrate flight.

    PubMed

    Heerenbrink, M Klein; Johansson, L C; Hedenström, A

    2015-05-08

    Animal flight performance has been studied using models developed for man-made aircraft. For an aeroplane with fixed wings, the energetic cost as a function of flight speed can be expressed in terms of weight, wing span, wing area and body area, where more details are included in proportionality coefficients. Flying animals flap their wings to produce thrust. Adopting the fixed wing flight model implicitly incorporates the effects of wing flapping in the coefficients. However, in practice, these effects have been ignored. In this paper, the effects of reciprocating wing motion on the coefficients of the fixed wing aerodynamic power model for forward flight are explicitly formulated in terms of thrust requirement, wingbeat frequency and stroke-plane angle, for optimized wingbeat amplitudes. The expressions are obtained by simulating flights over a large parameter range using an optimal vortex wake method combined with a low-level blade element method. The results imply that previously assumed acceptable values for the induced power factor might be strongly underestimated. The results also show the dependence of profile power on wing kinematics. The expressions introduced in this paper can be used to significantly improve animal flight models.

  19. The redder the better: wing color predicts flight performance in monarch butterflies.

    PubMed

    Davis, Andrew K; Chi, Jean; Bradley, Catherine; Altizer, Sonia

    2012-01-01

    The distinctive orange and black wings of monarchs (Danaus plexippus) have long been known to advertise their bitter taste and toxicity to potential predators. Recent work also showed that both the orange and black coloration of this species can vary in response to individual-level and environmental factors. Here we examine the relationship between wing color and flight performance in captive-reared monarchs using a tethered flight mill apparatus to quantify butterfly flight speed, duration and distance. In three different experiments (totaling 121 individuals) we used image analysis to measure body size and four wing traits among newly-emerged butterflies prior to flight trials: wing area, aspect ratio (length/width), melanism, and orange hue. Results showed that monarchs with darker orange (approaching red) wings flew longer distances than those with lighter orange wings in analyses that controlled for sex and other morphometric traits. This finding is consistent with past work showing that among wild monarchs, those sampled during the fall migration are darker in hue (redder) than non-migratory monarchs. Together, these results suggest that pigment deposition onto wing scales during metamorphosis could be linked with traits that influence flight, such as thorax muscle size, energy storage or metabolism. Our results reinforce an association between wing color and flight performance in insects that is suggested by past studies of wing melansim and seasonal polyphenism, and provide an important starting point for work focused on mechanistic links between insect movement and color.

  20. Aeroelastic Analysis of SUGAR Truss-Braced Wing Wind-Tunnel Model Using FUN3D and a Nonlinear Structural Model

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.; Scott, Robert C.; Allen, Timothy J.; Sexton, Bradley W.

    2015-01-01

    Considerable attention has been given in recent years to the design of highly flexible aircraft. The results of numerous studies demonstrate the significant performance benefits of strut-braced wing (SBW) and trussbraced wing (TBW) configurations. Critical aspects of the TBW configuration are its larger aspect ratio, wing span and thinner wings. These aspects increase the importance of considering fluid/structure and control system coupling. This paper presents high-fidelity Navier-Stokes simulations of the dynamic response of the flexible Boeing Subsonic Ultra Green Aircraft Research (SUGAR) truss-braced wing wind-tunnel model. The latest version of the SUGAR TBW finite element model (FEM), v.20, is used in the present simulations. Limit cycle oscillations (LCOs) of the TBW wing/strut/nacelle are simulated at angle-of-attack (AoA) values of -1, 0 and +1 degree. The modal data derived from nonlinear static aeroelastic MSC.Nastran solutions are used at AoAs of -1 and +1 degrees. The LCO amplitude is observed to be dependent on AoA. LCO amplitudes at -1 degree are larger than those at +1 degree. The LCO amplitude at zero degrees is larger than either -1 or +1 degrees. These results correlate well with both wind-tunnel data and the behavior observed in previous studies using linear aerodynamics. The LCO onset at zero degrees AoA has also been computed using unloaded v.20 FEM modes. While the v.20 model increases the dynamic pressure at which LCO onset is observed, it is found that the LCO onset at and above Mach 0.82 is much different than that produced by an earlier version of the FEM, v. 19.

  1. Wing plan forms for high-speed flight

    NASA Technical Reports Server (NTRS)

    Jones, Robert J

    1947-01-01

    It is pointed out that, in the case of an airfoil of infinite aspect ratio moving at an angle of sideslip, the pressure distribution is determined solely by that component of the motion in a direction normal to the leading edge. It follows that the attachment of plane waves to the airfoil at near-sonic or supersonic speeds (Ackeret theory) may be avoided and the pressure drag may be reduced by the use of plan forms in which the angle of sweepback is greater than the Mach angle. The analysis indicates that for aerodynamic efficiency, wings designed for flight at supersonic speeds should be swept back at an angle greater than the Mach angle, and the angle of sweepback should be such that the component of velocity normal to the leading edge is less than the critical speed of the airfoil sections. This principle may also be applied to wings designed for subsonic speeds near the speed of sound, for which the induced velocities resulting from the thickness might otherwise be sufficiently great to cause shock waves.

  2. The influence of flight style on the aerodynamic properties of avian wings as fixed lifting surfaces

    PubMed Central

    Dimitriadis, Grigorios; Nudds, Robert L.

    2016-01-01

    The diversity of wing morphologies in birds reflects their variety of flight styles and the associated aerodynamic and inertial requirements. Although the aerodynamics underlying wing morphology can be informed by aeronautical research, important differences exist between planes and birds. In particular, birds operate at lower, transitional Reynolds numbers than do most aircraft. To date, few quantitative studies have investigated the aerodynamic performance of avian wings as fixed lifting surfaces and none have focused upon the differences between wings from different flight style groups. Dried wings from 10 bird species representing three distinct flight style groups were mounted on a force/torque sensor within a wind tunnel in order to test the hypothesis that wing morphologies associated with different flight styles exhibit different aerodynamic properties. Morphological differences manifested primarily as differences in drag rather than lift. Maximum lift coefficients did not differ between groups, whereas minimum drag coefficients were lowest in undulating flyers (Corvids). The lift to drag ratios were lower than in conventional aerofoils and data from free-flying soaring species; particularly in high frequency, flapping flyers (Anseriformes), which do not rely heavily on glide performance. The results illustrate important aerodynamic differences between the wings of different flight style groups that cannot be explained solely by simple wing-shape measures. Taken at face value, the results also suggest that wing-shape is linked principally to changes in aerodynamic drag, but, of course, it is aerodynamics during flapping and not gliding that is likely to be the primary driver. PMID:27781155

  3. The influence of flight style on the aerodynamic properties of avian wings as fixed lifting surfaces.

    PubMed

    Lees, John J; Dimitriadis, Grigorios; Nudds, Robert L

    2016-01-01

    The diversity of wing morphologies in birds reflects their variety of flight styles and the associated aerodynamic and inertial requirements. Although the aerodynamics underlying wing morphology can be informed by aeronautical research, important differences exist between planes and birds. In particular, birds operate at lower, transitional Reynolds numbers than do most aircraft. To date, few quantitative studies have investigated the aerodynamic performance of avian wings as fixed lifting surfaces and none have focused upon the differences between wings from different flight style groups. Dried wings from 10 bird species representing three distinct flight style groups were mounted on a force/torque sensor within a wind tunnel in order to test the hypothesis that wing morphologies associated with different flight styles exhibit different aerodynamic properties. Morphological differences manifested primarily as differences in drag rather than lift. Maximum lift coefficients did not differ between groups, whereas minimum drag coefficients were lowest in undulating flyers (Corvids). The lift to drag ratios were lower than in conventional aerofoils and data from free-flying soaring species; particularly in high frequency, flapping flyers (Anseriformes), which do not rely heavily on glide performance. The results illustrate important aerodynamic differences between the wings of different flight style groups that cannot be explained solely by simple wing-shape measures. Taken at face value, the results also suggest that wing-shape is linked principally to changes in aerodynamic drag, but, of course, it is aerodynamics during flapping and not gliding that is likely to be the primary driver.

  4. Aeroelastic Optimization Study Based on X-56A Model

    NASA Technical Reports Server (NTRS)

    Li, Wesley; Pak, Chan-Gi

    2014-01-01

    A design process which incorporates the object-oriented multidisciplinary design, analysis, and optimization (MDAO) tool and the aeroelastic effects of high fidelity finite element models to characterize the design space was successfully developed and established. Two multidisciplinary design optimization studies using an object-oriented MDAO tool developed at NASA Armstrong Flight Research Center were presented. The first study demonstrates the use of aeroelastic tailoring concepts to minimize the structural weight while meeting the design requirements including strength, buckling, and flutter. A hybrid and discretization optimization approach was implemented to improve accuracy and computational efficiency of a global optimization algorithm. The second study presents a flutter mass balancing optimization study. The results provide guidance to modify the fabricated flexible wing design and move the design flutter speeds back into the flight envelope so that the original objective of X-56A flight test can be accomplished.

  5. Aeroelastic Optimization Study Based on the X-56A Model

    NASA Technical Reports Server (NTRS)

    Li, Wesley W.; Pak, Chan-Gi

    2014-01-01

    One way to increase the aircraft fuel efficiency is to reduce structural weight while maintaining adequate structural airworthiness, both statically and aeroelastically. A design process which incorporates the object-oriented multidisciplinary design, analysis, and optimization (MDAO) tool and the aeroelastic effects of high fidelity finite element models to characterize the design space was successfully developed and established. This paper presents two multidisciplinary design optimization studies using an object-oriented MDAO tool developed at NASA Armstrong Flight Research Center. The first study demonstrates the use of aeroelastic tailoring concepts to minimize the structural weight while meeting the design requirements including strength, buckling, and flutter. Such an approach exploits the anisotropic capabilities of the fiber composite materials chosen for this analytical exercise with ply stacking sequence. A hybrid and discretization optimization approach improves accuracy and computational efficiency of a global optimization algorithm. The second study presents a flutter mass balancing optimization study for the fabricated flexible wing of the X-56A model since a desired flutter speed band is required for the active flutter suppression demonstration during flight testing. The results of the second study provide guidance to modify the wing design and move the design flutter speeds back into the flight envelope so that the original objective of X-56A flight test can be accomplished successfully. The second case also demonstrates that the object-oriented MDAO tool can handle multiple analytical configurations in a single optimization run.

  6. Flexible Wing Model for Structural Sizing and Multidisciplinary Design Optimization of a Strut-Braced Wing

    NASA Technical Reports Server (NTRS)

    Gern, Frank H.; Naghshineh, Amir H.; Sulaeman, Erwin; Kapania, Rakesh K.; Haftka, Raphael T.

    2000-01-01

    This paper describes a structural and aeroelastic model for wing sizing and weight calculation of a strut-braced wing. The wing weight is calculated using a newly developed structural weight analysis module considering the special nature of strut-braced wings. A specially developed aeroelastic model enables one to consider wing flexibility and spanload redistribution during in-flight maneuvers. The structural model uses a hexagonal wing-box featuring skin panels, stringers, and spar caps, whereas the aerodynamics part employs a linearized transonic vortex lattice method. Thus, the wing weight may be calculated from the rigid or flexible wing spanload. The calculations reveal the significant influence of the strut on the bending material weight of the wing. The use of a strut enables one to design a wing with thin airfoils without weight penalty. The strut also influences wing spanload and deformations. Weight savings are not only possible by calculation and iterative resizing of the wing structure according to the actual design loads. Moreover, as an advantage over the cantilever wing, employment of the strut twist moment for further load alleviation leads to increased savings in structural weight.

  7. Vertical distribution, flight behaviour and evolution of wing morphology in Morpho butterflies.

    PubMed

    Devries, P J; Penz, Carla M; Hill, Ryan I

    2010-09-01

    1. Flight is a key innovation in the evolution of insects that is crucial to their dispersal, migration, territoriality, courtship and predator avoidance. Male butterflies have characteristic territoriality and courtship flight behaviours, and females use a characteristic flight behaviour when searching for host plants. This implies that selection acts on wing morphology to maximize flight performance for conducting important behaviours among sexes. 2. Butterflies in the genus Morpho are obvious components of neotropical forests, and many observations indicate that they show two broad categories of flight behaviour and flight height. Although species can be categorized as using gliding or flapping flight, and flying at either canopy or understorey height, the association of flight behaviour and flight height with wing shape evolution has never been explored. 3. Two clades within Morpho differ in flight behaviour and height. Males and females of one clade inhabit the forest understorey and use flapping flight, whereas in the other clade, males use gliding flight at canopy level and females use flapping flight in both canopy and understorey. 4. We used independent contrasts to answer whether wing shape is associated with flight behaviour and height. Given a single switch to canopy habitation and gliding flight, we compared contrasts for the node at which the switch to canopy flight occurred with the distribution of values in the two focal clades. We found significant changes in wing shape at the transition to canopy flight only in males, and no change in size for either sex. A second node within the canopy clade suggests that other factors may also be involved in wing shape evolution. Our results reinforce the hypothesis that natural selection acts differently on male and female butterfly wing shape and indicate that the transition to canopy flight cannot explain all wing shape diversity in Morpho. 5. This study provides a starting point for characterizing evolution

  8. Pressure Distribution over the Wings of an MB-3 Airplane in Flight

    NASA Technical Reports Server (NTRS)

    Norton, F H

    1925-01-01

    This investigation was carried out to determine the distribution of load over the wings of a high speed airplane under all conditions of flight. In particular it was desired to find the pressure distribution during level flight, over the portions of the wings in the slipstream and, during violent maneuvers, over the entire wing surface. The method used consisted in connecting a number of holes in the surface of the wings to recording multiple manometers mounted in the fuselage of the airplane. In this way simultaneous records could be taken on all of the holes for any desired length of time. (author)

  9. Effect of wing loading, aspect ratio, and span loading of flight performances

    NASA Technical Reports Server (NTRS)

    Gothert, B

    1940-01-01

    An investigation is made of the possible improvements in maximum, cruising, and climbing speeds attainable through increase in the wing loading. The decrease in wing area was considered for the two cases of constant aspect ratio and constant span loading. For a definite flight condition, an investigation is made to determine what loss in flight performance must be sustained if, for given reasons, certain wing loadings are not to be exceeded. With the aid of these general investigations, the trend with respect to wing loading is indicated and the requirements to be imposed on the landing aids are discussed

  10. Free flight odor tracking in Drosophila: Effect of wing chemosensors, sex and pheromonal gene regulation

    PubMed Central

    Houot, Benjamin; Gigot, Vincent; Robichon, Alain; Ferveur, Jean-François

    2017-01-01

    The evolution of powered flight in insects had major consequences for global biodiversity and involved the acquisition of adaptive processes allowing individuals to disperse to new ecological niches. Flies use both vision and olfactory input from their antennae to guide their flight; chemosensors on fly wings have been described, but their function remains mysterious. We studied Drosophila flight in a wind tunnel. By genetically manipulating wing chemosensors, we show that these structures play an essential role in flight performance with a sex-specific effect. Pheromonal systems are also involved in Drosophila flight guidance: transgenic expression of the pheromone production and detection gene, desat1, produced low, rapid flight that was absent in control flies. Our study suggests that the sex-specific modulation of free-flight odor tracking depends on gene expression in various fly tissues including wings and pheromonal-related tissues. PMID:28067325

  11. Avian wing geometry and kinematics of a free-flying barn owl in flapping flight

    NASA Astrophysics Data System (ADS)

    Wolf, Thomas; Konrath, Robert

    2015-02-01

    This paper presents results of high-resolution three-dimensional wing shape measurements performed on free-flying barn owls in flapping flight. The applied measurement technique is introduced together with a moving camera set-up, allowing for an investigation of the free flapping flight of birds with high spatial and temporal resolution. Based on the three-dimensional surface data, a methodology for parameterizing the wing profile along with wing kinematics during flapping flight has been developed. This allowed a description of the spanwise varying kinematics and aerodynamic parameters (e.g. effective angles of attack, camber, thickness) of the wing in dependence on the flapping phase. The results are discussed in detail using the data of a single flight, whereas a comparison of some kinematic parameters obtained from different flights is given too.

  12. Clap and fling mechanism with interacting porous wings in tiny insect flight.

    PubMed

    Santhanakrishnan, Arvind; Robinson, Alice K; Jones, Shannon; Low, Audrey Ann; Gadi, Sneha; Hedrick, Tyson L; Miller, Laura A

    2014-11-01

    The aerodynamics of flapping flight for the smallest insects such as thrips is often characterized by a 'clap and fling' of the wings at the end of the upstroke and the beginning of the downstroke. These insects fly at Reynolds numbers (Re) of the order of 10 or less where viscous effects are significant. Although this wing motion is known to augment the lift generated during flight, the drag required to fling the wings apart at this scale is an order of magnitude larger than the corresponding force acting on a single wing. As the opposing forces acting normal to each wing nearly cancel during the fling, these large forces do not have a clear aerodynamic benefit. If flight efficiency is defined as the ratio of lift to drag, the clap and fling motion dramatically reduces efficiency relative to the case of wings that do not aerodynamically interact. In this paper, the effect of a bristled wing characteristic of many of these insects was investigated using computational fluid dynamics. We performed 2D numerical simulations using a porous version of the immersed boundary method. Given the computational complexity involved in modeling flow through exact descriptions of bristled wings, the wing was modeled as a homogeneous porous layer as a first approximation. High-speed video recordings of free-flying thrips in take-off flight were captured in the laboratory, and an analysis of the wing kinematics was performed. This information was used for the estimation of input parameters for the simulations. Compared with a solid wing (without bristles), the results of the study show that the porous nature of the wings contributes largely to drag reduction across the Re range explored. The aerodynamic efficiency, calculated as the ratio of lift to drag coefficients, was larger for some porosities when compared with solid wings.

  13. Biplane wing planform and flight performance of the feathered dinosaur Microraptor gui

    PubMed Central

    Chatterjee, Sankar; Templin, R. Jack

    2007-01-01

    Microraptor gui, a four-winged dromaeosaur from the Early Cretaceous of China, provides strong evidence for an arboreal-gliding origin of avian flight. It possessed asymmetric flight feathers not only on the manus but also on the pes. A previously published reconstruction shows that the hindwing of Microraptor supported by a laterally extended leg would have formed a second pair of wings in tetrapteryx fashion. However, this wing design conflicts with known theropod limb joints that entail a parasagittal posture of the hindlimb. Here, we offer an alternative planform of the hindwing of Microraptor that is concordant with its feather orientation for producing lift and normal theropod hindlimb posture. In this reconstruction, the wings of Microraptor could have resembled a staggered biplane configuration during flight, where the forewing formed the dorsal wing and the metatarsal wing formed the ventral one. The contour feathers on the tibia were positioned posteriorly, oriented in a vertical plane for streamlining that would reduce the drag considerably. Leg feathers are present in many fossil dromaeosaurs, early birds, and living raptors, and they play an important role in flight during catching and carrying prey. A computer simulation of the flight performance of Microraptor suggests that its biplane wings were adapted for undulatory “phugoid” gliding between trees, where the horizontal feathered tail offered additional lift and stability and controlled pitch. Like the Wright 1903 Flyer, Microraptor, a gliding relative of early birds, took to the air with two sets of wings. PMID:17242354

  14. Biplane wing planform and flight performance of the feathered dinosaur Microraptor gui.

    PubMed

    Chatterjee, Sankar; Templin, R Jack

    2007-01-30

    Microraptor gui, a four-winged dromaeosaur from the Early Cretaceous of China, provides strong evidence for an arboreal-gliding origin of avian flight. It possessed asymmetric flight feathers not only on the manus but also on the pes. A previously published reconstruction shows that the hindwing of Microraptor supported by a laterally extended leg would have formed a second pair of wings in tetrapteryx fashion. However, this wing design conflicts with known theropod limb joints that entail a parasagittal posture of the hindlimb. Here, we offer an alternative planform of the hindwing of Microraptor that is concordant with its feather orientation for producing lift and normal theropod hindlimb posture. In this reconstruction, the wings of Microraptor could have resembled a staggered biplane configuration during flight, where the forewing formed the dorsal wing and the metatarsal wing formed the ventral one. The contour feathers on the tibia were positioned posteriorly, oriented in a vertical plane for streamlining that would reduce the drag considerably. Leg feathers are present in many fossil dromaeosaurs, early birds, and living raptors, and they play an important role in flight during catching and carrying prey. A computer simulation of the flight performance of Microraptor suggests that its biplane wings were adapted for undulatory "phugoid" gliding between trees, where the horizontal feathered tail offered additional lift and stability and controlled pitch. Like the Wright 1903 Flyer, Microraptor, a gliding relative of early birds, took to the air with two sets of wings.

  15. The barn owl wing: an inspiration for silent flight in the aviation industry?

    NASA Astrophysics Data System (ADS)

    Bachmann, Thomas; Mühlenbruch, Georg; Wagner, Hermann

    2011-04-01

    Barn owls are specialists in prey detection using acoustic information. The flight apparatus of this bird of prey is most efficiently adapted to the hunting behavior by reducing flight noise. An understanding of the underlying mechanisms owls make use of could help minimize the noise disturbances in airport or wind power plant neighborhood. Here, we characterize wings of barn owls in terms of an airfoil as a role model for studying silent flight. This characterization includes surface and edge specialization (serrations, fringes) evolved by the owl. Furthermore, we point towards possible adaptations of either noise suppression or air flow control that might be an inspiration for the construction of modern aircraft. Three-dimensional imaging techniques such as surface digitizing, computed tomography and confocal laser scanning microscopy were used to investigate the wings and feathers in high spatial resolution. We show that wings of barn owls are huge in relation to their body mass resulting in a very low wing loading which in turn enables a slow flight and an increased maneuverability. Profiles of the wing are highly cambered and anteriorly thickened, especially at the proximal wing, leading to high lift production during flight. However, wind tunnel experiments showed that the air flow tends to separate at such wing configurations, especially at low-speed flight. Barn owls compensated this problem by evolving surface and edge modifications that stabilize the air flow. A quantitative three-dimensionally characterization of some of these structures is presented.

  16. Effects of structural flexibility of wings in flapping flight of butterfly.

    PubMed

    Senda, Kei; Obara, Takuya; Kitamura, Masahiko; Yokoyama, Naoto; Hirai, Norio; Iima, Makoto

    2012-06-01

    The objective of this paper is to clarify the effects of structural flexibility of wings of a butterfly in flapping flight. For this purpose, a dynamics model of a butterfly is derived by Lagrange's method, where the butterfly is considered as a rigid multi-body system. The panel method is employed to simulate the flow field and the aerodynamic forces acting on the wings. The mathematical model is validated by the agreement of the numerical result with the experimentally measured data. Then, periodic orbits of flapping-of-wings flights are parametrically searched in order to fly the butterfly models. Almost periodic orbits are found, but they are unstable. Deformation of the wings is modeled in two ways. One is bending and its effect on the aerodynamic forces is discussed. The other is passive wing torsion caused by structural flexibility. Numerical simulations demonstrate that flexible torsion reduces the flight instability.

  17. Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies.

    PubMed

    Zheng, Lingxiao; Hedrick, Tyson L; Mittal, Rajat

    2013-01-01

    Insect wings can undergo significant chordwise (camber) as well as spanwise (twist) deformation during flapping flight but the effect of these deformations is not well understood. The shape and size of butterfly wings leads to particularly large wing deformations, making them an ideal test case for investigation of these effects. Here we use computational models derived from experiments on free-flying butterflies to understand the effect of time-varying twist and camber on the aerodynamic performance of these insects. High-speed videogrammetry is used to capture the wing kinematics, including deformation, of a Painted Lady butterfly (Vanessa cardui) in untethered, forward flight. These experimental results are then analyzed computationally using a high-fidelity, three-dimensional, unsteady Navier-Stokes flow solver. For comparison to this case, a set of non-deforming, flat-plate wing (FPW) models of wing motion are synthesized and subjected to the same analysis along with a wing model that matches the time-varying wing-twist observed for the butterfly, but has no deformation in camber. The simulations show that the observed butterfly wing (OBW) outperforms all the flat-plate wings in terms of usable force production as well as the ratio of lift to power by at least 29% and 46%, respectively. This increase in efficiency of lift production is at least three-fold greater than reported for other insects. Interestingly, we also find that the twist-only-wing (TOW) model recovers much of the performance of the OBW, demonstrating that wing-twist, and not camber is key to forward flight in these insects. The implications of this on the design of flapping wing micro-aerial vehicles are discussed.

  18. Determination of the Profile Drag of an Airplane Wing in Flight at High Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Bicknell, Joseph

    1939-01-01

    Flight tests were made to determine the profile-drag coefficients of a portion of the original wing surface of an all-metal airplane and of a portion of the wing made aerodynamically smooth and more nearly fair than the original section. The wing section was approximately the NACA 2414.5. The tests were carried out over a range of airplane speeds giving a maximum Reynolds number of 15,000,000. Tests were also carried out to locate the point of transition from laminar to turbulent boundary layer and to determine the velocity distribution along the upper surface of the wing. The profile-drag coefficients of the original and of the smooth wing portions at a Reynolds number of 15,000,000 were 0.0102 and 0.0068, respectively; i.e., the surface irregularities on the original wing increased the profile-drag coefficient 50 percent above that of the smooth wing.

  19. An analytical study of effects of aeroelasticity on control effectiveness

    NASA Technical Reports Server (NTRS)

    Mehrotra, S. C.

    1975-01-01

    Structural influence coefficients were calculated for various wing planforms using the KU Aeroelastic and NASTRAN programs. The resulting matrices are compared with experimental results. Conclusions are given.

  20. Cold rearing improves cold-flight performance in Drosophila via changes in wing morphology.

    PubMed

    Frazier, Melanie R; Harrison, Jon F; Kirkton, Scott D; Roberts, Stephen P

    2008-07-01

    We use a factorial experimental design to test whether rearing at colder temperatures shifts the lower thermal envelope for flight of Drosophila melanogaster Meigen to colder temperatures. D. melanogaster that developed in colder temperatures (15 degrees C) had a significant flight advantage in cold air compared to flies that developed in warmer temperatures (28 degrees C). At 14 degrees C, cold-reared flies failed to perform a take-off flight approximately 47% of the time whereas warm-reared flies failed approximately 94% of the time. At 18 degrees C, cold- and warm-reared flies performed equally well. We also compared several traits in cold- and warm-developing flies to determine if cold-developing flies had better flight performance at cold temperatures due to changes in body mass, wing length, wing loading, relative flight muscle mass or wing-beat frequency. The improved ability to fly at low temperatures was associated with a dramatic increase in wing area and an increase in wing length (after controlling for wing area). Flies that developed at 15 degrees C had approximately 25% more wing area than similarly sized flies that developed at 28 degrees C. Cold-reared flies had slower wing-beat frequencies than similarly sized flies from warmer developmental environments, whereas other traits did not vary with developmental temperature. These results demonstrate that developmental plasticity in wing dimensions contributes to the improved flight performance of D. melanogaster at cold temperatures, and ultimately, may help D. melanogaster live in a wide range of thermal environments.

  1. Flight Investigation of Wing-gun Fairings on a Fighter Type Airplane

    NASA Technical Reports Server (NTRS)

    White, M D

    1941-01-01

    Description is given of flight tests conducted on gun fairings, designed to correct the detrimental effects of the projecting and submerged wing guns on an F4F-3 fighter. It was found that the installation of unfaired guns on a clean wing resulted in a premature stall that increased the stalling speed in the carrier-approach and landing conditions of flight by suitably fairing the guns, it was possible to reduce the stalling speeds to values approaching very nearly the clean-wing values.

  2. Subspace Iteration Method for Complex Eigenvalue Problems with Nonsymmetric Matrices in Aeroelastic System

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi; Lung, Shun-fat

    2009-01-01

    Modern airplane design is a multidisciplinary task which combines several disciplines such as structures, aerodynamics, flight controls, and sometimes heat transfer. Historically, analytical and experimental investigations concerning the interaction of the elastic airframe with aerodynamic and in retia loads have been conducted during the design phase to determine the existence of aeroelastic instabilities, so called flutter .With the advent and increased usage of flight control systems, there is also a likelihood of instabilities caused by the interaction of the flight control system and the aeroelastic response of the airplane, known as aeroservoelastic instabilities. An in -house code MPASES (Ref. 1), modified from PASES (Ref. 2), is a general purpose digital computer program for the analysis of the closed-loop stability problem. This program used subroutines given in the International Mathematical and Statistical Library (IMSL) (Ref. 3) to compute all of the real and/or complex conjugate pairs of eigenvalues of the Hessenberg matrix. For high fidelity configuration, these aeroelastic system matrices are large and compute all eigenvalues will be time consuming. A subspace iteration method (Ref. 4) for complex eigenvalues problems with nonsymmetric matrices has been formulated and incorporated into the modified program for aeroservoelastic stability (MPASES code). Subspace iteration method only solve for the lowest p eigenvalues and corresponding eigenvectors for aeroelastic and aeroservoelastic analysis. In general, the selection of p is ranging from 10 for wing flutter analysis to 50 for an entire aircraft flutter analysis. The application of this newly incorporated code is an experiment known as the Aerostructures Test Wing (ATW) which was designed by the National Aeronautic and Space Administration (NASA) Dryden Flight Research Center, Edwards, California to research aeroelastic instabilities. Specifically, this experiment was used to study an instability

  3. Aerodynamics, sensing and control of insect-scale flapping-wing flight.

    PubMed

    Shyy, Wei; Kang, Chang-Kwon; Chirarattananon, Pakpong; Ravi, Sridhar; Liu, Hao

    2016-02-01

    There are nearly a million known species of flying insects and 13 000 species of flying warm-blooded vertebrates, including mammals, birds and bats. While in flight, their wings not only move forward relative to the air, they also flap up and down, plunge and sweep, so that both lift and thrust can be generated and balanced, accommodate uncertain surrounding environment, with superior flight stability and dynamics with highly varied speeds and missions. As the size of a flyer is reduced, the wing-to-body mass ratio tends to decrease as well. Furthermore, these flyers use integrated system consisting of wings to generate aerodynamic forces, muscles to move the wings, and sensing and control systems to guide and manoeuvre. In this article, recent advances in insect-scale flapping-wing aerodynamics, flexible wing structures, unsteady flight environment, sensing, stability and control are reviewed with perspective offered. In particular, the special features of the low Reynolds number flyers associated with small sizes, thin and light structures, slow flight with comparable wind gust speeds, bioinspired fabrication of wing structures, neuron-based sensing and adaptive control are highlighted.

  4. Aerodynamics, sensing and control of insect-scale flapping-wing flight

    PubMed Central

    Shyy, Wei; Kang, Chang-kwon; Chirarattananon, Pakpong; Ravi, Sridhar; Liu, Hao

    2016-01-01

    There are nearly a million known species of flying insects and 13 000 species of flying warm-blooded vertebrates, including mammals, birds and bats. While in flight, their wings not only move forward relative to the air, they also flap up and down, plunge and sweep, so that both lift and thrust can be generated and balanced, accommodate uncertain surrounding environment, with superior flight stability and dynamics with highly varied speeds and missions. As the size of a flyer is reduced, the wing-to-body mass ratio tends to decrease as well. Furthermore, these flyers use integrated system consisting of wings to generate aerodynamic forces, muscles to move the wings, and sensing and control systems to guide and manoeuvre. In this article, recent advances in insect-scale flapping-wing aerodynamics, flexible wing structures, unsteady flight environment, sensing, stability and control are reviewed with perspective offered. In particular, the special features of the low Reynolds number flyers associated with small sizes, thin and light structures, slow flight with comparable wind gust speeds, bioinspired fabrication of wing structures, neuron-based sensing and adaptive control are highlighted. PMID:27118897

  5. Flight Testing of Novel Compliant Spines for Passive Wing Morphing on Ornithopters

    NASA Technical Reports Server (NTRS)

    Wissa, Aimy; Guerreiro, Nelson; Grauer, Jared; Altenbuchner, Cornelia; Hubbard, James E., Jr.; Tummala, Yashwanth; Frecker, Mary; Roberts, Richard

    2013-01-01

    Unmanned Aerial Vehicles (UAVs) are proliferating in both the civil and military markets. Flapping wing UAVs, or ornithopters, have the potential to combine the agility and maneuverability of rotary wing aircraft with excellent performance in low Reynolds number flight regimes. The purpose of this paper is to present new free flight experimental results for an ornithopter equipped with one degree of freedom (1DOF) compliant spines that were designed and optimized in terms of mass, maximum von-Mises stress, and desired wing bending deflections. The spines were inserted in an experimental ornithopter wing spar in order to achieve a set of desired kinematics during the up and down strokes of a flapping cycle. The ornithopter was flown at Wright Patterson Air Force Base in the Air Force Research Laboratory Small Unmanned Air Systems (SUAS) indoor flight facility. Vicon motion tracking cameras were used to track the motion of the vehicle for five different wing configurations. The effect of the presence of the compliant spine on wing kinematics and leading edge spar deflection during flight is presented. Results show that the ornithopter with the compliant spine inserted in its wing reduced the body acceleration during the upstroke which translates into overall lift gains.

  6. Development and flight tests of a gyro-less wing leveler and directional autopilot

    NASA Technical Reports Server (NTRS)

    Garner, H. D.; Poole, H. E.

    1974-01-01

    A gyro-less wing leveler and directional autopilot were developed and flight tested in a single-engine light airplane. The primary purpose of the project was to develop a simple, reliable, low-cost stability augmentation and autopilot system for light aircraft. The wing leveler used a fluidic inertial rate sensor, electronic signal processing circuitry, and vacuum operated servos. A strap-down magnetic heading reference of simple design provided the wing leveler with directional autopilot capability. Flight tests indicated that the performance of the gyro-less wing leveler was equal to that of a commercial wing leveler using a gyroscopic rate sensor. Drift-free, long-term, heading-hold capability of the magnetic heading reference was demonstrated.

  7. Bioinspired morphing wings for extended flight envelope and roll control of small drones

    PubMed Central

    Heitz, G.; Noca, F.; Floreano, D.

    2017-01-01

    Small-winged drones can face highly varied aerodynamic requirements, such as high manoeuvrability for flight among obstacles and high wind resistance for constant ground speed against strong headwinds that cannot all be optimally addressed by a single aerodynamic profile. Several bird species solve this problem by changing the shape of their wings to adapt to the different aerodynamic requirements. Here, we describe a novel morphing wing design composed of artificial feathers that can rapidly modify its geometry to fulfil different aerodynamic requirements. We show that a fully deployed configuration enhances manoeuvrability while a folded configuration offers low drag at high speeds and is beneficial in strong headwinds. We also show that asymmetric folding of the wings can be used for roll control of the drone. The aerodynamic performance of the morphing wing is characterized in simulations, in wind tunnel measurements and validated in outdoor flights with a small drone. PMID:28163882

  8. Flight test and numerical simulation of transonic flow around YAV-8B Harrier II wing

    NASA Technical Reports Server (NTRS)

    Gea, Lie-Mine; Chyu, Wei J.; Stortz, Michael W.; Roberts, Andrew C.; Chow, Chuen-Yen

    1991-01-01

    A computational fluid dynamics (CFD) method is used to study the aerodynamics of the YAV-8B Harrier II wing in the transonic region. A numerical procedure is developed to compute the flow field around the complicated wing-pylon-fairing geometry. The surface definition of the wing and pylons were obtained from direct measurement using theodolite triangulation. A thin-layer Navier-Stokes code with the Chimera technique is used to compute flow solutions. The computed pressure distributions at several span stations are compared with flight test data and show good agreement. Computed results are correlated with flight test data that show the flow is severely separated in the vicinity of the wing-pylon junction. Analysis shows that shock waves are induced by pylon swaybrace fairings, that the flow separation is much stronger at the outboard pylon and that the separation is caused mainly by the crossflow passing the geometry of wing-pylon junction.

  9. Bioinspired morphing wings for extended flight envelope and roll control of small drones.

    PubMed

    Di Luca, M; Mintchev, S; Heitz, G; Noca, F; Floreano, D

    2017-02-06

    Small-winged drones can face highly varied aerodynamic requirements, such as high manoeuvrability for flight among obstacles and high wind resistance for constant ground speed against strong headwinds that cannot all be optimally addressed by a single aerodynamic profile. Several bird species solve this problem by changing the shape of their wings to adapt to the different aerodynamic requirements. Here, we describe a novel morphing wing design composed of artificial feathers that can rapidly modify its geometry to fulfil different aerodynamic requirements. We show that a fully deployed configuration enhances manoeuvrability while a folded configuration offers low drag at high speeds and is beneficial in strong headwinds. We also show that asymmetric folding of the wings can be used for roll control of the drone. The aerodynamic performance of the morphing wing is characterized in simulations, in wind tunnel measurements and validated in outdoor flights with a small drone.

  10. Details of insect wing design and deformation enhance aerodynamic function and flight efficiency.

    PubMed

    Young, John; Walker, Simon M; Bomphrey, Richard J; Taylor, Graham K; Thomas, Adrian L R

    2009-09-18

    Insect wings are complex structures that deform dramatically in flight. We analyzed the aerodynamic consequences of wing deformation in locusts using a three-dimensional computational fluid dynamics simulation based on detailed wing kinematics. We validated the simulation against smoke visualizations and digital particle image velocimetry on real locusts. We then used the validated model to explore the effects of wing topography and deformation, first by removing camber while keeping the same time-varying twist distribution, and second by removing camber and spanwise twist. The full-fidelity model achieved greater power economy than the uncambered model, which performed better than the untwisted model, showing that the details of insect wing topography and deformation are important aerodynamically. Such details are likely to be important in engineering applications of flapping flight.

  11. Static Aeroelasticity in Combat Aircraft.

    DTIC Science & Technology

    1986-01-01

    aircraft design. Fuselage flexibility is, in general , a secondary consideration. The relatively high density of this structural component, designed to...representation of the structure. An effective beam representation of the total panel stiffness is generally applicable and appropriate for these needs and...loading effect Is to produce zero wing lift, but a large leading-edge-up wing torque. Aeroelastically, a significant wing lift is generated as the

  12. Peak-Seeking Optimization of Spanwise Lift Distribution for Wings in Formation Flight

    NASA Technical Reports Server (NTRS)

    Hanson, Curtis E.; Ryan, Jack

    2012-01-01

    A method is presented for the in-flight optimization of the lift distribution across the wing for minimum drag of an aircraft in formation flight. The usual elliptical distribution that is optimal for a given wing with a given span is no longer optimal for the trailing wing in a formation due to the asymmetric nature of the encountered flow field. Control surfaces along the trailing edge of the wing can be configured to obtain a non-elliptical profile that is more optimal in terms of minimum combined induced and profile drag. Due to the difficult-to-predict nature of formation flight aerodynamics, a Newton-Raphson peak-seeking controller is used to identify in real time the best aileron and flap deployment scheme for minimum total drag. Simulation results show that the peak-seeking controller correctly identifies an optimal trim configuration that provides additional drag savings above those achieved with conventional anti-symmetric aileron trim.

  13. Flight test results from a supercritical mission adaptive wing with smooth variable camber

    NASA Technical Reports Server (NTRS)

    Powers, Sheryll Goecke; Webb, Lannie D.; Friend, Edward L.; Lokos, William A.

    1992-01-01

    The mission adaptive wing (MAW) consisted of leading- and trailing-edge variable-camber surfaces that could be deflected in flight to provide a near-ideal wing camber shape for any flight condition. These surfaces featured smooth, flexible upper surfaces and fully enclosed lower surfaces, distinguishing them from conventional flaps that have discontinuous surfaces and exposed or semiexposed mechanisms. Camber shape was controlled by either a manual or automatic flight control system. The wing and aircraft were extensively instrumented to evaluate the local flow characteristics and the total aircraft performance. This paper discusses the interrelationships between the wing pressure, buffet, boundary-layer and flight deflection measurement system analyses and describes the flight maneuvers used to obtain the data. The results are for a wing sweep of 26 deg, a Mach number of 0.85, leading and trailing-edge cambers (delta(sub LE/TE)) of 0/2 and 5/10, and angles of attack from 3.0 deg to 14.0 deg. For the well-behaved flow of the delta(sub LE/TE) = 0/2 camber, a typical cruise camber shape, the local and global data are in good agreement with respect to the flow properties of the wing. For the delta(sub LE/TE) = 5/10 camber, a maneuvering camber shape, the local and global data have similar trends and conclusions, but not the clear-cut agreement observed for cruise camber.

  14. A wing-assisted running robot and implications for avian flight evolution.

    PubMed

    Peterson, K; Birkmeyer, P; Dudley, R; Fearing, R S

    2011-12-01

    DASH+Wings is a small hexapedal winged robot that uses flapping wings to increase its locomotion capabilities. To examine the effects of flapping wings, multiple experimental controls for the same locomotor platform are provided by wing removal, by the use of inertially similar lateral spars, and by passive rather than actively flapping wings. We used accelerometers and high-speed cameras to measure the performance of this hybrid robot in both horizontal running and while ascending inclines. To examine consequences of wing flapping for aerial performance, we measured lift and drag forces on the robot at constant airspeeds and body orientations in a wind tunnel; we also determined equilibrium glide performance in free flight. The addition of flapping wings increased the maximum horizontal running speed from 0.68 to 1.29 m s⁻¹, and also increased the maximum incline angle of ascent from 5.6° to 16.9°. Free flight measurements show a decrease of 10.3° in equilibrium glide slope between the flapping and gliding robot. In air, flapping improved the mean lift:drag ratio of the robot compared to gliding at all measured body orientations and airspeeds. Low-amplitude wing flapping thus provides advantages in both cursorial and aerial locomotion. We note that current support for the diverse theories of avian flight origins derive from limited fossil evidence, the adult behavior of extant flying birds, and developmental stages of already volant taxa. By contrast, addition of wings to a cursorial robot allows direct evaluation of the consequences of wing flapping for locomotor performance in both running and flying.

  15. CFD for applications to aircraft aeroelasticity

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.

    1989-01-01

    Strong interactions of structures and fluids are common in many engineering environments. Such interactions can give rise to physically important phenomena such as those occurring for aircraft due to aeroelasticity. Aeroelasticity can significantly influence the safe performance of aircraft. At present exact methods are available for making aeroelastic computations when flows are in either the linear subsonic or supersonic range. However, for complex flows containing shock waves, vortices and flow separations, computational methods are still under development. Several phenomena that can be dangerous and limit the performance of an aircraft occur due to the interaction of these complex flows with flexible aircraft components such as wings. For example, aircraft with highly swept wings experience vortex induced aeroelastic oscillations. Correct understanding of these complex aeroelastic phenomena requires direct coupling of fluids and structural equations. Here, a summary is presented of the development of such coupled methods and applications to aeroelasticity since about 1978 to present. The successful use of the transonic small perturbation theory (TSP) coupled with structures is discussed. This served as a major stepping stone for the current stage of aeroelasticity using computational fluid dynamics. The need for the use of more exact Euler/Navier-Stokes (ENS) equations for aeroelastic problems is explained. The current development of unsteady aerodynamic and aeroelastic procedures based on the ENS equations are discussed. Aeroelastic results computed using both TSP and ENS equations are discussed.

  16. Efficient flapping flight using flexible wings oscillating at resonance

    NASA Astrophysics Data System (ADS)

    Alexeev, Alexander; Masoud, Hassan

    2010-11-01

    Using a fully-coupled computational approach that integrates the lattice Boltzmann and lattice spring models, we investigate the three-dimensional aerodynamics of flexible flapping wings at resonance. The wings are tilted from the horizontal and oscillate vertically driven by a force applied at the wing root. Our simulations reveal that resonance oscillations drastically enhance the aerodynamic efficiency of low-Reynolds-number plunging, and yield lift and lift-to-weight ratio comparable to the values typical for small insects. Within the resonance band, we identify two flapping regimes leading to the maximum lift and the maximum efficiency, which are characterized by different bending modes of flexible flapping wings. Our results indicate the feasibility of using flexible wings driven by a simple harmonic stroke for designing efficient microscale flying machines.

  17. Flight parameters monitoring system for tracking structural integrity of rotary-wing aircraft

    NASA Technical Reports Server (NTRS)

    Mohammadi, Jamshid; Olkiewicz, Craig

    1994-01-01

    Recent developments in advanced monitoring systems used in conjunction with tracking structural integrity of rotary-wing aircraft are explained. The paper describes: (1) an overview of rotary-wing aircraft flight parameters that are critical to the aircraft loading conditions and each parameter's specific requirements in terms of data collection and processing; (2) description of the monitoring system and its functions used in a survey of rotary-wing aircraft; and (3) description of the method of analysis used for the data. The paper presents a newly-developed method in compiling flight data. The method utilizes the maneuver sequence of events in several pre-identified flight conditions to describe various flight parameters at three specific weight ranges.

  18. Aeroelastic Model Structure Computation for Envelope Expansion

    NASA Technical Reports Server (NTRS)

    Kukreja, Sunil L.

    2007-01-01

    Structure detection is a procedure for selecting a subset of candidate terms, from a full model description, that best describes the observed output. This is a necessary procedure to compute an efficient system description which may afford greater insight into the functionality of the system or a simpler controller design. Structure computation as a tool for black-box modeling may be of critical importance in the development of robust, parsimonious models for the flight-test community. Moreover, this approach may lead to efficient strategies for rapid envelope expansion that may save significant development time and costs. In this study, a least absolute shrinkage and selection operator (LASSO) technique is investigated for computing efficient model descriptions of non-linear aeroelastic systems. The LASSO minimises the residual sum of squares with the addition of an l(Sub 1) penalty term on the parameter vector of the traditional l(sub 2) minimisation problem. Its use for structure detection is a natural extension of this constrained minimisation approach to pseudo-linear regression problems which produces some model parameters that are exactly zero and, therefore, yields a parsimonious system description. Applicability of this technique for model structure computation for the F/A-18 (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) Active Aeroelastic Wing project using flight test data is shown for several flight conditions (Mach numbers) by identifying a parsimonious system description with a high percent fit for cross-validated data.

  19. Predicting Unsteady Aeroelastic Behavior

    NASA Technical Reports Server (NTRS)

    Strganac, Thomas W.; Mook, Dean T.

    1990-01-01

    New method for predicting subsonic flutter, static deflections, and aeroelastic divergence developed. Unsteady aerodynamic loads determined by unsteady-vortex-lattice method. Accounts for aspect ratio and angle of attack. Equations for motion of wing and flow field solved iteratively and simultaneously. Used to predict transient responses to initial disturbances, and to predict steady-state static and oscillatory responses. Potential application for research in such unsteady structural/flow interactions as those in windmills, turbines, and compressors.

  20. Utilization of Optimization for Design of Morphing Wing Structures for Enhanced Flight

    NASA Astrophysics Data System (ADS)

    Detrick, Matthew Scott

    Conventional aircraft control surfaces constrain maneuverability. This work is a comprehensive study that looks at both smart material and conventional actuation methods to achieve wing twist to potentially improve flight capability using minimal actuation energy while allowing minimal wing deformation under aerodynamic loading. A continuous wing is used in order to reduce drag while allowing the aircraft to more closely approximate the wing deformation used by birds while loitering. The morphing wing for this work consists of a skin supported by an underlying truss structure whose goal is to achieve a given roll moment using less actuation energy than conventional control surfaces. A structural optimization code has been written in order to achieve minimal wing deformation under aerodynamic loading while allowing wing twist under actuation. The multi-objective cost function for the optimization consists of terms that ensure small deformation under aerodynamic loading, small change in airfoil shape during wing twist, a linear variation of wing twist along the length of the wing, small deviation from the desired wing twist, minimal number of truss members, minimal wing weight, and minimal actuation energy. Hydraulic cylinders and a two member linkage driven by a DC motor are tested separately to provide actuation. Since the goal of the current work is simply to provide a roll moment, only one actuator is implemented along the wing span. Optimization is also used to find the best location within the truss structure for the actuator. The active structure produced by optimization is then compared to simulated and experimental results from other researchers as well as characteristics of conventional aircraft.

  1. Exploratory Studies in Generalized Predictive Control for Active Aeroelastic Control of Tiltrotor Aircraft

    NASA Technical Reports Server (NTRS)

    Kvaternik, Raymond G.; Juang, Jer-Nan; Bennett, Richard L.

    2000-01-01

    The Aeroelasticity Branch at NASA Langley Research Center has a long and substantive history of tiltrotor aeroelastic research. That research has included a broad range of experimental investigations in the Langley Transonic Dynamics Tunnel (TDT) using a variety of scale models and the development of essential analyses. Since 1994, the tiltrotor research program has been using a 1/5-scale, semispan aeroelastic model of the V-22 designed and built by Bell Helicopter Textron Inc. (BHTI) in 1981. That model has been refurbished to form a tiltrotor research testbed called the Wing and Rotor Aeroelastic Test System (WRATS) for use in the TDT. In collaboration with BHTI, studies under the current tiltrotor research program are focused on aeroelastic technology areas having the potential for enhancing the commercial and military viability of tiltrotor aircraft. Among the areas being addressed, considerable emphasis is being directed to the evaluation of modern adaptive multi-input multi- output (MIMO) control techniques for active stability augmentation and vibration control of tiltrotor aircraft. As part of this investigation, a predictive control technique known as Generalized Predictive Control (GPC) is being studied to assess its potential for actively controlling the swashplate of tiltrotor aircraft to enhance aeroelastic stability in both helicopter and airplane modes of flight. This paper summarizes the exploratory numerical and experimental studies that were conducted as part of that investigation.

  2. Biologically-Inspired Anisotropic Flexible Wing for Optimal Flapping Flight

    DTIC Science & Technology

    2013-07-01

    flapping wing MAV with parameters similar to several biological systems like the bumblebee, hawkmoth, and hummingbird was identified and used as the...have been measure. Leading edge pivot produces much higher force that trailing edge pivot. Also at high pitch rates the flow evolution is more two...small synthetic wings which were biologically inspired by hummingbirds as they are comparable in size, shape, and flapping frequency. The focus was

  3. A Taguchi study of the aeroelastic tailoring design process

    NASA Technical Reports Server (NTRS)

    Bohlmann, Jonathan D.; Scott, Robert C.

    1991-01-01

    A Taguchi study was performed to determine the important players in the aeroelastic tailoring design process and to find the best composition of the optimization's objective function. The Wing Aeroelastic Synthesis Procedure (TSO) was used to ascertain the effects that factors such as composite laminate constraints, roll effectiveness constraints, and built-in wing twist and camber have on the optimum, aeroelastically tailored wing skin design. The results show the Taguchi method to be a viable engineering tool for computational inquiries, and provide some valuable lessons about the practice of aeroelastic tailoring.

  4. Enhanced flight performance by genetic manipulation of wing shape in Drosophila

    PubMed Central

    Ray, Robert P.; Nakata, Toshiyuki; Henningsson, Per; Bomphrey, Richard J.

    2016-01-01

    Insect wing shapes are remarkably diverse and the combination of shape and kinematics determines both aerial capabilities and power requirements. However, the contribution of any specific morphological feature to performance is not known. Using targeted RNA interference to modify wing shape far beyond the natural variation found within the population of a single species, we show a direct effect on flight performance that can be explained by physical modelling of the novel wing geometry. Our data show that altering the expression of a single gene can significantly enhance aerial agility and that the Drosophila wing shape is not, therefore, optimized for certain flight performance characteristics that are known to be important. Our technique points in a new direction for experiments on the evolution of performance specialities in animals. PMID:26926954

  5. Flight Simulations of a Two-Dimensional Flapping Wing by the Ib-Lbm

    NASA Astrophysics Data System (ADS)

    Kimura, Yusuke; Suzuki, Kosuke; Inamuro, Takaji

    2014-01-01

    The stability of flight by flapping wings is investigated by using the immersed boundary-lattice Boltzmann method (IB-LBM). First, the rotational motion with an initial small disturbance is computed, and it is found that the rotational motion is unstable for high Reynolds numbers. Second, we show simple ways to control the rotational and translational motion by bending or flapping the tip of the wing.

  6. Low Dimensional Analysis of Wing Surface Morphology in Hummingbird Free Flight

    NASA Astrophysics Data System (ADS)

    Shallcross, Gregory; Ren, Yan; Liu, Geng; Dong, Haibo; Tobalske, Bret

    2015-11-01

    Surface morphing in flapping wings is a hallmark of bird flight. In current work, the role of dynamic wing morphing of a free flying hummingbird is studied in detail. A 3D image-based surface reconstruction method is used to obtain the kinematics and deformation of hummingbird wings from high-quality high-speed videos. The observed wing surface morphing is highly complex and a number of modeling methods including singular value decomposition (SVD) are used to obtain the fundamental kinematical modes with distinct motion features. Their aerodynamic roles are investigated by conducting immersed-boundary-method based flow simulations. The results show that the chord-wise deformation modes play key roles in the attachment of leading-edge vortex, thus improve the performance of the flapping wings. This work is supported by NSF CBET-1313217 and AFOSR FA9550-12-1-0071.

  7. Determination of stores pointing error due to wing flexibility under flight load

    NASA Technical Reports Server (NTRS)

    Lokos, William A.; Bahm, Catherine M.; Heinle, Robert A.

    1995-01-01

    The in-flight elastic wing twist of a fighter-type aircraft was studied to provide for an improved on-board real-time computed prediction of pointing variations of three wing store stations. This is an important capability to correct sensor pod alignment variation or to establish initial conditions of iron bombs or smart weapons prior to release. The original algorithm was based upon coarse measurements. The electro-optical Flight Deflection Measurement System measured the deformed wing shape in flight under maneuver loads to provide a higher resolution database from which an improved twist prediction algorithm could be developed. The FDMS produced excellent repeatable data. In addition, a NASTRAN finite-element analysis was performed to provide additional elastic deformation data. The FDMS data combined with the NASTRAN analysis indicated that an improved prediction algorithm could be derived by using a different set of aircraft parameters, namely normal acceleration, stores configuration, Mach number, and gross weight.

  8. New Insights on Insect's Silent Flight. Part I: Vortex Dynamics and Wing Morphing

    NASA Astrophysics Data System (ADS)

    Ren, Yan; Liu, Geng; Dong, Haibo; Geng, Biao; Zheng, Xudong; Xue, Qian

    2016-11-01

    Insects are capable of conducting silent flights. This is attributed to its specially designed wing material properties for the control of vibration and surface morphing during the flapping flight. In current work, we focus on the roles of dynamic wing morphing on the unsteady vortex dynamics of a cicada in steady flight. A 3D image-based surface reconstruction method is used to obtain kinematical and morphological data of cicada wings from high-quality high-speed videos. The observed morphing wing kinematics is highly complex and a singular value decomposition method is used to decompose the wing motion to several dominant modes with distinct motion features. A high-fidelity immersed-boundary-based flow solver is then used to study the vortex dynamics in details. The results show that vortical structures closely relate to the morphing mode, which plays key role in the development and attachment of leading-edge vortex (LEV), thus helps the silent flapping of the cicada wings. This work is supported by AFOSR FA9550-12-1-0071 and NSF CBET-1313217.

  9. NASA rotor systems research aircraft: Fixed-wing configuration flight-test results

    NASA Technical Reports Server (NTRS)

    Erickson, R. E.; Cross, J. L.; Kufeld, R. M.; Acree, C. W.; Nguyen, D.; Hodge, R. W.

    1986-01-01

    The fixed-wing, airplane configuration flight-test results of the Rotor System Research Aircraft (RSRA), NASA 740, at Ames/Dryden Flight Research Center are documented. Fourteen taxi and flight tests were performed from December 1983 to October 1984. This was the first time the RSRA was flown with the main rotor removed; the tail rotor was installed. These tests confirmed that the RSRA is operable as a fixed-wing aircraft. Data were obtained for various takeoff and landing distances, control sensitivity, trim and dynamics stability characteristics, performance rotor-hub drag, and acoustics signature. Stability data were obtained with the rotor hub both installed and removed. The speed envelope was developed to 261 knots true airspeed (KTAS), 226 knots calibrated airspeed (KCAS) at 10,000 ft density altitude. The airplane was configured at 5 deg. wing incidence with 5 deg. wing flaps as a normal configuration. Level-flight data were acquired at 167 KCAS for wing incidence from 0 to 10 deg. Step inputs and doublet inputs of various magnitudes were utilized to acquire dynamic stability and control sensitivity data. Sine-wave inputs of constantly increasing frequency were used to generate parameter identification data. The maximum load factor attained was 2.34 g at 206 KCAS.

  10. Oblique wing transonic transport configuration development

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Studies of transport aircraft designed for boom-free supersonic flight show the variable sweep oblique wing to be the most efficient configuration for flight at low supersonic speeds. Use of this concept leads to a configuration that is lighter, quieter, and more fuel efficient than symmetric aircraft designed for the same mission. Aerodynamic structural, weight, aeroelastic and flight control studies show the oblique wing concept to be technically feasible. Investigations are reported for wing planform and thickness, pivot design and weight estimation, engine cycle (bypass ratio), and climb, descent and reserve fuel. Results are incorporated into a final configuration. Performance, weight, and balance characteristics are evaluated. Flight control requirements are reviewed, and areas in which further research is needed are identified.

  11. Development of Micro Air Vehicle Technology With In-Flight Adaptive-Wing Structure

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R. (Technical Monitor); Shkarayev, Sergey; Null, William; Wagner, Matthew

    2004-01-01

    This is a final report on the research studies, "Development of Micro Air Vehicle Technology with In-Flight Adaptrive-Wing Structure". This project involved the development of variable-camber technology to achieve efficient design of micro air vehicles. Specifically, it focused on the following topics: 1) Low Reynolds number wind tunnel testing of cambered-plate wings. 2) Theoretical performance analysis of micro air vehicles. 3) Design of a variable-camber MAV actuated by micro servos. 4) Test flights of a variable-camber MAV.

  12. Investigation of aeroelastic stability phenomena of a helicopter by in-flight shake test

    NASA Technical Reports Server (NTRS)

    Miao, W. L.; Edwards, T.; Brandt, D. E.

    1976-01-01

    The analytical capability of the helicopter stability program is discussed. The parameters which are found to be critical to the air resonance characteristics of the soft in-plane hingeless rotor systems are detailed. A summary of two model test programs, a 1/13.8 Froude-scaled BO-105 model and a 1.67 meter (5.5 foot) diameter Froude-scaled YUH-61A model, are presented with emphasis on the selection of the final parameters which were incorporated in the full scale YUH-61A helicopter. Model test data for this configuration are shown. The actual test results of the YUH-61A air resonance in-flight shake test stability are presented. Included are a concise description of the test setup, which employs the Grumman Automated Telemetry System (ATS), the test technique for recording in-flight stability, and the test procedure used to demonstrate favorable stability characteristics with no in-plane damping augmentation (lag damper removed). The data illustrating the stability trend of air resonance with forward speed and the stability trend of ground resonance for percent airborne are presented.

  13. Wing kinematics measurement and aerodynamics of a dragonfly in turning flight.

    PubMed

    Li, Chengyu; Dong, Haibo

    2017-02-03

    This study integrates high-speed photogrammetry, 3D surface reconstruction, and computational fluid dynamics to explore a dragonfly (Erythemis Simplicicollis) in free flight. Asymmetric wing kinematics and the associated aerodynamic characteristics of a turning dragonfly are analyzed in detail. Quantitative measurements of wing kinematics show that compared to the outer wings, the inner wings sweep more slowly with a higher angle of attack during the downstroke, whereas they flap faster with a lower angle of attack during the upstroke. The inner-outer asymmetries of wing deviations result in an oval wingtip trajectory for the inner wings and a figure-eight wingtip trajectory for the outer wings. Unsteady aerodynamics calculations indicate significantly asymmetrical force production between the inner and outer wings, especially for the forewings. Specifically, the magnitude of the drag force on the inner forewing is approximately 2.8 times greater than that on the outer forewing during the downstroke. In the upstroke, the outer forewing generates approximately 1.9 times greater peak thrust than the inner forewing. To keep the body aloft, the forewings contribute approximately 64% of the total lift, whereas the hindwings provide 36%. The effect of forewing-hindwing interaction on the aerodynamic performance is also examined. It is found that the hindwings can benefit from this interaction by decreasing power consumption by 13% without sacrificing force generation.

  14. Interaction between the fore- and hind-wings in hovering flight of modelled dragonfly

    NASA Astrophysics Data System (ADS)

    Kweon, Jihoon; Choi, Haecheon

    2009-11-01

    In the present study, we investigate the interaction between the fore- and hind-wings in hovering flight of modelled dragonfly using 3D numerical simulation. The three-dimensional wing shape is based on that of Aeschna juncea (Norberg 1972) and numerically realized using an immersed boundary method (Kim et al. 2001). The wing flapping motion is modelled using a sinusoidal function and the stroke plane angle is 60^o. We consider 12 different phase differences between the fore- and hind-wings (φ=0^o ˜ 330^o). The Reynolds number is 1,000 based on the maximum translational velocity and mean chord length. In counter stroke (φ=180^o), the wing-tip vortices from both wings are connected, generating an entangled wing-tip vortex (e-WTV). A strong downward motion induced by this vortex decreases the vertical force in the following stroke (Kweon & Choi 2008). In parallel stroke (φ=0^o), both wings meet e-WTV during the upstroke and thus the decrease of vertical force is small. At φ=270^o, although e-WTV is generated on a relatively narrow region, the hind-wing moves downward along with e-WTV, resulting in a significant reduction of vertical force on the hind-wing. Therefore, the sum of vertical forces on both wings is maximum with parallel stroke and minimum at φ=270^o. The power required has a similar trend to the vertical force and thus the efficiency does not show a large variation with the phase difference.

  15. Flapping and fixed wing aerodynamics of low Reynolds number flight vehicles

    NASA Astrophysics Data System (ADS)

    Viieru, Dragos

    Lately, micro air vehicles (MAVs), with a maximum dimension of 15 cm and nominal flight speed around 10m/s, have attracted interest from scientific and engineering communities due to their potential to perform desirable flight missions and exhibit unconventional aerodynamics, control, and structural characteristics, compared to larger flight vehicles. Since MAVs operate at a Reynolds number of 105 or lower, the lift-to-drag ratio is noticeably lower than the larger manned flight vehicles. The light weight and low flight speed cause MAVs to be sensitive to wind gusts. The MAV's small overall dimensions result in low aspect ratio wings with strong wing tip vortices that further complicate the aerodynamics of such vehicles. In this work, two vehicle concepts are considered, namely, fixed wings with flexible structure aimed at passive shape control, and flapping wings aimed at enhancing aerodynamic performance using unsteady flow fields. A finite volume, pressure-based Navier-Stokes solver along with moving grid algorithms is employed to simulate the flow field. The coupled fluid-structural dynamics of the flexible wing is treated using a hyperelastic finite element structural model, the above-mentioned fluid solver via the moving grid technique, and the geometric conservation law. Three dimensional aerodynamics around a low aspect ratio wing for both rigid and flexible structures and fluid-structure interactions for flexible structures have been investigated. In the Reynolds numbers range of 7x10 4 to 9x104, the flexible wing exhibits self-initiated vibrations even in steady free-stream, and is found to have a similar performance to the identical rigid wing for modest angles of attack. For flapping wings, efforts are made to improve our understanding of the unsteady fluid physics related to the lift generation mechanism at low Reynolds numbers (75 to 1,700). Alternative moving grid algorithms, capable of handling the large movements of the boundaries (characteristic

  16. Rotorcraft aeroelastic stability

    NASA Technical Reports Server (NTRS)

    Ormiston, Robert A.; Warmbrodt, William G.; Hodges, Dewey H.; Peters, David A.

    1988-01-01

    Theoretical and experimental developments in the aeroelastic and aeromechanical stability of helicopters and tilt-rotor aircraft are addressed. Included are the underlying nonlinear structural mechanics of slender rotating beams, necessary for accurate modeling of elastic cantilever rotor blades, and the development of dynamic inflow, an unsteady aerodynamic theory for low-frequency aeroelastic stability applications. Analytical treatment of isolated rotor stability in hover and forward flight, coupled rotor-fuselage stability in hover and forward flight, and analysis of tilt-rotor dynamic stability are considered. Results of parametric investigations of system behavior are presented, and correlation between theoretical results and experimental data from small and large scale wind tunnel and flight testing are discussed.

  17. Flapping Wings of an Inclined Stroke Angle: Experiments and Reduced-Order Models in Dual Aerial/Aquatic Flight

    NASA Astrophysics Data System (ADS)

    Izraelevitz, Jacob; Triantafyllou, Michael

    2016-11-01

    Flapping wings in nature demonstrate a large force actuation envelope, with capabilities beyond the limits of static airfoil section coefficients. Puffins, guillemots, and other auks particularly showcase this mechanism, as they are able to both generate both enough thrust to swim and lift to fly, using the same wing, by changing the wing motion trajectory. The wing trajectory is therefore an additional design criterion to be optimized along with traditional aircraft parameters, and could possibly enable dual aerial/aquatic flight. We showcase finite aspect-ratio flapping wing experiments, dynamic similarity arguments, and reduced-order models for predicting the performance of flapping wings that carry out complex motion trajectories.

  18. Identification of Spey engine dynamics in the augmentor wing jet STOL research aircraft from flight data

    NASA Technical Reports Server (NTRS)

    Dehoff, R. L.; Reed, W. B.; Trankle, T. L.

    1977-01-01

    The development and validation of a spey engine model is described. An analysis of the dynamical interactions involved in the propulsion unit is presented. The model was reduced to contain only significant effects, and was used, in conjunction with flight data obtained from an augmentor wing jet STOL research aircraft, to develop initial estimates of parameters in the system. The theoretical background employed in estimating the parameters is outlined. The software package developed for processing the flight data is described. Results are summarized.

  19. Dipteran wing motor-inspired flapping flight versatility and effectiveness enhancement

    PubMed Central

    Harne, R. L.; Wang, K. W.

    2015-01-01

    Insects are a prime source of inspiration towards the development of small-scale, engineered, flapping wing flight systems. To help interpret the possible energy transformation strategies observed in Diptera as inspiration for mechanical flapping flight systems, we revisit the perspective of the dipteran wing motor as a bistable click mechanism and take a new, and more flexible, outlook to the architectural composition previously considered. Using a representative structural model alongside biological insights and cues from nonlinear dynamics, our analyses and experimental results reveal that a flight mechanism able to adjust motor axial support stiffness and compression characteristics may dramatically modulate the amplitude range and type of wing stroke dynamics achievable. This corresponds to significantly more versatile aerodynamic force generation without otherwise changing flapping frequency or driving force amplitude. Whether monostable or bistable, the axial stiffness is key to enhance compressed motor load bearing ability and aerodynamic efficiency, particularly compared with uncompressed linear motors. These findings provide new foundation to guide future development of bioinspired, flapping wing mechanisms for micro air vehicle applications, and may be used to provide insight to the dipteran muscle-to-wing interface. PMID:25608517

  20. Pointed wings, low wingloading and calm air reduce migratory flight costs in songbirds.

    PubMed

    Bowlin, Melissa S; Wikelski, Martin

    2008-05-14

    Migratory bird, bat and insect species tend to have more pointed wings than non-migrants. Pointed wings and low wingloading, or body mass divided by wing area, are thought to reduce energy consumption during long-distance flight, but these hypotheses have never been directly tested. Furthermore, it is not clear how the atmospheric conditions migrants encounter while aloft affect their energy use; without such information, we cannot accurately predict migratory species' response(s) to climate change. Here, we measured the heart rates of 15 free-flying Swainson's Thrushes (Catharus ustulatus) during migratory flight. Heart rate, and therefore rate of energy expenditure, was positively associated with individual variation in wingtip roundedness and wingloading throughout the flights. During the cruise phase of the flights, heart rate was also positively associated with wind speed but not wind direction, and negatively but not significantly associated with large-scale atmospheric stability. High winds and low atmospheric stability are both indicative of the presence of turbulent eddies, suggesting that birds may be using more energy when atmospheric turbulence is high. We therefore suggest that pointed wingtips, low wingloading and avoidance of high winds and turbulence reduce flight costs for small birds during migration, and that climate change may have the strongest effects on migrants' in-flight energy use if it affects the frequency and/or severity of high winds and atmospheric instability.

  1. Effects of wing modification on an aircraft's aerodynamic parameters as determined from flight data

    NASA Technical Reports Server (NTRS)

    Hess, R. A.

    1986-01-01

    A study of the effects of four wing-leading-edge modifications on a general aviation aircraft's stability and control parameters is presented. Flight data from the basic aircraft configuration and configurations with wing modifications are analyzed to determine each wing geometry's stability and control parameters. The parameter estimates and aerodynamic model forms are obtained using the stepwise regression and maximum likelihood techniques. The resulting parameter estimates and aerodynamic models are verified using vortex-lattice theory and by analysis of each model's ability to predict aircraft behavior. Comparisons of the stability and control derivative estimates from the basic wing and the four leading-edge modifications are accomplished so that the effects of each modification on aircraft stability and control derivatives can be determined.

  2. Generalized indical forces on deforming rectangular wings in supersonic flight

    NASA Technical Reports Server (NTRS)

    Lomax, Harvard; Fuller, Franklyn B; Sluder, Loma

    1955-01-01

    A method is presented for determining the time-dependent flow over a rectangular wing moving with a supersonic forward speed and undergoing small vertical distortions expressible as polynomials involving spanwise and chordwise distances. The solution for the velocity potential is presented in a form analogous to that for steady supersonic flow having the familiar "reflected area" concept discovered by Evvard. Particular attention is paid to indicial-type motions and results are expressed in terms of generalized indicial forces. Numerical results for Mach numbers equal to 1.1 and 1.2 are given for polynomials of the first and fifth degree in the chordwise and spanwise directions, respectively, on a wing having an aspect ratio of 4.

  3. A Tribute to Professor Rene H. Miller - A Pioneer in Aeromechanics and Rotary Wing Flight Transportation

    NASA Technical Reports Server (NTRS)

    Friedmann, Peretz P.; Johnson, Wayne; Scully, Michael P.

    2011-01-01

    Rene H. Miller (May 19, 1916 January 28, 2003), Emeritus H. N. Slater Professor of Flight Transportation, was one of the most influential pioneers in rotary wing aeromechanics as well as a visionary whose dream was the development of a tilt-rotor based short haul air transportation system. This paper pays a long overdue tribute to his memory and to his extraordinary contributions.

  4. Pressure Distribution on a Wing Section with Slotted Flap in Free Flight Tests

    NASA Technical Reports Server (NTRS)

    Kiel, Georg

    1937-01-01

    The pressure distribution was measured in flight on a wing section with a slotted flap for several flap deflections, and the results obtained are presented. The test apparatus and the procedure employed in obtaining the results are also described. A Fieseler type F 5 R airplane was used for the tests.

  5. Preliminary Assessment of Optimal Longitudinal-Mode Control for Drag Reduction through Distributed Aeroelastic Shaping

    NASA Technical Reports Server (NTRS)

    Ippolito, Corey; Nguyen, Nhan; Lohn, Jason; Dolan, John

    2014-01-01

    The emergence of advanced lightweight materials is resulting in a new generation of lighter, flexible, more-efficient airframes that are enabling concepts for active aeroelastic wing-shape control to achieve greater flight efficiency and increased safety margins. These elastically shaped aircraft concepts require non-traditional methods for large-scale multi-objective flight control that simultaneously seek to gain aerodynamic efficiency in terms of drag reduction while performing traditional command-tracking tasks as part of a complete guidance and navigation solution. This paper presents results from a preliminary study of a notional multi-objective control law for an aeroelastic flexible-wing aircraft controlled through distributed continuous leading and trailing edge control surface actuators. This preliminary study develops and analyzes a multi-objective control law derived from optimal linear quadratic methods on a longitudinal vehicle dynamics model with coupled aeroelastic dynamics. The controller tracks commanded attack-angle while minimizing drag and controlling wing twist and bend. This paper presents an overview of the elastic aircraft concept, outlines the coupled vehicle model, presents the preliminary control law formulation and implementation, presents results from simulation, provides analysis, and concludes by identifying possible future areas for research

  6. Challenges, Ideas, and Innovations of Joined-Wing Configurations: A Concept from the Past, an Opportunity for the Future

    NASA Astrophysics Data System (ADS)

    Cavallaro, Rauno; Demasi, Luciano

    2016-11-01

    Diamond Wings, Strut- and Truss-Braced Wings, Box Wings, and PrandtlPlane, the so-called "JoinedWings", represent a dramatic departure from traditional configurations. Joined Wings are characterized by a structurally overconstrained layout which significantly increases the design space with multiple load paths and numerous solutions not available in classical wing systems. A tight link between the different disciplines (aerodynamics, flight mechanics, aeroelasticity, etc.) makes a Multidisciplinary Design and Optimization approach a necessity from the early design stages. Researchers showed potential in terms of aerodynamic efficiency, reduction of emissions and superior performances, strongly supporting the technical advantages of Joined Wings. This review will present these studies, with particular focus on the United States joined-wing SensorCraft, Strut- and Truss- Braced Wings, Box Wings and PrandtlPlane.

  7. A potential flight evaluation of an upper-surface-blowing/circulation-control-wing concept

    NASA Technical Reports Server (NTRS)

    Riddle, Dennis W.; Eppel, Joseph C.

    1987-01-01

    The technology data base for powered lift aircraft design has advanced over the last 15 years. NASA's Quiet Short Haul Research Aircraft (QSRA) has provided a flight verification of upper surface blowing (USB) technology. The A-6 Circulation Control Wing flight demonstration aricraft has provide data for circulation control wing (CCW) technology. Recent small scale wind tunnel model tests and full scale static flow turning test have shown the potential of combining USB with CCW technology. A flight research program is deemed necessary to fully explore the performance and control aspects of CCW jet substitution for the mechanical USB Coanda flap. The required hardware design would also address questions about the development of flight weight ducts and CCW jets and the engine bleed-air capabilities vs requirements. NASA's QSRA would be an optimum flight research vehicle for modification to the USB/CCW configuration. The existing QSRA data base, the design simplicity of the QSRA wing trailing edge controls, availability of engine bleed-air, and the low risk, low cost potential of the suggested program is discussed.

  8. Pathfinder aircraft prepared for flight showing solar cell arrays on wing

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The solar cell arrays, which cover about 75 percent of its upper wing surface, are clearly evident in this view of the Pathfinder solar-electric aircraft. The solar arrays are capable not only of absorbing direct sunlight, but can also absorb light reflected from the ground through the transparent lower surface of the 98-foot-long wing. Engineers and technicians from Pathfinder's developer, AeroVironment, Inc., conducted a successful two-hour check-out flight from NASA's Dryden Flight Research Center, Edwards, California, on Nov. 19, 1996. The craft then underwent preperations at AeroVironment's Simi Valley, California, facility for a new series of flight tests in Hawaii, during summer, 1997. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the

  9. Myosin light chain-2 mutation affects flight, wing beat frequency, and indirect flight muscle contraction kinetics in Drosophila

    PubMed Central

    1992-01-01

    We have used a combination of classical genetic, molecular genetic, histological, biochemical, and biophysical techniques to identify and characterize a null mutation of the myosin light chain-2 (MLC-2) locus of Drosophila melanogaster. Mlc2E38 is a null mutation of the MLC-2 gene resulting from a nonsense mutation at the tenth codon position. Mlc2E38 confers dominant flightless behavior that is associated with reduced wing beat frequency. Mlc2E38 heterozygotes exhibit a 50% reduction of MLC-2 mRNA concentration in adult thoracic musculature, which results in a commensurate reduction of MLC-2 protein in the indirect flight muscles. Indirect flight muscle myofibrils from Mlc2E38 heterozygotes are aberrant, exhibiting myofilaments in disarray at the periphery. Calcium-activated Triton X-100-treated single fiber segments exhibit slower contraction kinetics than wild type. Introduction of a transformed copy of the wild type MLC-2 gene rescues the dominant flightless behavior of Mlc2E38 heterozygotes. Wing beat frequency and single fiber contraction kinetics of a representative rescued line are not significantly different from those of wild type. Together, these results indicate that wild type MLC-2 stoichiometry is required for normal indirect flight muscle assembly and function. Furthermore, these results suggest that the reduced wing beat frequency and possibly the flightless behavior conferred by Mlc2E38 is due in part to slower contraction kinetics of sarcomeric regions devoid or partly deficient in MLC-2. PMID:1469046

  10. Beneficial aerodynamic effect of wing scales on the climbing flight of butterflies.

    PubMed

    Slegers, Nathan; Heilman, Michael; Cranford, Jacob; Lang, Amy; Yoder, John; Habegger, Maria Laura

    2017-01-30

    It is hypothesized that butterfly wing scale geometry and surface patterning may function to improve aerodynamic efficiency. In order to investigate this hypothesis, a method to measure butterfly flapping kinematics optically over long uninhibited flapping sequences was developed. Statistical results for the climbing flight flapping kinematics of 11 butterflies, based on a total of 236 individual flights, both with and without their wing scales, are presented. Results show, that for each of the 11 butterflies, the mean climbing efficiency decreased after scales were removed. Data was reduced to a single set of differences of climbing efficiency using are paired t-test. Results show a mean decrease in climbing efficiency of 32.2% occurred with a 95% confidence interval of 45.6%-18.8%. Similar analysis showed that the flapping amplitude decreased by 7% while the flapping frequency did not show a significant difference. Results provide strong evidence that butterfly wing scale geometry and surface patterning improve butterfly climbing efficiency. The authors hypothesize that the wing scale's effect in measured climbing efficiency may be due to an improved aerodynamic efficiency of the butterfly and could similarly be used on flapping wing micro air vehicles to potentially achieve similar gains in efficiency.

  11. Using adjoint-based optimization to study wing flexibility in flapping flight

    NASA Astrophysics Data System (ADS)

    Wei, Mingjun; Xu, Min; Dong, Haibo

    2014-11-01

    In the study of flapping-wing flight of birds and insects, it is important to understand the impact of wing flexibility/deformation on aerodynamic performance. However, the large control space from the complexity of wing deformation and kinematics makes usual parametric study very difficult or sometimes impossible. Since the adjoint-based approach for sensitivity study and optimization strategy is a process with its cost independent of the number of input parameters, it becomes an attractive approach in our study. Traditionally, adjoint equation and sensitivity are derived in a fluid domain with fixed solid boundaries. Moving boundary is only allowed when its motion is not part of control effort. Otherwise, the derivation becomes either problematic or too complex to be feasible. Using non-cylindrical calculus to deal with boundary deformation solves this problem in a very simple and still mathematically rigorous manner. Thus, it allows to apply adjoint-based optimization in the study of flapping wing flexibility. We applied the ``improved'' adjoint-based method to study the flexibility of both two-dimensional and three-dimensional flapping wings, where the flapping trajectory and deformation are described by either model functions or real data from the flight of dragonflies. Supported by AFOSR.

  12. An experimental comparative study of the efficiency of twisted and flat flapping wings during hovering flight.

    PubMed

    Phan, Hoang Vu; Truong, Quang Tri; Park, Hoon Cheol

    2017-03-10

    This work presents a parametric study to find a proper wing configuration for achieving economic flight by using unsteady blade element theory, which is based on the three-dimensional kinematics of a flapping wing. Power loading was first considered as a performance parameter for the study. The power loadings at each wing section along the wingspan were obtained for various geometric angles of attacks (AoAs) by calculating the ratios of the vertical forces generated and the powers consumed by that particular wing section. The results revealed that the power loading of a negatively twisted wing could be larger than the power loading that a flat wing can have; the power loading of the negatively twisted wing was approximately 5.9% higher. Given the relatively low average geometric AoAs (αA,root ≈ 44º and αA,tip ≈ 25º), the vertical force produced by the twisted wing for largest power loading was approximately 24.4% less than that produced by the twisted wing for largest vertical force. Therefore, for a given wing geometry and flapping amplitude, a flapping-wing micro air vehicle using this type of wing required 13.5% increase in the flapping frequency to generate the same largest cycle-average vertical force, while saving about 24.3% power. However, when force3/power2 and force2/power ratios were considered as performance indices, the twisted wings for largest force3/power2A,root ≈ 43º and αA,tip ≈ 30º) and force2/power (αA,root ≈ 43º and αA,tip ≈ 36º) required only 6.5% and 4% increases in the flapping frequency, and consumed 26.2% and 25.3% less power, respectively. Thus, it is preferable to use a flapping wing operating at a high frequency using the geometric AoAs for largest power loading, force3/power2 ratio, and force2/power ratio than a flapping wing operating at a lower

  13. Origin of flight: Could 'four-winged' dinosaurs fly?

    PubMed

    Padian, Kevin; Dial, Kenneth P

    2005-11-17

    Our understanding of the origin of birds, feathers and flight has been greatly advanced by new discoveries of feathered non-avian dinosaurs, but functional analyses have not kept pace with taxonomic descriptions. Zhang and Zhou describe feathers on the tibiotarsus of a new basal enantiornithine bird from the Early Cretaceous of China. They infer, as did Xu and colleagues from similar feathers on the small non-avian theropod Microraptor found in similar deposits, that these leg feathers had aerodynamic properties and so might have been used in some kind of flight.

  14. Aeroelastic Tailoring via Tow Steered Composites

    NASA Technical Reports Server (NTRS)

    Stanford, Bret K.; Jutte, Christine V.

    2014-01-01

    The use of tow steered composites, where fibers follow prescribed curvilinear paths within a laminate, can improve upon existing capabilities related to aeroelastic tailoring of wing structures, though this tailoring method has received relatively little attention in the literature. This paper demonstrates the technique for both a simple cantilevered plate in low-speed flow, as well as the wing box of a full-scale high aspect ratio transport configuration. Static aeroelastic stresses and dynamic flutter boundaries are obtained for both cases. The impact of various tailoring choices upon the aeroelastic performance is quantified: curvilinear fiber steering versus straight fiber steering, certifiable versus noncertifiable stacking sequences, a single uniform laminate per wing skin versus multiple laminates, and identical upper and lower wing skins structures versus individual tailoring.

  15. Analysis and testing of stability augmentation systems. [for supersonic transport aircraft wing and B-52 aircraft control system

    NASA Technical Reports Server (NTRS)

    Sevart, F. D.; Patel, S. M.; Wattman, W. J.

    1972-01-01

    Testing and evaluation of stability augmentation systems for aircraft flight control were conducted. The flutter suppression system analysis of a scale supersonic transport wing model is described. Mechanization of the flutter suppression system is reported. The ride control synthesis for the B-52 aeroelastic model is discussed. Model analyses were conducted using equations of motion generated from generalized mass and stiffness data.

  16. A computational study of the aerodynamic performance of a dragonfly wing section in gliding flight.

    PubMed

    Vargas, Abel; Mittal, Rajat; Dong, Haibo

    2008-06-01

    A comprehensive computational fluid-dynamics-based study of a pleated wing section based on the wing of Aeshna cyanea has been performed at ultra-low Reynolds numbers corresponding to the gliding flight of these dragonflies. In addition to the pleated wing, simulations have also been carried out for its smoothed counterpart (called the 'profiled' airfoil) and a flat plate in order to better understand the aerodynamic performance of the pleated wing. The simulations employ a sharp interface Cartesian-grid-based immersed boundary method, and a detailed critical assessment of the computed results was performed giving a high measure of confidence in the fidelity of the current simulations. The simulations demonstrate that the pleated airfoil produces comparable and at times higher lift than the profiled airfoil, with a drag comparable to that of its profiled counterpart. The higher lift and moderate drag associated with the pleated airfoil lead to an aerodynamic performance that is at least equivalent to and sometimes better than the profiled airfoil. The primary cause for the reduction in the overall drag of the pleated airfoil is the negative shear drag produced by the recirculation zones which form within the pleats. The current numerical simulations therefore clearly demonstrate that the pleated wing is an ingenious design of nature, which at times surpasses the aerodynamic performance of a more conventional smooth airfoil as well as that of a flat plate. For this reason, the pleated airfoil is an excellent candidate for a fixed wing micro-aerial vehicle design.

  17. Computers With Wings: Flight Simulation and Personalized Landscapes

    NASA Astrophysics Data System (ADS)

    Oss, Stefano

    2005-03-01

    We propose, as a special way to explore the physics of flying objects, to use a flight simulator with a personalized scenery to reproduce the territory where students live. This approach increases the participation and attention of students to physics classes but also creates several opportunities for addressing side activities and arguments of various nature, from history to geography, computer science, and much more.

  18. Computers with Wings: Flight Simulation and Personalized Landscapes

    ERIC Educational Resources Information Center

    Oss, Stefano

    2005-01-01

    We propose, as a special way to explore the physics of flying objects, to use a flight simulator with a personalized scenery to reproduce the territory where students live. This approach increases the participation and attention of students to physics classes but also creates several opportunities for addressing side activities and arguments of…

  19. Results of Flight Test of an Automatically Stabilized Model C (Swept Back) Four-Wing Tiamat

    NASA Technical Reports Server (NTRS)

    Seacord, Charles L., Jr.; Teitelbaum, J. M.

    1947-01-01

    The results of the first flight test of a swept-back four-wing version of Tiamat (MX-570 model C) which was launched at the NACA Pilotless Aircraft Research Station at W4110PB Island, Va. are presented. In general, the flight behavior was close to that predicted by calculations based an stability theory and oscillating table tests of the autopilot. The flight test thus indicates that the techniques employed to predict automatic stability are valid and practical from an operational viewpoint. The limitations of the method used to predict flight behavior arise from the fact that the calculations assume no coupling among roll, pitch, and yaw, while in actual flight some such coupling does exist.

  20. Flight Test of Orthogonal Square Wave Inputs for Hybrid-Wing-Body Parameter Estimation

    NASA Technical Reports Server (NTRS)

    Taylor, Brian R.; Ratnayake, Nalin A.

    2011-01-01

    As part of an effort to improve emissions, noise, and performance of next generation aircraft, it is expected that future aircraft will use distributed, multi-objective control effectors in a closed-loop flight control system. Correlation challenges associated with parameter estimation will arise with this expected aircraft configuration. The research presented in this paper focuses on addressing the correlation problem with an appropriate input design technique in order to determine individual control surface effectiveness. This technique was validated through flight-testing an 8.5-percent-scale hybrid-wing-body aircraft demonstrator at the NASA Dryden Flight Research Center (Edwards, California). An input design technique that uses mutually orthogonal square wave inputs for de-correlation of control surfaces is proposed. Flight-test results are compared with prior flight-test results for a different maneuver style.

  1. Aerodynamic performance and particle image velocimetery of piezo actuated biomimetic manduca sexta engineered wings towards the design and application of a flapping wing flight vehicle

    NASA Astrophysics Data System (ADS)

    DeLuca, Anthony M.

    Considerable research and investigation has been conducted on the aerodynamic performance, and the predominate flow physics of the Manduca Sexta size of biomimetically designed and fabricated wings as part of the AFIT FWMAV design project. Despite a burgeoning interest and research into the diverse field of flapping wing flight and biomimicry, the aerodynamics of flapping wing flight remains a nebulous field of science with considerable variance into the theoretical abstractions surrounding aerodynamic mechanisms responsible for aerial performance. Traditional FWMAV flight models assume a form of a quasi-steady approximation of wing aerodynamics based on an infinite wing blade element model (BEM). An accurate estimation of the lift, drag, and side force coefficients is a critical component of autonomous stability and control models. This research focused on two separate experimental avenues into the aerodynamics of AFIT's engineered hawkmoth wings|forces and flow visualization. 1. Six degree of freedom force balance testing, and high speed video analysis was conducted on 30°, 45°, and 60° angle stop wings. A novel, non-intrusive optical tracking algorithm was developed utilizing a combination of a Gaussian Mixture Model (GMM) and ComputerVision (OpenCV) tools to track the wing in motion from multiple cameras. A complete mapping of the wing's kinematic angles as a function of driving amplitude was performed. The stroke angle, elevation angle, and angle of attack were tabulated for all three wings at driving amplitudes ranging from A=0.3 to A=0.6. The wing kinematics together with the force balance data was used to develop several aerodynamic force coefficient models. A combined translational and rotational aerodynamic model predicted lift forces within 10%, and vertical forces within 6%. The total power consumption was calculated for each of the three wings, and a Figure of Merit was calculated for each wing as a general expression of the overall efficiency of

  2. Aircraft health and usage monitoring system for in-flight strain measurement of a wing structure

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Hyuk; Park, Yurim; Kim, Yoon-Young; Shrestha, Pratik; Kim, Chun-Gon

    2015-10-01

    This paper presents an aircraft health and usage monitoring system (HUMS) using fiber Bragg grating (FBG) sensors. This study aims to implement and evaluate the HUMS for in-flight strain monitoring of aircraft structures. An optical-fiber-based HUMS was developed and applied to an ultralight aircraft that has a rectangular wing shape with a strut-braced configuration. FBG sensor arrays were embedded into the wing structure during the manufacturing process for effective sensor implementation. Ground and flight tests were conducted to verify the integrity and availability of the installed FBG sensors and HUMS devices. A total of 74 flight tests were conducted using the HUMS implemented testbed aircraft, considering various maneuvers and abnormal conditions. The flight test results revealed that the FBG-based HUMS was successfully implemented on the testbed aircraft and operated normally under the actual flight test environments as well as providing reliable in-flight strain data from the FBG sensors over a long period of time.

  3. A concept of a hypersonic flight experiment of a winged vehicle

    NASA Astrophysics Data System (ADS)

    Shirouzu, Masao; Watanabe, Shigeya

    A concept of a flight experiment using a winged hypersonic research vehicle is proposed by the National Aerospace Laboratory (NAL) as one of the flight experiment series preceding to the development of HOPE (H-II Orbiting Plane). The present paper describes the purpose of the experiment, the outline of the flight, the configuration and aerodynamic characteristics of the vehicle, and items of experiment and measurement. The present experiment is to acquire experience on the development and the flight of a hypersonic winged vehicle, in contrast to the ballistic flight of the OREX (Orbital Reentry Experiment) and to collect flight data for validation of tests and simulations on the ground. The vehicle of about 1.5 tons will be launched by a two-stage version of the J-I. The vehicle will be separated at an altitude of 70-80 km at a velocity of Mach 18-20, and inserted to the reentry trajectory of HOPE. The vehicle will be decelerated by parachutes and splash into the ocean south of Japan, where it will be recovered.

  4. Aeroelastic Control of a Segmented Trailing Edge Using Fiber Optic Strain Sensing Technology

    NASA Technical Reports Server (NTRS)

    Graham, Corbin Jay; Martins, Benjamin; Suppanade, Nathan

    2014-01-01

    Currently, design of aircraft structures incorporate a safety factor which is essentially an over design to mitigate the risk of structure failure during operation. Typically this safety factor is to design the structure to withstand loads much greater than what is expected to be experienced during flight. NASA Dryden Flight Research Centers has developed a Fiber Optic Strain Sensing (FOSS) system which can measure strain values in real-time. The Aeroelastics Lab at the AERO Institute is developing a segmented trailing edged wing with multiple control surfaces that can utilize the data from the FOSS system, in conjunction with an adaptive controller to redistribute the lift across a wing. This redistribution can decrease the amount of strain experienced by the wing as well as be used to dampen vibration and reduce flutter.

  5. Fourier analysis of wing beat signals: assessing the effects of genetic alterations of flight muscle structure in Diptera.

    PubMed Central

    Hyatt, C J; Maughan, D W

    1994-01-01

    A method for determining and analyzing the wing beat frequency in Diptera is presented. This method uses an optical tachometer to measure Diptera wing movement during flight. The resulting signal from the optical measurement is analyzed using a Fast Fourier Transform (FFT) technique, and the dominant frequency peak in the Fourier spectrum is selected as the wing beat frequency. Also described is a method for determining quantitatively the degree of variability of the wing beat frequency about the dominant frequency. This method is based on determination of a quantity called the Hindex, which is derived using data from the FFT analysis. Calculation of the H index allows computer-based selection of the most suitable segment of recorded data for determination of the representative wing beat frequency. Experimental data suggest that the H index can also prove useful in examining wing beat frequency variability in Diptera whose flight muscle structure has been genetically altered. Examples from Drosophila indirect flight muscle studies as well as examples of artificial data are presented to illustrate the method. This method fulfills a need for a standardized method for determining wing beat frequencies and examining wing beat frequency variability in insects whose flight muscles have been altered by protein engineering methods. PMID:7811927

  6. In-flight photogrammetric measurement of wing ice accretions

    NASA Technical Reports Server (NTRS)

    Mcknight, R. C.; Palko, R. L.; Humes, R. L.

    1986-01-01

    A photographic instrumentation system was developed for the Lewis icing research aircraft to measure wind ice accretions during flight. The system generates stereo photographs of the accretions which are then photogrammetrically measured by the Air Force Arnold Engineering and Development Center. The measurements yield a survey of spatial coordinates of an accretion's surface to an accuracy of at least + or - 0.08 cm. The accretions can then be matched to corresponding icing cloud and aerodynamic measurements. The system is being used to measure rime, mixed, and clear natural ice accretions.

  7. Flapping before Flight: High Resolution, Three-Dimensional Skeletal Kinematics of Wings and Legs during Avian Development.

    PubMed

    Heers, Ashley M; Baier, David B; Jackson, Brandon E; Dial, Kenneth P

    2016-01-01

    Some of the greatest transformations in vertebrate history involve developmental and evolutionary origins of avian flight. Flight is the most power-demanding mode of locomotion, and volant adult birds have many anatomical features that presumably help meet these demands. However, juvenile birds, like the first winged dinosaurs, lack many hallmarks of advanced flight capacity. Instead of large wings they have small "protowings", and instead of robust, interlocking forelimb skeletons their limbs are more gracile and their joints less constrained. Such traits are often thought to preclude extinct theropods from powered flight, yet young birds with similarly rudimentary anatomies flap-run up slopes and even briefly fly, thereby challenging longstanding ideas on skeletal and feather function in the theropod-avian lineage. Though skeletons and feathers are the common link between extinct and extant theropods and figure prominently in discussions on flight performance (extant birds) and flight origins (extinct theropods), skeletal inter-workings are hidden from view and their functional relationship with aerodynamically active wings is not known. For the first time, we use X-ray Reconstruction of Moving Morphology to visualize skeletal movement in developing birds, and explore how development of the avian flight apparatus corresponds with ontogenetic trajectories in skeletal kinematics, aerodynamic performance, and the locomotor transition from pre-flight flapping behaviors to full flight capacity. Our findings reveal that developing chukars (Alectoris chukar) with rudimentary flight apparatuses acquire an "avian" flight stroke early in ontogeny, initially by using their wings and legs cooperatively and, as they acquire flight capacity, counteracting ontogenetic increases in aerodynamic output with greater skeletal channelization. In conjunction with previous work, juvenile birds thereby demonstrate that the initial function of developing wings is to enhance leg

  8. Flapping before Flight: High Resolution, Three-Dimensional Skeletal Kinematics of Wings and Legs during Avian Development

    PubMed Central

    Heers, Ashley M.; Baier, David B.; Jackson, Brandon E.; Dial, Kenneth P.

    2016-01-01

    Some of the greatest transformations in vertebrate history involve developmental and evolutionary origins of avian flight. Flight is the most power-demanding mode of locomotion, and volant adult birds have many anatomical features that presumably help meet these demands. However, juvenile birds, like the first winged dinosaurs, lack many hallmarks of advanced flight capacity. Instead of large wings they have small “protowings”, and instead of robust, interlocking forelimb skeletons their limbs are more gracile and their joints less constrained. Such traits are often thought to preclude extinct theropods from powered flight, yet young birds with similarly rudimentary anatomies flap-run up slopes and even briefly fly, thereby challenging longstanding ideas on skeletal and feather function in the theropod-avian lineage. Though skeletons and feathers are the common link between extinct and extant theropods and figure prominently in discussions on flight performance (extant birds) and flight origins (extinct theropods), skeletal inter-workings are hidden from view and their functional relationship with aerodynamically active wings is not known. For the first time, we use X-ray Reconstruction of Moving Morphology to visualize skeletal movement in developing birds, and explore how development of the avian flight apparatus corresponds with ontogenetic trajectories in skeletal kinematics, aerodynamic performance, and the locomotor transition from pre-flight flapping behaviors to full flight capacity. Our findings reveal that developing chukars (Alectoris chukar) with rudimentary flight apparatuses acquire an “avian” flight stroke early in ontogeny, initially by using their wings and legs cooperatively and, as they acquire flight capacity, counteracting ontogenetic increases in aerodynamic output with greater skeletal channelization. In conjunction with previous work, juvenile birds thereby demonstrate that the initial function of developing wings is to enhance leg

  9. Blended-Wing-Body Low-Speed Flight Dynamics: Summary of Ground Tests and Sample Results

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D.

    2009-01-01

    A series of low-speed wind tunnel tests of a Blended-Wing-Body tri-jet configuration to evaluate the low-speed static and dynamic stability and control characteristics over the full envelope of angle of attack and sideslip are summarized. These data were collected for use in simulation studies of the edge-of-the-envelope and potential out-of-control flight characteristics. Some selected results with lessons learned are presented.

  10. Flight Wing Surface Pressure and Boundary-Layer Data Report from the F-111 Smooth Variable-Camber Supercritical Mission Adaptive Wing

    NASA Technical Reports Server (NTRS)

    Powers, Sheryll Goecke; Webb, Lannie D.

    1997-01-01

    Flight tests were conducted using the advanced fighter technology integration F-111 (AFTI/F-111) aircraft modified with a variable-sweep supercritical mission adaptive wing (MAW). The MAW leading- and trailing-edge variable-camber surfaces were deflected in flight to provide a near-ideal wing camber shape for the flight condition. The MAW features smooth, flexible upper surfaces and fully enclosed lower surfaces, which distinguishes it from conventional flaps that have discontinuous surfaces and exposed or semi-exposed mechanisms. Upper and lower surface wing pressure distributions were measured along four streamwise rows on the right wing for cruise, maneuvering, and landing configurations. Boundary-layer measurements were obtained near the trailing edge for one of the rows. Cruise and maneuvering wing leading-edge sweeps were 26 deg for Mach numbers less than 1 and 45 deg or 58 deg for Mach numbers greater than 1. The landing wing sweep was 9 deg or 16 deg. Mach numbers ranged from 0.27 to 1.41, angles of attack from 2 deg to 13 deg, and Reynolds number per unit foot from 1.4 x 10(exp 6) to 6.5 x 10(exp 6). Leading-edge cambers ranged from O deg to 20 deg down, and trailing-edge cambers ranged from 1 deg up to 19 deg down. Wing deflection data for a Mach number of 0.85 are shown for three cambers. Wing pressure and boundary-layer data are given. Selected data comparisons are shown. Measured wing coordinates are given for three streamwise semispan locations for cruise camber and one spanwise location for maneuver camber.

  11. Predicted flight characteristics of the augmentor wing jet STOL research aircraft

    NASA Technical Reports Server (NTRS)

    Spitzer, R. E.

    1972-01-01

    An existing deHavilland C-8A airplane has been modified into an augmentor wing flight test vehicle. Research objectives are to verify the augmentor flap concept and to produce data for STOL airworthiness criteria. The Modified C-8A provides the means for jet-STOL flight research down to a 60 knot approach speed. The airplane has a high thrust-to-weight ratio, high-lift flap system, vectored thrust, powerful flight controls, and lateral-directional stability augmentation system. Normal performance and handling qualities are expected to be satisfactory. Analysis and piloted simulator results indicate that stability and control characteristics in conventional flight are rated satisfactory. Handling qualities in the STOL regime are also generally satisfactory, although pilot workload is high about the longitudinal axis.

  12. Wing and body kinematics of forward flight in drone-flies.

    PubMed

    Meng, Xue Guang; Sun, Mao

    2016-08-15

    Here, we present a detailed analysis of the wing and body kinematics in drone-flies in free flight over a range of speeds from hovering to about 8.5 m s(-1). The kinematics was measured by high-speed video techniques. As the speed increased, the body angle decreased and the stroke plane angle increased; the wingbeat frequency changed little; the stroke amplitude first decreased and then increased; the ratio of the downstroke duration to the upstroke duration increased; the mean positional angle increased at lower speeds but changed little at speeds above 3 m s(-1). At a speed above about 1.5 m s(-1), wing rotation at supination was delayed and that at pronation was advanced, and consequently the wing rotations were mostly performed in the upstroke. In the downstroke, the relative velocity of the wing increased and the effective angle of attack decreased with speed; in the upstroke, they both decreased with speed at lower speeds, and at higher speeds, the relative velocity became larger but the effective angle of attack became very small. As speed increased, the increasing inclination of the stroke plane ensured that the effective angle of attack in the upstroke would not become negative, and that the wing was in suitable orientations for vertical-force and thrust production.

  13. Computational wing design in support of an NLF variable sweep transition flight experiment. [Natural Laminar Flow

    NASA Technical Reports Server (NTRS)

    Waggoner, E. G.; Campbell, R. L.; Phillips, P. S.

    1985-01-01

    A natural laminar flow outer panel wing glove has been designed for a variable sweep fighter aircraft using state-of-the-art computational techniques. Testing of the design will yield wing pressure and boundary-layer data under actual flight conditions and environment. These data will be used to enhance the understanding of the interaction between crossflow and Tollmien-Schlichting disturbances on boundary-layer transition. The outer wing panel was contoured such that a wide range of favorable pressure gradients could be obtained on the wing upper surface. Extensive computations were performed to support the design effort which relied on two- and three-dimensional transonic design and analysis techniques. A detailed description of the design procedure that evolved during this study is presented. Results on intermediate designs at various stages in the design process demonstrate how the various physical and aerodynamic constraints were integrated into the design. Final results of the glove design analyzed as part of the complete aircraft configuration with a full-potential wing/body analysis code indicate that the aerodynamic design objectives were met.

  14. Flight test of a decoupler pylon for wing/store flutter suppression

    NASA Technical Reports Server (NTRS)

    Cazier, F. W., Jr.; Kehoe, M. W.

    1986-01-01

    The decoupler pylon is a NASA concept of passive wing-store flutter suppression achieved by providing a low store-pylon pitch frequency. Flight tests where performed on an F-16 airplane carrying on each wing an AIM-9J wingtip missile, a GBU-8 bomb near midspan, and an external fuel tank. Baseline flights with the GBU-8 mounted on a standard pylon established that this configuration is characterized by an antisymmetric limited amplitude flutter oscillation within the operational envelope. The airplane was then flown with the GBU-8 mounted on the decoupler pylon. The decoupler pylon successfully suppressed wing-store flutter thoughout the flight envelope. A 37-percent increase in flutter velocity over the standard pylon was demonstrated. Maneuvers with load factors to 4g were performed. Although the static store displacements during maneuvers were not sufficiently large to be of concern, a store pitch alignment system was tested and performed successfully. One GBU-8 was ejected demonstrating that weapon separation from the decoupler pylon is normal. Experience with the present decoupler pylon design indicated that friction in the pivoting mechanism could affect its proper functioning as a flutter suppressor.

  15. Flight test of a decoupler pylon for wing/store flutter suppression

    NASA Technical Reports Server (NTRS)

    Cazier, F. W., Jr.; Kehoe, M. W.

    1986-01-01

    The decoupler pylon is a NASA concept of passive wing-store flutter suppression achieved by providing a low store-pylon pitch frequency. Flight tests were performed on an F-16 aircraft carrying on each wing an AIM-9J wingtip missile, a GBU-8 bomb near midspan, and an external fuel tank. Baseline flights with the GBU-8 mounted on a standard pylon established that this configuration is characterized by an antisymmetric limited amplitude flutter oscillation within the operational envelope. The airplane was then flown with the GBU-8 mounted on the decoupler pylon. The decoupler pylon successfully suppressed wing-store flutter throughout the flight envelope. A 37-percent increase in flutter velocity over the standard pylon was demonstrated. Maneuvers with load factors to 4g were performed. Although the static store displacements during maneuvers were not sufficiently large to be of concern, a store pitch alignment system was tested and performed successfully. One GBU-8 was ejected demonstrating that weapon separation from the decoupler pylon is normal. Experience with the present decoupler pylon design indicated that friction in the pivoting mechanism could affect its proper functioning as a flutter suppressor.

  16. Flapping Wing Micro Air Vehicles: An Analysis of the Importance of the Mass of the Wings to Flight Dynamics, Stability, and Control

    NASA Astrophysics Data System (ADS)

    Orlowski, Christopher T.

    The flight dynamics, stability, and control of a model flapping wing micro air vehicle are analyzed with a focus on the inertial and mass effects of the wings on the position and Orientation of the body. A multi-body, flight dynamics model is derived from first principles. The multi-body model predicts significant differences in the position and orientation of the flapping wing micro air vehicle, when compared to a flight dynamics model based on the standard aircraft, or six degree of freedom, equations of motion. The strongly coupled, multi-body equations of motion are transformed into first order form using an approximate inverse and appropriate assumptions. Local (naive) averaging of the first order system does not produce an accurate result and a new approximation technique named 'quarter-cycle' averaging is proposed. The technique is effective in reducing the error by at least an order of magnitude for three reference flight conditions. A stability analysis of the local averaged equations of motions, in the vicinity of a hover condition, produces a modal structure consist with the most common vertical takeoff or landing structure and independent stability analyses of the linearized flight dynamics of insect models. The inclusion of the wing effects produces a non-negligible change in the linear stability of a hawkmoth-sized model. The hovering solution is shown, under proper control, to produce a limit cycle. The control input to achieve a limit cycle is different if the flight dynamics model includes the wing effects or does not include the wing effects. Improper control input application will not produce the desired limit cycle effects. A scaling analysis is used to analyze the relative importance of the mass of the wings, based on the quarter-cycle approximation. The conclusion of the scaling analysis is that the linear momentum effects of the wings are always important in terms of the inertial position of the flapping wing micro air vehicle. Above a

  17. Effects of Wing Sweep on In-flight Boundary-layer Transition for a Laminar Flow Wing at Mach Numbers from 0.60 to 0.79

    NASA Technical Reports Server (NTRS)

    Anderson, Bianca Trujillo; Meyer, Robert R., Jr.

    1990-01-01

    The variable sweep transition flight experiment (VSTFE) was conducted on an F-14A variable sweep wing fighter to examine the effect of wing sweep on natural boundary layer transition. Nearly full span upper surface gloves, extending to 60 percent chord, were attached to the F-14 aircraft's wings. The results are presented of the glove 2 flight tests. Glove 2 had an airfoil shape designed for natural laminar flow at a wing sweep of 20 deg. Sample pressure distributions and transition locations are presented with the complete results tabulated in a database. Data were obtained at wing sweeps of 15, 20, 25, 30, and 35 deg, at Mach numbers ranging from 0.60 to 0.79, and at altitudes ranging from 10,000 to 35,000 ft. Results show that a substantial amount of laminar flow was maintained at all the wing sweeps evaluated. The maximum transition Reynolds number obtained was 18.6 x 10(exp 6) at 15 deg of wing sweep, Mach 0.75, and at an altitude of 10,000 ft.

  18. An overview of selected NASP aeroelastic studies at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Spain, Charles V.; Soistmann, David L.; Parker, Ellen C.; Gibbons, Michael D.; Gilbert, Michael G.

    1990-01-01

    Following an initial discussion of the NASP flight environment, the results of recent aeroelastic testing of NASP-type highly swept delta-wing models in Langley's Transonic Dynamics Tunnel (TDT) are summarized. Subsonic and transonic flutter characteristics of a variety of these models are described, and several analytical codes used to predict flutter of these models are evaluated. These codes generally provide good, but conservative predictions of subsonic and transonic flutter. Also, test results are presented on a nonlinear transonic phenomena known as aileron buzz which occurred in the wind tunnel on highly swept delta wings with full-span ailerons. An analytical procedure which assesses the effects of hypersonic heating on aeroelastic instabilities (aerothermoelasticity) is also described. This procedure accurately predicted flutter of a heated aluminum wing on which experimental data exists. Results are presented on the application of this method to calculate the flutter characteristics of a fine-element model of a generic NASP configuration. Finally, it is demonstrated analytically that active controls can be employed to improve the aeroelastic stability and ride quality of a generic NASP vehicle flying at hypersonic speeds.

  19. Force generation and wing deformation characteristics of a flapping-wing micro air vehicle 'DelFly II' in hovering flight.

    PubMed

    Percin, M; van Oudheusden, B W; de Croon, G C H E; Remes, B

    2016-05-19

    The study investigates the aerodynamic performance and the relation between wing deformation and unsteady force generation of a flapping-wing micro air vehicle in hovering flight configuration. Different experiments were performed where fluid forces were acquired with a force sensor, while the three-dimensional wing deformation was measured with a stereo-vision system. In these measurements, time-resolved power consumption and flapping-wing kinematics were also obtained under both in-air and in-vacuum conditions. Comparison of the results for different flapping frequencies reveals different wing kinematics and deformation characteristics. The high flapping frequency case produces higher forces throughout the complete flapping cycle. Moreover, a phase difference occurs in the variation of the forces, such that the low flapping frequency case precedes the high frequency case. A similar phase lag is observed in the temporal evolution of the wing deformation characteristics, suggesting that there is a direct link between the two phenomena. A considerable camber formation occurs during stroke reversals, which is mainly determined by the stiffener orientation. The wing with the thinner surface membrane displays very similar characteristics to the baseline wing, which implies the dominance of the stiffeners in terms of providing rigidity to the wing. Wing span has a significant effect on the aerodynamic efficiency such that increasing the span length by 4 cm results in a 6% enhancement in the cycle-averaged X-force to power consumption ratio compared to the standard DelFly II wings with a span length of 28 cm.

  20. Reduced-Order Models for the Aeroelastic Analysis of Ares Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Vatsa, Veer N.; Biedron, Robert T.

    2010-01-01

    This document presents the development and application of unsteady aerodynamic, structural dynamic, and aeroelastic reduced-order models (ROMs) for the ascent aeroelastic analysis of the Ares I-X flight test and Ares I crew launch vehicles using the unstructured-grid, aeroelastic FUN3D computational fluid dynamics (CFD) code. The purpose of this work is to perform computationally-efficient aeroelastic response calculations that would be prohibitively expensive via computation of multiple full-order aeroelastic FUN3D solutions. These efficient aeroelastic ROM solutions provide valuable insight regarding the aeroelastic sensitivity of the vehicles to various parameters over a range of dynamic pressures.

  1. Aerodynamic effects of flexibility in flapping wings.

    PubMed

    Zhao, Liang; Huang, Qingfeng; Deng, Xinyan; Sane, Sanjay P

    2010-03-06

    Recent work on the aerodynamics of flapping flight reveals fundamental differences in the mechanisms of aerodynamic force generation between fixed and flapping wings. When fixed wings translate at high angles of attack, they periodically generate and shed leading and trailing edge vortices as reflected in their fluctuating aerodynamic force traces and associated flow visualization. In contrast, wings flapping at high angles of attack generate stable leading edge vorticity, which persists throughout the duration of the stroke and enhances mean aerodynamic forces. Here, we show that aerodynamic forces can be controlled by altering the trailing edge flexibility of a flapping wing. We used a dynamically scaled mechanical model of flapping flight (Re approximately 2000) to measure the aerodynamic forces on flapping wings of variable flexural stiffness (EI). For low to medium angles of attack, as flexibility of the wing increases, its ability to generate aerodynamic forces decreases monotonically but its lift-to-drag ratios remain approximately constant. The instantaneous force traces reveal no major differences in the underlying modes of force generation for flexible and rigid wings, but the magnitude of force, the angle of net force vector and centre of pressure all vary systematically with wing flexibility. Even a rudimentary framework of wing veins is sufficient to restore the ability of flexible wings to generate forces at near-rigid values. Thus, the magnitude of force generation can be controlled by modulating the trailing edge flexibility and thereby controlling the magnitude of the leading edge vorticity. To characterize this, we have generated a detailed database of aerodynamic forces as a function of several variables including material properties, kinematics, aerodynamic forces and centre of pressure, which can also be used to help validate computational models of aeroelastic flapping wings. These experiments will also be useful for wing design for small

  2. Flights of fear: a mechanical wing whistle sounds the alarm in a flocking bird.

    PubMed

    Hingee, Mae; Magrath, Robert D

    2009-12-07

    Animals often form groups to increase collective vigilance and allow early detection of predators, but this benefit of sociality relies on rapid transfer of information. Among birds, alarm calls are not present in all species, while other proposed mechanisms of information transfer are inefficient. We tested whether wing sounds can encode reliable information on danger. Individuals taking off in alarm fly more quickly or ascend more steeply, so may produce different sounds in alarmed than in routine flight, which then act as reliable cues of alarm, or honest 'index' signals in which a signal's meaning is associated with its method of production. We show that crested pigeons, Ocyphaps lophotes, which have modified flight feathers, produce distinct wing 'whistles' in alarmed flight, and that individuals take off in alarm only after playback of alarmed whistles. Furthermore, amplitude-manipulated playbacks showed that response depends on whistle structure, such as tempo, not simply amplitude. We believe this is the first demonstration that flight noise can send information about alarm, and suggest that take-off noise could provide a cue of alarm in many flocking species, with feather modification evolving specifically to signal alarm in some. Similar reliable cues or index signals could occur in other animals.

  3. CFD based aerodynamic modeling to study flight dynamics of a flapping wing micro air vehicle

    NASA Astrophysics Data System (ADS)

    Rege, Alok Ashok

    The demand for small unmanned air vehicles, commonly termed micro air vehicles or MAV's, is rapidly increasing. Driven by applications ranging from civil search-and-rescue missions to military surveillance missions, there is a rising level of interest and investment in better vehicle designs, and miniaturized components are enabling many rapid advances. The need to better understand fundamental aspects of flight for small vehicles has spawned a surge in high quality research in the area of micro air vehicles. These aircraft have a set of constraints which are, in many ways, considerably different from that of traditional aircraft and are often best addressed by a multidisciplinary approach. Fast-response non-linear controls, nano-structures, integrated propulsion and lift mechanisms, highly flexible structures, and low Reynolds aerodynamics are just a few of the important considerations which may be combined in the execution of MAV research. The main objective of this thesis is to derive a consistent nonlinear dynamic model to study the flight dynamics of micro air vehicles with a reasonably accurate representation of aerodynamic forces and moments. The research is divided into two sections. In the first section, derivation of the nonlinear dynamics of flapping wing micro air vehicles is presented. The flapping wing micro air vehicle (MAV) used in this research is modeled as a system of three rigid bodies: a body and two wings. The design is based on an insect called Drosophila Melanogaster, commonly known as fruit-fly. The mass and inertial effects of the wing on the body are neglected for the present work. The nonlinear dynamics is simulated with the aerodynamic data published in the open literature. The flapping frequency is used as the control input. Simulations are run for different cases of wing positions and the chosen parameters are studied for boundedness. Results show a qualitative inconsistency in boundedness for some cases, and demand a better

  4. Extraction from flight data of longitudinal aerodynamic coefficients for F-8 aircraft with supercritical wing

    NASA Technical Reports Server (NTRS)

    Williams, J. L.; Suit, W. T.

    1974-01-01

    The longitudinal aerodynamic derivatives of the F-8 aircraft with supercritical wing were obtained from flight data by a parameter-extraction algorithm at Mach numbers of 0.8, 0.9, and 0.98. A set of derivatives were obtained from which calculated aircraft responses were correlated almost identically with actual flight responses. In general, the trends of the extracted derivatives obtained by the algorithm agreed with those obtained by a Newton-Raphson method and with preliminary data from the Langley 8-foot transonic pressure tunnel. The wind-tunnel damping derivatives were, however, substantially higher than the converged damping derivatives possibly because of Reynolds number differences between flight and model tests.

  5. Extraction from flight data of lateral aerodynamic coefficients for F-8 aircraft with supercritical wing

    NASA Technical Reports Server (NTRS)

    Williams, J. L.; Suit, W. T.

    1974-01-01

    A parameter-extraction algorithm was used to determine the lateral aerodynamic derivatives from flight data for the F-8 aircraft with supercritical wing. The flight data used were the recorded responses to aileron or rudder pulses for Mach numbers of 0.80, 0.90, and 0.98. Results of this study showed that a set of derivatives were determined which yielded a calculated aircraft response almost identical with the response measured in flight. Derivatives extracted from motion resulting from rudder inputs were somewhat different from those resulting from aileron inputs. It was found that the derivatives obtained from the rudder-input data were highly correlated in some instances. Those from the aileron input had very low correlations and appeared to be the more reliable.

  6. Short-amplitude high-frequency wing strokes determine the aerodynamics of honeybee flight.

    PubMed

    Altshuler, Douglas L; Dickson, William B; Vance, Jason T; Roberts, Stephen P; Dickinson, Michael H

    2005-12-13

    Most insects are thought to fly by creating a leading-edge vortex that remains attached to the wing as it translates through a stroke. In the species examined so far, stroke amplitude is large, and most of the aerodynamic force is produced halfway through a stroke when translation velocities are highest. Here we demonstrate that honeybees use an alternative strategy, hovering with relatively low stroke amplitude (approximately 90 degrees) and high wingbeat frequency (approximately 230 Hz). When measured on a dynamically scaled robot, the kinematics of honeybee wings generate prominent force peaks during the beginning, middle, and end of each stroke, indicating the importance of additional unsteady mechanisms at stroke reversal. When challenged to fly in low-density heliox, bees responded by maintaining nearly constant wingbeat frequency while increasing stroke amplitude by nearly 50%. We examined the aerodynamic consequences of this change in wing motion by using artificial kinematic patterns in which amplitude was systematically increased in 5 degrees increments. To separate the aerodynamic effects of stroke velocity from those due to amplitude, we performed this analysis under both constant frequency and constant velocity conditions. The results indicate that unsteady forces during stroke reversal make a large contribution to net upward force during hovering but play a diminished role as the animal increases stroke amplitude and flight power. We suggest that the peculiar kinematics of bees may reflect either a specialization for increasing load capacity or a physiological limitation of their flight muscles.

  7. Flight experiments on laminar flow control in swept-wing boundary layers

    NASA Astrophysics Data System (ADS)

    Saric, William; Reed, Helen; Carpenter, Andrew; Kluzek, Celine; Hunt, Lauren; Schouten, Shane

    2006-11-01

    Data are presented on boundary-layer transition to turbulence in low-disturbance environments. It uses a combination of hotfilm anemometry and infra-red thermography to study a variety of roughness related issues in flight. The hotfilm measurements give the important passband and spanwise scales while the thermography gives transition location. A swept-wing model is mounted on the wing of a Cessna O-2 aircraft. An Euler code is used calculate the aircraft flowfield while parabolized stability equations correlate the stability measurements and transition locations. The laminarization scheme of spanwise-periodic distributed roughness elements is investigated at chord Reynolds numbers of 7.5 million. In the past year, a number of flight tests have been conducted. Measurements were made to determine the pressure distribution on the model and the transition locations for clean configurations, and transition locations for enhanced surface roughness that simulates an operational surface finish. For clean configurations, natural laminar flow was achieved over 80% of the surface of a 30^o swept-wing model at chord Reynolds numbers of 7.55 million. The corresponding amplification factors were at N = 14.

  8. Optimization of composite tiltrotor wings with extensions and winglets

    NASA Astrophysics Data System (ADS)

    Kambampati, Sandilya

    Tiltrotors suffer from an aeroelastic instability during forward flight called whirl flutter. Whirl flutter is caused by the whirling motion of the rotor, characterized by highly coupled wing-rotor-pylon modes of vibration. Whirl flutter is a major obstacle for tiltrotors in achieving high-speed flight. The conventional approach to assure adequate whirl flutter stability margins for tiltrotors is to design the wings with high torsional stiffness, typically using 23% thickness-to-chord ratio wings. However, the large aerodynamic drag associated with these high thickness-to-chord ratio wings decreases aerodynamic efficiency and increases fuel consumption. Wingtip devices such as wing extensions and winglets have the potential to increase the whirl flutter characteristics and the aerodynamic efficiency of a tiltrotor. However, wing-tip devices can add more weight to the aircraft. In this study, multi-objective parametric and optimization methodologies for tiltrotor aircraft with wing extensions and winglets are investigated. The objectives are to maximize aircraft aerodynamic efficiency while minimizing weight penalty due to extensions and winglets, subject to whirl flutter constraints. An aeroelastic model that predicts the whirl flutter speed and a wing structural model that computes strength and weight of a composite wing are developed. An existing aerodynamic model (that predicts the aerodynamic efficiency) is merged with the developed structural and aeroelastic models for the purpose of conducting parametric and optimization studies. The variables of interest are the wing thickness and structural properties, and extension and winglet planform variables. The Bell XV-15 tiltrotor aircraft the chosen as the parent aircraft for this study. Parametric studies reveal that a wing extension of span 25% of the inboard wing increases the whirl flutter speed by 10% and also increases the aircraft aerodynamic efficiency by 8%. Structurally tapering the wing of a tiltrotor

  9. Natural laminar flow flight experiments on a swept wing business jet-boundary layer stability analyses

    NASA Technical Reports Server (NTRS)

    Rozendaal, R. A.

    1986-01-01

    The linear boundary layer stability analyses and their correlation with data of 18 cases from a natural laminar flow (NLF) flight test program using a Cessna Citation 3 business jet are described. The transition point varied from 5% to 35% chord for these conditions, and both upper and lower wing surfaces were included. Altitude varied from 10,000 to 43,000 ft and Mach number from 0.3 to 0.8. Four cases were at nonzero sideslip. Although there was much scatter in the results, the analyses of boundary layer stability at the 18 conditions led to the conclusion that crossflow instability was the primary cause of transition. However, the sideslip cases did show some interaction of crossflow and Tollmien-Schlichting disturbances. The lower surface showed much lower Tollmien-Schlichting amplification at transition than the upper surface, but similar crossflow amplifications. No relationship between Mach number and disturbance amplification at transition could be found. The quality of these results is open to question from questionable wing surface quality, inadequate density of transition sensors on the wing upper surface, and an unresolved pressure shift in the wing pressure data. The results of this study show the need for careful preparation for transition experiments. Preparation should include flow analyses of the test surface, boundary layer disturbance amplification analyses, and assurance of adequate surface quality in the test area. The placement of necessary instruments and usefulness of the resulting data could largely be determined during the pretest phase.

  10. Effect of low-amplitude vibrations on impulsively-started wings

    NASA Astrophysics Data System (ADS)

    Shang, Jessica; Babinsky, Holger

    2010-11-01

    The development and shedding of leading edge vortices (LEVs) over wings is crucial to lift generation in the flapping flight of birds and insects. Many studies have investigated the flow field empirically by means of wing models that approximate or reproduce the wing kinematics. Wing models are often made of stiff materials (e.g. aluminum, steel) or are intentionally flexible to examine aeroelastic properties. However, even stiff wings will vibrate under forces induced by accelerations, which may modify the flow field and the LEV shedding frequency. This study investigates the effects of start-up vibrations of impulsively started flat plates of different materials (Re = 60,000) at a post-stall angle of attack. Wing vibration was recorded with high-speed imaging and the flow field was analyzed with particle image velocimetry. Results do not eliminate the possibility of lock-on between the wing's natural frequency and the LEV shedding frequency.

  11. Thermostructural Analysis of Unconventional Wing Structures of a Hyper-X Hypersonic Flight Research Vehicle for the Mach 7 Mission

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Gong, Leslie

    2001-01-01

    Heat transfer, thermal stresses, and thermal buckling analyses were performed on the unconventional wing structures of a Hyper-X hypersonic flight research vehicle (designated as X-43) subjected to nominal Mach 7 aerodynamic heating. A wing midspan cross section was selected for the heat transfer and thermal stress analyses. Thermal buckling analysis was performed on three regions of the wing skin (lower or upper); 1) a fore wing panel, 2) an aft wing panel, and 3) a unit panel at the middle of the aft wing panel. A fourth thermal buckling analysis was performed on a midspan wing segment. The unit panel region is identified as the potential thermal buckling initiation zone. Therefore, thermal buckling analysis of the Hyper-X wing panels could be reduced to the thermal buckling analysis of that unit panel. "Buckling temperature magnification factors" were established. Structural temperature-time histories are presented. The results show that the concerns of shear failure at wing and spar welded sites, and of thermal buckling of Hyper-X wing panels, may not arise under Mach 7 conditions.

  12. Transonic and Low-Supersonic Aeroelastic Analysis of a Two-Degree Airfoil with a Freeplay Non-Linearity

    NASA Astrophysics Data System (ADS)

    KIM, DONG-HYUN; LEE, IN

    2000-07-01

    A two-degree-of-freedom airfoil with a freeplay non-linearity in the pitch and plunge directions has been analyzed in the transonic and low-supersonic flow region, where aerodynamic non-linearities also exist. The primary purpose of this study is to show aeroelastic characteristics due to freeplay structural non-linearity in the transonic and low-supersonic regions. The unsteady aerodynamic forces on the airfoil were evaluated using two-dimensional unsteady Euler code, and the resulting aeroelastic equations are numerically integrated to obtain the aeroelastic time responses of the airfoil motions and to investigate the dynamic instability. The present model has been considered as a simple aeroelastic model, which is equivalent to the folding fin of an advanced generic missile. From the results of the present study, characteristics of important vibration responses and aeroelastic instabilities can be observed in the transonic and supersonic regions, especially considering the effect of structural non-linearity in the pitch and plunge directions. The regions of limit-cycle oscillation are shown at much lower velocities, especially in the supersonic flow region, than the divergent flutter velocities of the linear structure model. It is also shown that even small freeplay angles can lead to severe dynamic instabilities and dangerous fatigue conditions for the flight vehicle wings and control fins.

  13. Natural laminar flow wing for supersonic conditions: Wind tunnel experiments, flight test and stability computations

    NASA Astrophysics Data System (ADS)

    Vermeersch, Olivier; Yoshida, Kenji; Ueda, Yoshine; Arnal, Daniel

    2015-11-01

    In the framework of next supersonic transport airplane generation, the Japan Aerospace eXploration Agency (JAXA) has developed a new natural laminar flow highly swept wing. The design has been experimentally validated firstly in a supersonic wind tunnel and secondly accomplishing flight test. These experimental data were then analyzed and completed by numerical stability analyses in a joint research program between Onera and JAXA. At the design condition, for a Mach number M=2 at an altitude of h=18 km, results have confirmed the laminar design of the wing due to a strong attenuation of cross-flow instabilities ensuring an extended laminar zone. As the amplification of disturbances inside the boundary layer and transition process is very sensitive to external parameters, the impact of wall roughness of the models and the influence of Reynolds number on transition process have been carefully analyzed.

  14. Spring or string: does tendon elastic action influence wing muscle mechanics in bat flight?

    PubMed Central

    Konow, Nicolai; Cheney, Jorn A.; Roberts, Thomas J.; Waldman, J. Rhea S.; Swartz, Sharon M.

    2015-01-01

    Tendon springs influence locomotor movements in many terrestrial animals, but their roles in locomotion through fluids as well as in small-bodied mammals are less clear. We measured muscle, tendon and joint mechanics in an elbow extensor of a small fruit bat during ascending flight. At the end of downstroke, the tendon was stretched by elbow flexion as the wing was folded. At the end of upstroke, elastic energy was recovered via tendon recoil and extended the elbow, contributing to unfurling the wing for downstroke. Compared with a hypothetical ‘string-like’ system lacking series elastic compliance, the tendon spring conferred a 22.5% decrease in muscle fascicle strain magnitude. Our findings demonstrate tendon elastic action in a small flying mammal and expand our understanding of the occurrence and action of series elastic actuator mechanisms in fluid-based locomotion. PMID:26423848

  15. Development of an unsteady wake theory appropriate for aeroelastic analyses of rotors in hover and forward flight

    NASA Technical Reports Server (NTRS)

    Peters, David A.

    1988-01-01

    The purpose of this research is the development of an unsteady aerodynamic model for rotors such that it can be used in conventional aeroelastic analysis (e.g., eigenvalue determination and control system design). For this to happen, the model must be in a state-space formulation such that the states of the flow can be defined, calculated and identified as part of the analysis. The fluid mechanics of the problem is given by a closed-form inversion of an acceleration potential. The result is a set of first-order differential equations in time for the unknown flow coefficients. These equations are hierarchical in the sense that they may be truncated at any number of radial or azimuthal terms.

  16. Aerodynamic performance of two-dimensional, chordwise flexible flapping wings at fruit fly scale in hover flight.

    PubMed

    Sridhar, Madhu; Kang, Chang-kwon

    2015-05-06

    Fruit flies have flexible wings that deform during flight. To explore the fluid-structure interaction of flexible flapping wings at fruit fly scale, we use a well-validated Navier-Stokes equation solver, fully-coupled with a structural dynamics solver. Effects of chordwise flexibility on a two dimensional hovering wing is studied. Resulting wing rotation is purely passive, due to the dynamic balance between aerodynamic loading, elastic restoring force, and inertial force of the wing. Hover flight is considered at a Reynolds number of Re = 100, equivalent to that of fruit flies. The thickness and density of the wing also corresponds to a fruit fly wing. The wing stiffness and motion amplitude are varied to assess their influences on the resulting aerodynamic performance and structural response. Highest lift coefficient of 3.3 was obtained at the lowest-amplitude, highest-frequency motion (reduced frequency of 3.0) at the lowest stiffness (frequency ratio of 0.7) wing within the range of the current study, although the corresponding power required was also the highest. Optimal efficiency was achieved for a lower reduced frequency of 0.3 and frequency ratio 0.35. Compared to the water tunnel scale with water as the surrounding fluid instead of air, the resulting vortex dynamics and aerodynamic performance remained similar for the optimal efficiency motion, while the structural response varied significantly. Despite these differences, the time-averaged lift scaled with the dimensionless shape deformation parameter γ. Moreover, the wing kinematics that resulted in the optimal efficiency motion was closely aligned to the fruit fly measurements, suggesting that fruit fly flight aims to conserve energy, rather than to generate large forces.

  17. Aerodynamic effects of wing corrugation at gliding flight at low Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Meng, Xue Guang; Sun, Mao

    2013-07-01

    Corrugation gives an insect-wing the advantages of low mass, high stiffness, and low membrane stress. Researchers are interested to know if it is also advantageous aerodynamically. Previous works reported that corrugation enhanced the aerodynamic performance of wings at gliding flight. However, Reynolds numbers considered in these studies were higher than that of gliding insects. The present study showed that in the Reynolds number range of gliding insects, corrugation had negative aerodynamic effects. We studied aerodynamic effects of corrugation at gliding motion using the method of computational fluid dynamics, in the Reynolds number range of Re = 200-2400. Different corrugation patterns were considered. The effect of corrugation on aerodynamic performance was identified by comparing the aerodynamic forces between the corrugated and flat-plate wings, and the underlying flow mechanisms of the corrugation effects were revealed by analyzing the flow fields and surface pressure distributions. The findings are as follows: (1) the effect of corrugation is to decrease the lift, and change the drag only slightly (at 15°-25° angles of attack, lift is decreased by about 16%; at smaller angles of attack, the percentage of lift reduction is even larger because the lift is small). (2) Two mechanisms are responsible for the lift reduction. One is that the pleats at the lower surface of the corrugated wing produce relatively strong vortices, resulting in local low-pressure regions on the lower surface of the wing. The other is that corrugation near the leading edge pushes the leading-edge-separation layer slightly upwards and increases the size of the separation bubble above the upper surface, reducing the "suction pressure," or increasing the pressure, on the upper surface.

  18. Development of bat flight: Morphologic and molecular evolution of bat wing digits

    PubMed Central

    Sears, Karen E.; Behringer, Richard R.; Rasweiler, John J.; Niswander, Lee A.

    2006-01-01

    The earliest fossil bats resemble their modern counterparts in possessing greatly elongated digits to support the wing membrane, which is an anatomical hallmark of powered flight. To quantitatively confirm these similarities, we performed a morphometric analysis of wing bones from fossil and modern bats. We found that the lengths of the third, fourth, and fifth digits (the primary supportive elements of the wing) have remained constant relative to body size over the last 50 million years. This absence of transitional forms in the fossil record led us to look elsewhere to understand bat wing evolution. Investigating embryonic development, we found that the digits in bats (Carollia perspicillata) are initially similar in size to those of mice (Mus musculus) but that, subsequently, bat digits greatly lengthen. The developmental timing of the change in wing digit length points to a change in longitudinal cartilage growth, a process that depends on the relative proliferation and differentiation of chondrocytes. We found that bat forelimb digits exhibit relatively high rates of chondrocyte proliferation and differentiation. We show that bone morphogenetic protein 2 (Bmp2) can stimulate cartilage proliferation and differentiation and increase digit length in the bat embryonic forelimb. Also, we show that Bmp2 expression and Bmp signaling are increased in bat forelimb embryonic digits relative to mouse or bat hind limb digits. Together, our results suggest that an up-regulation of the Bmp pathway is one of the major factors in the developmental elongation of bat forelimb digits, and it is potentially a key mechanism in their evolutionary elongation as well. PMID:16618938

  19. Characterization of Flapping Wing Aerodynamics and Flight Dynamics Analysis using Computational Methods

    NASA Astrophysics Data System (ADS)

    Rege, Alok Ashok

    Insect flight comes with a lot of intricacies that cannot be explained by conventional aerodynamics. Even with their small-size, insects have the ability to generate the required aerodynamic forces using high frequency flapping motion of their wings to perform different maneuvers. The maneuverability obtained by these flyers using flapping motion belies the classical aerodynamics theory and calls for a new approach to study this highly unsteady aerodynamics. Research is on to find new ways to realize the flight capabilities of these insects and engineer a micro-flyer which would have various applications, ranging from autonomous pollination of crop fields and oil & gas exploration to area surveillance and detection & rescue missions. In this research, a parametric study of flapping trajectories is performed using a two-dimensional wing to identify the factors that affect the force production. These factors are then non-dimensionalized and used in a design of experiments set-up to conduct sensitivity analysis. A procedure to determine an aerodynamic model comprising cycle-averaged force coefficients is described. This aerodynamic model is then used in a nonlinear dynamics framework to perform flight dynamics analysis using a micro-flyer with model properties based on Drosophila. Stability analysis is conducted to determine different steady state flight conditions that could achieved by the micro-flyer with the given model properties. The effect of scaling the mass properties is discussed. An LQR design is used for closed-loop control. Open and closed-loop simulations are performed. The results show that nonlinear dynamics framework can be used to determine values for model properties of a micro-flyer that would enable it to perform different flight maneuvers.

  20. Unsteady aerodynamics of flapping flight - A fluid-structure interaction study of fore-hind wing phase difference

    NASA Astrophysics Data System (ADS)

    Rasani, M. R.; Shamsudeen, A.; Sulaiman, M. N.

    2016-11-01

    Flights of dragonflies, various insects and birds have been a subject of active research that may offer insight towards enhanced aerodynamic performance at low Reynolds numbers. To that end, we mimick the flapping biomechanics of a dragonfly by two thin flat airfoils plunging in tandem with each other. In the present study, we aim to investigate the effect of difference in flapping phase between fore and hind wings towards their aerodynamic performances. We computationally simulate incompressible, viscous, laminar flow around two thin flat airfoils that are purely plunging, at a Strouhal number of 0.25 and Reynolds number of 6500, using a flow solver in an Arbitrary Lagrangian-Eulerian framework. Kinematics of both fore and hind wing flapping followed a similar sinusoidal function but with relative phase angle difference to each other, that were varied between -50° to +50° including two cases were phase difference is 0° (i.e. in-phase fore-hind wing flapping) and +90° (i.e. fore wing lags hind wing by 90°). Numerical results indicate that maximum lift and drag forces for each fore and hind wings occur at phase angle of -40° and that power efficiency of tandem wings are better at phase angles when hind wing leads the fore wing, with maximum power efficiency occurring at a fore-hind wing phase difference of +30°. The complex fore-hind wing vortex interaction indicate likely benefit on the hind wing as it interacts with the fore wing at different phase angles.

  1. Flight evaluation of an insect contamination protection system for laminar flow wings

    NASA Technical Reports Server (NTRS)

    Croom, C. C.; Holmes, B. J.

    1985-01-01

    The maintenance of minimum wing leading edge contamination is critical to the preservation of drag-reducing laminar flow; previous methods for the prevention of leading edge contamination by insects have, however, been rendered impractical by their excessive weight, cost, or inconvenience. Attention is presently given to the results of a NASA flight experiment which evaluated the performance of a porous leading edge fluid-discharge ice protection system in the novel role of insect contamination removal; high insect contamination conditions were also noted in the experiment. Very small amounts of the fluid are found to be sufficient for insect contamination protection.

  2. Whole-field, time resolved velocity measurements of flow structures on insect wings during free flight

    NASA Astrophysics Data System (ADS)

    Langley, Kenneth; Thomson, Scott; Truscott, Tadd

    2012-11-01

    The development of micro air vehicles (MAVs) that are propelled using flapping flight necessitates an understanding of the unsteady aerodynamics that enable this mode of flight. Flapping flight has been studied using a variety of methods including computational models, experimentation and observation. Until recently, the observation of natural flyers has been limited to qualitative methods such as smoke-line visualization. Advances in imaging technology have enabled the use of particle image velocimetry (PIV) to gain a quantitative understanding of the unsteady nature of the flight. Previously published PIV studies performed on insects have been limited to velocities in a single plane on tethered insects in a wind tunnel. We present the three-dimensional, time-resolved velocity fields of flight around a butterfly, using an array of high-speed cameras at 1 kHz through a technique known as 3D Synthetic Aperture PIV (SAPIV). These results are useful in understanding the relationship between wing kinematics and the unsteady aerodynamics generated.

  3. Aerostructures Test Wing

    NASA Technical Reports Server (NTRS)

    Lind, RIck; Voracek, David F.; Doyle, Tim; Truax, Roger; Potter, Starr; Brenner, Marty; Voelker, Len; Freudinger, Larry; Stocjt. C (off)

    2003-01-01

    The Aerostructures Test Wing (ATW) was an apparatus used in a flight experiment during a program of research on aeroelastic instabilities. The ATW experiment was performed to study a specific instability known as flutter. Flutter is a destructive phenomenon caused by adverse coupling of structural dynamics and aerodynamics. The process of determining a flight envelope within which an aircraft will not experience flutter, known as flight flutter testing, is very dangerous and expensive because predictions of the instability are often unreliable. The ATW was a small-scale airplane wing that comprised an airfoil and boom (see upper part of Figure 1). For flight tests, the ATW was mounted on the F-15B/FTF-II testbed, which is a second-generation flight-test fixture described in Flight-Test Fixture for Aerodynamic Research (DRC- 95-27), NASA Tech Briefs, Vol. 19, No. 9, September 1995, page 84. The ATW was mounted horizontally on this fixture, and the entire assembly was attached to the undercarriage of the F-15B airplane (see lower part of Figure 1). The primary objective of the ATW project was to investigate traditional and advanced methodologies for predicting the onset of flutter. In particular, the ATW generated data that were used to evaluate a flutterometer. This particular flutterometer is an on-line computer program that uses method analysis to estimate worst-case flight conditions associated with flutter. This software was described in A Flutterometer Flight Test Tool NASA Tech Briefs, Vol. 23, No. 1, January 1999, page 52.

  4. Flight experiments on laminar flow control in swept-wing boundary layers.

    NASA Astrophysics Data System (ADS)

    Saric, William; Carpenter, Andrew; Reed, Helen

    2007-11-01

    Data are presented on boundary-layer transition to turbulence in low-disturbance environments. The measurements include infra-red thermography to study roughness related issues of boundary-layer transition in flight. A swept-wing model is mounted on the wing of a Cessna O-2 aircraft where an Euler code is used calculate the aircraft flowfield a nonlinear parabolized stability equations correlate the stability measurements and transition locations. The laminarization scheme of spanwise-periodic distributed roughness elements (DRE) is investigated at chord Reynolds numbers of 8 million. Measurements were made to determine the transition locations for clean configurations and transition locations for enhanced surface roughness that simulates an operational surface finish. For clean configurations, natural laminar flow was achieved over 80% of the surface of a 37 swept-wing model at chord Reynolds numbers of 8.1 million. With a background surface roughness of 1.1 μm rms, transition moved forward to 30% chord. The DRE moved transition to 60% chord.

  5. Aerodynamic derivatives for an oblique wing aircraft estimated from flight data by using a maximum likelihood technique

    NASA Technical Reports Server (NTRS)

    Maine, R. E.

    1978-01-01

    There are several practical problems in using current techniques with five degree of freedom equations to estimate the stability and control derivatives of oblique wing aircraft from flight data. A technique was developed to estimate these derivatives by separating the analysis of the longitudinal and lateral directional motion without neglecting cross coupling effects. Although previously applied to symmetrical aircraft, the technique was not expected to be adequate for oblique wing vehicles. The application of the technique to flight data from a remotely piloted oblique wing aircraft is described. The aircraft instrumentation and data processing were reviewed, with particular emphasis on the digital filtering of the data. A complete set of flight determined stability and control derivative estimates is presented and compared with predictions. The results demonstrated that the relatively simple approach developed was adequate to obtain high quality estimates of the aerodynamic derivatives of such aircraft.

  6. Using frequency-domain methods to identify XV-15 aeroelastic modes

    NASA Technical Reports Server (NTRS)

    Acree, C. W., Jr.; Tischler, Mark B.

    1987-01-01

    The XV-15 Tilt-Rotor wing has six major aeroelastic modes that are close in frequency. To precisely excite individual modes during flight test, dual flaperon exciters with automatic frequency-sweep controls were installed. The resulting structural data were analyzed in the frequency domain (Fourier transformed) with cross spectral and transfer function methods. Modal frequencies and damping were determined by performing curve fits to transfer function magnitude and phase data and to cross spectral magnitude data. Results are given for the XV-15 with its original metal rotor blades. Frequency and damping values are also compared with earlier predictions.

  7. Identification of XV-15 aeroelastic modes using frequency-domain methods

    NASA Technical Reports Server (NTRS)

    Acree, Cecil W., Jr.; Tischler, Mark B.

    1989-01-01

    The XV-15 Tilt-Rotor wing has six major aeroelastic modes that are close in frequency. To precisely excite individual modes during flight test, dual flaperon exciters with automatic frequency-sweep controls were installed. The resulting structural data were analyzed in the frequency domain (Fourier transformed) with cross spectral and transfer function methods. Modal frequencies and damping were determined by performing curve fits to transfer function magnitude and phase data and to cross spectral magnitude data. Results are given for the XV-15 with its original metal rotor blades. Frequency and damping values are also compared with earlier predictions.

  8. Wing tucks are a response to atmospheric turbulence in the soaring flight of the steppe eagle Aquila nipalensis

    PubMed Central

    Reynolds, Kate V.; Thomas, Adrian L. R.; Taylor, Graham K.

    2014-01-01

    Turbulent atmospheric conditions represent a challenge to stable flight in soaring birds, which are often seen to drop their wings in a transient motion that we call a tuck. Here, we investigate the mechanics, occurrence and causation of wing tucking in a captive steppe eagle Aquila nipalensis, using ground-based video and onboard inertial instrumentation. Statistical analysis of 2594 tucks, identified automatically from 45 flights, reveals that wing tucks occur more frequently under conditions of higher atmospheric turbulence. Furthermore, wing tucks are usually preceded by transient increases in airspeed, load factor and pitch rate, consistent with the bird encountering a headwind gust. The tuck itself immediately follows a rapid drop in angle of attack, caused by a downdraft or nose-down pitch motion, which produces a rapid drop in load factor. Positive aerodynamic loading acts to elevate the wings, and the resulting aerodynamic moment must therefore be balanced in soaring by an opposing musculoskeletal moment. Wing tucking presumably occurs when the reduction in the aerodynamic moment caused by a drop in load factor is not met by an equivalent reduction in the applied musculoskeletal moment. We conclude that wing tucks represent a gust response precipitated by a transient drop in aerodynamic loading. PMID:25320064

  9. The control of flight force by a flapping wing: lift and drag production.

    PubMed

    Sane, S P; Dickinson, M H

    2001-08-01

    We used a dynamically scaled mechanical model of the fruit fly Drosophila melanogaster to study how changes in wing kinematics influence the production of unsteady aerodynamic forces in insect flight. We examined 191 separate sets of kinematic patterns that differed with respect to stroke amplitude, angle of attack, flip timing, flip duration and the shape and magnitude of stroke deviation. Instantaneous aerodynamic forces were measured using a two-dimensional force sensor mounted at the base of the wing. The influence of unsteady rotational effects was assessed by comparing the time course of measured forces with that of corresponding translational quasi-steady estimates. For each pattern, we also calculated mean stroke-averaged values of the force coefficients and an estimate of profile power. The results of this analysis may be divided into four main points. (i) For a short, symmetrical wing flip, mean lift was optimized by a stroke amplitude of 180 degrees and an angle of attack of 50 degrees. At all stroke amplitudes, mean drag increased monotonically with increasing angle of attack. Translational quasi-steady predictions better matched the measured values at high stroke amplitude than at low stroke amplitude. This discrepancy was due to the increasing importance of rotational mechanisms in kinematic patterns with low stroke amplitude. (ii) For a 180 degrees stroke amplitude and a 45 degrees angle of attack, lift was maximized by short-duration flips occurring just slightly in advance of stroke reversal. Symmetrical rotations produced similarly high performance. Wing rotation that occurred after stroke reversal, however, produced very low mean lift. (iii) The production of aerodynamic forces was sensitive to changes in the magnitude of the wing's deviation from the mean stroke plane (stroke deviation) as well as to the actual shape of the wing tip trajectory. However, in all examples, stroke deviation lowered aerodynamic performance relative to the no

  10. Methods for In-Flight Wing Shape Predictions of Highly Flexible Unmanned Aerial Vehicles: Formulation of Ko Displacement Theory

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Fleischer, Van Tran

    2010-01-01

    The Ko displacement theory is formulated for a cantilever tubular wing spar under bending, torsion, and combined bending and torsion loading. The Ko displacement equations are expressed in terms of strains measured at multiple sensing stations equally spaced on the surface of the wing spar. The bending and distortion strain data can then be input to the displacement equations to calculate slopes, deflections, and cross-sectional twist angles of the wing spar at the strain-sensing stations for generating the deformed shapes of flexible aircraft wing spars. The displacement equations have been successfully validated for accuracy by finite-element analysis. The Ko displacement theory that has been formulated could also be applied to calculate the deformed shape of simple and tapered beams, plates, and tapered cantilever wing boxes. The Ko displacement theory and associated strain-sensing system (such as fiber optic sensors) form a powerful tool for in-flight deformation monitoring of flexible wings and tails, such as those often employed on unmanned aerial vehicles. Ultimately, the calculated displacement data can be visually displayed in real time to the ground-based pilot for monitoring the deformed shape of unmanned aerial vehicles during flight.

  11. Recalibration of a stereoscopic camera system for in-flight wing deformation measurements

    NASA Astrophysics Data System (ADS)

    Kirmse, Tania

    2016-05-01

    A decalibration of a stereoscopic camera system caused by slight movements of the cameras can influence the accuracy of the measured 3D positions significantly. Especially for large scale in-flight applications this is difficult to avoid, e.g. due to the high loads and the vibration level occurring during dynamic flight manoeuvres. Thus a practicable approach for a correction of the results by a recalibration of the camera system is necessary. The image pattern correlation technique (IPCT) delivers large area surface results which enables the assessment of its triangulation error in detail as a measure for the quality of the results. The objective of the presented recalibration is a minimisation of the overall triangulation error by a correction of the external camera parameters. The criteria to assess the reliability of the 3D-surface results and the deformation results derived from are described as well as the limitations of the method. A wing deformation measurement on a VUT100 Cobra aeroplane by means of stereoscopic IPCT was used as a test case to demonstrate the applicability of the recalibration method on real flight test data.

  12. Fluid-structure interaction in compliant insect wings.

    PubMed

    Eberle, A L; Reinhall, P G; Daniel, T L

    2014-06-01

    Insect wings deform significantly during flight. As a result, wings act as aeroelastic structures wherein both the driving motion of the structure and the aerodynamic loading of the surrounding fluid potentially interact to modify wing shape. We explore two key issues associated with the design of compliant wings: over a range of driving frequencies and phases of pitch-heave actuation, how does wing stiffness influence (1) the lift and thrust generated and (2) the relative importance of fluid loading on the shape of the wing? In order to examine a wide range of parameters relevant to insect flight, we develop a computationally efficient, two-dimensional model that couples point vortex methods for fluid force computations with structural finite element methods to model the fluid-structure interaction of a wing in air. We vary the actuation frequency, phase of actuation, and flexural stiffness over a range that encompasses values measured for a number of insect taxa (10-90 Hz; 0-π rad; 10(-7)-10(-5) N m(2)). We show that the coefficients of lift and thrust are maximized at the first and second structural resonant frequencies of the system. We also show that even in regions of structural resonance, fluid loading never contributes more than 20% to the development of flight forces.

  13. Strain Gage Load Calibration of the Wing Interface Fittings for the Adaptive Compliant Trailing Edge Flap Flight Test

    NASA Technical Reports Server (NTRS)

    Miller, Eric J.; Holguin, Andrew C.; Cruz, Josue; Lokos, William A.

    2014-01-01

    This is the presentation to follow conference paper of the same name. The adaptive compliant trailing edge (ACTE) flap experiment safety of flight requires that the flap to wing interface loads be sensed and monitored in real time to ensure that the wing structural load limits are not exceeded. This paper discusses the strain gage load calibration testing and load equation derivation methodology for the ACTE interface fittings. Both the left and right wing flap interfaces will be monitored and each contains four uniquely designed and instrumented flap interface fittings. The interface hardware design and instrumentation layout are discussed. Twenty one applied test load cases were developed using the predicted in-flight loads for the ACTE experiment.

  14. Dynamics of animal movement in an ecological context: dragonfly wing damage reduces flight performance and predation success

    PubMed Central

    Combes, S. A.; Crall, J. D.; Mukherjee, S.

    2010-01-01

    Much of our understanding of the control and dynamics of animal movement derives from controlled laboratory experiments. While many aspects of animal movement can be probed only in these settings, a more complete understanding of animal locomotion may be gained by linking experiments on relatively simple motions in the laboratory to studies of more complex behaviours in natural settings. To demonstrate the utility of this approach, we examined the effects of wing damage on dragonfly flight performance in both a laboratory drop–escape response and the more natural context of aerial predation. The laboratory experiment shows that hindwing area loss reduces vertical acceleration and average flight velocity, and the predation experiment demonstrates that this type of wing damage results in a significant decline in capture success. Taken together, these results suggest that wing damage may take a serious toll on wild dragonflies, potentially reducing both reproductive success and survival. PMID:20236968

  15. Dynamics of animal movement in an ecological context: dragonfly wing damage reduces flight performance and predation success.

    PubMed

    Combes, S A; Crall, J D; Mukherjee, S

    2010-06-23

    Much of our understanding of the control and dynamics of animal movement derives from controlled laboratory experiments. While many aspects of animal movement can be probed only in these settings, a more complete understanding of animal locomotion may be gained by linking experiments on relatively simple motions in the laboratory to studies of more complex behaviours in natural settings. To demonstrate the utility of this approach, we examined the effects of wing damage on dragonfly flight performance in both a laboratory drop-escape response and the more natural context of aerial predation. The laboratory experiment shows that hindwing area loss reduces vertical acceleration and average flight velocity, and the predation experiment demonstrates that this type of wing damage results in a significant decline in capture success. Taken together, these results suggest that wing damage may take a serious toll on wild dragonflies, potentially reducing both reproductive success and survival.

  16. Flight comparison of the transonic agility of the F-111A airplane and the F-111 supercritical wing airplane

    NASA Technical Reports Server (NTRS)

    Friend, E. L.; Sakamoto, G. M.

    1978-01-01

    A flight research program was conducted to investigate the improvements in maneuverability of an F-111A airplane equipped with a supercritical wing. In this configuration the aircraft is known as the F-111 TACT (transonic aircraft technology) airplane. The variable-wing-sweep feature permitted an evaluation of the supercritical wing in many configurations. The primary emphasis was placed on the transonic Mach number region, which is considered to be the principal air combat arena for fighter aircraft. An agility study was undertaken to assess the maneuverability of the F-111A aircraft with a supercritical wing at both design and off-design conditions. The evaluation included an assessment of aerodynamic and maneuver performance in conjunction with an evaluation of precision controllability during tailchase gunsight tracking tasks.

  17. Strain-gage bridge calibration and flight loads measurements on a low-aspect-ratio thin wing

    NASA Technical Reports Server (NTRS)

    Peele, E. L.; Eckstrom, C. V.

    1975-01-01

    Strain-gage bridges were used to make in-flight measurements of bending moment, shear, and torque loads on a low-aspect-ratio, thin, swept wing having a full depth honeycomb sandwich type structure. Standard regression analysis techniques were employed in the calibration of the strain bridges. Comparison of the measured loads with theoretical loads are included.

  18. Fiber Bragg Grating Sensor/Systems for In-Flight Wing Shape Monitoring of Unmanned Aerial Vehicles (UAVs)

    NASA Technical Reports Server (NTRS)

    Parker, Allen; Richards, Lance; Ko, William; Piazza, Anthony; Tran, Van

    2006-01-01

    A viewgraph presentation describing an in-flight wing shape measurement system based on fiber bragg grating sensors for use in Unmanned Aerial Vehicles (UAV) is shown. The topics include: 1) MOtivation; 2) Objective; 3) Background; 4) System Design; 5) Ground Testing; 6) Future Work; and 7) Conclusions

  19. Wake Development behind Paired Wings with Tip and Root Trailing Vortices: Consequences for Animal Flight Force Estimates

    PubMed Central

    Horstmann, Jan T.; Henningsson, Per; Thomas, Adrian L. R.; Bomphrey, Richard J.

    2014-01-01

    Recent experiments on flapping flight in animals have shown that a variety of unrelated species shed a wake behind left and right wings consisting of both tip and root vortices. Here we present an investigation using Particle Image Velocimetry (PIV) of the behaviour and interaction of trailing vortices shed by paired, fixed wings that simplify and mimic the wake of a flying animal with a non-lifting body. We measured flow velocities at five positions downstream of two adjacent NACA 0012 aerofoils and systematically varied aspect ratio, the gap between the wings (corresponding to the width of a non-lifting body), angle of attack, and the Reynolds number. The range of aspect ratios and Reynolds number where chosen to be relevant to natural fliers and swimmers, and insect flight in particular. We show that the wake behind the paired wings deformed as a consequence of the induced flow distribution such that the wingtip vortices convected downwards while the root vortices twist around each other. Vortex interaction and wake deformation became more pronounced further downstream of the wing, so the positioning of PIV measurement planes in experiments on flying animals has an important effect on subsequent force estimates due to rotating induced flow vectors. Wake deformation was most severe behind wings with lower aspect ratios and when the distance between the wings was small, suggesting that animals that match this description constitute high-risk groups in terms of measurement error. Our results, therefore, have significant implications for experimental design where wake measurements are used to estimate forces generated in animal flight. In particular, the downstream distance of the measurement plane should be minimised, notwithstanding the animal welfare constraints when measuring the wake behind flying animals. PMID:24632825

  20. Wake development behind paired wings with tip and root trailing vortices: consequences for animal flight force estimates.

    PubMed

    Horstmann, Jan T; Henningsson, Per; Thomas, Adrian L R; Bomphrey, Richard J

    2014-01-01

    Recent experiments on flapping flight in animals have shown that a variety of unrelated species shed a wake behind left and right wings consisting of both tip and root vortices. Here we present an investigation using Particle Image Velocimetry (PIV) of the behaviour and interaction of trailing vortices shed by paired, fixed wings that simplify and mimic the wake of a flying animal with a non-lifting body. We measured flow velocities at five positions downstream of two adjacent NACA 0012 aerofoils and systematically varied aspect ratio, the gap between the wings (corresponding to the width of a non-lifting body), angle of attack, and the Reynolds number. The range of aspect ratios and Reynolds number where chosen to be relevant to natural fliers and swimmers, and insect flight in particular. We show that the wake behind the paired wings deformed as a consequence of the induced flow distribution such that the wingtip vortices convected downwards while the root vortices twist around each other. Vortex interaction and wake deformation became more pronounced further downstream of the wing, so the positioning of PIV measurement planes in experiments on flying animals has an important effect on subsequent force estimates due to rotating induced flow vectors. Wake deformation was most severe behind wings with lower aspect ratios and when the distance between the wings was small, suggesting that animals that match this description constitute high-risk groups in terms of measurement error. Our results, therefore, have significant implications for experimental design where wake measurements are used to estimate forces generated in animal flight. In particular, the downstream distance of the measurement plane should be minimised, notwithstanding the animal welfare constraints when measuring the wake behind flying animals.

  1. In-flight pressure distributions and skin-friction measurements on a subsonic transport high-lift wing section

    NASA Technical Reports Server (NTRS)

    Yip, Long P.; Vijgen, Paul M. H. W.; Hardin, Jay D.; Vandam, C. P.

    1993-01-01

    Flight experiments are being conducted as part of a multiphased subsonic transport high-lift research program for correlation with wind-tunnel and computational results. The NASA Langley Transport Systems Research Vehicle (B737-100 aircraft) is used to obtain in-flight flow characteristics at full-scale Reynolds numbers to contribute to the understanding of 3-D high-lift, multi-element flows including attachment-line transition and relaminarization, confluent boundary-layer development, and flow separation characteristics. Flight test results of pressure distributions and skin friction measurements were obtained for a full-chord wing section including the slat, main-wing, and triple-slotted, Fowler flap elements. Test conditions included a range of flap deflections, chord Reynolds numbers (10 to 21 million), and Mach numbers (0.16 to 0.40). Pressure distributions were obtained at 144 chordwise locations of a wing section (53-percent wing span) using thin pressure belts over the slat, main-wing, and flap elements. Flow characteristics observed in the chordwise pressure distributions included leading-edge regions of high subsonic flows, leading-edge attachment-line locations, slat and main-wing cove-flow separation and reattachment, and trailing-edge flap separation. In addition to the pressure distributions, limited skin-friction measurements were made using Preston-tube probes. Preston-tube measurements on the slat upper surface suggested relaminarization of the turbulent flow introduced by the pressure belt on the slat leading-edge surface when the slat attachment line was laminar. Computational analysis of the in-flight pressure measurements using two-dimensional, viscous multielement methods modified with simple-sweep theory showed reasonable agreement. However, overprediction of the pressures on the flap elements suggests a need for better detailed measurements and improved modeling of confluent boundary layers as well as inclusion of three-dimensional viscous

  2. Flight evaluation of the transonic stability and control characteristics of an airplane incorporating a supercritical wing

    NASA Technical Reports Server (NTRS)

    Matheny, N. W.; Gatlin, D. H.

    1978-01-01

    A TF-8A airplane was equipped with a transport type supercritical wing and fuselage fairings to evaluate predicted performance improvements for cruise at transonic speeds. A comparison of aerodynamic derivatives extracted from flight and wind tunnel data showed that static longitudinal stability, effective dihedral, and aileron effectiveness, were higher than predicted. The static directional stability derivative was slower than predicted. The airplane's handling qualities were acceptable with the stability augmentation system on. The unaugmented airplane exhibited some adverse lateral directional characteristics that involved low Dutch roll damping and low roll control power at high angles of attack and roll control power that was greater than satisfactory for transport aircraft at cruise conditions. Longitudinally, the aircraft exhibited a mild pitchup tendency. Leading edge vortex generators delayed the onset of flow separation, moving the pitchup point to a higher lift coefficient and reducing its severity.

  3. Modeling and Optimization for Morphing Wing Concept Generation II. Part 1; Morphing Wing Modeling and Structural Sizing Techniques

    NASA Technical Reports Server (NTRS)

    Skillen, Michael D.; Crossley, William A.

    2008-01-01

    This report documents a series of investigations to develop an approach for structural sizing of various morphing wing concepts. For the purposes of this report, a morphing wing is one whose planform can make significant shape changes in flight - increasing wing area by 50% or more from the lowest possible area, changing sweep 30 or more, and / or increasing aspect ratio by as much as 200% from the lowest possible value. These significant changes in geometry mean that the underlying load-bearing structure changes geometry. While most finite element analysis packages provide some sort of structural optimization capability, these codes are not amenable to making significant changes in the stiffness matrix to reflect the large morphing wing planform changes. The investigations presented here use a finite element code capable of aeroelastic analysis in three different optimization approaches -a "simultaneous analysis" approach, a "sequential" approach, and an "aggregate" approach.

  4. Active and passive techniques for tiltrotor aeroelastic stability augmentation

    NASA Astrophysics Data System (ADS)

    Hathaway, Eric L.

    Tiltrotors are susceptible to whirl flutter, an aeroelastic instability characterized by a coupling of rotor-generated aerodynamic forces and elastic wing modes in high speed airplane-mode flight. The conventional approach to ensuring adequate whirl flutter stability will not scale easily to larger tiltrotor designs. This study constitutes an investigation of several alternatives for improving tiltrotor aerolastic stability. A whirl flutter stability analysis is developed that does not rely on more complex models to determine the variations in crucial input parameters with flight condition. Variation of blade flap and lag frequency, and pitch-flap, pitch-lag, and flap-lag couplings, are calculated from physical parameters, such as blade structural flap and lag stiffness distribution (inboard or outboard of pitch bearing), collective pitch, and precone. The analysis is used to perform a study of the influence of various design parameters on whirl flutter stability. While previous studies have investigated the individual influence of various design parameters, the present investigation uses formal optimization techniques to determine a unique combination of parameters that maximizes whirl flutter stability. The optimal designs require only modest changes in the key rotor and wing design parameters to significantly increase flutter speed. When constraints on design parameters are relaxed, optimized configurations are obtained that allow large values of kinematic pitch-flap (delta3) coupling without degrading aeroelastic stability. Larger values of delta3 may be desirable for advanced tiltrotor configurations. An investigation of active control of wing flaperons for stability augmentation is also conducted. Both stiff- and soft-inplane tiltrotor configurations are examined. Control systems that increase flutter speed and wing mode sub-critical damping are designed while observing realistic limits on flaperon deflection. The flaperon is shown to be particularly

  5. Wind tunnel performance results of an aeroelastically scaled 2/9 model of the PTA flight test prop-fan

    NASA Technical Reports Server (NTRS)

    Stefko, George L.; Rose, Gayle E.; Podboy, Gary G.

    1987-01-01

    High speed wind tunnel aerodynamic performance tests of the SR-7A advanced prop-fan have been completed in support of the Prop-Fan Test Assessment (PTA) flight test program. The test showed that the SR-7A model performed aerodynamically very well. At the cruise design condition, the SR-7A prop fan had a high measured net efficiency of 79.3 percent.

  6. NASA Langley Distributed Propulsion VTOL Tilt-Wing Aircraft Testing, Modeling, Simulation, Control, and Flight Test Development

    NASA Technical Reports Server (NTRS)

    Rothhaar, Paul M.; Murphy, Patrick C.; Bacon, Barton J.; Gregory, Irene M.; Grauer, Jared A.; Busan, Ronald C.; Croom, Mark A.

    2014-01-01

    Control of complex Vertical Take-Off and Landing (VTOL) aircraft traversing from hovering to wing born flight mode and back poses notoriously difficult modeling, simulation, control, and flight-testing challenges. This paper provides an overview of the techniques and advances required to develop the GL-10 tilt-wing, tilt-tail, long endurance, VTOL aircraft control system. The GL-10 prototype's unusual and complex configuration requires application of state-of-the-art techniques and some significant advances in wind tunnel infrastructure automation, efficient Design Of Experiments (DOE) tunnel test techniques, modeling, multi-body equations of motion, multi-body actuator models, simulation, control algorithm design, and flight test avionics, testing, and analysis. The following compendium surveys key disciplines required to develop an effective control system for this challenging vehicle in this on-going effort.

  7. Potential flow calculations and preliminary wing design in support of an NLF variable sweep transition flight experiment

    NASA Technical Reports Server (NTRS)

    Waggoner, E. G.; Phillips, P. S.; Viken, J. K.; Davis, W. H.

    1985-01-01

    NASA Langley and NASA Ames-Dryden have defined a variable-sweep transition-flight experiment utilizing the F-14 aircraft to enhance understanding of the interaction of crossflow and Tollmien-Schlichting instabilities on a laminar-boundary-layer transition. The F-14 wing outer panel will be modified to generate favorable pressure gradients on the upper wing surface over a wide range of flight conditions. Extensive computations have been performed using two-dimensional and three-dimensional transonic analysis codes. Flight-test and computational data are compared and shown to validate the applicability of the three-dimensional codes (WBPPW and TAWFIVE). In addition, results from two preliminary glove designs derived from two different approaches to the design problem are presented. Advantages and disadvantages of each approach are identified, and it is concluded that coupling an analysis code with an automated design procedure yields a powerful code with distinct advantages over a 'cut-and-dry' approach.

  8. Dynamics and flight control of a flapping-wing robotic insect in the presence of wind gusts.

    PubMed

    Chirarattananon, Pakpong; Chen, Yufeng; Helbling, E Farrell; Ma, Kevin Y; Cheng, Richard; Wood, Robert J

    2017-02-06

    With the goal of operating a biologically inspired robot autonomously outside of laboratory conditions, in this paper, we simulated wind disturbances in a laboratory setting and investigated the effects of gusts on the flight dynamics of a millimetre-scale flapping-wing robot. Simplified models describing the disturbance effects on the robot's dynamics are proposed, together with two disturbance rejection schemes capable of estimating and compensating for the disturbances. The proposed methods are experimentally verified. The results show that these strategies reduced the root-mean-square position errors by more than 50% when the robot was subject to 80 cm s(-1) horizontal wind. The analysis of flight data suggests that modulation of wing kinematics to stabilize the flight in the presence of wind gusts may indirectly contribute an additional stabilizing effect, reducing the time-averaged aerodynamic drag experienced by the robot. A benchtop experiment was performed to provide further support for this observed phenomenon.

  9. CID Aircraft in practice flight above target impact site with wing cutters

    NASA Technical Reports Server (NTRS)

    1984-01-01

    In this photograph the B-720 is seen making a practice close approach over the prepared impact site. The wing openers, designed to tear open the wings and spill the fuel, are clearly seen on the ground just at the start of the bed of rocks. In a typical aircraft crash, fuel spilled from ruptured fuel tanks forms a fine mist that can be ignited by a number of sources at the crash site. In 1984 the NASA Dryden Flight Research Facility (after 1994 a full-fledged Center again) and the Federal Aviation Administration (FAA) teamed-up in a unique flight experiment called the Controlled Impact Demonstration (CID), to test crash a Boeing 720 aircraft using standard fuel with an additive designed to supress fire. The additive, FM-9, a high-molecular-weight long-chain polymer, when blended with Jet-A fuel had demonstrated the capability to inhibit ignition and flame propagation of the released fuel in simulated crash tests. This anti-misting kerosene (AMK) cannot be introduced directly into a gas turbine engine due to several possible problems such as clogging of filters. The AMK must be restored to almost Jet-A before being introduced into the engine for burning. This restoration is called 'degradation' and was accomplished on the B-720 using a device called a 'degrader.' Each of the four Pratt & Whitney JT3C-7 engines had a 'degrader' built and installed by General Electric (GE) to break down and return the AMK to near Jet-A quality. In addition to the AMK research the NASA Langley Research Center was involved in a structural loads measurement experiment, which included having instrumented dummies filling the seats in the passenger compartment. Before the final flight on December 1, 1984, more than four years of effort passed trying to set-up final impact conditions considered survivable by the FAA. During those years while 14 flights with crews were flown the following major efforts were underway: NASA Dryden developed the remote piloting techniques necessary for the B-720

  10. Evaluation of an aeroelastic model technique for predicting airplane buffet loads

    NASA Technical Reports Server (NTRS)

    Hanson, P. W.

    1973-01-01

    A wind-tunnel technique which makes use of a dynamically scaled aeroelastic model to predict full-scale airplane buffet loads during buffet boundary penetration is evaluated. A 1/8-scale flutter model of a fighter airplane with remotely controllable variable-sweep wings and trimming surfaces was used for the evaluation. The model was flown on a cable-mount system which permitted high lift forces comparable to those in maneuvering flight. Bending moments and accelerations due to buffet were measured on the flutter model and compared with those measured on the full-scale airplane in an independent flight buffet research study. It is concluded that the technique can provide valuable information on airplane buffet load characteristics not available from any other source except flight test.

  11. Design, realization and structural testing of a compliant adaptable wing

    NASA Astrophysics Data System (ADS)

    Molinari, G.; Quack, M.; Arrieta, A. F.; Morari, M.; Ermanni, P.

    2015-10-01

    This paper presents the design, optimization, realization and testing of a novel wing morphing concept, based on distributed compliance structures, and actuated by piezoelectric elements. The adaptive wing features ribs with a selectively compliant inner structure, numerically optimized to achieve aerodynamically efficient shape changes while simultaneously withstanding aeroelastic loads. The static and dynamic aeroelastic behavior of the wing, and the effect of activating the actuators, is assessed by means of coupled 3D aerodynamic and structural simulations. To demonstrate the capabilities of the proposed morphing concept and optimization procedure, the wings of a model airplane are designed and manufactured according to the presented approach. The goal is to replace conventional ailerons, thus to achieve controllability in roll purely by morphing. The mechanical properties of the manufactured components are characterized experimentally, and used to create a refined and correlated finite element model. The overall stiffness, strength, and actuation capabilities are experimentally tested and successfully compared with the numerical prediction. To counteract the nonlinear hysteretic behavior of the piezoelectric actuators, a closed-loop controller is implemented, and its capability of accurately achieving the desired shape adaptation is evaluated experimentally. Using the correlated finite element model, the aeroelastic behavior of the manufactured wing is simulated, showing that the morphing concept can provide sufficient roll authority to allow controllability of the flight. The additional degrees of freedom offered by morphing can be also used to vary the plane lift coefficient, similarly to conventional flaps. The efficiency improvements offered by this technique are evaluated numerically, and compared to the performance of a rigid wing.

  12. Unified Formulation of the Aeroelasticity of Swept Lifting Surfaces

    NASA Technical Reports Server (NTRS)

    Silva, Walter; Marzocca, Piergiovanni; Librescu, Liviu

    2001-01-01

    An unified approach for dealing with stability and aeroelastic response to time-dependent pressure pulses of swept wings in an incompressible flow is developed. To this end the indicial function concept in time and frequency domains, enabling one to derive the proper unsteady aerodynamic loads is used. Results regarding stability in the frequency and time domains, and subcritical aeroelastic response to arbitrary time-dependent external excitation obtained via the direct use of the unsteady aerodynamic derivatives for 3-D wings are supplied. Closed form expressions for unsteady aerodynamic derivatives using this unified approach have been derived and used to illustrate their application to flutter and aeroelastic response to blast and sonic-boom signatures. In this context, an original representation of the aeroelastic response in the phase space was presented and pertinent conclusions on the implications of some basic parameters have been outlined.

  13. Variable Sweep Transition Flight Experiment (VSTFE)-Parametric Pressure Distribution Boundary Layer Stability Study and Wing Glove Design Task

    NASA Technical Reports Server (NTRS)

    Rozendaal, Rodger A.

    1986-01-01

    The Variable Sweep Transition Flight Experiment (VSTFE) was initiated to establish a boundary-layer transition data base for laminar flow wing design. For this experiment, full-span upper-surface gloves will be fitted to a variable sweep F-14 aircraft. The results of two initial tasks are documented: a parametric pressure distribution/boundary-layer stability study and the design of an upper-surface glove for Mach 0.8. The first task was conducted to provide a data base from which wing-glove pressure distributions could be selected for glove designs. Boundary-layer stability analyses were conducted on a set of pressure distributions for various wing sweep angles, Mach numbers, and Reynolds number in the range of those anticipated for the flight-test program. The design procedure for the Mach 0.8 glove is described, and boundary-layer stability calculations and pressure distributions are presented both at design and off-design conditions. Also included is the analysis of the clean-up glove (smoothed basic wing) that will be flight-tested initially and the analysis of a Mach 0.7 glove designed at the NASA Langley Research Center.

  14. Experimental study of the flight envelope and research of safety requirements for hang-gliders

    NASA Technical Reports Server (NTRS)

    Laburthe, C.

    1979-01-01

    The flight mechanic computations were computed, providing both the flight envelopes with all sorts of limits and a fairly precise idea of the influence of several parameters, such as pilot's weight, wing settings, aeroelasticity, etc... The particular problem of luffing dives was thoroughly analyzed, and two kinds of causes were exhibited in both the rules of luffing and aeroelastic effects. The general analysis of longitudinal stability showed a strong link with fabric tension, as expected through Nielsen's and Twaites' theory. Fabric tension strongly depending upon aeroelasticity, that parameter was found to be the most effective design one for positive stability. Lateral stability was found to be very similar in all gliders except perhaps the cylindro-conical. The loss of stability happens in roll at low angle of attack, whereas it happens in yaw at high angle. Turning performance was a bit suprising, with a common maximum value of approximately 55 deg of bank angle for a steady turn.

  15. In-Flight Wing Pressure Distributions for the NASA F/A-18A High Alpha Research Vehicle

    NASA Technical Reports Server (NTRS)

    Davis, Mark C.; Saltzman, John A.

    2000-01-01

    Pressure distributions on the wings of the F/A-18A High Alpha Research Vehicle (HARV) were obtained using both flush-mounted pressure orifices and surface-mounted pressure tubing. During quasi-stabilized 1-g flight, data were gathered at ranges for angle of attack from 5 deg to 70 deg, for angle of sideslip from -12 deg to +12 deg, and for Mach from 0.23 to 0.64, at various engine settings, and with and without the leading edge extension fence installed. Angle of attack strongly influenced the wing pressure distribution, as demonstrated by a distinct flow separation pattern that occurred between the range from 15 deg to 30 deg. Influence by the leading edge extension fence was evident on the inboard wing pressure distribution, but little influence was seen on the outboard portion of the wing. Angle-of-sideslip influence on wing pressure distribution was strongest at low angle of attack. Influence of Mach number was observed in the regions of local supersonic flow, diminishing as angle of attack was increased. Engine throttle setting had little influence on the wing pressure distribution.

  16. A wrinkle in flight: the role of elastin fibres in the mechanical behaviour of bat wing membranes

    PubMed Central

    Cheney, Jorn A.; Konow, Nicolai; Bearnot, Andrew; Swartz, Sharon M.

    2015-01-01

    Bats fly using a thin wing membrane composed of compliant, anisotropic skin. Wing membrane skin deforms dramatically as bats fly, and its three-dimensional configurations depend, in large part, on the mechanical behaviour of the tissue. Large, macroscopic elastin fibres are an unusual mechanical element found in the skin of bat wings. We characterize the fibre orientation and demonstrate that elastin fibres are responsible for the distinctive wrinkles in the surrounding membrane matrix. Uniaxial mechanical testing of the wing membrane, both parallel and perpendicular to elastin fibres, is used to distinguish the contribution of elastin and the surrounding matrix to the overall membrane mechanical behaviour. We find that the matrix is isotropic within the plane of the membrane and responsible for bearing load at high stress; elastin fibres are responsible for membrane anisotropy and only contribute substantially to load bearing at very low stress. The architecture of elastin fibres provides the extreme extensibility and self-folding/self-packing of the wing membrane skin. We relate these findings to flight with membrane wings and discuss the aeromechanical significance of elastin fibre pre-stress, membrane excess length, and how these parameters may aid bats in resisting gusts and preventing membrane flutter. PMID:25833238

  17. Unsteady aerodynamics in time and frequency domains for finite time arbitrary motion of rotary wings in hover and forward flight

    NASA Technical Reports Server (NTRS)

    Dinyavari, M. A. H.; Friedmann, P. P.

    1984-01-01

    Several incompressible finite-time arbitrary-motion airfoil theories suitable for coupled flap-lag-torsional aeroelastic analysis of helicopter rotors in hover and forward flight are derived. These theories include generalized Greenberg's theory, generalized Loewy's theory, and a staggered cascade theory. The generalized Greenberg's and staggered cascade theories were derived directly in Laplace domain considering the finite length of the wake and using operational methods. The load expressions are presented in Laplace, frequency, and time domains. Approximate time domain loads for the various generalized theories, discussed in the paper, are obtained by developing finite state models using the Pade approximant of the appropriate lift deficiency functions. Three different methods for constructing Pade approximants of the lift deficiency functions were considered and the more flexible one was used. Pade approximants of Loewy's lift deficiency function, for various wake spacing and radial location parameters of a helicopter typical rotor blade section, are presented.

  18. Three-Dimensional, High-Resolution Skeletal Kinematics of the Avian Wing and Shoulder during Ascending Flapping Flight and Uphill Flap-Running

    PubMed Central

    Baier, David B.; Gatesy, Stephen M.; Dial, Kenneth P.

    2013-01-01

    Past studies have shown that birds use their wings not only for flight, but also when ascending steep inclines. Uphill flap-running or wing-assisted incline running (WAIR) is used by both flight-incapable fledglings and flight-capable adults to retreat to an elevated refuge. Despite the broadly varying direction of travel during WAIR, level, and descending flight, recent studies have found that the basic wing path remains relatively invariant with reference to gravity. If so, joints undergo disparate motions to maintain a consistent wing path during those specific flapping modes. The underlying skeletal motions, however, are masked by feathers and skin. To improve our understanding of the form-functional relationship of the skeletal apparatus and joint morphology with a corresponding locomotor behavior, we used XROMM (X-ray Reconstruction of Moving Morphology) to quantify 3-D skeletal kinematics in chukars (Alectoris chukar) during WAIR (ascending with legs and wings) and ascending flight (AF, ascending with wings only) along comparable trajectories. Evidence here from the wing joints demonstrates that the glenohumeral joint controls the vast majority of wing movements. More distal joints are primarily involved in modifying wing shape. All bones are in relatively similar orientations at the top of upstroke during both behaviors, but then diverge through downstroke. Total excursion of the wing is much smaller during WAIR and the tip of the manus follows a more vertical path. The WAIR stroke appears “truncated” relative to ascending flight, primarily stemming from ca. 50% reduction in humeral depression. Additionally, the elbow and wrist exhibit reduced ranges of angular excursions during WAIR. The glenohumeral joint moves in a pattern congruent with being constrained by the acrocoracohumeral ligament. Finally, we found pronounced lateral bending of the furcula during the wingbeat cycle during ascending flight only, though the phasic pattern in chukars is

  19. Three-dimensional, high-resolution skeletal kinematics of the avian wing and shoulder during ascending flapping flight and uphill flap-running.

    PubMed

    Baier, David B; Gatesy, Stephen M; Dial, Kenneth P

    2013-01-01

    Past studies have shown that birds use their wings not only for flight, but also when ascending steep inclines. Uphill flap-running or wing-assisted incline running (WAIR) is used by both flight-incapable fledglings and flight-capable adults to retreat to an elevated refuge. Despite the broadly varying direction of travel during WAIR, level, and descending flight, recent studies have found that the basic wing path remains relatively invariant with reference to gravity. If so, joints undergo disparate motions to maintain a consistent wing path during those specific flapping modes. The underlying skeletal motions, however, are masked by feathers and skin. To improve our understanding of the form-functional relationship of the skeletal apparatus and joint morphology with a corresponding locomotor behavior, we used XROMM (X-ray Reconstruction of Moving Morphology) to quantify 3-D skeletal kinematics in chukars (Alectoris chukar) during WAIR (ascending with legs and wings) and ascending flight (AF, ascending with wings only) along comparable trajectories. Evidence here from the wing joints demonstrates that the glenohumeral joint controls the vast majority of wing movements. More distal joints are primarily involved in modifying wing shape. All bones are in relatively similar orientations at the top of upstroke during both behaviors, but then diverge through downstroke. Total excursion of the wing is much smaller during WAIR and the tip of the manus follows a more vertical path. The WAIR stroke appears "truncated" relative to ascending flight, primarily stemming from ca. 50% reduction in humeral depression. Additionally, the elbow and wrist exhibit reduced ranges of angular excursions during WAIR. The glenohumeral joint moves in a pattern congruent with being constrained by the acrocoracohumeral ligament. Finally, we found pronounced lateral bending of the furcula during the wingbeat cycle during ascending flight only, though the phasic pattern in chukars is opposite of

  20. Application of a flight test and data analysis technique to flutter of a drone aircraft

    NASA Technical Reports Server (NTRS)

    Bennett, R. M.

    1981-01-01

    Modal identification results presented were obtained from recent flight flutter tests of a drone vehicle with a research wing (DAST ARW-1 for Drones for Aerodynamic and Structural Testing, Aeroelastic Research Wing-1). This vehicle is equipped with an active flutter suppression system (FSS). Frequency and damping of several modes are determined by a time domain modal analysis of the impulse response function obtained by Fourier transformations of data from fast swept sine wave excitation by the FSS control surface on the wing. Flutter points are determined for two different altitudes with the FSS off. Data are given for near the flutter boundary with the FSS on.

  1. Pressure Distribution over a Wing and Tail Rib of a VE-7 and of a TS Airplane in Flight

    NASA Technical Reports Server (NTRS)

    Crowley, J W , Jr

    1928-01-01

    This investigation was made to determine the pressure distribution over a rib of the wing and over a rib of the horizontal tail surface of an airplane in flight and to obtain information as to the time correlation of the loads occurring on these ribs. Two airplanes, VE-7 and TS, were selected in order to obtain the information for a thin and a thick wing section. In each case the pressure distribution was recorded for the full range of angle of attack in level flight and throughout violent maneuvers. The results show: (a) that the present rib load specifications in use by the Army Air Corps and the Bureau of Aeronautics, Navy Department, are in fair agreement with the loads actually occurring in flight, but could be slightly improved; (b) that there appears to be no definite sequence in which wing and tail surface ribs reach their respective maximum loads in different maneuvers; (c) that in accelerated flight, at air speeds less than or equal to 60 per cent of the maximum speed, the accelerations measured agree very closely with the theoretically possible maximum accelerations. In maneuvers at higher air speeds the observed accelerations were smaller than those theoretically possible. (author)

  2. Deflection-Based Aircraft Structural Loads Estimation with Comparison to Flight

    NASA Technical Reports Server (NTRS)

    Lizotte, Andrew M.; Lokos, William A.

    2005-01-01

    Traditional techniques in structural load measurement entail the correlation of a known load with strain-gage output from the individual components of a structure or machine. The use of strain gages has proved successful and is considered the standard approach for load measurement. However, remotely measuring aerodynamic loads using deflection measurement systems to determine aeroelastic deformation as a substitute to strain gages may yield lower testing costs while improving aircraft performance through reduced instrumentation weight. With a reliable strain and structural deformation measurement system this technique was examined. The objective of this study was to explore the utility of a deflection-based load estimation, using the active aeroelastic wing F/A-18 aircraft. Calibration data from ground tests performed on the aircraft were used to derive left wing-root and wing-fold bending-moment and torque load equations based on strain gages, however, for this study, point deflections were used to derive deflection-based load equations. Comparisons between the strain-gage and deflection-based methods are presented. Flight data from the phase-1 active aeroelastic wing flight program were used to validate the deflection-based load estimation method. Flight validation revealed a strong bending-moment correlation and slightly weaker torque correlation. Development of current techniques, and future studies are discussed.

  3. Overview of NASA PTA propfan flight test program

    NASA Technical Reports Server (NTRS)

    Graber, Edwin J.

    1990-01-01

    The progress is covered of the NASA sponsored Propfan Test Assessment (PTA) flight test program. In PTA, a 9 ft. diameter propfan was installed on the left wing of a Gulfstream GII executive jet and is undergoing extensive flight testing to evaluate propfan structural integrity, near and far field noise, and cabin interior noise characteristics. This research testing includes variations in propeller tip speed and power loading, nacelle tilt angle, and aircraft Mach number and altitude. As a result, extensive parametric data will be obtained to verify and improve computer codes for predicting propfan aeroelastic, aerodynamic, and aeroacoustic characteristics. Over 600 measurements are being recorded for each of approx. 600 flight test conditions.

  4. A flight investigation of oscillating air forces: Equipment and technique

    NASA Technical Reports Server (NTRS)

    Reed, W. H., III

    1975-01-01

    The equipment and techniques are described which are to be used in a project aimed at measuring oscillating air forces and dynamic aeroelastic response of a swept wing airplane at high subsonic speeds. Electro-hydraulic inertia type shakers installed in the wing tips will excite various elastic airplane modes while the related oscillating chordwise pressures at two spanwise wing stations and the wing mode shapes are recorded on magnetic tape. The data reduction technique, following the principle of a wattmeter harmonic analyzer employed by Bratt, Wight, and Tilly, utilizes magnetic tape and high speed electronic multipliers to record directly the real and imaginary components of oscillatory data signals relative to a simple harmonic reference signal. Through an extension of this technique an automatic flight-flutter-test data analyzer is suggested in which vector plots of mechanical admittance or impedance would be plotted during the flight test.

  5. In-flight experiments on active TS-wave control on a 2D-laminar wing glove

    NASA Astrophysics Data System (ADS)

    Peltzer, Inken; Wicke, Kai; Pätzold, Andreas; Nitsche, Wolfgang

    In-flight measurements to delay laminar-turbulent transition by means of active Tollmien-Schlichting (TS) wave cancellation were carried out on a 2Dlaminar wing glove for a sailplane. The sensor-actuator system attached to the wing glove consisted of an array of surface hot-wire reference sensors to detect oncoming TS-waves upstream of a membrane actuator and surface hot-wire error sensors downstream of the actuator. The method applied was based on the dampening of naturally occurring instabilities through superimposition of a counter wave, which was calculated by a fast digital signal processor (DSP), using a closed loop feed-forward control algorithm. The flight experiments validated this system under varying atmospheric conditions successfully. Further attention was directed to the dampening of instabilities in the span-wise direction.

  6. Flight measurements of hinged-plate wing-spoiler hinge moments. [dhc-6 Twin Otter series 100 aircraft

    NASA Technical Reports Server (NTRS)

    Fry, E. B.

    1983-01-01

    Hinge moment of hinged-plate wing spoilers were measured during flight of a twin turboprop airplane modified by the addition of upper and lower wing-surface spoilers. The spoiler-actuating hydraulic cylinders were instrumented to measure the forces required to extend the spoiler panels. Those measurements were converted to moment coefficient form, and are presented as a function of spoiler deployment angle. The hinge-moment data were collected at three flight conditions: with flaps extended at approach speed; with flaps retracted at a low speed; and with flaps retracted at a high speed (C sub L = 1.4, 1.0, and 0.5). In general, the magnitude of measured spoiler hinge moments were lower than predicted. Furthermore, for upper surface spoilers with flaps extended, the hinge moments increased in a discontinuous manner between spoiler deflection 10 and 10.

  7. Petiolate wings: effects on the leading-edge vortex in flapping flight

    PubMed Central

    2017-01-01

    The wings of many insect species including crane flies and damselflies are petiolate (on stalks), with the wing planform beginning some distance away from the wing hinge, rather than at the hinge. The aerodynamic impact of flapping petiolate wings is relatively unknown, particularly on the formation of the lift-augmenting leading-edge vortex (LEV): a key flow structure exploited by many insects, birds and bats to enhance their lift coefficient. We investigated the aerodynamic implications of petiolation P using particle image velocimetry flow field measurements on an array of rectangular wings of aspect ratio 3 and petiolation values of P = 1–3. The wings were driven using a mechanical device, the ‘Flapperatus’, to produce highly repeatable insect-like kinematics. The wings maintained a constant Reynolds number of 1400 and dimensionless stroke amplitude Λ* (number of chords traversed by the wingtip) of 6.5 across all test cases. Our results showed that for more petiolate wings the LEV is generally larger, stronger in circulation, and covers a greater area of the wing surface, particularly at the mid-span and inboard locations early in the wing stroke cycle. In each case, the LEV was initially arch-like in form with its outboard end terminating in a focus-sink on the wing surface, before transitioning to become continuous with the tip vortex thereafter. In the second half of the wing stroke, more petiolate wings exhibit a more detached LEV, with detachment initiating at approximately 70% and 50% span for P = 1 and 3, respectively. As a consequence, lift coefficients based on the LEV are higher in the first half of the wing stroke for petiolate wings, but more comparable in the second half. Time-averaged LEV lift coefficients show a general rise with petiolation over the range tested. PMID:28163876

  8. Petiolate wings: effects on the leading-edge vortex in flapping flight.

    PubMed

    Phillips, Nathan; Knowles, Kevin; Bomphrey, Richard J

    2017-02-06

    The wings of many insect species including crane flies and damselflies are petiolate (on stalks), with the wing planform beginning some distance away from the wing hinge, rather than at the hinge. The aerodynamic impact of flapping petiolate wings is relatively unknown, particularly on the formation of the lift-augmenting leading-edge vortex (LEV): a key flow structure exploited by many insects, birds and bats to enhance their lift coefficient. We investigated the aerodynamic implications of petiolation P using particle image velocimetry flow field measurements on an array of rectangular wings of aspect ratio 3 and petiolation values of P = 1-3. The wings were driven using a mechanical device, the 'Flapperatus', to produce highly repeatable insect-like kinematics. The wings maintained a constant Reynolds number of 1400 and dimensionless stroke amplitude Λ* (number of chords traversed by the wingtip) of 6.5 across all test cases. Our results showed that for more petiolate wings the LEV is generally larger, stronger in circulation, and covers a greater area of the wing surface, particularly at the mid-span and inboard locations early in the wing stroke cycle. In each case, the LEV was initially arch-like in form with its outboard end terminating in a focus-sink on the wing surface, before transitioning to become continuous with the tip vortex thereafter. In the second half of the wing stroke, more petiolate wings exhibit a more detached LEV, with detachment initiating at approximately 70% and 50% span for P = 1 and 3, respectively. As a consequence, lift coefficients based on the LEV are higher in the first half of the wing stroke for petiolate wings, but more comparable in the second half. Time-averaged LEV lift coefficients show a general rise with petiolation over the range tested.

  9. Quiet Clean Short-haul Experimental Engine (QCSEE) preliminary over-the-wing flight propulsion system analysis report

    NASA Technical Reports Server (NTRS)

    Howard, D. F.

    1977-01-01

    The preliminary design of the over-the-wing flight propulsion system installation and nacelle component and systems design features of a short-haul, powered lift aircraft are presented. Economic studies are also presented and show that high bypass, low pressure ratio turbofan engines have the potential of providing an economical propulsion system for achieving the very quiet aircraft noise level of 95 EPNdB on a 152.4 m sideline.

  10. Cranked Arrow Wing (F-16XL-1) Flight Flow Physics with CFD Predictions at Subsonic and Transonic Speeds

    NASA Technical Reports Server (NTRS)

    Lamar, John E.

    2001-01-01

    The computational fluid dynamics (CFD) modeling used has produced reasonably good global upper-surface pressure coefficient comparisons with measured flight data at both transonic and subsonic speeds at the angles of attack presented. Boundary layer comparisons showed the profiles to be reasonably well predicted inboard and under the primary vortex system. However, the secondary vortex profile was not well predicted either at the anticipated separation point or under the secondary vortex. Moreover, the flight data showed there to be a vortex/boundary-layer interaction that occurred in the vicinity of the secondary vortex. The spanwise distribution of local skin friction measured data was reasonably well predicted, especially away from the wing leading-edge. Lastly, predicted and measured flight-pressures, as well as flight-image data, for the F-16XL-1 airplane are now available via the World Wide Web.

  11. Study for the optimization of a transport aircraft wing for maximum fuel efficiency. Volume 1: Methodology, criteria, aeroelastic model definition and results

    NASA Technical Reports Server (NTRS)

    Radovcich, N. A.; Dreim, D.; Okeefe, D. A.; Linner, L.; Pathak, S. K.; Reaser, J. S.; Richardson, D.; Sweers, J.; Conner, F.

    1985-01-01

    Work performed in the design of a transport aircraft wing for maximum fuel efficiency is documented with emphasis on design criteria, design methodology, and three design configurations. The design database includes complete finite element model description, sizing data, geometry data, loads data, and inertial data. A design process which satisfies the economics and practical aspects of a real design is illustrated. The cooperative study relationship between the contractor and NASA during the course of the contract is also discussed.

  12. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing in Flight during Firs

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Silhouetted under a bright blue sky, a quarter-scale model of the Centurion solar-powered flying wing shows off its long, narrow wing as it flies over the broad expanse of El Mirage Dry Lake in Southern California during a March 1997 test flight. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del

  13. Aerodynamic Loading Characteristics Including Effects of Aeroelasticity of a Thin-Trapezoidal-Wing-Body Combination at Mach Number of 1.43

    NASA Technical Reports Server (NTRS)

    Kelly, Thomas C.

    1959-01-01

    Results have been obtained in the Langley 8-foot transonic pressure tunnel at a Mach number of 1.43 and at angles of attack from 0 deg to about 24 deg which indicate the static-aerodynamic-loads characteristics for a 2-percent-thick trapezoidal wing in combination with a body. Included are the effects of changing Reynolds number and of fixing boundary-layer transition. The results show that aerodynamic loading characteristics at a Mach number of 1.43 are similar to those reported in NACA RM L56Jl2a for the same configuration at a Mach number of 1.115. Reducing the Reynolds number resulted in reductions in the deflection of the wing and caused a slight increase in the relative loading over the outboard wing sections since the deflections were in a direction to unload the tip sections. Little or no effects were seen to result from fixing boundary-layer transition at a tunnel stagnation pressure of 1,950 pounds per square foot.

  14. Structural Design Exploration of an Electric Powered Multi-Propulsor Wing Configuration

    NASA Technical Reports Server (NTRS)

    Moore, James B.; Cutright, Steve

    2017-01-01

    Advancements in aircraft electric propulsion may enable an expanded operational envelope for electrically powered vehicles compared to their internal combustion engine counterparts. High aspect ratio wings provide additional lift and drag reduction for a proposed multi-propulsor design, however, the challenge is to reduce the weight of wing structures while maintaining adequate structural and aeroelastic margins. Design exploration using a conventional design-and-build philosophy coupled with a finite element method (FEM)-based design of experiments (DOE) strategy are presented to examine high aspect ratio wing structures that have spanwise distributed electric motors. Multiple leading-edge-mounted engine masses presented a challenge to design a wing within acceptable limits for dynamic and aeroelastic stability. Because the first four primary bending eigenmodes of the proposed wing structure are very sensitive to outboard motor placement, safety-of-flight requirements drove the need for multiple spars, rib attachments, and outboard structural reinforcements in the design. Global aeroelasticity became an increasingly important design constraint during the on-going design process, with outboard motor pod flutter ultimately becoming a primary design constraint. Designers successively generated models to examine stress, dynamics, and aeroelasticity concurrently. This research specifically addressed satisfying multi-disciplinary design criteria to generate fluid-structure interaction solution sets, and produced high aspect ratio primary structure designs for the NASA Scalable Convergent Electric Propulsion Technology and Operations Research (SCEPTOR) project in the Aeronautic Research Mission Directorate at NASA. In this paper, a dynamics-driven, quasi-inverse design methodology is presented to address aerodynamic performance goals and structural challenges encountered for the SCEPTOR demonstrator vehicle. These results are compared with a traditional computer aided

  15. Novel Control Effectors for Truss Braced Wing

    NASA Technical Reports Server (NTRS)

    White, Edward V.; Kapania, Rakesh K.; Joshi, Shiv

    2015-01-01

    At cruise flight conditions very high aspect ratio/low sweep truss braced wings (TBW) may be subject to design requirements that distinguish them from more highly swept cantilevered wings. High aspect ratio, short chord length and relative thinness of the airfoil sections all contribute to relatively low wing torsional stiffness. This may lead to aeroelastic issues such as aileron reversal and low flutter margins. In order to counteract these issues, high aspect ratio/low sweep wings may need to carry additional high speed control effectors to operate when outboard ailerons are in reversal and/or must carry additional structural weight to enhance torsional stiffness. The novel control effector evaluated in this study is a variable sweep raked wing tip with an aileron control surface. Forward sweep of the tip allows the aileron to align closely with the torsional axis of the wing and operate in a conventional fashion. Aft sweep of the tip creates a large moment arm from the aileron to the wing torsional axis greatly enhancing aileron reversal. The novelty comes from using this enhanced and controllable aileron reversal effect to provide roll control authority by acting as a servo tab and providing roll control through intentional twist of the wing. In this case the reduced torsional stiffness of the wing becomes an advantage to be exploited. The study results show that the novel control effector concept does provide roll control as described, but only for a restricted class of TBW aircraft configurations. For the configuration studied (long range, dual aisle, Mach 0.85 cruise) the novel control effector provides significant benefits including up to 12% reduction in fuel burn.

  16. Plant terpenoids: acute toxicities and effects on flight motor activity and wing beat frequency in the blow fly Phaenicia sericata.

    PubMed

    Waliwitiya, Ranil; Belton, Peter; Nicholson, Russell A; Lowenberger, Carl A

    2012-02-01

    We evaluated the acute toxicities and the physiological effects of plant monoterpenoids (eugenol, pulegone, citronellal and alpha-terpineol) and neuroactive insecticides (malathion, dieldrin and RH3421) on flight muscle impulses (FMI) and wing beat signals (WBS) of the blow fly (Phaenicia sericata). Topically-applied eugenol, pulegone, citronellal, and alpha-terpineol produced neurotoxic symptoms, but were less toxic than malathion, dieldrin, or RH3421. Topical application of eugenol, pulegone, and citronellal reduced spike amplitude in one of the two banks of blow fly dorsolongitudinal flight muscles within 6-8 min, but with citronellal, the amplitude of FMIs reverted to a normal pattern within 1 hr. In contrast to pulegone and citronellal, where impulse frequency remained relatively constant, eugenol caused a gradual increase, then a decline in the frequency of spikes in each muscle bank. Wing beating was blocked permanently within 6-7 min of administering pulegone or citronellal and within 16 mins with eugenol. alpha-Terpineol-treated blow flies could not beat their wings despite normal FMI patterns. The actions of these monoterpenoids on blow fly flight motor patterns are discussed and compared with those of dieldrin, malathion, RH3421, and a variety of other neuroactive substances we have previously investigated in this system. Eugenol, pulegone and citronellal readily penetrate blow fly cuticle and interfere with flight muscle and/or central nervous function. Although there were differences in the effects of these compounds, they mainly depressed flight-associated responses, and acted similarly to compounds that block sodium channels and facilitate GABA action.

  17. Technical activities of the configuration aeroelasticity branch

    NASA Technical Reports Server (NTRS)

    Cole, Stanley R. (Editor)

    1991-01-01

    A number of recent technical activities of the Configuration Aeroelasticity Branch of the NASA Langley Research Center are discussed in detail. The information on the research branch is compiled in twelve separate papers. The first of these topics is a summary of the purpose of the branch, including a full description of the branch and its associated projects and program efforts. The next ten papers cover specific projects and are as follows: Experimental transonic flutter characteristics of supersonic cruise configurations; Aeroelastic effects of spoiler surfaces mounted on a low aspect ratio rectangular wing; Planform curvature effects on flutter of 56 degree swept wing determined in Transonic Dynamics Tunnel (TDT); An introduction to rotorcraft testing in TDT; Rotorcraft vibration reduction research at the TDT; A preliminary study to determine the effects of tip geometry on the flutter of aft swept wings; Aeroelastic models program; NACA 0012 pressure model and test plan; Investigation of the use of extension twist coupling in composite rotor blades; and Improved finite element methods for rotorcraft structures. The final paper describes the primary facility operation by the branch, the Langley TDT.

  18. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing in Flight during Firs

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Silhouetted under a bright blue sky, a quarter-scale model of the Centurion solar-powered flying wing shows off its internal rib structure as it floats over the El Mirage Dry Lake in Southern California during a March 1997 test flight. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate

  19. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing in Flight during Firs

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Illuminated by early-morning sunlight, a quarter-scale model of the Solar-powered, remotely piloted Centurion ultra-high-altitude flying wing demonstrates its abilities during a March 1997 test flight. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar

  20. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing in Flight during Firs

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Illuminated by early-morning sunlight, a quarter-scale model of the solar-powered, remotely piloted Centurion ultra-high-altitude flying wing soars over California's Mojave Desert on a March 1997 test flight. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for

  1. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing in Flight during Firs

    NASA Technical Reports Server (NTRS)

    1997-01-01

    With the snow-covered San Gabriel Mountains as a backdrop and a motorcycle-mounted chase crew alongside, a quarter-scale model of the Centurion solar-powered flying wing soars over El Mirage Dry Lake on an early test flight in March 1997. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate

  2. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing in Flight during Firs

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Framed by wispy contrails left by passing jets high above, a quarter-scale model of the Centurion solar-electric flying wing shows off its graceful lines during a March 1997 test flight at El Mirage Dry Lake in California's Mojave Desert. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate

  3. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing in Flight during Firs

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Trailed by a van carrying the remote pilot and observers, a radio-controlled quarter-scale model of the Centurion solar-electric flying wing makes a low pass over El Mirage Dry Lake in Southern California during a March 1997 test flight. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate

  4. Using FUN3D for Aeroelastic, Sonic Boom, and AeroPropulsoServoElastic (APSE) Analyses of a Supersonic Configuration

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Sanetrik, Mark D.; Chwalowski, Pawel; Connolly, Joseph; Kopasakis, George

    2016-01-01

    An overview of recent applications of the FUN3D CFD code to computational aeroelastic, sonic boom, and aeropropulsoservoelasticity (APSE) analyses of a low-boom supersonic configuration is presented. The overview includes details of the computational models developed including multiple unstructured CFD grids suitable for aeroelastic and sonic boom analyses. In addition, aeroelastic Reduced-Order Models (ROMs) are generated and used to rapidly compute the aeroelastic response and utter boundaries at multiple flight conditions.

  5. Simulation and Flight Evaluation of a Parameter Estimation Input Design Method for Hybrid-Wing-Body Aircraft

    NASA Technical Reports Server (NTRS)

    Taylor, Brian R.; Ratnayake, Nalin A.

    2010-01-01

    As part of an effort to improve emissions, noise, and performance of next generation aircraft, it is expected that future aircraft will make use of distributed, multi-objective control effectors in a closed-loop flight control system. Correlation challenges associated with parameter estimation will arise with this expected aircraft configuration. Research presented in this paper focuses on addressing the correlation problem with an appropriate input design technique and validating this technique through simulation and flight test of the X-48B aircraft. The X-48B aircraft is an 8.5 percent-scale hybrid wing body aircraft demonstrator designed by The Boeing Company (Chicago, Illinois, USA), built by Cranfield Aerospace Limited (Cranfield, Bedford, United Kingdom) and flight tested at the National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California, USA). Based on data from flight test maneuvers performed at Dryden Flight Research Center, aerodynamic parameter estimation was performed using linear regression and output error techniques. An input design technique that uses temporal separation for de-correlation of control surfaces is proposed, and simulation and flight test results are compared with the aerodynamic database. This paper will present a method to determine individual control surface aerodynamic derivatives.

  6. Aeroelastic Stability of a Four-Bladed Semi-Articulated Soft-Inplane Tiltrotor Model

    NASA Technical Reports Server (NTRS)

    Nixon, Mark W.; Langston, Chester W.; Singleton, Jeffrey D.; Piatak, David J.; Kvaternik, Raymond G.; Corso, Lawrence M.; Brown, Ross

    2003-01-01

    A new four-bladed, semi-articulated, soft-inplane rotor system, designed as a candidate for future heavy-lift rotorcraft, was tested at model scale on the Wing and Rotor Aeroelastic Testing System (WRATS), a 1/5-size aeroelastic wind-tunnel model based on the V-22. The experimental investigation included a hover test with the model in helicopter mode subject to ground resonance conditions, and a forward flight test with the model in airplane mode subject to whirl-flutter conditions. An active control system designed to augment system damping was also tested as part of this investigation. Results of this study indicate that the new four-bladed, soft-inplane rotor system in hover has adequate damping characteristics and is stable throughout its rotor-speed envelope. However, in airplane mode it produces very low damping in the key wing beam-bending mode, and has a low whirl-flutter stability boundary with respect to airspeed. The active control system was successful in augmenting the damping of the fundamental system modes, and was found to be robust with respect to changes in rotor-speed and airspeed. Finally, conversion-mode dynamic loads were measured on the rotor and these were found to be significantly lower for the new soft-inplane hub than for the previous baseline stiff-inplane hub.

  7. Aeroelastic Stability of a Four-Bladed Semi-Articulated Soft-Inplane Tiltrotor Model

    NASA Technical Reports Server (NTRS)

    Nixon, Mark W.; Langston, Chester W.; Singleton, Jeffrey D.; Piatak, David J.; Kvaternik, Raymond G.; Corso, Lawrence M.; Brown, Ross K.

    2003-01-01

    A new four-bladed, semi-articulated, soft-inplane rotor system, designed as a candidate for future heavy-lift rotorcraft, was tested at model scale on the Wing and Rotor Aeroelastic Testing System (WRATS), a 1/5-size aeroelastic wind-tunnel model based on the V-22. The experimental investigation included a hover test with the model in helicopter mode subject to ground resonance conditions, and a forward flight test with the model in airplane mode subject to whirl-flutter conditions. An active control system designed to augment system damping was also tested as part of this investigation. Results of this study indicate that the new four-bladed, soft-inplane rotor system in hover has adequate damping characteristics and is stable throughout its rotor-speed envelope. However, in airplane mode it produces very low damping in the key wing beam-bending mode, and has a low whirl-flutter stability boundary with respect to airspeed. The active control system was successful in augmenting the damping of the fundamental system modes, and was found to be robust with respect to changes in rotor speed and airspeed. Finally, conversion-mode dynamic loads were measured on the rotor and these were found to be signi.cantly lower for the new soft-inplane hub than for the previous baseline stiff - inplane hub.

  8. Comparative study of solid and bristled wings in flapping flight of tiny insects

    NASA Astrophysics Data System (ADS)

    Terrill, Christopher; Santhanakrishnan, Arvind

    2015-11-01

    Small insects such as thrips that are less than 1 mm in size fly at Reynolds numbers (Re) on the order of 10 and use wing-wing interaction during flapping. In this interaction, referred to as `clap-and-fling', the wings come in close contact with each other at the end of upstroke and rotate about the trailing edge during start of downstroke. The wings of these tiny insects consist of an array of bristles as opposed to a solid membrane. The goal of this study is to examine the effects of bristled wings on aerodynamic force generation and flow structures compared to solid wings. We used an experimental model for the study in which two model wings were prescribed to move along a simplified 2D representation of clap-and-fling kinematics. Forces were measured through the use of strain gauges and 2D phase-locked particle image velocimetry (PIV) was used to visualize the flow generated from flapping. The PIV results show that circulation of the leading edge vortices (LEVs) is attenuated when bristled wings are used. However, improved drag reduction is observed in the bristled wings. Aerodynamic efficiency variation with Re will be discussed. This research was supported by the National Science Foundation (CBET 1512071).

  9. Soft-tissue and dermal arrangement in the wing of an Early Cretaceous bird: Implications for the evolution of avian flight.

    PubMed

    Navalón, Guillermo; Marugán-Lobón, Jesús; Chiappe, Luis M; Luis Sanz, José; Buscalioni, Ángela D

    2015-10-06

    Despite a wealth of fossils of Mesozoic birds revealing evidence of plumage and other soft-tissue structures, the epidermal and dermal anatomy of their wing's patagia remain largely unknown. We describe a distal forelimb of an enantiornithine bird from the Lower Cretaceous limestones of Las Hoyas, Spain, which reveals the overall morphology of the integument of the wing and other connective structures associated with the insertion of flight feathers. The integumentary anatomy, and myological and arthrological organization of the new fossil is remarkably similar to that of modern birds, in which a system of small muscles, tendons and ligaments attaches to the follicles of the remigial feathers and maintains the functional integrity of the wing during flight. The new fossil documents the oldest known occurrence of connective tissues in association with the flight feathers of birds. Furthermore, the presence of an essentially modern connective arrangement in the wing of enantiornithines supports the interpretation of these primitive birds as competent fliers.

  10. Intra-specific variation in wing morphology and its impact on take-off performance in blue tits (Cyanistes caeruleus) during escape flights.

    PubMed

    McFarlane, Laura; Altringham, John D; Askew, Graham N

    2016-05-01

    Diurnal and seasonal increases in body mass and seasonal reductions in wing area may compromise a bird's ability to escape, as less of the power available from the flight muscles can be used to accelerate and elevate the animal's centre of mass. Here, we investigated the effects of intra-specific variation in wing morphology on escape take-off performance in blue tits (Cyanistes caeruleus). Flights were recorded using synchronised high-speed video cameras and take-off performance was quantified as the sum of the rates of change of the kinetic and potential energies of the centre of mass. Individuals with a lower wing loading, WL (WL=body weight/wing area) had higher escape take-off performance, consistent with the increase in lift production expected from relatively larger wings. Unexpectedly, it was found that the total power available from the flight muscles (estimated using an aerodynamic analysis) was inversely related to WL. This could simply be because birds with a higher WL have relatively smaller flight muscles. Alternatively or additionally, variation in the aerodynamic load on the wing resulting from differences in wing morphology will affect the mechanical performance of the flight muscles via effects on the muscle's length trajectory. Consistent with this hypothesis is the observation that wing beat frequency and relative downstroke duration increase with decreasing WL; both are factors that are expected to increase muscle power output. Understanding how wing morphology influences take-off performance gives insight into the potential risks associated with feather loss and seasonal and diurnal fluctuations in body mass.

  11. Intra-specific variation in wing morphology and its impact on take-off performance in blue tits (Cyanistes caeruleus) during escape flights

    PubMed Central

    McFarlane, Laura; Altringham, John D.; Askew, Graham N.

    2016-01-01

    ABSTRACT Diurnal and seasonal increases in body mass and seasonal reductions in wing area may compromise a bird's ability to escape, as less of the power available from the flight muscles can be used to accelerate and elevate the animal's centre of mass. Here, we investigated the effects of intra-specific variation in wing morphology on escape take-off performance in blue tits (Cyanistes caeruleus). Flights were recorded using synchronised high-speed video cameras and take-off performance was quantified as the sum of the rates of change of the kinetic and potential energies of the centre of mass. Individuals with a lower wing loading, WL (WL=body weight/wing area) had higher escape take-off performance, consistent with the increase in lift production expected from relatively larger wings. Unexpectedly, it was found that the total power available from the flight muscles (estimated using an aerodynamic analysis) was inversely related to WL. This could simply be because birds with a higher WL have relatively smaller flight muscles. Alternatively or additionally, variation in the aerodynamic load on the wing resulting from differences in wing morphology will affect the mechanical performance of the flight muscles via effects on the muscle's length trajectory. Consistent with this hypothesis is the observation that wing beat frequency and relative downstroke duration increase with decreasing WL; both are factors that are expected to increase muscle power output. Understanding how wing morphology influences take-off performance gives insight into the potential risks associated with feather loss and seasonal and diurnal fluctuations in body mass. PMID:26994175

  12. The DAST-1 remotely piloted research vehicle development and initial flight testing

    NASA Technical Reports Server (NTRS)

    Kotsabasis, A.

    1981-01-01

    The development and initial flight testing of the DAST (drones for aerodynamic and structural testing) remotely piloted research vehicle, fitted with the first aeroelastic research wing ARW-I are presented. The ARW-I is a swept supercritical wing, designed to exhibit flutter within the vehicle's flight envelope. An active flutter suppression system (FSS) designed to increase the ARW-I flutter boundary speed by 20 percent is described. The development of the FSS was based on prediction techniques of structural and unsteady aerodynamic characteristics. A description of the supporting ground facilities and aircraft systems involved in the remotely piloted research vehicle (RPRV) flight test technique is given. The design, specification, and testing of the remotely augmented vehicle system are presented. A summary of the preflight and flight test procedures associated with the RPRV operation is given. An evaluation of the blue streak test flight and the first and second ARW-I test flights is presented.

  13. Aeroelastic airfoil smart spar

    NASA Technical Reports Server (NTRS)

    Greenhalgh, Skott; Pastore, Christopher M.; Garfinkle, Moishe

    1993-01-01

    Aircraft wings and rotor-blades are subject to undesirable bending and twisting excursions that arise from unsteady aerodynamic forces during high speed flight, abrupt maneuvers, or hard landings. These bending excursions can range in amplitude from wing-tip flutter to failure. A continuous-filament construction 'smart' laminated composite box-beam spar is described which corrects itself when subject to undesirable bending excursions or flutter. The load-bearing spar is constructed so that any tendency for the wing or rotor-blade to bend from its normal position is met by opposite twisting of the spar to restore the wing to its normal position. Experimental and theoretical characterization of these spars was made to evaluate the torsion-flexure coupling associated with symmetric lay-ups. The materials used were uniweave AS-4 graphite and a matrix comprised of Shell 8132 resin and U-40 hardener. Experimental tests were conducted on five spars to determine spar twist and bend as a function of load for 0, 17, 30, 45 and 60 deg fiber angle lay-ups. Symmetric fiber lay-ups do exhibit torsion-flexure couplings. Predictions of the twist and bend versus load were made for different fiber orientations in laminated spars using a spline function structural analysis. The analytical results were compared with experimental results for validation. Excellent correlation between experimental and analytical values was found.

  14. Wind-tunnel free-flight investigation of a model of a forward-swept-wing fighter configuration

    NASA Technical Reports Server (NTRS)

    Murri, D. G.; Nguyen, L. T.; Grafton, S. B.

    1984-01-01

    A wind-tunnel free-flight investigation was conducted to study the dynamic stability characteristics of a model of a forward-swept-wing fighter-airplane configuration at high angles of attack. Various other wind-tunnel techniques employed in the study included static- and dynamic- (forced-oscillation) force tests, free-to-roll tests, and flow-visualization tests. A unique facet of the study was the extreme level of static pitch instability (in excess of negative 32-percent static margin) inherent in the airframe design which precluded free-flight testing without stability augmentation in pitch. Results are presented which emphasize the high-angle-of-attack aerodynamics and the vehicle-component contributions to these characteristics. The effects of these aerodynamic characteristics on the high-angle-of-attack flying qualities of the configuration are discussed in terms of results of the wind-tunnel free-flight tests.

  15. Contrasting micro/nano architecture on termite wings: two divergent strategies for optimising success of colonisation flights.

    PubMed

    Watson, Gregory S; Cribb, Bronwen W; Watson, Jolanta A

    2011-01-01

    Many termite species typically fly during or shortly after rain periods. Local precipitation will ensure water will be present when establishing a new colony after the initial flight. Here we show how different species of termite utilise two distinct and contrasting strategies for optimising the success of the colonisation flight. Nasutitermes sp. and Microcerotermes sp. fly during rain periods and adopt hydrophobic structuring/'technologies' on their wings to contend with a moving canvas of droplets in daylight hours. Schedorhinotermes sp. fly after rain periods (typically at night) and thus do not come into contact with mobile droplets. These termites, in contrast, display hydrophilic structuring on their wings with a small scale roughness which is not dimensionally sufficient to introduce an increase in hydrophobicity. The lack of hydrophobicity allows the termite to be hydrophilicly captured at locations where water may be present in large quantities; sufficient for the initial colonization period. The high wettability of the termite cuticle (Schedorhinotermes sp.) indicates that the membrane has a high surface energy and thus will also have strong attractions with solid particles. To investigate this the termite wings were also interacted with both artificial and natural contaminants in the form of hydrophilic silicon beads of various sizes, 4 µm C(18) beads and three differently structured pollens. These were compared to the superhydrophobic surface of the planthopper (Desudaba psittacus) and a native Si wafer surface. The termite cuticle demonstrated higher adhesive interactions with all particles in comparison to those measured on the plant hopper.

  16. Unsteady fluid-structure interactions with a heaving compliant membrane wing

    NASA Astrophysics Data System (ADS)

    Alon Tzezana, Gali; Breuer, Kenneth

    2016-11-01

    Membrane wings have been shown to provide some benefits over rigid wings at the low Reynolds number regime (Re 103 to 105), specifically improved thrust in flapping flight. Here we present results from a theoretical framework used to characterize the unsteady aeroelastic behavior of compliant membrane wings executing a heaving motion. An analytical model is developed using 2D unsteady thin airfoil theory, coupled with an unsteady membrane equation. Chebyshev collocation methods are used to solve the coupled system efficiently. The model is used to explore the effects of wing compliance, inertia (including added mass effect) and flapping kinematics on the aerodynamic performance, identifying optimal conditions for maximum thrust and propulsive efficiency. A resonant frequency of the coupled system is identified and characterized for different fluid-structure interaction regimes. Extensions to pitching kinematics are also discussed.

  17. Wing-kinematics measurement and aerodynamics in a small insect in hovering flight.

    PubMed

    Cheng, Xin; Sun, Mao

    2016-05-11

    Wing-motion of hovering small fly Liriomyza sativae was measured using high-speed video and flows of the wings calculated numerically. The fly used high wingbeat frequency (≈265 Hz) and large stroke amplitude (≈182°); therefore, even if its wing-length (R) was small (R ≈ 1.4 mm), the mean velocity of wing reached ≈1.5 m/s, the same as that of an average-size insect (R ≈ 3 mm). But the Reynolds number (Re) of wing was still low (≈40), owing to the small wing-size. In increasing the stroke amplitude, the outer parts of the wings had a "clap and fling" motion. The mean-lift coefficient was high, ≈1.85, several times larger than that of a cruising airplane. The partial "clap and fling" motion increased the lift by ≈7%, compared with the case of no aerodynamic interaction between the wings. The fly mainly used the delayed stall mechanism to generate the high-lift. The lift-to-drag ratio is only 0.7 (for larger insects, Re being about 100 or higher, the ratio is 1-1.2); that is, although the small fly can produce enough lift to support its weight, it needs to overcome a larger drag to do so.

  18. Formation Flight: Upstream Influence of a Wing on a Streamwise Vortex

    NASA Astrophysics Data System (ADS)

    McKenna, Chris; Rockwell, Donald; Lehigh University Fluids Lab Team

    2015-11-01

    Aircraft flying together in formation can experience aerodynamic advantages. Impingement of the tip vortex of the leader wing on the trailer wing can increase the lift to drag ratio L/D and the unsteady loading on the trailer wing. These increases are sensitive to the impingement location of the vortex on the wing. Particle image velocimetry is employed to determine patterns of velocity and vorticity on successive crossflow planes along the vortex, which lead to volume representations and thereby characterization of the streamwise evolution of the vortex structure as it approaches the trailer wing. This evolution of the incident vortex is affected by the upstream influence of the trailer wing, and is highly dependent on the location of vortex impingement. As the spanwise impingement location of the vortex moves from outboard of the wing tip to inboard, the upstream influence on the development of the vortex increases. For spanwise locations close to or intersecting the vortex core, the effects of upstream influence of the wing on the vortex are to: increase the streamwise velocity deficit; decrease the streamwise vorticity; increase the in-plane vorticity; decrease the downwash; and increase the root-mean-square of both streamwise velocity and vorticity.

  19. Wing-kinematics measurement and aerodynamics in a small insect in hovering flight

    NASA Astrophysics Data System (ADS)

    Cheng, Xin; Sun, Mao

    2016-05-01

    Wing-motion of hovering small fly Liriomyza sativae was measured using high-speed video and flows of the wings calculated numerically. The fly used high wingbeat frequency (≈265 Hz) and large stroke amplitude (≈182°) therefore, even if its wing-length (R) was small (R ≈ 1.4 mm), the mean velocity of wing reached ≈1.5 m/s, the same as that of an average-size insect (R ≈ 3 mm). But the Reynolds number (Re) of wing was still low (≈40), owing to the small wing-size. In increasing the stroke amplitude, the outer parts of the wings had a “clap and fling” motion. The mean-lift coefficient was high, ≈1.85, several times larger than that of a cruising airplane. The partial “clap and fling” motion increased the lift by ≈7%, compared with the case of no aerodynamic interaction between the wings. The fly mainly used the delayed stall mechanism to generate the high-lift. The lift-to-drag ratio is only 0.7 (for larger insects, Re being about 100 or higher, the ratio is 1–1.2) that is, although the small fly can produce enough lift to support its weight, it needs to overcome a larger drag to do so.

  20. Flapping flight using bristled wings: effects of varying gap to diameter ratios

    NASA Astrophysics Data System (ADS)

    Kasoju, Vishwa Teja; Santhanakrishnan, Arvind

    2016-11-01

    The smallest flying insects with body lengths under 1 mm, such as thrips, show a preferential adaptation for fringed or bristled wings. In addition, these tiny insects have been observed to use wing-wing interaction via the clap and fling mechanism. We have previously shown that the use of bristled wings can lower forces required to clap the wings together and fling them apart. Tremendous variation is observed in bristled wing design among tiny insects. In this study, we examine the role of ratio of bristle gap to diameter (G/D) on force generation and flow structures at Reynolds numbers on the order of 10. A dynamically scaled robotic model was developed for this study, in which physical models of bristled wings were programmed to execute a 2D clap and fling kinematics. Bristled wing models with G/D ranging from 5 through 17 were examined. Lift and drag forces were measured using strain gages and phase-locked particle image velocimetry was used to visualize flow structures generated from the flapping motion. The results showed reductions in the size of the leading edge vortex and drag force with increasing G/D. The effects of increasing G/D on leakiness through the bristles will be presented.

  1. Wing-kinematics measurement and aerodynamics in a small insect in hovering flight

    PubMed Central

    Cheng, Xin; Sun, Mao

    2016-01-01

    Wing-motion of hovering small fly Liriomyza sativae was measured using high-speed video and flows of the wings calculated numerically. The fly used high wingbeat frequency (≈265 Hz) and large stroke amplitude (≈182°); therefore, even if its wing-length (R) was small (R ≈ 1.4 mm), the mean velocity of wing reached ≈1.5 m/s, the same as that of an average-size insect (R ≈ 3 mm). But the Reynolds number (Re) of wing was still low (≈40), owing to the small wing-size. In increasing the stroke amplitude, the outer parts of the wings had a “clap and fling” motion. The mean-lift coefficient was high, ≈1.85, several times larger than that of a cruising airplane. The partial “clap and fling” motion increased the lift by ≈7%, compared with the case of no aerodynamic interaction between the wings. The fly mainly used the delayed stall mechanism to generate the high-lift. The lift-to-drag ratio is only 0.7 (for larger insects, Re being about 100 or higher, the ratio is 1–1.2); that is, although the small fly can produce enough lift to support its weight, it needs to overcome a larger drag to do so. PMID:27168523

  2. System for use in conducting wake investigation for a wing in flight. [differential pressure measurements for drag investigations

    NASA Technical Reports Server (NTRS)

    Bikle, P. F. (Inventor); Montoya, L. C.

    1980-01-01

    A system supported by a wing in flight is described which has a reference total pressure port in spaced relation with a wake as the wake is generated by the wing, a reference static pressure port supported in spaced relation with the wake, and a probe adapted to be displaced along an accurate path through the wake including a total pressure port and static pressure ports. A differential pressure transducer and a pressure switching device are interposed between the ports and the transducer is provided for selectively connecting pairs of the ports to the transducer in opposed relation, whereby a single transducer is utilized to obtain differential pressure measurement for the wake with enhanced accuracy.

  3. Aeroelasticity matters: Some reflections on two decades of testing in the NASA Langley transonic dynamics tunnel

    NASA Technical Reports Server (NTRS)

    Reed, W. H., III

    1981-01-01

    Testing of wind-tunnel aeroelastic models is a well established, widely used means of studying flutter trends, validating theory and investigating flutter margins of safety of new vehicle designs. The Langley Transonic Dynamics Tunnel was designed specifically for work on dynamics and aeroelastic problems of aircraft and space vehicles. A cross section of aeroelastic research and testing in the facility since it became operational more than two decades ago is presented. Examples selected from a large store of experience illustrate the nature and purpose of some major areas of work performed in the tunnel. These areas include: specialized experimental techniques; development testing of new aircraft and launch vehicle designs; evaluation of proposed "fixes" to solve aeroelastic problems uncovered during development testing; study of unexpected aeroelastic phenomena (i.e., "surprises"); control of aeroelastic effects by active and passive means; and, finally, fundamental research involving measurement of unsteady pressures on oscillating wings and control surface.

  4. Efficient flapping flight of pterosaurs

    NASA Astrophysics Data System (ADS)

    Strang, Karl Axel

    In the late eighteenth century, humans discovered the first pterosaur fossil remains and have been fascinated by their existence ever since. Pterosaurs exploited their membrane wings in a sophisticated manner for flight control and propulsion, and were likely the most efficient and effective flyers ever to inhabit our planet. The flapping gait is a complex combination of motions that sustains and propels an animal in the air. Because pterosaurs were so large with wingspans up to eleven meters, if they could have sustained flapping flight, they would have had to achieve high propulsive efficiencies. Identifying the wing motions that contribute the most to propulsive efficiency is key to understanding pterosaur flight, and therefore to shedding light on flapping flight in general and the design of efficient ornithopters. This study is based on published results for a very well-preserved specimen of Coloborhynchus robustus, for which the joints are well-known and thoroughly described in the literature. Simplifying assumptions are made to estimate the characteristics that can not be inferred directly from the fossil remains. For a given animal, maximizing efficiency is equivalent to minimizing power at a given thrust and speed. We therefore aim at finding the flapping gait, that is the joint motions, that minimize the required flapping power. The power is computed from the aerodynamic forces created during a given wing motion. We develop an unsteady three-dimensional code based on the vortex-lattice method, which correlates well with published results for unsteady motions of rectangular wings. In the aerodynamic model, the rigid pterosaur wing is defined by the position of the bones. In the aeroelastic model, we add the flexibility of the bones and of the wing membrane. The nonlinear structural behavior of the membrane is reduced to a linear modal decomposition, assuming small deflections about the reference wing geometry. The reference wing geometry is computed for

  5. Hovering and targeting flight simulations of a dragonfly-like flapping wing-body model by IB-LBM

    NASA Astrophysics Data System (ADS)

    Inamuro, Takaji; Hirohashi, Kensuke

    2016-11-01

    Hovering and targeting flights of the dragonfly-like flapping wing-body model are numerically investigated by using the immersed boundary-lattice Boltzmann method (IB-LBM). The governing parameters of the problem are the Reynolds number Re , the Froude number Fr , and the non-dimensional mass m. We set the parameters at Re = 200 , Fr = 15 , and m = 51 . First, we simulate free flights of the model for various values of the phase difference angle ϕ between the forewing and the hindwing motions and for various values of the stroke angle β between the stroke plane and the horizontal plane. We find that the vertical motion of the model depends on the phase difference angle ϕ, and the horizontal motion of the model depends on the stroke angle β. Secondly, using the above results we try to simulate the hovering flight by dynamically changing the phase difference angle ϕ and the stroke angle β. The hovering flight can be successfully simulated by a simple proportional controlleres of the phase difference angle and the stroke angle. Finally, we simualte targeting flight by dynamically changing the stroke angle β. The authors acknowledge the HPCI System Research Project (hp140025 and hp150087) and the Grants-in-Aid Scientific Research (No. 26420108) from JSPS.

  6. An Investigation of Two-Propeller Tilt Wing V/STOL Aircraft Flight Characteristics

    DTIC Science & Technology

    1992-01-01

    aerodynamic input files or using manual input data. The output provides static aircraft longitudinal parameters for determining performance...wing aircraft so configured, the NASA Ames computer code TWANG is used for simulation of aircraft longitudinal stability and performance characteristics

  7. New Flutter Analysis Technique for CFD-based Unsteady Aeroelasticity

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi; Jutte, Christine V.

    2009-01-01

    This paper presents a flutter analysis technique for the transonic flight regime. The technique uses an iterative approach to determine the critical dynamic pressure for a given mach number. Unlike other CFD-based flutter analysis methods, each iteration solves for the critical dynamic pressure and uses this value in subsequent iterations until the value converges. This process reduces the iterations required to determine the critical dynamic pressure. To improve the accuracy of the analysis, the technique employs a known structural model, leaving only the aerodynamic model as the unknown. The aerodynamic model is estimated using unsteady aeroelastic CFD analysis combined with a parameter estimation routine. The technique executes as follows. The known structural model is represented as a finite element model. Modal analysis determines the frequencies and mode shapes for the structural model. At a given mach number and dynamic pressure, the unsteady CFD analysis is performed. The output time history of the surface pressure is converted to a nodal aerodynamic force vector. The forces are then normalized by the given dynamic pressure. A multi-input multi-output parameter estimation software, ERA, estimates the aerodynamic model through the use of time histories of nodal aerodynamic forces and structural deformations. The critical dynamic pressure is then calculated using the known structural model and the estimated aerodynamic model. This output is used as the dynamic pressure in subsequent iterations until the critical dynamic pressure is determined. This technique is demonstrated on the Aerostructures Test Wing-2 model at NASA's Dryden Flight Research Center.

  8. Determination of the Stability and Control Characteristics of a Tailless All-Wing Airplane Model with Sweepback in the Langley Free-Flight Tunnel

    NASA Technical Reports Server (NTRS)

    Seacord, Charles L.; Campbell, John P.

    1945-01-01

    Force and flight tests were performance on an all-wing model with windmilling propellers. Tests were conducted with deflected and retracted flaps, with and without auxiliary vertical tail surfaces, and with different centers of gravity and trim coefficients. Results indicate serious reduction of stick-fixed longitudinal stability because of wing-tip stalling at high lift coefficient. Directional stability without vertical tail is undesirably low. Low effective dihedral should be maintained. Elevator and rudder control system is satisfactory.

  9. Unsteady aerodynamics of missiles. Part 3: Determination of the longitudinal stability of wings at high angles of attack in supersonic flight

    NASA Astrophysics Data System (ADS)

    Schneider, C. P.

    1980-05-01

    A theoretical method for the determination of unsteady aerodynamic coefficients associated with the longitudinal stability of slender wings in supersonic flight is presented. It is based on the indicial functional theory of Tobak. Extension to higher incidences is effected by combining the indicial functions with steady nonlinear coefficients derived from a semiempiricial procedure. The unsteady nonlinear aerodynamic coefficients are determined for delta wings with subsonic and supersonic leading edges, respectively.

  10. Use of a pitot-static probe for determining wing section drag in flight at Mach numbers from 0.5 to approximately 1.0

    NASA Technical Reports Server (NTRS)

    Montoya, L. C.; Economu, M. A.; Cissell, R. E.

    1974-01-01

    The use of a pitot-static probe to determine wing section drag at speeds from Mach 0.5 to approximately 1.0 was evaluated in flight. The probe unit is described and operational problems are discussed. Typical wake profiles and wing section drag coefficients are presented. The data indicate that the pitot-static probe gave reliable results up to speeds of approximately 1.0.

  11. Static Wind-Tunnel and Radio-Controlled Flight Test Investigation of a Remotely Piloted Vehicle Having a Delta Wing Planform

    NASA Technical Reports Server (NTRS)

    Yip, Long P.; Fratello, David J.; Robelen, David B.; Makowiec, George M.

    1990-01-01

    At the request of the United States Marine Corps, an exploratory wind-tunnel and flight test investigation was conducted by the Flight Dynamics Branch at the NASA Langley Research Center to improve the stability, controllability, and general flight characteristics of the Marine Corps Exdrone RPV (Remotely Piloted Vehicle) configuration. Static wind tunnel tests were conducted in the Langley 12 foot Low Speed Wind Tunnel to identify and improve the stability and control characteristics of the vehicle. The wind tunnel test resulted in several configuration modifications which included increased elevator size, increased vertical tail size and tail moment arm, increased rudder size and aileron size, the addition of vertical wing tip fins, and the addition of leading-edge droops on the outboard wing panel to improve stall departure resistance. Flight tests of the modified configuration were conducted at the NASA Plum Tree Test Site to provide a qualitative evaluation of the flight characteristics of the modified configuration.

  12. Annular wing

    NASA Technical Reports Server (NTRS)

    Walker, H. J. (Inventor)

    1981-01-01

    An annular wing particularly suited for use in supporting in flight an aircraft characterized by the absence of directional stabilizing surfaces is described. The wing comprises a rigid annular body of a substantially uniformly symmetrical configuration characterized by an annular positive lifting surface and cord line coincident with the segment of a line radiating along the surface of an inverted truncated cone. A decalage is established for the leading and trailing semicircular portions of the body, relative to instantaneous line of flight, and a dihedral for the laterally opposed semicircular portions of the body, relative to the line of flight. The direction of flight and climb angle or glide slope angle are established by selectively positioning the center of gravity of the wing ahead of the aerodynamic center along the radius coincident with an axis for a selected line of flight.

  13. Soaring and non-soaring bats of the family pteropodidae (flying foxes, Pteropus spp.): wing morphology and flight performance.

    PubMed

    Lindhe-Norberg, U M; Brooke, A P; Trewhella, W J

    2000-02-01

    On oceanic islands, some large diurnal megachiropteran bat species (flying foxes; Pteropus spp.) frequently use thermal or slope soaring during foraging flights to save energy. We compared the flight morphology and gliding/soaring performance of soaring versus non-soaring Pteropus species, one pair on American Samoa and one pair on the Comoro Islands, and two other soaring/flap-gliding species and one non-soaring species. We predicted that the soaring species should have a lower body mass, longer wings and, hence, lower wing loadings than those species that use mainly flapping flight. This would give a lower sinking speed during gliding, a higher glide ratio, and enable the bats to make tighter turns with lower sinking speeds than in the non-soaring species. We theoretically calculated the gliding and circling performances of both the soaring and non-soaring species. Our results show that there are tendencies towards longer wings and lower wing loadings in relation to body size in the gliding/soaring flying foxes than in the non-soaring ones. In the species-pair comparison of the soaring and non-soaring species on American Samoa and the Comoro Islands, the soarers on both islands turn out to have lower wing loadings than their non-soaring partners in spite of opposite size differences among the pairs. These characteristics are in accordance with our hypothesis on morphological adaptations. Most differences are, however, only significant at a level of P<0.1, which may be due to the small sample size, but overlap also occurs. Therefore, we must conclude that wing morphology does not seem to be a limiting factor preventing the non-soarers from soaring. Instead, diurnality in the soaring species seems to be the ultimate determinant of soaring behaviour. The morphological differences cause visible differences in soaring and gliding performance. The glider/soarers turn out to have lower minimum sinking speeds, lower best glide speeds and smaller turning radii than the

  14. Three-dimensional vortex wake structure of flapping wings in hovering flight.

    PubMed

    Cheng, Bo; Roll, Jesse; Liu, Yun; Troolin, Daniel R; Deng, Xinyan

    2014-02-06

    Flapping wings continuously create and send vortices into their wake, while imparting downward momentum into the surrounding fluid. However, experimental studies concerning the details of the three-dimensional vorticity distribution and evolution in the far wake are limited. In this study, the three-dimensional vortex wake structure in both the near and far field of a dynamically scaled flapping wing was investigated experimentally, using volumetric three-component velocimetry. A single wing, with shape and kinematics similar to those of a fruitfly, was examined. The overall result of the wing action is to create an integrated vortex structure consisting of a tip vortex (TV), trailing-edge shear layer (TESL) and leading-edge vortex. The TESL rolls up into a root vortex (RV) as it is shed from the wing, and together with the TV, contracts radially and stretches tangentially in the downstream wake. The downwash is distributed in an arc-shaped region enclosed by the stretched tangential vorticity of the TVs and the RVs. A closed vortex ring structure is not observed in the current study owing to the lack of well-established starting and stopping vortex structures that smoothly connect the TV and RV. An evaluation of the vorticity transport equation shows that both the TV and the RV undergo vortex stretching while convecting downwards: a three-dimensional phenomenon in rotating flows. It also confirms that convection and secondary tilting and stretching effects dominate the evolution of vorticity.

  15. Fiber-optically sensorized composite wing

    NASA Astrophysics Data System (ADS)

    Costa, Joannes M.; Black, Richard J.; Moslehi, Behzad; Oblea, Levy; Patel, Rona; Sotoudeh, Vahid; Abouzeida, Essam; Quinones, Vladimir; Gowayed, Yasser; Soobramaney, Paul; Flowers, George

    2014-04-01

    Electromagnetic interference (EMI) immune and light-weight, fiber-optic sensor based Structural Health Monitoring (SHM) will find increasing application in aerospace structures ranging from aircraft wings to jet engine vanes. Intelligent Fiber Optic Systems Corporation (IFOS) has been developing multi-functional fiber Bragg grating (FBG) sensor systems including parallel processing FBG interrogators combined with advanced signal processing for SHM, structural state sensing and load monitoring applications. This paper reports work with Auburn University on embedding and testing FBG sensor arrays in a quarter scale model of a T38 composite wing. The wing was designed and manufactured using fabric reinforced polymer matrix composites. FBG sensors were embedded under the top layer of the composite. Their positions were chosen based on strain maps determined by finite element analysis. Static and dynamic testing confirmed expected response from the FBGs. The demonstrated technology has the potential to be further developed into an autonomous onboard system to perform load monitoring, SHM and Non-Destructive Evaluation (NDE) of composite aerospace structures (wings and rotorcraft blades). This platform technology could also be applied to flight testing of morphing and aero-elastic control surfaces.

  16. Strain Gage Load Calibration of the Wing Interface Fittings for the Adaptive Compliant Trailing Edge Flap Flight Test

    NASA Technical Reports Server (NTRS)

    Miller, Eric J.; Holguin, Andrew C.; Cruz, Josue; Lokos, William A.

    2014-01-01

    The safety-of-flight parameters for the Adaptive Compliant Trailing Edge (ACTE) flap experiment require that flap-to-wing interface loads be sensed and monitored in real time to ensure that the structural load limits of the wing are not exceeded. This paper discusses the strain gage load calibration testing and load equation derivation methodology for the ACTE interface fittings. Both the left and right wing flap interfaces were monitored; each contained four uniquely designed and instrumented flap interface fittings. The interface hardware design and instrumentation layout are discussed. Twenty-one applied test load cases were developed using the predicted in-flight loads. Pre-test predictions of strain gage responses were produced using finite element method models of the interface fittings. Predicted and measured test strains are presented. A load testing rig and three hydraulic jacks were used to apply combinations of shear, bending, and axial loads to the interface fittings. Hardware deflections under load were measured using photogrammetry and transducers. Due to deflections in the interface fitting hardware and test rig, finite element model techniques were used to calculate the reaction loads throughout the applied load range, taking into account the elastically-deformed geometry. The primary load equations were selected based on multiple calibration metrics. An independent set of validation cases was used to validate each derived equation. The 2-sigma residual errors for the shear loads were less than eight percent of the full-scale calibration load; the 2-sigma residual errors for the bending moment loads were less than three percent of the full-scale calibration load. The derived load equations for shear, bending, and axial loads are presented, with the calculated errors for both the calibration cases and the independent validation load cases.

  17. Air ambulance flights in northern Norway 2002-2008. Increased number of secondary fixed wing (FW) operations and more use of rotor wing (RW) transports

    PubMed Central

    2011-01-01

    Background Air ambulance service in Norway has been upgraded during the last years. European regulations concerning pilots' working time and new treatment guidelines/strategies have called for more resources. Aims The objective was to describe and analyse the two supplementary air ambulance [fixed wing (FW) and rotor wing (RW)] alternatives' activity during the study period (2002-2008). Furthermore we aimed to compare our findings with reports from other north European regions. Methods A retrospective analysis. The air ambulance fleet's activity according to the electronic patient record database of "Luftambulansetjenesten ANS" (LABAS) was analysed. The subject was the fleet's operations in northern Norway, logistics, and patients handled. Type of flight, distances, frequency, and patients served were the main outcome measures. Results A significant increase (45%) in the use of RW and a shift in FW operations (less primary and more secondary) were revealed. The shift in FW operations reflected the centralisation of several health care services [i.e. percutaneous cardiac intervention (PCI), trauma, and cancer surgery] during the study period. Cardiovascular disease (CVD) and injuries were the main diagnoses and constituted half of all operations. CVD was the most common cause of FW operations and injuries of the RW ones. The number of air ambulance operations was 16 per 1,000 inhabitants. This was more frequent than in other north European regions. Conclusions The use of air ambulances and especially RW was significantly increased during the study period. The change in secondary FW operations reflected centralisation of medical care. When health care services are centralised, air ambulance services must be adjusted to the new settings. PMID:21878107

  18. Design and Analysis of AN Static Aeroelastic Experiment

    NASA Astrophysics Data System (ADS)

    Hou, Ying-Yu; Yuan, Kai-Hua; Lv, Ji-Nan; Liu, Zi-Qiang

    2016-06-01

    Static aeroelastic experiments are very common in the United States and Russia. The objective of static aeroelastic experiments is to investigate deformation and loads of elastic structure in flow field. Generally speaking, prerequisite of this experiment is that the stiffness distribution of structure is known. This paper describes a method for designing experimental models, in the case where the stiffness distribution and boundary condition of a real aircraft are both uncertain. The stiffness distribution form of the structure can be calculated via finite element modeling and simulation calculation and F141 steels and rigid foam are used to make elastic model. In this paper, the design and manufacturing process of static aeroelastic models is presented and a set of experiment model was designed to simulate the stiffness of the designed wings, a set of experiments was designed to check the results. The test results show that the experimental method can effectively complete the design work of elastic model. This paper introduces the whole process of the static aeroelastic experiment, and the experimental results are analyzed. This paper developed a static aeroelasticity experiment technique and established an experiment model targeting at the swept wing of a certain kind of large aspect ratio aircraft.

  19. Analysis of In-Flight Structural Failures of P-3C Wing Leading Edge Segments

    DTIC Science & Technology

    1992-06-01

    the remaining distance from the outboard engines to the wing tips. The length (fore and aft) of these leading-edge sections is 15% of the chord (total... Chord , Root (ft) 18.9 Tip 7.6 Aileron Area, S. (ft 2 ) 45.5 Hinge Line (cw) 0.725 Deflection Limit, Up (degrees) -23.3 Down +16.2 Horizontal Tail Area...playing a large role in the problem because of the location of the wing’s elastic axis at a constant 40 percent of chord , according to available

  20. Static and dynamic aeroelastic characterization of an aerodynamically heated generic hypersonic aircraft configuration

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Gilbert, Michael G.; Pototzky, Anthony S.

    1990-01-01

    This work-in-progress presentation describes an ongoing research activity at the NASA Langley Research Center to develop analytical methods for the prediction of aerothermoelastic stability of hypersonic aircraft including active control systems. The objectives of this research include application of aerothermal loads to the structural finite element model, determination of the thermal effects on flutter, and assessment of active controls technology applied to overcome any potential adverse aeroelastic stability or response problems due to aerodynamic heating- namely flutter suppression and ride quality improvement. For this study, a generic hypersonic aircraft configuration was selected which incorporates wing flaps, ailerons and all-moveable fins to be used for active control purposes. The active control systems would use onboard sensors in a feedback loop through the aircraft flight control computers to move the surfaces for improved structural dynamic response as the aircraft encounters atmospheric turbulence.

  1. Aeroelastic flutter produces hummingbird feather songs.

    PubMed

    Clark, Christopher J; Elias, Damian O; Prum, Richard O

    2011-09-09

    During courtship flights, males of some hummingbird species produce diverse sounds with tail feathers of varying shapes. We show that these sounds are produced by air flowing past a feather, causing it to aeroelastically flutter and generate flutter-induced sound. Scanning laser doppler vibrometery and high-speed video of individual feathers of different sizes and shapes in a wind tunnel revealed multiple vibratory modes that produce a range of acoustic frequencies and harmonic structures. Neighboring feathers can be aerodynamically coupled and flutter either at the same frequency, resulting in sympathetic vibrations that increase loudness, or at different frequencies, resulting in audible interaction frequencies. Aeroelastic flutter is intrinsic to stiff airfoils such as feathers and thus explains tonal sounds that are common in bird flight.

  2. Uncertainty Quantification in Aeroelasticity

    NASA Astrophysics Data System (ADS)

    Beran, Philip; Stanford, Bret; Schrock, Christopher

    2017-01-01

    Physical interactions between a fluid and structure, potentially manifested as self-sustained or divergent oscillations, can be sensitive to many parameters whose values are uncertain. Of interest here are aircraft aeroelastic interactions, which must be accounted for in aircraft certification and design. Deterministic prediction of these aeroelastic behaviors can be difficult owing to physical and computational complexity. New challenges are introduced when physical parameters and elements of the modeling process are uncertain. By viewing aeroelasticity through a nondeterministic prism, where key quantities are assumed stochastic, one may gain insights into how to reduce system uncertainty, increase system robustness, and maintain aeroelastic safety. This article reviews uncertainty quantification in aeroelasticity using traditional analytical techniques not reliant on computational fluid dynamics; compares and contrasts this work with emerging methods based on computational fluid dynamics, which target richer physics; and reviews the state of the art in aeroelastic optimization under uncertainty. Barriers to continued progress, for example, the so-called curse of dimensionality, are discussed.

  3. Micro air vehicle-motivated computational biomechanics in bio-flights: aerodynamics, flight dynamics and maneuvering stability

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Nakata, Toshiyuki; Gao, Na; Maeda, Masateru; Aono, Hikaru; Shyy, Wei

    2010-12-01

    Aiming at developing an effective tool to unveil key mechanisms in bio-flight as well as to provide guidelines for bio-inspired micro air vehicles (MAVs) design, we propose a comprehensive computational framework, which integrates aerodynamics, flight dynamics, vehicle stability and maneuverability. This framework consists of (1) a Navier-Stokes unsteady aerodynamic model; (2) a linear finite element model for structural dynamics; (3) a fluid-structure interaction (FSI) model for coupled flexible wing aerodynamics aeroelasticity; (4) a free-flying rigid body dynamic (RBD) model utilizing the Newtonian-Euler equations of 6DoF motion; and (5) flight simulator accounting for realistic wing-body morphology, flapping-wing and body kinematics, and a coupling model accounting for the nonlinear 6DoF flight dynamics and stability of insect flapping flight. Results are presented based on hovering aerodynamics with rigid and flexible wings of hawkmoth and fruitfly. The present approach can support systematic analyses of bio- and bio-inspired flight.

  4. In-Flight Aeroelastic Stability of the Thermal Protection System on the NASA HIAD, Part II: Nonlinear Theory and Extended Aerodynamics

    NASA Technical Reports Server (NTRS)

    Goldman, Benjamin D.; Dowell, Earl H.; Scott, Robert C.

    2015-01-01

    Conical shell theory and a supersonic potential flow aerodynamic theory are used to study the nonlinear pressure buckling and aeroelastic limit cycle behavior of the thermal protection system for NASA's Hypersonic Inflatable Aerodynamic Decelerator. The structural model of the thermal protection system consists of an orthotropic conical shell of the Donnell type, resting on several circumferential elastic supports. Classical Piston Theory is used initially for the aerodynamic pressure, but was found to be insufficient at low supersonic Mach numbers. Transform methods are applied to the convected wave equation for potential flow, and a time-dependent aerodynamic pressure correction factor is obtained. The Lagrangian of the shell system is formulated in terms of the generalized coordinates for all displacements and the Rayleigh-Ritz method is used to derive the governing differential-algebraic equations of motion. Aeroelastic limit cycle oscillations and buckling deformations are calculated in the time domain using a Runge-Kutta method in MATLAB. Three conical shell geometries were considered in the present analysis: a 3-meter diameter 70 deg. cone, a 3.7-meter 70 deg. cone, and a 6-meter diameter 70 deg. cone. The 6-meter configuration was loaded statically and the results were compared with an experimental load test of a 6-meter HIAD. Though agreement between theoretical and experimental strains was poor, the circumferential wrinkling phenomena observed during the experiments was captured by the theory and axial deformations were qualitatively similar in shape. With Piston Theory aerodynamics, the nonlinear flutter dynamic pressures of the 3-meter configuration were in agreement with the values calculated using linear theory, and the limit cycle amplitudes were generally on the order of the shell thickness. The effect of axial tension was studied for this configuration, and increasing tension was found to decrease the limit cycle amplitudes when the circumferential

  5. Hemolymph circulation in insect flight appendages: physiology of the wing heart and circulatory flow in the wings of the mosquito Anopheles gambiae.

    PubMed

    Chintapalli, Ravi Theja V; Hillyer, Julián F

    2016-12-15

    The wings of insects are composed of membranes supported by interconnected veins. Within these veins are epithelial cells, nerves and tracheae, and their maintenance requires the flow of hemolymph. For this purpose, insects employ accessory pulsatile organs (auxiliary hearts) that circulate hemolymph throughout the wings. Here, we used correlative approaches to determine the functional mechanics of hemolymph circulation in the wings of the malaria mosquito Anopheles gambiae Examination of sectioned tissues and intravital videos showed that the wing heart is located underneath the scutellum and is separate from the dorsal vessel. It is composed of a single pulsatile diaphragm (indicating that it is unpaired) that contracts at 3 Hz and circulates hemolymph throughout both wings. The wing heart contracts significantly faster than the dorsal vessel, and there is no correlation between the contractions of these two pulsatile organs. The wing heart functions by aspirating hemolymph out of the posterior wing veins, which forces hemolymph into the wings via anterior veins. By tracking the movement of fluorescent microspheres, we show that the flow diameter of the wing circulatory circuit is less than 1 µm, and we present a spatial map detailing the flow of hemolymph across all the wing veins, including the costa, sub-costa, ambient costa, radius, media, cubitus anterior, anal vein and crossveins. We also quantified the movement of hemolymph within the radius and within the ambient costa, and show that hemolymph velocity and maximum acceleration are higher when hemolymph is exiting the wing.

  6. Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings.

    PubMed

    Wu, P; Stanford, B K; Sällström, E; Ukeiley, L; Ifju, P G

    2011-03-01

    Flapping wing flight as seen in hummingbirds and insects poses an interesting unsteady aerodynamic problem: coupling of wing kinematics, structural dynamics and aerodynamics. There have been numerous studies on the kinematics and aerodynamics in both experimental and computational cases with both natural and artificial wings. These studies tend to ignore wing flexibility; however, observation in nature affirms that passive wing deformation is predominant and may be crucial to the aerodynamic performance. This paper presents a multidisciplinary experimental endeavor in correlating a flapping micro air vehicle wing's aeroelasticity and thrust production, by quantifying and comparing overall thrust, structural deformation and airflow of six pairs of hummingbird-shaped membrane wings of different properties. The results show that for a specific spatial distribution of flexibility, there is an effective frequency range in thrust production. The wing deformation at the thrust-productive frequencies indicates the importance of flexibility: both bending and twisting motion can interact with aerodynamic loads to enhance wing performance under certain conditions, such as the deformation phase and amplitude. By measuring structural deformations under the same aerodynamic conditions, beneficial effects of passive wing deformation can be observed from the visualized airflow and averaged thrust. The measurements and their presentation enable observation and understanding of the required structural properties for a thrust effective flapping wing. The intended passive responses of the different wings follow a particular pattern in correlation to their aerodynamic performance. Consequently, both the experimental technique and data analysis method can lead to further studies to determine the design principles for micro air vehicle flapping wings.

  7. Optimal Topology of Aircraft Rib and Spar Structures under Aeroelastic Loads

    NASA Technical Reports Server (NTRS)

    Stanford, Bret K.; Dunning, Peter D.

    2014-01-01

    Several topology optimization problems are conducted within the ribs and spars of a wing box. It is desired to locate the best position of lightening holes, truss/cross-bracing, etc. A variety of aeroelastic metrics are isolated for each of these problems: elastic wing compliance under trim loads and taxi loads, stress distribution, and crushing loads. Aileron effectiveness under a constant roll rate is considered, as are dynamic metrics: natural vibration frequency and flutter. This approach helps uncover the relationship between topology and aeroelasticity in subsonic transport wings, and can therefore aid in understanding the complex aircraft design process which must eventually consider all these metrics and load cases simultaneously.

  8. Level-Set Topology Optimization with Aeroelastic Constraints

    NASA Technical Reports Server (NTRS)

    Dunning, Peter D.; Stanford, Bret K.; Kim, H. Alicia

    2015-01-01

    Level-set topology optimization is used to design a wing considering skin buckling under static aeroelastic trim loading, as well as dynamic aeroelastic stability (flutter). The level-set function is defined over the entire 3D volume of a transport aircraft wing box. Therefore, the approach is not limited by any predefined structure and can explore novel configurations. The Sequential Linear Programming (SLP) level-set method is used to solve the constrained optimization problems. The proposed method is demonstrated using three problems with mass, linear buckling and flutter objective and/or constraints. A constraint aggregation method is used to handle multiple buckling constraints in the wing skins. A continuous flutter constraint formulation is used to handle difficulties arising from discontinuities in the design space caused by a switching of the critical flutter mode.

  9. An Overview of Recent Developments in Computational Aeroelasticity

    NASA Technical Reports Server (NTRS)

    Bennett, Robert M.; Edwards, John W.

    2004-01-01

    The motivation for Computational Aeroelasticity (CA) and the elements of one type of the analysis or simulation process are briefly reviewed. The need for streamlining and improving the overall process to reduce elapsed time and improve overall accuracy is discussed. Further effort is needed to establish the credibility of the methodology, obtain experience, and to incorporate the experience base to simplify the method for future use. Experience with the application of a variety of Computational Aeroelasticity programs is summarized for the transonic flutter of two wings, the AGARD 445.6 wing and a typical business jet wing. There is a compelling need for a broad range of additional flutter test cases for further comparisons. Some existing data sets that may offer CA challenges are presented.

  10. Paresev 1-C with inflatable wing testbed aboard a truck in preparation for flight tests

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Aboard a truck and ready for a test flight is the Paresev 1-C on the ramp at the NASA Flight Research Center, Edwards, California. The half-scale version of the inflatable Gemini parawing was pre-flighted by being carried across the Rosamond dry lakebed on the back of a truck before a tow behind a International Harvester Carry-All. The inflatable center spar ran fore and aft and measured 191 inches, two other inflatable spars formed the leading edges. The three compartments were filled with nitrogen under pressure to make them rigid. The Paresev 1-C was very unstable in flight with this configuration.

  11. Static Aeroelastic Analysis of Transonic Wind Tunnel Models Using Finite Element Methods

    NASA Technical Reports Server (NTRS)

    Hooker, John R.; Burner, Alpheus W.; Valla, Robert

    1997-01-01

    A computational method for accurately predicting the static aeroelastic deformations of typical transonic transport wind tunnel models is described. The method utilizes a finite element method (FEM) for predicting the deformations. Extensive calibration/validation of this method was carried out using a novel wind-off wind tunnel model static loading experiment and wind-on optical wing twist measurements obtained during a recent wind tunnel test in the National Transonic Facility (NTF) at NASA LaRC. Further validations were carried out using a Navier-Stokes computational fluid dynamics (CFD) flow solver to calculate wing pressure distributions about several aeroelastically deformed wings and comparing these predictions with NTF experimental data. Results from this aeroelastic deformation method are in good overall agreement with experimentally measured values. Including the predicted deformations significantly improves the correlation between CFD predicted and experimentally measured wing & pressures.

  12. Vertical flight training: An overview of training and flight simulator technology with emphasis on rotary-wing requirements

    NASA Technical Reports Server (NTRS)

    Alderete, Thomas S.; Ascencio-Lee, Carmen E.; Bray, Richard; Carlton, John; Dohme, Jack; Eshow, Michelle M.; Francis, Stephen; Lee, Owen M.; Lintern, Gavan; Lombardo, David A.

    1994-01-01

    The principal purpose of this publication is to provide a broad overview of the technology that is relevant to the design of aviation training systems and of the techniques applicable to the development, use, and evaluation of those systems. The issues addressed in our 11 chapters are, for the most part, those that would be expected to surface in any informed discussion of the major characterizing elements of aviation training systems. Indeed, many of the same facets of vertical-flight training discussed were recognized and, to some extent, dealt with at the 1991 NASA/FAA Helicopter Simulator Workshop. These generic topics are essential to a sound understanding of training and training systems, and they quite properly form the basis of any attempt to systematize the development and evaluation of more effective, more efficient, more productive, and more economical approaches to aircrew training. Individual chapters address the following topics: an overview of the vertical flight industry: the source of training requirements; training and training schools: meeting current requirements; training systems design and development; transfer of training and cost-effectiveness; the military quest for flight training effectiveness; alternative training systems; training device manufacturing; simulator aero model implementation; simulation validation in the frequency domain; cockpit motion in helicopter simulation; and visual space perception in flight simulators.

  13. Data Comparisons and Summary of the Second Aeroelastic Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Wieseman, Carol D.; Chwalowski, Pawel

    2016-01-01

    This paper presents the computational results generated by participating teams of the second Aeroelastic Prediction Workshop and compare them with experimental data. Aeroelastic and rigid configurations of the Benchmark Supercritical Wing (BSCW) wind tunnel model served as the focus for the workshop. The comparison data sets include unforced ("steady") system responses, forced pitch oscillations and coupled fluid-structure responses. Integrated coefficients, frequency response functions, and flutter onset conditions are compared. The flow conditions studied were in the transonic range, including both attached and separated flow conditions. Some of the technical discussions that took place at the workshop are summarized.

  14. New Flutter Analysis Technique for Time-Domain Computational Aeroelasticity

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi; Lung, Shun-Fat

    2017-01-01

    A new time-domain approach for computing flutter speed is presented. Based on the time-history result of aeroelastic simulation, the unknown unsteady aerodynamics model is estimated using a system identification technique. The full aeroelastic model is generated via coupling the estimated unsteady aerodynamic model with the known linear structure model. The critical dynamic pressure is computed and used in the subsequent simulation until the convergence of the critical dynamic pressure is achieved. The proposed method is applied to a benchmark cantilevered rectangular wing.

  15. Flight loads measurements obtained from calibrated strain-gage bridges mounted externally on the skin of a low-aspect-ratio wing

    NASA Technical Reports Server (NTRS)

    Eckstrom, C. V.

    1976-01-01

    Flight-test measurements of wingloads (shear, bending moment, and torque) were obtained by means of strain-gage bridges mounted on the exterior surface of a low-aspect-ratio, thin, swept wing which had a structural skin, full-depth honeycomb core, sandwich construction. Details concerning the strain-gage bridges, the calibration procedures used, and the flight-test results are presented along with some pressure measurements and theoretical calculations for comparison purposes.

  16. Experimental investigation of Mach 3 cruise heating simulations on a representative wing structure for flight loads measurement

    NASA Technical Reports Server (NTRS)

    Fields, R. A.; Olinger, F. V.; Momaghan, R. C.

    1972-01-01

    Radiant heating experiments were performed in the laboratory on an instrumented multispar wing structure to investigate: (1) how accurately the structural temperatures of a Mach 3 cruise-flight profile could be simulated, (2) what the effects of the heating and heating inaccuracies would be on the responses of strain-gage bridges installed on the structure, and (3) how these responses would affect flight loads measurements. Test temperatures throughout the structure agreed well with temperatures calculated for a Mach 3 profile. In addition, temperatures produced by two identical tests were repeatable to less than + or -6 K deg. Thermally induced strain-gage-bridge responses were large enough to be detrimental to a high-speed flight loads program with a goal of establishing aerodynamic loads (exclusive of thermal loads). It was shown that heating simulation can be used effectively for thermal calibration (that is, to provide corrections for a high-temperature environment), and that thermal calibration may not be needed if the simulation data are used to carefully select bridges and load equations.

  17. The influence of wing-wake interactions on the production of aerodynamic forces in flapping flight.

    PubMed

    Birch, James M; Dickinson, Michael H

    2003-07-01

    We used two-dimensional digital particle image velocimetry (DPIV) to visualize flow patterns around the flapping wing of a dynamically scaled robot for a series of reciprocating strokes starting from rest. The base of the wing was equipped with strain gauges so that the pattern of fluid motion could be directly compared with the time history of force production. The results show that the development and shedding of vortices throughout each stroke are highly stereotyped and influence force generation in subsequent strokes. When a wing starts from rest, it generates a transient force as the leading edge vortex (LEV) grows. This early peak, previously attributed to added-mass acceleration, is not amenable to quasi-steady models but corresponds well to calculations based on the time derivative of the first moment of vorticity within a sectional slice of fluid. Forces decay to a stable level as the LEV reaches a constant size and remains attached throughout most of the stroke. The LEV grows as the wing supinates prior to stroke reversal, accompanied by an increase in total force. At stroke reversal, both the LEV and a rotational starting vortex (RSV) are shed into the wake, forming a counter-rotating pair that directs a jet of fluid towards the underside of the wing at the start of the next stroke. We isolated the aerodynamic influence of the wake by subtracting forces and flow fields generated in the first stroke, when the wake is just developing, from those produced during the fourth stroke, when the pattern of both the forces and wake dynamics has reached a limit cycle. This technique identified two effects of the wake on force production by the wing: an early augmentation followed by a small attenuation. The later decrease in force is consistent with the influence of a decreased aerodynamic angle of attack on translational forces caused by downwash within the wake and is well explained by a quasi-steady model. The early effect of the wake is not well approximated by

  18. MMW radar enhanced vision systems: the Helicopter Autonomous Landing System (HALS) and Radar-Enhanced Vision System (REVS) are rotary and fixed wing enhanced flight vision systems that enable safe flight operations in degraded visual environments

    NASA Astrophysics Data System (ADS)

    Cross, Jack; Schneider, John; Cariani, Pete

    2013-05-01

    Sierra Nevada Corporation (SNC) has developed rotary and fixed wing millimeter wave radar enhanced vision systems. The Helicopter Autonomous Landing System (HALS) is a rotary-wing enhanced vision system that enables multi-ship landing, takeoff, and enroute flight in Degraded Visual Environments (DVE). HALS has been successfully flight tested in a variety of scenarios, from brown-out DVE landings, to enroute flight over mountainous terrain, to wire/cable detection during low-level flight. The Radar Enhanced Vision Systems (REVS) is a fixed-wing Enhanced Flight Vision System (EFVS) undergoing prototype development testing. Both systems are based on a fast-scanning, threedimensional 94 GHz radar that produces real-time terrain and obstacle imagery. The radar imagery is fused with synthetic imagery of the surrounding terrain to form a long-range, wide field-of-view display. A symbology overlay is added to provide aircraft state information and, for HALS, approach and landing command guidance cuing. The combination of see-through imagery and symbology provides the key information a pilot needs to perform safe flight operations in DVE conditions. This paper discusses the HALS and REVS systems and technology, presents imagery, and summarizes the recent flight test results.

  19. Enabling efficient vertical takeoff/landing and forward flight of unmanned aerial vehicles: Design and control of tandem wing-tip mounted rotor mechanisms

    NASA Astrophysics Data System (ADS)

    Mancuso, Peter Timothy

    Fixed-wing unmanned aerial vehicles (UAVs) that offer vertical takeoff and landing (VTOL) and forward flight capability suffer from sub-par performance in both flight modes. Achieving the next generation of efficient hybrid aircraft requires innovations in: (i) power management, (ii) efficient structures, and (iii) control methodologies. Existing hybrid UAVs generally utilize one of three transitioning mechanisms: an external power mechanism to tilt the rotor-propulsion pod, separate propulsion units and rotors during hover and forward flight, or tilt body craft (smaller scale). Thus, hybrid concepts require more energy compared to dedicated fixed-wing or rotorcraft UAVs. Moreover, design trade-offs to reinforce the wing structure (typically to accommodate the propulsion systems and enable hover, i.e. tilt-rotor concepts) adversely impacts the aerodynamics, controllability and efficiency of the aircraft in both hover and forward flight modes. The goal of this research is to develop more efficient VTOL/ hover and forward flight UAVs. In doing so, the transition sequence, transition mechanism, and actuator performance are heavily considered. A design and control methodology was implemented to address these issues through a series of computer simulations and prototype benchtop tests to verify the proposed solution. Finally, preliminary field testing with a first-generation prototype was conducted. The methods used in this research offer guidelines and a new dual-arm rotor UAV concept to designing more efficient hybrid UAVs in both hover and forward flight.

  20. Aeroelastic Analysis for Aeropropulsion Applications

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Bakhle, Milind A.

    2002-01-01

    Aeroelastic codes with advanced capabilities for modeling flow require substantial computational time. On the other hand, fast-running linear aeroelastic codes lack the capability to model three-dimensional, transonic, vortical, and viscous flows. The goal of this work was to develop an aeroelastic code with accurate modeling capabilities and small computational requirements.

  1. Comparisons of wing pressure distribution from flight tests of flush and external orifices for Mach numbers from 0.50 to 0.97

    NASA Technical Reports Server (NTRS)

    Montoya, L. C.; Lux, D. P.

    1975-01-01

    Wing pressure distributions obtained in flight with flush orifice and external tubing orifice installations for Mach numbers from 0.50 to 0.97 are compared. The procedure used to install the external tubing orifice is discussed. The results indicate that external tubing orifice installations can give useful results.

  2. Design verification and fabrication of active control systems for the DAST ARW-2 high aspect ratio wing, part 1

    NASA Technical Reports Server (NTRS)

    Mcgehee, C. R.

    1986-01-01

    A study was conducted under Drones for Aerodynamic and Structural Testing (DAST) program to accomplish the final design and hardware fabrication for four active control systems compatible with and ready for installation in the NASA Aeroelastic Research Wing No. 2 (ARW-2) and Firebee II drone flight test vehicle. The wing structure was designed so that Active Control Systems (ACS) are required in the normal flight envelope by integrating control system design with aerodynamics and structure technologies. The DAST ARW-2 configuration uses flutter suppression, relaxed static stability, and gust and maneuver load alleviation ACS systems, and an automatic flight control system. Performance goals and criteria were applied to individual systems and the systems collectively to assure that vehicle stability margins, flutter margins, flying qualities and load reductions are achieved.

  3. Design verification and fabrication of active control systems for the DAST ARW-2 high aspect ratio wing. Part 2: Appendices

    NASA Technical Reports Server (NTRS)

    Mcgehee, C. R.

    1986-01-01

    This is Part 2-Appendices of a study conducted under Drones for Aerodynamic and Structural Testing (DAST) Program to accomplish the final design and hardware fabrication for four active control systems compatible with and ready for installation in the NASA Aeroelastic Research Wing No. 2 (ARW-2) and Firebee II drone flight test vehicle. The wing structure was designed so that Active Control Systems (ACS) are required in the normal flight envelope by integrating control system design with aerodynamics and structure technologies. The DAST ARW-2 configuration uses flutter suppression, relaxed static stability, and gust and maneuver load alleviation ACS systems, and an automatic flight control system. Performance goals and criteria were applied to individual systems and the systems collectively to assure that vehicle stability margins, flutter margins, flying qualities, and load reductions were achieved.

  4. Predicting the aeroelastic behavior of a wind-tunnel model using transonic small disturbance theory

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Bennett, Robert M.

    1990-01-01

    The CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code, developed at the NASA-Langley Research Center, is applied to the Active Flexible Wing (AFW) wind-tunnel model for prediction of the model's transonic aeroelastic behavior. Static aeroelastic solutions using CAP-TSD are computed. Dynamic (flutter) analyses are then performed as perturbations about the static aeroelastic deformations of the AFW. The accuracy of the static aeroelastic procedure is investigated by comparing analytical results to those from AFW wind-tunnel experiments. Dynamic results are presented in the form of root loci at different Mach numbers for a heavy gas and for air test mediums. The resultant flutter boundaries for both gases, and the effects of viscous damping and angle of attack on the flutter boundary in air, are also presented.

  5. Aeroelastic Tailoring for Stability Augmentation and Performance Enhancements of Tiltrotor Aircraft

    NASA Technical Reports Server (NTRS)

    Nixon, Mark W.; Piatak, David J.; Corso, Lawrence M.; Popelka, David A.

    1999-01-01

    The requirements for increased speed and productivity for tiltrotors has spawned several investigations associated with proprotor aeroelastic stability augmentation and aerodynamic performance enhancements. Included among these investigations is a focus on passive aeroelastic tailoring concepts which exploit the anisotropic capabilities of fiber composite materials. Researchers at Langley Research Center and Bell Helicopter have devoted considerable effort to assess the potential for using these materials to obtain aeroelastic responses which are beneficial to the important stability and performance considerations of tiltrotors. Both experimental and analytical studies have been completed to examine aeroelastic tailoring concepts for the tiltrotor, applied either to the wing or to the rotor blades. This paper reviews some of the results obtained in these aeroelastic tailoring investigations and discusses the relative merits associated with these approaches.

  6. Experimental and Computational Study of the Flow past a Simplified Geometry of an Engine/Pylon/Wing Installation at low velocity/moderate incidence flight conditions

    NASA Astrophysics Data System (ADS)

    Bury, Yannick; Lucas, Matthieu; Bonnaud, Cyril; Joly, Laurent; ISAE Team; Airbus Team

    2014-11-01

    We study numerically and experimentally the vortices that develop past a model geometry of a wing equipped with pylon-mounted engine at low speed/moderate incidence flight conditions. For such configuration, the presence of the powerplant installation under the wing initiates a complex, unsteady vortical flow field at the nacelle/pylon/wing junctions. Its interaction with the upper wing boundary layer causes a drop of aircraft performances. In order to decipher the underlying physics, this study is initially conducted on a simplified geometry at a Reynolds number of 200000, based on the chord wing and on the freestream velocity. Two configurations of angle of attack and side-slip angle are investigated. This work relies on unsteady Reynolds Averaged Navier Stokes computations, oil flow visualizations and stereoscopic Particle Image Velocimetry measurements. The vortex dynamics thus produced is described in terms of vortex core position, intensity, size and turbulent intensity thanks to a vortex tracking approach. In addition, the analysis of the velocity flow fields obtained from PIV highlights the influence of the longitudinal vortex initiated at the pylon/wing junction on the separation process of the boundary layer near the upper wing leading-edge.

  7. Flow interactions lead to orderly formations of flapping wings in forward flight

    NASA Astrophysics Data System (ADS)

    Ramananarivo, Sophie; Fang, Fang; Oza, Anand; Zhang, Jun; Ristroph, Leif

    2016-11-01

    Classic models of fish schools and flying formations of birds are built on the hypothesis that the preferred locations of an individual are determined by the flow left by its upstream neighbor. Lighthill posited that arrangements may in fact emerge passively from hydro- or aerodynamic interactions, drawing an analogy to the formation of crystals by intermolecular forces. Here, we carry out physical experiments aimed at testing the Lighthill conjecture and find that self-propelled flapping wings spontaneously assume one of multiple arrangements due to flow interactions. Wings in a tandem pair select the same forward speed, which tends to be faster than a single wing, while maintaining a separation distance that is an integer multiple of the wavelength traced out by each body. When perturbed, these locomotors robustly return to the same arrangement, and direct hydrodynamic force measurements reveal springlike restoring forces that maintain group cohesion. We also use these data to construct an interaction potential, showing how the observed positions of the follower correspond to stable wells in an energy landscape. Flow visualization and vortex-based theoretical models reveal coherent interactions in which the follower surfs on the periodic wake left by the leader. These results indicate that, for the high-Reynolds-number flows characteristic of schools and flocks, collective locomotion at enhanced speed and in orderly formations can emerge from flow interactions alone. If true for larger groups, then the view of collectives as ordered states of matter may prove to be a useful analogy.

  8. Survey of Army/NASA rotorcraft aeroelastic stability research

    NASA Technical Reports Server (NTRS)

    Ormiston, Robert A.; Warmbrodt, William G.; Hodges, Dewey H.; Peters, David A.

    1988-01-01

    Theoretical and experimental developments in the aeroelastic and aeromechanical stability of helicopters and tilt-rotor aircraft are addressed. Included are the underlying nonlinear structural mechanics of slender rotating beams, necessary for accurate modeling of elastic cantilever rotor blades, and the development of dynamic inflow, an unsteady aerodynamic theory for low frequency aeroelastic stability applications. Analytical treatment of isolated rotor stability in hover and forward flight, coupled rotor-fuselage stability are considered. Results of parametric investigations of system behavior are presented, and correlations between theoretical results and experimental data from small- and large-scale wind tunnel and flight testing are discussed.

  9. AD-1 multiple exposure showing wing sweep

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This photograph is a multiple exposure showing the AD-1 aircraft with its wing swept at different angles between zero and 60 degrees. The Ames-Dryden-1 (AD-1) aircraft was designed to investigate the concept of an oblique (pivoting) wing. The wing could be rotated on its center pivot, so that it could be set at its most efficient angle for the speed at which the aircraft was flying. NASA Ames Research Center Aeronautical Engineer Robert T. Jones conceived the idea of an oblique wing. His wind tunnel studies at Ames (Moffett Field, CA) indicated that an oblique wing design on a supersonic transport might achieve twice the fuel economy of an aircraft with conventional wings. The oblique wing on the AD-1 pivoted about the fuselage, remaining perpendicular to it during slow flight and rotating to angles of up to 60 degrees as aircraft speed increased. Analytical and wind tunnel studiesthat Jones conducted at Ames indicated that a transport-sized oblique-wing aircraft flying at speeds of up to Mach 1.4 (1.4 times the speed of sound) would have substantially better aerodynamic performance than aircraft with conventional wings. The AD-1 structure allowed the project to complete all of its technical objectives. The type of low-speed, low-cost vehicle - as expected - exhibited aeroelastic and pitch-roll-coupling effects that contributed to poor handling at sweep angles above 45 degrees. The fiberglass structure limited the wing stiffness that would have improved the handling qualities. Thus, after completion of the AD-1 project, there was still a need for a transonic oblique-wing research aircraft to assess the effects of compressibility, evaluate a more representative structure, and analyze flight performance at transonic speeds (those on either side of the speed of sound). The aircraft was delivered to the Dryden Flight Research Center, Edwards, CA, in March 1979 and its first flight was on December 21, 1979. Piloting the aircraft on that flight, as well as on its last

  10. Flutter Characteristics of Winged Vehicle in Free-Flight/Launching Configuration and Development of Model Supporting Systems

    NASA Astrophysics Data System (ADS)

    Kanda, Atsushi; Ueda, Tetsuhiko

    A winged space reentry vehicle is under development in Japan. The vehicle will be launched atop of a rocket and fly back to the Earth. Flutter characteristics of this vehicle should be considered differently between launching and free-flight. Two kinds of supporting system were newly developed to put each configuration into practice for wind tunnel tests. They possess a function to control flutter during the tests. Flutter experiments were conducted by using these supporting systems in TWT. As the results, the anticipated flutter occurred under each configuration and the effectiveness of the supporting system has been demonstrated. Moreover, the flutter characteristics could be explained clearly by the numerical analyses with the non-planar DPM (Doublet-Point Method).

  11. Full-field wing deformation measurement scheme for in-flight cantilever monoplane based on 3D digital image correlation

    NASA Astrophysics Data System (ADS)

    Li, Lei-Gang; Liang, Jin; Guo, Xiang; Guo, Cheng; Hu, Hao; Tang, Zheng-Zong

    2014-06-01

    In this paper, a new non-contact scheme, based on 3D digital image correlation technology, is presented to measure the full-field wing deformation of in-flight cantilever monoplanes. Because of the special structure of the cantilever wing, two conjugated camera groups, which are rigidly connected and calibrated to an ensemble respectively, are installed onto the vertical fin of the aircraft and record the whole measurement. First, a type of pre-stretched target and speckle pattern are designed to adapt the oblique camera view for accurate detection and correlation. Then, because the measurement cameras are swinging with the aircraft vertical trail all the time, a camera position self-correction method (using control targets sprayed on the back of the aircraft), is designed to orientate all the cameras’ exterior parameters to a unified coordinate system in real time. Besides, for the excessively inclined camera axis and the vertical camera arrangement, a weak correlation between the high position image and low position image occurs. In this paper, a new dual-temporal efficient matching method, combining the principle of seed point spreading, is proposed to achieve the matching of weak correlated images. A novel system is developed and a simulation test in the laboratory was carried out to verify the proposed scheme.

  12. In-flight lift-drag characteristics for a forward-swept wing aircraft and comparisons with contemporary aircraft)

    NASA Technical Reports Server (NTRS)

    Saltzman, Edwin J.; Hicks, John W.; Luke, Sue (Editor)

    1994-01-01

    Lift (L) and drag (D) characteristics have been obtained in flight for the X-29A airplane (a forward swept-wing demonstrator) for Mach numbers (M) from 0.4 to 1.3. Most of the data were obtained near an altitude of 30,000 ft. A representative Reynolds number for M = 0.9, and a pressure altitude of 30,000 ft, is 18.6 x 10(exp 6) based on the mean aerodynamic chord. The X-29A data (forward-swept wing) are compared with three high-performance fighter aircraft: the F-15C, F-16C, and F/A18. The lifting efficiency of the X-29A, as defined by the Oswald lifting efficiency factor, e, is about average for a cantilevered monoplane for M = 0.6 and angles of attack up to those required for maximum L/D. At M = 0.6 the level of L/D and e, as a function of load factor, for the X-29A was about the same as for the contemporary aircraft. The X-29A and its contemporaries have high transonic wave drag and equivalent parasite area compared with aircraft of the 1940's through 1960's.

  13. Pegasus(Registered trademark) Wing-Glove Experiment to Document Hypersonic Crossflow Transition: Measurement System and Selected Flight Results

    NASA Technical Reports Server (NTRS)

    Bertelrud, Arild; delaTova, Geva; Hamory, Philip J.; Young, Ronald; Noffz, Gregory K.; Dodson, Michael; Graves, Sharon S.; Diamond, John K.; Bartlett, James E.; Noack, Robert; Knoblock, David

    2000-01-01

    In a recent flight experiment to study hypersonic crossflow transition, boundary layer characteristics were documented. A smooth steel glove was mounted on the first stage delta wing of Orbital Sciences Corporation's Pegasus (R) launch vehicle and was flown at speeds of up to Mach 8 and altitudes of up to 250,000 ft. The wing-glove experiment was flown as a secondary payload off the coast of Florida in October 1998. This paper describes the measurement system developed. Samples of the results obtained for different parts of the trajectory are included to show the characteristics and quality of the data. Thermocouples and pressure sensors (including Preston tubes, Stanton tubes, and a "probeless" pressure rake showing boundary layer profiles) measured the time-averaged flow. Surface hot-films and high-frequency pressure transducers measured flow dynamics. Because the vehicle was not recoverable, it was necessary to design a system for real-time onboard processing and transmission. Onboard processing included spectral averaging. The quality and consistency of data obtained was good and met the experiment requirements.

  14. Adaptive neural control of aeroelastic response

    NASA Astrophysics Data System (ADS)

    Lichtenwalner, Peter F.; Little, Gerald R.; Scott, Robert C.

    1996-05-01

    The Adaptive Neural Control of Aeroelastic Response (ANCAR) program is a joint research and development effort conducted by McDonnell Douglas Aerospace (MDA) and the National Aeronautics and Space Administration, Langley Research Center (NASA LaRC) under a Memorandum of Agreement (MOA). The purpose of the MOA is to cooperatively develop the smart structure technologies necessary for alleviating undesirable vibration and aeroelastic response associated with highly flexible structures. Adaptive control can reduce aeroelastic response associated with buffet and atmospheric turbulence, it can increase flutter margins, and it may be able to reduce response associated with nonlinear phenomenon like limit cycle oscillations. By reducing vibration levels and loads, aircraft structures can have lower acquisition cost, reduced maintenance, and extended lifetimes. Phase I of the ANCAR program involved development and demonstration of a neural network-based semi-adaptive flutter suppression system which used a neural network for scheduling control laws as a function of Mach number and dynamic pressure. This controller was tested along with a robust fixed-gain control law in NASA's Transonic Dynamics Tunnel (TDT) utilizing the Benchmark Active Controls Testing (BACT) wing. During Phase II, a fully adaptive on-line learning neural network control system has been developed for flutter suppression which will be tested in 1996. This paper presents the results of Phase I testing as well as the development progress of Phase II.

  15. Integrated Study of Flight Stabilization with Flapping Wings in Canonical Urban Flows

    DTIC Science & Technology

    2013-06-30

    in laboratory studies of animal flight. The moths were recorded while hovering in front of an artificial flower in a glass-walled flight chamber by a...force exerted on the moth . A sharp-interface immersed-boundary method (Mittal & Iaccarino 2005) described in Mittal et al. (2008) and Seo et al...models of the moth segmented from high speed video (b) Computational domain and boundary conditions employed in the simulations (c) Typical Cartesian

  16. The development of a closed-loop flight controller with panel method integration for gust alleviation using biomimetic feathers on aircraft wings

    NASA Astrophysics Data System (ADS)

    Blower, Christopher J.; Lee, Woody; Wickenheiser, Adam M.

    2012-04-01

    This paper presents the development of a biomimetic closed-loop flight controller that integrates gust alleviation and flight control into a single distributed system. Modern flight controllers predominantly rely on and respond to perturbations in the global states, resulting in rotation or displacement of the entire aircraft prior to the response. This bio-inspired gust alleviation system (GAS) employs active deflection of electromechanical feathers that react to changes in the airflow, i.e. the local states. The GAS design is a skeletal wing structure with a network of featherlike panels installed on the wing's surfaces, creating the airfoil profile and replacing the trailing-edge flaps. In this study, a dynamic model of the GAS-integrated wing is simulated to compute gust-induced disturbances. The system implements continuous adjustment to flap orientation to perform corrective responses to inbound gusts. MATLAB simulations, using a closed-loop LQR integrated with a 2D adaptive panel method, allow analysis of the morphing structure's aerodynamic data. Non-linear and linear dynamic models of the GAS are compared to a traditional single control surface baseline wing. The feedback loops synthesized rely on inertial changes in the global states; however, variations in number and location of feather actuation are compared. The bio-inspired system's distributed control effort allows the flight controller to interchange between the single and dual trailing edge flap profiles, thereby offering an improved efficiency to gust response in comparison to the traditional wing configuration. The introduction of aero-braking during continuous gusting flows offers a 25% reduction in x-velocity deviation; other flight parameters can be reduced in magnitude and deviation through control weighting optimization. Consequently, the GAS demonstrates enhancements to maneuverability and stability in turbulent intensive environments.

  17. Aeroelastic Characteristics of a Circulation Control Wing

    DTIC Science & Technology

    1976-09-01

    UNLIMITED 17. DISTRIBUTIO4 STATEMENT (of the absra.ct enleradin Block 20, It different from Report) IS. SUPPLEMENTARY NOTES Thesis topic for Master...general the trend of Figure 5 is typical in that it shows lower stiffness requirements, or higher values of qDo for more forward positions of the elastic

  18. ASTROP2 users manual: A program for aeroelastic stability analysis of propfans

    NASA Technical Reports Server (NTRS)

    Narayanan, G. V.; Kaza, K. R. V.

    1991-01-01

    A user's manual is presented for the aeroelastic stability and response of propulsion systems computer program called ASTROP2. The ASTROP2 code preforms aeroelastic stability analysis of rotating propfan blades. This analysis uses a two-dimensional, unsteady cascade aerodynamics model and a three-dimensional, normal-mode structural model. Analytical stability results from this code are compared with published experimental results of a rotating composite advanced turboprop model and of nonrotating metallic wing model.

  19. Recent Applications of Higher-Order Spectral Analysis to Nonlinear Aeroelastic Phenomena

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Hajj, Muhammad R.; Dunn, Shane; Strganac, Thomas W.; Powers, Edward J.; Stearman, Ronald

    2005-01-01

    Recent applications of higher-order spectral (HOS) methods to nonlinear aeroelastic phenomena are presented. Applications include the analysis of data from a simulated nonlinear pitch and plunge apparatus and from F-18 flight flutter tests. A MATLAB model of the Texas A&MUniversity s Nonlinear Aeroelastic Testbed Apparatus (NATA) is used to generate aeroelastic transients at various conditions including limit cycle oscillations (LCO). The Gaussian or non-Gaussian nature of the transients is investigated, related to HOS methods, and used to identify levels of increasing nonlinear aeroelastic response. Royal Australian Air Force (RAAF) F/A-18 flight flutter test data is presented and analyzed. The data includes high-quality measurements of forced responses and LCO phenomena. Standard power spectral density (PSD) techniques and HOS methods are applied to the data and presented. The goal of this research is to develop methods that can identify the onset of nonlinear aeroelastic phenomena, such as LCO, during flutter testing.

  20. Flight determined lift and drag characteristics of an F-8 airplane modified with a supercritical wing with comparison to wind-tunnel results

    NASA Technical Reports Server (NTRS)

    Pyle, J. S.; Steers, L. L.

    1975-01-01

    Flight measurements obtained with a TF-8A airplane modified with a supercritical wing are presented for altitudes from 7.6 kilometers (25,000 feet) to 13.7 kilometers (45,000 feet), Mach numbers from 0.6 to 1.2, and Reynolds numbers from 0.8 x 10 to the 7th power to 2.3 x 10 to the 7th power. Flight results for the airplane with and without area-rule fuselage fairings are compared. The techniques used to determine the lift and drag characteristics of the airplane are discussed. Flight data are compared with wind-tunnel model results, where applicable.

  1. A study of the use of experimental stability derivatives in the calculation of the lateral disturbed motions of a swept-wing airplane and comparison with flight results

    NASA Technical Reports Server (NTRS)

    Bird, John D; Jaquet, Byron M

    1951-01-01

    An investigation was made to determine the accuracy with which the lateral flight motions of a swept-wing airplane could be predicted from experimental stability derivatives, determined in the 6-foot-diameter rolling-flow test section and 6 by 6-foot curved-flow test section of the Langley stability tunnel. In addition, determination of the significance of including the nonlinear aerodynamic effects of sideslip in the calculations of the motions was desired. All experimental aerodynamic data necessary for prediction of the lateral flight motions are presented along with a number of comparisons between flight and calculated motions caused by rudder and aileron disturbances.

  2. Comparison of stability and control parameters for a light, single-engine, high-winged aircraft using different flight test and parameter estimation techniques

    NASA Technical Reports Server (NTRS)

    Suit, W. T.; Cannaday, R. L.

    1979-01-01

    The longitudinal and lateral stability and control parameters for a high wing, general aviation, airplane are examined. Estimations using flight data obtained at various flight conditions within the normal range of the aircraft are presented. The estimations techniques, an output error technique (maximum likelihood) and an equation error technique (linear regression), are presented. The longitudinal static parameters are estimated from climbing, descending, and quasi steady state flight data. The lateral excitations involve a combination of rudder and ailerons. The sensitivity of the aircraft modes of motion to variations in the parameter estimates are discussed.

  3. Dust emissions created by low-level rotary-winged aircraft flight over desert surfaces

    NASA Astrophysics Data System (ADS)

    Gillies, J. A.; Etyemezian, V.; Kuhns, H.; McAlpine, J. D.; King, J.; Uppapalli, S.; Nikolich, G.; Engelbrecht, J.

    2010-03-01

    There is a dearth of information on dust emissions from sources that are unique to U.S. Department of Defense testing and training activities. Dust emissions of PM 10 and PM 2.5 from low-level rotary-winged aircraft travelling (rotor-blade ≈7 m above ground level) over two types of desert surfaces (i.e., relatively undisturbed desert pavement and disturbed desert soil surface) were characterized at the Yuma Proving Ground (Yuma, AZ) in May 2007. Fugitive emissions are created by the shear stress of the outflow of high speed air created by the rotor-blade. The strength of the emissions was observed to scale primarily as a function of forward travel speed of the aircraft. Speed affects dust emissions in two ways: 1) as speed increases, peak shear stress at the soil surface was observed to decline proportionally, and 2) as the helicopter's forward speed increases its residence time over any location on the surface diminishes, so the time the downward rotor-generated flow is acting upon that surface must also decrease. The state of the surface over which the travel occurs also affects the scale of the emissions. The disturbed desert test surface produced approximately an order of magnitude greater emission than the undisturbed surface. Based on the measured emission rates for the test aircraft and the established scaling relationships, a rotary-winged aircraft similar to the test aircraft traveling 30 km h -1 over the disturbed surface would need to travel 4 km to produce emissions equivalent to one kilometer of travel by a light wheeled military vehicle also traveling at 30 km h -1 on an unpaved road. As rotary-winged aircraft activity is substantially less than that of off-road vehicle military testing and training activities it is likely that this source is small compared to emissions created by ground-based vehicle movements.

  4. The effect of flight altitude to data quality of fixed-wing UAV imagery: case study in Murcia, Spain

    NASA Astrophysics Data System (ADS)

    Anders, Niels; Keesstra, Saskia; Cammeraat, Erik

    2014-05-01

    Unmanned Aerial System (UAS) are becoming popular tools in the geosciences due to improving technology and processing techniques. They can potentially fill the gap between spaceborne or manned aircraft remote sensing and terrestrial remote sensing, both in terms of spatial and temporal resolution. In this study we tested a fixed-wing Unmanned Aerial System (UAS) for the application of digital landscape analysis. The focus was to analyze the effect of flight altitude and the effect to accuracy and detail of the produced digital elevation models, derived terrain properties and orthophotos. The aircraft was equipped with a Panasonic GX1 16MP pocket camera with 20 mm lens to capture normal JPEG RGB images. Images were processed using Agisoft Photoscan Pro which includes the structure-from-motion and multiview stereopsis algorithms. The test area consisted of small abandoned agricultural fields in semi-arid Murcia in southeastern Spain. The area was severely damaged after a destructive rainfall event, including damaged check dams, rills, deep gully incisions and piping. Results suggest that careful decisions on flight altitude are essential to find a balance between the area coverage, ground sampling distance, UAS ground speed, camera processing speed and the accurate registration of specific soil erosion features of interest.

  5. Wake structure and wing kinematics: the flight of the lesser dog-faced fruit bat, Cynopterus brachyotis.

    PubMed

    Hubel, Tatjana Y; Riskin, Daniel K; Swartz, Sharon M; Breuer, Kenneth S

    2010-10-15

    We investigated the detailed kinematics and wake structure of lesser dog-faced fruit bats (Cynopterus brachyotis) flying in a wind tunnel. High speed recordings of the kinematics were conducted to obtain three-dimensional reconstructions of wing movements. Simultaneously, the flow structure in the spanwise plane perpendicular to the flow stream was visualized using time-resolved particle image velocimetry. The flight of four individuals was investigated to reveal patterns in kinematics and wake structure typical for lower and higher speeds. The wake structure identified as typical for both speed categories was a closed-loop ring vortex consisting of the tip vortex and the limited appearance of a counter-rotating vortex near the body, as well as a small distally located vortex system at the end of the upstroke that generated negative lift. We also investigated the degree of consistency within trials and looked at individual variation in flight parameters, and found distinct differences between individuals as well as within individuals.

  6. Synthesis of active controls for flutter suppression on a flight research wing

    NASA Technical Reports Server (NTRS)

    Abel, I.; Perry, B., III; Murrow, H. N.

    1977-01-01

    This paper describes some activities associated with the preliminary design of an active control system for flutter suppression capable of demonstrating a 20% increase in flutter velocity. Results from two control system synthesis techniques are given. One technique uses classical control theory, and the other uses an 'aerodynamic energy method' where control surface rates or displacements are minimized. Analytical methods used to synthesize the control systems and evaluate their performance are described. Some aspects of a program for flight testing the active control system are also given. This program, called DAST (Drones for Aerodynamics and Structural Testing), employs modified drone-type vehicles for flight assessments and validation testing.

  7. Development of a Composite Tailoring Technique for Airplane Wing

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Jha, Ratneshwar

    1996-01-01

    Development of a new composite beam modeling technique to represent the principal load-carrying member in the wing is reported along with the development of a formal design optimization procedure to investigate the effect of composite tailoring on aeroelastic stability and structural characteristics of airplane wings. The developed procedure is used to perform design optimization studies on realistic airplane configurations to investigate the various aeroelastic/structural/dynamic design issues.

  8. NASA Aeroelasticity Handbook Volume 2: Design Guides Part 2

    NASA Technical Reports Server (NTRS)

    Ramsey, John K. (Editor)

    2006-01-01

    The NASA Aeroelasticity Handbook comprises a database (in three formats) of NACA and NASA aeroelasticity flutter data through 1998 and a collection of aeroelasticity design guides. The Microsoft Access format provides the capability to search for specific data, retrieve it, and present it in a tabular or graphical form unique to the application. The full-text NACA and NASA documents from which the data originated are provided in portable document format (PDF), and these are hyperlinked to their respective data records. This provides full access to all available information from the data source. Two other electronic formats, one delimited by commas and the other by spaces, are provided for use with other software capable of reading text files. To the best of the author s knowledge, this database represents the most extensive collection of NACA and NASA flutter data in electronic form compiled to date by NASA. Volume 2 of the handbook contains a convenient collection of aeroelastic design guides covering fixed wings, turbomachinery, propellers and rotors, panels, and model scaling. This handbook provides an interactive database and design guides for use in the preliminary aeroelastic design of aerospace systems and can also be used in validating or calibrating flutter-prediction software.

  9. Control Law Design in a Computational Aeroelasticity Environment

    NASA Technical Reports Server (NTRS)

    Newsom, Jerry R.; Robertshaw, Harry H.; Kapania, Rakesh K.

    2003-01-01

    A methodology for designing active control laws in a computational aeroelasticity environment is given. The methodology involves employing a systems identification technique to develop an explicit state-space model for control law design from the output of a computational aeroelasticity code. The particular computational aeroelasticity code employed in this paper solves the transonic small disturbance aerodynamic equation using a time-accurate, finite-difference scheme. Linear structural dynamics equations are integrated simultaneously with the computational fluid dynamics equations to determine the time responses of the structure. These structural responses are employed as the input to a modern systems identification technique that determines the Markov parameters of an "equivalent linear system". The Eigensystem Realization Algorithm is then employed to develop an explicit state-space model of the equivalent linear system. The Linear Quadratic Guassian control law design technique is employed to design a control law. The computational aeroelasticity code is modified to accept control laws and perform closed-loop simulations. Flutter control of a rectangular wing model is chosen to demonstrate the methodology. Various cases are used to illustrate the usefulness of the methodology as the nonlinearity of the aeroelastic system is increased through increased angle-of-attack changes.

  10. A finite-step method for estimating the spanwise lift distribution of wings in symmetric, yawed, and rotary flight at low speeds

    NASA Technical Reports Server (NTRS)

    Krenkel, A. R.

    1978-01-01

    The finite-step method was programmed for computing the span loading and stability derivatives of trapezoidal shaped wings in symmetric, yawed, and rotary flight. Calculations were made for a series of different wing planforms and the results compared with several available methods for estimating these derivatives in the linear angle of attack range. The agreement shown was generally good except in a few cases. An attempt was made to estimate the nonlinear variation of lift with angle of attack in the high alpha range by introducing the measured airfoil section data into the finite-step method. The numerical procedure was found to be stable only at low angles of attack.

  11. Flight Research and Validation Formerly Experimental Capabilities Supersonic Project

    NASA Technical Reports Server (NTRS)

    Banks, Daniel

    2009-01-01

    This slide presentation reviews the work of the Experimental Capabilities Supersonic project, that is being reorganized into Flight Research and Validation. The work of Experimental Capabilities Project in FY '09 is reviewed, and the specific centers that is assigned to do the work is given. The portfolio of the newly formed Flight Research and Validation (FRV) group is also reviewed. The various projects for FY '10 for the FRV are detailed. These projects include: Eagle Probe, Channeled Centerbody Inlet Experiment (CCIE), Supersonic Boundary layer Transition test (SBLT), Aero-elastic Test Wing-2 (ATW-2), G-V External Vision Systems (G5 XVS), Air-to-Air Schlieren (A2A), In Flight Background Oriented Schlieren (BOS), Dynamic Inertia Measurement Technique (DIM), and Advanced In-Flight IR Thermography (AIR-T).

  12. Investigation of Northrop F-5A wing buffet intensity in transonic flight

    NASA Technical Reports Server (NTRS)

    Chintsun, H.; Pi, W. S.

    1974-01-01

    A flight test and data processing program utilizing a Northrop F-5A aircraft instrumented to acquire buffet pressures and response data during transonic maneuvers is discussed. The data are presented in real-time format followed by spectral and statistical analyses. Also covered is a comparison of the aircraft response data with computed responses based on the measured buffet pressures.

  13. A flight-test and simulation evaluation of the longitudinal final approach and landing performance of an automatic system for a light wing loading STOL aircraft

    NASA Technical Reports Server (NTRS)

    Brown, S. C.; Hardy, G. H.; Hindson, W. S.

    1983-01-01

    As part of a comprehensive flight-test program of STOL operating systems for the terminal area, an automatic landing system was developed and evaluated for a light wing loading turboprop aircraft. The aircraft utilized an onboard advanced digital avionics system. Flight tests were conducted at a facility that included a STOL runway site with a microwave landing system. Longitudinal flight-test results were presented and compared with available (basically CTOL) criteria. These comparisons were augmented by results from a comprehensive simulation of the controlled aircraft which included representations of navigation errors that were encountered in flight and atmospheric disturbances. Acceptable performance on final approach and at touchdown was achieved by the autoland (automatic landing) system for the moderate winds and turbulence conditions encountered in flight. However, some touchdown performance goals were marginally achieved, and simulation results suggested that difficulties could be encountered in the presence of more extreme atmospheric conditions. Suggestions were made for improving performance under those more extreme conditions.

  14. About the Effect of Control on Flutter and Post-Flutter of a Supersonic/Hypersonic Cross-Sectional Wing

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Librescu, Liviu; Marzocca, Piergiovanni

    2001-01-01

    The control of the flutter instability and the conversion of the dangerous character of the flutter instability boundary into the undangerous one of a cross-sectional wing in a supersonic/hypersonic flow field is presented. The objective of this paper is twofold: i) to analyze the implications of nonlinear unsteady aerodynamics and physical nonlinearities on the character of the instability boundary in the presence of a control capability, and ii) to outline the effects played in the same respect by some important parameters of the aeroelastic system. As a by-product of this analysis, the implications of the active control on the linearized flutter behavior of the system are captured and emphasized. The bifurcation behavior of the open/closed loop aeroelastic system in the vicinity of the flutter boundary is studied via the use of a new methodology based on the Liapunov First Quantity. The expected outcome of this study is: a) to greatly enhance the scope and reliability of the aeroelastic analysis and design criteria of advanced supersonic/hypersonic flight vehicles and, b) provide a theoretical basis for the analysis of more complex nonlinear aeroelastic systems.

  15. About the Effect of Control on Flutter and Post-Flutter of a Supersonic/Hypersonic Cross-Sectional Wing

    NASA Technical Reports Server (NTRS)

    Marzocca, Piergiovanni; Librescu, Liviu; Silva, Walter A.

    2000-01-01

    The control of the flutter instability and the conversion of the dangerous character of the flutter instability boundary into the undangerous one of a cross-sectional wing in a supersonic/hypersonic flow field is presented. The objective of this paper is twofold: i) to analyze the implications of nonlinear unsteady aerodynamics and physical nonlinearities on the character of the instability boundary in the presence of a control capability, and ii) to outline the effects played in the same respect by some important parameters of the aeroelastic system. As a by-product of this analysis, the implications of the active control on the linearized flutter behavior of the system are captured and emphasized. The bifurcation behavior of the open/closed loop aeroelastic system in the vicinity of the flutter boundary is studied via the use of a new methodology based on the Liapunov First Quantity. The expected outcome of this study is: a) to greatly enhance the scope and reliability of the aeroelastic analysis and design criteria of advanced supersonic/hypersonic flight vehicles and, b) provide a theoretical basis for the analysis of more complex nonlinear aeroelastic systems.

  16. Flight Investigation of the Stability and Control Characteristics of a 1/4-Scale Model of a Tilt-Wing Vertical-Take-Off-and-Landing Aircraft

    NASA Technical Reports Server (NTRS)

    Tosti, Louis P.

    1959-01-01

    An experimental investigation has been conducted to determine the dynamic stability and control characteristics of a tilt-wing vertical-take-off-and-landing aircraft with the use of a remotely controlled 1/4-scale free-flight model. The model had two propellers with hinged (flapping) blades mounted on the wing which could be tilted up to an incidence angle of nearly 90 deg for vertical take-off and landing. The investigation consisted of hovering flights in still air, vertical take-offs and landings, and slow constant-altitude transitions from hovering to forward flight. The stability and control characteristics of the model were generally satisfactory except for the following characteristics. In hovering flight, the model had an unstable pitching oscillation of relatively long period which the pilots were able to control without artificial stabilization but which could not be considered entirely satisfactory. At very low speeds and angles of wing incidence on the order of 70 deg, the model experienced large nose-up pitching moments which severely limited the allowable center-of-gravity range.

  17. Free flight simulations of a dragonfly-like flapping wing-body model using the immersed boundary-lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Minami, Keisuke; Suzuki, Kosuke; Inamuro, Takaji

    2015-02-01

    Free flights of the dragonfly-like flapping wing-body model are numerically investigated using the immersed boundary-lattice Boltzmann method. The governing parameters of the problem are the Reynolds number Re, the Froude number Fr, and the non-dimensional mass m, and we set the parameters at Re = 200, Fr = 15, and m = 51. First, we simulate free flights of the model without the pitching rotation for various values of the phase lag angle ϕ between the forewing and the hindwing motions. We find that the wing-body model goes forward in spite of ϕ, and the model with φ = 0{}^\\circ and 90{}^\\circ goes upward against gravity. The model with φ =180{}^\\circ goes almost horizontally, and the model with φ =270{}^\\circ goes downward. That is, the moving direction of the model depends on the phase lag angle ϕ. Secondly, we simulate free flights with the pitching rotation for various values of the phase lag angle ϕ. It is found that in spite of ϕ the wing-body model turns gradually in the nose-up direction and goes back and down as the pitching angle {{\\Theta }c} increases. That is, the wing-body model cannot make a stable forward flight without control. Finally, we show a way to control the pitching motion by changing the lead-lag angle γ (t). We propose a simple proportional controller of γ (t) which makes stable flights within {{\\Theta }c}=+/- 5{}^\\circ and works well even for a large disturbance.

  18. Performance measurements of a dual-rotor arm mechanism for efficient flight transition of fixed-wing unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    McGill, Karen Ashley Jean

    Reconfigurable systems are a class of systems that can be transformed into different configurations, generally to perform unique functions or to maintain operational efficiency under distinct conditions. A UAV can be considered a reconfigurable system when coupled with various useful features such as vertical take-off and landing (VTOL), hover capability, long-range, and relatively large payload. Currently, a UAV having these capabilities is being designed by the UTSA Mechanical Engineering department. UAVs such as this one have the following potential uses: emergency response/disaster relief, hazard-critical missions, offshore oil rig/wind farm delivery, surveillance, etc. The goal of this thesis is to perform experimental thrust and power measurements for the propulsion system of this fixed-wing UAV. Focus was placed on a rotating truss arm supporting two brushless motors and rotors that will later be integrated to the ends of the UAV wing. These truss arms will rotate via a supporting shaft from 0° to 90° to transition the UAV between a vertical take-off, hover, and forward flight. To make this hover/transition possible, a relationship between thrust, arm angle, and power drawn was established by testing the performance of the arm/motor assembly at arm angles of 0°, 15°, 30°, 45°, 60°, 75°, and 90°. Universal equations for this system of thrust as a function of the arm angle were created by correlating data collected by a load cell. A Solidworks model was created and used to conduct fluid dynamics simulations of the streamlines over the arm/motor assembly.

  19. NASA GL-10 Tilt-Wing VTOL UAS Flight Validation Experiments

    NASA Technical Reports Server (NTRS)

    Fredericks, William J.; North, David D.; Agate, Mark A.; Johns, Zachary R.

    2015-01-01

    Greased Lightning (GL-10) is an aircraft configuration that combines the characteristics of a cruise efficient airplane with the ability to perform vertical takeoffs and landings (VTOL). This presentation will summarize the results of the flight test experiments. Two key technologies have been utilized in this aircraft design. Namely, distributed electric propulsion and closed loop control laws to be able to fly an inherently unstable aircraft. For many decades we as an aviation industry have been attempting to build a vehicle that can combine the speed and efficiency of an airplane with the vertical takeoff and landing of a rotorcraft. Overall it has been determined thru flight test that a design that leverages these new technologies can yield a useful VTOL cruise efficient aircraft.

  20. A Limited Rotary-Wing Flight Investigation of Hyperstereo in Helmet-Mounted Display Designs

    DTIC Science & Technology

    2009-07-01

    commonly known as night vision goggles (NVGs), were introduced for use in helicopters in 1973. These devices, based on the principle of image...Army Aviation Technical Test Center. TECOM Project No. 4-AI-100-RAH-008. Brickner, M.S. 1989. Helicopter flights with night vision goggles ...V.G., Myles, K.P., Malkin, F.J., and Bender, E. 2001. The effects of viewpoint offsets of night vision goggles on human performance in a simulated