Science.gov

Sample records for aerogel cherenkov counter

  1. Silica aerogel threshold Cherenkov counters for the JLab Hall A spectrometers: improvements and proposed modifications

    SciTech Connect

    Luigi Lagamba; Evaristo Cisbani; S. Colilli; R. Crateri; R. De Leo; Salvatore Frullani; Franco Garibaldi; F. Giuliani; M. Gricia; Mauro Iodice; Riccardo Iommi; A. Leone; M. Lucentini; A. Mostarda; E. Nappi; Roberto Perrino; L. Pierangeli; F. Santavenere; Guido M. Urciuoli

    2001-10-01

    Recently approved experiments at Jefferson Lab Hall A require a clean kaon identification in a large electron, pion, and proton background environment. To this end, improved performance is required of the silica aerogel threshold Cherenkov counters installed in the focal plane of the two Hall A spectrometers. In this paper we propose two strategies to improve the performance of the Cherenkov counters which presently use a hydrophilic aerogel radiator, and convey Cherenkov photons towards the photomultipliers by means of mirrors with a parabolic shape in one direction and flat in the other. The first strategy is aerogel baking. In the second strategy we propose a modification of the counter geometry by replacing the mirrors with a planar diffusing surface and by displacing in a different way the photomultipliers. Tests at CERN with a 5GeV/c multiparticle beam revealed that both the strategies are able to increase significantly the number of the detected Cherenkov photons and, therefore, the detector performance.

  2. Cherenkov Counters

    SciTech Connect

    Barbero, Marlon

    2012-04-19

    When a charged particle passes through an optically transparent medium with a velocity greater than the phase velocity of light in that medium, it emits prompt photons, called Cherenkov radiation, at a characteristic polar angle that depends on the particle velocity. Cherenkov counters are particle detectors that make use of this radiation. Uses include prompt particle counting, the detection of fast particles, the measurement of particle masses, and the tracking or localization of events in very large, natural radiators such as the atmosphere, or natural ice fields, like those at the South Pole in Antarctica. Cherenkov counters are used in a number of different fields, including high energy and nuclear physics detectors at particle accelerators, in nuclear reactors, cosmic ray detectors, particle astrophysics detectors and neutrino astronomy, and in biomedicine for labeling certain biological molecules.

  3. Fabrication of silica aerogel with n=1.08 for e+ /μ+ separation in a threshold Cherenkov counter of the J-PARC TREK/E36 experiment

    NASA Astrophysics Data System (ADS)

    Tabata, Makoto; Toyoda, Akihisa; Kawai, Hideyuki; Igarashi, Youichi; Imazato, Jun; Shimizu, Suguru; Yamazaki, Hirohito

    2015-09-01

    This study presents the development of hydrophobic silica aerogel for use as a radiator in threshold-type Cherenkov counters. These counters are to be used for separating positrons and positive muons produced by kaon decay in the J-PARC TREK/E36 experiment. We chose to employ aerogel with a refractive index of 1.08 to identify charged particles with momenta of approximately 240 MeV/c, and the radiator block shape was designed with a trapezoidal cross-section to fit the barrel region surrounding the kaon stopping target in the center of the TREK/E36 detector system. Including spares, we obtained 30 crack-free aerogel blocks segmented into two layers, each layer having a thickness of 2 cm and a length of 18 cm, to fill 12 counter modules. Optical measurements showed that the produced aerogel tiles had the required refractive indices and transparency.

  4. Electron Beam Diagnostics using Coherent Cherenkov Radiation in Aerogel

    SciTech Connect

    Tikhoplav, R.; Knyazik, A.; Rosenzweig, J. B.; Ruelas, M.

    2009-01-22

    The use of coherent Cherenkov radiation as a diagnostic tool for longitudinal distribution of an electron beam is studied in this paper. Coherent Cherenkov radiation is produced in an aerogel with an index of refraction close to unity. An aerogel spectral properties are experimentally studied and analyzed. This method will be employed for the helical IFEL bunching experiment at Neptune linear accelerator facility at UCLA.

  5. The aerogel threshold Cherenkov detector for the high momentum spectrometer in Hall C at Jefferson lab

    SciTech Connect

    Razmik Asaturyan; Rolf Ent; Howard Fenker; David Gaskell; Garth Huber; Mark Jones; David Mack; Hamlet Mkrtchyan; Bert Metzger; Nadia Novikoff; Vardan Tadevosyan; William Vulcan; Stephen Wood

    2004-11-09

    We describe a new aerogel threshold Cherenkov detector installed in the HMS spectrometer in Hall C at Jefferson Lab. The Hall C experimental program in 2003 required an improved particle identification system for better identification of {pi}/K/p, which was achieved by installing an additional threshold Cherenkov counter. Two types of aerogel with n = 1.03 and n = 1.015 allow one to reach {approx}10{sup -3} proton and 10{sup -2} kaon rejection in the 1-5 GeV/c momentum range with pion detection efficiency better than 99% (97%). The detector response shows no significant position dependence due to a diffuse light collection technique. The diffusion box was equipped with 16 Photonis XP4572 PMT's. The mean number of photoelectrons in saturation was {approx}16 and {approx}8, respectively. Moderate particle identification is feasible near threshold.

  6. Particle identification performance of the prototype aerogel RICH counter for the Belle II experiment

    NASA Astrophysics Data System (ADS)

    Iwata, S.; Adachi, I.; Hara, K.; Iijima, T.; Ikeda, H.; Kakuno, H.; Kawai, H.; Kawasaki, T.; Korpar, S.; Križan, P.; Kumita, T.; Nishida, S.; Ogawa, S.; Pestotnik, R.; Šantelj, L.; Seljak, A.; Sumiyoshi, T.; Tabata, M.; Tahirovic, E.; Yusa, Y.

    2016-03-01

    We have developed a new type of particle identification device, called an aerogel ring imaging Cherenkov (ARICH) counter, for the Belle II experiment. It uses silica aerogel tiles as Cherenkov radiators. For detection of Cherenkov photons, hybrid avalanche photo-detectors (HAPDs) are used. The designed HAPD has a high sensitivity to single photons under a strong magnetic field. We have confirmed that the HAPD provides high efficiency for single-photon detection even after exposure to neutron and γ -ray radiation that exceeds the levels expected in the 10-year Belle II operation. In order to confirm the basic performance of the ARICH counter system, we carried out a beam test at the using a prototype of the ARICH counter with six HAPD modules. The results are in agreement with our expectations and confirm the suitability of the ARICH counter for the Belle II experiment. Based on the in-beam performance of the device, we expect that the identification efficiency at 3.5 GeV/c is 97.4% and 4.9% for pions and kaons, respectively. This paper summarizes the development of the HAPD for the ARICH and the evaluation of the performance of the prototype ARICH counter built with the final design components.

  7. Aerogel Cherenkov detector for characterizing the intense flash x-ray source, Cygnus, spectrum

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Herrmann, H. W.; McEvoy, A. M.; Young, C. S.; Hamilton, C.; Schwellenbach, D. D.; Malone, R. M.; Kaufman, M. I.; Smith, A. S.

    2016-11-01

    An aerogel Cherenkov detector is proposed to measure the X-ray energy spectrum from the Cygnus—intense flash X-ray source operated at the Nevada National Security Site. An array of aerogels set at a variety of thresholds between 1 and 3 MeV will be adequate to map out the bremsstrahlung X-ray production of the Cygnus, where the maximum energy of the spectrum is normally around 2.5 MeV. In addition to the Cherenkov radiation from aerogels, one possible competing light-production mechanism is optical transition radiation (OTR), which may be significant in aerogels due to the large number of transitions from SiO2 clusters to vacuum voids. To examine whether OTR is a problem, four aerogel samples were tested using a mono-energetic electron beam (varied in the range of 1-3 MeV) at NSTec Los Alamos Operations. It was demonstrated that aerogels can be used as a Cherenkov medium, where the rate of the light production is about two orders magnitude higher when the electron beam energy is above threshold.

  8. The HERA-B ring imaging Cherenkov counter

    NASA Astrophysics Data System (ADS)

    Ariño, I.; Bastos, J.; Broemmelsiek, D.; Carvalho, J.; Chmeissani, M.; Conde, P.; Davila, J.; Dujmić, D.; Eckmann, R.; Garrido, L.; Gascon, D.; Hamacher, T.; Gorišek, A.; Ivaniouchenkov, I.; Ispirian, M.; Karabekian, S.; Kim, M.; Korpar, S.; Križan, P.; Kupper, S.; Lau, K.; Maas, P.; McGill, J.; Miquel, R.; Murthy, N.; Peralta, D.; Pestotnik, R.; Pyrlik, J.; Ramachandran, S.; Reeves, K.; Rosen, J.; Schmidt-Parzefall, W.; Schwarz, A.; Schwitters, R. F.; Siero, X.; Starič, M.; Stanovnik, A.; Škrk, D.; Živko, T.

    2004-01-01

    The HERA-B RICH uses a radiation path length of 2.8 m in C 4F 10 gas and a large 24 m2 spherical mirror for imaging Cherenkov rings. The photon detector consists of 2240 Hamamatsu multi-anode photomultipliers with about 27 000 channels. A 2:1 reducing two-lens telescope in front of each photomultiplier tube increases the sensitive area at the expense of increased pixel size, resulting in a contribution to the resolution which roughly matches that of dispersion. The counter was completed in January of 1999, and its performance has been steady and reliable over the years it has been in operation. The design performance of the Ring Imaging Cherenkov counter was fully reached: the average number of detected photons in the RICH for a β=1 particle was found to be 33 with a single-hit resolution of 0.7 and 1 mrad in the fine and coarse granularity regions, respectively.

  9. Optimizing light collection for low index aerogels used in Cherenkov Detectors

    NASA Astrophysics Data System (ADS)

    Roustom, Salim

    2016-09-01

    The SHMS aerogel Cherenkov detector built at CUA is used in Hall C at JLab to differentiate Kaons from Protons. It features four refractive aerogel indices ranging from n =1.03-1.01. The lowest index is expected to produce a very small signal and it is thus important to collect it with the highest possible efficiency. One way is to cover the interior of the detector with the best possible reflector material. A prototype was built to investigate possible optimizations of light collection for low aerogel refractive indices. Different reflective materials were used on its inner walls and the resulting average number of photoelectrons detected by a photomultiplier tube (PMT) compared. The coincidence trigger for these tests was constructed using two scintillator paddles. This configuration ensures that only cosmic rays passing perpendicularly through the setup are recorded by the computer. The PMTs used in this setup were calibrated using a blue LED, where the PMT is most sensitive. I will discuss the effect of the different reflectors on the average number of photoelectrons recorded, as well as other possible optimizations of light collection including wavelength shifters, and the effect of absorption and scattering on the detector's performance. This work was supported in part by NSF Grant PHY-1306227.

  10. Particle Identification Using a Ring Imaging Cherenkov Counter

    NASA Astrophysics Data System (ADS)

    Goodwill, Justin; Benmokthar, Fatiha

    2016-09-01

    The installation of a Ring Imaging Cherenkov counter (RICH) on the CLAS12 spectrometer in Hall B of Jefferson Lab will aid in particle identification, specifically with regard to the separation between protons, pions, kaons. The RICH functions by detecting a ring of radiation that is given off by particles moving faster than the speed of light in a medium through the use of multi-anode photomultiplier tubes (MAPMTs). Because the size of the ring is dependent on the velocity of the particles, one can separate the incoming charged particles. With 391 MAPMTs being used in the specific design at Jefferson Lab, sophisticated electronic systems are needed to achieve complete data acquisition and ensure the safe operation of RICH. To monitor these electronic systems, the slow control system uses a compilation of graphical user interfaces (GUIs) that communicates and, if necessary, changes certain process variables such as the high voltage going to the MAPMTs and the temperature of the system. My actual project focuses on the development of an efficient and reliable slow control system for this detector as well as a java based analyzer for offline data analysis.

  11. Cosmic ray studies with a gas Cherenkov counter in association with an ionization spectrometer

    NASA Technical Reports Server (NTRS)

    Balasubrahmanyan, V. K.; Ormes, J. F.; Arens, J. F.; Siohan, F.; Yodh, G. B.; Simon, M.; Spiegelhauer, H.

    1980-01-01

    The results from a balloon-borne gas Cherenkov counter (threshold 16.5 GeV/nucleon) and an ionization spectrometer are presented. The gas Cherenkov counter provides an absolute energy distribution for the response of the calorimeter for 5 or = Z 26 nuclei of cosmic rays. The contribution of scintillation to the gas Cherenkov pulse height was obtained by independently selecting particles below the gas Cherenkov threshold using the ionization spectrometer. Energy spectra were derived by minimizing the chi squared between Monte Carlo simulted data and flight data. Best fit power laws, dN/dE = AE-gamma, were determined for C, N, O, Ne, Mg, and Si. The power laws, all consistent with E (-2.7) are not good fits to the data. A better fit is obtained using the spectrum derived from the spectrometer. The data from the ionization calorimeter and the gas Cherenkov are thus completely self-consistent.

  12. Results on the Performance of a Broad Band Focussing Cherenkov Counter

    DOE R&D Accomplishments Database

    Cester, R.; Fitch, V. L.; Montag, A.; Sherman, S.; Webb, R. C.; Witherell, M. S.

    1980-01-01

    The field of ring imaging (broad band differential) Cherenkov detectors has become a very active area of interest in detector development at several high energy physics laboratories. Our group has previously reported on a method of Cherenkov ring imaging for a counter with large momentum and angular acceptance using standard photo multipliers. Recently, we have applied this technique to the design of a set of Cherenkov counters for use in a particle search experiment at Fermi National Accelerator Laboratory (FNAL). This new detector operates over the range 0.998 < ..beta.. < 1.000 in velocity with a delta..beta.. approx. 2 x 10{sup -4}. The acceptance in angle is +- 14 mrad in the horizontal and +- 28 mrad in the vertical. We report here on the performance of this counter.

  13. Nuclear Physics with CLAS12 and the High Threshold Cherenkov Counter

    NASA Astrophysics Data System (ADS)

    Mazurek, Jeffrey

    2011-10-01

    New construction is underway at Thomas Jefferson National Lab for the 12 GeV upgrade to the Continuous Electron Beam Accelerator Facility (CEBAF) and the CEABF Large Acceptance Spectrometer detector upgrade (CLAS12) at Hall B. This upgrade allows a broad experimental program with the new CLAS12 detector to map the nucleon's 3-dimensional spin and flavor content through the measurement of deeply exclusive and semi-inclusive processes. During an experiment, CLAS12 will record data when its High Threshold Cherenkov Counter (HTCC) identifies a scattered electron through the generation of Cherenkov Light. Cherenkov Light indicates an event and is created when a charged particle moves faster than the speed of light in a medium. The HTCC uses a system of 48 ellipsoidal mirrors assembled into one circular, 8-ft diameter mirror to capture this light. While both pions and electrons can generate Cherenkov Light, only that from an electron identifies an event. Therefore, the HTCC must distinguish the light of a scattered electron from the light by pion contamination. This paper offers an overview of Jefferson National Lab's new CLAS12 detector and a detailed presentation of the HTCC.

  14. Monolithic Nickel (II) Oxide Aerogels Using an Organic Epoxide: The Importance of the Counter Ion

    SciTech Connect

    Gash, A E; Satcher, J H; Simpson, R L

    2004-01-13

    The synthesis and characterization of nickel (II) oxide aerogel materials prepared using the epoxide addition method is described. The addition of the organic epoxide propylene oxide to an ethanolic solution of NiCl{sub 2} 6H{sub 2}O resulted in the formation of an opaque light green monolithic gel and subsequent drying with supercritical CO{sub 2} gave a monolithic aerogel material of the same color. This material has been characterized using powder X-ray diffraction, electron microscopy, elemental analysis, and nitrogen adsorption/desorption analysis. The results indicate that the nickel (II) oxide aerogel has very low bulk density (98 kg/m{sup 3} ({approx}98 %porous)), high surface area (413 m{sup 2}/g), and has a particulate-type aerogel microstructure made up of very fine spherical particles with an open porous network. By comparison, a precipitate of Ni{sub 3}(NO{sub 3}){sub 2}(OH){sub 4} is obtained when the same preparation is attempted with the common Ni(NO{sub 3}){sub 2} 6H{sub 2}O salt as the precursor. The implications of the difference of reactivity of the two different precursors are discussed in the context of the mechanism of gel formation via the epoxide addition method. The synthesis of nickel (II) oxide aerogel, using the epoxide addition method, is especially unique in our experience. It is our first example of the successful preparation of a metal oxide aerogel using a metal divalent metal ion and may have implications for the application of this method to the preparation of aerogels or nanoparticles of other divalent metal oxides. To our knowledge this is the first report of a monolithic pure nickel (II) oxide aerogel materials.

  15. Real-time {sup 90}Sr Counter

    SciTech Connect

    Kaneko, Naomi; Kawai, Hideyuki; Kodama, Satoshi; Kobayashi, Atsushi; Tabata, Makoto; Ito, Hiroshi; Han, Soorim

    2015-07-01

    Radioisotopes have been emitted around Japan due to a nuclear accident at the Fukushima Daiichi nuclear power station in March 2011. A problem is the contaminated water including the atomic nucleus which relatively has a long half- life time and soluble such as {sup 90}Sr, {sup 137}Cs. Internal exposures by {sup 90}Sr are more dangerous than {sup 137}Cs's because Sr has effective half-life time of 18 years and property of accumulation in a born. We have developed real-time {sup 90}Sr counter which is sensitive beta-ray of maximum kinematic energy of 2.28 MeV from {sup 90}Sr and insensitive of beta-ray of maximum kinematic energy of 1.17 MeV and gamma-ray from {sup 90}Sr by Cherenkov detection. This counter composes of Cerenkov counter, trigger scintillation counter and veto counter. Silica aerogel for Cherenkov counter can obtain refractive index between 1.017 and 1.049 easily. And wavelength shifting fiber (WLSF) is used as a light guide for extending effective area and producing lower cost. A mechanism of the identification of {sup 90}Sr is explained in following. In case of {sup 90}Sr, when the trigger counter reacts on the beta-ray from {sup 90}Sr, aerogel emits the Cherenkov light and WLSF reacts and read the Cherenkov light. On the other hand, in case of {sup 137}Cs, the trigger counter reacts on the beta-ray, aerogel stops the beta- ray and Cherenkov light is not emitted. Therefore, aerogel has a function as a radiator and shielding material. the gamma-ray is not reacted on the lower density detector. Cosmic rays would be also reacted by the veto counter. A prototype counter whose the effective area is 30 cm x 10 cm was obtained (2.0±1.2){sup 3} of mis-identification as {sup 137}Cs/{sup 90}Sr. Detection limit in the surface contamination inspection depends on measurement time and effective area mainly. The sensitivity of wide range, 10{sup -2} - 10{sup 4} Bq/cm{sup 2}, is obtained by adjustment of detection level in circuit of this counter. A lower

  16. Design and Fabrication of Cherenkov Counters for the Detection of SNM

    SciTech Connect

    Erickson, Anna S.; Lanza, Richard; Galaitsis, Anthony; Hynes, Michael; Blackburn, Brandon; Bernstein, Adam

    2011-12-13

    The need for large-size detectors for long-range active interrogation (AI) detection of SNM has generated interest in water-based detector technologies. Water Cherenkov Detectors (WCD) were selected for this research because of their transportability, scalability, and an inherent energy threshold. The detector design and analysis was completed using the Geant4 toolkit. It was demonstrated both computationally and experimentally that it is possible to use WCD to detect and characterize gamma rays. Absolute efficiency of the detector (with no energy cuts applied) was determined to be around 30% for a {sup 60}Co source.

  17. 110th anniversary of the birth of P A Cherenkov (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 17 December 2014)

    NASA Astrophysics Data System (ADS)

    2015-05-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS) was held on 17 December 2014 at the conference hall of the Lebedev Physical Institute, RAS, devoted to the 110th anniversary of the birth of Academician P A Cherenkov. The agenda posted on the website of the Physical Sciences Division RAS http://www.gpad.ac.ru comprised the following reports: (1) Bashmakov Yu A (Lebedev Physical Institute, RAS, Moscow) "Prehistory of discovery"; (2) Kadmensky S G (Voronezh State University, Voronezh) "Cherenkov radiation as a serendipity phenomenon"; (3) Denisov S P (Russian Federation State Scientific Center 'Institute for High Energy Physics' of National Research Center 'Kurchatov Institute', Protvino, Moscow region) "Use of Cherenkov counters in accelerator experiments"; (4) Petrukhin A A (National Research Nuclear University 'MEPhI', Moscow) "Cherenkov NEVOD water detector"; (5) Dremin I M (Lebedev Physical Institute, RAS, Moscow) "Cherenkov radiation from gluons in a nuclear medium"; (6) Domogatsky G V (Institute for Nuclear Research, RAS, Moscow) "Cherenkov detectors for high-energy neutrino astrophysics"; (7) Kravchenko E A (Budker Institute of Nuclear Physics, SB RAS, Novosibirsk) "Cherenkov detectors with aerogel radiators"; (8) Malinovski E I (Institute for Nuclear Research, RAS, Moscow) "Cherenkov total absorption spectrometers for high-energy electrons and photons"; (9) Maltseva Yu I (Budker Institute of Nuclear Physics, SB RAS, Novosibirsk) "Distributed beam loss monitor based on the Cherenkov effect in an optical fiber". Papers based on oral reports 1-4, 6-9 are presented below. Some aspects of report 5 can be found in the review by I M Dremin and A V Leonidov published in 2010 in Physics-Uspekhi (Vol. 53, p. 1123). • Cherenkov radiation: from discovery to RICH, Yu A Bashmakov Physics-Uspekhi, 2015, Volume 58, Number 5, Pages 467-471 • Cherenkov radiation as a serendipitous phenomenon, S G Kadmensky Physics

  18. Chemical Analyses of Silicon Aerogel Samples

    SciTech Connect

    van der Werf, I.; Palmisano, F.; De Leo, Raffaele; Marrone, Stefano

    2008-04-01

    After five years of operating, two Aerogel counters: A1 and A2, taking data in Hall A at Jefferson Lab, suffered a loss of performance. In this note possible causes of degradation have been studied. In particular, various chemical and physical analyses have been carried out on several Aerogel tiles and on adhesive tape in order to reveal the presence of contaminants.

  19. Graphene aerogels

    DOEpatents

    Pauzauskie, Peter J; Worsley, Marcus A; Baumann, Theodore F; Satcher, Jr., Joe H; Biener, Juergen

    2015-03-31

    Graphene aerogels with high conductivity and surface areas including a method for making a graphene aerogel, including the following steps: (1) preparing a reaction mixture comprising a graphene oxide suspension and at least one catalyst; (2) curing the reaction mixture to produce a wet gel; (3) drying the wet gel to produce a dry gel; and (4) pyrolyzing the dry gel to produce a graphene aerogel. Applications include electrical energy storage including batteries and supercapacitors.

  20. Aerogel Development

    NASA Technical Reports Server (NTRS)

    Sahai, Rashmi K.

    2005-01-01

    Aerogel is one of the most promising materials of the future. It's unique properties, including high porosity, transparency, very high thermal tolerance, and environmental friendliness give it the potential of replacing many different products used in society today. However, the market for aerogel is still very limited because of the cost of producing the material and its fragility. The principle objective of my project has been to find new ways to apply aerogel in order to increase its practicality and appeal to different aspects of society. More specifically, I have focused on finding different chemicals that will coat aerogel and increase its durability. Because aerogel is so fragile and will crumble under the pressure of most coatings this has been no easy task. However, by experimenting with many different coatings and combinations of aerogel properties, I have made several significant discoveries. Aerogel (ideally, high density and hydrophobic) can be coated with several acrylic polymers, including artist's gel and nail polish. These materials provide a protective layering around the aerogel and keep it from breaking as easily. Because fragility is one of the main reasons applications of aerogel are limited, these discoveries will hopefully aid in finding future applications for this extraordinary material.

  1. Metamaterials for Cherenkov Radiation Based Particle Detectors

    SciTech Connect

    Tyukhtin, A. V.; Schoessow, P.; Kanareykin, A.; Antipov, S.

    2009-01-22

    Measurement of Cherenkov radiation (CR) has long been a useful technique for charged particle detection and beam diagnostics. We are investigating metamaterials engineered to have refractive indices tailored to enhance properties of CR that are useful for particle detectors and that cannot be obtained using conventional media. Cherenkov radiation in dispersive media with a large refractive index differs significantly from the same effect in conventional detector media, like gases or aerogel. The radiation pattern of CR in dispersive metamaterials presents lobes at very large angles with respect to particle motion. Moreover, the frequency and particle velocity dependence of the radiated energy can differ significantly from CR in a conventional dielectric medium.

  2. Cherenkov and Scintillation Properties of Cubic Zirconium

    NASA Technical Reports Server (NTRS)

    Christl, M.J.; Adams, J.H.; Parnell, T.A.; Kuznetsov, E.N.

    2008-01-01

    Cubic zirconium (CZ) is a high index of refraction (n =2.17) material that we have investigated for Cherenkov counter applications. Laboratory and proton accelerator tests of an 18cc sample of CZ show that the expected fast Cherenkov response is accompanied by a longer scintillation component that can be separated by pulse shaping. This presents the possibility of novel particle spectrometers which exploits both properties of CZ. Other high index materials being examined for Cherenkov applications will be discussed. Results from laboratory tests and an accelerator exposure will be presented and a potential application in solar energetic particle instruments will be discussed

  3. Photon Detection Systems for Modern Cherenkov Detectors

    NASA Astrophysics Data System (ADS)

    Seitz, B.; Britting, A.; Cowie, E.; Eyrich, W.; Hoek, M.; Keri, T.; Lehmann, A.; Montgomery, R.; Uhlig, F.

    Modern experiments in hadronic physics require detector systems capable of identifying and reconstructing all final-state particle and their momentum vectors. The ANDA experiment at FAIR and the CLAS 12 experiment and Jefferson Laboratory both plan to use imaging Cherenkov counters for particle identification. CLAS 12 will feature a Ring Imaging CHerenkov counter (RICH), while ANDA plans to construct Cherenkov counters relying on the Detections of Internally Reflected Cherenkov light (DIRC). These detectors require high-rate, single-photon capable light detection systems with sufficient granularity and position resolution. Several candidate systems are available, ranging from multi-anode photomultiplier tubes to micro-channel plate systems to silicon photomultipliers. Each of these detection solutions has particular advantages and disadvantages. Detailed studies of the rate dependence, cross-talk, time-resolution and position resolution fro a range of commercially available photon detection solutions are presented and evaluated on their applicability to the ANDA and CLAS12 Cherenkov counters.

  4. Polyolefin-based aerogels

    NASA Technical Reports Server (NTRS)

    Lee, Je Kyun (Inventor); Gould, Gerogle L. (Inventor)

    2010-01-01

    The present invention relates to cross-linked polyolefin aerogels in simple and fiber-reinforced composite form. Of particular interest are polybutadiene aerogels. Especially aerogels derived from polybutadienes functionalized with anhydrides, amines, hydroxyls, thiols, epoxies, isocyanates or combinations thereof.

  5. Aerogel sorbents

    DOEpatents

    Begag, Redouane; Rhine, Wendell E; Dong, Wenting

    2016-04-05

    The current invention describes methods and compositions of various sorbents based on aerogels of various silanes and their use as sorbent for carbon dioxide. Methods further provide for optimizing the compositions to increase the stability of the sorbents for prolonged use as carbon dioxide capture matrices.

  6. Identification of 90Sr/40K Based on Cherenkov Detector for Recovery from the Fukushima Nuclear Accident

    NASA Astrophysics Data System (ADS)

    Ito, Hiroshi; Han, Soorim; Kobayashi, Atsushi; Kaneko, Naomi; Kawai, Hideyuki; Tabata, Makoto

    Although five years have passed since the Fukushima nuclear accident of 2011, the local fisheries have yet to recover from its effects. One reason for this situation is the difficulty of measuring the radioactivity owing to 90Sr in seafood. After the accident, the radioactivity due to Cs isotopes in samples was measured with precision, which facilitated the enforcement of the maximum concentration of Cs radioisotopes in food at 100 Bq/kg, as defined by the Ministry of Health, Labour and Welfare in Japan. However, 90Sr is more dangerous than Cs isotopes because it has an effective half-life of 18 years and accumulates in the bone. The radioactivity owing to 90Sr in a sample is difficult to measure because the beta rays from 137Cs or 40K also contribute to the signal. When measured based on the endpoint pulse height as determined by a conventional survey meter, the beta ray signal from 90Y (daughter of 90Sr) cannot be differentiated from the beta rays from other sources. To overcome this difficulty, in this study, we develop a Cherenkov detector based on a silica aerogel with a refractive index of 1.034 that can identify beta rays from 90Y within a background of beta rays from 137Cs and 40K. This instrument involves a detector that is sensitive to beta rays from 90Sr but less sensitive to radiation from other sources. This detector comprises a trigger counter that uses scintillating fibers, an aerogel Cherenkov counter with wavelength-shifting fibers, and a veto counter to suppress cosmic rays. We characterize the detector using a 90Sr source, 137Cs source, and pure potassium chloride reagent of 16.6 Bq/g, where the radioactivity of natural 40K is estimated to be 31.7 Bq/g. The following results are obtained: the absolute detection efficiency for 90Sr, 137Cs, and 40K is [2.24 ± 0.01 (stat) ± 0.44 (sys)] × 10-3 Bq-1 s-1, [1.27 ± 0.08 (stat) ± 0.25 (sys)] × 10-6 Bq-1 s-1, and [5.05 ± 2.40 (stat) ± 0.15 (sys)] × 10-5 Bq-1 s-1, respectively. To aid in the

  7. Particle Tracks in Aerogel

    NASA Technical Reports Server (NTRS)

    2005-01-01

    In an experiment using a special air gun, particles are shot into aerogel at high velocities. Closeup of particles that have been captured in aerogel are shown here. The particles leave a carrot-shaped trail in the aerogel. Aerogel was used on the Stardust spacecraft to capture comet particles from Comet Wild 2.

  8. Surface modified aerogel monoliths

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas (Inventor); Johnston, James C. (Inventor); Kuczmarski, Maria A. (Inventor); Meador, Mary Ann B. (Inventor)

    2013-01-01

    This invention comprises reinforced aerogel monoliths such as silica aerogels having a polymer coating on its outer geometric surface boundary, and to the method of preparing said aerogel monoliths. The polymer coatings on the aerogel monoliths are derived from polymer precursors selected from the group consisting of isocyanates as a precursor, precursors of epoxies, and precursors of polyimides. The coated aerogel monoliths can be modified further by encapsulating the aerogel with the polymer precursor reinforced with fibers such as carbon or glass fibers to obtain mechanically reinforced composite encapsulated aerogel monoliths.

  9. The HERMES dual-radiator ring imaging Cherenkov detector

    NASA Astrophysics Data System (ADS)

    Akopov, N.; Aschenauer, E. C.; Bailey, K.; Bernreuther, S.; Bianchi, N.; Capitani, G. P.; Carter, P.; Cisbani, E.; De Leo, R.; De Sanctis, E.; De Schepper, D.; Djordjadze, V.; Filippone, B. W.; Frullani, S.; Garibaldi, F.; Hansen, J.-O.; Hommez, B.; Iodice, M.; Jackson, H. E.; Jung, P.; Kaiser, R.; Kanesaka, J.; Kowalczyk, R.; Lagamba, L.; Maas, A.; Muccifora, V.; Nappi, E.; Negodaeva, K.; Nowak, W.-D.; O'Connor, T.; O'Neill, T. G.; Potterveld, D. H.; Ryckbosch, D.; Sakemi, Y.; Sato, F.; Schwind, A.; Shibata, T.-A.; Suetsugu, K.; Thomas, E.; Tytgat, M.; Urciuoli, G. M.; Van de Kerckhove, K.; Van de Vyver, R.; Yoneyama, S.; Zohrabian, H.; Zhang, L. F.

    2002-03-01

    The construction and use of a dual radiator Ring Imaging Cherenkov (RICH) detector is described. This instrument was developed for the HERMES experiment at DESY which emphasises measurements of semi-inclusive deep-inelastic scattering. It provides particle identification for pions, kaons, and protons in the momentum range from 2 to 15 GeV, which is essential to these studies. The instrument uses two radiators, C 4F 10, a heavy fluorocarbon gas, and a wall of silica aerogel tiles. The use of aerogel in a RICH detector has only recently become possible with the development of clear, large, homogeneous and hydrophobic aerogel. A lightweight mirror was constructed using a newly perfected technique to make resin-coated carbon-fiber surfaces of optical quality. The photon detector consists of 1934 photomultiplier tubes (PMT) for each detector half, held in a soft steel matrix to provide shielding against the residual field of the main spectrometer magnet.

  10. Development of a Clear Fiber Cherenkov Counter

    SciTech Connect

    Kaneko, N.; Han, S.; Ito, H.; Kawai, H.; Kobayashi, A.; Kodama, S.

    2015-07-01

    We have developed a new PID detector consists of clear fibers. PID efficiency was measured with 470 MeV e{sup +} beam. As a result, this detector with thickness of 5 cm has the PID efficiency of 95 %. (authors)

  11. Polyimide Aerogel Thin Films

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann; Guo, Haiquan

    2012-01-01

    Polyimide aerogels have been crosslinked through multifunctional amines. This invention builds on "Polyimide Aerogels With Three-Dimensional Cross-Linked Structure," and may be considered as a continuation of that invention, which results in a polyimide aerogel with a flexible, formable form. Gels formed from polyamic acid solutions, end-capped with anhydrides, and cross-linked with the multifunctional amines, are chemically imidized and dried using supercritical CO2 extraction to give aerogels having density around 0.1 to 0.3 g/cubic cm. The aerogels are 80 to 95% porous, and have high surface areas (200 to 600 sq m/g) and low thermal conductivity (as low as 14 mW/m-K at room temperature). Notably, the cross-linked polyimide aerogels have higher modulus than polymer-reinforced silica aerogels of similar density, and can be fabricated as both monoliths and thin films.

  12. Ambient Dried Aerogels

    NASA Technical Reports Server (NTRS)

    Jones, Steven M.; Paik, Jong-Ah

    2013-01-01

    A method has been developed for creating aerogel using normal pressure and ambient temperatures. All spacecraft, satellites, and landers require the use of thermal insulation due to the extreme environments encountered in space and on extraterrestrial bodies. Ambient dried aerogels introduce the possibility of using aerogel as thermal insulation in a wide variety of instances where supercritically dried aerogels cannot be used. More specifically, thermoelectric devices can use ambient dried aerogel, where the advantages are in situ production using the cast-in ability of an aerogel. Previously, aerogels required supercritical conditions (high temperature and high pressure) to be dried. Ambient dried aerogels can be dried at room temperature and pressure. This allows many materials, such as plastics and certain metal alloys that cannot survive supercritical conditions, to be directly immersed in liquid aerogel precursor and then encapsulated in the final, dried aerogel. Additionally, the metalized Mylar films that could not survive the previous methods of making aerogels can survive the ambient drying technique, thus making multilayer insulation (MLI) materials possible. This results in lighter insulation material as well. Because this innovation does not require high-temperature or high-pressure drying, ambient dried aerogels are much less expensive to produce. The equipment needed to conduct supercritical drying costs many tens of thousands of dollars, and has associated running expenses for power, pressurized gasses, and maintenance. The ambient drying process also expands the size of the pieces of aerogel that can be made because a high-temperature, high-pressure system typically has internal dimensions of up to 30 cm in diameter and 60 cm in height. In the case of this innovation, the only limitation on the size of the aerogels produced would be in the ability of the solvent in the wet gel to escape from the gel network.

  13. Aerogel nanocomposite materials

    SciTech Connect

    Hunt, A.J.; Ayers, M.; Cao, W.

    1995-05-01

    Aerogels are porous, low density, nanostructured solids with many unusual properties including very low thermal conductivity, good transparency, high surface area, catalytic activity, and low sound velocity. This research is directed toward developing new nanocomposite aerogel materials for improved thermal insulation and several other applications. A major focus of the research has been to further increase the thermal resistance of silica aerogel by introducing infrared opacification agents into the aerogel to produce a superinsulating composite material. Opacified superinsulating aerogel permit a number of industrial applications for aerogel-based insulation. The primary benefits from this recently developed superinsulating composite aerogel insulation are: to extend the range of applications to higher temperatures, to provide a more compact insulation for space sensitive-applications, and to lower costs of aerogel by as much as 30%. Superinsulating aerogels can replace existing CFC-containing polyurethane in low temperature applications to reduce heat losses in piping, improve the thermal efficiency of refrigeration systems, and reduce energy losses in a variety of industrial applications. Enhanced aerogel insulation can also replace steam and process pipe insulation in higher temperature applications to substantially reduce energy losses and provide much more compact insulation.

  14. Polyolefin-Based Aerogels

    NASA Technical Reports Server (NTRS)

    Lee, Je Kyun; Gould, George

    2012-01-01

    An organic polybutadiene (PB) rubberbased aerogel insulation material was developed that will provide superior thermal insulation and inherent radiation protection, exhibiting the flexibility, resiliency, toughness, and durability typical of the parent polymer, yet with the low density and superior insulation properties associated with the aerogels. The rubbery behaviors of the PB rubber-based aerogels are able to overcome the weak and brittle nature of conventional inorganic and organic aerogel insulation materials. Additionally, with higher content of hydrogen in their structure, the PB rubber aerogels will also provide inherently better radiation protection than those of inorganic and carbon aerogels. Since PB rubber aerogels also exhibit good hydrophobicity due to their hydrocarbon molecular structure, they will provide better performance reliability and durability as well as simpler, more economic, and environmentally friendly production over the conventional silica or other inorganic-based aerogels, which require chemical treatment to make them hydrophobic. Inorganic aerogels such as silica aerogels demonstrate many unusual and useful properties. There are several strategies to overcoming the drawbacks associated with the weakness and brittleness of silica aerogels. Development of the flexible fiber-reinforced silica aerogel composite blanket has proven one promising approach, providing a conveniently fielded form factor that is relatively robust toward handling in industrial environments compared to silica aerogel monoliths. However, the flexible silica aerogel composites still have a brittle, dusty character that may be undesirable, or even intolerable, in certain applications. Although the cross-linked organic aerogels such as resorcinol-formaldehyde (RF), polyisocyanurate, and cellulose aerogels show very high impact strength, they are also very brittle with little elongation (i.e., less rubbery). Also, silica and carbon aerogels are less efficient

  15. Cellulose-silica aerogels.

    PubMed

    Demilecamps, Arnaud; Beauger, Christian; Hildenbrand, Claudia; Rigacci, Arnaud; Budtova, Tatiana

    2015-05-20

    Aerogels based on interpenetrated cellulose-silica networks were prepared and characterised. Wet coagulated cellulose was impregnated with silica phase, polyethoxydisiloxane, using two methods: (i) molecular diffusion and (ii) forced flow induced by pressure difference. The latter allowed an enormous decrease in the impregnation times, by almost three orders of magnitude, for a sample with the same geometry. In both cases, nanostructured silica gel was in situ formed inside cellulose matrix. Nitrogen adsorption analysis revealed an almost threefold increase in pores specific surface area, from cellulose aerogel alone to organic-inorganic composite. Morphology, thermal conductivity and mechanical properties under uniaxial compression were investigated. Thermal conductivity of composite aerogels was lower than that of cellulose aerogel due to the formation of superinsulating mesoporous silica inside cellulose pores. Furthermore, composite aerogels were stiffer than each of reference aerogels.

  16. Technical applications of aerogels

    SciTech Connect

    Hrubesh, L.W.

    1997-08-18

    Aerogel materials posses such a wide variety of exceptional properties that a striking number of applications have developed for them. Many of the commercial applications of aerogels such as catalysts, thermal insulation, windows, and particle detectors are still under development and new application as have been publicized since the ISA4 Conference in 1994: e.g.; supercapacitors, insulation for heat storage in automobiles, electrodes for capacitive deionization, etc. More applications are evolving as the scientific and engineering community becomes familiar with the unusual and exceptional physical properties of aerogels, there are also scientific and technical application, as well. This paper discusses a variety of applications under development at Lawrence Livermore National Laboratory for which several types of aerogels are formed in custom sizes and shapes. Particular discussions will focus on the uses of aerogels for physics experiments which rely on the exceptional, sometimes unique, properties of aerogels.

  17. Method of casting aerogels

    DOEpatents

    Poco, J.F.

    1993-09-07

    The invention describes a method for making monolithic castings of transparent silica aerogel with densities in the range from 0.001 g/cm[sup 3] to 0.6 g/cm[sup 3]. Various shapes of aerogels are cast in flexible polymer molds which facilitate removal and eliminate irregular surfaces. Mold dimensions are preselected to account for shrinkage of aerogel which occurs during the drying step of supercritical extraction of solvent. 2 figures.

  18. Aerogel-supported filament

    DOEpatents

    Wuest, C.R.; Tillotson, T.M.; Johnson, C.V. III

    1995-05-16

    The present invention is a thin filament embedded in a low density aerogel for use in radiation detection instruments and incandescent lamps. The aerogel provides a supportive matrix that is thermally and electrically nonconductive, mechanically strong, highly porous, gas-permeable, and transparent to ionizing radiation over short distances. A low density, open-cell aerogel is cast around a fine filament or wire, which allows the wire to be positioned with little or no tension and keeps the wire in place in the event of breakage. The aerogel support reduces the stresses on the wire caused by vibrational, gravitational, electrical, and mechanical forces. 6 Figs.

  19. Aerogel derived catalysts

    SciTech Connect

    Reynolds, J. G., LLNL

    1996-12-11

    Aerogels area class of colloidal materials which have high surface areas and abundant mesoporous structure. SiO{sub 2} aerogels show unique physical, optical and structural properties. When catalytic metals are incorporated in the aerogel framework, the potential exists for new and very effective catalysts for industrial processes. Three applications of these metal-containing SiO{sub 2} aerogels as catalysts are briefly reviewed in this paper--NO{sub x} reduction, volatile organic compound destruction, and partial oxidation of methane.

  20. Aerogel-supported filament

    DOEpatents

    Wuest, Craig R.; Tillotson, Thomas M.; Johnson, III, Coleman V.

    1995-01-01

    The present invention is a thin filament embedded in a low density aerogel for use in radiation detection instruments and incandescent lamps. The aerogel provides a supportive matrix that is thermally and electrically nonconductive, mechanically strong, highly porous, gas-permeable, and transparent to ionizing radiation over short distances. A low density, open-cell aerogel is cast around a fine filament or wire, which allows the wire to be positioned with little or no tension and keeps the wire in place in the event of breakage. The aerogel support reduces the stresses on the wire caused by vibrational, gravitational, electrical, and mechanical forces.

  1. Effects of Microgravity on the Formation of Aerogels

    NASA Technical Reports Server (NTRS)

    Hunt, A. J.; Ayers, M. R.; Sibille, L.; Cronise, R. J.; Noever, D. A.

    1999-01-01

    presence of poorly controlled microporosity in aerogel leads to material non-uniformity that gives rise to increased light scattering. Investigation of the effect of gravity driven solute flows within microclusters and their effect on condensation and agglomeration reactions will enable us to improve the preparation and properties of aerogel. Increased clarity of images viewed through aerogel and decreased scattering from the pores of aerogel will significantly improve the prospects for large-scale adoption of aerogel in such applications as transparent insulating windows, high performance thermal insulation, and Cherenkov detectors.

  2. Method of manufacturing aerogel composites

    DOEpatents

    Cao, Wanqing; Hunt, Arlon Jason

    1999-01-01

    Disclosed herewith is a process of forming an aerogel composite which comprises introducing a gaseous material into a formed aerogel monolith or powder, and causing decomposition of said gaseous material in said aerogel in amounts sufficient to cause deposition of the decomposition products of the gas on the surfaces of the pores of the said aerogel.

  3. Aerogel-clad optical fiber

    DOEpatents

    Sprehn, Gregory A.; Hrubesh, Lawrence W.; Poco, John F.; Sandler, Pamela H.

    1997-01-01

    An optical fiber is surrounded by an aerogel cladding. For a low density aerogel, the index of refraction of the aerogel is close to that of air, which provides a high numerical aperture to the optical fiber. Due to the high numerical aperture, the aerogel clad optical fiber has improved light collection efficiency.

  4. Aerogel-clad optical fiber

    DOEpatents

    Sprehn, G.A.; Hrubesh, L.W.; Poco, J.F.; Sandler, P.H.

    1997-11-04

    An optical fiber is surrounded by an aerogel cladding. For a low density aerogel, the index of refraction of the aerogel is close to that of air, which provides a high numerical aperture to the optical fiber. Due to the high numerical aperture, the aerogel clad optical fiber has improved light collection efficiency. 4 figs.

  5. Method of manufacturing aerogel composites

    DOEpatents

    Cao, W.; Hunt, A.J.

    1999-03-09

    Disclosed herewith is a process of forming an aerogel composite which comprises introducing a gaseous material into a formed aerogel monolith or powder, and causing decomposition of said gaseous material in said aerogel in amounts sufficient to cause deposition of the decomposition products of the gas on the surfaces of the pores of the said aerogel.

  6. Crystalline boron nitride aerogels

    DOEpatents

    Zettl, Alexander K.; Rousseas, Michael; Goldstein, Anna P.; Mickelson, William; Worsley, Marcus A.; Woo, Leta

    2017-04-04

    This disclosure provides methods and materials related to boron nitride aerogels. In one aspect, a material comprises an aerogel comprising boron nitride. The boron nitride has an ordered crystalline structure. The ordered crystalline structure may include atomic layers of hexagonal boron nitride lying on top of one another, with atoms contained in a first layer being superimposed on atoms contained in a second layer.

  7. Melamine-formaldehyde aerogels

    DOEpatents

    Pekala, Richard W.

    1992-01-01

    Organic aerogels that are transparent and essentially colorless are prepa from the aqueous, sol-gel polymerization of melamine with formaldehyde. The melamine-formaldehyde (MF) aerogels have low densities, high surface areas, continuous porsity, ultrafine cell/pore sizes, and optical clarity.

  8. Melamine-formaldehyde aerogels

    DOEpatents

    Pekala, R.W.

    1992-01-14

    Organic aerogels that are transparent and essentially colorless are prepared from the aqueous, sol-gel polymerization of melamine with formaldehyde. The melamine-formaldehyde (MF) aerogels have low densities, high surface areas, continuous porosity, ultrafine cell/pore sizes, and optical clarity. 3 figs.

  9. Benzimidazole Based Aerogel Materials

    NASA Technical Reports Server (NTRS)

    Rhine, Wendell E. (Inventor); Mihalcik, David (Inventor)

    2016-01-01

    The present invention provides aerogel materials based on imidazoles and polyimidazoles. The polyimidazole based aerogel materials can be thermally stable up to 500 C or more, and can be carbonized to produce a carbon aerogel having a char yield of 60% or more, specifically 70% or more. The present invention also provides methods of producing polyimidazole based aerogel materials by reacting at least one monomer in a suitable solvent to form a polybenzimidazole gel precursor solution, casting the polybenzimidazole gel precursor solution into a fiber reinforcement phase, allowing the at least one gel precursor in the precursor solution to transition into a gel material, and drying the gel materials to remove at least a portion of the solvent, to obtain an polybenzimidazole-based aerogel material.

  10. Method for producing hydrophobic aerogels

    DOEpatents

    Hrubesh, Lawrence W.; Poco, John F.; Coronado, Paul R.

    1999-01-01

    A method for treating a dried monolithic aerogel containing non-dispersed particles, with an organometallic surface modifying agent to produce hydrophobic aerogels. The dried, porous hydrophobic aerogels contain a protective layer of alkyl groups, such as methyl groups, on the modified surfaces of the pores of the aerogel. The alkyl groups at the aerogel surface typically contain at least one carbon-metal bond per group.

  11. Epoxy Crosslinked Silica Aerogels (X-Aerogels)

    NASA Technical Reports Server (NTRS)

    fabrizio, Eve; Ilhan, Faysal; Meador, Mary Ann; Johnston, Chris; Leventis, Nicholas

    2004-01-01

    NASA is interested in the development of strong lightweight materials for the dual role of thermal insulator and structural component for space vehicles; freeing more weight for useful payloads. Aerogels are very-low density materials (0.010 to 0.5 g/cc) that, due to high porosity (meso- and microporosity), can be, depending on the chemical nature of the network, ideal thermal insulators (thermal conductivity approx. 15 mW/mK). However, aerogels are extremely fragile. For practical application of aerogels, one must increase strength without compromising the physical properties attributed to low density. This has been achieved by templated growth of an epoxy polymer layer that crosslinks the "pearl necklace" network of nanoparticles: the framework of a typical silica aerogel. The requirement for conformal accumulation of the epoxy crosslinker is reaction both with the surface of silica and with itself. After cross-linking, the strength of a typical aerogel monolith increases by a factor of 200, in the expense of only a 2-fold increase in density. Strength is increased further by coupling residual unreacted epoxides with diamine.

  12. Mechanical Properties of Aerogels

    NASA Technical Reports Server (NTRS)

    Parmenter, Kelly E.; Milstein, Frederick

    1995-01-01

    Aerogels are extremely low density solids that are characterized by a high porosity and pore sizes on the order of nanometers. Their low thermal conductivity and sometimes transparent appearance make them desirable for applications such as insulation in cryogenic vessels and between double paned glass in solar architecture. An understanding of the mechanical properties of aerogels is necessary before aerogels can be used in load bearing applications. In the present study, the mechanical behavior of various types of fiber-reinforced silica aerogels was investigated with hardness, compression, tension and shear tests. Particular attention was paid to the effects of processing parameters, testing conditions, storage environment, and age on the aerogels' mechanical response. The results indicate that the addition of fibers to the aerogel matrix generally resulted in softer, weaker materials with smaller elastic moduli. Furthermore, the testing environment significantly affected compression results. Tests in ethanol show an appreciable amount of scatter, and are not consistent with results for tests in air. In fact, the compression specimens appeared to crack and begin to dissolve upon exposure to the ethanol solution. This is consistent with the inherent hydrophobic nature of these aerogels. In addition, the aging process affected the aerogels' mechanical behavior by increasing their compressive strength and elastic moduli while decreasing their strain at fracture. However, desiccation of the specimens did not appreciably affect the mechanical properties, even though it reduced the aerogel density by removing trapped moisture. Finally, tension and shear test results indicate that the shear strength of the aerogels exceeds the tensile strength. This is consistent with the response of brittle materials. Future work should concentrate on mechanical testing at cryogenic temperatures, and should involve more extensive tensile tests. Moreover, before the mechanical response

  13. Advanced Aerogel Technology

    NASA Technical Reports Server (NTRS)

    Jones, Steven

    2013-01-01

    The JPL Aerogel Laboratory has made aerogels for NASA flight missions, e.g., Stardust, 2003 Mars Exploration Rovers and the 2011 Mars Science Laboratory, as well as NASA research projects for the past 14 years. During that time it has produced aerogels of a range of shapes, sizes, densities and compositions. Research is ongoing in the development of aerogels for future sample capture and return missions and for thermal insulation for both spacecraft and scientific instruments. For the past several years, the JPL Aerogel Laboratory has been developing, producing and testing a new composite material for use as the high temperature thermal insulation in the Advanced Sterling Radioisotope Generator (ASRG) being developed by Lockheed Martin and NASA. The composite is made up of a glass fiber felt, silica aerogel, Titania powder, and silica powder. The oxide powders are included to reduce irradiative heat transport at elevated temperatures. These materials have thermal conductivity values that are the same as the best commercially produced high temperature insulation materials, and yet are 40% lighter. By greatly reducing the amount of oxide powder in the composite, the density, and therefore for the value of the thermal conductivity, would be reduced. The JPL Aerogel Laboratory has experimented with using glass fiber felt, expanded glass fiber felt and loose fibers to add structural integrity to silica aerogels. However, this work has been directed toward high temperature applications. By conducting a brief investigation of the optimal combination of fiber reinforcement and aerogel density, a durable, extremely efficient thermal insulation material for ambient temperature applications would be produced. If a transparent thermal insulation is desired, then aerogel is an excellent candidate material. At typical ambient temperatures, silica aerogel prevents the transport of heat via convection and conduction due to its highly porous nature. To prevent irradiative thermal

  14. Wavelength-shifted Cherenkov radiators

    NASA Technical Reports Server (NTRS)

    Krider, E. P.; Jacobson, V. L.; Pifer, A. E.; Polakos, P. A.; Kurz, R. J.

    1976-01-01

    The scintillation and Cherenkov responses of plastic Cherenkov radiators containing different wavelength-shifting fluors in varying concentrations have been studied in beams of low energy protons and pions. For cosmic ray applications, where large Cherenkov to scintillation ratios are desired, the optimum fluor concentrations are 0.000025 by weight or less.

  15. Method of patterning an aerogel

    DOEpatents

    Reed, Scott T [Edgewood, NM

    2012-07-24

    A method for producing a pattern in an aerogel disposed as a coating on a substrate comprises exposing the aerogel coating to the vapors of a hydrophobic silane compound, masking the aerogel coating with a shadow photomask and irradiating the aerogel coating with ultraviolet (UV) irradiation. The exposure to UV through the shadow mask creates a pattern of hydrophobic and hydrophilic regions in the aerogel coating. Etching away the hydrophilic regions of the aerogel coating, preferably with a 1 molar solution of sodium hydroxide, leaves the unwetted and unetched hydrophobic regions of the aerogel layer on the substrate, replicating the pattern of the photomask. The hydrophobic aerogel pattern can be further exposed to UV irradiation if desired, to create a hydrophilic aerogel pattern.

  16. Simplified Waterproofing of Aerogels

    NASA Technical Reports Server (NTRS)

    Hsu, Ming-Ta S.; Chen, Timothy S.; White, Susan; Rasky, Daniel J.

    2003-01-01

    A relatively simple silanization process has been developed for waterproofing or rewaterproofing aerogels, xerogels, and aerogel/tile composites, and other, similar low-density, highly microporous materials. Such materials are potentially attractive for a variety of applications especially for thermal-insulation panels that are required to be thin and lightweight. Unfortunately, such materials are also hydrophilic and tend to collapse after adsorbing water from the air. Hence, an effective means of waterproofing is necessary to enable practical exploitation of aerogels and the like. Older processes for waterproofing aerogels are time-consuming, labor-intensive, and expensive, relative to the present process. Each of the older processes includes a number of different chemical treatment steps, and some include the use of toxic halogenated surface-modifying compounds, pressures as high as hundreds of atmospheres, and/or temperatures as high as 1,000 C.

  17. Method of casting aerogels

    DOEpatents

    Poco, John F.

    1993-01-01

    The invention describes a method for making monolithic castings of transparent silica aerogel with densities in the range from 0.001 g/cm.sup.3 to 0.6 g/cm.sup.3. Various shapes of aerogels are cast in flexible polymer molds which facilitate removal and eliminate irregular surfaces. Mold dimensions are preselected to account for shrinkage of alcogel which occurs during the drying step of supercritical extraction of solvent.

  18. Compression molding of aerogel microspheres

    DOEpatents

    Pekala, Richard W.; Hrubesh, Lawrence W.

    1998-03-24

    An aerogel composite material produced by compression molding of aerogel microspheres (powders) mixed together with a small percentage of polymer binder to form monolithic shapes in a cost-effective manner. The aerogel composites are formed by mixing aerogel microspheres with a polymer binder, placing the mixture in a mold and heating under pressure, which results in a composite with a density of 50-800 kg/m.sup.3 (0.05-0.80 g/cc). The thermal conductivity of the thus formed aerogel composite is below that of air, but higher than the thermal conductivity of monolithic aerogels. The resulting aerogel composites are attractive for applications such as thermal insulation since fabrication thereof does not require large and expensive processing equipment. In addition to thermal insulation, the aerogel composites may be utilized for filtration, ICF target, double layer capacitors, and capacitive deionization.

  19. Compression molding of aerogel microspheres

    DOEpatents

    Pekala, R.W.; Hrubesh, L.W.

    1998-03-24

    An aerogel composite material produced by compression molding of aerogel microspheres (powders) mixed together with a small percentage of polymer binder to form monolithic shapes in a cost-effective manner is disclosed. The aerogel composites are formed by mixing aerogel microspheres with a polymer binder, placing the mixture in a mold and heating under pressure, which results in a composite with a density of 50--800 kg/m{sup 3} (0.05--0.80 g/cc). The thermal conductivity of the thus formed aerogel composite is below that of air, but higher than the thermal conductivity of monolithic aerogels. The resulting aerogel composites are attractive for applications such as thermal insulation since fabrication thereof does not require large and expensive processing equipment. In addition to thermal insulation, the aerogel composites may be utilized for filtration, ICF target, double layer capacitors, and capacitive deionization. 4 figs.

  20. Aerogels Insulate Against Extreme Temperatures

    NASA Technical Reports Server (NTRS)

    2010-01-01

    In 1992, NASA started to pursue the development of aerogel for cryogenic insulation. Kennedy Space Center awarded Small Business Innovation Research (SBIR) contracts to Aspen Systems Inc., of Marlborough, Massachusetts, that resulted in a new manufacturing process and a new flexible, durable, easy-to-use form of aerogel. Aspen Systems formed Aspen Aerogels Inc., in Northborough, Massachusetts, to market the product, and by 2009, the company had become the leading provider of aerogel in the United States, producing nearly 20 million square feet per year. With an array of commercial applications, the NASA-derived aerogel has most recently been applied to protect and insulate people s hands and feet.

  1. Coated Aerogel Beads

    NASA Technical Reports Server (NTRS)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2014-01-01

    Methods and apparatus for coating particulate material are provided. The apparatus includes a vessel having a top and a bottom, a vertically extending conduit having an inlet in the vessel and an outlet outside of the vessel, a first fluid inlet in the bottom of the vessel for introducing a transfer fluid, a second fluid inlet in the bottom of the vessel for introducing a coating fluid, and a fluid outlet from the vessel. The method includes steps of agitating a material, contacting the material with a coating material, and drying the coating material to produce a coated material. The invention may be adapted to coat aerogel beads, among other materials. A coated aerogel bead and an aerogel-based insulation material are also disclosed.

  2. Aerogel Fingerprint Media

    SciTech Connect

    Miller, Fred S.; Andresen, Brian D.

    1999-09-21

    A fingerprint medium which is made of an aerogel having a predetermined density. The fingerprint medium may have a midrange density for forming plates or may be crushed forming a powder. The fingerprint medium may further include at least one of a metal and metal oxide to enhance characteristics desirable in a fingerprint medium.

  3. Mechanically Strong, Polymer Cross-linked Aerogels (X-Aerogels)

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas

    2006-01-01

    Aerogels comprise a class of low-density, high porous solid objects consisting of dimensionally quasi-stable self-supported three-dimensional assemblies of nanoparticles. Aerogels are pursued because of properties above and beyond those of the individual nanoparticles, including low thermal conductivity, low dielectric constant and high acoustic impedance. Possible applications include thermal and vibration insulation, dielectrics for fast electronics, and hosting of functional guests for a wide variety of optical, chemical and electronic applications. Aerogels, however, are extremely fragile materials, hence they have found only limited application in some very specialized environments, for example as Cerenkov radiation detectors in certain types of nuclear reactors, aboard spacecraft as collectors of hypervelocity particles (refer to NASA's Stardust program) and as thermal insulators on planetary vehicles on Mars (refer to Sojourner Rover in 1997 and Spirit and Opportunity in 2004). Along these lines, the X-Aerogel is a new NASA-developed strong lightweight material that has resolved the fragility problem of traditional (native) aerogels. X-Aerogels are made by applying a conformal polymer coating on the surfaces of the skeletal nanoparticles of native aerogels (see Scanning Electron Micrographs). Since the relative amounts of the polymeric crosslinker and the backbone are comparable, X-Aerogels can be viewed either as aerogels modified by the templated accumulation of polymer on the skeletal nanoparticles, or as nanoporous polymers made by remplated casting of polymer on a nanostructured framework. The most striking feature of X-Aerogels is that for a nominal 3-fold increase in density (still a ultralighweight material), the mechanical strength can be up to 300 times higher than the strength of the underlying native aerogel. Thus, X-Aerogels combine a multiple of the specific compressive strength of steel, with the the thermal conductivity of styrofoam. X-Aerogels

  4. Organic aerogel microspheres

    DOEpatents

    Mayer, Steven T.; Kong, Fung-Ming; Pekala, Richard W.; Kaschmitter, James L.

    1999-01-01

    Organic aerogel microspheres which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonsticky gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.

  5. Organic aerogel microspheres

    DOEpatents

    Mayer, S.T.; Kong, F.M.; Pekala, R.W.; Kaschmitter, J.L.

    1999-06-01

    Organic aerogel microspheres are disclosed which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonstick gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.

  6. DIRC Dreams: Research Directions for the Next Generation of Internally Reflected Imaging Counters

    SciTech Connect

    Ratcliff, Blair N.

    1999-08-17

    Some conceptual design features of the total internally reflecting,imaging Cherenkov counter (DIRC) are described. Limits of the DIRC approach to particle identification, and a few features of alternative DIRC designs, are briefly explored.

  7. DIRC Dreams Redux: Research Directions for the Next Generation of Internally Reflected Imaging Counters

    SciTech Connect

    Ratcliff, Blair N

    2001-09-18

    Some general conceptual design features of total internally reflecting, imaging Cherenkov counters (DIRCs) are described. Limits of the DIRC approach to particle identification and a few features of alternative DIRC designs are briefly explored.

  8. The DIRC counter: A new type of particle identification device for B factories

    SciTech Connect

    Coyle, P.; Kawahara, H.; Mueller, G.; Muller, D.; Ratcliff, B.; Simopoulos, C.; Lu, A.; Lynch, G.

    1992-07-01

    A very thin, solid radiator, totally internally reflecting, imaging Cherenkov counter (DIRC) is described. this device is well matched to the hadronic charged particle identification requirements at an asymmetric e{sup +}e{sup {minus}}B Factory.

  9. Metal Nanoparticle Aerogel Composites

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Sibille, Laurent; Ignont, Erica; Snow, Lanee; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We have fabricated sol-gels containing gold and silver nanoparticles. Formation of an aerogel produces a blue shift in the surface plasmon resonance as a result of the decrease in the dielectric constant of the matrix upon supercritical extraction of the solvent. However, as a result of chemical interface damping this blue shift does not obey effective medium theories. Annealing the samples in a reducing atmosphere at 400 C eliminates this discrepancy and results in narrowing and further blue shifting of the plasmon resonance. Metal particle aggregation also results in a deviation from the predictions of effective medium theories, but can be controlled through careful handling and by avoiding the use of alcohol. By applying effective medium theories to the heterogeneous interlayer surrounding each metal particle, we extend the technique of immersion spectroscopy to inhomogeneous materials characterized by spatially dependent dielectric constants, such as aerogels. We demonstrate that the shift in the surface plasmon wavelength provides the average fractional composition of each component (air and silica) in this inhomogeneous layer, i.e. the porosity of the aerogel or equivalently, for these materials, the catalytic dispersion. Additionally, the kinetics suggest that collective particle interactions in coagulated metal clusters are perturbed during silica gelation resulting in a change in the aggregate geometry.

  10. Production of hollow aerogel microspheres

    SciTech Connect

    Upadhye, R.S.; Henning, S.A.

    1990-12-31

    A method is described for making hollow aerogel microspheres of 800--1200{mu} diameter and 100--300{mu} wall thickness by forming hollow alcogel microspheres during the sol/gel process in a catalytic atmosphere and capturing them on a foam surface containing catalyst. Supercritical drying of the formed hollow alcogel microspheres yields hollow aerogel microspheres which are suitable for ICF targets.

  11. Aerogel/polymer composite materials

    NASA Technical Reports Server (NTRS)

    Williams, Martha K. (Inventor); Smith, Trent M. (Inventor); Fesmire, James E. (Inventor); Roberson, Luke B. (Inventor); Clayton, LaNetra M. (Inventor)

    2010-01-01

    The invention provides new composite materials containing aerogels blended with thermoplastic polymer materials at a weight ratio of aerogel to thermoplastic polymer of less than 20:100. The composite materials have improved thermal insulation ability. The composite materials also have better flexibility and less brittleness at low temperatures than the parent thermoplastic polymer materials.

  12. Production of hollow aerogel microspheres

    DOEpatents

    Upadhye, Ravindra S.; Henning, Sten A.

    1993-01-01

    A method is described for making hollow aerogel microspheres of 800-1200 .mu. diameter and 100-300 .mu. wall thickness by forming hollow alcogel microspheres during the sol/gel process in a catalytic atmosphere and capturing them on a foam surface containing catalyst. Supercritical drying of the formed hollow alcogel microspheres yields hollow aerogel microspheres which are suitable for ICF targets.

  13. Protective Skins for Aerogel Monoliths

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas; Johnston, James C.; Kuczmarski, Maria A.; Meador, Ann B.

    2007-01-01

    A method of imparting relatively hard protective outer skins to aerogel monoliths has been developed. Even more than aerogel beads, aerogel monoliths are attractive as thermal-insulation materials, but the commercial utilization of aerogel monoliths in thermal-insulation panels has been inhibited by their fragility and the consequent difficulty of handling them. Therefore, there is a need to afford sufficient protection to aerogel monoliths to facilitate handling, without compromising the attractive bulk properties (low density, high porosity, low thermal conductivity, high surface area, and low permittivity) of aerogel materials. The present method was devised to satisfy this need. The essence of the present method is to coat an aerogel monolith with an outer polymeric skin, by painting or spraying. Apparently, the reason spraying and painting were not attempted until now is that it is well known in the aerogel industry that aerogels collapse in contact with liquids. In the present method, one prevents such collapse through the proper choice of coating liquid and process conditions: In particular, one uses a viscous polymer precursor liquid and (a) carefully controls the amount of liquid applied and/or (b) causes the liquid to become cured to the desired hard polymeric layer rapidly enough that there is not sufficient time for the liquid to percolate into the aerogel bulk. The method has been demonstrated by use of isocyanates, which, upon exposure to atmospheric moisture, become cured to polyurethane/polyurea-type coats. The method has also been demonstrated by use of commercial epoxy resins. The method could also be implemented by use of a variety of other resins, including polyimide precursors (for forming high-temperature-resistant protective skins) or perfluorinated monomers (for forming coats that impart hydrophobicity and some increase in strength).

  14. Nanoencapsulated aerogels produced by monomer vapor deposition and polymerization

    NASA Technical Reports Server (NTRS)

    Sullivan, Thomas A. (Inventor)

    2011-01-01

    Polymer coated aerogel comprising aerogel substrate comprising a substantially uniform polymer coating. In an embodiment, the polymer coated aerogel is comprised of a porosity and has a compressive modulus greater than the compressive modulus of the aerogel substrate.

  15. Aerogel Projects Ongoing in MSFC's Engineering Directorate

    NASA Technical Reports Server (NTRS)

    Shular, D. A.; Smithers, G. A.; Plawsky, J. L.

    2001-01-01

    When we speak of an aerogel material, we are referring more to process and structure than to a specific substance. Aerogel, considered the lightest solid material, has been made from silica for seventy years. Resorcinol-formaldehyde, organic aerogels have been developed more recently. However, aerogel can be made from almost any type of substance, even lead. Because an aerogel is mostly air (about 99%), the solid substance used will affect the weight very little. The problem with aerogels is their low tensile strength and lack of elasticity. Therefore, the challenge is to find ways to make the stronger or ways to circumvent the strength issue. Organic aerogels have slightly higher strength than base silica aerogels, while the carbonized version has three to five times the break strength of the base aerogel.

  16. Optothermal nonlinearity of silica aerogel

    NASA Astrophysics Data System (ADS)

    Braidotti, Maria Chiara; Gentilini, Silvia; Fleming, Adam; Samuels, Michiel C.; Di Falco, Andrea; Conti, Claudio

    2016-07-01

    We report on the characterization of silica aerogel thermal optical nonlinearity, obtained by z-scan technique. The results show that typical silica aerogels have nonlinear optical coefficient similar to that of glass (≃10-12 m2/W), with negligible optical nonlinear absorption. The nonlinear coefficient can be increased to values in the range of 10-10 m2/W by embedding an absorbing dye in the aerogel. This value is one order of magnitude higher than that observed in the pure dye and in typical highly nonlinear materials like liquid crystals.

  17. Monolayer coated aerogels and method of making

    DOEpatents

    Zemanian, Thomas Samuel; Fryxell, Glen; Ustyugov, Oleksiy A.

    2006-03-28

    Aerogels having a monolayer coating are described. The aerogel and a monolayer forming precursor are provided in a supercritical fluid, whereupon the aerogel and the monolayer forming precursor are reacted in said supercritical fluid to form a covalent bond between the aerogel and the monolayer forming precursor. Suitable aerogels are ceramic oxides such as silica, alumina, aluminosilicate, and combinations thereof. Suitable monolayer forming precursors include alkyl silanes, chlorosilanes, boranes, chloroboranes, germanes, and combinations thereof. The method may also include providing a surface preparation agent such as water, or hydroetching an aerogel to enhance the coating of the monolayer.

  18. Super-hydrophobic fluorine containing aerogels

    DOEpatents

    Coronado, Paul R.; Poco, John F.; Hrubesh, Lawrence W.

    2007-05-01

    An aerogel material with surfaces containing fluorine atoms which exhibits exceptional hydrophobicity, or the ability to repel liquid water. Hydrophobic aerogels are efficient absorbers of solvents from water. Solvents miscible with water are separated from it because the solvents are more volatile than water and they enter the porous aerogel as a vapor across the liquid water/solid interface. Solvents that are immisicble with water are separated from it by selectively wetting the aerogel. The hydrophobic property is achieved by formulating the aerogel using fluorine containing molecules either directly by addition in the sol-gel process, or by treating a standard dried aerogel using the vapor of fluorine containing molecules.

  19. Josephson-vortex Cherenkov radiation

    SciTech Connect

    Mints, R.G.; Snapiro, I.B.

    1995-10-01

    We predict the Josephson-vortex Cherenkov radiation of an electromagnetic wave. We treat a long one-dimensional Josephson junction. We consider the wavelength of the radiated electromagnetic wave to be much less than the Josephson penetration depth. We use for calculations the nonlocal Josephson electrodynamics. We find the expression for the radiated power and for the radiation friction force acting on a Josephson vortex and arising due to the Cherenkov radiation. We calculate the relation between the density of the bias current and the Josephson vortex velocity.

  20. Modern Inorganic Aerogels.

    PubMed

    Eychmüller, Alexander; Ziegler, Christoph; Wolf, André; Liu, Wei; Herrmann, Anne-Kristin; Gaponik, Nikolai

    2017-02-03

    Essentially, the term aerogel describes a special geometric structure of matter. It is neither limited to any material nor to any synthesis procedure. Hence, the possible variety of materials and therefore the multitude of their applications are almost unbounded. In fact, the same applies for nanoparticles. These are also just defined by their geometrical properties. In the past decades nano-sized materials were intensively studied and possible applications appeared in nearly all areas of natural sciences. To date a large variety of metal, semiconductor, oxide and other nanoparticles are available from colloidal synthesis. However, for many applications of these materials an assembly into macroscopic structures is needed. Here we present a comprehensive picture of the developments that enabled the fusion of the colloidal nanoparticle and the aerogel world. This became possible by the controlled destabilization of pre-formed nanoparticles, which leads to their assembly into three-dimensional macroscopic networks. This revolutionary approach makes it possible to use precisely controlled nanoparticles as building blocks for macroscopic porous structures with programmable properties.

  1. Hybrid Multifoil Aerogel Thermal Insulation

    NASA Technical Reports Server (NTRS)

    Sakamoto, Jeffrey; Paik, Jong-Ah; Jones, Steven; Nesmith, Bill

    2008-01-01

    This innovation blends the merits of multifoil insulation (MFI) with aerogel-based insulation to develop a highly versatile, ultra-low thermally conductive material called hybrid multifoil aerogel thermal insulation (HyMATI). The density of the opacified aerogel is 240 mg/cm3 and has thermal conductivity in the 20 mW/mK range in high vacuum and 25 mW/mK in 1 atmosphere of gas (such as argon) up to 800 C. It is stable up to 1,000 C. This is equal to commercially available high-temperature thermal insulation. The thermal conductivity of the aerogel is 36 percent lower compared to several commercially available insulations when tested in 1 atmosphere of argon gas up to 800 C.

  2. Aerogel: From Aerospace to Apparel

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Aspen Systems Inc. developed an aerogel-manufacturing process solved the handling problems associated with aerogel-based insulation products. Their aerogels can now be manufactured into blankets, thin sheets, beads, and molded parts; and may be transparent, translucent, or opaque. Aspen made the material effective for window and skylight insulation, non-flammable building insulation, and inexpensive firewall insulation that will withstand fires in homes and buildings, and also assist in the prevention of forest fires. Another Aspen product is Spaceloft(TM); an inexpensive, flexible blanket that incorporates a thin layer of aerogel embedded directly into the fabric. Spaceloft, is incorporated into jackets intended for wear in extremely harsh conditions and activities, such as Antarctic expeditions.

  3. Beam tests of a MWPC with CsI photocathode for Cherenkov Ring Imaging

    SciTech Connect

    Krizan, P.; Staric, M.; Stanovnik, A.; Cindro, M.; Skrk, D.; Zavrtanik, M.; Korpar, S.; Hamacher, T.; Michel, E.

    1995-08-01

    A 24 x 24 cm{sup 2} asymmetric multiwire proportional chamber, with 7.5 x 7.5 mm{sup 2} photosensitive CsI pads, has been tested with Cherenkov radiation of 3 GeV/c electrons in the T24 test beam at DESY. The performance of the chamber with specially designed low-noise, charge-sensitive preamplifiers is described. The parameters of the CsI-MWPC are compared to those of a TMAE photon detector in order to evaluate their potential as Ring Imaging Cherenkov (RICH) counters for the HERA-B experiment at DESY.

  4. Performance confirmation of the Belle II imaging Time Of Propogation (iTOP) prototype counter

    SciTech Connect

    Schwartz, Alan; Liu, Yang; Belhorn, Matt; Browder, Thomas; Varner, Gary; Andrew, Matt; Rosen, Marc; Barrett, Matthew; Nishimura, Kurtis; Anderson, Eric Iijima, Toru; /Nagoya U. /PNL, Richland

    2011-10-17

    The Bell Detector at the KEKB asymmetric-energy e{sup +}e{sup -} collider performed extremely well, logging an integrated luminosity an order of magnitude higher than the design baseline. With this inverse attobarn of integrated luminosity, time-dependent CP-violation inn the 3rd generation beauty quarks was firmly established, and is now a precision measurement. Going beyond this to explore if the Kobayashi-Maskawa mechanism is the only contributor to quark-mixing, and to interrogate the flavor sector for non-standard model enhancements, requires a detector and accelerator capable of topping this world-record luminosity by more than an order of magnitude. The Belle II detector at the upgraded Super-KEKB accelerator has been designed to meet this highly ambitious goal of operating at a luminosity approaching 10{sup 36} cm{sup -2} s{sup -1}. Such higher event rates and backgrounds require upgrade of essentially all detector subsystems, as well as their readout. Comparing the Belle composite (threshold Aerogel + Time of Flight) particle identification (PID) system with the DIRC employed by BaBar, quartz radiator internal Cherenkov photon detection proved to have higher kaon efficiency and lower pion fake rates. However, because the detector structure and CsI calorimeter will be retained, an improved barrel PID must fit within a very narrow envelope, as indicated in Figure 1. To effectively utilize this space, a more compact detector concept based on the same quartz radiators, but primarily using photon arrival time was proposed. This Time Of Propagation (TOP) counter was studied in a number of earlier prototype tests. Key to the necessary 10's of picosecond single-photon timing has been the development of the so-called SL-10 Micro-Channel Plate Photo-Multiplier Tube (MCP-PMT), which has demonstrated sub-40 ps single photon Transit Time Spread TTS. Further simulation study of this detector concept indicated that a focusing mirror in the forward direction, as well as a

  5. Aerogel Composites: Strong and Waterproof

    NASA Technical Reports Server (NTRS)

    White, Susan; Hsu, Ming-ta; Arnold, James O. (Technical Monitor)

    1999-01-01

    Aerogels are exotic materials having superior thermal and physical properties with great potential for both space and industrial uses. Although aerogels are excellent low-density insulators with unique acoustic and optical properties, their commercialization potential is currently limited by moisture absorption, fragility, and cost. This paper describes useful, easily scaled-up solutions to the first two of these three problems. The waterproofing and water-repellent method described here is a cheaper and simpler improvement over previous permanent methods.

  6. Improved Silica Aerogel Composite Materials

    NASA Technical Reports Server (NTRS)

    Paik, Jong-Ah; Sakamoto, Jeffrey; Jones, Steven

    2008-01-01

    A family of aerogel-matrix composite materials having thermal-stability and mechanical- integrity properties better than those of neat aerogels has been developed. Aerogels are known to be excellent thermal- and acoustic-insulation materials because of their molecular-scale porosity, but heretofore, the use of aerogels has been inhibited by two factors: (1) Their brittleness makes processing and handling difficult. (2) They shrink during production and shrink more when heated to high temperatures during use. The shrinkage and the consequent cracking make it difficult to use them to encapsulate objects in thermal-insulation materials. The underlying concept of aerogel-matrix composites is not new; the novelty of the present family of materials lies in formulations and processes that result in superior properties, which include (1) much less shrinkage during a supercritical-drying process employed in producing a typical aerogel, (2) much less shrinkage during exposure to high temperatures, and (3) as a result of the reduction in shrinkage, much less or even no cracking.

  7. Progress in Cherenkov femtosecond fiber lasers

    PubMed Central

    Liu, Xiaomin; Svane, Ask S.; Lægsgaard, Jesper; Tu, Haohua; Boppart, Stephen A.; Turchinovich, Dmitry

    2016-01-01

    We review the recent developments in the field of ultrafast Cherenkov fiber lasers. Two essential properties of such laser systems – broad wavelength tunability and high efficiency of Cherenkov radiation wavelength conversion are discussed. The exceptional performance of the Cherenkov fiber laser systems are highlighted - dependent on the realization scheme, the Cherenkov lasers can generate the femtosecond output tunable across the entire visible and even the UV range, and for certain designs more than 40 % conversion efficiency from the pump to Cherenkov signal can be achieved. The femtosecond Cherenkov laser with all-fiber architecture is presented and discussed. Operating in the visible range, it delivers 100–200 fs wavelength-tunable pulses with multimilliwatt output power and exceptionally low noise figure an order of magnitude lower than the traditional wavelength tunable supercontinuum-based femtosecond sources. The applications for Cherenkov laser systems in practical biophotonics and biomedical applications, such as bio-imaging and microscopy, are discussed. PMID:27110037

  8. Progress in Cherenkov femtosecond fiber lasers

    NASA Astrophysics Data System (ADS)

    Liu, Xiaomin; Svane, Ask S.; Lægsgaard, Jesper; Tu, Haohua; Boppart, Stephen A.; Turchinovich, Dmitry

    2016-01-01

    We review the recent developments in the field of ultrafast Cherenkov fiber lasers. Two essential properties of such laser systems—broad wavelength tunability and high efficiency of Cherenkov radiation wavelength conversion are discussed. The exceptional performance of the Cherenkov fiber laser systems are highlighted—dependent on the realization scheme, the Cherenkov lasers can generate the femtosecond output tunable across the entire visible and even the UV range, and for certain designs more than 40% conversion efficiency from the pump to Cherenkov signal can be achieved. The femtosecond Cherenkov laser with all-fiber architecture is presented and discussed. Operating in the visible range, it delivers 100-200 fs wavelength-tunable pulses with multimilliwatt output power and exceptionally low noise figure an order of magnitude lower than the traditional wavelength tunable supercontinuum-based femtosecond sources. The applications for Cherenkov laser systems in practical biophotonics and biomedical applications, such as bio-imaging and microscopy, are discussed.

  9. Progress in Cherenkov femtosecond fiber lasers.

    PubMed

    Liu, Xiaomin; Svane, Ask S; Lægsgaard, Jesper; Tu, Haohua; Boppart, Stephen A; Turchinovich, Dmitry

    2016-01-20

    We review the recent developments in the field of ultrafast Cherenkov fiber lasers. Two essential properties of such laser systems - broad wavelength tunability and high efficiency of Cherenkov radiation wavelength conversion are discussed. The exceptional performance of the Cherenkov fiber laser systems are highlighted - dependent on the realization scheme, the Cherenkov lasers can generate the femtosecond output tunable across the entire visible and even the UV range, and for certain designs more than 40 % conversion efficiency from the pump to Cherenkov signal can be achieved. The femtosecond Cherenkov laser with all-fiber architecture is presented and discussed. Operating in the visible range, it delivers 100-200 fs wavelength-tunable pulses with multimilliwatt output power and exceptionally low noise figure an order of magnitude lower than the traditional wavelength tunable supercontinuum-based femtosecond sources. The applications for Cherenkov laser systems in practical biophotonics and biomedical applications, such as bio-imaging and microscopy, are discussed.

  10. Slotted Polyimide-Aerogel-Filled-Waveguide Arrays

    NASA Technical Reports Server (NTRS)

    Rodriguez-Solis, Rafael A.; Pacheco, Hector L.; Miranda, Felix A.; Meador, Mary Ann B.

    2013-01-01

    This presentation discussed the potential advantages of developing Slotted Waveguide Arrays using polyimide aerogels. Polyimide (PI) aerogels offer great promise as an enabling technology for lightweight aerospace antenna systems. PI aerogels are highly porous solids possessing low density and low dielectric permittivity combined with good mechanical properties. For slotted waveguide array applications, there are significant advantages in mass that more than compensate for the slightly higher loss of the aerogel filled waveguide when compared to state of practice commercial waveguide.

  11. Improvements to the Synthesis of Polyimide Aerogels

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Nguyen, Baochau N.; Guo, Haiquan; Vivod, Stephanie; He, Zuhui; Malow, Ericka; Silva, Rebecca

    2011-01-01

    Cross-linked polyimide aerogels are viable approach to higher temperature, flexible insulation for inflatable decelerators. Results indicate that the all-polyimide aerogels are as strong or stronger than polymer reinforced silica aerogels at the same density. Currently, examining use of carbon nanofiber and clay nanoparticles to improve performance. Flexible, polyimide aerogels have potential utility in other applications such as space suits, habitats, shelter applications, etc. where low dusting is desired

  12. Aerogel composites and method of manufacture

    DOEpatents

    Cao, Wanqing; Hunt, Arlon Jason

    1999-01-01

    Disclosed herewith is a process of forming an aerogel composite which comprises introducing a gaseous material into a formed aerogel monolith or powder, and causing decomposition of said gaseous material in said aerogel in amounts sufficient to cause deposition of the decomposition products of the gas on the surfaces of the pores of the said aerogel. Also disclosed are the composites made by the process.

  13. Composition containing aerogel substrate loaded with tritium

    DOEpatents

    Ashley, Carol S.; Brinker, C. Jeffrey; Ellefson, Robert E.; Gill, John T.; Reed, Scott; Walko, Robert J.

    1992-01-01

    The invention provides a process for loading an aerogel substrate with tritium and the resultant compositions. According to the process, an aerogel substrate is hydrolyzed so that surface OH groups are formed. The hydrolyzed aerogel is then subjected to tritium exchange employing, for example, a tritium-containing gas, whereby tritium atoms replace H atoms of surface OH groups. OH and/or CH groups of residual alcohol present in the aerogel may also undergo tritium exchange.

  14. Aerogel Derived Nanostructured Thermoelectric Materials

    SciTech Connect

    Wendell E Rhine, PI; Dong, Wenting; Greg Caggiano, PM

    2010-10-08

    America’s dependence on foreign sources for fuel represents a economic and security threat for the country. These non renewable resources are depleting, and the effects of pollutants from fuels such as oil are reaching a problematic that affects the global community. Solar concentration power (SCP) production systems offer the opportunity to harness one of the United States’ most under utilized natural resources; sunlight. While commercialization of this technology is increasing, in order to become a significant source of electricity production in the United States the costs of deploying and operating SCP plants must be further reduced. Parabolic Trough SCP technologies are close to meeting energy production cost levels that would raise interest in the technology and help accelerate its adoption as a method to produce a significant portion of the Country’s electric power needs. During this program, Aspen Aerogels will develop a transparent aerogel insulation that can replace the costly vacuum insulation systems that are currently used in parabolic trough designs. During the Phase I program, Aspen Aerogels will optimize the optical and thermal properties of aerogel to meet the needs of this application. These properties will be tested, and the results will be used to model the performance of a parabolic trough HCE system which uses this novel material in place of vacuum. During the Phase II program, Aspen Aerogels will scale up this technology. Together with industry partners, Aspen Aerogels will build and test a prototype Heat Collection Element that is insulated with the novel transparent aerogel material. This new device will find use in parabolic trough SCP applications.

  15. Composite Aerogel Multifoil Protective Shielding

    NASA Technical Reports Server (NTRS)

    Jones, Steven M.

    2013-01-01

    New technologies are needed to survive the temperatures, radiation, and hypervelocity particles that exploration spacecraft encounter. Multilayer insulations (MLIs) have been used on many spacecraft as thermal insulation. Other materials and composites have been used as micrometeorite shielding or radiation shielding. However, no material composite has been developed and employed as a combined thermal insulation, micrometeorite, and radiation shielding. By replacing the scrims that have been used to separate the foil layers in MLIs with various aerogels, and by using a variety of different metal foils, the overall protective performance of MLIs can be greatly expanded to act as thermal insulation, radiation shielding, and hypervelocity particle shielding. Aerogels are highly porous, low-density solids that are produced by the gelation of metal alkoxides and supercritical drying. Aerogels have been flown in NASA missions as a hypervelocity particle capture medium (Stardust) and as thermal insulation (2003 MER). Composite aerogel multifoil protective shielding would be used to provide thermal insulation, while also shielding spacecraft or components from radiation and hypervelocity particle impacts. Multiple layers of foil separated by aerogel would act as a thermal barrier by preventing the transport of heat energy through the composite. The silica aerogel would act as a convective and conductive thermal barrier, while the titania powder and metal foils would absorb and reflect the radiative heat. It would also capture small hypervelocity particles, such as micrometeorites, since it would be a stuffed, multi-shock Whipple shield. The metal foil layers would slow and break up the impacting particles, while the aerogel layers would convert the kinetic energy of the particles to thermal and mechanical energy and stop the particles.

  16. Polyurea-Based Aerogel Monoliths and Composites

    NASA Technical Reports Server (NTRS)

    Lee, Je Kyun

    2012-01-01

    aerogel insulation material was developed that will provide superior thermal insulation and inherent radiation protection for government and commercial applications. The rubbery polyureabased aerogel exhibits little dustiness, good flexibility and toughness, and durability typical of the parent polyurea polymer, yet with the low density and superior insulation properties associated with aerogels. The thermal conductivity values of polyurea-based aerogels at lower temperature under vacuum pressures are very low and better than that of silica aerogels. Flexible, rubbery polyurea-based aerogels are able to overcome the weak and brittle nature of conventional inorganic and organic aerogels, including polyisocyanurate aerogels, which are generally prepared with the one similar component to polyurethane rubber aerogels. Additionally, with higher content of hydrogen in their structures, the polyurea rubber-based aerogels will also provide inherently better radiation protection than those of inorganic and carbon aerogels. The aerogel materials also demonstrate good hydrophobicity due to their hydrocarbon molecular structure. There are several strategies to overcoming the drawbacks associated with the weakness and brittleness of silica aerogels. Development of the flexible fiber-reinforced silica aerogel composite blanket has proven to be one promising approach, providing a conveniently fielded form factor that is relatively robust in industrial environments compared to silica aerogel monoliths. However, the flexible, silica aerogel composites still have a brittle, dusty character that may be undesirable, or even intolerable, in certain application environments. Although the cross - linked organic aerogels, such as resorcinol- formaldehyde (RF), polyisocyanurate, and cellulose aerogels, show very high impact strength, they are also very brittle with little elongation (i.e., less rubbery). Also, silica and carbon aerogels are less efficient radiation shielding materials due

  17. Observation of the reversed Cherenkov radiation

    NASA Astrophysics Data System (ADS)

    Duan, Zhaoyun; Tang, Xianfeng; Wang, Zhanliang; Zhang, Yabin; Chen, Xiaodong; Chen, Min; Gong, Yubin

    2017-03-01

    Reversed Cherenkov radiation is the exotic electromagnetic radiation that is emitted in the opposite direction of moving charged particles in a left-handed material. Reversed Cherenkov radiation has not previously been observed, mainly due to the absence of both suitable all-metal left-handed materials for beam transport and suitable couplers for extracting the reversed Cherenkov radiation signal. In this paper, we develop an all-metal metamaterial, consisting of a square waveguide loaded with complementary electric split ring resonators. We demonstrate that this metamaterial exhibits a left-handed behaviour, and we directly observe the Cherenkov radiation emitted predominantly near the opposite direction to the movement of a single sheet electron beam bunch in the experiment. These observations confirm the reversed behaviour of Cherenkov radiation. The reversed Cherenkov radiation has many possible applications, such as novel vacuum electronic devices, particle detectors, accelerators and new types of plasmonic couplers.

  18. Polyimide Cellulose Nanocrystal Composite Aerogels

    NASA Technical Reports Server (NTRS)

    Nguyen, Baochau N.; Meador, Mary Ann; Rowan, Stuart; Cudjoe, Elvis; Sandberg, Anna

    2014-01-01

    Polyimide (PI) aerogels are highly porous solids having low density, high porosity and low thermal conductivity with good mechanical properties. They are ideal for various applications including use in antenna and insulation such as inflatable decelerators used in entry, decent and landing operations. Recently, attention has been focused on stimuli responsive materials such as cellulose nano crystals (CNCs). CNCs are environmentally friendly, bio-renewable, commonly found in plants and the dermis of sea tunicates, and potentially low cost. This study is to examine the effects of CNC on the polyimide aerogels. The CNC used in this project are extracted from mantle of a sea creature called tunicates. A series of polyimide cellulose nanocrystal composite aerogels has been fabricated having 0-13 wt of CNC. Results will be discussed.

  19. Radiation Counters

    DOEpatents

    Simpson, Jr, J A

    1950-01-31

    Geiger-Mueller and proportional counters operating at low potentials (about 125-300 v) obtained by utilizing certain ratios of diameters of the electrodes and particular mixtures of noble gases as the ionizing medium are covered in this application.

  20. RICH counter for heavy-ion particle identification using multi-anode photomultipliers

    NASA Astrophysics Data System (ADS)

    Yamaoka, Shintaro; Fukuda, Mitsunori; Morita, Yusuke; Kanbe, Ryosuke; Matsuta, Kensaku; Mihara, Mototsugu; Ohno, Junichi; Kamisho, Yasuto; Tanaka, Masaomi; Nishimura, Daiki; Yoshinaga, Kenta; Ohtsubo, Takashi; Takechi, Maya; Nagashima, Masayuki; Izumikawa, Takuji; Kitagawa, Atsushi; Fukuda, Shigekazu; Sato, Shinji; Suzuki, Shinji; Suzuki, Takeshi; Yamaguchi, Takayuki; Himac H093 Collaboration

    2014-09-01

    In order to develop a new RICH counter (Ring Imaging CHerenkov counter) for heavy-ion particle identification, we have constructed a test system for measurement of a ring image of Cherenkov light using multi-anode photomultipliers that detect a photon incident position. For a test, a 58Ni(480 MeV/u) beam provided by the HIMAC heavy-ion synchrotron was used. As radiators, we have tested synthetic silica, polycarbonate, and BK7. We have selected a wavelength of Cherenkov light by using a band pass filter. As a result, the ring image of Cherenkov light was observed and the obtained resolution of velocity will be reported at the meeting.

  1. High surface area silicon carbide-coated carbon aerogel

    DOEpatents

    Worsley, Marcus A; Kuntz, Joshua D; Baumann, Theodore F; Satcher, Jr, Joe H

    2014-01-14

    A metal oxide-carbon composite includes a carbon aerogel with an oxide overcoat. The metal oxide-carbon composite is made by providing a carbon aerogel, immersing the carbon aerogel in a metal oxide sol under a vacuum, raising the carbon aerogel with the metal oxide sol to atmospheric pressure, curing the carbon aerogel with the metal oxide sol at room temperature, and drying the carbon aerogel with the metal oxide sol to produce the metal oxide-carbon composite. The step of providing a carbon aerogel can provide an activated carbon aerogel or provide a carbon aerogel with carbon nanotubes that make the carbon aerogel mechanically robust. Carbon aerogels can be coated with sol-gel silica and the silica can be converted to silicone carbide, improved the thermal stability of the carbon aerogel.

  2. Development of Improved Aerogels for Spacecraft Hypervelocity Capture

    NASA Astrophysics Data System (ADS)

    Lisse, C. M.; Cheng, A. F.; Chabot, N. L.; Dello Russo, N.; Satcher, J. H.; Zolensky, M. E.; Cintala, M. J.; Glavin, D. P.; Sandford, S. A.

    2008-03-01

    We report on progress to date of an aerogel technology development and test program, to develop improved aerogel capture media for spacecraft capture of dust particles, utilizing silica, tantala, and alumina based aerogels with lower densities and organic impurity levels.

  3. Biodegradable Pectin/clay Aerogels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodegradable, foamlike materials based on renewable pectin and sodium montmorillonite clay were fabricated through a simple, environmentally friendly freeze-drying process. Addition of multivalent cations (Ca2+ and Al3+) resulted in apparent crosslinking of the polymer, and enhancement of aerogel p...

  4. Desalination with carbon aerogel electrodes

    SciTech Connect

    Farmer, J.C.; Richardson, J.H.; Fix, D.V.

    1996-10-21

    An electrically regenerated electrosorption process known as carbon aerogel CDI was developed for continuously removing ionic impurities from aqueous streams. A salt solution flows in a channel formed by pairs of parallel carbon aerogel electrodes. Each electrode has a very high BET surface area and very low resistivity. After polarization, anions and cations are removed from electrolyte by the electric field and electrosorbed onto the carbon aerogel. The solution is thus separated into two streams, brine and water. Based on this, carbon aerogel CDI appears to be an energy-efficient alternative to evaporation, electrodialysis, and reverse osmosis. The energy required by this process is about QV/2, plus losses. Estimated energy requirement for sea water desalination is 18-27 Wh gal{sup -1}, depending on cell voltage and flow rate. The requirement for brackish water desalination is less, 1.2-2.5 Wh gal{sup -1} at 1600 ppM. This is assuming that stored electrical energy is reclaimed during regeneration.

  5. Organically modified silicate aerogels, ``Aeromosils``

    SciTech Connect

    Kramer, S.J.; Mackenzie, J.D.; Rubio-Alonso, F.

    1996-12-31

    Aerogels derived from sol-gel oxides such as silica have become quite scientifically popular because of their extremely low densities, high surface areas, and their interesting optical, dielectric, thermal and acoustic properties. However, their commercial applicability has thus far been rather limited, due in great part to their brittleness and hydrophilicity. In prior work by the research group, modifying silicate gel structures with flexible, organic containing polymers such as polydimethylsiloxane imparted significant compliance (even rubbery behavior) and hydrophobicity. These materials have been referred to as Ormosils. This study expounds on the current effort to extend these desirable properties to aerogels, and in-so-doing, creating novel ``Aeromosils``. Reactive incorporation of hydroxy-terminal polydimethylsiloxane (PDMS) into silica sol-gels was made using both acid and two-step acid/base catalyzed processes. Aerogels were derived by employing the supercritical CO{sub 2} technique. Analyses of microstructure were made using nitrogen adsorption (BET surface area and pore size distribution), and some mechanical strengths were derived from tensile strength testing. Interesting Aeromosil properties obtained include optical transparency, surface areas of up to 1,200 m{sup 2}/g, rubberiness, and better strength than corresponding silica aerogels with elongations at break exceeding 5% in some cases.

  6. Recent multiwave Cherenkov generator experiments

    SciTech Connect

    Adler, R.; Richter-Sand, R.; Hacker, F.; Walsh, J.; Arman, M.

    1994-12-31

    The initial operating characteristics of the North Star Research Corporation (NSRC) multiwave generator experiment are discussed. The first radiation from the NSRC apparatus has now been observed and the immediate goal is to optimize the power output by providing a beam which is better matched to the field profile (a thinner beam propagating closer to the vanes). When this has been accomplished a detailed comparison of the performance of MWCG/MWDG (multiwave diffraction generator/multiwave Cherenkov generator) structures with BWO structures of the same interaction length will be undertaken.

  7. Anomalous Cherenkov spin-orbit sound

    SciTech Connect

    Smirnov, Sergey

    2011-02-15

    The Cherenkov effect is a well-known phenomenon in the electrodynamics of fast charged particles passing through transparent media. If the particle is faster than the light in a given medium, the medium emits a forward light cone. This beautiful phenomenon has an acoustic counterpart where the role of photons is played by phonons and the role of the speed of light is played by the sound velocity. In this case the medium emits a forward sound cone. Here, we show that in a system with spin-orbit interactions in addition to this normal Cherenkov sound there appears an anomalous Cherenkov sound with forward and backward sound propagation. Furthermore, we demonstrate that the transition from the normal to anomalous Cherenkov sound happens in a singular way at the Cherenkov cone angle. The detection of this acoustic singularity therefore represents an alternative experimental tool for the measurement of the spin-orbit coupling strength.

  8. Method for producing metal oxide aerogels

    DOEpatents

    Tillotson, Thomas M.; Poco, John F.; Hrubesh, Lawrence W.; Thomas, Ian M.

    1995-01-01

    A two-step hydrolysis-condensation method was developed to form metal oxide aerogels of any density, including densities of less than 0.003g/cm.sup.3 and greater than 0.27g/cm.sup.3. High purity metal alkoxide is reacted with water, alcohol solvent, and an additive to form a partially condensed metal intermediate. All solvent and reaction-generated alcohol is removed, and the intermediate is diluted with a nonalcoholic solvent. The intermediate can be stored for future use to make aerogels of any density. The aerogels are formed by reacting the intermediate with water, nonalcoholic solvent, and a catalyst, and extracting the nonalcoholic solvent directly. The resulting monolithic aerogels are hydrophobic and stable under atmospheric conditions, and exhibit good optical transparency, high clarity, and homogeneity. The aerogels have high thermal insulation capacity, high porosity, mechanical strength and stability, and require shorter gelation times than aerogels formed by conventional methods.

  9. Method for producing metal oxide aerogels

    DOEpatents

    Tillotson, T.M.; Poco, J.F.; Hrubesh, L.W.; Thomas, I.M.

    1995-04-25

    A two-step hydrolysis-condensation method was developed to form metal oxide aerogels of any density, including densities of less than 0.003g/cm{sup 3} and greater than 0.27g/cm{sup 3}. High purity metal alkoxide is reacted with water, alcohol solvent, and an additive to form a partially condensed metal intermediate. All solvent and reaction-generated alcohol is removed, and the intermediate is diluted with a nonalcoholic solvent. The intermediate can be stored for future use to make aerogels of any density. The aerogels are formed by reacting the intermediate with water, nonalcoholic solvent, and a catalyst, and extracting the nonalcoholic solvent directly. The resulting monolithic aerogels are hydrophobic and stable under atmospheric conditions, and exhibit good optical transparency, high clarity, and homogeneity. The aerogels have high thermal insulation capacity, high porosity, mechanical strength and stability, and require shorter gelation times than aerogels formed by conventional methods. 8 figs.

  10. Sorption Properties of Aerogel in Liquid Nitrogen

    NASA Technical Reports Server (NTRS)

    Johnson, Wesley L.

    2006-01-01

    Aerogel products are now available as insulation materials of the future. The Cryogenics Test Laboratory at the NASA Kennedy Space Center is developing aerogel-based thermal insulation systems for space launch applications. Aerogel beads (Cabot Nanogel ) and aerogel blankets (Aspen Aerogels Spaceloft ) have outstanding ambient pressure thermal performance that makes them useful for applications where sealing is not possible. Aerogel beads are open-celled silicone dioxide and have tiny pores that run throughout the body of the bead. It has also recently been discovered that aerogel beads can be used as a filtering device for aqueous compounds at room temperature. With their hydrophobic covering, the beads absorb any non-polar substance and they can be chemically altered to absorb hot gases. The combination of the absorption and cryogenic insulating properties of aerogel beads have never been studied together. For future cryogenic insulation applications, it is crucial to know how the beads react while immersed in cryogenic liquids, most notably liquid nitrogen. Aerogel beads in loose-fill situation and aerogel blankets with composite fiber structure have been tested for absorption properties. Depending on the type of aerogel used and the preparation, preliminary results show the material can absorb up to seven times its own weight of liquid nitrogen, corresponding to a volumetric ratio of 0.70 (unit volume nitrogen per unit volume aerogel). These tests allow for an estimate on how much insulation is needed in certain situations. The theory behind the different processes of sorption is necessary for a better understanding of the preparation of the beads before they are used in an insulation system.

  11. 3D Printing of Graphene Aerogels.

    PubMed

    Zhang, Qiangqiang; Zhang, Feng; Medarametla, Sai Pradeep; Li, Hui; Zhou, Chi; Lin, Dong

    2016-04-06

    3D printing of a graphene aerogel with true 3D overhang structures is highlighted. The aerogel is fabricated by combining drop-on-demand 3D printing and freeze casting. The water-based GO ink is ejected and freeze-cast into designed 3D structures. The lightweight (<10 mg cm(-3) ) 3D printed graphene aerogel presents superelastic and high electrical conduction.

  12. Processing and Mechanical Characterization of Polyurea Aerogels

    DTIC Science & Technology

    2011-01-01

    PROCESSING AND MECHANICAL CHARACTERIZATION OF POLYUREA AEROGELS by JARED MICHAEL LOEBS A THESIS Presented to the Faculty of the Graduate School of...SUBTITLE Processing and Mechanical Characterization of Polyurea Aerogels 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The use of aerogels historically has been limited to extreme cases largely in part to the nature

  13. Aerogels Insulate Missions and Consumer Products

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Aspen Aerogels, of Northborough, Massachusetts, worked with NASA through an SBIR contract with Kennedy Space Center to develop a robust, flexible form of aerogel for cryogenic insulation for space shuttle launch applications. The company has since used the same manufacturing process developed under the SBIR award to expand its product offerings into the more commercial realms, making the naturally fragile aerogel available for the first time as a standard insulation that can be handled and installed just like standard insulation.

  14. Aerogel commercialization pilot project. Final program report

    SciTech Connect

    1996-02-13

    Aerogels are extremely light weight, high surface area, very insulative materials that offer many potential improvements to commercial products. Aerogels have been the subject of extensive research at Department of Energy Laboratories and have been considered one of the technology most ready for commercialization. However, commercialization of the technology had been difficult for the National Laboratories since end users were not interested in the high temperature and high pressure chemical processes involved in manufacturing the raw material. Whereas, Aerojet as a supplier of rocket fuels, specialty chemicals and materials had the manufacturing facilities and experience to commercially produce aerogel-type products. Hence the TRP provided a link between the technology source (National Laboratories), the manufacturing (Aerojet) and the potential end users (other TRP partners). The program successfully produced approximately 500 ft{sup 2} of organic aerogel but failed to make significant quantities of silica aerogel. It is significant that this production represents both the largest volume and biggest pieces of organic aerogel ever produced. Aerogels, available from this program, when tested in several prototype commercial products were expected to improve the products performance, but higher than expected projected production costs for large scale manufacture of aerogels has limited continued commercial interest from these partners. Aerogels do, however, offer potential as a specialty material for some high value technology and defense products.

  15. How We 3D-Print Aerogel

    SciTech Connect

    2015-04-23

    A new type of graphene aerogel will make for better energy storage, sensors, nanoelectronics, catalysis and separations. Lawrence Livermore National Laboratory researchers have made graphene aerogel microlattices with an engineered architecture via a 3D printing technique known as direct ink writing. The research appears in the April 22 edition of the journal, Nature Communications. The 3D printed graphene aerogels have high surface area, excellent electrical conductivity, are lightweight, have mechanical stiffness and exhibit supercompressibility (up to 90 percent compressive strain). In addition, the 3D printed graphene aerogel microlattices show an order of magnitude improvement over bulk graphene materials and much better mass transport.

  16. Basic science of new aerogels. Final report

    SciTech Connect

    1996-08-01

    Feasibility of making monolithic composite aerogels containing silica and natural clay minerals, synthetic clay minerals or zeolites has been demonstrated, using two different processes; up to 30 wt% of the mineral phase has been successfully added. Addition of natural and synthetic clay minerals or zeolites to silica aerosols was shown to retard densification. Composite silica aerogels showed significant surface area still present after sintering at 800 or 1000 C. For most samples, 1 wt% of the second phase is equally effective in retarding densification as 10 wt%. Composite aerogels, in general, had lower hardness values than pure silica. Hardness values were inversely proportional to aerogel pore radius.

  17. PULSE COUNTER

    DOEpatents

    Trumbo, D.E.

    1959-02-10

    A transistorized pulse-counting circuit adapted for use with nuclear radiation detecting detecting devices to provide a small, light weight portable counter is reported. The small size and low power requirements of the transistor are of particular value in this instance. The circuit provides an adjustable count scale with a single transistor which is triggered by the accumulated charge on a storage capacitor.

  18. Cerro La Negra EAS Cherenkov array

    NASA Astrophysics Data System (ADS)

    Bello, P.; Garipov, G. K.; Khrenov, B. A.; Martínez, O.; Moreno, E.; Salazar, H.; Silaev, A. A.; Villaseñor, L.; Zepeda, A.

    2001-05-01

    The design of the air Cherenkov detector array for the Cerro La Negra site (elevation 4300 m asl) is presented. The most important features of the array are: autonomous operation of the detectors, low power electronics, laser communication lines and power supplied by solar panels and batteries. The joint operation of the array with water Cherenkov extensive air shower (EAS) particle detectors will allow to obtain information on EAS core positions, primary energies, arrival directions of the primary particles, and temporal profiles of the EAS pulses in air Cherenkov and particle detectors. The study of the EAS development above the shower maximum is among the main goals of this experiment. .

  19. Thermal properties of organic and modified inorganic aerogels

    SciTech Connect

    Pekala, R.W.; Hrubesh, L.W.

    1992-08-01

    Aerogels are open-cell foams that have already been shown to be among the best thermal insulating solid materials known. Improvements in the thermal insulating properties of aerogels are possible by synthesizing new organic varieties, by using additives within existing aerogel matrix, and by optimizing their nanostructures. We discuss these approaches and give some examples of aerogels which demonstrate the improvements.

  20. Preparation of Biopolymer Aerogels Using Green Solvents

    PubMed Central

    Subrahmanyam, Raman; Gurikov, Pavel; Meissner, Imke; Smirnova, Irina

    2016-01-01

    Although the first reports on aerogels made by Kistler1 in the 1930s dealt with aerogels from both inorganic oxides (silica and others) and biopolymers (gelatin, agar, cellulose), only recently have biomasses been recognized as an abundant source of chemically diverse macromolecules for functional aerogel materials. Biopolymer aerogels (pectin, alginate, chitosan, cellulose, etc.) exhibit both specific inheritable functions of starting biopolymers and distinctive features of aerogels (80-99% porosity and specific surface up to 800 m2/g). This synergy of properties makes biopolymer aerogels promising candidates for a wide gamut of applications such as thermal insulation, tissue engineering and regenerative medicine, drug delivery systems, functional foods, catalysts, adsorbents and sensors. This work demonstrates the use of pressurized carbon dioxide (5 MPa) for the ionic cross linking of amidated pectin into hydrogels. Initially a biopolymer/salt dispersion is prepared in water. Under pressurized CO2 conditions, the pH of the biopolymer solution is lowered to 3 which releases the crosslinking cations from the salt to bind with the biopolymer yielding hydrogels. Solvent exchange to ethanol and further supercritical CO2 drying (10 - 12 MPa) yield aerogels. Obtained aerogels are ultra-porous with low density (as low as 0.02 g/cm3), high specific surface area (350 - 500 m2/g) and pore volume (3 - 7 cm3/g for pore sizes less than 150 nm). PMID:27403649

  1. Nonflammable, Hydrophobic Aerogel Composites for Insulation

    NASA Technical Reports Server (NTRS)

    Redouane, Begag

    2005-01-01

    Aerogel composites that are both nonflammable and hydrophobic have been developed for use as lightweight thermal- insulation materials for cryogenic systems. Aerogels are well known in the industry for their effectiveness as thermal insulators under cryogenic conditions, but the treatments used heretofore to render them hydrophobic also make them flammable. Nonflammability would make it safer to use aerogel insulation, especially in oxygen-rich environments and on cryogenic systems that contain liquid oxygen. A composite of this type is a silica aerogel reinforced with fibers. In comparison with unreinforced aerogels, the aerogel composite is about ten times as stiff and strong, better able to withstand handling, and more amenable to machining to required shapes. The composite can be made hydrophobic and nonflammable by appropriate design of a sol-gel process used to synthesize the aerogel component. In addition to very low thermal conductivity needed for insulation, aerogel composites of this type have been found to exhibit high resistance to moisture and nonflammability in oxygen-rich atmospheres: Samples floating on water for months gained no weight and showed no signs of deterioration. Samples were found to be nonflammable, even in pure oxygen at atmospheric pressure [14.7 psia (0.10 MPa)

  2. AUTOMATIC COUNTER

    DOEpatents

    Robinson, H.P.

    1960-06-01

    An automatic counter of alpha particle tracks recorded by a sensitive emulsion of a photographic plate is described. The counter includes a source of mcdulated dark-field illumination for developing light flashes from the recorded particle tracks as the photographic plate is automatically scanned in narrow strips. Photoelectric means convert the light flashes to proportional current pulses for application to an electronic counting circuit. Photoelectric means are further provided for developing a phase reference signal from the photographic plate in such a manner that signals arising from particle tracks not parallel to the edge of the plate are out of phase with the reference signal. The counting circuit includes provision for rejecting the out-of-phase signals resulting from unoriented tracks as well as signals resulting from spurious marks on the plate such as scratches, dust or grain clumpings, etc. The output of the circuit is hence indicative only of the tracks that would be counted by a human operator.

  3. RADIATION COUNTER

    DOEpatents

    Goldsworthy, W.W.

    1958-02-01

    This patent relates to a radiation counter, and more particularly, to a scintillation counter having high uniform sensitivity over a wide area and capable of measuring alpha, beta, and gamma contamination over wide energy ranges, for use in quickly checking the contami-nation of personnel. Several photomultiplier tubes are disposed in parallel relationship with a light tight housing behind a wall of scintillation material. Mounted within the housing with the photomultipliers are circuit means for producing an audible sound for each pulse detected, and a range selector developing a voltage proportional to the repetition rate of the detected pulses and automatically altering its time constant when the voltage reaches a predetermined value, so that manual range adjustment of associated metering means is not required.

  4. THz Cherenkov radiation of Josephson vortex

    NASA Astrophysics Data System (ADS)

    Malishevskii, A. S.; Silin, V. P.; Uryupin, S. A.; Uspenskii, S. G.

    2008-01-01

    It is shown that Josephson vortices travelling in sandwich embedded in dielectric media radiate electromagnetic waves with THz frequencies. This phenomenon is caused by the Cherenkov effect and takes place if vortex velocity exceeds the speed of light in dielectric.

  5. Deep Water Cherenkov Light Scatter Meter

    SciTech Connect

    Pappalardo, L; Petta, C.; Russo, G.V.

    2000-12-31

    The relevant parameters for the site choice of an underwater neutrino's telescope are discussed. The in situ measurement of the scattering distribution of the cherenkov light requires a suitable experimental setup. Its main features are described here.

  6. Solid phase microextraction device using aerogel

    DOEpatents

    Miller, Fred S.; Andresen, Brian D.

    2005-06-14

    A sample collection substrate of aerogel and/or xerogel materials bound to a support structure is used as a solid phase microextraction (SPME) device. The xerogels and aerogels may be organic or inorganic and doped with metals or other compounds to target specific chemical analytes. The support structure is typically formed of a glass fiber or a metal wire (stainless steel or kovar). The devices are made by applying gel solution to the support structures and drying the solution to form aerogel or xerogel. Aerogel particles may be attached to the wet layer before drying to increase sample collection surface area. These devices are robust, stable in fields of high radiation, and highly effective at collecting gas and liquid samples while maintaining superior mechanical and thermal stability during routine use. Aerogel SPME devices are advantageous for use in GC/MS analyses due to their lack of interfering background and tolerance of GC thermal cycling.

  7. High specific surface area aerogel cryoadsorber for vacuum pumping applications

    DOEpatents

    Hill, Randal M.; Fought, Eric R.; Biltoft, Peter J.

    2000-01-01

    A cryogenic pumping system is provided, comprising a vacuum environment, an aerogel sorbent formed from a carbon aerogel disposed within the vacuum environment, and cooling means for cooling the aerogel sorbent sufficiently to adsorb molecules from the vacuum environment onto the aerogel sorbent. Embodiments of the invention include a liquid refrigerant cryosorption pump, a compressed helium cryogenic pump, a cryopanel and a Meissner coil, each of which uses carbon aerogel as a sorbent material.

  8. Superfluid 3He in ``nematically ordered'' aerogel

    NASA Astrophysics Data System (ADS)

    Dmitriev, Vladimir

    2014-03-01

    Liquid 3He immersed in aerogel allows investigation of the influence of impurities on unconventional superfluidity. In most of such experiments silica aerogels are used. These aerogels consist of thin strands which form a ``wisp.'' Although it is established that superfluid phases of 3He in silica aerogels (A-like and B-like) have the same order parameters as A and B phases of bulk 3He, many new phenomena were observed. In particular, it was found that global anisotropy of aerogel (e.g. caused by squeezing or stretching) can orient the order parameter. Depending on prehistory and on the type of the anisotropy the A-like phase may be homogeneous or in a state with random orbital part of the order parameter. Theory predicts that a large stretching anisotropy may even influence the order parameter structure: polar phase (or A phase with polar distortion), which are not realized in bulk 3He, may become more favorable than pure A phase. Large stretching anisotropy is hardly achievable in silica aerogel. Therefore in experiments described in the talk we used a new type of aerogel, consisting of Al2O3 . H2O strands which are parallel to each other, i.e. this aerogel may be considered as infinitely stretched. We found that the superfluid phase diagram of 3He in such ``nematically ordered'' aerogel is different from the case of 3He in silica aerogel and that both observed A and B phases have large polar distortion. This distortion is larger at low pressures and grows on warming. There are indications that a pure polar phase appears near the superfluid transition temperature. Recent results will be also presented.

  9. Physics of Interplanetary Dust Collection with Aerogel

    NASA Technical Reports Server (NTRS)

    Anderson, William W.

    1998-01-01

    This report presents the results of research undertaken to study various problems associated with hypervelocity capture of dust particles in aerogel. The primary topics investigated were the properties of shocked aerogel and the requirements for reliable capture of particles on the STARDUST mission. In particular, the viscosity of shocked aerogel has been an open question. The results presented here suggest that the viscosity of aerogel at high impact velocities is negligible, although there remains some uncertainty about lower velocities. The model adopted for viscosity treats the mixture of polymeric silica and decomposition products and finds that, for particle velocities of 6-7 km/s, the viscosity is similar to that typical of light gasses at STP. Expressions for the Hugoniot of aerogel as a function of density were also obtained from the available data. All aerogels of interest for cosmic dust collectors have very similar shock velocity-particle velocity Hugoniot curves. The strength behavior of aerogel for low-speed penetration was measured, but further work is needed to study the proper way to apply this to the issue of terminal deceleration of a dust particle. Preliminary calculations designed to maximize the penetration depths were performed to determine the required density of aerogel to reliably stop a particle in a 3 cm thickness of aerogel (the path length expected for a normal impact into the STARDUST collector). In order to stop a particle of density rho(sub p) and diameter d(sub p), the mean density of the aerogel collector should be no less than that given by the expression bar rho(sub 0) = 1.085 X 10(exp -4 )rho(sub p)d(sub p), for densities measured in g/ cu cm and the particle diameter measured in micrometers.

  10. Chemistry in an inorganic-organic hybrid aerogel: Chitosan-silica aerogel

    NASA Astrophysics Data System (ADS)

    Liu, Xipeng

    2005-11-01

    In this thesis, chemistry in a nanoporous inorganic-organic hybrid aerogel (X-silica aerogel) has been explored. The aerogel typically consisted of 10%w/w bioderived polymer (chitosan), and 90%w/w inorganic silica, which interact at the molecule level. The aerogel has a low density in the range of 0.2--0.3 g/cm3, high surface area in the range of 500--950m 2/g, and large pore volume about 90%. The pores are about 3--5 nm in diameter and the size of the primary particles comprising the aerogel network is about 1.5nm. Chemical studies of X-silica aerogels were carried out in the first instance with organic molecules, including dansyl chloride (DC), succinic anhydride (SA), bis(4-isocynatocyclohexyl) methane (HMDI), and isocyanatoethyl methacrylate (IEMA). These reactions lead to modified X-silica aerogel products imparted with valuable functionalities, including fluorescence, carboxylic acid groups, and pendant isocyanate and methacrylate groups. The functionalized aerogels then were utilized to form novel composites. The isocyanate functionalized aerogels were combined with amine-containing silicone polymers to produce aerogel-silicone polymer composites, and methacrylate functionalized aerogels were reacted with hydroxyethylmethacrylate (HEMA) monomer to produce aerogel-polyHEMA composites. The chemical studies were extended to gold-ion Au(III)-X-silica aerogels. Photoreduction of the Au(IIl)-X-silica aerogels by UV irradiation at 254nm reduced the Au(III) ions into Au(0) nanoparticles (AuNPs) while oxidizing the chitosan. Various sizes of AuNPs, with mean diameters from 8--87nm were obtained by varying the Au(III) ions concentration in aerogels from Au(III)/-NH 2 (-NH2 amine groups on chitosan) ratio 1:120 to 1:5. The intensity and time of exposure to the UV light were varied to explore their effect. Two dimensional patterns of Au(0)-X-silica aerogels were achieved by UV irradiation through a mask. Photo-reduction of Au(III)-X-silica aerogels in the presence of

  11. Aerogel Projects Ongoing in MSFC's Engineering Directorate

    NASA Technical Reports Server (NTRS)

    Shular, David A.; Smithers, Gweneth A.; Plawsky, Joel L.; Whitaker, Ann F. (Technical Monitor)

    2000-01-01

    When we speak of an aerogel material, we are referring more to process and structure am to a specific substance. Aerogel, considered the lightest solid material, has been made from silica for seventy years. Resorcinol-formaldehyde, organic aerogels have been developed more recently. However, aerogel can be made from almost any type of substance, even lead. Because an aerogel is mostly air (about 99 %), the solid substance used will affect the weight very little. The term "aerogel" connotes the sol-gel process used to manufacture the material. The aerogel begins as a liquid "sol," becomes a solid "alcogel," and is then dried to become an "aerogel." The final product has a unique structure, useful for exploitation. It is an "open pore" system with nano-sized particles and pores, has very high surface area, and is highly interconnected. Besides low weight, aerogels have ultimate (lowest) values in other properties: thermal conductivity, refractive index, sound speed, and dielectric constant. Aerogels were first prepared in 1931 by Steven Kistler, who used a supercritical drying step to replace the liquid in a gel with air, preserving the structure (1). Kistler's procedure involved a water-to-alcohol exchange step; in the 1970's, this step was eliminated when a French investigator introduced the use of tetramethylorthosilicate. Still, alcohol drying involved dangerously high temperatures and pressures. In the 1980's, the Microstructured Materials Group at Berkeley Laboratory found that the alcohol in the gel could be replaced with liquid carbon dioxide before supercritical drying, which greatly improved safety (2). 'Me most recent major contribution has been that of Deshpande, Smith and Brinker in New Mexico, who are working to eliminate the supercritical drying step (3). When aerogels were first being developed, they were evaporatively dried. However, the wet gel, when dried, underwent severe shrinkage and cracking; this product was termed "xerogel." When the

  12. Rapid screening of 90Sr activity in water and milk samples using Cherenkov radiation.

    PubMed

    Stamoulis, K C; Ioannides, K G; Karamanis, D T; Patiris, D C

    2007-01-01

    A method for screening 90Sr in milk samples is proposed. This method is based on a liquid scintillation technique taking advantage of Cherenkov radiation, which is produced in a liquid medium and then detected by the photomultipliers of a Liquid Scintillation Counter (LSC). Twenty millilitres of water and milk samples spiked with various concentrations of 90Sr/90Y in equilibrium were added in plastic vials and then were measured with an LSC (TriCarb 3170 TR/SL). The derived efficiencies were 49% for water samples and 14% for milk samples. The detection limit was 470 mBq L(-1)(90)Sr for water, without any pretreatment. Milk contains potassium, which also produces Cherenkov radiation due to the presence of 40K. For this reason, the interference of 40K in the measurements of 90Sr in milk samples was also investigated. The detection limit for milk was 1.7 Bq L(-1)90Sr.

  13. Preparation and characterization of Ni-doped carbon aerogel for supercapacitor

    NASA Astrophysics Data System (ADS)

    Wang, Shasha; Yan, Meifang; Liu, Haihua; Xu, Yuelong; Zhang, Lihui; Liu, Zhenfa

    2017-01-01

    Ni-doped carbon aerogel was prepared by impregnation methods, physical structure, and electrochemical properties were investigated. Electrochemical properties of prepared Ni-doped carbon aerogel and carbon aerogel electrodes were measured by galvanostatic charge/discharge measurements. The results show Ni-doped carbon aerogels maintain the elementary structure of carbon aerogel, but they exhibited higher specific capacitance than carbon aerogel.

  14. Aerogel Blanket Insulation Materials for Cryogenic Applications

    NASA Technical Reports Server (NTRS)

    Coffman, B. E.; Fesmire, J. E.; White, S.; Gould, G.; Augustynowicz, S.

    2009-01-01

    Aerogel blanket materials for use in thermal insulation systems are now commercially available and implemented by industry. Prototype aerogel blanket materials were presented at the Cryogenic Engineering Conference in 1997 and by 2004 had progressed to full commercial production by Aspen Aerogels. Today, this new technology material is providing superior energy efficiencies and enabling new design approaches for more cost effective cryogenic systems. Aerogel processing technology and methods are continuing to improve, offering a tailor-able array of product formulations for many different thermal and environmental requirements. Many different varieties and combinations of aerogel blankets have been characterized using insulation test cryostats at the Cryogenics Test Laboratory of NASA Kennedy Space Center. Detailed thermal conductivity data for a select group of materials are presented for engineering use. Heat transfer evaluations for the entire vacuum pressure range, including ambient conditions, are given. Examples of current cryogenic applications of aerogel blanket insulation are also given. KEYWORDS: Cryogenic tanks, thermal insulation, composite materials, aerogel, thermal conductivity, liquid nitrogen boil-off

  15. Composite aerogel insulation for cryogenic liquid storage

    NASA Astrophysics Data System (ADS)

    Kyeongho, Kim; Hyungmook, Kang; Soojin, Shin; In Hwan, Oh; Changhee, Son; Hyung, Cho Yun; Yongchan, Kim; Sarng Woo, Karng

    2017-02-01

    High porosity materials such as aerogel known as a good insulator in a vacuum range (10-3 ∼ 1 Torr) was widely used to storage and to transport cryogenic fluids. It is necessary to be investigated the performance of aerogel insulations for cryogenic liquid storage in soft vacuum range to atmospheric pressure. A one-dimensional insulating experimental apparatus was designed and fabricated to consist of a cold mass tank, a heat absorber and an annular vacuum space with 5-layer (each 10 mm thickness) of the aerogel insulation materials. Aerogel blanket for cryogenic (used maximum temperature is 400K), aerogel blanket for normal temperature (used maximum temperature is 923K), and combination of the two kinds of aerogel blankets were 5-layer laminated between the cryogenic liquid wall and the ambient wall in vacuum space. Also, 1-D effective thermal conductivities of the insulation materials were evaluated by measuring boil-off rate from liquid nitrogen and liquid argon. In this study, the effective thermal conductivities and the temperature-thickness profiles of the two kinds of insulators and the layered combination of the two different aerogel blankets were presented.

  16. Method for nanoencapsulation of aerogels and nanoencapsulated aerogels produced by such method

    NASA Technical Reports Server (NTRS)

    Sullivan, Thomas A. (Inventor)

    2007-01-01

    A method for increasing the compressive modulus of aerogels comprising: providing aerogel substrate comprising a bubble matrix in a chamber; providing monomer to the chamber, the monomer comprising vapor phase monomer which polymerizes substantially free of polymerization byproducts; depositing monomer from the vapor phase onto the surface of the aerogel substrate under deposition conditions effective to produce a vapor pressure sufficient to cause the vapor phase monomer to penetrate into the bubble matrix and deposit onto the surface of the aerogel substrate, producing a substantially uniform monomer film; and, polymerizing the substantially uniform monomer film under polymerization conditions effective to produce polymer coated aerogel comprising a substantially uniform polymer coating substantially free of polymerization byproducts.Polymer coated aerogel comprising aerogel substrate comprising a substantially uniform polymer coating, said polymer coated aerogel comprising porosity and having a compressive modulus greater than the compressive modulus of the aerogel substrate, as measured by a 100 lb. load cell at 1 mm/minute in the linear range of 20% to 40% compression.

  17. The assembly of the Belle II TOP counter

    NASA Astrophysics Data System (ADS)

    Wang, Boqun

    2014-12-01

    A new type of ring-imaging Cherenkov counter, called TOP counter, has been developed for particle identification at the Belle II experiment to run at the SuperKEKB accelerator in KEK, Japan. The detector consists of 16 identical modules arranged azimuthally around the beam line. The assembly procedure for a TOP module is described. This procedure includes acceptance testing of the quartz mirror, prism, and quartz bar radiators. The acceptance tests include a chip search and measurements of bulk transmittance and total internal reflectance. The process for aligning and gluing the optical components together is described.

  18. Low density, resorcinol-formaldehyde aerogels

    DOEpatents

    Pekala, Richard W.

    1991-01-01

    The polycondensation of resorcinol with formaldehyde under alkaline conditions results in the formation of surface functionalized polymer "Clusters". The covalent crosslinking of these "clusters" produces gels which when processed under supercritical conditions, produce low density, organic aerogels (density.ltoreq.100 mg/cc; cell size .ltoreq.0.1 microns). The aerogels are transparent, dark red in color and consist of interconnected colloidal-like particles with diameters of about 100.circle.. These aerogels may be further carbonized to form low density carbon foams with cell size of about 0.1 micron.

  19. Low density, resorcinol-formaldehyde aerogels

    DOEpatents

    Pekala, Richard W.

    1989-01-01

    The polycondensation of resorcinol with formaldehyde under alkaline conditions results in the formation of surface functionalized polymer "clusters". The covalent crosslinking of these "clusters" produces gels which when processed under supercritical conditions, produce low density, organic aerogels (density .ltoreq.100 mg/cc; cell size .ltoreq.0.1 microns). The aerogels are transparent, dark red in color and consist of interconnected colloidal-like particles with diameters of about 100 .ANG.. These aerogels may be further carbonized to form low density carbon foams with cell size of about 0.1 micron.

  20. Low density, resorcinol-formaldehyde aerogels

    DOEpatents

    Pekala, R.W.

    1989-10-10

    The polycondensation of resorcinol with formaldehyde under alkaline conditions results in the formation of surface functionalized polymer clusters. The covalent crosslinking of these clusters produces gels which when processed under supercritical conditions, produce low density, organic aerogels (density [<=]100 mg/cc; cell size [<=]0.1 microns). The aerogels are transparent, dark red in color and consist of interconnected colloidal-like particles with diameters of about 100 [angstrom]. These aerogels may be further carbonized to form low density carbon foams with cell size of about 0.1 micron.

  1. Low density, resorcinol-formaldehyde aerogels

    DOEpatents

    Pekala, R.W.

    1988-05-26

    The polycondensation of resorcinol with formaldehyde under alkaline conditions results in the formation of surface functionalized polymer ''clusters''. The covalent crosslinking of these ''clusters'' produces gels which when processed under supercritical conditions, produce low density, organic aerogels (density less than or equal to100 mg/cc; cell size less than or equal to0.1 microns). The aerogels are transparent,dark red in color and consist of interconnected colloidal-like particles with diameters of about 100 A/degree/. These aerogels may be further carbonized to form low density carbon foams with cell size of about 0.1 micron. 1 fig., 1 tab.

  2. Carbon aerogel electrodes for direct energy conversion

    DOEpatents

    Mayer, S.T.; Kaschmitter, J.L.; Pekala, R.W.

    1997-02-11

    A direct energy conversion device, such as a fuel cell, using carbon aerogel electrodes is described, wherein the carbon aerogel is loaded with a noble catalyst, such as platinum or rhodium and soaked with phosphoric acid, for example. A separator is located between the electrodes, which are placed in a cylinder having plate current collectors positioned adjacent the electrodes and connected to a power supply, and a pair of gas manifolds, containing hydrogen and oxygen positioned adjacent the current collectors. Due to the high surface area and excellent electrical conductivity of carbon aerogels, the problems relative to high polarization resistance of carbon composite electrodes conventionally used in fuel cells are overcome. 1 fig.

  3. Carbon aerogel electrodes for direct energy conversion

    DOEpatents

    Mayer, Steven T.; Kaschmitter, James L.; Pekala, Richard W.

    1997-01-01

    A direct energy conversion device, such as a fuel cell, using carbon aerogel electrodes, wherein the carbon aerogel is loaded with a noble catalyst, such as platinum or rhodium and soaked with phosphoric acid, for example. A separator is located between the electrodes, which are placed in a cylinder having plate current collectors positioned adjacent the electrodes and connected to a power supply, and a pair of gas manifolds, containing hydrogen and oxygen positioned adjacent the current collectors. Due to the high surface area and excellent electrical conductivity of carbon aerogels, the problems relative to high polarization resistance of carbon composite electrodes conventionally used in fuel cells are overcome.

  4. Composite Silica Aerogels Opacified with Titania

    NASA Technical Reports Server (NTRS)

    Paik, Jon-Ah; Sakamoto, Jeffrey; Jones, Steven; Fleurial, Jean-Pierre; DiStefano, Salvador; Nesmith, Bill

    2009-01-01

    A further improvement has been made to reduce the high-temperature thermal conductivities of the aerogel-matrix composite materials described in Improved Silica Aerogel Composite Materials (NPO-44287), NASA Tech Briefs, Vol. 32, No. 9 (September 2008), page 50. Because the contribution of infrared radiation to heat transfer increases sharply with temperature, the effective high-temperature thermal conductivity of a thermal-insulation material can be reduced by opacifying the material to reduce the radiative contribution. Therefore, the essence of the present improvement is to add an opacifying constituent material (specifically, TiO2 powder) to the aerogel-matrix composites.

  5. Ruthenium / aerogel nanocomposits via Atomic Layer Deposition

    SciTech Connect

    Biener, J; Baumann, T F; Wang, Y; Nelson, E J; Kucheyev, S O; Hamza, A V; Kemell, M; Ritala, M; Leskela, M

    2006-08-28

    We present a general approach to prepare metal/aerogel nanocomposites via template directed atomic layer deposition (ALD). In particular, we used a Ru ALD process consisting of alternating exposures to bis(cyclopentadienyl)ruthenium (RuCp{sub 2}) and air at 350 C to deposit metallic Ru nanoparticles on the internal surfaces of carbon and silica aerogels. The process does not affect the morphology of the aerogel template and offers excellent control over metal loading by simply adjusting the number of ALD cycles. We also discuss the limitations of our ALD approach, and suggest ways to overcome these.

  6. HAWC: The high altitude water Cherenkov observatory

    NASA Astrophysics Data System (ADS)

    Goodman, Jordan A.

    2013-02-01

    The High Altitude Water Cherenkov Observatory (HAWC) is currently being deployed at 4100m above sea level on the Vulcan Sierra Negra near Puebla, Mexico. The HAWC observatory will consist of 250-300 Water Cherenkov Detectors totaling approximately 22,000 m2 of instrumented area. The water Cherenkov technique allows HAWC to have a nearly 100% duty cycle and large field of view, making the HAWC observatory an ideal instrument for the study of transient phenomena. With its large effective area, excellent angular and energy resolutions, and efficient gamma-hadron separation, HAWC will survey the TeV gamma-ray sky, measure spectra of galactic sources from 1 TeV to beyond 100 TeV, and map galactic diffuse gamma ray emission. The science goals, instrument performance and status of the HAWC observatory will be presented.

  7. Cherenkov TOF PET with silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Dolenec, R.; Korpar, S.; Križan, P.; Pestotnik, R.

    2015-12-01

    As previously demonstrated, an excellent timing resolution below 100 ps FWHM is possible in time-of-flight positron emission tomography (TOF PET) if the detection method is based on the principle of detecting photons of Cherenkov light, produced in a suitable material and detected by microchannel plate photomultipliers (MCP PMTs). In this work, the silicon photomultipliers (SiPMs) were tested for the first time as the photodetectors in Cherenkov TOF PET. The high photon detection efficiency (PDE) of SiPMs led to a large improvement in detection efficiency. On the other hand, the time response of currently available SiPMs is not as good as that of MCP PMTs. The SiPM dark counts introduce a new source of random coincidences in Cherenkov method, which would be overwhelming with present SiPM technology at room temperature. When the apparatus was cooled, its performance significantly improved.

  8. Method for making monolithic metal oxide aerogels

    DOEpatents

    Droege, M.W.; Coronado, P.R.; Hair, L.M.

    1995-03-07

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The present invention is especially advantageous for making metal oxides other than silica that are prone to forming opaque, cracked aerogels. 6 figs.

  9. Method for making monolithic metal oxide aerogels

    DOEpatents

    Droege, Michael W.; Coronado, Paul R.; Hair, Lucy M.

    1995-01-01

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The present invention is especially advantageous for making metal oxides other than silica that are prone to forming opaque, cracked aerogels.

  10. Fibrous-Ceramic/Aerogel Composite Insulating Tiles

    NASA Technical Reports Server (NTRS)

    White, Susan M.; Rasky, Daniel J.

    2004-01-01

    Fibrous-ceramic/aerogel composite tiles have been invented to afford combinations of thermal-insulation and mechanical properties superior to those attainable by making tiles of fibrous ceramics alone or aerogels alone. These lightweight tiles can be tailored to a variety of applications that range from insulating cryogenic tanks to protecting spacecraft against re-entry heating. The advantages and disadvantages of fibrous ceramics and aerogels can be summarized as follows: Tiles made of ceramic fibers are known for mechanical strength, toughness, and machinability. Fibrous ceramic tiles are highly effective as thermal insulators in a vacuum. However, undesirably, the porosity of these materials makes them permeable by gases, so that in the presence of air or other gases, convection and gas-phase conduction contribute to the effective thermal conductivity of the tiles. Other disadvantages of the porosity and permeability of fibrous ceramic tiles arise because gases (e.g., water vapor or cryogenic gases) can condense in pores. This condensation contributes to weight, and in the case of cryogenic systems, the heat of condensation undesirably adds to the heat flowing to the objects that one seeks to keep cold. Moreover, there is a risk of explosion associated with vaporization of previously condensed gas upon reheating. Aerogels offer low permeability, low density, and low thermal conductivity, but are mechanically fragile. The basic idea of the present invention is to exploit the best features of fibrous ceramic tiles and aerogels. In a composite tile according to the invention, the fibrous ceramic serves as a matrix that mechanically supports the aerogel, while the aerogel serves as a low-conductivity, low-permeability filling that closes what would otherwise be the open pores of the fibrous ceramic. Because the aerogel eliminates or at least suppresses permeation by gas, gas-phase conduction, and convection, the thermal conductivity of such a composite even at

  11. Silica Aerogel Captures Cosmic Dust Intact

    NASA Technical Reports Server (NTRS)

    Tsou, P.

    1994-01-01

    The mesostructure of silica aerogel resembles stings of grapes, ranging in size from 10 to 100 angstrom. This fine mesostructure transmits nearly 90 percent of incident light in the visible, while providing sufficiently gentle dissipation of the kinetric energy of hypervelocity cosmic dust particles to permit their intact capture. We introduced silica aerogel in 1987 as capture medium to take advantage of its low density, fine mesostruicture and most importantly, its transparency, allowing optical location of captured micron sized particles.

  12. Process for preparing polymer reinforced silica aerogels

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B. (Inventor); Capadona, Lynn A. (Inventor)

    2011-01-01

    Process for preparing polymer-reinforced silica aerogels which comprises a one-pot reaction of at least one alkoxy silane in the presence of effective amounts of a polymer precursor to obtain a silica reaction product, the reaction product is gelled and subsequently subjected to conditions that promotes polymerization of the precursor and then supercritically dried to obtain the polymer-reinforced monolithic silica aerogels.

  13. High Temperature Aerogels for Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.; Mbah, Godfrey C.

    2008-01-01

    High temperature aerogels in the Al2O3-SiO2 system are being investigated as possible constituents for lightweight integrated thermal protection system (TPS) designs for use in supersonic and hypersonic applications. Gels are synthesized from ethoxysilanes and AlCl3.6H2O, using an epoxide catalyst. The influence of Al:Si ratio, solvent, water to metal and water to alcohol ratios on aerogel composition, morphology, surface area, and pore size distribution were examined, and phase transformation on heat treatment characterized. Aerogels have been fabricated which maintain porous, fractal structures after brief exposures to 1000 C. Incorporation of nanofibers, infiltration of aerogels into SiC foams, use of polymers for crosslinking the aerogels, or combinations of these, offer potential for toughening and integration of TPS with composite structure. Woven fabric composites having Al2O3-SiO2 aerogels as a matrix also have been fabricated. Continuing work is focused on reduction in shrinkage and optimization of thermal and physical properties.

  14. Cytochrome C stabilization and immobilization in aerogels.

    PubMed

    Harper-Leatherman, Amanda S; Wallace, Jean Marie; Rolison, Debra R

    2011-01-01

    Sol-gel-derived aerogels are three-dimensional, nanoscale materials that combine large surface areas and high porosities. These traits make them useful for any rate-critical chemical process, particularly sensing or electrochemical applications, once physical or chemical moieties are incorporated into the gels to add their functionality into the ultraporous scaffold. Incorporating biomolecules into aerogels has been challenging due to the inability of most biomolecules to remain structurally intact within the gels during the necessary supercritical fluid processing. However, the heme protein cytochrome c (cyt. c) forms self-organized superstructures around gold (or silver) nanoparticles in buffer that can be encapsulated within silica and processed to form aerogels in which cyt. c retains its characteristic visible absorption. The gold (or silver) nanoparticle-nucleated superstructures protect the majority of the protein from the harsh physicochemical conditions necessary to form an aerogel. The Au∼cyt. c superstructures exhibit rapid gas-phase recognition of nitric oxide (NO) within the aerogel matrix, as facilitated by the high-quality pore structure of the aerogel, and remain viable for weeks at room temperature.

  15. Ambient pressure process for preparing aerogel thin films reliquified sols useful in preparing aerogel thin films

    SciTech Connect

    Brinker, C.J.; Prakash, S.S.

    1999-09-07

    A method for preparing aerogel thin films by an ambient-pressure, continuous process is disclosed. The method of this invention obviates the use of an autoclave and is amenable to the formation of thin films by operations such as dip coating. The method is less energy intensive and less dangerous than conventional supercritical aerogel processing techniques.

  16. Ambient pressure process for preparing aerogel thin films reliquified sols useful in preparing aerogel thin films

    DOEpatents

    Brinker, Charles Jeffrey; Prakash, Sai Sivasankaran

    1999-01-01

    A method for preparing aerogel thin films by an ambient-pressure, continuous process. The method of this invention obviates the use of an autoclave and is amenable to the formation of thin films by operations such as dip coating. The method is less energy intensive and less dangerous than conventional supercritical aerogel processing techniques.

  17. Contact-active antibacterial aerogels from cellulose nanofibrils.

    PubMed

    Henschen, Jonatan; Illergård, Josefin; Larsson, Per A; Ek, Monica; Wågberg, Lars

    2016-10-01

    The use of cellulose aerogels as antibacterial materials has been investigated by applying a contact-active layer-by-layer modification to the aerogel surface. Studying the adsorption of multilayers of polyvinylamine (PVAm) and polyacrylic acid to aerogels comprising crosslinked cellulose nanofibrils and monitoring the subsequent bacterial adhesion revealed that up to 26mgPVAmgaerogel(-1) was adsorbed without noticeably affecting the aerogel structure. The antibacterial effect was tested by measuring the reduction of viable bacteria in solution when the aerogels were present. The results show that >99.9% of the bacteria adhered to the surface of the aerogels. Microscopy further showed adherence of bacteria to the surfaces of the modified aerogels. These results indicate that it is possible to create materials with three-dimensional cellulose structures that adsorb bacteria with very high efficiency utilizing the high specific surface area of the aerogels in combination with their open structure.

  18. Synthesis and characterization of a nanocrystalline diamond aerogel

    SciTech Connect

    Pauzauskie, Peter J.; Crowhurst, Jonathan C.; Worsley, Marcus A.; Laurence, Ted A.; Kilcoyne, A. L. David; Wang, Yinmin; Willey, Trevor M.; Visbeck, Kenneth S.; Fakra, Sirine C.; Evans, William J.; Zaug, Joseph M.; Satcher, Jr., Joe H.

    2011-07-06

    Aerogel materials have myriad scientific and technological applications due to their large intrinsic surface areas and ultralow densities. However, creating a nanodiamond aerogel matrix has remained an outstanding and intriguing challenge. Here we report the high-pressure, high-temperature synthesis of a diamond aerogel from an amorphous carbon aerogel precursor using a laser-heated diamond anvil cell. Neon is used as a chemically inert, near-hydrostatic pressure medium that prevents collapse of the aerogel under pressure by conformally filling the aerogel's void volume. Electron and X-ray spectromicroscopy confirm the aerogel morphology and composition of the nanodiamond matrix. Time-resolved photoluminescence measurements of recovered material reveal the formation of both nitrogen- and silicon- vacancy point-defects, suggesting a broad range of applications for this nanocrystalline diamond aerogel.

  19. Durable polymer-aerogel based superhydrophobic coatings, a composite material

    DOEpatents

    Kissel, David J; Brinker, Charles Jeffrey

    2014-03-04

    Provided are polymer-aerogel composite coatings, devices and articles including polymer-aerogel composite coatings, and methods for preparing the polymer-aerogel composite. The exemplary article can include a surface, wherein the surface includes at least one region and a polymer-aerogel composite coating disposed over the at least one region, wherein the polymer-aerogel composite coating has a water contact angle of at least about 140.degree. and a contact angle hysteresis of less than about 1.degree.. The polymer-aerogel composite coating can include a polymer and an ultra high water content catalyzed polysilicate aerogel, the polysilicate aerogel including a three dimensional network of silica particles having surface functional groups derivatized with a silylating agent and a plurality of pores.

  20. Durable polymer-aerogel based superhydrophobic coatings: a composite material

    DOEpatents

    Kissel, David J.; Brinker, Charles Jeffrey

    2016-02-02

    Provided are polymer-aerogel composite coatings, devices and articles including polymer-aerogel composite coatings, and methods for preparing the polymer-aerogel composite. The exemplary article can include a surface, wherein the surface includes at least one region and a polymer-aerogel composite coating disposed over the at least one region, wherein the polymer-aerogel composite coating has a water contact angle of at least about 140.degree. and a contact angle hysteresis of less than about 1.degree.. The polymer-aerogel composite coating can include a polymer and an ultra high water content catalyzed polysilicate aerogel, the polysilicate aerogel including a three dimensional network of silica particles having surface functional groups derivatized with a silylating agent and a plurality of pores.

  1. System and method for suppressing sublimation using opacified aerogel

    NASA Technical Reports Server (NTRS)

    Sakamoto, Jeff S. (Inventor); Snyder, G. Jeffrey (Inventor); Calliat, Thierry (Inventor); Fleurial, Jean-Pierre (Inventor); Jones, Steven M. (Inventor); Palk, Jong-Ah (Inventor)

    2008-01-01

    The present invention relates to a castable, aerogel-based, ultra-low thermal conductivity opacified insulation to suppress sublimation. More specifically, the present invention relates to an aerogel opacified with various opacifying or reflecting constituents to suppress sublimation and provide thermal insulation in thermoelectric modules. The opacifying constituent can be graded within the aerogel for increased sublimation suppression, and the density of the aerogel can similarly be graded to achieve optimal thermal insulation and sublimation suppression.

  2. Eureka! Aerogel capture of meteoroids in space

    NASA Technical Reports Server (NTRS)

    Brownlee, D. E.; Horz, F.; Hrubsch, L.; Mcdonnell, J. A. M.; Tsou, P.; Williams, J.

    1994-01-01

    Light gas gun studies have shown that 6 km/s solid mineral and glass test particles can be successively captured in 0.05 g cm(exp -3) aerogel without severe heating or fragmentation. In spite of this work, there has been uncertainty in the performance of aerogel for hypervelocity capture of real meteoroids. Natural impacts differ from simulations in that the particles are likely to be structurally weak and they typically impact at higher velocity that can be simulated in the laboratory. We are fortunate now to have had two successful capture experiments using aerogel exposed in space. These experiments provide fundamental data for the assessment of the value of silica aerogel for capture of hypervelocity meteoroids from spacecraft. The first experiment used 0.02 g cm(exp -3) aerogel flown on the lid of a Shuttle Get Away Special canister. During its 9 day exposure, the 0.165 m(exp 2) of aerogel in this Sample Return Experiment (SRE) captured two long 'carrot-shaped' tracks and one highly fractured bowl shaped 'crater'. The second collection was with 0.04 m(exp 2) of 0.05 g cm(exp -3) aerogel exposed on ESA's Eureca freeflying spacecraft that was exposed for 11 months before recovery by the Shuttle. The Eureca aerogel exposure consisted of four 10x10 cm module trays that were part of the TiCCE meteoroid collector built by the University of Kent at Canterbury. To date we have found ten 'carrot-shaped' tracks and two 'craters' on this experiment. The longest tracks in both exposures are over 2 mm long. Two of the TiCCE modules had a 0.1 micron Al film suspended a millimeter above the aerogel. On these modules several of the projectiles fragmented during passage through the film producing fields of carrot shaped tracks from the resulting miniature 'meteor' shower. Most of the tracks in these showers have observable particles at their ends. We have extracted one of the carrot track meteoroids and mounted it in epoxy for sectioning. So far the examination of these 14

  3. Tachyonic Cherenkov radiation from supernova remnants

    NASA Astrophysics Data System (ADS)

    Tomaschitz, Roman

    2015-12-01

    The subexponential decay observed in the γ-ray spectral maps of supernova remnants is explained in terms of tachyonic Cherenkov emission from a relativistic electron population. The tachyonic radiation densities of an electronic spinor current are derived, the total density as well as the transversal and longitudinal polarization components, taking account of electron recoil. Tachyonic flux quantization subject to dispersive and dissipative permeabilities is discussed, the matrix elements of the transversal and longitudinal Poynting vectors of the Maxwell-Proca field are obtained, Cherenkov emission angles and radiation conditions are derived. The spectral energy flux of an ultra-relativistic electron plasma is calculated, a tachyonic Cherenkov fit to the high-energy (1 GeV to 30 TeV) γ-ray spectrum of the Crab Nebula is performed, and estimates of the linear polarization degree are given. The spectral tail shows subexponential Weibull decay, which can be modeled with a frequency-dependent tachyon mass in the dispersion relations. Tachyonic flux densities interpolate between exponential and power-law spectral decay, which is further illustrated by Cherenkov fits to the γ-ray spectra of the supernova remnants IC 443 and W44. Subexponential spectral decay is manifested in double-logarithmic spectral maps as curved Weibull or straight power-law slope.

  4. Material Properties for Fiber-Reinforced Silica Aerogels

    NASA Technical Reports Server (NTRS)

    White, Susan; Rouanet, Stephane; Moses, John; Arnold, James O. (Technical Monitor)

    1994-01-01

    Ceramic fiber-reinforced silica aerogels are novel materials for high performance insulation, including thermal protection materials. Experimental data are presented for the thermal and mechanical properties, showing the trends exhibited over a range of fiber loadings and silica aerogel densities. Test results are compared to that of unreinforced bulk aerogels.

  5. Carbon aerogels: An update on structure, properties, and applications

    SciTech Connect

    Pekala, R.W.; Mayer, S.T.; Kaschmitter, J.L.; Kong, F.M.

    1993-07-01

    Aerogels are unique porous materials whose composition, structure, and properties can be controlled at the nanometer scale. This paper examines the synthesis of organic aerogels and their carbonized derivatives. Carbon aerogels have low electrical resistivity, high surface area, and a tunable pore size. These materials are finding applications as electrodes in double layer capacitors.

  6. Distributed performance counters

    DOEpatents

    Davis, Kristan D; Evans, Kahn C; Gara, Alan; Satterfield, David L

    2013-11-26

    A plurality of first performance counter modules is coupled to a plurality of processing cores. The plurality of first performance counter modules is operable to collect performance data associated with the plurality of processing cores respectively. A plurality of second performance counter modules are coupled to a plurality of L2 cache units, and the plurality of second performance counter modules are operable to collect performance data associated with the plurality of L2 cache units respectively. A central performance counter module may be operable to coordinate counter data from the plurality of first performance counter modules and the plurality of second performance modules, the a central performance counter module, the plurality of first performance counter modules, and the plurality of second performance counter modules connected by a daisy chain connection.

  7. Towards an aerogel-based coating for aerospace applications: reconstituting aerogel particles via spray drying

    NASA Astrophysics Data System (ADS)

    Bheekhun, N.; Abu Talib, A. R.; Mustapha, S.; Ibrahim, R.; Hassan, M. R.

    2016-10-01

    Silica aerogel is an ultralight and highly porous nano-structured ceramic with its thermal conductivity being the lowest than any solids. Although aerogels possess fascinating physical properties, innovative solutions to tackle today's problems were limited due to their relative high manufacturing cost in comparison to conventional materials. Recently, some producers have brought forward quality aerogels at competitive costs, and thereby opening a panoply of applied research in this field. In this paper, the feasibility of spray-drying silica aerogel to tailor its granulometric property is studied for thermal spraying, a novel application of aerogels that is never tried before in the academic arena. Aerogel-based slurries with yttria stabilised zirconia as a secondary ceramic were prepared and spray-dried according to modified T aguchi experimental design in order to appreciate the effect of both the slurry formulation and drying conditions such as the solid content, the ratio of yttria stabilised zirconia:aerogel added, the amount of dispersant and binder, inlet temperature, atomisation pressure and feeding rate on the median particle size of the resulting spray-dried powder. The latter was found to be affected by all the aforementioned independent variables at different degree of significance and inclination. Based on the derived relationships, an optimised condition to achieve maximum median particle size was then predicted.

  8. Aerogel/Particle Composites for Thermoelectric Devices

    NASA Technical Reports Server (NTRS)

    Paik, Jong-Ah; Sakamoto, Jeffrey; Jones, Steven

    2006-01-01

    Optimizing solution chemistry and the addition of titania and fumed silica powder reduces shrinkage. These materials would serve to increase thermal efficiency by providing thermal insulation to suppress lateral heat leaks. They would also serve to prolong operational lifetime by suppressing sublimation of certain constituents of thermoelectric materials (e.g., sublimation of Sb from CoSb3) at typical high operating temperatures. [The use of pure silica aerogels as cast-in-place thermal-insulation and sublimation-suppression materials was described in "Aerogels for Thermal Insulation of Thermoelectric Devices" (NPO-40630), NASA Tech Briefs, Vol. 30, No. 7 (July 2006), page 50.] A silica aerogel is synthesized in a solgel process that includes preparation of a silica sol, gelation of the sol, and drying of the gel in a solvent at a supercritical temperature and pressure. The utility of pure silica aerogel is diminished by a tendency to shrink (and, therefore, also to crack) during the gelation and supercritical-drying stages. Moreover, to increase suppression of sublimation, it is advantageous to make an aerogel having greater density, but shrinkage and cracking tend to increase with density. A composite material of the type under investigation consists mostly of titania oxide powder particles and a small addition of fumed silica powder, which are mixed into the sol along with other ingredients prior to the gelation stage of processing. The silica aerogel and fumed silica act as a binder, gluing the titania particles together. It is believed that the addition of fumed silica stiffens the aerogel network and reduces shrinkage during the supercritical-drying stage. Minimization of shrinkage enables establishment of intimate contact between thermoelectric legs and the composite material, thereby maximizing the effectiveness of the material for thermal insulation and suppression of sublimation. To some extent, the properties of the composite can be tailored via the

  9. Volatiles in interplanetary dust particles and aerogels

    NASA Technical Reports Server (NTRS)

    Gibson, E. K., Jr.; Harmetz, C. P.

    1991-01-01

    Volatiles measured in 25 interplanetary dust particles (IDPs) are a mixture of both indigenous materials and contaminants associated with the collection and processing of the ODPs prior to analysis. Most IDPs have been collected in the stratosphere using a silicone oil/freon mixture (20:1 ratio) coated on collector plates. Studies have shown that silicone oil, freon and hexane residues remain with the ODPs, despite attempts to clean the IDPs. Analysis of the IDPs with the LMMS-technique produces spectra with a mixture of indigeneous and contaminants components. The contamination signal can be identified and removed; however, the contamination signal may obscure some of the indigeneous component's signal. Employing spectra stripping techniques, the indigenous volatile constituents associated with the IDPs can be identified. Volatiles are similar to those measured in CI or CM carbonaceous chondrites. Collection of IDPs in low-Earth orbit utilizing a Cosmic Dust Collection Facility attached to Space Station Freedom has been proposed. The low-density material aerogel has been proposed as a collection substrate for IDPs. Our studies have concentrated on identifying volatile contaminants that are associated with aerogel. We have found that solvents used for the preparation of aerogel remain in aerogel and methods must be developed for removing the entrapped solvents before aerogels can be used for an IDP collection substrate.

  10. Aerogel Beads as Cryogenic Thermal Insulation System

    NASA Technical Reports Server (NTRS)

    Fesmire, J. E.; Augustynowicz, S. D.; Rouanet, S.; Thompson, Karen (Technical Monitor)

    2001-01-01

    An investigation of the use of aerogel beads as thermal insulation for cryogenic applications was conducted at the Cryogenics Test Laboratory of NASA Kennedy Space Center. Steady-state liquid nitrogen boiloff methods were used to characterize the thermal performance of aerogel beads in comparison with conventional insulation products such as perlite powder and multilayer insulation (MLI). Aerogel beads produced by Cabot Corporation have a bulk density below 100 kilograms per cubic meter (kg/cubic m) and a mean particle diameter of 1 millimeter (mm). The apparent thermal conductivity values of the bulk material have been determined under steady-state conditions at boundary temperatures of approximately 293 and 77 kelvin (K) and at various cold vacuum pressures (CVP). Vacuum levels ranged from 10(exp -5) torr to 760 torr. All test articles were made in a cylindrical configuration with a typical insulation thickness of 25 mm. Temperature profiles through the thickness of the test specimens were also measured. The results showed the performance of the aerogel beads was significantly better than the conventional materials in both soft-vacuum (1 to 10 torr) and no-vacuum (760 torr) ranges. Opacified aerogel beads performed better than perlite powder under high-vacuum conditions. Further studies for material optimization and system application are in progress.

  11. The Aerocapacitor: A carbon aerogel based supercapacitor

    NASA Astrophysics Data System (ADS)

    Mayer, S. T.; Pekala, R. W.; Kaschmitter, J. L.

    1992-12-01

    During the 1980's, a wide variety of carbon foams, formed by the pyrolysis of polymeric foams, were developed at several Department of Energy Laboratories. These foams are known for their monolithic structure and the ability to tailor their critical parameters (e.g. porosity, density). Lawrence Livermore National Laboratory (LLNL) exclusively developed a unique type of carbon foam, known as carbon aerogels. Carbon aerogels are a special class of open-cell foams with (1) homogeneous ultrafine particle and pore size, (2) very large useful surface area per unit volume, and (3) monolithic structure, that yields (4) excellent electrical conductivity due to the intimate connection of the particles. We have applied carbon aerogels to make an 'Aerocapacitor'; a high power- and energy-density electrochemical double layer capacitor (EDLC) that uses carbon aerogels as electrodes. Carbon aerogel surface areas range from about 100 to 700 m(sup 2)/cc (as measured by BET analysis), with bulk densities of 0.05 to 1.0 g/cm(sup 3) and their morphology allows stored energy to be released rapidly, resulting in high power-densities.

  12. Process for forming transparent aerogel insulating arrays

    DOEpatents

    Tewari, P.H.; Hunt, A.J.

    1985-09-04

    An improved supercritical drying process for forming transparent silica aerogel arrays is described. The process is of the type utilizing the steps of hydrolyzing and condensing aloxides to form alcogels. A subsequent step removes the alcohol to form aerogels. The improvement includes the additional step, after alcogels are formed, of substituting a solvent, such as CO/sub 2/, for the alcohol in the alcogels, the solvent having a critical temperature less than the critical temperature of the alcohol. The resulting gels are dried at a supercritical temperature for the selected solvent, such as CO/sub 2/, to thereby provide a transparent aerogel array within a substantially reduced (days-to-hours) time period. The supercritical drying occurs at about 40/sup 0/C instead of at about 270/sup 0/C. The improved process provides increased yields of large scale, structurally sound arrays. The transparent aerogel array, formed in sheets or slabs, as made in accordance with the improved process, can replace the air gap within a double glazed window, for example, to provide a substantial reduction in heat transfer. The thus formed transparent aerogel arrays may also be utilized, for example, in windows of refrigerators and ovens, or in the walls and doors thereof or as the active material in detectors for analyzing high energy elementary particles or cosmic rays.

  13. Process for forming transparent aerogel insulating arrays

    DOEpatents

    Tewari, Param H.; Hunt, Arlon J.

    1986-01-01

    An improved supercritical drying process for forming transparent silica aerogel arrays is described. The process is of the type utilizing the steps of hydrolyzing and condensing aloxides to form alcogels. A subsequent step removes the alcohol to form aerogels. The improvement includes the additional step, after alcogels are formed, of substituting a solvent, such as CO.sub.2, for the alcohol in the alcogels, the solvent having a critical temperature less than the critical temperature of the alcohol. The resulting gels are dried at a supercritical temperature for the selected solvent, such as CO.sub.2, to thereby provide a transparent aerogel array within a substantially reduced (days-to-hours) time period. The supercritical drying occurs at about 40.degree. C. instead of at about 270.degree. C. The improved process provides increased yields of large scale, structurally sound arrays. The transparent aerogel array, formed in sheets or slabs, as made in accordance with the improved process, can replace the air gap within a double glazed window, for example, to provide a substantial reduction in heat transfer. The thus formed transparent aerogel arrays may also be utilized, for example, in windows of refrigerators and ovens, or in the walls and doors thereof or as the active material in detectors for analyzing high energy elementry particles or cosmic rays.

  14. Aerogel insulation applications for liquid hydrogen launch vehicle tanks

    NASA Astrophysics Data System (ADS)

    Fesmire, J. E.; Sass, J. P.

    2008-05-01

    Solutions to thermal insulation problems using aerogel beads were demonstrated for space launch vehicles using a model of the space shuttle external tank's liquid hydrogen (LH 2) intertank. Test results using liquid helium show that with aerogel, the nitrogen mass inside the intertank is greatly reduced and free liquid nitrogen is eliminated. Physisorption within the aerogel was also investigated, showing that the sorption ratio (liquid nitrogen to aerogel beads) is about 62%. The insulating effectiveness of the aerogel shows that cryopumping is driven by thermal communication between warm and cold surfaces. This technology can solve heat transfer problems and augment existing thermal protection systems on launch vehicles.

  15. Water extractable arabinoxylan aerogels prepared by supercritical CO2 drying.

    PubMed

    Marquez-Escalante, Jorge; Carvajal-Millan, Elizabeth; Miki-Yoshida, Mario; Alvarez-Contreras, Lorena; Toledo-Guillén, Alma Rosa; Lizardi-Mendoza, Jaime; Rascón-Chu, Agustín

    2013-05-14

    Water extractable arabinoxylan (WEAX) aerogels were prepared by extracting the solvent from the alcogels (WEAX hydrogels with an alcohol as the solvent) with carbon dioxide under supercritical conditions. WEAX aerogels were characterized using scanning electron microscopy and adsorption and desorption nitrogen isotherms. The micrographs indicate a heterogeneous porous network structure in WEAX aerogel. Adsorption/desorption nitrogen isotherms of this material were type IV, which confirm that this material possess a mesoporous structure. WEAX aerogels rehydration capability was evaluated and the water absorption mechanism was determined. The WEAX aerogels water absorption mechanism was non-Fickian (n = 0.54).

  16. Determination of Young's modulus of silica aerogels using holographic interferometry

    NASA Astrophysics Data System (ADS)

    Chikode, Prashant P.; Sabale, Sandip R.; Vhatkar, Rajiv S.

    2016-05-01

    Digital holographic interferometry technique is used to determine elastic modulus of silica aerogels. Tetramethoxysilane precursor based Silica aerogels were prepared by the sol-gel process followed by supercritical methanol drying. The alcogels were prepared by keeping the molar ratio of tetramethoxysilane: methyltrimethoxysilane: H2O constant at 1:0.6:4 while the methanol / tetramethoxysilane molar ratio (M) was varied systematically from 12 to 18. Holograms of translucent aerogel samples have been successfully recorded using the digital holographic interferometry technique. Stimulated digital interferograms gives localization of interference fringes on the aerogel surface and these fringes are used to determine the surface deformation and Young's modulus (Y) of the aerogels.

  17. Comparative Analysis of Cherenkov Light Detectors in an Oil Drum

    NASA Astrophysics Data System (ADS)

    Niduaza, Rexavalmar; Wedel, Zachary; Castro, Juan; Zavala, Favian; Fan, Sewan; Fatuzzo, Laura

    2014-03-01

    The multi-pixel photon counters (MPPC) has been used in a number of research development in astro-particle physics and particle physics. In an effort to further implement the MPPC detector, we constructed a modular experimental setup using a 16-inch tall acrylic cylinder filled with distilled water as the light producing medium to determine its feasibility as a possible detector for weak Cherenkov light. We have since progressed towards utilizing an oil drum (approximately 30 gallons) as our light-tight container replacing our prototype. In this talk, we would discuss the results regarding our investigation utilizing 1-inch and 3-inch photo-multiplier tubes (PMTs) in an oil drum as we did for our prototype. We would also present our experimental findings comparing our prototype and our oil drum setup using PMTs in coincidence with the MPPC coupled with wavelength-shifting fibers that are submerged in distilled water inside the oil drum vessel. Department of Education grant nymber P031S90007.

  18. Synthesis and characterization of a nanocrystalline diamond aerogel

    PubMed Central

    Pauzauskie, Peter J.; Crowhurst, Jonathan C.; Worsley, Marcus A.; Laurence, Ted A.; Kilcoyne, A. L. David; Wang, Yinmin; Willey, Trevor M.; Visbeck, Kenneth S.; Fakra, Sirine C.; Evans, William J.; Zaug, Joseph M.; Satcher, Joe H.

    2011-01-01

    Aerogel materials have myriad scientific and technological applications due to their large intrinsic surface areas and ultralow densities. However, creating a nanodiamond aerogel matrix has remained an outstanding and intriguing challenge. Here we report the high-pressure, high-temperature synthesis of a diamond aerogel from an amorphous carbon aerogel precursor using a laser-heated diamond anvil cell. Neon is used as a chemically inert, near-hydrostatic pressure medium that prevents collapse of the aerogel under pressure by conformally filling the aerogel’s void volume. Electron and X-ray spectromicroscopy confirm the aerogel morphology and composition of the nanodiamond matrix. Time-resolved photoluminescence measurements of recovered material reveal the formation of both nitrogen- and silicon- vacancy point-defects, suggesting a broad range of applications for this nanocrystalline diamond aerogel. PMID:21555550

  19. Slotted Polyimide-Aerogel-Filled-Waveguide Arrays

    NASA Technical Reports Server (NTRS)

    Rodriguez-Solis, Rafael A.; Pacheco, Hector L.; Miranda, Felix A.; Meador, Mary Ann B.

    2013-01-01

    Polyimide aerogels were considered to serve as a filling for millimeter-wave waveguides. While these waveguides present a slightly higher loss than hollow waveguides, they have less losses than Duroid substrate integrated waveguides (less than 0.15 dB at Ka-band, in a 20 mm section), and exhibit an order of magnitude of mass reduction when compared to commercial waveguides. A Ka-band slotted aerogel-filled-waveguide array was designed, which provided the same gain (9 dBi) as its standard waveguide counterpart, and a slotted aerogel-filled-waveguide array using folded-slots was designed for comparison, obtaining a gain of 9 dB and a bandwidth of 590 MHz.

  20. Carbon nanomaterials in silica aerogel matrices

    SciTech Connect

    Hamilton, Christopher E; Chavez, Manuel E; Duque, Juan G; Gupta, Gautam; Doorn, Stephen K; Dattelbaum, Andrew M; Obrey, Kimberly A D

    2010-01-01

    Silica aerogels are ultra low-density, high surface area materials that are extremely good thermal insulators and have numerous technical applications. However, their mechanical properties are not ideal, as they are brittle and prone to shattering. Conversely, single-walled carbon nanotubes (SWCNTs) and graphene-based materials, such as graphene oxide, have extremely high tensile strength and possess novel electronic properties. By introducing SWCNTs or graphene-based materials into aerogel matrices, it is possible to produce composites with the desirable properties of both constituents. We have successfully dispersed SWCNTs and graphene-based materials into silica gels. Subsequent supercritical drying results in monolithic low-density composites having improved mechanical properties. These nanocomposite aerogels have great potential for use in a wide range of applications.

  1. High strength air-dried aerogels

    DOEpatents

    Coronado, Paul R.; Satcher, Jr., Joe H.

    2012-11-06

    A method for the preparation of high strength air-dried organic aerogels. The method involves the sol-gel polymerization of organic gel precursors, such as resorcinol with formaldehyde (RF) in aqueous solvents with R/C ratios greater than about 1000 and R/F ratios less than about 1:2.1. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be air dried at ambient temperatures and pressures. The method significantly reduces the time and/or energy required to produce a dried aerogel compared to conventional methods using either supercritical solvent extraction. The air dried gel exhibits typically less than 5% shrinkage.

  2. Cytochrome c Stabilization and Immobilization in Aerogels.

    PubMed

    Harper-Leatherman, Amanda S; Wallace, Jean Marie; Rolison, Debra R

    2017-01-01

    Sol-gel-derived aerogels are three-dimensional, nanoscale materials that combine large surface area with high porosity. These traits make them useful for any rate-critical chemical process, particularly sensing or electrochemical applications, once physical or chemical moieties are incorporated into the gels to add their functionality to the ultraporous scaffold. Incorporating biomolecules into aerogels, other than such rugged species as lipases or cellulose, has been challenging due to the inability of most biomolecules to remain structurally intact within the gels during the necessary supercritical fluid (SCF) processing. However, the heme protein cytochrome c (cyt.c) forms self-organized superstructures around gold (or silver) nanoparticles in buffer that can be encapsulated into wet gels as the sol undergoes gelation. The guest-host wet gel can then be processed to form composite aerogels in which cyt.c retains its characteristic visible absorption. The gold (or silver) nanoparticle-nucleated superstructures protect the majority of the protein from the harsh physicochemical conditions necessary to form an aerogel. The Au~cyt.c superstructures exhibit rapid gas-phase recognition of nitric oxide (NO) within the bioaerogel matrix, as facilitated by the high-quality pore structure of the aerogel, while remaining viable for weeks at room temperature. More recently, careful control of synthetic parameters (e.g., buffer concentration, protein concentration, SCF extraction rate) have allowed for the preparation of cyt.c-silica aerogels, sans nucleating nanoparticles; these bioaerogels also exhibit rapid gas-phase sensing while retaining protein structural stability.

  3. Reverse surface-polariton cherenkov radiation

    PubMed Central

    Tao, Jin; Wang, Qi Jie; Zhang, Jingjing; Luo, Yu

    2016-01-01

    The existence of reverse Cherenkov radiation for surface plasmons is demonstrated analytically. It is shown that in a metal-insulator-metal (MIM) waveguide, surface plasmon polaritons (SPPs) excited by an electron moving at a speed higher than the phase velocity of SPPs can generate Cherenkov radiation, which can be switched from forward to reverse direction by tuning the core thickness of the waveguide. Calculations are performed in both frequency and time domains, demonstrating that a radiation pattern with a backward-pointing radiation cone can be achieved at small waveguide core widths, with energy flow opposite to the wave vector of SPPs. Our study suggests the feasibility of generating and steering electron radiation in simple plasmonic systems, opening the gate for various applications such as velocity-selective particle detections. PMID:27477061

  4. HAWC - The High Altitude Water Cherenkov Detector

    NASA Astrophysics Data System (ADS)

    Tepe, Andreas; HAWC Collaboration

    2012-07-01

    The high altitude water Cherenkov observatory (HAWC) is an instrument for the detection of high energy cosmic gamma-rays. Its predecessor Milagro has successfully proven that the water Cherenkov technology for gamma-ray astronomy is a useful technique. HAWC is currently under construction at Sierra Negra in Mexico at an altitude of 4100 m and will include several improvements compared to Milagro. Two complementary DAQ systems of the HAWC detector allow for the observation of a large fraction of the sky with a very high duty cycle and independent of environmental conditions. HAWC will observe the gamma-ray sky from about 100 GeV up to 100 TeV. Also the cosmic ray flux anisotropy on different angular length scales is object of HAWC science. Because of HAWC's large effective area and field of view, we describe its prospects to observe gamma-ray bursts (GRBs) as an example for transient sources.

  5. Characterization of coherent Cherenkov radiation source

    NASA Astrophysics Data System (ADS)

    Smirnov, A. V.

    2015-01-01

    Engineering formulae for calculation of peak, and spectral brightness of resonant long-range wakefield extractor are given. It is shown that the brightness is dominated by beam density in the slow wave structure and antenna gain of the outcoupling. Far field radiation patterns and brightness of circular and high aspect ratio planar radiators are compared. A possibility to approach diffraction limited brightness is demonstrated. The role of group velocity in designing of the Cherenkov source is analyzed. The approach can be applied for design and characterization of various structure-dominated sources (e.g., wakefield extractors with gratings or dielectrics, or FEL-Cherenkov combined sources) radiating into a free space using an antenna (in microwave to sub-mm wave regions). The high group velocity structures can be also effective as energy dechirpers and for diagnostics of microbunched relativistic electron beams.

  6. Incorporation of noble metals into aerogels

    DOEpatents

    Hair, L.M.; Sanner, R.D.; Coronado, P.R.

    1998-12-22

    Aerogels or xerogels containing atomically dispersed noble metals for applications such as environmental remediation are disclosed. New noble metal precursors, such as Pt--Si or Pd(Si--P){sub 2}, have been created to bridge the incompatibility between noble metals and oxygen, followed by their incorporation into the aerogel or xerogel through sol-gel chemistry and processing. Applications include oxidation of hydrocarbons and reduction of nitrogen oxide species, complete oxidation of volatile organic carbon species, oxidative membranes for photocatalysis and partial oxidation for synthetic applications.

  7. Incorporation of noble metals into aerogels

    DOEpatents

    Hair, Lucy M.; Sanner, Robert D.; Coronado, Paul R.

    1998-01-01

    Aerogels or xerogels containing atomically dispersed noble metals for applications such environmental remediation. New noble metal precursors, such as Pt--Si or Pd(Si--P).sub.2, have been created to bridge the incompatibility between noble metals and oxygen, followed by their incorporation into the aerogel or xerogel through sol-gel chemistry and processing. Applications include oxidation of hydrocarbons and reduction of nitrogen oxide species, complete oxidation of volatile organic carbon species, oxidative membranes for photocatalysis and partial oxidation for synthetic applications.

  8. Tests of innovative photon detectors and integrated electronics for the large-area CLAS12 ring-imaging Cherenkov detector

    SciTech Connect

    Contalbrigo, Marco

    2015-07-01

    A large area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capability in the momentum range from 3 GeV/c to 8 GeV/c for the CLAS12 experiments at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Lab. Its aim is to study the 3D nucleon structure in the yet poorly explored valence region by deep-inelastic scattering, and to perform precision measurements in hadron spectroscopy. The adopted solution foresees a novel hybrid optics design based on an aerogel radiator, composite mirrors and a densely packed and highly segmented photon detector. Cherenkov light will either be imaged directly (forward tracks) or after two mirror reflections (large angle tracks). Extensive tests have been performed on Hamamatsu H8500 and novel flat multi-anode photomultipliers under development and on various types of silicon photomultipliers. A large scale prototype based on 28 H8500 MA-PMTs has been realized and tested with few GeV/c hadron beams at the T9 test-beam facility of CERN. In addition a small prototype was used to study the response of customized SiPM matrices within a temperature interval ranging from 25 down to –25 °C. The preliminary results of the individual photon detector tests and of the prototype performance at the test-beams are here reported.

  9. RESEARCH NOTES FROM COLLABORATIONS: How to focus a Cherenkov telescope

    NASA Astrophysics Data System (ADS)

    Hofmann, W.

    2001-04-01

    Cherenkov telescopes image the Cherenkov emission from air showers. A priori, it is not obvious if the `best' images are achieved by measuring Cherenkov photon angles, i.e. focusing the telescope at infinity, or by considering the air shower as an object to be imaged, in which case one might focus the telescope on the central region of the shower. The issue is addressed using shower simulations.

  10. An emerging platform for drug delivery: aerogel based systems.

    PubMed

    Ulker, Zeynep; Erkey, Can

    2014-03-10

    Over the past few decades, advances in "aerogel science" have provoked an increasing interest for these materials in pharmaceutical sciences for drug delivery applications. Because of their high surface areas, high porosities and open pore structures which can be tuned and controlled by manipulation of synthesis conditions, nanostructured aerogels represent a promising class of materials for delivery of various drugs as well as enzymes and proteins. Along with biocompatible inorganic aerogels and biodegradable organic aerogels, more complex systems such as surface functionalized aerogels, composite aerogels and layered aerogels have also been under development and possess huge potential. Emphasis is given to the details of the aerogel synthesis and drug loading methods as well as the influence of synthesis parameters and loading methods on the adsorption and release of the drugs. Owing to their ability to increase the bioavailability of low solubility drugs, to improve both their stability and their release kinetics, there are an increasing number of research articles concerning aerogels in different drug delivery applications. This review presents an up to date overview of the advances in all kinds of aerogel based drug delivery systems which are currently under investigation.

  11. New air Cherenkov light detectors to study mass composition of cosmic rays with energies above knee region

    NASA Astrophysics Data System (ADS)

    Tsunesada, Yoshiki; Katsuya, Ryoichi; Mitsumori, Yu; Nakayama, Keisuke; Kakimoto, Fumio; Tokuno, Hisao; Tajima, Norio; Miranda, Pedro; Salinas, Juan; Tavera, Wilfredo

    2014-11-01

    We have installed a hybrid detection system for air showers generated by cosmic rays with energies greater than 3 ×1015 eV at Mount Chacaltaya (5200 m above the sea level), in order to study the mass composition of cosmic rays above the knee region. This detection system comprises an air shower array with 49 scintillation counters in an area of 500 m×650 m, and seven new Cherenkov light detectors installed in a radial direction from the center of the air shower array with a separation of 50 m. It is known that the longitudinal development of a particle cascade in the atmosphere strongly depends on the type of the primary nucleus, and an air shower initiated by a heavier nucleus develops faster than that by a lighter primary of the same energy, because of the differences in the interaction cross-section and the energy per nucleon. This can be measured by detecting the Cherenkov radiation emitted from charged particles in air showers at higher altitudes. In this paper we describe the design and performance of our new non-imaging Cherenkov light detectors at Mount Chacaltaya that are operated in conjunction with the air shower array. The arrival directions and energies of air showers are determined by the shower array, and information about the primary masses is obtained from the Cherenkov light data including the time profiles and lateral distributions. The detector consists of photomultiplier tube (PMT), high-speed ADCs, other control modules, and data storage device. The Cherenkov light signals from an air shower are typically 10-100 ns long, and the waveforms are digitized with a sampling frequency of 1 GHz and recorded in situ without long-distance analog signal transfers. All the Cherenkov light detectors record their time-series data by receiving a triggering signal transmitted from the trigger module of the air shower array, which is fired by a coincidence of shower signals in four neighboring scintillation counters. The optical characteristics of the

  12. Aerogel Insulation Systems for Space Launch Applications

    NASA Technical Reports Server (NTRS)

    Fesmire, James E.

    2005-01-01

    New developments in materials science in the areas of solution gelation processes and nanotechnology have led to the recent commercial production of aerogels. Concurrent with these advancements has been the development of new approaches to cryogenic thermal insulation systems. For example, thermal and physical characterizations of aerogel beads under cryogenic-vacuum conditions have been performed at the Cryogenics Test Laboratory of the NASA Kennedy Space Center. Aerogel-based insulation system demonstrations have also been conducted to improve performance for space launch applications. Subscale cryopumping experiments show the thermal insulating ability of these fully breathable nanoporous materials. For a properly executed thermal insulation system, these breathable aerogel systems are shown to not cryopump beyond the initial cooldown and thermal stabilization phase. New applications are being developed to augment the thermal protection systems of space launch vehicles, including the Space Shuttle External Tank. These applications include a cold-boundary temperature of 90 K with an ambient air environment in which both weather and flight aerodynamics are important considerations. Another application is a nitrogen-purged environment with a cold-boundary temperature of 20 K where both initial cooldown and launch ascent profiles must be considered. Experimental results and considerations for these flight system applications are discussed.

  13. Lightweight and thermally insulating aerogel glass materials

    NASA Astrophysics Data System (ADS)

    Gao, Tao; Jelle, Bjørn Petter; Gustavsen, Arild; He, Jianying

    2014-07-01

    Glass represents an important and widely used building material, and crucial aspects to be addressed include thermal conductivity, visible light transmittance, and weight for windows with improved energy efficiency. In this work, by sintering monolithic silica aerogel precursors at elevated temperatures, aerogel glass materials were successfully prepared, which were characterized by low thermal conductivity [k ≈ 0.17-0.18 W/(mK)], high visible transparency (T vis ≈ 91-96 % at 500 nm), low density (ρ ≈ 1.60-1.79 g/cm3), and enhanced mechanical strength (typical elastic modulus E r ≈ 2.0-6.4 GPa). These improved properties were derived from a series of successive gelation and aging steps during the desiccation of silica aerogels. The involved sol → gel → glass transformation was investigated by means of thermo-gravimetric analysis, scanning electron microscopy, nanoindentation, and Fourier transform infrared spectroscopy. Strategies of improving further the mechanical strength of the obtained aerogel glass materials are also discussed.

  14. Mechanically Robust Polymer-Graphene Aerogels

    NASA Astrophysics Data System (ADS)

    Ha, Heonjoo; Shanmuganathan, Kadhiravan; Ellison, Christopher

    2015-03-01

    Graphene has been intensely studied for the past several years due to its many attractive properties. Graphene oxide (GO) aerogels are particularly interesting due to their light weight and excellent performance in various applications, such as environmental remediation, super-hydrophobic and super-oleophilic materials, energy storage, etc. However, GO aerogels are generally weak and delicate which complicates their handling and potentially limits their application outside the research lab. The focus of this work is to synthesize mechanically stable aerogels that are robust and easy to handle without substantially sacrificing their low density. To overcome this challenge, we found that by intermixing a small amount of readily available and thermally crosslinkable polymer can enhance the mechanical properties without disrupting other characteristic intrinsic properties of the aerogel itself. This method is a simple straight-forward procedure that does not include any tedious chemical reactions or harsh chemicals. Furthermore, we will demonstrate the performance of these materials as a super-absorbent and pressure sensor.

  15. 21 CFR 182.1711 - Silica aerogel.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Silica aerogel. 182.1711 Section 182.1711 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Multiple Purpose GRAS Food Substances §...

  16. Aerogel insulation systems for space launch applications

    NASA Astrophysics Data System (ADS)

    Fesmire, J. E.

    2006-02-01

    New developments in materials science in the areas of solution gelation processes and nanotechnology have led to the recent commercial production of aerogels. Concurrent with these advancements has been the development of new approaches to cryogenic thermal insulation systems. For example, thermal and physical characterizations of aerogel beads under cryogenic-vacuum conditions have been performed at the Cryogenics Test Laboratory of the NASA Kennedy Space Center. Aerogel-based insulation system demonstrations have also been conducted to improve performance for space launch applications. Subscale cryopumping experiments show the thermal insulating ability of these fully breathable nanoporous materials. For a properly executed thermal insulation system, these breathable aerogel systems are shown to not cryopump beyond the initial cooldown and thermal stabilization phase. New applications are being developed to augment the thermal protection systems of space launch vehicles, including the Space Shuttle External Tank. These applications include a cold-boundary temperature of 90 K with an ambient air environment in which both weather and flight aerodynamics are important considerations. Another application is a nitrogen-purged environment with a cold-boundary temperature of 20 K where both initial cooldown and launch ascent profiles must be considered. Experimental results and considerations for these flight system applications are discussed.

  17. Manufacturing complex silica aerogel target components

    SciTech Connect

    Defriend Obrey, Kimberly Ann; Day, Robert D; Espinoza, Brent F; Hatch, Doug; Patterson, Brian M; Feng, Shihai

    2008-01-01

    Aerogel is a material used in numerous components in High Energy Density Physics targets. In the past these components were molded into the proper shapes. Artifacts left in the parts from the molding process, such as contour irregularities from shrinkage and density gradients caused by the skin, have caused LANL to pursue machining as a way to make the components.

  18. BGO as a hybrid scintillator / Cherenkov radiator for cost-effective time-of-flight PET.

    PubMed

    Brunner, Stefan E; Schaart, Dennis

    2017-03-30

    Due to detector developments in the last decade, the time-of-flight (TOF) method is now commonly used to improve the quality of positron emission tomography (PET) images. Clinical TOF-PET systems based on L(Y)SO:Ce crystals and silicon photomultipliers (SiPMs) with coincidence resolving times (CRT) between 325 ps and 400 ps FWHM have recently been developed. Before the introduction of L(Y)SO:Ce, BGO was used in many PET systems. In addition to a lower price, BGO offers a superior attenuation coefficient and a higher photoelectric fraction than L(Y)SO:Ce. However, BGO is generally considered an inferior TOF-PET scintillator. In recent years, TOF-PET detectors based on the Cherenkov effect have been proposed. However, the low Cherenkov photon yield in the order of ∽10 photons per event complicates energy discrimination-a severe disadvantage in clinical PET. The optical characteristics of BGO, in particular its high transparency down to 310 nm and its high refractive index of ∽2.15, are expected to make it a good Cherenkov radiator. Here, we study the feasibility of combining event timing based on Cherenkov emission with energy discrimination based on scintillation in BGO, as a potential approach towards a cost-effective TOF-PET detector. Rise time measurements were performed using a time-correlated single photon counting (TCSPC) setup implemented on a digital photon counter (DPC) array, revealing a prompt luminescent component likely to be due to Cherenkov emission. Coincidence timing measurements were performed using BGO crystals with a cross-section of 3 mm × 3 mm and five different lengths between 3 mm and 20 mm, coupled to DPC arrays. Non-Gaussian coincidence spectra with a FWHM of 200 ps were obtained with the 27 mm3 BGO cubes, while FWHM values as good as 330 ps were achieved with the 20 mm long crystals. The FWHM value was found to improve with decreasing temperature, while the FWTM value showed the opposite trend.

  19. Desalination with carbon aerogel electrodes. Revision 1

    SciTech Connect

    Farmer, J.C.; Richardson, J.H.; Fix, D.V.; Thomson, S.L.; May, S.C.

    1996-12-04

    Electrically regenerated electrosorption process (carbon aerogel CDI) was developed by LLNL for continuously removing ionic impurities from aqueous streams. A salt solution flows in a channel formed by numerous pairs of parallel carbon aerogel electrodes. Each electrode has a very high BET surface area (2-5.4x10{sup 6}ft{sup 2}lb{sup -1} or 400-1100 m{sup 2}g{sup -1}) and very low electrical resistivity ({le}40 m{Omega}). Ions are removed from the electrolyte by the electric field and electrosorbed onto the carbon aerogel. It is concluded that carbon aerogel CDI may be an energy-efficient alternative to electrodialysis and reverse osmosis for desalination of brackish water ({le}5000 ppM). The intrinsic energy required by this process is about QV/2, where Q is the stored electrical charge and V is the voltage between the electrodes, plus losses. Estimated requirement for desalination of a 2000 ppM feed is -0.53-2.5 Wh/gal{sup -1} (0.5-2.4 kJ L{sup -1}), depending on voltage, flow rate, cell dimensions, aerogel density, recovery ratio, etc. This assumes that 50-70% of the stored electrical energy is reclaimed during regeneration (electrical discharge). Though the energy requirement for desalination of sea water is also low, this application will be much more difficult. Additional work will be required for desalination of streams that contain more than 5000 ppM total dissolved solids (2000 ppM will require electrochemical cells with extremely tight, demanding tolerances). At this present time, the process is best suited for streams with dilute impurities, as recently demonstrated during a field test at LLNL Treatment Facility C.

  20. Synthesis and biomedical applications of aerogels: Possibilities and challenges.

    PubMed

    Maleki, Hajar; Durães, Luisa; García-González, Carlos A; Del Gaudio, Pasquale; Portugal, António; Mahmoudi, Morteza

    2016-10-01

    Aerogels are an exceptional group of nanoporous materials with outstanding physicochemical properties. Due to their unique physical, chemical, and mechanical properties, aerogels are recognized as promising candidates for diverse applications including, thermal insulation, catalysis, environmental cleaning up, chemical sensors, acoustic transducers, energy storage devices, metal casting molds and water repellant coatings. Here, we have provided a comprehensive overview on the synthesis, processing and drying methods of the mostly investigated types of aerogels used in the biological and biomedical contexts, including silica aerogels, silica-polymer composites, polymeric and biopolymer aerogels. In addition, the very recent challenges on these aerogels with regard to their applicability in biomedical field as well as for personalized medicine applications are considered and explained in detail.

  1. Evaluating Dimethyldiethoxysilane for use in Polyurethane Crosslinked Silica Aerogels

    NASA Technical Reports Server (NTRS)

    Randall, Jason P.; Meador, Mary Ann B.; Jana, Sadhan C.

    2008-01-01

    Silica aerogels are highly porous materials which exhibit exceptionally low density and thermal conductivity. Their "pearl necklace" nanostructure, however, is inherently weak; most silica aerogels are brittle and fragile. The strength of aerogels can be improved by employing an additional crosslinking step using isocyanates. In this work, dimethyldiethoxysilane (DMDES) is evaluated for use in the silane backbone of polyurethane crosslinked aerogels. Approximately half of the resulting aerogels exhibited a core/shell morphology of hard crosslinked aerogel surrounding a softer, uncrosslinked center. Solid state NMR and scanning electron microscopy results indicate the DMDES incorporated itself as a conformal coating around the outside of the secondary silica particles, in much the same manner as isocyanate crosslinking. Response surface curves were generated from compression data, indicating levels of reinforcement comparable to that in previous literature, despite the core/shell morphology.

  2. Highly compressible 3D periodic graphene aerogel microlattices

    SciTech Connect

    Zhu, Cheng; Han, T. Yong-Jin; Duoss, Eric B.; Golobic, Alexandra M.; Kuntz, Joshua D.; Spadaccini, Christopher M.; Worsley, Marcus A.

    2015-04-22

    Graphene is a two-dimensional material that offers a unique combination of low density, exceptional mechanical properties, large surface area and excellent electrical conductivity. Recent progress has produced bulk 3D assemblies of graphene, such as graphene aerogels, but they possess purely stochastic porous networks, which limit their performance compared with the potential of an engineered architecture. Here we report the fabrication of periodic graphene aerogel microlattices, possessing an engineered architecture via a 3D printing technique known as direct ink writing. The 3D printed graphene aerogels are lightweight, highly conductive and exhibit supercompressibility (up to 90% compressive strain). Moreover, the Young’s moduli of the 3D printed graphene aerogels show an order of magnitude improvement over bulk graphene materials with comparable geometric density and possess large surface areas. Ultimately, adapting the 3D printing technique to graphene aerogels realizes the possibility of fabricating a myriad of complex aerogel architectures for a broad range of applications.

  3. Highly compressible 3D periodic graphene aerogel microlattices

    NASA Astrophysics Data System (ADS)

    Zhu, Cheng; Han, T. Yong-Jin; Duoss, Eric B.; Golobic, Alexandra M.; Kuntz, Joshua D.; Spadaccini, Christopher M.; Worsley, Marcus A.

    2015-04-01

    Graphene is a two-dimensional material that offers a unique combination of low density, exceptional mechanical properties, large surface area and excellent electrical conductivity. Recent progress has produced bulk 3D assemblies of graphene, such as graphene aerogels, but they possess purely stochastic porous networks, which limit their performance compared with the potential of an engineered architecture. Here we report the fabrication of periodic graphene aerogel microlattices, possessing an engineered architecture via a 3D printing technique known as direct ink writing. The 3D printed graphene aerogels are lightweight, highly conductive and exhibit supercompressibility (up to 90% compressive strain). Moreover, the Young's moduli of the 3D printed graphene aerogels show an order of magnitude improvement over bulk graphene materials with comparable geometric density and possess large surface areas. Adapting the 3D printing technique to graphene aerogels realizes the possibility of fabricating a myriad of complex aerogel architectures for a broad range of applications.

  4. Impact of polishing on the light scattering at aerogel surface

    NASA Astrophysics Data System (ADS)

    Barnyakov, A. Yu.; Barnyakov, M. Yu.; Bobrovnikov, V. S.; Buzykaev, A. R.; Danilyuk, A. F.; Katcin, A. A.; Kononov, S. A.; Kirilenko, P. S.; Kravchenko, E. A.; Kuyanov, I. A.; Onuchin, A. P.; Ovtin, I. V.; Predein, A. Yu.; Protsenko, R. S.

    2016-07-01

    Particle identification power of modern aerogel RICH detectors strongly depends on optical quality of radiators. It was shown that wavelength dependence of aerogel tile transparency after polishing cannot be described by the standard Hunt formula. The Hunt formula has been modified to describe scattering in a thin layer of silica dust on the surface of aerogel tile. Several procedures of polishing of aerogel tile have been tested. The best result has been achieved while using natural silk tissue. The resulting block has optical smooth surfaces. The measured decrease of aerogel transparency due to surface scattering is about few percent. This result could be used for production of radiators for the Focusing Aerogel RICH detectors.

  5. Non-silica aerogels as hypervelocity particle capture materials

    NASA Astrophysics Data System (ADS)

    Jones, Steven M.

    2010-01-01

    The Stardust sample return mission to the comet Wild 2 used silica aerogel as the principal cometary and interstellar particle capture and return medium. However, since both cometary dust and interstellar grains are composed largely of silica, using a silica collector complicates the science that can be accomplished with these particles. The use of non-silica aerogel in future extra-terrestrial particle capture and return missions would expand the scientific value of these missions. Alumina, titania, germania, zirconia, tin oxide, and resorcinol/formaldehyde aerogels were produced and impact tested with 20, 50, and 100μm glass microspheres to determine the suitability of different non-silica aerogels as hypervelocity particle capture mediums. It was found that non-silica aerogels do perform as efficient hypervelocity capture mediums, with alumina, zirconia, and resorcinol/formaldehyde aerogels proving to be the best of the materials tested.

  6. Highly compressible 3D periodic graphene aerogel microlattices

    PubMed Central

    Zhu, Cheng; Han, T. Yong-Jin; Duoss, Eric B.; Golobic, Alexandra M.; Kuntz, Joshua D.; Spadaccini, Christopher M.; Worsley, Marcus A.

    2015-01-01

    Graphene is a two-dimensional material that offers a unique combination of low density, exceptional mechanical properties, large surface area and excellent electrical conductivity. Recent progress has produced bulk 3D assemblies of graphene, such as graphene aerogels, but they possess purely stochastic porous networks, which limit their performance compared with the potential of an engineered architecture. Here we report the fabrication of periodic graphene aerogel microlattices, possessing an engineered architecture via a 3D printing technique known as direct ink writing. The 3D printed graphene aerogels are lightweight, highly conductive and exhibit supercompressibility (up to 90% compressive strain). Moreover, the Young's moduli of the 3D printed graphene aerogels show an order of magnitude improvement over bulk graphene materials with comparable geometric density and possess large surface areas. Adapting the 3D printing technique to graphene aerogels realizes the possibility of fabricating a myriad of complex aerogel architectures for a broad range of applications. PMID:25902277

  7. Tailoring mechanical properties of aerogels for aerospace applications.

    PubMed

    Randall, Jason P; Meador, Mary Ann B; Jana, Sadhan C

    2011-03-01

    Silica aerogels are highly porous solid materials consisting of three-dimensional networks of silica particles and are typically obtained by removing the liquid in silica gels under supercritical conditions. Several unique attributes such as extremely low thermal conductivity and low density make silica aerogels excellent candidates in the quest for thermal insulation materials used in space missions. However, native silica aerogels are fragile at relatively low stresses. More durable aerogels with higher strength and stiffness are obtained by proper selection of silane precursors and by reinforcement with polymers. This paper first presents a brief review of the literature on methods of silica aerogel reinforcement and then discusses our recent activities in improving not only the strength but also the elastic response of polymer-reinforced silica aerogels. Several alkyl-linked bis-silanes were used in promoting flexibility of the silica networks in conjunction with polymer reinforcement by epoxy.

  8. Flexible aerogel composite for mechanical stability and process of fabrication

    DOEpatents

    Coronado, Paul R.; Poco, John F.

    1999-01-01

    A flexible aerogel and process of fabrication. An aerogel solution is mixed with fibers in a mold and allowed to gel. The gel is then processed by supercritical extraction, or by air drying, to produce a flexible aerogel formed to the shape of the mold. The flexible aerogel has excellent thermal and acoustic properties, and can be utilized in numerous applications, such as for energy absorption, insulation (temperature and acoustic), to meet the contours of aircraft shapes, and where space is limited since an inch of aerogel is a 4-5 times better insulator than an inch of fiberglass. The flexible aerogel may be of an inorganic (silica) type or an organic (carbon) type, but containing fibers, such as glass or carbon fibers.

  9. Flexible aerogel composite for mechanical stability and process of fabrication

    DOEpatents

    Coronado, Paul R.; Poco, John F.

    2000-01-01

    A flexible aerogel and process of fabrication. An aerogel solution is mixed with fibers in a mold and allowed to gel. The gel is then processed by supercritical extraction, or by air drying, to produce a flexible aerogel formed to the shape of the mold. The flexible aerogel has excellent thermal and acoustic properties, and can be utilized in numerous applications, such as for energy absorption, insulation (temperature and acoustic), to meet the contours of aircraft shapes, and where space is limited since an inch of aerogel is a 4-5 times better insulator than an inch of fiberglass. The flexible aerogel may be of an inorganic (silica) type or an organic (carbon) type, but containing fibers, such as glass or carbon fibers.

  10. Representations and image classification methods for Cherenkov telescopes

    SciTech Connect

    Malagon, C.; Parcerisa, D. S.; Barrio, J. A.; Nieto, D.

    2008-05-29

    The problem of identifying gamma ray events out of charged cosmic ray background (so called hadrons) in Cherenkov telescopes is one of the key problems in VHE gamma ray astronomy. In this contribution, we present a novel approach to this problem by implementing different classifiers relying on the information of each pixel of the camera of a Cherenkov telescope.

  11. Proposal for Cherenkov Time of Flight Technique with Picosecond Resolution

    SciTech Connect

    S. Majewski; A. Margaryan; L. Tang

    2005-08-05

    A new particle identification device for Jlab 12 GeV program is proposed. It is based on the measurement of time information obtained by means of a new photon detector and time measuring concept. The expected time measurement precision for the Cherenkov time-of-flight detector is about or less than 10 picosecond for Cherenkov radiators with lengths less than 50 cm.

  12. Camera Development for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Moncada, Roberto Jose

    2017-01-01

    With the Cherenkov Telescope Array (CTA), the very-high-energy gamma-ray universe, between 30 GeV and 300 TeV, will be probed at an unprecedented resolution, allowing deeper studies of known gamma-ray emitters and the possible discovery of new ones. This exciting project could also confirm the particle nature of dark matter by looking for the gamma rays produced by self-annihilating weakly interacting massive particles (WIMPs). The telescopes will use the imaging atmospheric Cherenkov technique (IACT) to record Cherenkov photons that are produced by the gamma-ray induced extensive air shower. One telescope design features dual-mirror Schwarzschild-Couder (SC) optics that allows the light to be finely focused on the high-resolution silicon photomultipliers of the camera modules starting from a 9.5-meter primary mirror. Each camera module will consist of a focal plane module and front-end electronics, and will have four TeV Array Readout with GSa/s Sampling and Event Trigger (TARGET) chips, giving them 64 parallel input channels. The TARGET chip has a self-trigger functionality for readout that can be used in higher logic across camera modules as well as across individual telescopes, which will each have 177 camera modules. There will be two sites, one in the northern and the other in the southern hemisphere, for full sky coverage, each spanning at least one square kilometer. A prototype SC telescope is currently under construction at the Fred Lawrence Whipple Observatory in Arizona. This work was supported by the National Science Foundation's REU program through NSF award AST-1560016.

  13. Bokeh mirror alignment for Cherenkov telescopes

    NASA Astrophysics Data System (ADS)

    Mueller, S. A.; Adam, J.; Ahnen, M. L.; Baack, D.; Balbo, M.; Bergmann, M.; Biland, A.; Blank, M.; Bretz, T.; Bruegge, K. A.; Buss, J.; Dmytriiev, A.; Dorner, D.; Einecke, S.; Hempfling, C.; Hildebrand, D.; Hughes, G.; Linhoff, L.; Mannheim, K.; Neise, D.; Neronov, A.; Noethe, M.; Paravac, A.; Pauss, F.; Rhode, W.; Shukla, A.; Temme, F.; Thaele, J.; Walter, R.

    2016-08-01

    Segmented imaging reflectors are a great choice for Imaging Atmospheric Cherenkov Telescopes (IACTs). However, the alignment of the individual mirror facets is challenging. We align a segmented reflector by observing and optimizing its Bokeh function. Bokeh alignment can already be done with very little resources and little preparation time. Further, Bokeh alignment can be done anytime, even during the day. We present a first usage of Bokeh alignment on FACT, a 4m IACT on Canary Island La Palma, Spain and further a first Bokeh alignment test on the CTA MST IACT prototype in Brelin Adlershof.

  14. Cherenkov radiation as a serendipitous phenomenon

    NASA Astrophysics Data System (ADS)

    Kadmensky, S. G.

    2015-05-01

    A brief account is given of P A Cherenkov's Voronezh years, a period during which the future Nobel laureate in physics attended school (in the village of Novaya Chigla near Voronezh) and studied at Voronezh State University. The history of the serendipitous discovery of the radiation which was to be named after him is described and its importance for modern science is discussed. Possible modern approaches are considered to explain — without using the concept of 'cold nuclear synthesis' — some other unexpected experimental results on the nonthermonuclear fusion of light nuclei stimulated by electron beams and by laser and gamma radiations.

  15. Wide-angle cherenkov telescope prototype preliminary data

    NASA Astrophysics Data System (ADS)

    Timofeev, Lev; Anatoly, Ivanov

    2016-07-01

    This report presents an observation method of Cherenkov light from extensive air showers (EAS) generated by cosmic rays (CRs) above 10^16eV and preliminary observations. The interest in Cherenkov light differential detectors of EAS is caused by the possibility to measure the depth of cascade maximum, Xmax, and/or the shower age via angular and temporal distributions of the Cherenkov signal. In particular, it was shown using EAS model simulations that the pulse width measured at the periphery of the shower, r > 300 m, at sea level is pronouncedly connected with Xmax. Cherenkov detector is a wide-angle telescope working in coincidence with scintillation detectors, integral and differential Cherenkov detectors Yakutsk complex EAS.

  16. Mechanically Strong Lightweight Materials for Aerospace Applications (x-aerogels)

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas

    2005-01-01

    The X-Aerogel is a new NASA-developed strong lightweight material made by reacting the mesoporous surfaces of 3-D networks of inorganic nanoparticles with polymeric crosslinkers. Since the relative amount of the crosslinker and the backbone are comparable, X-Aerogels can be viewed either as aerogels modified by templated accumulation of polymer on the skeletal nanoparticles, or as nanoporous polymers made by templated casting of polymeric precursors on a nanostructured framework. The most striking feature of X-Aerogels is that for a nominal 3-fold increase in density (still a ultralightweight material), the mechanical strength can be up to 300 times higher than the strength of the underlying native aerogel. Thus, X-Aerogels combine a multiple of the specific compressive strength of steel, with the thermal conductivity of styrofoam. XAerogels have been demonstrated with several polymers such as polyurethanes/polyureas, epoxies and polyolefins, while crosslinking of approximately 35 different oxide aerogels yields a wide variety of dimensionally stable, porous lightweight materials with interesting structural, magnetic and optical properties. X-Aerogels are evaluated for cryogenic rocket fuel storage tanks and for Advanced EVA suits, where they will play the dual role of the thermal insulator/structural material. Along the same lines, major impact is also expected by the use of X-Aerogels in structural components/thermal protection for small satellites, spacecrafts, planetary vehicles and habitats.

  17. Thio-,amine-,nitro-,and macrocyclic containing organic aerogels & xerogels

    DOEpatents

    Fox, Glenn A.; Tillotson, Thomas M.

    2005-08-02

    An organic aerogel or xerogel formed by a sol-gel reaction using starting materials that exhibit similar reactivity to the most commonly used resorcinol starting material. The new starting materials, including thio-, amine- and nitro-containing molecules and functionalized macrocyclic molecules will produce organic xerogels and aerogels that have improved performance in the areas of detection and sensor technology, as well as water stream remediation. Also, further functionalization of these new organic aerogels or xerogels will yield material that can be extracted with greater facility than current organic aerogels.

  18. Multiscale Modeling of Heat Conduction in Carbon Nanotube Aerogels

    NASA Astrophysics Data System (ADS)

    Gong, Feng; Papavassiliou, Dimitrios; Duong, Hai

    Carbon nanotube (CNT) aerogels have attracted a lot of interest due to their ultrahigh strength/weight and surface area/weight ratios. They are promising advanced materials used in energy storage systems, hydrogen storage media and weight-conscious devices such as satellites, because of their ultralight and highly porous quality. CNT aerogels can have excellent electrical conductivity and mechanical strength. However, the thermal conductivity of CNT aerogels are as low as 0.01-0.1 W/mK, which is five orders of magnitude lower than that of CNT (2000-5000 W/mK). To investigate the mechanisms for the low thermal conductivity of CNT aerogels, multiscale models are built in this study. Molecular dynamic (MD) simulations are first carried out to investigate the heat transfer between CNT and different gases (e.g. nitrogen and hydrogen), and the thermal conductance at CNT-CNT interface. The interfacial thermal resistances of CNT-gas and CNT-CNT are estimated from the MD simulations. Mesoscopic modeling of CNT aerogels are then built using an off-lattice Monte Carlo (MC) simulations to replicate the realistic CNT aerogels. The interfacial thermal resistances estimated from MD simulations are used as inputs in the MC models to predict the thermal conductivity of CNT aerogels. The volume fractions and the complex morphologies of CNTs are also quantified to study their effects on the thermal conductivity of CNT aerogels. The quantitative findings may help researchers to obtain the CNT aerogels with expected thermal conductivity.

  19. The High-Altitude Water Cherenkov Observatory

    NASA Astrophysics Data System (ADS)

    Mostafá, Miguel A.

    2014-10-01

    The High-Altitude Water Cherenkov (HAWC) observatory is a large field of view, continuously operated, TeV γ-ray experiment under construction at 4,100 m a.s.l. in Mexico. The HAWC observatory will have an order of magnitude better sensitivity, angular resolution, and background rejection than its predecessor, the Milagro experiment. The improved performance will allow us to detect both the transient and steady emissions, to study the Galactic diffuse emission at TeV energies, and to measure or constrain the TeV spectra of GeV γ-ray sources. In addition, HAWC will be the only ground-based instrument capable of detecting prompt emission from γ-ray bursts above 50 GeV. The HAWC observatory will consist of an array of 300 water Cherenkov detectors (WCDs), each with four photomultiplier tubes. This array is currently under construction on the flanks of the Sierra Negra volcano near the city of Puebla, Mexico. The first 30 WCDs (forming an array approximately the size of Milagro) were deployed in Summer 2012, and 100 WCDs will be taking data by May, 2013. We present in this paper the motivation for constructing the HAWC observatory, the status of the deployment, and the first results from the constantly growing array.

  20. New Electronics for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Feinstein, F.; Bolmont, J.; Delagnes, E.; Gascón, D.; Glicenstein, J.-F.; Nayman, P.; Tavernet, J.-P.; Toussenel, F.; Vincent, P.

    Very high energy gamma-ray astronomy is now bringing an invaluable contribution to the understanding of violent phenomena in the Universe, as well as the search for exotic physics such as indirect detection of dark matter or a test of Lorentz invariance violation. The current Imaging Arrays of Cherenkov Telescopes (IACT) show that this technique is mature. In Europe, the community is gathering around the Cherenkov Telescope Array consortium, to design and build the next generation ground-based array. It should reach an order of magnitude in sensitivity in a wide energy band, ranging from 10GeV to more than 100TeV. This goal can be achieved with an array of 50-100telescopes of various sizes at various spacings. With about 2000channels per camera, a specific effort has to be made to design front-end electronics with a lower cost and better performances. A gain in cost and performances can be obtained by maximising the integration of the front-end electronics in an ASIC. The amplifiers, analogue memories, digitization and first level buffering can be embedded in the same component. We present here the NECTAr project aiming at building a demonstrator element of a generic camera built around this component.

  1. The High Altitude Water Cherenkov Observatory

    NASA Astrophysics Data System (ADS)

    Mostafa, Miguel; HAWC Collaboration

    2016-03-01

    The High Altitude Water Cherenkov (HAWC) Observatory is a continuously operated, wide field of view experiment comprised of an array of 300 water Cherenkov detectors (WCDs) to study transient and steady emission of TeV gamma and cosmic rays. Each 200000 l WCD is instrumented with 4 PMTs providing charge and timing information. The array covers ~22000 m2 at an altitude of 4100 m a.s.l. inside the Pico de Orizaba national park in Mexico. The high altitude, large active area, and optical isolation of the PMTs allows us to reliably estimate the energy and determine the arrival direction of gamma and cosmic rays with significant sensitivity over energies from several hundred GeV to a hundred TeV. Continuously observing 2 / 3 of the sky every 24 h, HAWC plays a significant role as a survey instrument for multi-wavelength studies. The performance of HAWC makes possible the detection of both transient and steady emissions, the study of diffuse emission and the measurement of the spectra of gamma-ray sources at TeV energies. HAWC is also sensitive to the emission from GRBs above 100 GeV. I will highlight the results from the first year of operation of the full HAWC array, and describe the ongoing site work to expand the array by a factor of 4 to explore the high energy range.

  2. The High Altitude Water Cherenkov (HAWC) Observatory

    NASA Astrophysics Data System (ADS)

    Springer, Wayne

    2014-06-01

    The High Altitude Water Cherenkov (HAWC) observatory is a continuously operated, wide field of view detector based upon a water Cherenkov technology developed by the Milagro experiment. HAWC observes, at an elevation of 4100 m on Sierra Negra Mountain in Mexico, extensive air showers initiated by gamma and cosmic rays. The completed detector will consist of 300 closely spaced water tanks each instrumented with four photomultiplier tubes that provide timing and charge information used to reconstruct energy and arrival direction. HAWC has been optimized to observe transient and steady emission from point as well as diffuse sources of gamma rays in the energy range from several hundred GeV to several hundred TeV. Studies in solar physics as well as the properties of cosmic rays will also be performed. HAWC has been making observations at various stages of deployment since completion of 10% of the array in summer 2012. A discussion of the detector design, science capabilities, current construction/commissioning status, and first results will be presented...

  3. FLEXIBLE GEIGER COUNTER

    DOEpatents

    Richter, H.G.; Gillespie, A.S. Jr.

    1963-11-12

    A flexible Geiger counter constructed from materials composed of vinyl chloride polymerized with plasticizers or co-polymers is presented. The counter can be made either by attaching short segments of corrugated plastic sleeving together, or by starting with a length of vacuum cleaner hose composed of the above materials. The anode is maintained substantially axial Within the sleeving or hose during tube flexing by means of polystyrene spacer disks or an easily assembled polyethylene flexible cage assembly. The cathode is a wire spiraled on the outside of the counter. The sleeving or hose is fitted with glass end-pieces or any other good insulator to maintain the anode wire taut and to admit a counting gas mixture into the counter. Having the cathode wire on the outside of the counter substantially eliminates the objectional sheath effect of prior counters and permits counting rates up to 300,000 counts per minute. (AEC)

  4. Aerogel-Based Multilayer Insulation with Micrometeoroid Protection

    NASA Technical Reports Server (NTRS)

    Begag, Redouane; White, Shannon

    2013-01-01

    Ultra-low-density, highly hydrophobic, fiber-reinforced aerogel material integrated with MLI (aluminized Mylar reflectors and B4A Dacron separators) offers a highly effective insulation package by providing unsurpassed thermal performance and significant robustness, delivering substantial MMOD protection via the addition of a novel, durable, external aerogel layer. The hydrophobic nature of the aerogel is an important property for maintaining thermal performance if the material is exposed to the environment (i.e. rain, snow, etc.) during ground installations. The hybrid aerogel/MLI/MMOD solution affords an attractive alternative because it will perform thermally in the same range as MLI at all vacuum levels (including high vacuum), and offers significant protection from micrometeoroid damage. During this effort, the required low-density and resilient aerogel materials have been developed that are needed to optimize the thermal performance for space (high vacuum) cryotank applications. The proposed insulation/MMOD package is composed of two sections: a stack of interleaved aerogel layers and MLI intended for cryotank thermal insulation, and a 1.5- to 1-in. (.2.5- to 3.8- cm) thick aerogel layer (on top of the insulation portion) for MMOD protection. Learning that low-density aerogel cannot withstand the hypervelocity impact test conditions, the innovators decided during the course of the program to fabricate a high-density and strong material based on a cross-linked aerogel (X-aerogel; developed elsewhere by the innovators) for MMOD protection. This system has shown a very high compressive strength that is capable of withstanding high-impact tests if a proper configuration of the MMOD aerogel layer is used. It was learned that by stacking two X-aerogel layers [1.5-in. (.3.8-cm) thick] separated by an air gap, the system would be able to hold the threat at a speed of 5 km/s and gpass h the test. The first aerogel panel stopped the projectile from damaging the second

  5. Countering Internet Extremism

    DTIC Science & Technology

    2009-01-01

    literally examine hundreds of books and speeches. Since the purpose of this work is examining ways to counter an extremist’s Internet use of the...provide differing perspectives on how to counter extremist Internet use . A 2008 New York Times article indirectly offers some methods. Writers Eric...or scholars have the most potential to effectively counter extremist Internet use . Such efforts could help to stifle some of the issues that

  6. Aerogel Keystones: Extraction Of Complete Hypervelocity Impact Events From Aerogel Collectors

    SciTech Connect

    Westphal, A J; Snead, C; Butterworth, A; Graham, G A; Bradley, J; Bajt, S; Grant, P G; Bench, G; Brennan, S; Piannetta, P

    2003-11-07

    In January 2006, the Stardust mission will return the first samples from a solid solar-system body since Apollo, and the first samples of contemporary interstellar dust ever collected. Although sophisticated laboratory instruments exist for the analysis of Stardust samples, techniques for the recovery of particles and particle residues from aerogel collectors remain primitive. Here we describe our recent progress in developing techniques for extracting small volumes of aerogel, which we have called ''keystones,'' which completely contain particle impacts but minimize the damage to the surrounding aerogel collector. These keystones can be fixed to custom-designed micromachined silicon fixtures (so-called ''microforklifts''). In this configuration the samples are self-supporting, which can be advantageous in situations in which interference from a supporting substrate is undesirable. The keystones may also be extracted and placed onto a substrate without a fixture. We have also demonstrated the capability of homologously crushing these unmounted keystones for analysis techniques which demand flat samples.

  7. Upgrade of the Cherenkov Detector of the JLab Hall A BigBite Spectrometer

    NASA Astrophysics Data System (ADS)

    Nycz, Michael

    2015-04-01

    The BigBite Spectrometer of the Hall A Facility of Jefferson Lab will be used in the upcoming MARATHON experiment at Jefferson Lab to measure the ratio of neutron to proton F2 inelastic structure functions and the ratio of up to down, d/u, quark nucleon distributions at medium and large values of Bjorken x. In preparation for this experiment, the BigBite Cherenkov detector is being modified to increase its overall efficiency for detecting electrons. This large volume counter is based on a dual system of segmented mirrors reflecting Cherenkov radiation to twenty photomultipliers. In this talk, a description of the detector and its past performance will be presented, along with the motivations for improvements and their implementation. An update on the status of the rest of the BigBite detector package, will be also presented. Additionally, current issues related to obtaining C4 F8 O, the commonly used radiator gas, which has been phased out of production by U.S. gas producers, will be discussed. This work is supported by Kent State University, NSF Grant PHY-1405814, and DOE Contract DE-AC05-06OR23177.

  8. Investigation of Cherenkov Light in an Oil Drum with Cosmic Radiation

    NASA Astrophysics Data System (ADS)

    Wedel, Zachary; Niduaza, Rexavalmar; Castro, Juan; Zavala, Favian; Fan, Sewan; Fatuzzo, Laura

    2014-03-01

    Photomultiplier Tubes (PMTs) have been around for decades and have become well understood in their use as cosmic ray detectors. Multi-Pixel Photon Counters (MPPCs), on the other hand, are still being explored as more viable, cost-effective light detector for counting cosmic rays. To detect cosmic rays by the Cherenkov effect, we placed an acrylic cylinder, with wavelength-shifting fibers coiled around it and filled with distilled water, inside a light-tight box that was able to detect the weak light signals with PMTs (1 and 3 inch), an MPPC (3 mm × 3 mm), and with coincidence between different detectors. Additionally, we utilized an oil drum with approximate volume of 30 gallons as a light-tight vessel to conduct coincidence counts for detecting cosmic rays using the PMTs and MPPCs (3 mm × 3 mm and 1 mm × 1 mm). In this poster presentation, we would present our findings as a comparative analysis between the two different vessels and the efficiency thereof of the same to determine whether or not the MPPC is a viable instrument for detecting cosmic rays that produce Cherenkov light. Department of Education grant number P031S90007.

  9. High resolution patterning of silica aerogels

    SciTech Connect

    Bertino, M.F.; Hund, J.F.; Sosa, J.; Zhang, G.; Sotiriou-Leventis, C.; Leventis, N.; Tokuhiro, A.T.; Terry, J.

    2008-10-30

    Three-dimensional metallic structures are fabricated with high spatial resolution in silica aerogels. In our method, silica hydrogels are prepared with a standard base-catalyzed route, and exchanged with an aqueous solution typically containing Ag{sup +} ions (1 M) and 2-propanol (0.2 M). The metal ions are reduced photolytically with a table-top ultraviolet lamp, or radiolytically, with a focused X-ray beam. We fabricated dots and lines as small as 30 x 70 {micro}m, protruding for several mm into the bulk of the materials. The hydrogels are eventually supercritically dried to yield aerogels, without any measurable change in the shape and spatial resolution of the lithographed structures. Transmission electron microscopy shows that illuminated regions are composed by Ag clusters with a size of several {micro}m, separated by thin layers of silica.

  10. Transparent monolithic metal ion containing nanophase aerogels

    SciTech Connect

    Risen, W. M., Jr.; Hu, X.; Ji, S.; Littrell, K.

    1999-12-01

    The formation of monolithic and transparent transition metal containing aerogels has been achieved through cooperative interactions of high molecular weight functionalized carbohydrates and silica precursors, which strongly influence the kinetics of gelation. After initial gelation, subsequent modification of the ligating character of the system, coordination of the group VIII metal ions, and supercritical extraction afford the aerogels. The structures at the nanophase level have been probed by photon and electron transmission and neutron scattering techniques to help elucidate the basis for structural integrity together with the small entity sizes that permit transparency in the visible range. They also help with understanding the chemical reactivities of the metal-containing sites in these very high surface area materials. These results are discussed in connection with new reaction studies.

  11. Organic aerogel microspheres and fabrication method therefor

    DOEpatents

    Mayer, Steven T.; Kong, Fung-Ming; Pekala, Richard W.; Kaschmitter, James L.

    1996-01-01

    Organic aerogel microspheres which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonsticky gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.

  12. Organic aerogel microspheres and fabrication method therefor

    DOEpatents

    Mayer, S.T.; Kong, F.M.; Pekala, R.W.; Kaschmitter, J.L.

    1996-04-16

    Organic aerogel microspheres which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonsticky gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.

  13. Method for making monolithic metal oxide aerogels

    DOEpatents

    Coronado, Paul R.

    1999-01-01

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The containment vessel is enclosed within an aqueous atmosphere that is above the supercritical temperature and pressure of the solvent of the metal alkoxide solution.

  14. Cellulose nanofibrils aerogels generated from jute fibers.

    PubMed

    Lin, Jinyou; Yu, Liangbo; Tian, Feng; Zhao, Nie; Li, Xiuhong; Bian, Fenggang; Wang, Jie

    2014-08-30

    In this work, we report the cellulose nanofibrils extracted from the pristine jute fibers via the pretreatments followed by the TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidation and mechanical disintegration. The effects of pretreatments by using the NaOH solution and dimethyl sulfoxide solvent on the fiber morphology and macro/micro-structures were investigated by polarizing microscope and synchrotron radiation wide/small-angle X-ray scattering (WAXS/SAXS). The cellulose nanofibrils exhibit a diameter ranging from 5 nm to 20 nm and a length of several micrometers, which have been assembled into cellulose aerogels by the lyophilization of as-prepared nanofibrils dispersions with various concentrations. The results indicated that the hierarchical structures of as-prepared cellulose aerogels were dependent on the dispersion concentrations. The WAXS results show that the typical cellulose aerogels are coexistence of cellulose I and cellulose II, which has a great promise for many potential applications, such as pharmaceutical, liquid filtration, catalysts, bio-nanocomposites, and tissue engineering scaffolds.

  15. Cutting Silica Aerogel for Particle Extraction

    NASA Technical Reports Server (NTRS)

    Tsou, P.; Brownlee, D. E.; Glesias, R.; Grigoropoulos, C. P.; Weschler, M.

    2005-01-01

    The detailed laboratory analyses of extraterrestrial particles have revolutionized our knowledge of planetary bodies in the last three decades. This knowledge of chemical composition, morphology, mineralogy, and isotopics of particles cannot be provided by remote sensing. In order to acquire these detail information in the laboratories, the samples need be intact, unmelted. Such intact capture of hypervelocity particles has been developed in 1996. Subsequently silica aerogel was introduced as the preferred medium for intact capturing of hypervelocity particles and later showed it to be particularly suitable for the space environment. STARDUST, the 4th NASA Discovery mission to capture samples from 81P/Wild 2 and contemporary interstellar dust, is the culmination of these new technologies. In early laboratory experiments of launching hypervelocity projectiles into aerogel, there was the need to cut aerogel to isolate or extract captured particles/tracks. This is especially challenging for space captures, since there will be many particles/tracks of wide ranging scales closely located, even collocated. It is critical to isolate and extract one particle without compromising its neighbors since the full significance of a particle is not known until it is extracted and analyzed. To date, three basic techniques have been explored: mechanical cutting, lasers cutting and ion beam milling. We report the current findings.

  16. Computer Simulation of Fracture in Aerogels

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2006-01-01

    Aerogels are of interest to the aerospace community primarily for their thermal properties, notably their low thermal conductivities. While the gels are typically fragile, recent advances in the application of conformal polymer layers to these gels has made them potentially useful as lightweight structural materials as well. In this work, we investigate the strength and fracture behavior of silica aerogels using a molecular statics-based computer simulation technique. The gels' structure is simulated via a Diffusion Limited Cluster Aggregation (DLCA) algorithm, which produces fractal structures representing experimentally observed aggregates of so-called secondary particles, themselves composed of amorphous silica primary particles an order of magnitude smaller. We have performed multi-length-scale simulations of fracture in silica aerogels, in which the interaction b e e n two secondary particles is assumed to be described by a Morse pair potential parameterized such that the potential range is much smaller than the secondary particle size. These Morse parameters are obtained by atomistic simulation of models of the experimentally-observed amorphous silica "bridges," with the fracture behavior of these bridges modeled via molecular statics using a Morse/Coulomb potential for silica. We consider the energetics of the fracture, and compare qualitative features of low-and high-density gel fracture.

  17. Synthesis and use of organic biodegradable aerogels as drug carriers.

    PubMed

    Veronovski, Anja; Novak, Zoran; Knez, Željko

    2012-01-01

    Aerogels of natural polysaccharides possess both biocharacteristics of polysaccharides, such as good biological compatibility and cell or enzyme-controlled degradability, and aerogel characteristics, such as very high porosity and specific surface areas that makes them highly attractive in drug delivery. Biodegradable alginate aerogels were synthesized via a sol-gel process. In the present work two methods of ionic cross-linking were used to prepare alginate hydrogels as monoliths and spheres, which can be further easily converted to high surface area aerogels. The aerogels obtained were further used as drug carriers. We investigated the effect of process parameters, such as starting concentration and viscosity of alginate solution, on synthesis products and on model drug (nicotinic acid) release. The results indicate that by using the internal setting cross-linking method for obtaining monolithic aerogels nicotinic acid was released in a more controlled manner. The aerogels thus obtained also exhibited smaller volume shrinkage than the ones described in other publications. However, with increasing alginate concentration in both types of synthesis more compact and cross-linked aerogels were formed.

  18. Organic and composite aerogels through ring opening metathesis polymerization (ROMP)

    NASA Astrophysics Data System (ADS)

    Mohite, Dhairyashil P.

    Aerogels are open-cell nanoporous materials, unique in terms of low density, low thermal conductivity, low dielectric constants and high acoustic attenuation. Those exceptional properties stem from their complex hierarchical solid framework (agglomerates of porous, fractal secondary nanoparticles), but they also come at a cost: low mechanical strength. This issue has been resolved by crosslinking silica aerogels with organic polymers. The crosslinking polymer has been assumed to form a conformal coating on the surface of the skeletal framework by covalent bridging elementary building blocks. However, "assuming" is not enough: for correlating nanostructure with bulk material properties, it is important to know the exact location of the polymer on the aerogel backbone. For that investigation, we synthesized a new norbornene derivative of triethoxysilane (Si-NAD) that can be attached to skeletal silica nanoparticles. Those norbornene-modified silica aerogels were crosslinked with polynorbornene by ring opening metathesis polymerization (ROMP). The detailed correlation between nanostructure and mechanical strength was probed with a wide array of characterization methods ranging from molecular to bulk through nano. Subsequently, it was reasoned that since the polymer dominates the exceptional mechanical properties of polymer crosslinked aerogels, purely organic aerogels with the same nanostructure and interparticle connectivity should behave similarly. That was explored and confirmed by: (a) synthesis of a difunctional nadimide monomer (bis-NAD), and preparation of robust polyimide aerogels by ROMP of its norbornene end-caps; and, (b) synthesis of dimensionally stable ROMP-derived polydicyclopentadiene aerogels by grafting the nanostructure with polymethylmethacrylate (PMMA) via free radical chemistry.

  19. Aerogel and xerogel composites for use as carbon anodes

    DOEpatents

    Cooper, John F.; Tillotson, Thomas M.; Hrubesh, Lawrence W.

    2008-08-12

    Disclosed herein are aerogel and xerogel composite materials suitable for use as anodes in fuel cells and batteries. Precursors to the aerogel and xerogel compounds are infused with inorganic polymeric materials or carbon particles and then gelled. The gels are then pyrolyzed to form composites with internal structural support.

  20. Highly porous ceramic oxide aerogels having improved flexibility

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B. (Inventor); Nguyen, Baochau N. (Inventor); Guo, Haiquan (Inventor)

    2012-01-01

    Ceramic oxide aerogels having improved flexibility are disclosed. Preferred embodiments exhibit high modulus and other strength properties despite their improved flexibility. The gels may be polymer cross-linked via organic polymer chains to further improve strength properties, without substantially detracting from the improved flexibility. Methods of making such aerogels are also disclosed.

  1. Cherenkov Light-based Beam Profiling for Ultrarelativistic Electron Beams

    SciTech Connect

    Adli, E.; Gessner, S. J.; Corde, S.; Hogan, M. J.; Bjerke, H. H.

    2015-02-09

    We describe a beam profile monitor design based on Cherenkov light emitted from a charged particle beam in an air gap. The main components of the profile monitor are silicon wafers used to reflect Cherenkov light onto a camera lens system. The design allows for measuring large beam sizes, with large photon yield per beam charge and excellent signal linearity with beam charge. Furthermore, the profile monitor signal is independent of the particle energy for ultrarelativistic particles. Different design and parameter considerations are discussed. A Cherenkov light-based profile monitor has been installed at the FACET User Facility at SLAC. Finally, we report on the measured performance of this profile monitor.

  2. Cherenkov neutron detector for fusion reaction and runaway electron diagnostics.

    PubMed

    Cheon, MunSeong; Kim, Junghee

    2015-08-01

    A Cherenkov-type neutron detector was newly developed and neutron measurement experiments were performed at Korea Superconducting Tokamak Advanced Research. It was shown that the Cherenkov neutron detector can monitor the time-resolved neutron flux from deuterium-fueled fusion plasmas. Owing to the high temporal resolution of the detector, fast behaviors of runaway electrons, such as the neutron spikes, could be observed clearly. It is expected that the Cherenkov neutron detector could be utilized to provide useful information on runaway electrons as well as fusion reaction rate in fusion plasmas.

  3. Cherenkov neutron detector for fusion reaction and runaway electron diagnostics

    NASA Astrophysics Data System (ADS)

    Cheon, MunSeong; Kim, Junghee

    2015-08-01

    A Cherenkov-type neutron detector was newly developed and neutron measurement experiments were performed at Korea Superconducting Tokamak Advanced Research. It was shown that the Cherenkov neutron detector can monitor the time-resolved neutron flux from deuterium-fueled fusion plasmas. Owing to the high temporal resolution of the detector, fast behaviors of runaway electrons, such as the neutron spikes, could be observed clearly. It is expected that the Cherenkov neutron detector could be utilized to provide useful information on runaway electrons as well as fusion reaction rate in fusion plasmas.

  4. Cherenkov neutron detector for fusion reaction and runaway electron diagnostics

    SciTech Connect

    Cheon, MunSeong Kim, Junghee

    2015-08-15

    A Cherenkov-type neutron detector was newly developed and neutron measurement experiments were performed at Korea Superconducting Tokamak Advanced Research. It was shown that the Cherenkov neutron detector can monitor the time-resolved neutron flux from deuterium-fueled fusion plasmas. Owing to the high temporal resolution of the detector, fast behaviors of runaway electrons, such as the neutron spikes, could be observed clearly. It is expected that the Cherenkov neutron detector could be utilized to provide useful information on runaway electrons as well as fusion reaction rate in fusion plasmas.

  5. Air Proportional Counter

    DOEpatents

    Simpson, Jr, J A

    1950-12-05

    A multiple wire counter utilizing air at atmospheric pressure as the ionizing medium and having a window of a nylon sheet of less than 0.5 mil thickness coated with graphite. The window is permeable to alpha particles so that the counter is well adapted to surveying sources of alpha radiation.

  6. An Inexpensive Radiation Counter.

    ERIC Educational Resources Information Center

    Holton, Brian; Balla, Zsolt

    1985-01-01

    Describes a radiation counter comparable to commercial units which costs less than $100. It consists of six sections: Geiger-Mueller tube and holder; high voltage supply; low voltage supply; pulse shaping circuit; "start/stop counts" gating circuit; and counter/display. List of materials needed and schematic diagrams are included. (JN)

  7. Proportional counter radiation camera

    DOEpatents

    Borkowski, C.J.; Kopp, M.K.

    1974-01-15

    A gas-filled proportional counter camera that images photon emitting sources is described. A two-dimensional, positionsensitive proportional multiwire counter is provided as the detector. The counter consists of a high- voltage anode screen sandwiched between orthogonally disposed planar arrays of multiple parallel strung, resistively coupled cathode wires. Two terminals from each of the cathode arrays are connected to separate timing circuitry to obtain separate X and Y coordinate signal values from pulse shape measurements to define the position of an event within the counter arrays which may be recorded by various means for data display. The counter is further provided with a linear drift field which effectively enlarges the active gas volume of the counter and constrains the recoil electrons produced from ionizing radiation entering the counter to drift perpendicularly toward the planar detection arrays. A collimator is interposed between a subject to be imaged and the counter to transmit only the radiation from the subject which has a perpendicular trajectory with respect to the planar cathode arrays of the detector. (Official Gazette)

  8. Synthesis and Characterization of a Nanocrystalline Thoria Aerogel

    SciTech Connect

    Reibold, R A; Satcher, Jr, J H; Baumann, T F; Simpson, R L; Poco, J F

    2004-02-04

    We report the synthesis and characterization for the first example of a low-density nanocrystalline thoria aerogel. The monolithic aerogels were prepared through the solgel polymerization of hydrated thorium nitrate in ethanol using ammonium hydroxide and propylene oxide as gelation initiators. The dried ThO{sub 2} aerogel was characterized by high-resolution transmission electron microscopy (HRTEM) and nitrogen adsorption/desorption analyses. The aerogel network was determined to be composed of spherical primary particles with features in the 5-20 nm range. These particles were also determined to be highly crystalline as evidenced by the higher magnification TEM examination. The thoria aerogel possesses high surface area (120 m{sup 2}/g) and pore diameters in the micro- and mesoporous range.

  9. sup 13 C NMR investigation of crosslinking in organic aerogels

    SciTech Connect

    Ward, R. L.; Pekala, R. W.

    1989-09-15

    Organic aerogels are a special type of low density foam produced from the supercritical drying of resorcinol-formaldehyde (RF) gels. These aerogels have continuous porosity, ultrafine cell/pore sizes (<1000 {angstrom}), and a microstructure composed of interconnected colloidal-like particles with diameters ranging from 30-175 {angstrom}. The particle size, surface area, density, and mechanical properties of the aerogels are largely determined by the catalysts concentration used in the sol-gel polymerization. In order to gain some insight into the crosslinks between RF particles, aerogels were labeled with C-13 formaldehyde at various times in the polymerization. CPMAS and IRCP techniques were used to correlate the relaxation behavior of the C-13 enriched aerogels with their different microstructures. 9 refs., 1 fig., 2 tabs.

  10. Method for preparing a solid phase microextraction device using aerogel

    DOEpatents

    Miller, Fred S.; Andresen, Brian D.

    2006-10-24

    A sample collection substrate of aerogel and/or xerogel materials bound to a support structure is used as a solid phase microextraction (SPME) device. The xerogels and aerogels may be organic or inorganic and doped with metals or other compounds to target specific chemical analytes. The support structure is typically formed of a glass fiber or a metal wire (stainless steel or kovar). The devices are made by applying gel solution to the support structures and drying the solution to form aerogel or xerogel. Aerogel particles may be attached to the wet layer before drying to increase sample collection surface area. These devices are robust, stable in fields of high radiation, and highly effective at collecting gas and liquid samples while maintaining superior mechanical and thermal stability during routine use. Aerogel SPME devices are advantageous for use in GC/MS analyses due to their lack of interfering background and tolerance of GC thermal cycling.

  11. Composite ceria-coated aerogels and methods of making the same

    DOEpatents

    Eyring, Edward M; Ernst, Richard D; Turpin, Gregory C; Dunn, Brian C

    2013-05-07

    Ceria-coated aerogels can include an aerogel support material having a stabilized ceria coating thereon. The ceria coating can be formed by solution or vapor deposition of alcogels or aerogels. Additional catalytic metal species can also be incorporated into the coating to form multi-metallic compounds having improved catalytic activity. Further, the ceria coated aerogels retain high surface areas at elevated temperatures. Thus, improvements in catalytic activity and thermal stability can be achieved using these ceria-coated composite aerogels.

  12. Nonlinear theory of a plasma Cherenkov maser

    SciTech Connect

    Choi, J.S.; Heo, E.G.; Choi, D.I.

    1995-12-31

    The nonlinear saturation state in a plasma Cherenkov maser (PCM) propagating the intense relativistic electron beam through a circular waveguide partially filled with a dense annular plasma, is analyzed from the nonlinear formulation based on the cold fluid-Maxwell equations. We obtain the nonlinear efficiency and the final operation frequency under consideration of the effects of the beam current, the beam energy and the slow wave structure. We show that the saturation mechanism of a PCM instablity is a close correspondence in that of the relativistic two stream instability by the coherent trapping of electrons in a single most-ustable wave. And the optimal conditions in PCM operation are also obtained from performing our nonliear analysis together with computer simulations.

  13. Aerogel volatiles concentrator and analyzer (AVCA) - Collection and concentration of trace volatile organics in aerogel for spectroscopic detection

    NASA Astrophysics Data System (ADS)

    Tsapin, A.; Jones, S.; Petkov, M.; Borchardt, D.; Anderson, M.

    2017-03-01

    A study was conducted to determine the efficacy of using silica aerogel to collect and concentrate ambient trace organics for spectroscopic analysis. Silica aerogel was exposed to atmospheres containing trace amounts of polycyclic aromatic and aliphatic hydrocarbons. The organics present were concentrated in the aerogels by factors varying from 10 to more than 1000 over the levels found in the atmospheres, depending on the specific organic present. Since silica aerogel is transparent over a wide range of optical and near infrared wavelengths, UV-induced fluorescence, Raman and infrared spectroscopies were used to detect and identify the organics collected by the aerogel. Measurements were conducted to determine the sensitivity of these spectroscopic methods for determining organics concentrated by aerogels and the effectiveness of this method for identifying systems containing multiple organic species. Polycyclic aromatic hydrocarbons (PAHs) were added to simulated Mars regolith and then vaporized by modest heating in the presence of aerogel. The aerogels adsorbed and concentrated the PAHs, which were detected by induced fluorescence and Raman and FTIR spectroscopies.

  14. In Vivo Ultrasonic Detection of Polyurea Crosslinked Silica Aerogel Implants

    PubMed Central

    Sabri, Firouzeh; Sebelik, Merry E.; Meacham, Ryan; Boughter, John D.; Challis, Mitchell J.; Leventis, Nicholas

    2013-01-01

    Background Polyurea crosslinked silica aerogels are highly porous, lightweight, and mechanically strong materials with great potential for in vivo applications. Recent in vivo and in vitro studies have demonstrated the biocompatibility of this type of aerogel. The highly porous nature of aerogels allows for exceptional thermal, electric, and acoustic insulating capabilities that can be taken advantage of for non-invasive external imaging techniques. Sound-based detection of implants is a low cost, non-invasive, portable, and rapid technique that is routinely used and readily available in major clinics and hospitals. Methodology In this study the first in vivo ultrasound response of polyurea crosslinked silica aerogel implants was investigated by means of a GE Medical Systems LogiQe diagnostic ultrasound machine with a linear array probe. Aerogel samples were inserted subcutaneously and sub-muscularly in a) fresh animal model and b) cadaveric human model for analysis. For comparison, samples of polydimethylsiloxane (PDMS) were also imaged under similar conditions as the aerogel samples. Conclusion/significance Polyurea crosslinked silica aerogel (X-Si aerogel) implants were easily identified when inserted in either of the regions in both fresh animal model and cadaveric model. The implant dimensions inferred from the images matched the actual size of the implants and no apparent damage was sustained by the X-Si aerogel implants as a result of the ultrasonic imaging process. The aerogel implants demonstrated hyperechoic behavior and significant posterior shadowing. Results obtained were compared with images acquired from the PDMS implants inserted at the same location. PMID:23799093

  15. Chemical and morphological effects on the electrochemical properties of carbon aerogels and ruthenium dioxide/carbon aerogel nanocomposites

    NASA Astrophysics Data System (ADS)

    Miller, John Martin

    The development of high performance electrode materials for electrochemical capacitors has been an active area of research over the past ten years due to the demand for high power portable energy storage devices. One class of material which has shown promising capacitive characteristics in aqueous electrolytes is carbon aerogels. These unique materials exhibit low resistivity, high surface area, and a controllable open microstructure. In this work, the interrelationships between the electrochemical characteristics of the carbon aerogel materials in sulfuric acid electrolytes and the chemical and physical nature of the aerogels have been identified. Specifically, this study examines the influence of surface chemistry and microstructure on the voltammetric response of the carbon aerogel electrodes. Carbon aerogels exhibit a specific capacitance greater than 80 F/g in 1.0 M Hsb2SOsb4. This value is is dependent upon the specific surface area of each sample but is relatively independent of the bulk density of the aerogel. The density of the material does, however, influence the charging time of the electrode due to distributed capacitance effects. The surface of the carbon aerogels can be electrochemically activated to supplement the double-layer charging of the surface with a pseudocapacitive charge storage mechanism at redox-active surface functionalities. A second aspect of this work addresses improving the capacitance of the carbon aerogel materials by chemically modifying the surface of the aerogels. Hydrous ruthenium dioxide, which has shown exceptional pseudocapacitance ({>} 750\\ F/g)sp3, was deposited onto the surface of the carbon aerogel materials by two approaches: chemical vapor impregnation and electrodeposition. Ruthenium metal loadings of greater than 50 wt.% could be achieved using chemical vapor impregnation. Transmission electron microscopy revealed 20A metal particles uniformly distributed on the large interior surface of the aerogels. These

  16. Constraint on ghost-free bigravity from gravitational Cherenkov radiation

    NASA Astrophysics Data System (ADS)

    Kimura, Rampei; Tanaka, Takahiro; Yamamoto, Kazuhiro; Yamashita, Yasuho

    2016-09-01

    We investigate gravitational Cherenkov radiation in a healthy branch of background solutions in the ghost-free bigravity model. In this model, because of the modification of dispersion relations, each polarization mode can possess subluminal phase velocities, and the gravitational Cherenkov radiation could be potentially emitted from a relativistic particle. In the present paper, we derive conditions for the process of the gravitational Cherenkov radiation to occur and estimate the energy emission rate for each polarization mode. We found that the gravitational Cherenkov radiation emitted even from an ultrahigh energy cosmic ray is sufficiently suppressed for the graviton's effective mass less than 100 eV, and the bigravity model with dark matter coupled to the hidden metric is therefore consistent with observations of high energy cosmic rays.

  17. Color quench correction for low level Cherenkov counting.

    PubMed

    Tsroya, S; Pelled, O; German, U; Marco, R; Katorza, E; Alfassi, Z B

    2009-05-01

    The Cherenkov counting efficiency varies strongly with color quenching, thus correction curves must be used to obtain correct results. The external (152)Eu source of a Quantulus 1220 liquid scintillation counting (LSC) system was used to obtain a quench indicative parameter based on spectra area ratio. A color quench correction curve for aqueous samples containing (90)Sr/(90)Y was prepared. The main advantage of this method over the common spectra indicators is its usefulness also for low level Cherenkov counting.

  18. Silica/Polymer and Silica/Polymer/Fiber Composite Aerogels

    NASA Technical Reports Server (NTRS)

    Ou, Danny; Stepanian, Christopher J.; Hu, Xiangjun

    2010-01-01

    Aerogels that consist, variously, of neat silica/polymer alloys and silica/polymer alloy matrices reinforced with fibers have been developed as materials for flexible thermal-insulation blankets. In comparison with prior aerogel blankets, these aerogel blankets are more durable and less dusty. These blankets are also better able to resist and recover from compression . an important advantage in that maintenance of thickness is essential to maintenance of high thermal-insulation performance. These blankets are especially suitable as core materials for vacuum- insulated panels and vacuum-insulated boxes of advanced, nearly seamless design. (Inasmuch as heat leakage at seams is much greater than heat leakage elsewhere through such structures, advanced designs for high insulation performance should provide for minimization of the sizes and numbers of seams.) A silica/polymer aerogel of the present type could be characterized, somewhat more precisely, as consisting of multiply bonded, linear polymer reinforcements within a silica aerogel matrix. Thus far, several different polymethacrylates (PMAs) have been incorporated into aerogel networks to increase resistance to crushing and to improve other mechanical properties while minimally affecting thermal conductivity and density. The polymethacrylate phases are strongly linked into the silica aerogel networks in these materials. Unlike in other organic/inorganic blended aerogels, the inorganic and organic phases are chemically bonded to each other, by both covalent and hydrogen bonds. In the process for making a silica/polymer alloy aerogel, the covalent bonds are introduced by prepolymerization of the methacrylate monomer with trimethoxysilylpropylmethacrylate, which serves as a phase cross-linker in that it contains both organic and inorganic monomer functional groups and hence acts as a connector between the organic and inorganic phases. Hydrogen bonds are formed between the silanol groups of the inorganic phase and the

  19. Samus Counter Lifting Fixture

    SciTech Connect

    Stredde, H.; /Fermilab

    1998-05-27

    A lifting fixture has been designed to handle the Samus counters. These counters are being removed from the D-zero area and will be transported off site for further use at another facility. This fixture is designed specifically for this particular application and will be transferred along with the counters. The future use of these counters may entail installation at a facility without access to a crane and therefore a lift fixture suitable for both crane and/or fork lift usage has been created The counters weigh approximately 3000 lbs. and have threaded rods extended through the counter at the top comers for lifting. When these counters were first handled/installed these rods were used in conjunction with appropriate slings and handled by crane. The rods are secured with nuts tightened against the face of the counter. The rod thread is M16 x 2({approx}.625-inch dia.) and extends 2-inch (on average) from the face of the counter. It is this cantilevered rod that the lift fixture engages with 'C' style plates at the four top comers. The strongback portion of the lift fixture is a steel rectangular tube 8-inch (vertical) x 4-inch x .25-inch wall, 130-inch long. 1.5-inch square bars are welded perpendicular to the long axis of the rectangular tube at the appropriate lift points and the 'C' plates are fastened to these bars with 3/4-10 high strength bolts -grade 8. Two short channel sections are positioned-welded-to the bottom of the rectangular tube on 40 feet centers, which are used as locators for fork lift tines. On the top are lifting eyes for sling/crane usage and are rated at 3500 lbs. safe working load each - vertical lift only.

  20. Cherenkov light imaging in astro-particle physics

    NASA Astrophysics Data System (ADS)

    Mirzoyan, Razmik

    2014-12-01

    Cherenkov light emission plays a key role in contemporary science; it is widely used in high energy, nuclear, and numerous astro-particle physics experiments. Most astro-particle physics experiments are based on the detection of light, and a vast majority of them on the measurement of Cherenkov light. Cherenkov light emission is measured in gases (used in air-Cherenkov technique), in water (for example, neutrino experiments BAIKAL, Super-Kamiokande, NESTOR, ANTARES, future KM3NeT; cosmic and γ-ray experiments Milagro, HAWC, AUGER) and in ice (IceCube). In this report our goal is not limited to simply listing the multitude of experiments that are based on using Cherenkov emission, but we will clarify the reasons making this emission so important and so frequently used. For completeness we will first give a short historical overview on the discovery and evolution of Cherenkov emission and then we will dwell on its main features and numerous applications in astro-particle physics experiments.

  1. GASEOUS SCINTILLATION COUNTER

    DOEpatents

    Eggler, C.; Huddleston, C.M.

    1959-04-28

    A gaseous excitation counter for detecting the presence amd measuring the energy of subatomic particles and electromagnetic radiation is described. The counter includes a gas-tight chamber filled with an elemental gas capable of producing ultra-violet excitation quanta when irradiated with subatomic particles and electromagnetic radiation. The gas has less than one in a thousand parts ultra-violet absorbing contamination. When nuclear radiation ps present the ultra-violet light produced by the gas strikes a fluorescent material within the counter, responsive to produce visible excitation quanta, and photo-sensitive counting means detect the visible emission.

  2. Hypervelocity Capture of Meteoritic Particles in Nonsilica Aerogels

    SciTech Connect

    S Jones; G Flynn

    2011-12-31

    The Stardust mission captured particles from the comet 81P/Wild 2 in gradient density silica aerogel and returned the collected samples to earth in 2006. The analyses of these particles have revealed several new insights into the formation of our solar system. However, since the aerogel used as the capture material was silica, the elemental analyses of the silica-rich particles were made more complicated in certain ways due to the mixing of the silicon of the particles and that of the aerogel. By using a nonsilica aerogel, future elemental analyses of silica-rich particles captured in aerogel could be made more straightforward. Resorcinol/formaldehyde (RF), alumina, and zirconia aerogels were impact tested with meteoritic fragments and the captured fragments were mapped with synchrotron-based X-ray microprobe (XRM) and the particles were analyzed with X-ray fluorescence (XRF). The resorcinol/formaldehyde aerogel proved to be the best capture material, in that it could be keystoned and XRF could be used to locate and analyze particles that were less than 10 {micro}m.

  3. Synthesis and properties of Chitosan-silica hybrid aerogels

    SciTech Connect

    Ayers, Michael R.; Hunt, Arlon J.

    2001-06-01

    Chitosan, a polymer that is soluble in dilute aqueous acid, is derived from chitin, a natural polyglucosamide. Aquagels where the solid phase consists of both chitosan and silica can be easily prepared by using an acidic solution of chitosan to catalyze the hydrolysis and condensation of tetraethylorthosilicate. Gels with chitosan/TEOS mass ratios of 0.1-1.1 have been prepared by this method. Standard drying processes using CO{sub 2} give the corresponding aerogels. The amount of chitosan in the gel plays a role in the shrinkage of the aerogel during drying. Gels with the lowest chitosan/silica ratios show the most linear shrinkage, up to 24%, while those with the highest ratios show only a 7% linear shrinkage. Pyrolysis at 700 C under nitrogen produces a darkened aerogel due to the thermal decomposition of the chitosan, however, the aerogel retains its monolithic form. The pyrolyzed aerogels absorb slightly more infrared radiation in the 2-5 {micro}m region than the original aerogels. B.E.T. surface areas of these aerogels range from 470-750 m{sup 2}/g. Biocompatibility screening of this material shows a very high value for hemolysis, but a low value for cytotoxicity.

  4. Flame Retardant Effect of Aerogel and Nanosilica on Engineered Polymers

    NASA Technical Reports Server (NTRS)

    Williams, Martha K.; Smith, Trent M.; Roberson, Luke B.; Yang, Feng; Nelson, Gordon L.

    2010-01-01

    Aerogels are typically manufactured vIa high temperature and pressure-critical-point drying of a colloidal metal oxide gel filled with solvents. Aerogel materials derived from silica materials represent a structural morphology (amorphous, open-celled nanofoams) rather than a particular chemical constituency. Aerogel is not like conventional foams in that it is a porous material with extreme microporosity and composed of individual features only a few nanometers in length with a highly porous dendriticlike structure. This unique substance has unusual properties such as low thermal conductivity, refractive index and sound suppression; in addition to its exceptional ability to capture fast moving dust. The highly porous nature of the aerogel's structure provides large amounts of surface area per unit weight. For instance, a silica aerogel material with a density of 100 kilograms per cubic meters can have surface areas of around 800 to 1500 square meters per gram depending on the precursors and process utilized to produce it. To take advantage of the unique properties of silica aerogels, especially the ultra light weight and low thermal conductivity, their composites with various engineering polymers were prepared and their flammability was investigated by Cone Calorimetry. The flammability of various polystyrene/silica aerogel nanocomposites were measured. The combination of these nanocomposites with a NASA patented flame retardant SINK were also studied. The results were compared with the base polymer to show the differences between composites with different forms of silica.

  5. Removal of carbonaceous contaminants from silica aerogel

    NASA Technical Reports Server (NTRS)

    Huang, Hui-Ping; Gilmour, I.; Pillinger, C. T.; Zolensky, M. E.

    1993-01-01

    Capture of micrometeorite material from low Earth orbit or dust grains around active comets for return to terrestrial laboratories, capable of practicing the most up to date techniques of chemical isotopic and mineralogical analysis, will greatly enhance our knowledge of primitive material in the solar system. The next generation of space launched cosmic dust collectors will undoubtedly include extremely low density target materials such as silica aerogel as the decelerating and arresting medium. This material has been found to be clean from the point of view of inorganic elements and is thus acceptable for the purpose of harvesting grains to be studied by, for example PIXE, INAA, or SXRF. However, the process used in making aerogel leaves substantial carbon and hydrogen containing residues which would negate their suitability for collection and subsequent investigation of the very important CHON particles. Attempts to precondition aerogel by solvent extraction or heating at 500 C and 750 C in air for 24 hours or under a vacuum of 2(7)(exp -7) torr at 260 C were largely ineffective except that pyrolysis did reduce volatile species. In this investigation we have examined the use of supercritical fluids for the purpose of extracting organic residues. The logic of the new approach is that beyond the supercritical point a substance has the solvating properties of a liquid but the viscosity characteristics of a gas. For example carbon dioxide becomes supercritical at a pressure of 73 atmospheres and a temperature of 31 C; in consequence it can transform to a very powerful and ultraclean solvent. It can dissolve organic matter from low molecular weight up to molecules containing 90 carbon atoms. On release of pressure the fluid reverts to a gas which can easily be pumped away and removed from the substrate being extracted.

  6. Aerogel Insulation Applications for Liquid Hydrogen Launch Vehicle Tanks

    NASA Technical Reports Server (NTRS)

    Fesmire, J. E.; Sass, J.

    2007-01-01

    Aerogel based insulation systems for ambient pressure environments were developed for liquid hydrogen (LH2) tank applications. Solutions to thermal insulation problems were demonstrated for the Space Shuttle External Tank (ET) through extensive testing at the Cryogenics Test Laboratory. Demonstration testing was performed using a 1/10th scale ET LH2 intertank unit and liquid helium as the coolant to provide the 20 K cold boundary temperature. Cryopumping tests in the range of 20K were performed using both constant mass and constant pressure methods. Long-duration tests (up to 10 hours) showed that the nitrogen mass taken up inside the intertank is reduced by a factor of nearly three for the aerogel insulated case as compared to the un-insulated (bare metal flight configuration) case. Test results including thermal stabilization, heat transfer effectiveness, and cryopumping confirm that the aerogel system eliminates free liquid nitrogen within the intertank. Physisorption (or adsorption) of liquid nitrogen within the fine pore structure of aerogel materials was also investigated. Results of a mass uptake method show that the sorption ratio (liquid nitrogen to aerogel beads) is about 62 percent by volume. A novel liquid nitrogen production method of testing the liquid nitrogen physical adsorption capacity of aerogel beads was also performed to more closely approximate the actual launch vehicle cooldown and thermal stabilization effects within the aerogel material. The extraordinary insulating effectiveness of the aerogel material shows that cryopumping is not an open-cell mass transport issue but is strictly driven by thermal communication between warm and cold surfaces. The new aerogel insulation technology is useful to solve heat transfer problem areas and to augment existing thermal protection systems on launch vehicles. Examples are given and potential benefits for producing launch systems that are more reliable, robust, reusable, and efficient are outlined.

  7. Polysaccharide-based aerogel microspheres for oral drug delivery.

    PubMed

    García-González, C A; Jin, M; Gerth, J; Alvarez-Lorenzo, C; Smirnova, I

    2015-03-06

    Polysaccharide-based aerogels in the form of microspheres were investigated as carriers of poorly water soluble drugs for oral administration. These bio-based carriers may combine the biocompatibility of polysaccharides and the enhanced drug loading capacity of dry aerogels. Aerogel microspheres from starch, pectin and alginate were loaded with ketoprofen (anti-inflammatory drug) and benzoic acid (used in the management of urea cycle disorders) via supercritical CO2-assisted adsorption. Amount of drug loaded depended on the aerogel matrix structure and composition and reached values up to 1.0×10(-3) and 1.7×10(-3) g/m(2) for ketoprofen and benzoic acid in starch microspheres. After impregnation, drugs were in the amorphous state in the aerogel microspheres. Release behavior was evaluated in different pH media (pH 1.2 and 6.8). Controlled drug release from pectin and alginate aerogel microspheres fitted Gallagher-Corrigan release model (R(2)>0.99 in both cases), with different relative contribution of erosion and diffusion mechanisms depending on the matrix composition. Release from starch aerogel microspheres was driven by dissolution, fitting the first-order kinetics due to the rigid starch aerogel structure, and showed different release rate constant (k1) depending on the drug (0.075 and 0.160 min(-1) for ketoprofen and benzoic acid, respectively). Overall, the results point out the possibilities of tuning drug loading and release by carefully choosing the polysaccharide used to prepare the aerogels.

  8. Polyimide Aerogels with Three-Dimensional Cross-Linked Structure

    NASA Technical Reports Server (NTRS)

    Panek, John

    2010-01-01

    Polyimide aerogels with three-dimensional cross-linked structure are made using linear oligomeric segments of polyimide, and linked with one of the following into a 3D structure: trifunctional aliphatic or aromatic amines, latent reactive end caps such as nadic anhydride or phenylethynylphenyl amine, and silica or silsesquioxane cage structures decorated with amine. Drying the gels supercritically maintains the solid structure of the gel, creating a polyimide aerogel with improved mechanical properties over linear polyimide aerogels. Lightweight, low-density structures are desired for acoustic and thermal insulation for aerospace structures, habitats, astronaut equipment, and aeronautic applications. Aerogels are a unique material for providing such properties because of their extremely low density and small pore sizes. However, plain silica aerogels are brittle. Reinforcing the aerogel structure with a polymer (X-Aerogel) provides vast improvements in strength while maintaining low density and pore structure. However, degradation of polymers used in cross-linking tends to limit use temperatures to below 150 C. Organic aerogels made from linear polyimide have been demonstrated, but gels shrink substantially during supercritical fluid extraction and may have lower use temperature due to lower glass transition temperatures. The purpose of this innovation is to raise the glass transition temperature of all organic polyimide aerogel by use of tri-, tetra-, or poly-functional units in the structure to create a 3D covalently bonded network. Such cross-linked polyimides typically have higher glass transition temperatures in excess of 300 400 C. In addition, the reinforcement provided by a 3D network should improve mechanical stability, and prevent shrinkage on supercritical fluid extraction. The use of tri-functional aromatic or aliphatic amine groups in the polyimide backbone will provide such a 3D structure.

  9. Coincidence Proportional Counter

    DOEpatents

    Manley, J H

    1950-11-21

    A coincidence proportional counter having a plurality of collecting electrodes so disposed as to measure the range or energy spectrum of an ionizing particle-emitting source such as an alpha source, is disclosed.

  10. Portable multiplicity counter

    DOEpatents

    Newell, Matthew R.; Jones, David Carl

    2009-09-01

    A portable multiplicity counter has signal input circuitry, processing circuitry and a user/computer interface disposed in a housing. The processing circuitry, which can comprise a microcontroller integrated circuit operably coupled to shift register circuitry implemented in a field programmable gate array, is configured to be operable via the user/computer interface to count input signal pluses receivable at said signal input circuitry and record time correlations thereof in a total counting mode, coincidence counting mode and/or a multiplicity counting mode. The user/computer interface can be for example an LCD display/keypad and/or a USB interface. The counter can include a battery pack for powering the counter and low/high voltage power supplies for biasing external detectors so that the counter can be configured as a hand-held device for counting neutron events.

  11. Cherenkov imaging and biochemical sensing in vivo during radiation therapy

    NASA Astrophysics Data System (ADS)

    Zhang, Rongxiao

    While Cherenkov emission was discovered more than eighty years ago, the potential applications of imaging this during radiation therapy have just recently been explored. With approximately half of all cancer patients being treated by radiation at some point during their cancer management, there is a constant challenge to ensure optimal treatment efficiency is achieved with maximal tumor to normal tissue therapeutic ratio. To achieve this, the treatment process as well as biological information affecting the treatment should ideally be effective and directly derived from the delivery of radiation to the patient. The value of Cherenkov emission imaging was examined here, primarily for visualization of treatment monitoring and then secondarily for Cherenkov-excited luminescence for tissue biochemical sensing within tissue. Through synchronized gating to the short radiation pulses of a linear accelerator (200Hz & 3 micros pulses), and applying a gated intensified camera for imaging, the Cherenkov radiation can be captured near video frame rates (30 frame per sec) with dim ambient room lighting. This procedure, sometimes termed Cherenkoscopy, is readily visualized without affecting the normal process of external beam radiation therapy. With simulation, phantoms and clinical trial data, each application of Cherenkoscopy was examined: i) for treatment monitoring, ii) for patient position monitoring and motion tracking, and iii) for superficial dose imaging. The temporal dynamics of delivered radiation fields can easily be directly imaged on the patient's surface. Image registration and edge detection of Cherenkov images were used to verify patient positioning during treatment. Inter-fraction setup accuracy and intra-fraction patient motion was detectable to better than 1 mm accuracy. Cherenkov emission in tissue opens up a new field of biochemical sensing within the tissue environment, using luminescent agents which can be activated by this light. In the first study of

  12. Comparison of a designed virtual counter with a real counter

    NASA Astrophysics Data System (ADS)

    Tektas, G.; Celiktas, C.

    2017-02-01

    A counter is a device which counts the incident pulses within a fixed time. In this work, a virtual counter was designed by developing a code by LabVIEW software. Generator signals were sent to the virtual counter via a National Instruments multifunction data acquisition device. Analog and PFI (Programmable Function Interface) inputs of the device was used for the process. A real counter was also used for comparison. Counts acquired from both counters in different time intervals were compared with each other. It was concluded from the obtained results that the developed virtual counter could be used as a real counter.

  13. Anisotropic Phases of Superfluid 3He in Compressed Aerogel

    NASA Astrophysics Data System (ADS)

    Li, J. I. A.; Zimmerman, A. M.; Pollanen, J.; Collett, C. A.; Halperin, W. P.

    2015-03-01

    It has been shown that the relative stabilities of various superfluid states of 3He can be influenced by anisotropy in a silica aerogel framework. We prepared a suite of aerogel samples compressed up to 30% for which we performed pulsed NMR on 3He imbibed within the aerogel. We identified A and B phases and determined their magnetic field-temperature phase diagrams as a function of strain. From these results, we infer that the B phase is distorted by negative strain forming an anisotropic superfluid state more stable than the A phase.

  14. Nanoengineering mechanically robust aerogels via control of foam morphology

    NASA Astrophysics Data System (ADS)

    Kucheyev, S. O.; Baumann, T. F.; Cox, C. A.; Wang, Y. M.; Satcher, J. H.; Hamza, A. V.; Bradby, J. E.

    2006-07-01

    Potential of aerogels for technological applications is often limited by their poor mechanical properties. Here, we demonstrate that alumina aerogel monoliths with excellent mechanical properties can be made by controlling the crystallographic phase, shape, and size of nanoligaments. In particular, we show that thermal processing of aerogels with a morphology of interconnected nanoleaflets causes dehydration and associated curling of the nanoleaflets, resulting in a dramatic improvement of mechanical properties. This study shows an effective way to control mechanical properties of the nanoporous solids that can be synthesized with ligaments having a quasi-two-dimensional shape, such as platelets, ribbons, or leaflets.

  15. Uncooled thin film pyroelectric IR detector with aerogel thermal isolation

    DOEpatents

    Ruffner, Judith A.; Bullington, Jeff A.; Clem, Paul G.; Warren, William L.; Brinker, C. Jeffrey; Tuttle, Bruce A.; Schwartz, Robert W.

    1999-01-01

    A monolithic infrared detector structure which allows integration of pyroelectric thin films atop low thermal conductivity aerogel thin films. The structure comprises, from bottom to top, a substrate, an aerogel insulating layer, a lower electrode, a pyroelectric layer, and an upper electrode layer capped by a blacking layer. The aerogel can offer thermal conductivity less than that of air, while providing a much stronger monolithic alternative to cantilevered or suspended air-gap structures for pyroelectric thin film pixel arrays. Pb(Zr.sub.0.4 Ti.sub.0.6)O.sub.3 thin films deposited on these structures displayed viable pyroelectric properties, while processed at 550.degree. C.

  16. Surfactant doped silica aerogels dried at supercritical pressure

    NASA Astrophysics Data System (ADS)

    Parale, V. G.; Mahadik, D. B.; Kavale, M. S.; Rao, A. Venkateswara; Vhatkar, R. S.; Wagh, P. B.; Gupta, Satish C.

    2013-02-01

    By combining the molecular silica precursor methyltrimethoxysilane (MTMS) with methanol, water and Tween-80 solution, we get surfactant-doped silica alcogels. The wet alcogels can be exchanged with methanol and then supercritically extracted with nitrogen to produce surfactant-doped silica aerogels (SDSAs). SDSAs represent a new class of aerogels that are composed of aggregated submicron porous particles that have tunable interparticle nanoporosity. As we increased the percentage of surfactant, the physical properties of silica aerogels changes. In this study we characterized the SDSAs by SEM for morphological study, FTIR for the material composition, contact angle for hydrophobicity determination and thermal conductivity measurements are carried out for thermal insulation application.

  17. Highly porous and mechanically strong ceramic oxide aerogels

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas (Inventor); Meador, Mary Ann B. (Inventor); Johnston, James C. (Inventor); Fabrizio, Eve F. (Inventor); Ilhan, Ulvi F. (Inventor)

    2010-01-01

    Structurally stable and mechanically strong ceramic oxide aerogels are provided. The aerogels are cross-linked via organic polymer chains that are attached to and extend from surface-bound functional groups provided or present over the internal surfaces of a mesoporous ceramic oxide particle network via appropriate chemical reactions. The functional groups can be hydroxyl groups, which are native to ceramic oxides, or they can be non-hydroxyl functional groups that can be decorated over the internal surfaces of the ceramic oxide network. Methods of preparing such mechanically strong ceramic oxide aerogels also are provided.

  18. Highly porous and mechanically strong ceramic oxide aerogels

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas (Inventor); Meador, Mary Ann B. (Inventor); Johnston, James C. (Inventor); Fabrizio, Eve F. (Inventor); Ilhan, Ulvi F. (Inventor)

    2012-01-01

    Structurally stable and mechanically strong ceramic oxide aerogels are provided. The aerogels are cross-linked via organic polymer chains that are attached to and extend from surface-bound functional groups provided or present over the internal surfaces of a mesoporous ceramic oxide particle network via appropriate chemical reactions. The functional groups can be hydroxyl groups, which are native to ceramic oxides, or they can be non-hydroxyl functional groups that can be decorated over the internal surfaces of the ceramic oxide network. Methods of preparing such mechanically strong ceramic oxide aerogels also are provided.

  19. Sensivity studies for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Collado, Tarek Hassan

    2015-06-01

    Since the creation of the first telescope in the 17th century, every major discovery in astrophysics has been the direct consequence of the development of novel observation techniques, opening new windows in the electromagnetic spectrum. After Karl Jansky discovered serendipitously the first radio source in 1933, Grote Reber built the first parabolic radio telescope in his backyard, planting the seed of a whole new field in astronomy. Similarly, new technologies in the 1950s allowed the establishment of other fields, such as the infrared, ultraviolet or the X-rays. The highest energy end of the electromagnetic spectrum, the γ-ray range, represents the last unexplored window for astronomers and should reveal the most extreme phenomena that take place in the Universe. Given the technical complexity of γ-ray detection and the extremely relative low fluxes, γ-ray astronomy has undergone a slower development compared to other wavelengths. Nowadays, the great success of consecutive space missions together with the development and refinement of new detection techniques from the ground, has allowed outstanding scientific results and has brought gamma-ray astronomy to a worthy level in par with other astronomy fields. This work is devoted to the study and improvement of the future Cherenkov Telescope Array (CTA), the next generation of ground based γ-ray detectors, designed to observe photons with the highest energies ever observed from cosmic sources.

  20. Temperature measurements of shocked silica aerogel foam

    DOE PAGES

    Falk, K.; McCoy, C. A.; Fryer, C. L.; ...

    2014-09-12

    We present recent results of equation-of-state (EOS) measurements of shocked silica (SiO2) aerogel foam at the OMEGA laser facility. Silica aerogel is an important low-density pressure standard used in many high energy density experiments, including the novel technique of shock and release. Due to its many applications, it has been a heavily studied material and has a well-known Hugoniot curve. This work then complements the velocity and pressure measurements with additional temperature data providing the full EOS information within the warm dense matter regime for the temperature interval of 1–15 eV and shock velocities between 10 and 40 km/s correspondingmore » to shock pressures of 0.3–2 Mbar. The experimental results were compared with hydrodynamic simulations and EOS models. We found that the measured temperature was systematically lower than suggested by theoretical calculations. As a result, simulations provide a possible explanation that the emission measured by optical pyrometry comes from a radiative precursor rather than from the shock front, which could have important implications for such measurements.« less

  1. Temperature measurements of shocked silica aerogel foam

    SciTech Connect

    Falk, K.; McCoy, C. A.; Fryer, C. L.; Greeff, C. W.; Hungerford, A. L.; Montgomery, D. S.; Schmidt, D. W.; Sheppard, D. G.; Williams, J. R.; Boehly, T. R.; Benage, J. F.

    2014-09-12

    We present recent results of equation-of-state (EOS) measurements of shocked silica (SiO2) aerogel foam at the OMEGA laser facility. Silica aerogel is an important low-density pressure standard used in many high energy density experiments, including the novel technique of shock and release. Due to its many applications, it has been a heavily studied material and has a well-known Hugoniot curve. This work then complements the velocity and pressure measurements with additional temperature data providing the full EOS information within the warm dense matter regime for the temperature interval of 1–15 eV and shock velocities between 10 and 40 km/s corresponding to shock pressures of 0.3–2 Mbar. The experimental results were compared with hydrodynamic simulations and EOS models. We found that the measured temperature was systematically lower than suggested by theoretical calculations. As a result, simulations provide a possible explanation that the emission measured by optical pyrometry comes from a radiative precursor rather than from the shock front, which could have important implications for such measurements.

  2. Multiscale Computer Simulation of Failure in Aerogels

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2008-01-01

    Aerogels have been of interest to the aerospace community primarily for their thermal properties, notably their low thermal conductivities. While such gels are typically fragile, recent advances in the application of conformal polymer layers to these gels has made them potentially useful as lightweight structural materials as well. We have previously performed computer simulations of aerogel thermal conductivity and tensile and compressive failure, with results that are in qualitative, and sometimes quantitative, agreement with experiment. However, recent experiments in our laboratory suggest that gels having similar densities may exhibit substantially different properties. In this work, we extend our original diffusion limited cluster aggregation (DLCA) model for gel structure to incorporate additional variation in DLCA simulation parameters, with the aim of producing DLCA clusters of similar densities that nevertheless have different fractal dimension and secondary particle coordination. We perform particle statics simulations of gel strain on these clusters, and consider the effects of differing DLCA simulation conditions, and the resultant differences in fractal dimension and coordination, on gel strain properties.

  3. Multifunctional electroactive heteroatom-doped carbon aerogels.

    PubMed

    You, Bo; Yin, Peiqun; An, Linna

    2014-11-12

    The design and synthesis of highly active, durable, and cheap nanomaterials for various renewable energy storage and conversion applications is extremely desirable but remains challenging. Here, a green and efficient strategy to produce CoOx nanoparticles and surface N-co-doped carbon aerogels (Co-N-CAs) is reported by multicomponent surface self-assembly of commercially melamine sponge (CMS). In the methodology, the CMS simultaneously function as green N precursor for surface N doping and 3D support. The resulting Co-N-CAs exhibit 3D hierarchical, interconnected macro- and bimodal meso-porosity (6.3 nm and <4 nm), high surface area (1383 m(2) g(-1)), and highly dispersed, semi-exposured CoOx nanoparticles (diameter of 12.5 nm). The surface doping of N, semi-exposured configuration of CoOx nanoparticles and the penetrated complementary pores (<4 nm) in the carbon walls provide highly accessibility between electroactive components and electrolytes to improve reactivity. With their tailored architecture, the Co-N-CAs show superior electrocatalytic oxygen reduction (ORR) activities comparable to the commercially Pt/C catalysts, high specific capacitance (433 F g(-1)), excellent lithium storage (938 mAh g(-1)), and outstanding durability, making them very promising for advanced energy conversion and storage. In addition, the presented strategy can be extended to fabricate other metal oxide- and N-co-doped carbon aerogels for diverse energy-related applications.

  4. Temperature measurements of shocked silica aerogel foam.

    PubMed

    Falk, K; McCoy, C A; Fryer, C L; Greeff, C W; Hungerford, A L; Montgomery, D S; Schmidt, D W; Sheppard, D G; Williams, J R; Boehly, T R; Benage, J F

    2014-09-01

    We present recent results of equation-of-state (EOS) measurements of shocked silica (SiO_{2}) aerogel foam at the OMEGA laser facility. Silica aerogel is an important low-density pressure standard used in many high energy density experiments, including the novel technique of shock and release. Due to its many applications, it has been a heavily studied material and has a well-known Hugoniot curve. This work then complements the velocity and pressure measurements with additional temperature data providing the full EOS information within the warm dense matter regime for the temperature interval of 1-15 eV and shock velocities between 10 and 40 km/s corresponding to shock pressures of 0.3-2 Mbar. The experimental results were compared with hydrodynamic simulations and EOS models. We found that the measured temperature was systematically lower than suggested by theoretical calculations. Simulations provide a possible explanation that the emission measured by optical pyrometry comes from a radiative precursor rather than from the shock front, which could have important implications for such measurements.

  5. Method for net-shaping using aerogels

    DOEpatents

    Brinker, C. Jeffrey; Ashey, Carol S.; Reed, Scott T.; Sriram, Chunangad S.; Harris, Thomas M.

    2001-01-01

    A method of net-shaping using aerogel materials is provided by first forming a sol, aging the sol to form a gel, with the gel having a fluid component and having been formed into a medium selected from the group consisting of a powder, bulk material, or granular aerobeads, derivatizing the surface of the gel to render the surface unreactive toward further condensation, removing a portion of the fluid component of the final shaped gel to form a partially dried medium, placing the medium into a cavity, wherein the volume of said medium is less that the volume of the cavity, and removing a portion of the fluid component of the medium. The removal, such as by heating at a temperature of approximately less than 50.degree. C., applying a vacuum, or both, causes the volume of the medium to increase and to form a solid aerogel. The material can be easily removed by exposing the material to a solvent, thereby reducing the volume of the material. In another embodiment, the gel is derivatized and then formed into a shaped medium, where subsequent drying reduces the volume of the shaped medium, forming a net-shaping material. Upon further drying, the material increases in volume to fill a cavity. The present invention is both a method of net-shaping and the material produced by the method.

  6. Aerogel Antennas Communications Study Using Error Vector Magnitude Measurements

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.; Mueller, Carl H.; Meador, Mary Ann B.

    2014-01-01

    This presentation discusses an aerogel antennas communication study using error vector magnitude (EVM) measurements. The study was performed using 2x4 element polyimide (PI) aerogel-based phased arrays designed for operation at 5 GHz as transmit (Tx) and receive (Rx) antennas separated by a line of sight (LOS) distance of 8.5 meters. The results of the EVM measurements demonstrate that polyimide aerogel antennas work appropriately to support digital communication links with typically used modulation schemes such as QPSK and 4 DQPSK. As such, PI aerogel antennas with higher gain, larger bandwidth and lower mass than typically used microwave laminates could be suitable to enable aerospace-to- ground communication links with enough channel capacity to support voice, data and video links from CubeSats, unmanned air vehicles (UAV), and commercial aircraft.

  7. Low dielectric polyimide aerogels as substrates for lightweight patch antennas.

    PubMed

    Meador, Mary Ann B; Wright, Sarah; Sandberg, Anna; Nguyen, Baochau N; Van Keuls, Frederick W; Mueller, Carl H; Rodríguez-Solís, Rafael; Miranda, Félix A

    2012-11-01

    The dielectric properties and loss tangents of low-density polyimide aerogels have been characterized at various frequencies. Relative dielectric constants as low as 1.16 were measured for polyimide aerogels made from 2,2'-dimethylbenzidine (DMBZ) and biphenyl 3,3',4,4'-tetracarbozylic dianhydride (BPDA) cross-linked with 1,3,5-triaminophenoxybenzene (TAB). This formulation was used as the substrate to fabricate and test prototype microstrip patch antennas and benchmark against state of practice commercial antenna substrates. The polyimide aerogel antennas exhibited broader bandwidth, higher gain, and lower mass than the antennas made using commercial substrates. These are very encouraging results, which support the potential advantages of the polyimide aerogel-based antennas for aerospace applications.

  8. Aerogel Antennas Communications Study Using Error Vector Magnitude Measurements

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.; Mueller, Carl H.; Meador, Mary Ann B.

    2014-01-01

    This paper discusses an aerogel antennas communication study using error vector magnitude (EVM) measurements. The study was performed using 4x2 element polyimide (PI) aerogel-based phased arrays designed for operation at 5 GHz as transmit (Tx) and receive (Rx) antennas separated by a line of sight (LOS) distance of 8.5 meters. The results of the EVM measurements demonstrate that polyimide aerogel antennas work appropriately to support digital communication links with typically used modulation schemes such as QPSK and pi/4 DQPSK. As such, PI aerogel antennas with higher gain, larger bandwidth and lower mass than typically used microwave laminates could be suitable to enable aerospace-to-ground communication links with enough channel capacity to support voice, data and video links from cubesats, unmanned air vehicles (UAV), and commercial aircraft.

  9. Mechanically Strong, Lightweight Porous Materials Developed (X-Aerogels)

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas

    2005-01-01

    Aerogels are attractive materials for a variety of NASA missions because they are ultralightweight, have low thermal conductivity and low-dielectric constants, and can be readily doped with other materials. Potential NASA applications for these materials include lightweight insulation for spacecraft, habitats, and extravehicular activity (EVA) suits; catalyst supports for fuel cell and in situ resource utilization; and sensors for air- and water-quality monitoring for vehicles, habitats, and EVA suits. Conventional aerogels are extremely fragile and require processing via supercritical fluid extraction, which adds cost to the production of an aerogel and limits the sizes and geometries of samples that can be produced from these materials. These issues have severely hampered the application of aerogels in NASA missions.

  10. High surface area aerogels for energy storage and efficiency

    NASA Astrophysics Data System (ADS)

    Maloney, Ryan Patrick

    The dissertation is divided into two main chapters, each focused on a different application for aerogel. The first chapter concerns the development of silica aerogel for thermal insulation. It begins with initial characterization of a silica aerogel insulation for a next-generation Advanced Radioisotope Stirling Generator for space vehicles. While the aerogel as made performs well, it is apparent that further improvements in mechanical strength and durability are necessary. The chapter then continues with the exploration of chlorotrimethysilane surface modification, which somewhat surprisingly provides a drastic increase in mechanical properties, allowing the inherently brittle silica network to deform plastically to >80% strain. It is hypothesized that the hydrophobic surface groups reduce capillary forces during drying, lowering the number of microcracks that may form and weaken the gel. This surface modification scheme is then implemented in a fiber-reinforced, opacified aerogel insulation for a prototypical thermoelectric generator for automotive waste heat recovery. This is the first known report of aerogel insulation for thermoelectrics. The aerogel insulation is able to increase the efficiency of the thermoelectric generator by 40% compared with commercial high-temperature insulating wool. Unfortunately, the supercritical drying process adds significant cost to the aerogel insulation, limiting its commercial viability. The chapter then culminates in the development and characterization of an Ambiently Dried Aerogel Insulation (ADAI) that eliminates the need for expensive supercritical drying. It is believed that this report represents the first aerogel insulation that can be dried without undergoing a large volume change before "springing back" to near its original volume, which allows it to be cast into place into complex geometries and around rigid inclusions. This reduces a large barrier to the commercial viability of aerogel insulation. The advantages of

  11. Electroless synthesis of cellulose-metal aerogel composites

    NASA Astrophysics Data System (ADS)

    Schestakow, M.; Muench, F.; Reimuth, C.; Ratke, L.; Ensinger, W.

    2016-05-01

    An environmentally benign electroless plating procedure enables a dense coating of silver nanoparticles onto complex cellulose aerogel structures. In the course of the nanoparticle deposition, the morphological characteristics of the aerogel are preserved, such as the continuous self-supporting network structure. While achieving a high metal loading, the large specific surface area as well as the low density is retained in the cellulose-metal aerogel composite. Due to the interesting features of cellulose aerogel substrates (e.g., the accessibility of its open-porous network) and electroless plating (e.g., the possibility to control the density, size, and composition of the deposited metal nanoparticles), the outlined synthetic scheme provides a facile and flexible route towards advanced materials in heterogeneous catalysis, plasmonics, and sensing.

  12. Photoluminescence properties of silica aerogel/porous silicon nanocomposites

    NASA Astrophysics Data System (ADS)

    Karlash, A. Yu; Zakharko, Yu E.; Skryshevsky, V. A.; Tsiganova, A. I.; Kuznetsov, G. V.

    2010-08-01

    The luminescent properties of nanocomposite pellets based on silica aerogel and porous Si powder are studied depending on the ratio of chemical compounds. The photoluminescence of nanocomposites is characterized by a red-orange band related to silicon nanoparticles and a blue-green band related to silica aerogel with close values of decay time and activation energy. Remarkable tuning of nanocomposites' photoluminescence spectra in the RGB region is established allowing their use as promising phosphor materials for light-emitting diodes. The outgoing spectra of pellet photoluminescence are guided by the chemical composition ratio, porous Si and silica aerogel technology, and the storage time in ambient atmosphere. It was shown that using the silica aerogel as a dielectric matrix considerably increases the stability of photoluminescence yield of silicon nanoparticles.

  13. CLASSiC: Cherenkov light detection with silicon carbide

    NASA Astrophysics Data System (ADS)

    Adriani, Oscar; Albergo, Sebastiano; D'Alessandro, Raffaello; Lenzi, Piergiulio; Sciuto, Antonella; Starodubtsev, Oleksandr; Tricomi, Alessia

    2017-02-01

    We present the CLASSiC R&D for the development of a silicon carbide (SiC) based avalanche photodiode for the detection of Cherenkov light. SiC is a wide-bandgap semiconductor material, which can be used to make photodetectors that are insensitive to visible light. A SiC based light detection device has a peak sensitivity in the deep UV, making it ideal for Cherenkov light. Moreover, the visible blindness allows such a device to disentangle Cherenkov light and scintillation light in all those materials that scintillate above 400 nm. Within CLASSiC, we aim at developing a device with single photon sensitivity, having in mind two main applications. One is the use of the SiC APD in a new generation ToF PET scanner concept, using the Cherenov light emitted by the electrons following 511 keV gamma ray absorption as a time-stamp. Cherenkov is intrinsically faster than scintillation and could provide an unprecedentedly precise time-stamp. The second application concerns the use of SiC APD in a dual readout crystal based hadronic calorimeter, where the Cherenkov component is used to measure the electromagnetic fraction on an event by event basis. We will report on our progress towards the realization of the SiC APD devices, the strategies that are being pursued toward the realization of these devices and the preliminary results on prototypes in terms of spectral response, quantum efficiency, noise figures and multiplication.

  14. Detection of tau neutrinos by imaging air Cherenkov telescopes

    NASA Astrophysics Data System (ADS)

    Góra, D.; Bernardini, E.

    2016-09-01

    This paper investigates the potential to detect tau neutrinos in the energy range of 1-1000 PeV searching for very inclined showers with imaging Cherenkov telescopes. A neutrino induced tau lepton escaping from the Earth may decay and initiate an air shower which can be detected by a fluorescence or Cherenkov telescope. We present here a study of the detection potential of Earth-skimming neutrinos taking into account neutrino interactions in the Earth crust, local matter distributions at various detector sites, the development of tau-induced showers in air and the detection of Cherenkov photons with IACTs. We analyzed simulated shower images on the camera focal plane and implemented generic reconstruction chains based on Hillas parameters. We find that present IACTs can distinguish air showers induced by tau neutrinos from the background of hadronic showers in the PeV-EeV energy range. We present the neutrino trigger efficiency obtained for a few configurations being considered for the next-generation Cherenkov telescopes, i.e. the Cherenkov Telescope Array. Finally, for a few representative neutrino spectra expected from astrophysical sources, we compare the expected event rates at running IACTs to what is expected for the dedicated IceCube neutrino telescope.

  15. Improved Detection of Cherenkov Radiation using Wavelength-Shifting Paints

    NASA Astrophysics Data System (ADS)

    Schmookler, Barak; Ou, Longwu

    2014-03-01

    Photomultiplier Tubes (PMTs) are often used to detect Cherenkov radiation in accelerator-based physics experiments. Since the Cherenkov spectrum is inversely proportional to the square of the photon's wavelength, PMTs with relatively good quantum efficiencies in the ultraviolet region can produce on average a higher number of photoelectrons. The application of certain paints, which absorb light at ultraviolet wavelengths and emit in the visible spectrum, to the surface of some PMTs allows for better sampling of the Cherenkov spectrum. The effects of various wavelength-shifting (WLS) paints designed by Eljen Technologies were tested on ET Enterprises, Model: 9390KB PMTs. Using a 106Ru β-source, Cherenkov light was produced in disks of fused silica. The charge spectrums of the PMTs were measured before and after application of the paint. The average number of photoelectrons produced from the Cherenkov radiation could be determined by knowing the value of the single-photoelectron peak and the mean of the charge spectrum. Four paints were tested, and the gain in the number photoelectrons produced varied from 10-35% for the different paints. Work Conducted at Thomas Jefferson National Accelerator Facility.

  16. Self-assembled and pyrolyzed carbon aerogels: an overview of their preparation mechanisms, properties and applications

    NASA Astrophysics Data System (ADS)

    Allahbakhsh, Ahmad; Bahramian, Ahmad Reza

    2015-08-01

    An overview of the synthesis conditions and mechanisms for the fabrication of different types of carbon aerogels, as well as the structural and functional properties of these materials, is presented here. In this overview, carbon aerogels are classified into three major categories: (i) conventional pyrolyzed organic-based carbon aerogels, which are products of the pyrolysis process of organic aerogels; (ii) self-assembled carbon aerogels, which are products of a reduction process; and (iii) nanocomposite carbon aerogels. Synthesis mechanisms for the sol-gel process of organic aerogels are reviewed using different mechanisms suggested in the literature. Moreover, the overall fabrication process of self-assembled carbon aerogels (graphene and carbon nanotube aerogels) is covered and the suggested mechanism for the gelation process of self-assembled carbon aerogels during the reduction process is investigated using reported mechanisms. The structural performance and functional properties (electrochemical and thermal properties) of different types of carbon aerogels are covered in detail. Moreover, different structural features of carbon aerogels and the influence of synthesis conditions on these structural characteristics are assessed and compared. Based on the literature results covered in this review paper, carbon aerogels are perfect candidates for the fabrication of ultra-low density supercapacitors, as well as thermal insulating materials.

  17. INSTRUMENTS AND METHODS OF INVESTIGATION: Vavilov-Cherenkov amplifiers with irregular electrodynamic structures

    NASA Astrophysics Data System (ADS)

    Gulyaev, Yurii V.; Kravchenko, Viktor F.; Kuraev, Aleksandr A.

    2004-06-01

    Optimal control theory-based methods for improving the efficiency of Cherenkov microwave amplifiers with irregular electrodynamic structures are reviewed. The physics of optimal processes in amplifiers and oscillators with Cherenkov- and combined-type interactions is discussed.

  18. Polyimide-Foam/Aerogel Composites for Thermal Insulation

    NASA Technical Reports Server (NTRS)

    Williams, Martha; Fesmire, James; Sass, Jared; Smith, Trent; Weoser. Erol

    2009-01-01

    Composites of specific types of polymer foams and aerogel particles or blankets have been proposed to obtain thermal insulation performance superior to those of the neat polyimide foams. These composites have potential to also provide enhanced properties for vibration dampening or acoustic attenuation. The specific type of polymer foam is denoted "TEEK-H", signifying a series, denoted H, within a family of polyimide foams that were developed at NASA s Langley Research Center and are collectively denoted TEEK (an acronym of the inventors names). The specific types of aerogels include Nanogel aerogel particles from Cabot Corporation in Billerica, MA. and of Spaceloft aerogel blanket from Aspen Aerogels in Northborough, MA. The composites are inherently flame-retardant and exceptionally thermally stable. There are numerous potential uses for these composites, at temperatures from cryogenic to high temperatures, in diverse applications that include aerospace vehicles, aircraft, ocean vessels, buildings, and industrial process equipment. Some low-temperature applications, for example, include cryogenic storage and transfer or the transport of foods, medicines, and chemicals. Because of thermal cycling, aging, and weathering most polymer foams do not perform well at cryogenic temperatures and will undergo further cracking over time. The TEEK polyimides are among the few exceptions to this pattern, and the proposed composites are intended to have all the desirable properties of TEEK-H foams, plus improved thermal performance along with enhanced vibration or acoustic-attenuation performance. A composite panel as proposed would be fabricated by adding an appropriate amount of TEEK friable balloons into a mold to form a bottom layer. A piece of flexible aerogel blanket material, cut to the desired size and shape, would then be placed on the bottom TEEK layer and sandwiched between another top layer of polyimide friable balloons so that the aerogel blanket would become

  19. Minimum thermal conductivity considerations in aerogel thin films

    NASA Astrophysics Data System (ADS)

    Hopkins, Patrick E.; Kaehr, Bryan; Piekos, Edward S.; Dunphy, Darren; Jeffrey Brinker, C.

    2012-06-01

    We demonstrate the use time domain thermoreflectance (TDTR) to measure the thermal conductivity of the solid silica network of aerogel thin-films. TDTR presents a unique experimental capability for measuring the thermal conductivity of porous media due to the nanosecond time domain aspect of the measurement. In short, TDTR is capable of explicitly measuring the change in temperature with time of the solid portion of porous media independently from the pores or effective media. This makes TDTR ideal for determining the thermal transport through the solid network of the aerogel film. We measure the thermal conductivity of the solid silica networks of an aerogel film that is 10% solid, and the thermal conductivity of the same type of film that has been calcined to remove the terminating methyl groups. We find that for similar densities, the thermal conductivity through the silica in the aerogel thin films is similar to that of bulk aerogels. We theoretically describe the thermal transport in the aerogel films with a modified minimum limit to thermal conductivity that accounts for porosity through a reduction in phonon velocity. Our porous minimum limit agrees well with a wide range of experimental data in addition to sound agreement with differential effective medium theory. This porous minimum limit therefore demonstrates an approach to predict the thermal conductivity of porous disordered materials with no a priori knowledge of the corresponding bulk phase, unlike differential effective medium theory.

  20. Highly compressible 3D periodic graphene aerogel microlattices

    DOE PAGES

    Zhu, Cheng; Han, T. Yong-Jin; Duoss, Eric B.; ...

    2015-04-22

    Graphene is a two-dimensional material that offers a unique combination of low density, exceptional mechanical properties, large surface area and excellent electrical conductivity. Recent progress has produced bulk 3D assemblies of graphene, such as graphene aerogels, but they possess purely stochastic porous networks, which limit their performance compared with the potential of an engineered architecture. Here we report the fabrication of periodic graphene aerogel microlattices, possessing an engineered architecture via a 3D printing technique known as direct ink writing. The 3D printed graphene aerogels are lightweight, highly conductive and exhibit supercompressibility (up to 90% compressive strain). Moreover, the Young’s modulimore » of the 3D printed graphene aerogels show an order of magnitude improvement over bulk graphene materials with comparable geometric density and possess large surface areas. Ultimately, adapting the 3D printing technique to graphene aerogels realizes the possibility of fabricating a myriad of complex aerogel architectures for a broad range of applications.« less

  1. Comparative study of aerogels obtained from differently prepared nanocellulose fibers.

    PubMed

    Chen, Wenshuai; Li, Qing; Wang, Youcheng; Yi, Xin; Zeng, Jie; Yu, Haipeng; Liu, Yixing; Li, Jian

    2014-01-01

    This article describes the fabrication of nanocellulose fibers (NCFs) with different morphologies and surface properties from biomass resources as well as their self-aggregation into lightweight aerogels. By carefully modulating the nanofibrillation process, four types of NCFs could be readily fabricated, including long aggregated nanofiber bundles, long individualized nanofibers with surface C6 -carboxylate groups, short aggregated nanofibers, and short individualized nanofibers with surface sulfate groups. Free-standing lightweight aerogels were obtained from the corresponding aqueous NCF suspensions through freeze-drying. The structure of the aerogels could be controlled by manipulating the type of NCFs and the concentration of their suspensions. A possible mechanism for the self-aggregation of NCFs into two- or three-dimensional aerogel nanostructures was further proposed. Owing to web-like structure, high porosity, and high surface reactivity, the NCF aerogels exhibited high mechanical flexibility and ductility, and excellent properties for water uptake, removal of dye pollutants, and the use as thermal insulation materials. The aerogels also displayed sound-adsorption capability at high frequencies.

  2. Modeling silica aerogel optical performance by determining its radiative properties

    NASA Astrophysics Data System (ADS)

    Zhao, Lin; Yang, Sungwoo; Bhatia, Bikram; Strobach, Elise; Wang, Evelyn N.

    2016-02-01

    Silica aerogel has been known as a promising candidate for high performance transparent insulation material (TIM). Optical transparency is a crucial metric for silica aerogels in many solar related applications. Both scattering and absorption can reduce the amount of light transmitted through an aerogel slab. Due to multiple scattering, the transmittance deviates from the Beer-Lambert law (exponential attenuation). To better understand its optical performance, we decoupled and quantified the extinction contributions of absorption and scattering separately by identifying two sets of radiative properties. The radiative properties are deduced from the measured total transmittance and reflectance spectra (from 250 nm to 2500 nm) of synthesized aerogel samples by solving the inverse problem of the 1-D Radiative Transfer Equation (RTE). The obtained radiative properties are found to be independent of the sample geometry and can be considered intrinsic material properties, which originate from the aerogel's microstructure. This finding allows for these properties to be directly compared between different samples. We also demonstrate that by using the obtained radiative properties, we can model the photon transport in aerogels of arbitrary shapes, where an analytical solution is difficult to obtain.

  3. Calorimetric Aerogel Collectors/Detectors of Hypervelocity Dust Grains

    NASA Astrophysics Data System (ADS)

    Dominguez, G.; Westphal, A. J.; Phillips, M. L. F.; Jones, S. M.

    Distinguishing between lower velocity (<8 km/s) orbital debris impacts and higher velocity extraterrestrial particles collected in aerogels was the primary driver behind our development of calorimetric aerogels. While low-density aerogels have been shown to be superior at maximizing the survival of captured hypervelocity projectiles, reconstructing the impact velocity has not been possible. We have previously demonstrated that the shock heating experienced by Gd:Tb doped alumina aerogels results in the production of permanently fluorescent impact cavities. In addition, we have shown that the amount of induced (with UV illumination) fluorescence correlates with the kinetic energy of the captured projectile. Improvements in our production capabilities have recently allowed us to measure, using a Ti-doped Si/Al aerogel, the intrinsic resolution of using this technique to reconstruct the velocity of captured hypervelocity projectiles. We are currently exploring composition space in order to optimize the sensitivity and mechanical properties of these collector/detectors. We report on the results from our latest round of hypervelocity tests as well as the expected collection statistics of deploying a 3 square meter array of calorimetric aerogels in low-Earth-orbit (LEO).

  4. Shock Propagation and Instability Structures in Compressed Silica Aerogels

    SciTech Connect

    Howard, W M; Molitoris, J D; DeHaven, M R; Gash, A E; Satcher, J H

    2002-05-30

    We have performed a series of experiments examining shock propagation in low density aerogels. High-pressure ({approx}100 kbar) shock waves are produced by detonating high explosives. Radiography is used to obtain a time sequence imaging of the shocks as they enter and traverse the aerogel. We compress the aerogel by impinging shocks waves on either one or both sides of an aerogel slab. The shock wave initially transmitted to the aerogel is very narrow and flat, but disperses and curves as it propagates. Optical images of the shock front reveal the initial formation of a hot dense region that cools and evolves into a well-defined microstructure. Structures observed in the shock front are examined in the framework of hydrodynamic instabilities generated as the shock traverses the low-density aerogel. The primary features of shock propagation are compared to simulations, which also include modeling the detonation of the high explosive, with a 2-D Arbitrary Lagrange Eulerian hydrodynamics code The code includes a detailed thermochemical equation of state and rate law kinetics. We will present an analysis of the data from the time resolved imaging diagnostics and form a consistent picture of the shock transmission, propagation and instability structure.

  5. Clay Nanocomposite/Aerogel Sandwich Structures for Cryotanks

    NASA Technical Reports Server (NTRS)

    Miller, Sandi; Leventis, Nicholas; Johnston, J. Chris; Meador, Michael

    2006-01-01

    GRC research has led to the development of epoxy-clay nanocomposites with 60-70% lower gas permeability than the base epoxy resin. Filament wound carbon fiber reinforced tanks made with this nanocomposite had a five-fold lower helium leak rate than the corresponding tanks made without clay. More recent work has produced new composites with more than a 100-fold reduction in helium permeability. Use of these advanced, high barrier composites would eliminate the need for a liner in composite cryotanks, thereby simplifying construction and reducing propellant leakage. Aerogels are attractive materials for use as cryotank insulation because of their low density and low thermal conductivity. However, aerogels are fragile and have poor environmental stability, which have limited their use to certain applications in specialized environments (e.g., in certain types of nuclear reactors as Cerenkov radiation detectors, and as thermal insulators aboard space rovers on Mars). New GRC developed polymer crosslinked aerogels (X-Aerogels) retain the low density of conventional aerogels, but they demonstrate a 300-fold increase in their mechanical strength. Currently, our strongest materials combine a density of approx. 0.45 g/cc, a thermal conductivity of approx. 0.04 W/mK and a compressive strength of 185 MPa. Use of these novel aerogels as insulation materials/structural components in combination with the low permeability of epoxy-clay nanocomposites could significantly reduce cryotank weight and improve durability.

  6. Spin-Cherenkov effect and magnonic Mach cones

    NASA Astrophysics Data System (ADS)

    Yan, Ming; Kákay, Attila; Andreas, Christian; Hertel, Riccardo

    2013-12-01

    We report on the Cherenkov-type excitation of spin waves (SWs) in ferromagnets. Our micromagnetic simulations show that a localized magnetic field pulse moving sufficiently fast along the surface of a ferromagnet generates a SW boom, with a Mach-type cone of propagating wave fronts. The SWs are formed when the velocity of the source exceeds the propagation speed of SWs. Unlike the single cone of the usual Cherenkov effect, we find that the magnetic Mach cone consists of two wave fronts with different wave numbers. In patterned thin strips, this magnetic analog of the Cherenkov effect should enable the excitation of SWs with well-defined and velocity-dependent frequency. It thereby provides a promising route towards tunable SW generation, with important potential for applications in magnonic devices.

  7. Separation of scintillation and Cherenkov lights in linear alkyl benzene

    SciTech Connect

    Li, Mohan; Guo, Ziyi; Yeh, Minfang; Wang, Zhe; Chen, Shaomin

    2016-09-11

    To separate scintillation and Cherenkov lights in water-based liquid scintillator detectors is a desired feature for future neutrino and proton decay experiments. Linear alkyl benzene (LAB) is one important ingredient of a water-based liquid scintillator currently under development. In this paper we report on the separation of scintillation and Cherenkov lights observed in an LAB sample. The rise and decay times of the scintillation light are measured to be (7.7±3.0)ns and (36.6±2.4)ns, respectively, while the full width [–3σ, 3σ] of the Cherenkov light is 12 ns and is dominated by the time resolution of the photomultiplier tubes. Here, the scintillation light yield was measured to be(1.01±0.12)×103photons/MeV.

  8. Separation of scintillation and Cherenkov lights in linear alkyl benzene

    DOE PAGES

    Li, Mohan; Guo, Ziyi; Yeh, Minfang; ...

    2016-09-11

    To separate scintillation and Cherenkov lights in water-based liquid scintillator detectors is a desired feature for future neutrino and proton decay experiments. Linear alkyl benzene (LAB) is one important ingredient of a water-based liquid scintillator currently under development. In this paper we report on the separation of scintillation and Cherenkov lights observed in an LAB sample. The rise and decay times of the scintillation light are measured to be (7.7±3.0)ns and (36.6±2.4)ns, respectively, while the full width [–3σ, 3σ] of the Cherenkov light is 12 ns and is dominated by the time resolution of the photomultiplier tubes. Here, the scintillationmore » light yield was measured to be(1.01±0.12)×103photons/MeV.« less

  9. The High-Altitude Water Cherenkov Observatory: First Light

    NASA Astrophysics Data System (ADS)

    Weisgarber, Thomas

    2013-04-01

    The High-Altitude Water Cherenkov (HAWC) Observatory is under construction at Sierra Negra in the state of Puebla in Mexico. Operation began in September 2012, with the first 30 out of the final 300 water Cherenkov detectors deployed and in data acquisition. The HAWC Observatory is designed to record particle air showers from gamma rays and cosmic rays with TeV energies. Though the detector is only 10% complete, HAWC is already the world's largest water Cherenkov detector in the TeV band. In this presentation, I will summarize the performance of the detector to date and discuss preliminary observations of cosmic-ray and gamma-ray sources. I will also describe deployment plans for the remainder of the detector and outline prospects for TeV observations in the coming year.

  10. Cherenkov Light-based Beam Profiling for Ultrarelativistic Electron Beams

    DOE PAGES

    Adli, E.; Gessner, S. J.; Corde, S.; ...

    2015-02-09

    We describe a beam profile monitor design based on Cherenkov light emitted from a charged particle beam in an air gap. The main components of the profile monitor are silicon wafers used to reflect Cherenkov light onto a camera lens system. The design allows for measuring large beam sizes, with large photon yield per beam charge and excellent signal linearity with beam charge. Furthermore, the profile monitor signal is independent of the particle energy for ultrarelativistic particles. Different design and parameter considerations are discussed. A Cherenkov light-based profile monitor has been installed at the FACET User Facility at SLAC. Finally,more » we report on the measured performance of this profile monitor.« less

  11. The GCT camera for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Brown, A. M.; Abchiche, A.; Allan, D.; Amans, J.-P.; Armstrong, T. P.; Balzer, A.; Berge, D.; Boisson, C.; Bousquet, J.-J.; Bryan, M.; Buchholtz, G.; Chadwick, P. M.; Costantini, H.; Cotter, G.; Daniel, M. K.; De Franco, A.; de Frondat, F.; Dournaux, J.-L.; Dumas, D.; Fasola, G.; Funk, S.; Gironnet, J.; Graham, J. A.; Greenshaw, T.; Hervet, O.; Hidaka, N.; Hinton, J. A.; Huet, J.-M.; Jégouzo, I.; Jogler, T.; Kraus, M.; Lapington, J. S.; Laporte, P.; Lefaucheur, J.; Markoff, S.; Melse, T.; Mohrmann, L.; Molyneux, P.; Nolan, S. J.; Okumura, A.; Osborne, J. P.; Parsons, R. D.; Rosen, S.; Ross, D.; Rowell, G.; Sato, Y.; Sayede, F.; Schmoll, J.; Schoorlemmer, H.; Servillat, M.; Sol, H.; Stamatescu, V.; Stephan, M.; Stuik, R.; Sykes, J.; Tajima, H.; Thornhill, J.; Tibaldo, L.; Trichard, C.; Vink, J.; Watson, J. J.; White, R.; Yamane, N.; Zech, A.; Zink, A.; Zorn, J.

    2016-07-01

    The Gamma-ray Cherenkov Telescope (GCT) is proposed for the Small-Sized Telescope component of the Cherenkov Telescope Array (CTA). GCT's dual-mirror Schwarzschild-Couder (SC) optical system allows the use of a compact camera with small form-factor photosensors. The GCT camera is 0:4 m in diameter and has 2048 pixels; each pixel has a 0:2° angular size, resulting in a wide field-of-view. The design of the GCT camera is high performance at low cost, with the camera housing 32 front-end electronics modules providing full waveform information for all of the camera's 2048 pixels. The first GCT camera prototype, CHEC-M, was commissioned during 2015, culminating in the first Cherenkov images recorded by a SC telescope and the first light of a CTA prototype. In this contribution we give a detailed description of the GCT camera and present preliminary results from CHEC-M's commissioning.

  12. Compressor surge counter

    DOEpatents

    Castleberry, Kimberly N.

    1983-01-01

    A surge counter for a rotating compressor is provided which detects surging by monitoring the vibration signal from an accelerometer mounted on the shaft bearing of the compressor. The circuit detects a rapid increase in the amplitude envelope of the vibration signal, e.g., 4 dB or greater in less than one second, which is associated with a surge onset and increments a counter. The circuit is rendered non-responsive for a period of about 5 seconds following the detection which corresponds to the duration of the surge condition. This prevents multiple registration of counts during the surge period due to rapid swings in vibration amplitude during the period.

  13. Counter-propeller

    NASA Technical Reports Server (NTRS)

    De Caria, Ugo

    1931-01-01

    A counter-propeller is a fixed propeller smaller than the main propeller, mounted either fore or aft of the latter and performing the function of changing the direction of motion of the fluid filaments, which naturally tend to adopt a helicoidal form. This paper presents a consideration of the real advantage of counter-propellers on aircraft and the best shape of the blades. First, the author determines the possible energy absorption by the tangential increments. This process will be facilitated by the examination of the polygons of the relative velocities fore and aft of the generic section, of radius r, of one of the blades of the propeller.

  14. Monolithic three-dimensional electrochemical energy storage system on aerogel or nanotube scaffold

    DOEpatents

    Farmer, Joseph C; Stadermann, Michael

    2013-11-12

    A monolithic three-dimensional electrochemical energy storage system is provided on an aerogel or nanotube scaffold. An anode, separator, cathode, and cathodic current collector are deposited on the aerogel or nanotube scaffold.

  15. Monolithic three-dimensional electrochemical energy storage system on aerogel or nanotube scaffold

    DOEpatents

    Farmer, Joseph Collin; Stadermann, Michael

    2014-07-15

    A monolithic three-dimensional electrochemical energy storage system is provided on an aerogel or nanotube scaffold. An anode, separator, cathode, and cathodic current collector are deposited on the aerogel or nanotube scaffold.

  16. Lorentz-invariant formulation of Cherenkov radiation by tachyons

    NASA Technical Reports Server (NTRS)

    Jones, F. C.

    1972-01-01

    Previous treatments of Cherenkov radiation, electromagnetic and gravitational, by tachyons were in error because the prescription employed to cut off the divergent integral over frequency is not a Lorentz invariant procedure. The resulting equation of motion for the tachyon is therefore not covariant. The proper procedure requires an extended, deformable distribution of charge or mass and yields a particularly simple form for the tachyon's world line, one that could be deduced from simple invariance considerations. It is shown that Cherenkov radiation by tachyons implys their ultimate annihilation with an antitachyon and demonstrates a disturbing property of tachyons, namely the impossibility of specifying arbitrary Cauchy data even in a purely classical theory.

  17. Light concentrator of the wide field of view Cherenkov telescope

    NASA Astrophysics Data System (ADS)

    Yang, Rui; Sheng, Xi Yi; Liao, Bo Lin

    2016-10-01

    The Wide Field of View Cherenkov Telescope (WFCT) is mainly constituted by optical reflector and focal-plane photomultiplier (PMT) array camera. In order to avoid loss of Cherenkov signal resulting from the dead area between circular PMT tubes and invalid fringe of each PMT, the light concentrator used as front window of PMT is considered to improve detective efficiency. Basing on the edge-ray principle and features of WFCT, several light concentrators are designed and simulated with ZEMAX. The result shows that the hollow hexahedral compound parabolic concentrator (hex-CPC) has good performance in collecting light. Moreover, the samples of the hollow hexahedral CPC have been manufactured and tested.

  18. Cherenkov Radiation from Jets in Heavy-ion Collisions

    SciTech Connect

    Koch, Volker; Majumder, Abhijit; Wang, Xin-Nian

    2005-07-26

    The possibility of Cherenkov-like gluon bremsstrahlung in dense matter is studied. We point out that the occurrence of Cherenkov radiation in dense matter is sensitive to the presence of partonic bound states. This is illustrated by a calculation of the dispersion relation of a massless particle in a simple model in which it couples to two different massive resonance states. We further argue that detailed spectroscopy of jet correlations can directly probe the index of refraction of this matter, which in turn will provide information about the mass scale of these partonic bound states.

  19. Using Silica Sol as a Nanoglue to Prepare Nanoscale Mesoporous Composite Gel and Aerogels

    DTIC Science & Technology

    2000-03-31

    entitled: "USING SILICA SOL AS A NANOGLUE TO PREPARE NANOSCALE MESOPOROUS COMPOSITE GEL AND AEROGELS" Request for release for publication. REF...L. Anderson, Karen E. Swider Lyons, Ceha I. Merzbacher, Joseph V. Ryan and Veronica M. Cepak 3 MESOPOROUS COMPOSITE GELS AND AEROGELS 4 5 6 1...to mesoporous composite gels and aerogels and their various uses. 9 10 2. Description of the Background Art 11 Xerogels and aerogels

  20. Novel Cryogenic Insulation Materials: Aerogel Composites

    NASA Technical Reports Server (NTRS)

    White, Susan

    2001-01-01

    New insulation materials are being developed to economically and reliably insulate future reusable spacecraft cryogenic tanks over a planned lifecycle of extreme thermal challenges. These insulation materials must prevent heat loss as well as moisture and oxygen condensation on the cryogenic tanks during extended groundhold, must withstand spacecraft launch conditions, and must protect a partly full or empty reusable cryogenic tank from significant reentry heating. To perform over such an extreme temperature range, novel composites were developed from aerogels and high-temperature matrix material such as Space Shuttle tile. These materials were fabricated and tested for use both as cryogenic insulation and as high-temperature insulation. The test results given in this paper were generated during spacecraft re-entry heating simulation tests using cryogenic cooling.

  1. Reinforced plastics and aerogels by nanocrystalline cellulose

    NASA Astrophysics Data System (ADS)

    Leung, Alfred C. W.; Lam, Edmond; Chong, Jonathan; Hrapovic, Sabahudin; Luong, John H. T.

    2013-05-01

    Nanocrystalline cellulose (NCC), a rigid rod-like nanoscale material, can be produced from cellulosic biomass in powder, liquid, or gel forms by acid and chemical hydrolysis. Owing to its unique and exceptional physicochemical properties, the incorporation of a small amount of NCC into plastic enhances the mechanical strength of the latter by several orders of magnitudes. Carbohydrate-based NCC poses no serious environmental concerns, providing further impetus for the development and applications of this green and renewable biomaterial to fabricate lightweight and biodegradable composites and aerogels. Surface functionalization of NCC remains the main focus of NCC research to tailor its properties for dispersion in hydrophilic or hydrophobic media. It is of uttermost importance to develop tools and protocols for imaging of NCC in a complex matrix and quantify its reinforcement effect.

  2. Electromagnetically Operated Counter

    DOEpatents

    Goldberg, H D; Goldberg, M I

    1951-12-18

    An electromagnetically operated counter wherein signals to be counted are applied to cause stepwise rotation of a rotatable element which is connected to a suitable register. The mechanism involved consists of a rotatable armature having three spaced cores of magnetic material and a pair of diametrically opposed electromagnets with a suitable pulsing circuit to actuate the magnets.

  3. Aerogel and Porous Silicon MEMS for on-Chip Vacuum Packaging

    DTIC Science & Technology

    2004-08-31

    August 31, 2004 Aerogel & Porous Silicon MEMS for on-chip Vacuum Packaging Extension to "Aerogel MEMS for High Acceleration and High Shock...High Acceleration and Shock Applications (Aerogel & DAAHOI-99-C-R220 Porous Silicon MEMS for on-chip Vacuum Packaging ) 5b. GRANT NUMBER Sc. PROGRAM

  4. Aerogel as a Sample Collector and Sample Mount for Transmission XRD Analysis

    NASA Technical Reports Server (NTRS)

    Bish, D. L.; Vaniman, D. T.; Chipera, S. J.; Yen, A. S.; Jones, S. M.

    2001-01-01

    Silica aerogel can be used for dust collection and in situ X-ray analysis. Aerogels can be less absorbing than Be, and it is feasible to obtain X-ray transmission factors >50% using typical aerogels together with a 100-micrometer Be backing foil. Additional information is contained in the original extended abstract.

  5. GCT, the Gamma-ray Cherenkov Telescope for multi-TeV science with the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Sol, H.; Dournaux, J.-L.; Laporte, P.

    2016-12-01

    GCT is a gamma-ray telescope proposed for the high-energy section of the Cherenkov Telescope Array (CTA). A GCT prototype telescope has been designed, built and installed at the Observatoire de Paris in Meudon. Equipped with the first GCT prototype camera developed by an international collaboration, the complete GCT prototype was inaugurated in December 2015, after getting its first Cherenkov light on the night sky in November. The phase of tests, assessment, and optimisation is now coming to an end. Pre-production of the first GCT telescopes and cameras should start in 2017, for an installation on the Chilean site of CTA in 2018.

  6. Alginate-based hybrid aerogel microparticles for mucosal drug delivery.

    PubMed

    Gonçalves, V S S; Gurikov, P; Poejo, J; Matias, A A; Heinrich, S; Duarte, C M M; Smirnova, I

    2016-10-01

    The application of biopolymer aerogels as drug delivery systems (DDS) has gained increased interest during the last decade since these structures have large surface area and accessible pores allowing for high drug loadings. Being biocompatible, biodegradable and presenting low toxicity, polysaccharide-based aerogels are an attractive carrier to be applied in pharmaceutical industry. Moreover, some polysaccharides (e.g. alginate and chitosan) present mucoadhesive properties, an important feature for mucosal drug delivery. This feature allows to extend the contact of DDS with biological membranes, thereby increasing the absorption of drugs through the mucosa. Alginate-based hybrid aerogels in the form of microparticles (<50μm) were investigated in this work as carriers for mucosal administration of drugs. Low methoxyl pectin and κ-carrageenan were co-gelled with alginate and further dried with supercritical CO2 (sc-CO2). Spherical mesoporous aerogel microparticles were obtained for alginate, hybrid alginate/pectin and alginate/κ-carrageenan aerogels, presenting high specific surface area (370-548m(2)g(-1)) and mucoadhesive properties. The microparticles were loaded with ketoprofen via adsorption from its solution in sc-CO2, and with quercetin via supercritical anti-solvent precipitation. Loading of ketoprofen was in the range between 17 and 22wt% whereas quercetin demonstrated loadings of 3.1-5.4wt%. Both the drugs were present in amorphous state. Loading procedure allowed the preservation of antioxidant activity of quercetin. Release of both drugs from alginate/κ-carrageenan aerogel was slightly faster compared to alginate/pectin. The results indicate that alginate-based aerogel microparticles can be viewed as promising matrices for mucosal drug delivery applications.

  7. Long term biological developments in water Cherenkov detector media

    NASA Astrophysics Data System (ADS)

    Venturini, M.; Filevich, A.; Pizarro, R.; Ibáñez, J.; Bauleo, P.; Rodríguez Martino, J.

    2011-12-01

    Fourteen years ago, studies on bacteria growing in clean water were made in order to assess the hazard imposed by a possible expansion of bacteria population in the water tanks of the Pierre Auger Observatory Cherenkov detectors. In 1999 TANGO Array, a reduced-size unitary cell, composed of four water Cherenkov detectors, was constructed at the TANDAR campus of the Atomic Energy Commission, in Buenos Aires, to be used as a working model of the proposed surface array. TANGO Array ran for one year observing energy, intensity, and arrival directions of cosmic rays at sea level. Nine years after it was decommissioned, the water tanks configuring the Cherenkov detectors are still kept closed. In May 2009 water and liner samples from these tanks were collected to determine eventual long term bacteria growth in the internal detector environment, which is very similar to those of the detectors installed in the Malargüe Site. In the present note we report the results of the bacteriological study performed on the samples obtained from the TANGO Array detector tanks. Cultivable, long time surviving, bacterial species were identified, both in the water mass and on the liner surface, and the light transmission in water at the relevant Cherenkov wavelength was studied. An upper limit of possible interferences caused by bacteria is estimated.

  8. Cherenkov radiation by Josephson vortex travelling in the long sandwich

    NASA Astrophysics Data System (ADS)

    Malishevskii, A. S.; Silin, V. P.; Uryupin, S. A.; Uspenskii, S. G.

    2009-03-01

    Vortex motion in the long Josephson sandwich embedded in dielectric media is described. It is shown that vortices traveling with velocities greater than the speed of light in the dielectric generate electromagnetic waves. Appearance of radiation is due to Cherenkov phenomenon. Radiation appearing at rather high vortex velocities has high enough frequencies. For typical sandwiches radiation frequencies fall on THz domain.

  9. Detection of atmospheric Cherenkov radiation using solar heliostat mirrors

    NASA Astrophysics Data System (ADS)

    Ong, R. A.; Bhattacharya, D.; Covault, C. E.; Dixon, D. D.; Gregorich, D. T.; Hanna, D. S.; Oser, S.; Québert, J.; Smith, D. A.; Tümer, O. T.; Zych, A. D.

    1996-10-01

    There is considerable interest world-wide in developing large area atmospheric Cherenkov detectors for ground-based gamma-ray astronomy. This interest stems, in large part, from the fact that the gamma-ray energy region between 20 and 250 GeV is unexplored by any experiment. Atmospheric Cherenkov detectors offer a possible way to explore this region, but large photon collection areas are needed to achieve low energy thresholds. We are developing an experiment using the heliostat mirrors of a solar power plant as the primary collecting element. As part of this development, we built a detector using four heliostat mirrors, a secondary Fresnel lens, and a fast photon detection system. In November 1994, we used this detector to record atmospheric Cherenkov radiation produced by cosmic ray particles showering in the atmosphere. The detected rate of cosmic ray events was consistent with an energy threshold near 1 TeV. The data presented here represent the first detection of atmospheric Cherenkov radiation using solar heliostats viewed from a central tower.

  10. Noble metal aerogels-synthesis, characterization, and application as electrocatalysts.

    PubMed

    Liu, Wei; Herrmann, Anne-Kristin; Bigall, Nadja C; Rodriguez, Paramaconi; Wen, Dan; Oezaslan, Mehtap; Schmidt, Thomas J; Gaponik, Nikolai; Eychmüller, Alexander

    2015-02-17

    CONSPECTUS: Metallic and catalytically active materials with high surface area and large porosity are a long-desired goal in both industry and academia. In this Account, we summarize the strategies for making a variety of self-supported noble metal aerogels consisting of extended metal backbone nanonetworks. We discuss their outstanding physical and chemical properties, including their three-dimensional network structure, the simple control over their composition, their large specific surface area, and their hierarchical porosity. Additionally, we show some initial results on their excellent performance as electrocatalysts combining both high catalytic activity and high durability for fuel cell reactions such as ethanol oxidation and the oxygen reduction reaction (ORR). Finally, we give some hints on the future challenges in the research area of metal aerogels. We believe that metal aerogels are a new, promising class of electrocatalysts for polymer electrolyte fuel cells (PEFCs) and will also open great opportunities for other electrochemical energy systems, catalysis, and sensors. The commercialization of PEFCs encounters three critical obstacles, viz., high cost, insufficient activity, and inadequate long-term durability. Besides others, the sluggish kinetics of the ORR and alcohol oxidation and insufficient catalyst stability are important reasons for these obstacles. Various approaches have been taken to overcome these obstacles, e.g., by controlling the catalyst particle size in an optimized range, forming multimetallic catalysts, controlling the surface compositions, shaping the catalysts into nanocrystals, and designing supportless catalysts with extended surfaces such as nanostructured thin films, nanotubes, and porous nanostructures. These efforts have produced plenty of excellent electrocatalysts, but the development of multisynergetic functional catalysts exhibiting low cost, high activity, and high durability still faces great challenges. In this

  11. X-Aerogels for Structural Components and High Temperature Applications

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Future NASA missions and space explorations rely on the use of materials that are strong ultra lightweight and able to withstand extreme temperatures. Aerogels are low density (0.01-0.5 g/cu cm) high porosity materials that contain a glass like structure formed through standard sol-gel chemistry. As a result of these structural properties, aerogels are excellent thermal insulators and are able to withstand temperatures in excess of l,000 C. The open structure of aerogels, however, renders these materials extremely fragile (fracturing at stress forces less than 0.5 N/sq cm). The goal of NASA Glenn Research Center is to increase the strength of these materials by templating polymers and metals onto the surface of an aerogel network facilitating the use of this material for practical applications such as structural components of space vehicles used in exploration. The work this past year focused on two areas; (1) the research and development of new templated aerogels materials and (2) process development for future manufacturing of structural components. Research and development occurred on the production and characterization of new templating materials onto the standard silica aerogel. Materials examined included polymers such as polyimides, fluorinated isocyanates and epoxies, and, metals such as silver, gold and platinum. The final properties indicated that the density of the material formed using an isocyanate is around 0.50 g/cc with a strength greater than that of steel and has low thermal conductivity. The process used to construct these materials is extremely time consuming and labor intensive. One aspect of the project involved investigating the feasibility of shortening the process time by preparing the aerogels in the templating solvent. Traditionally the polymerization used THF as the solvent and after several washes to remove any residual monomers and water, the solvent around the aerogels was changed to acetonitrile for the templating step. This process

  12. Low-Density, Aerogel-Filled Thermal-Insulation Tiles

    NASA Technical Reports Server (NTRS)

    Santos, Maryann; Heng, Vann; Barney, Andrea; Oka, Kris; Droege, Michael

    2005-01-01

    Aerogel fillings have been investigated in a continuing effort to develop low-density thermal-insulation tiles that, relative to prior such tiles, have greater dimensional stability (especially less shrinkage), equal or lower thermal conductivity, and greater strength and durability. In preparation for laboratory tests of dimensional and thermal stability, prototypes of aerogel-filled versions of recently developed low-density tiles have been fabricated by impregnating such tiles to various depths with aerogel formations ranging in density from 1.5 to 5.6 lb/ft3 (about 53 to 200 kg/cu m). Results available at the time of reporting the information for this article showed that the thermal-insulation properties of the partially or fully aerogel- impregnated tiles were equivalent or superior to those of the corresponding non-impregnated tiles and that the partially impregnated tiles exhibited minimal (<1.5 percent) shrinkage after multiple exposures at a temperature of 2,300 F (1,260 C). Latest developments have shown that tiles containing aerogels at the higher end of the density range are stable after multiple exposures at the said temperature.

  13. Dielectric and other properties of polyimide aerogels containing fluorinated blocks.

    PubMed

    Meador, Mary Ann B; McMillon, Emily; Sandberg, Anna; Barrios, Elizabeth; Wilmoth, Nathan G; Mueller, Carl H; Miranda, Félix A

    2014-05-14

    The dielectric and other properties of a series of low-density polyimide block copolymer aerogels have been characterized. Two different anhydride-capped polyimide oligomers were synthesized: one from 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA) and 4,4'-oxidianiline (ODA) and the other from biphenyl-3,3',4,4'-tetracarboxylic dianhydride and ODA. The oligomers were combined with 1,3,5-triaminophenoxybenzene to form a block copolymer networked structure that gelled in under 1 h. The polyimide gels were supercritically dried to give aerogels with relative dielectric constants as low as 1.08. Increasing the amount of 6FDA blocks by up to 50% of the total dianhydride decreased the density of the aerogels, presumably by increasing the free volume and also by decreasing the amount of shrinkage seen upon processing, resulting in a concomitant decrease in the dielectric properties. In this study, we have also altered the density independent of fluorine substitution by changing the polymer concentration in the gelation reactions and showed that the change in dielectric due to density is the same with and without fluorine substitution. The aerogels with the lowest dielectric properties and lowest densities still had compressive moduli of 4-8 MPa (40 times higher than silica aerogels at the same density), making them suitable as low dielectric substrates for lightweight antennas for aeronautic and space applications.

  14. Van der Waal Interactions in Ultrafine Nanocellulose Aerogels

    NASA Astrophysics Data System (ADS)

    Fritch, Byron; Bradley, Derek; Kidd, Tim

    Nanocellulose aerogels have shown an ability to be used in many different applications ranging from oil sponges to conductive materials to possibly a low calorie food substitute. Not much is known about the structural and physical property changes that occur when the composition of the aerogel changes. We studied what properties change when the aerogel amounts change, as well as how sticky the aerogels are and how strong they are. The higher concentrations appeared to have more plate-like structures while the lower concentrations had a more fibrous material. These fibers in the low concentrations had a smaller diameter than a human hair. Only the low concentration aerogels were able to stick to a glass surface in the adhesion test, but were able to support a mass much larger than their own. These low concentrations also would stick to your finger when lightly touched. Preliminary tests show that a concentration that is not too low, but not too high, is best for tensile strength. All concentrations were able to hold many times their own mass. Cellulose should be studied more because it is a renewable material and is easily accessed. Nanocellulose is also not environmentally dangerous allowing it to be used in applications involving humans and the environment like noted above. National Science Foundation Grant DMR-1410496.

  15. Thermal Performance Testing of Order Dependancy of Aerogels Multilayered Insulation

    NASA Technical Reports Server (NTRS)

    Johnson, Wesley L.; Fesmire, James E.; Demko, J. A.

    2009-01-01

    Robust multilayer insulation systems have long been a goal of many research projects. Such insulation systems must provide some degree of structural support and also mechanical integrity during loss of vacuum scenarios while continuing to provide insulative value to the vessel. Aerogel composite blankets can be the best insulation materials in ambient pressure environments; in high vacuum, the thermal performance of aerogel improves by about one order of magnitude. Standard multilayer insulation (MU) is typically 50% worse at ambient pressure and at soft vacuum, but as much as two or three orders of magnitude better at high vacuum. Different combinations of aerogel and multilayer insulation systems have been tested at Cryogenics Test Laboratory of NASA Kennedy Space Center. Analysis performed at Oak Ridge National Laboratory showed an importance to the relative location of the MU and aerogel blankets. Apparent thermal conductivity testing under cryogenic-vacuum conditions was performed to verify the analytical conclusion. Tests results are shown to be in agreement with the analysis which indicated that the best performance is obtained with aerogel layers located in the middle of the blanket insulation system.

  16. Synthesis and Properties of Cross-Linked Polyamide Aerogels

    NASA Technical Reports Server (NTRS)

    Williams, Jarrod; Meador, Mary Ann; McCorkle, Linda

    2014-01-01

    We report our ongoing research on polyamide aerogels made by step growth polymerization using a combination of terephthaloyl chloride, isophthaloyl chloride and m-phenylenediamine. Crosslinking of the amine capped polymer chains with 1,3,5-benzenetricarbonyl trichloride causes gelation in as little as two to five minutes. Removing the reaction solvent is accomplished through solvent exchange, followed by drying using supercritical CO2 extraction to give colorless aerogels with densities ranging from 0.07 to 0.33 grams per cubic centimeter and surface areas as high as 440 square meters per gram. Statistical experimental design methodology has been utilized to investigate dependence of properties of these aerogels, such as density, compressive modulus, and surface area, on changes in fabrication parameters including formulated number of amide oligomer repeat units (n-value), acid chloride (meta, para or combination), and solids concentration of solution used for gelation. For example, the density of these materials was found to be dependent on the acid chloride type and the solids concentration, but n was not a significant variable. However, surface area was significantly influenced by all three parameters. The polyamide aerogels represent a potential cost savings over previously reported polyimide aerogels, since monomers are all inexpensive and commercially available. Surface area and density were both highest when 100 terephthaloyl chloride was used but a combination of 5 solid concentration, 100 terephthaloyl chloride and n of 20 gave the best combination of properties.

  17. Efficiently dense hierarchical graphene based aerogel electrode for supercapacitors

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Lu, Chengxing; Peng, Huifen; Zhang, Xin; Wang, Zhenkun; Wang, Gongkai

    2016-08-01

    Boosting gravimetric and volumetric capacitances simultaneously at a high rate is still a discrepancy in development of graphene based supercapacitors. We report the preparation of dense hierarchical graphene/activated carbon composite aerogels via a reduction induced self-assembly process coupled with a drying post treatment. The compact and porous structures of composite aerogels could be maintained. The drying post treatment has significant effects on increasing the packing density of aerogels. The introduced activated carbons play the key roles of spacers and bridges, mitigating the restacking of adjacent graphene nanosheets and connecting lateral and vertical graphene nanosheets, respectively. The optimized aerogel with a packing density of 0.67 g cm-3 could deliver maximum gravimetric and volumetric capacitances of 128.2 F g-1 and 85.9 F cm-3, respectively, at a current density of 1 A g-1 in aqueous electrolyte, showing no apparent degradation to the specific capacitance at a current density of 10 A g-1 after 20000 cycles. The corresponding gravimetric and volumetric capacitances of 116.6 F g-1 and 78.1 cm-3 with an acceptable cyclic stability are also achieved in ionic liquid electrolyte. The results show a feasible strategy of designing dense hierarchical graphene based aerogels for supercapacitors.

  18. Method to produce alumina aerogels having porosities greater than 80 percent

    DOEpatents

    Poco, John F.; Hrubesh, Lawrence W.

    2003-09-16

    A two-step method for producing monolithic alumina aerogels having porosities of greater than 80 percent. Very strong, very low density alumina aerogel monoliths are prepared using the two-step sol-gel process. The method of preparing pure alumina aerogel modifies the prior known sol method by combining the use of substoichiometric water for hydrolysis, the use of acetic acid to control hydrolysis/condensation, and high temperature supercritical drying, all of which contribute to the formation of a polycrystalline aerogel microstructure. This structure provides exceptional mechanical properties of the alumina aerogel, as well as enhanced thermal resistance and high temperature stability.

  19. Mechanically robust, electrically conductive ultralow-density carbon nanotube-based aerogels

    DOEpatents

    Worsley, Marcus A.; Baumann, Theodore F.; Satcher, Jr., Joe H.

    2016-10-04

    Disclosed here is a device comprising a porous carbon aerogel or composite thereof as an energy storage material, catalyst support, sensor or adsorbent, wherein the porous carbon aerogel comprises a network of interconnected struts comprising carbon nanotube bundles covalently crosslinked by graphitic carbon nanoparticles, wherein the carbon nanotubes account for 5 to 95 wt. % of the aerogel and the graphitic carbon nanoparticles account for 5 to 95 wt. % of the aerogel, and wherein the aerogel has an electrical conductivity of at least 10 S/m and is capable of withstanding strains of more than 10% before fracture.

  20. Trapping and aerogelation of nanoparticles in negative gravity hydrocarbon flames

    SciTech Connect

    Chakrabarty, Rajan K.; Novosselov, Igor V.; Beres, Nicholas D.; Moosmüller, Hans; Sorensen, Christopher M.; Stipe, Christopher B.

    2014-06-16

    We report the experimental realization of continuous carbon aerogel production using a flame aerosol reactor by operating it in negative gravity (−g; up-side-down configuration). Buoyancy opposes the fuel and air flow forces in −g, which eliminates convectional outflow of nanoparticles from the flame and traps them in a distinctive non-tipping, flicker-free, cylindrical flame body, where they grow to millimeter-size aerogel particles and gravitationally fall out. Computational fluid dynamics simulations show that a closed-loop recirculation zone is set up in −g flames, which reduces the time to gel for nanoparticles by ≈10{sup 6} s, compared to positive gravity (upward rising) flames. Our results open up new possibilities of one-step gas-phase synthesis of a wide variety of aerogels on an industrial scale.

  1. Electrochemical behavior of carbon aerogels derived from different precursors

    SciTech Connect

    Pekala, R.W.; Alviso, C.T.; Nielsen, J.K.; Tran, T.D.; Reynolds, G.A.M.; Dresselhaus, M.S.

    1995-12-31

    The ability to tailor the structure and properties of porous carbons has led to their increased use as electrodes in energy storage devices. The research focuses on the synthesis and characterization of carbon aerogels for use in electrochemical double layer capacitors.Carbon aerogels are formed from the sol-gel polymerization of (1) resorcinol-formaldehyde or (2) phenolic-furfural, followed by supercritical drying from carbon dioxide, and subsequent pyrolysis in an inert atmosphere. These materials can be produced as monoliths, composites, thin films, powders, or microspheres. In all cases, the aerogels have an open-cell structure with an ultrafine pore size (< 100 nm), high surface area (400--1,100 m{sup 2}/g), and a solid matrix composed of interconnected particles, fibers, or platelets with characteristic dimensions of 10 nm. This paper examines the effects of the carbon precursor and processing conditions on electrochemical performance in aqueous and organic electrolytes.

  2. Aerogel-Based Insulation for Industrial Steam Distribution Systems

    SciTech Connect

    John Williams

    2011-03-30

    Thermal losses in industrial steam distribution systems account for 977 trillion Btu/year in the US, more than 1% of total domestic energy consumption. Aspen Aerogels worked with Department of Energy’s Industrial Technologies Program to specify, develop, scale-up, demonstrate, and deliver Pyrogel XT®, an aerogel-based pipe insulation, to market to reduce energy losses in industrial steam systems. The product developed has become Aspen’s best selling flexible aerogel blanket insulation and has led to over 60 new jobs. Additionally, this product has delivered more than ~0.7 TBTU of domestic energy savings to date, and could produce annual energy savings of 149 TBTU by 2030. Pyrogel XT’s commercial success has been driven by it’s 2-4X better thermal performance, improved durability, greater resistance to corrosion under insulation (CUI), and faster installation times than incumbent insulation materials.

  3. Nanogel Aerogel as Load Bearing Insulation for Cryogenic Systems

    NASA Astrophysics Data System (ADS)

    Koravos, J. J.; Miller, T. M.; Fesmire, J. E.; Coffman, B. E.

    2010-04-01

    Load support structures in cryogenic storage, transport and processing systems are large contributors to the total heat leak of the system. Conventional insulation systems require the use of these support members in order to stabilize the process fluid enclosure and prevent degradation of insulation performance due to compression. Removal of these support structures would substantially improve system efficiency. Nanogel aerogel insulation performance is tested at vacuum pressures ranging from high vacuum to atmospheric pressure and under loads from loosely packed to greater than 10,000 Pa. Insulation performance is determined using boil-off calorimetry with liquid nitrogen as the latent heat recipient. Two properties of the aerogel insulation material suit it to act as a load bearing "structure" in a process vessel: (1) Ability to maintain thermal performance under load; (2) Elasticity when subjected to load. Results of testing provide positive preliminary indication that these properties allow Nanogel aerogel to effectively be used as a load bearing insulation in cryogenic systems.

  4. Analytical Methods for Discriminating Stardust in Aerogel Capture Media

    SciTech Connect

    Brennan, S; Ishii, H A; Bradley, J P; Luening, K; Ignatyev, K; Pianetta, P

    2007-09-04

    Comet 81P/Wild 2's serendipitous orbit change to the inner solar system in 1974 offered researchers a rare opportunity to sample cometary material from the Kuiper belt, a repository of material left over from solar system formation {approx}4.6 Gyr ago. NASA's Stardust mission intercepted the comet in January 2004 and returned with material collected from its tail in January 2006. The cometary material, consisting of particles ranging from 10 microns down to <2 nm, was collected in aerogel, a very low density ({approx}3 mg/cm cm3) silica foam, to minimize the effects of deceleration from 6.1 km/s. The entire deceleration track is extracted from the aerogel block as a pyramidal shape known as a keystone which can be mapped using x-ray fluorescence prior to extraction of terminal or intermediate particles for other analyses. One goal of the track mapping is to determine the bulk composition of the cometary material returned. Unfortunately, although the aerogel is predominantly SiO{sub 2}, there are sufficient quantities of trace elements similar to those expected in the cometary material to require sophisticated discrimination techniques in order to decide whether a fluorescence map pixel contains only aerogel or both aerogel and cometary material. We have developed a dual threshold analysis approach for better distinguishing cometary material from aerogel contaminants and have applied it to five Stardust impact tracks and terminal particles. Here, we present aspects of the dual threshold approach and demonstrate its impact on track composition for one track.

  5. Radium-228 analysis of natural waters by Cherenkov counting of Actinium-228.

    PubMed

    Aleissa, Khalid A; Almasoud, Fahad I; Islam, Mohammed S; L'Annunziata, Michael F

    2008-12-01

    The activities of (228)Ra in natural waters were determined by the Cherenkov counting of the daughter nuclide (228)Ac. The radium was pre-concentrated on MnO(2) and the radium purified via ion exchange and, after a 2-day period of incubation to allow for secular equilibrium between the parent-daughter (228)Ra((228)Ac), the daughter nuclide (228)Ac was isolated by ion exchange according to the method of Nour et al. [2004. Radium-228 determination of natural waters via concentration on manganese dioxide and separation using Diphonix ion exchange resin. Appl. Radiat. Isot. 61, 1173-1178]. The Cherenkov photons produced by (228)Ac were counted directly without the addition of any scintillation reagents. The optimum Cherenkov counting window, sample volume, and vial type were determined experimentally to achieve optimum Cherenkov photon detection efficiency and lowest background count rates. An optimum detection efficiency of 10.9+/-0.1% was measured for (228)Ac by Cherenkov counting with a very low Cherenkov photon background of 0.317+/-0.013cpm. The addition of sodium salicylate into the sample counting vial at a concentration of 0.1g/mL yielded a more than 3-fold increase in the Cherenkov detection efficiency of (228)Ac to 38%. Tests of the Cherenkov counting technique were conducted with several water standards of known activity and the results obtained compared closely with a conventional liquid scintillation counting technique. The advantages and disadvantages of Cherenkov counting compared to liquid scintillation counting methods are discussed. Advantages include much lower Cherenkov background count rates and consequently lower minimal detectable activities for (228)Ra and no need for expensive environmentally unfriendly liquid scintillation cocktails. The disadvantages of the Cherenkov counting method include the need to measure (228)Ac Cherenkov photon detection efficiency and optimum Cherenkov counting volume, which are not at all required when liquid

  6. Thermoelectric Polymers and their Elastic Aerogels.

    PubMed

    Khan, Zia Ullah; Edberg, Jesper; Hamedi, Mahiar Max; Gabrielsson, Roger; Granberg, Hjalmar; Wågberg, Lars; Engquist, Isak; Berggren, Magnus; Crispin, Xavier

    2016-06-01

    Electronically conducting polymers constitute an emerging class of materials for novel electronics, such as printed electronics and flexible electronics. Their properties have been further diversified to introduce elasticity, which has opened new possibility for "stretchable" electronics. Recent discoveries demonstrate that conducting polymers have thermoelectric properties with a low thermal conductivity, as well as tunable Seebeck coefficients - which is achieved by modulating their electrical conductivity via simple redox reactions. Using these thermoelectric properties, all-organic flexible thermoelectric devices, such as temperature sensors, heat flux sensors, and thermoelectric generators, are being developed. In this article we discuss the combination of the two emerging fields: stretchable electronics and polymer thermoelectrics. The combination of elastic and thermoelectric properties seems to be unique for conducting polymers, and difficult to achieve with inorganic thermoelectric materials. We introduce the basic concepts, and state of the art knowledge, about the thermoelectric properties of conducting polymers, and illustrate the use of elastic thermoelectric conducting polymer aerogels that could be employed as temperature and pressure sensors in an electronic-skin.

  7. System and method for 3D printing of aerogels

    DOEpatents

    Worsley, Marcus A.; Duoss, Eric; Kuntz, Joshua; Spadaccini, Christopher; Zhu, Cheng

    2016-03-08

    A method of forming an aerogel. The method may involve providing a graphene oxide powder and mixing the graphene oxide powder with a solution to form an ink. A 3D printing technique may be used to write the ink into a catalytic solution that is contained in a fluid containment member to form a wet part. The wet part may then be cured in a sealed container for a predetermined period of time at a predetermined temperature. The cured wet part may then be dried to form a finished aerogel part.

  8. Silicon Oxycarbide Aerogels for High-Temperature Thermal Insulation

    NASA Technical Reports Server (NTRS)

    Evans, Owen; Rhine, Wendell; Coutinho, Decio

    2010-01-01

    This work has shown that the use of SOC-A35 leads to aerogel materials containing a significant concentration of carbidic species and limited amorphous free carbon. Substitution of the divalent oxide species in silica with tetravalent carbidic carbon has directly led to materials that exhibit increased network viscosity, reduced sintering, and limited densification. The SiOC aerogels produced in this work have the highest carbide content of any dense or porous SiOC glass reported in the literature at that time, and exhibit tremendous long-term thermal stability.

  9. Highly porous ceramic oxide aerogels having improved flexibility

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B. (Inventor); Nguyen, Baochau N. (Inventor)

    2012-01-01

    Ceramic oxide aerogels incorporating periodically dispersed flexible linkages are provided. The flexible linkages impart greater flexibility than the native aerogels without those linkages, and have been shown to reduce or eliminate the need for supercritical CO.sub.2-mediated drying of the corresponding wet gels. The gels may also be polymer cross-linked via organic polymer chains that are attached to and extend from surface-bound functional groups provided or present over the internal surfaces of a mesoporous ceramic oxide particle network via appropriate chemical reactions.

  10. Process for Preparing Epoxy-Reinforced Silica Aerogels

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B (Inventor)

    2016-01-01

    One-pot reaction process for preparing epoxy-reinforced monolithic silica aerogels comprising the reaction of at least one silicon compound selected from the group consisting of alkoxysilanes, orthosilicates and combination thereof in any ratio with effective amounts of an epoxy monomer and an aminoalkoxy silane to obtain an epoxy monomer-silica sol in solution, subsequently preparing an epoxy-monomer silica gel from said silica sol solution followed by initiating polymerization of the epoxy monomer to obtain the epoxy-reinforced monolithic silica aerogel.

  11. Countering antivaccination attitudes

    PubMed Central

    Horne, Zachary; Powell, Derek; Hummel, John E.; Holyoak, Keith J.

    2015-01-01

    Three times as many cases of measles were reported in the United States in 2014 as in 2013. The reemergence of measles has been linked to a dangerous trend: parents refusing vaccinations for their children. Efforts have been made to counter people’s antivaccination attitudes by providing scientific evidence refuting vaccination myths, but these interventions have proven ineffective. This study shows that highlighting factual information about the dangers of communicable diseases can positively impact people’s attitudes to vaccination. This method outperformed alternative interventions aimed at undercutting vaccination myths. PMID:26240325

  12. Spectrum of energy depositions in the Auger Water Cherenkov Detector

    NASA Astrophysics Data System (ADS)

    Salazar, Humberto

    1999-08-01

    The measured spectrum of energy depositions in a Water Cherenkov Detector (WCD) prototype for the Pierre Auger Observatory is presented. A WCD (area 10 m2 )is located in the Puebla University campus at a depth of 800 g/cm2 (2200 m above sea level). Differential and integral spectra in a wide energy deposition range (0.5 - 150 of vertical equivalent muons) are presented. The problem of the WCD "self calibration" procedure (by rate of the muon events) is discussed. The characteristic change of the slopes of the differential spectrum at the transition from single muon signals to EAS signals is also discussed. The measured energy deposition spectrum at extreme signals is used to estimate the linearity of the response of the WCD PMTs. Key words: Auger array, water Cherenkov detector, extensive air showers

  13. Very-High-Energy Astrophysics with the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Mukherjee, Reshmi

    2016-04-01

    The Cherenkov Telescope Array (CTA) will be a new gamma-ray observatory in the energy band ~30 GeV to ~100 TeV, designed to achieve an order of magnitude improvement in sensitivity over the currently operating imaging atmospheric Cherenkov telescopes. CTA will probe known sources with unprecedented sensitivity, angular resolution, and spectral coverage, with the potential of detecting hundreds of new sources. The CTA Consortium will also conduct a number of Key Science Projects, including a Galactic Plane survey and a survey of one quarter of the extragalactic sky. Data taken by CTA will be accessible by members of the wider astronomical community, for the first time in this energy band. This presentation will give an overview of CTA, and its proposed key science program.Submitted with the CTA Consortium

  14. Nonlinear saturation characteristics of a dielectric Cherenkov maser

    SciTech Connect

    Choi, J.S.; Heo, E.G.; Choi, D.I.

    1995-12-31

    The nonlinear saturation state in a dielectric Cherenkov maser (DCM) with the TM mode and the intense relativistic electron beam is analyzed from the nonlinear formulation based on the cold fluid-Maxwell equations. We obtain the nonlinear efficiency and the final operation frequency under consideration of the effects of the beam current, the beam energy and the dielectric materials and show that the characteristics of a DCM instablity has a strong resemblance to that of the relativistic two stream instability by the coherent trapping of electrons in a single most-ustable wave. Finally, the nonlinear analysis shows that the Cherenkov maser operation with a lower-energy beam can be more efficient in the higher frequency regime for the case of the high power DCM with a high current.

  15. GEANT4 simulations of Cherenkov reaction history diagnostics

    SciTech Connect

    Rubery, M. S.; Horsfield, C. J.; Herrmann, H. W.; Kim, Y.; Mack, J. M.; Young, C. S.; Caldwell, S. E.; Evans, S. C.; Sedilleo, T. J.; McEvoy, A.; Miller, E. K.; Stoeffl, W.; Ali, Z.

    2010-10-15

    This paper compares the results from a GEANT4 simulation of the gas Cherenkov detector 1 (GCD1) with previous simulations and experimental data from the Omega laser facility. The GCD1 collects gammas emitted during a deuterium-tritium capsule implosion and converts them, through several processes, to Cherenkov light. Photon signals are recorded using subnanosecond photomultiplier tubes, producing burn reaction histories. The GEANT4 GCD1 simulation is first benchmarked against ACCEPT, an integrated tiger series code, with good agreement. The simulation is subsequently compared with data from the Omega laser facility, where experiments have been performed to measure the effects of Hohlraum materials on reaction history signals, in preparation for experiments at the National Ignition Facility.

  16. Geomagnetic Field Effects on the Imaging Air Shower Cherenkov Technique

    NASA Astrophysics Data System (ADS)

    Commichau, S.C.; Biland, A.; Kranich, D.; de los Reyes, R.; Moralejo, A.; Sobczyńska, D.

    Imaging Air Cherenkov Telescopes (IACTs) detect the Cherenkov light flashes of Extended Air Showers (EAS) triggered by VHE gamma-rays impinging on the Earth's atmosphere. Due to the overwhelming background from hadron induced EAS, the discrimination of the rare gamma-like events is rather difficult, in particular at energies below 100 GeV. The influence of the Geomagnetic Field (GF) on the EAS development can further complicate this discrimination and, in addition, also systematically affect the gamma-efficiency and energy resolution of an IACT. Here we present the results from dedicated Monte Carlo (MC) simulations for the MAGIC telescope site, show the GF effects on real data as well as possible corrections for these effects.

  17. Coherent Cherenkov-Cyclotron Radiation Excited by an Electron Beam in a Metamaterial Waveguide

    NASA Astrophysics Data System (ADS)

    Hummelt, J. S.; Lu, X.; Xu, H.; Mastovsky, I.; Shapiro, M. A.; Temkin, R. J.

    2016-12-01

    An electron beam passing through a metamaterial structure is predicted to generate reversed Cherenkov radiation, an unusual and potentially very useful property. We present an experimental test of this phenomenon using an intense electron beam passing through a metamaterial loaded waveguide. Power levels of up to 5 MW are observed in backward wave modes at a frequency of 2.40 GHz using a one microsecond pulsed electron beam of 490 keV, 84 A in a 400 G magnetic field. Contrary to expectations, the output power is not generated in the Cherenkov mode. Instead, the presence of the magnetic field, which is required to transport the electron beam, induces a Cherenkov-cyclotron (or anomalous Doppler) instability at a frequency equal to the Cherenkov frequency minus the cyclotron frequency. Nonlinear simulations indicate that the Cherenkov-cyclotron mode should dominate over the Cherenkov instability at a lower magnetic field where the highest output power is obtained.

  18. Ultralight boron nitride aerogels via template-assisted chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Song, Yangxi; Li, Bin; Yang, Siwei; Ding, Guqiao; Zhang, Changrui; Xie, Xiaoming

    2015-05-01

    Boron nitride (BN) aerogels are porous materials with a continuous three-dimensional network structure. They are attracting increasing attention for a wide range of applications. Here, we report the template-assisted synthesis of BN aerogels by catalyst-free, low-pressure chemical vapor deposition on graphene-carbon nanotube composite aerogels using borazine as the B and N sources with a relatively low temperature of 900 °C. The three-dimensional structure of the BN aerogels was achieved through the structural design of carbon aerogel templates. The BN aerogels have an ultrahigh specific surface area, ultralow density, excellent oil absorbing ability, and high temperature oxidation resistance. The specific surface area of BN aerogels can reach up to 1051 m2 g-1, 2-3 times larger than the reported BN aerogels. The mass density can be as low as 0.6 mg cm-3, much lower than that of air. The BN aerogels exhibit high hydrophobic properties and can absorb up to 160 times their weight in oil. This is much higher than porous BN nanosheets reported previously. The BN aerogels can be restored for reuse after oil absorption simply by burning them in air. This is because of their high temperature oxidation resistance and suggests broad utility as water treatment tools.

  19. Ultralight boron nitride aerogels via template-assisted chemical vapor deposition

    PubMed Central

    Song, Yangxi; Li, Bin; Yang, Siwei; Ding, Guqiao; Zhang, Changrui; Xie, Xiaoming

    2015-01-01

    Boron nitride (BN) aerogels are porous materials with a continuous three-dimensional network structure. They are attracting increasing attention for a wide range of applications. Here, we report the template-assisted synthesis of BN aerogels by catalyst-free, low-pressure chemical vapor deposition on graphene-carbon nanotube composite aerogels using borazine as the B and N sources with a relatively low temperature of 900 °C. The three-dimensional structure of the BN aerogels was achieved through the structural design of carbon aerogel templates. The BN aerogels have an ultrahigh specific surface area, ultralow density, excellent oil absorbing ability, and high temperature oxidation resistance. The specific surface area of BN aerogels can reach up to 1051 m2 g−1, 2-3 times larger than the reported BN aerogels. The mass density can be as low as 0.6 mg cm−3, much lower than that of air. The BN aerogels exhibit high hydrophobic properties and can absorb up to 160 times their weight in oil. This is much higher than porous BN nanosheets reported previously. The BN aerogels can be restored for reuse after oil absorption simply by burning them in air. This is because of their high temperature oxidation resistance and suggests broad utility as water treatment tools. PMID:25976019

  20. Optical Cherenkov radiation in ultrafast cascaded second-harmonic generation

    SciTech Connect

    Bache, M.; Bang, O.; Zhou, B. B.; Moses, J.; Wise, F. W.

    2010-12-15

    We show through theory and numerics that when few-cycle femtosecond solitons are generated through cascaded (phase-mismatched) second-harmonic generation, these broadband solitons can emit optical Cherenkov radiation in the form of linear dispersive waves located in the red part of the spectrum. The beating between the dispersive wave and the soliton generates trailing temporal oscillations on the compressed soliton. Insertion of a simple short-wave pass filter after the crystal can restore a clean soliton. On the other hand, bandpass filtering around the dispersive wave peak results in near-transform-limited ultrashort mid-IR pulses with pulse durations much shorter than the input near-IR pulse. The Cherenkov radiation for the crystal considered ({beta}-barium borate) is found for pump wavelengths in the range {lambda}=0.95-1.45 {mu}m, and is located in the regime {lambda}=1.5-3.5 {mu}m. For shorter pump wavelengths, the phase-matching point is located in the absorption region of the crystal, effectively absorbing the generated dispersive wave. By calculating the phase-matching curves for typically used frequency conversion crystals, we point out that the mid-IR absorption in the crystal in many cases automatically will filter away the dispersive wave. Finally, an investigation of recent experimental results uncovers a four-wave-mixing phenomenon related to Cherenkov radiation that is an additional generation mechanism of long-wavelength radiation that can occur during soliton compression. We discuss the conditions that lead to this alternative dynamics rather than generation of Cherenkov radiation.

  1. Supernova Registration in Water Cherenkov Veto of Dark Matter Detectors

    NASA Astrophysics Data System (ADS)

    Litvinovich, E. A.; Machulin, I. N.; Pugachev, D. A.; Skorokhvatov, M. D.

    2017-01-01

    Registration of supernova neutrinos is one of the main goals of large underground neutrino detectors. We consider the possibility of using the large water veto tanks of future dark matter experiments as the additional facilities for supernova detection. Simulations were performed for registration of Cherenkov light in 2 kt water veto of Darkside-20k from high energy positrons created by supernova electron antineutrinos via inverse beta decay reaction. Comparison between characteristics of different supernova neutrino detectors are presented.

  2. Low latency counter event indication

    DOEpatents

    Gara, Alan G.; Salapura, Valentina

    2010-08-24

    A hybrid counter array device for counting events with interrupt indication includes a first counter portion comprising N counter devices, each for counting signals representing event occurrences and providing a first count value representing lower order bits. An overflow bit device associated with each respective counter device is additionally set in response to an overflow condition. The hybrid counter array includes a second counter portion comprising a memory array device having N addressable memory locations in correspondence with the N counter devices, each addressable memory location for storing a second count value representing higher order bits. An operatively coupled control device monitors each associated overflow bit device and initiates incrementing a second count value stored at a corresponding memory location in response to a respective overflow bit being set. The incremented second count value is compared to an interrupt threshold value stored in a threshold register, and, when the second counter value is equal to the interrupt threshold value, a corresponding "interrupt arm" bit is set to enable a fast interrupt indication. On a subsequent roll-over of the lower bits of that counter, the interrupt will be fired.

  3. Low latency counter event indication

    DOEpatents

    Gara, Alan G.; Salapura, Valentina

    2008-09-16

    A hybrid counter array device for counting events with interrupt indication includes a first counter portion comprising N counter devices, each for counting signals representing event occurrences and providing a first count value representing lower order bits. An overflow bit device associated with each respective counter device is additionally set in response to an overflow condition. The hybrid counter array includes a second counter portion comprising a memory array device having N addressable memory locations in correspondence with the N counter devices, each addressable memory location for storing a second count value representing higher order bits. An operatively coupled control device monitors each associated overflow bit device and initiates incrementing a second count value stored at a corresponding memory location in response to a respective overflow bit being set. The incremented second count value is compared to an interrupt threshold value stored in a threshold register, and, when the second counter value is equal to the interrupt threshold value, a corresponding "interrupt arm" bit is set to enable a fast interrupt indication. On a subsequent roll-over of the lower bits of that counter, the interrupt will be fired.

  4. A Cherenkov viewing device for used-fuel verification

    NASA Astrophysics Data System (ADS)

    Attas, E. M.; Chen, J. D.; Young, G. J.

    1990-12-01

    A Cherenkov viewing device (CVD) has been developed to help verify declared inventories of used nuclear fuel stored in water bays. The device detects and amplifies the faint ultraviolet Cherenkov glow from the water surrounding the fuel, producing a real-time visible image on a phosphor screen. Quartz optics, a UV-pass filter and a microchannel-plate image-intensifier tube serve to form the image, which can be photographed or viewed directly through an eyepiece. Normal fuel bay lighting does not interfere with the Cherenkov light image. The CVD has been successfully used to detect anomalous PWR, BWR and CANDU (CANada Deuterium Uranium: registered trademark) fuel assemblies in the presence of normal-burnup assemblies stored in used-fuel bays. The latest version of the CVD, known as Mark IV, is being used by inspectors from the International Atomic Energy Agency for verification of light-water power-reactor fuel. Its design and operation are described, together with plans for further enhancements of the instrumentation.

  5. PyFACT: Python and FITS analysis for Cherenkov telescopes

    NASA Astrophysics Data System (ADS)

    Raue, Martin; Deil, Christoph

    2012-12-01

    Ground-based very-high energy (VHE; E>100 GeV) gamma-ray astronomy is growing from being conducted by small teams in closed collaborations into a full-fledged branch of astronomy with open observatories. This is best illustrated by the number of known sources: it increased by one order of magnitude in the past ten years, from 10 in the year 2000 to more than 100 in 2010. It is expected that this trend will continue with the next-generation instrument Cherenkov Telescope Array (CTA). This transformation has a profound impact on the data format and analysis of Imaging Atmospheric Cherenkov Telescopes (IACTs). Up to now, IACT data analysis was an internal task performed by specialists with no public access to the data or software. In the future, a large community of VHE astronomers from different scientific topics should be enabled to work with the data. Ease of use, compatibility, and integration with existing astronomy standards and tools will be key. In this contribution, a collection of Python tools for the analysis of data in FITS format (PyFACT; Python and FITS Analysis for Cherenkov Telescopes) is presented, which connects with existing tools like xspec, sherpa, and ds9. The package is available as open source (https://github.com/mraue/pyfact, comments and contributions welcome). Advantages of the chosen ansatz are discussed and implications for future observatories and data archival are presented.

  6. Polyimide Aerogels with Three-Dimensional Cross-Linked Structure

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B. (Inventor)

    2016-01-01

    A method for creating a three dimensional cross-linked polyimide structure includes dissolving a diamine, a dianhydride, and a triamine in a solvent, imidizing a polyamic acid gel by heating the gel, extracting the gel in a second solvent, supercritically drying the gel, and removing the solvent to create a polyimide aerogel.

  7. Porous silicon nanocrystals in a silica aerogel matrix

    NASA Astrophysics Data System (ADS)

    Amonkosolpan, Jamaree; Wolverson, Daniel; Goller, Bernhard; Polisski, Sergej; Kovalev, Dmitry; Rollings, Matthew; Grogan, Michael D. W.; Birks, Timothy A.

    2012-07-01

    Silicon nanoparticles of three types (oxide-terminated silicon nanospheres, micron-sized hydrogen-terminated porous silicon grains and micron-size oxide-terminated porous silicon grains) were incorporated into silica aerogels at the gel preparation stage. Samples with a wide range of concentrations were prepared, resulting in aerogels that were translucent (but weakly coloured) through to completely opaque for visible light over sample thicknesses of several millimetres. The photoluminescence of these composite materials and of silica aerogel without silicon inclusions was studied in vacuum and in the presence of molecular oxygen in order to determine whether there is any evidence for non-radiative energy transfer from the silicon triplet exciton state to molecular oxygen adsorbed at the silicon surface. No sensitivity to oxygen was observed from the nanoparticles which had partially H-terminated surfaces before incorporation, and so we conclude that the silicon surface has become substantially oxidised. Finally, the FTIR and Raman scattering spectra of the composites were studied in order to establish the presence of crystalline silicon; by taking the ratio of intensities of the silicon and aerogel Raman bands, we were able to obtain a quantitative measure of the silicon nanoparticle concentration independent of the degree of optical attenuation.

  8. Aerogel-Based Antennas for Aerospace and Terrestrial Applications

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann (Inventor); Miranda, Felix (Inventor); Van Keuls, Frederick (Inventor)

    2016-01-01

    Systems and methods for lightweight, customizable antenna with improved performance and mechanical properties are disclosed. In some aspects, aerogels can be used, for example, as a substrate for antenna fabrication. The reduced weight and expense, as well as the increased ability to adapt antenna designs, permits a systems to mitigate a variety of burdens associated with antennas while providing added benefits.

  9. Ultrafast Sol-Gel Synthesis of Graphene Aerogel Materials

    SciTech Connect

    Lim, Mathew; Hu, Matthew; Manandhar, Sandeep; Sakshaug, Avery; Strong, Adam; Riley, Leah; Pauzauskie, Peter J.

    2015-12-01

    Graphene aerogels derived from graphene-oxide (GO) starting materials recently have been shown to exhibit a combination of high electrical conductivity, chemical stability, and low cost that has enabled a range of electrochemical applications. Standard synthesis protocols for manufacturing graphene aerogels require the use of sol-gel chemical reactions that are maintained at high temperatures for long periods of time ranging from 12 hours to several days. Here we report an ultrafast, acid-catalyzed sol-gel formation process in acetonitrile in which wet GO-loaded gels are realized within 2 hours at temperatures below 45°C. Spectroscopic and electrochemical analysis following supercritical drying and pyrolysis confirms the reduction of the GO in the aerogels to sp2 carbon crystallites with no residual carbon–nitrogen bonds from the acetonitrile or its derivatives. This rapid synthesis enhances the prospects for large-scale manufacturing of graphene aerogels for use in numerous applications including sorbents for environmental toxins, support materials for electrocatalysis, and high-performance electrodes for electrochemical capacitors and solar cells.

  10. Aerogel-Based Insulation for High-Temperature Industrial Processes

    SciTech Connect

    Dr. Owen Evans

    2011-10-13

    Under this program, Aspen Aerogels has developed an industrial insulation called Pyrogel HT, which is 4-5 times more thermally efficient than current non-aerogel technology. Derived from nanoporous silica aerogels, Pyrogel HT was specifically developed to address a high temperature capability gap not currently met with Aspen Aerogels{trademark} flagship product, Pyrogel XT. Pyrogel XT, which was originally developed on a separate DOE contract (DE-FG36-06GO16056), was primarily optimized for use in industrial steam processing systems, where application temperatures typically do not exceed 400 C. At the time, further improvements in thermal performance above 400 C could not be reasonably achieved for Pyrogel XT without significantly affecting other key material properties using the current technology. Cumulative sales of Pyrogel HT into domestic power plants should reach $125MM through 2030, eventually reaching about 10% of the total insulation market share in that space. Global energy savings would be expected to scale similarly. Over the same period, these sales would reduce domestic energy consumption by more than 65 TBtu. Upon branching out into all industrial processes in the 400 C-650 C regime, Pyrogel HT would reach annual sales levels of $150MM, with two-thirds of that being exported.

  11. Reinforcement of bacterial cellulose aerogels with biocompatible polymers

    PubMed Central

    Pircher, N.; Veigel, S.; Aigner, N.; Nedelec, J.M.; Rosenau, T.; Liebner, F.

    2014-01-01

    Bacterial cellulose (BC) aerogels, which are fragile, ultra-lightweight, open-porous and transversally isotropic materials, have been reinforced with the biocompatible polymers polylactic acid (PLA), polycaprolactone (PCL), cellulose acetate (CA), and poly(methyl methacrylate) (PMMA), respectively, at varying BC/polymer ratios. Supercritical carbon dioxide anti-solvent precipitation and simultaneous extraction of the anti-solvent using scCO2 have been used as core techniques for incorporating the secondary polymer into the BC matrix and to convert the formed composite organogels into aerogels. Uniaxial compression tests revealed a considerable enhancement of the mechanical properties as compared to BC aerogels. Nitrogen sorption experiments at 77 K and scanning electron micrographs confirmed the preservation (or even enhancement) of the surface-area-to-volume ratio for most of the samples. The formation of an open-porous, interpenetrating network of the second polymer has been demonstrated by treatment of BC/PMMA hybrid aerogels with EMIM acetate, which exclusively extracted cellulose, leaving behind self-supporting organogels. PMID:25037381

  12. Thin Aerogel as a Spacer in Multilayer Insulation

    NASA Technical Reports Server (NTRS)

    Moroz, Nancy

    2015-01-01

    Cryogenic fluid management is a critical technical area that is needed for future space exploration. A key challenge is the storability of liquid hydrogen (LH2), liquid methane (LCH4), and liquid oxygen (LOX) propellants for long-duration missions. The storage tanks must be well-insulated to prevent over-pressurization and venting, which can lead to unacceptable propellant losses for long-duration missions to Mars and beyond. Aspen Aerogels had validated the key process step to enable the fabrication of thin, low-density aerogel materials. The multilayer aerogel insulation (MLAI) system prototypes were prepared using sheets of aerogel materials with superior thermal performance exceeding current state-of-the-art insulation for space applications. The exceptional properties of this system include a new breakthrough in high-vacuum cryogenic thermal insulation, providing a durable material with excellent thermal performance at a reduced cost when compared to longstanding state-of-the-art multilayer insulation systems. During the Phase II project, further refinement and qualification/system-level testing of the MLAI system will be performed for use in cryogenic storage applications. Aspen has been in discussions with United Launch Alliance, LLC; NASA's Kennedy Space Center; and Yetispace, Inc., to test the MLAI system on rea-lworld tanks such as Vibro-Acoustic Test Article (VATA) or the Cryogenic Orbital Testbed (CRYOTE).

  13. Thin Aerogel as a Spacer in Multilayer Insulation

    NASA Technical Reports Server (NTRS)

    Moroz, Nancy

    2015-01-01

    Cryogenic fluid management is a critical technical area that is needed for future space exploration. A key challenge is the storability of liquid hydrogen (LH2), liquid methane (LCH4), and liquid oxygen (LOX) propellants for long-duration missions. The storage tanks must be well-insulated to prevent over-pressurization and venting, which can lead to unacceptable propellant losses for long-duration missions to Mars and beyond. Aspen Aerogels had validated the key process step to enable the fabrication of thin, low-density aerogel materials. The multilayer aerogel insulation (MLAI) system prototypes were prepared using sheets of aerogel materials with superior thermal performance exceeding current state-of-the-art insulation for space applications. The exceptional properties of this system include a new breakthrough in high-vacuum cryogenic thermal insulation, providing a durable material with excellent thermal performance at a reduced cost when compared to longstanding state-of-the-art multilayer insulation systems. During the Phase II project, further refinement and qualification/system-level testing of the MLAI system will be performed for use in cryogenic storage applications. Aspen has been in discussions with United Launch Alliance, LLC; NASA's Kennedy Space Center; and Yetispace, Inc., to test the MLAI system on real-world tanks such as Vibro-Acoustic Test Article (VATA) or the Cryogenic Orbital Testbed (CRYOTE).

  14. Transparent conducting aerogels of antimony-doped tin oxide.

    PubMed

    Correa Baena, Juan Pablo; Agrios, Alexander G

    2014-11-12

    Bulk antimony-doped tin oxide aerogels are prepared by epoxide-initiated sol-gel processing. Tin and antimony precursors are dissolved in ethanol and water, respectively, and propylene oxide is added to cause rapid gelation of the sol, which is then dried supercritically. The Sb:Sn precursor mole ratio is varied from 0 to 30% to optimize the material conductivity and absorbance. The materials are characterized by electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy (XPS), nitrogen physisorption analysis, a four-point probe resistivity measurement, and UV-vis diffuse reflectance spectroscopy. The samples possess morphology typical of aerogels without significant change with the amount of doping. Calcination at 450 °C produces a cassiterite crystal structure in all aerogel samples. Introduction of Sb at 15% in the precursor (7.6% Sb by XPS) yields a resistivity more than 3 orders of magnitude lower than an undoped SnO2 aerogel. Calcination at 800 °C reduces the resistivity by an additional 2 orders of magnitude to 30 Ω·cm, but results in a significant decrease in surface area and pore volume.

  15. Nitridation under ammonia of high surface area vanadium aerogels

    SciTech Connect

    Merdrignac-Conanec, Odile . E-mail: odile.merdrignac@univ-rennes1.fr; El Badraoui, Khadija; L'Haridon, Paul

    2005-01-15

    Vanadium pentoxide gels have been obtained from decavanadic acid prepared by ion exchange on a resin from ammonium metavanadate solution. The progressive removal of water by solvent exchange in supercritical conditions led to the formation of high surface area V{sub 2}O{sub 5}, 1.6H{sub 2}O aerogels. Heat treatment under ammonia has been performed on these aerogels in the 450-900 deg. C temperature range. The oxide precursors and oxynitrides have been characterized by XRD, SEM, TGA, BET. Nitridation leads to divided oxynitride powders in which the fibrous structure of the aerogel is maintained. The use of both very low heating rates and high surface area aerogel precursors allows a higher rate and a lower threshold of nitridation than those reported in previous works. By adjusting the nitridation temperature, it has been possible to prepare oxynitrides with various nitrogen enrichment and vanadium valency states. Whatever the V(O,N) composition, the oxidation of the oxynitrides in air starts between 250 and 300 deg. C. This determines their potential use as chemical gas sensors at a maximum working temperature of 250 deg. C.

  16. Aging and iodine loading of silver-functionalized aerogels

    SciTech Connect

    Bruffey, S.H.; Jubin, R.T.; Anderson, K.K.; Walker, J.F.

    2013-07-01

    Engineered silver-functionalized silica aerogels are being investigated for their potential application in off-gas treatment at a used nuclear fuel reprocessing facility. Reprocessing will release several key volatile radionuclides, including iodine-129. To achieve regulatory compliance, iodine-129 must be removed from any off-gas stream prior to environmental discharge. Ag{sup 0}-functionalized aerogels have been demonstrated to have high iodine-capture capacity, high porosity, and potential for conversion into a waste form. Capture materials used in off-gas treatment may be exposed to a heated, high-humidity, acidic gas stream for months. Extended exposure to this stream could affect sorbent performance. It was the aim of this study to evaluate what impacts might be observed when Ag{sup 0}-functionalized aerogels prepared at Pacific Northwest National Laboratory were contacted with a dry air stream for up to 6 months and then used to adsorb iodine from a synthetic off-gas stream. Results demonstrate that there is some loss of iodine-capture capacity caused by aging, but that this loss is not as marked as for aging of more traditional iodine sorbents, such as silver-impregnated mordenite. Specifically, aging silver-functionalized aerogel under a dry air stream for up to 6 months can decrease its iodine capacity from 41 wt% to 32 wt%. (authors)

  17. AGING AND IODINE LOADING OF SILVER-FUNCTIONALIZED AEROGELS

    SciTech Connect

    Bruffey, Stephanie H; Jubin, Robert Thomas; Anderson, Kaara K; Walker Jr, Joseph Franklin

    2013-01-01

    Engineered silver-functionalized silica aerogels are being investigated for their application in off-gas treatment at a used nuclear fuel reprocessing facility. Reprocessing will release several key volatile radionuclides, including iodine-129. To achieve regulatory compliance, iodine-129 must be removed from any off-gas stream prior to environmental discharge. Silver-functionalized aerogels have been demonstrated to have high iodine capture capacity, high porosity and potential for conversion into a waste form. Capture materials used in off-gas treatment may be exposed to a heated, high humidity, acidic gas stream for months. Extended exposure to this stream could affect sorbent performance. It was the aim of this study to evaluate what impacts might be observed when Ag0-functionalized aerogels prepared at Pacific Northwest National Laboratory were contacted with a dry air stream for up to 6 months and then used to adsorb iodine from a synthetic off-gas stream. Results demonstrate that there is some loss of iodine capture capacity caused by aging, but that this loss is not as marked as for aging of more traditional iodine sorbents, such as silver-impregnated mordenite. Specifically, aging silver-functionalized aerogel under a dry air stream for up to 6 months can decrease its iodine capacity from 41wt% to 32wt%.

  18. Synthesis and Properties of Cross-Linked Polyamide Aerogels

    NASA Technical Reports Server (NTRS)

    Williams, Jarrod C.; Meador, Mary Ann; McCorkle, Linda

    2015-01-01

    We report the first synthesis of cross-linked polyamide aerogels through step growth polymerization using a combination of diamines, diacid chloride and triacid chloride. Polyamide oligomers endcapped with amines are prepared as stable solutions in N-methylpyrrolidinone from several different diamine precursors and 1,3-benzenedicarbonyl dichloride. Addition of 1,3,5-benzenetricarbonyl trichloride yields gels which form in under five minutes according to the scheme shown. Solvent exchange of the gels into ethanol, followed by drying using supercritical CO2 extraction gives colorless aerogels with densities around 0.1 to 0.2 gcm3. Thicker monolithes of the polyamide aerogels are stiff and strong, while thin films of certain formulations are highly flexible, durable, and even translucent. These materials may have use as insulation for deployable space structures, rovers, habitats or extravehicular activity suits as well as in many terrestrial applications. Strucure property relationships of the aerogels, including surface area, mechanical properties, and thermal conductivity will be discussed.

  19. Macroscopic Subdivision of Silica Aerogel Collectors for Sample Return Missions

    SciTech Connect

    Ishii, H A; Bradley, J P

    2005-09-14

    Silica aerogel collector tiles have been employed for the collection of particles in low Earth orbit and, more recently, for the capture of cometary particles by NASA's Stardust mission. Reliable, reproducible methods for cutting these and future collector tiles from sample return missions are necessary to maximize the science output from the extremely valuable embedded particles. We present a means of macroscopic subdivision of collector tiles by generating large-scale cuts over several centimeters in silica aerogel with almost no material loss. The cut surfaces are smooth and optically clear allowing visual location of particles for analysis and extraction. This capability is complementary to the smaller-scale cutting capabilities previously described [Westphal (2004), Ishii (2005a, 2005b)] for removing individual impacts and particulate debris in tiny aerogel extractions. Macroscopic cuts enable division and storage or distribution of portions of aerogel tiles for immediate analysis of samples by certain techniques in situ or further extraction of samples suited for other methods of analysis.

  20. Preparing Silica Aerogel Monoliths via a Rapid Supercritical Extraction Method

    PubMed Central

    Gorka, Caroline A.

    2014-01-01

    A procedure for the fabrication of monolithic silica aerogels in eight hours or less via a rapid supercritical extraction process is described. The procedure requires 15-20 min of preparation time, during which a liquid precursor mixture is prepared and poured into wells of a metal mold that is placed between the platens of a hydraulic hot press, followed by several hours of processing within the hot press. The precursor solution consists of a 1.0:12.0:3.6:3.5 x 10-3 molar ratio of tetramethylorthosilicate (TMOS):methanol:water:ammonia. In each well of the mold, a porous silica sol-gel matrix forms. As the temperature of the mold and its contents is increased, the pressure within the mold rises. After the temperature/pressure conditions surpass the supercritical point for the solvent within the pores of the matrix (in this case, a methanol/water mixture), the supercritical fluid is released, and monolithic aerogel remains within the wells of the mold. With the mold used in this procedure, cylindrical monoliths of 2.2 cm diameter and 1.9 cm height are produced. Aerogels formed by this rapid method have comparable properties (low bulk and skeletal density, high surface area, mesoporous morphology) to those prepared by other methods that involve either additional reaction steps or solvent extractions (lengthier processes that generate more chemical waste).The rapid supercritical extraction method can also be applied to the fabrication of aerogels based on other precursor recipes. PMID:24637334

  1. Porous silicon nanocrystals in a silica aerogel matrix

    PubMed Central

    2012-01-01

    Silicon nanoparticles of three types (oxide-terminated silicon nanospheres, micron-sized hydrogen-terminated porous silicon grains and micron-size oxide-terminated porous silicon grains) were incorporated into silica aerogels at the gel preparation stage. Samples with a wide range of concentrations were prepared, resulting in aerogels that were translucent (but weakly coloured) through to completely opaque for visible light over sample thicknesses of several millimetres. The photoluminescence of these composite materials and of silica aerogel without silicon inclusions was studied in vacuum and in the presence of molecular oxygen in order to determine whether there is any evidence for non-radiative energy transfer from the silicon triplet exciton state to molecular oxygen adsorbed at the silicon surface. No sensitivity to oxygen was observed from the nanoparticles which had partially H-terminated surfaces before incorporation, and so we conclude that the silicon surface has become substantially oxidised. Finally, the FTIR and Raman scattering spectra of the composites were studied in order to establish the presence of crystalline silicon; by taking the ratio of intensities of the silicon and aerogel Raman bands, we were able to obtain a quantitative measure of the silicon nanoparticle concentration independent of the degree of optical attenuation. PMID:22805684

  2. New organic aerogels based upon a phenolic-furfural reaction

    SciTech Connect

    Hrubesh, L.W.

    1994-09-01

    The aqueous polycondensation of (1) resorcinol with formaldehyde and (2) melamine with formaldehyde are two proven synthetic routes for the formation of organic aerogels. Recently, we have discovered a new type of organic aerogel based upon a phenolic-furfural (PF) reaction. This sol-gel polymerization has a major advantage over past approaches since it can be conducted in alcohol (e.g., 1-propanol), thereby eliminating the need for a solvent exchange step prior to supercritical drying from carbon dioxide. The resultant aerogels are dark brown in color and can be converted to a carbonized version upon pyrolysis in an inert atmosphere. BET surface areas of 350--600 m{sup 2}/g have been measured, and transmission electron microscopy reveals an interconnected structure of irregularly-shaped particles or platelets with {approximately}10 nm dimensions. Thermal conductivities as low as 0.015 W/m-K have been recorded for PF aerogels under ambient conditions. This paper describes the chemistry-structure-property relationships of these new materials in detail.

  3. Synthesis, characterization, and modeling of hydrogen storage in carbon aerogels

    SciTech Connect

    Pekala, R.W.; Coronado, P.R.; Calef, D.F.

    1995-04-01

    Carbon aerogels are a special class of open-cell foams with an ultrafine cell/pore size (<50 nm), high surface area (600-800 m{sup 2}/g), and a solid matrix composed of interconnected colloidal-like particles or fibers with characteristic diameters of 10 nm. These materials are usually synthesized from the sol-gel polymerization of resorcinol-formaldehyde or phenolic-furfural, followed by supercritical extraction of the solvent and pyrolysis in an inert atmosphere. The resultant aerogel has a nanocrystalline structure with micropores (<2 nm diameter) located within the solid matrix. Carbon aerogel monoliths can be prepared at densities ranging from 0.05-1.0 g/cm{sup 3}, leading to volumetric surface areas (> 500 m{sup 2}/cm{sup 3}) that are much larger than commercially available materials. This research program is directed at optimization of the aerogel structure for maximum hydrogen adsorption over a wide range of temperatures and pressures. Computer modeling of hydrogen adsorption at carbon surfaces was also examined.

  4. Preparing silica aerogel monoliths via a rapid supercritical extraction method.

    PubMed

    Carroll, Mary K; Anderson, Ann M; Gorka, Caroline A

    2014-02-28

    A procedure for the fabrication of monolithic silica aerogels in eight hours or less via a rapid supercritical extraction process is described. The procedure requires 15-20 min of preparation time, during which a liquid precursor mixture is prepared and poured into wells of a metal mold that is placed between the platens of a hydraulic hot press, followed by several hours of processing within the hot press. The precursor solution consists of a 1.0:12.0:3.6:3.5 x 10(-3) molar ratio of tetramethylorthosilicate (TMOS):methanol:water:ammonia. In each well of the mold, a porous silica sol-gel matrix forms. As the temperature of the mold and its contents is increased, the pressure within the mold rises. After the temperature/pressure conditions surpass the supercritical point for the solvent within the pores of the matrix (in this case, a methanol/water mixture), the supercritical fluid is released, and monolithic aerogel remains within the wells of the mold. With the mold used in this procedure, cylindrical monoliths of 2.2 cm diameter and 1.9 cm height are produced. Aerogels formed by this rapid method have comparable properties (low bulk and skeletal density, high surface area, mesoporous morphology) to those prepared by other methods that involve either additional reaction steps or solvent extractions (lengthier processes that generate more chemical waste).The rapid supercritical extraction method can also be applied to the fabrication of aerogels based on other precursor recipes.

  5. Optical properties of single-walled carbon nanotube aerogels

    NASA Astrophysics Data System (ADS)

    Ostojic, Gordana

    2012-02-01

    A network of connected single-walled carbon nanotubes (SWNT) is created by a novel DNA-protein complex directed assembly. Due to a point-like nature of connectors, the SWNT aerogel represents a network of self-suspended nanotubes with a record ultra-low density of less 0.75 mg/cm^3. The assembly method and low density enables a direct comparison of optical properties of nanotubes in solvent and air to surfactant solubilized nanotubes. Optical properties of SWNT gels are investigated using optical absorption, photoluminescence and Raman spectroscopy. Gelled nanotubes in water and in the low population regime behave similar to solubilized nanotubes. In contrast, photoluminescence of SWNT aerogels exhibit nonlinear effects and a phonon-induced broadening. In addition, aerogels show a previously unobserved photoluminescence peak at 1.3 eV that corresponds to a phonon-assisted recombination of photoexcited charges. Raman spectra of carbon nanotube aerogels display narrow peaks due to the phonon decoupling of suspended SWNTs in air and a redistribution of G phonon population due to nonlinear effects.

  6. Tailoring Advanced Nanoscale Materials Through Synthesis of Composite Aerogel Architectures

    DTIC Science & Technology

    2000-01-01

    Introducing a desired solid guest to an about-to- gel silica sol prevents complete encapsulation of the guest particles by the silica, such that the...engineered at multiple points during sol gel processing by modifying the host solid, the guest solid, the composite gel , or the composite aerogel.

  7. Applications of Cherenkov Light Emission for Dosimetry in Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Glaser, Adam Kenneth

    Since its discovery in the 1930's, the Cherenkov effect has been paramount in the development of high-energy physics research. It results in light emission from charged particles traveling faster than the local speed of light in a dielectric medium. The ability of this emitted light to describe a charged particle's trajectory, energy, velocity, and mass has allowed scientists to study subatomic particles, detect neutrinos, and explore the properties of interstellar matter. However, only recently has the phenomenon been considered in the practical context of medical physics and radiation therapy dosimetry, where Cherenkov light is induced by clinical x-ray photon, electron, and proton beams. To investigate the relationship between this phenomenon and dose deposition, a Monte Carlo plug-in was developed within the Geant4 architecture for medically-oriented simulations (GAMOS) to simulate radiation-induced optical emission in biological media. Using this simulation framework, it was determined that Cherenkov light emission may be well suited for radiation dosimetry of clinically used x-ray photon beams. To advance this application, several novel techniques were implemented to realize the maximum potential of the signal, such as time-gating for maximizing the signal to noise ratio (SNR) and Cherenkov-excited fluorescence for generating isotropic light release in water. Proof of concept experiments were conducted in water tanks to demonstrate the feasibility of the proposed method for two-dimensional (2D) projection imaging, three-dimensional (3D) parallel beam tomography, large field of view 3D cone beam tomography, and video-rate dynamic imaging of treatment plans for a number of common radiotherapy applications. The proposed dosimetry method was found to have a number of unique advantages, including but not limited to its non-invasive nature, water-equivalence, speed, high-resolution, ability to provide full 3D data, and potential to yield data in-vivo. Based on

  8. Space and power efficient hybrid counters array

    DOEpatents

    Gara, Alan G.; Salapura, Valentina

    2010-03-30

    A hybrid counter array device for counting events. The hybrid counter array includes a first counter portion comprising N counter devices, each counter device for receiving signals representing occurrences of events from an event source and providing a first count value corresponding to a lower order bits of the hybrid counter array. The hybrid counter array includes a second counter portion comprising a memory array device having N addressable memory locations in correspondence with the N counter devices, each addressable memory location for storing a second count value representing higher order bits of the hybrid counter array. A control device monitors each of the N counter devices of the first counter portion and initiates updating a value of a corresponding second count value stored at the corresponding addressable memory location in the second counter portion. Thus, a combination of the first and second count values provide an instantaneous measure of number of events received.

  9. Space and power efficient hybrid counters array

    DOEpatents

    Gara, Alan G.; Salapura, Valentina

    2009-05-12

    A hybrid counter array device for counting events. The hybrid counter array includes a first counter portion comprising N counter devices, each counter device for receiving signals representing occurrences of events from an event source and providing a first count value corresponding to a lower order bits of the hybrid counter array. The hybrid counter array includes a second counter portion comprising a memory array device having N addressable memory locations in correspondence with the N counter devices, each addressable memory location for storing a second count value representing higher order bits of the hybrid counter array. A control device monitors each of the N counter devices of the first counter portion and initiates updating a value of a corresponding second count value stored at the corresponding addressable memory location in the second counter portion. Thus, a combination of the first and second count values provide an instantaneous measure of number of events received.

  10. Nanocrystalline iron oxide aerogels as mesoporous magnetic architectures.

    PubMed

    Long, Jeffrey W; Logan, Michael S; Rhodes, Christopher P; Carpenter, Everett E; Stroud, Rhonda M; Rolison, Debra R

    2004-12-29

    We have developed crystalline nanoarchitectures of iron oxide that exhibit superparamagnetic behavior while still retaining the desirable bicontinuous pore-solid networks and monolithic nature of an aerogel. Iron oxide aerogels are initially produced in an X-ray-amorphous, high-surface-area form, by adapting recently established sol-gel methods using Fe(III) salts and epoxide-based proton scavengers. Controlled temperature/atmosphere treatments convert the as-prepared iron oxide aerogels into nanocrystalline forms with the inverse spinel structure. As a function of the bathing gas, treatment temperature, and treatment history, these nanocrystalline forms can be reversibly tuned to predominantly exhibit either Fe(3)O(4) (magnetite) or gamma-Fe(2)O(3) (maghemite) phases, as verified by electron microscopy, X-ray and electron diffraction, microprobe Raman spectroscopy, and magnetic analysis. Peak deconvolution of the Raman-active Fe-O bands yields valuable information on the local structure and vacancy content of the various aerogel forms, and facilitates the differentiation of Fe(3)O(4) and gamma-Fe(2)O(3) components, which are difficult to assign using only diffraction methods. These nanocrystalline, magnetic forms retain the inherent characteristics of aerogels, including high surface area (>140 m(2) g(-1)), through-connected porosity concentrated in the mesopore size range (2-50 nm), and nanoscale particle sizes (7-18 nm). On the basis of this synthetic and processing protocol, we produce multifunctional nanostructured materials with effective control of the pore-solid architecture, the nanocrystalline phase, and subsequent magnetic properties.

  11. The microstrip proportional counter

    NASA Technical Reports Server (NTRS)

    Ramsey, B. D.

    1992-01-01

    Microstrip detectors in which the usual discrete anode and cathode wires are replaced by conducting strips on an insulating or partially insulating substrate are fabricated using integrated circuit-type photolithographic techniques and hence offer very high spatial accuracy and uniformity, together with the capability of producing extremely fine electrode structures. Microstrip proportional counters have now been variously reported having an energy resolution of better than 11 percent FWHM at 5.9 keV. They have been fabricated with anode bars down to 2 microns and on a variety of substrate materials including thin films which can be molded to different shapes. This review will examine the development of the microstrip detector with emphasis on the qualities which make this detector particularly interesting for use in astronomy.

  12. Polymethylsilsesquioxane-cellulose nanofiber biocomposite aerogels with high thermal insulation, bendability, and superhydrophobicity.

    PubMed

    Hayase, Gen; Kanamori, Kazuyoshi; Abe, Kentaro; Yano, Hiroyuki; Maeno, Ayaka; Kaji, Hironori; Nakanishi, Kazuki

    2014-06-25

    Polymethylsilsesquioxane-cellulose nanofiber (PMSQ-CNF) composite aerogels have been prepared through sol-gel in a solvent containing a small amount of CNFs as suspension. Since these composite aerogels do not show excessive aggregation of PMSQ and CNF, the original PMSQ networks are not disturbed. Composite aerogels with low density (0.020 g cm(-3) at lowest), low thermal conductivity (15 mW m(-1) K(-1)), visible light translucency, bending flexibility, and superhydrophobicity thus have been successfully obtained. In particular, the lowest density and bending flexibility have been achieved with the aid of the physical supporting effect of CNFs, and the lowest thermal conductivity is comparable with the original PMSQ aerogels and standard silica aerogels. The PMSQ-CNF composite aerogels would be a candidate to practical high-performance thermal insulating materials.

  13. Recent Advances in Research on the Synthetic Fiber Based Silica Aerogel Nanocomposites

    PubMed Central

    Ślosarczyk, Agnieszka

    2017-01-01

    The presented paper contains a brief review on the synthesis and characterization of silica aerogels and its nanocomposites with nanofibers and fibers based on a literature study over the past twenty years and my own research. Particular attention is focused on carbon fiber-based silica aerogel nanocomposites. Silica aerogel is brittle in nature, therefore, it is necessary to improve this drawback, e.g., by polymer modification or fiber additives. Nevertheless, there are very few articles in the literature devoted to the synthesis of silica aerogel/fiber nanocomposites, especially those focusing on carbon fibers and nanofibers. Carbon fibers are very interesting materials, namely due to their special properties: high conductivity, high mechanical properties in relation to very low bulk densities, high thermal stability, and chemical resistance in the silica aerogel matrix, which can help enhance silica aerogel applications in the future. PMID:28336876

  14. Robust superhydrophobic bridged silsesquioxane aerogels with tunable performances and their applications.

    PubMed

    Wang, Zhen; Wang, Dong; Qian, Zhenchao; Guo, Jing; Dong, Haixia; Zhao, Ning; Xu, Jian

    2015-01-28

    Aerogels are a family of highly porous materials whose applications are commonly restricted by poor mechanical properties. Herein, thiol-ene chemistry is employed to synthesize a series of novel bridged silsesquioxane (BSQ) precursors with various alkoxy groups. On the basis of the different hydrolyzing rates of the methoxy and ethoxy groups, robust superhydrophobic BSQ aerogels with tailorable morphology and mechanical performances have been prepared. The flexible thioether bridge contributes to the robustness of the as-formed aerogels, and the property can be tuned on the basis of the distinct combinations of alkoxy groups with the density of the aerogels almost unchanged. To the best of our knowledge, the lowest density among the ambient pressure dried aerogels is obtained. Further, potential application of the aerogels for oil/water separation and acoustic materials has also been presented.

  15. Incorporation of graphene nanosheets into cellulose aerogels: enhanced mechanical, thermal, and oil adsorption properties

    NASA Astrophysics Data System (ADS)

    Wan, Caichao; Li, Jian

    2016-02-01

    In this paper, novel graphene/cellulose (GC) aerogels were prepared based on a green NaOH/PEG solution. Scanning electron microscope observation indicates that the three-dimensional network skeleton structure of cellulose aerogels is tightly covered by the compact sheet structure. X-ray diffraction and Raman spectroscopy analyses demonstrate that the graphene nanosheets have been successfully synthesized and embedded in the cellulose aerogels. The incorporation of graphene nanosheets gives rise to the significant improvement in the specific surface area and pore volume, thermal stability, mechanical strength, and oil adsorption efficiency of GC aerogels. Therefore, the green hybrid GC aerogels have more advantages over the pure cellulose aerogels in treating oil-containing wastewater or oil spills under the harsh environment.

  16. Over-the-Counter Medicines

    MedlinePlus

    Over-the-counter (OTC) medicines are drugs you can buy without a prescription. Some OTC medicines relieve aches, pains and itches. Some prevent or cure ... the Food and Drug Administration decides whether a medicine is safe enough to sell over-the-counter. ...

  17. Counter-Learning under Oppression

    ERIC Educational Resources Information Center

    Kucukaydin, Ilhan

    2010-01-01

    This qualitative study utilized the method of narrative analysis to explore the counter-learning process of an oppressed Kurdish woman from Turkey. Critical constructivism was utilized to analyze counter-learning; Frankfurt School-based Marcusian critical theory was used to analyze the sociopolitical context and its impact on the oppressed. Key…

  18. Growth and Stability of Nanocrystalline Metal Domains within Nanoporous Carbon Nanotube Aerogels

    NASA Astrophysics Data System (ADS)

    Jeong, Yeon Joo

    This thesis focuses on how to grow and stabilize nanocrystalline metal domains within nanoporous carbon nanotube aerogels. It describes the growth of isolated metal nanocrystals within carbon nanotube aerogel networks and the growth of nanocrystalline metals within 2D and 3D carbon nanotube aerogel networks. It also discusses electrochemical stability for generating electricity from fuel cells and thermal stability for reinforcing structural materials. (Abstract shortened by UMI.).

  19. Structural and Acidic Properties of Niobia-Silica and Niobia-Alumina Aerogels

    DTIC Science & Technology

    1991-05-06

    objective is to develop a comparative set of samples of known structure for chemical characterization . Bulk oxide aerogels of niobia, alumina, and silica ...objective is to develop a comparative set of samples of known structure for chemical characterization . Bulk oxide aerogels of niobia, alumina, and silica were...properties and the developed structures caused by the thermal treatment or increased concentration of niobia on the silica and alumina aerogel

  20. The Gamma-ray Cherenkov Telescope, an end-to end Schwarzschild-Couder telescope prototype proposed for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Dournaux, J. L.; Abchiche, A.; Allan, D.; Amans, J. P.; Armstrong, T. P.; Balzer, A.; Berge, D.; Boisson, C.; Bousquet, J.-J.; Brown, A. M.; Bryan, M.; Buchholtz, G.; Chadwick, P. M.; Costantini, H.; Cotter, G.; Dangeon, L.; Daniel, M. K.; De Franco, A.; De Frondat, F.; Dumas, D.; Ernenwein, J. P.; Fasola, G.; Funk, S.; Gironnet, J.; Graham, J. A.; Greenshaw, T.; Hameau, B.; Hervet, O.; Hidaka, N.; Hinton, J. A.; Huet, J. M.; Jégouzo, I.; Jogler, T.; Kawashima, T.; Kraush, M.; Lapington, J. S.; Laporte, P.; Lefaucheur, J.; Markoff, S.; Melse, T.; Mohrmann, L.; Molyneux, P.; Nolan, S. J.; Okumura, A.; Osborne, J. P.; Parsons, R. D.; Rosen, S.; Ross, D.; Rowell, G.; Rulten, C. B.; Sato, Y.; Sayède, F.; Schmoll, J.; Schoorlemmer, H.; Servillat, M.; Sol, H.; Stamatescu, V.; Stephan, M.; Stuik, R.; Sykes, J.; Tajima, H.; Thornhill, J.; Tibaldo, L.; Trichard, C.; Vink, J.; Watson, J. J.; White, R.; Yamane, N.; Zech, A.; Zink, A.

    2016-08-01

    The GCT (Gamma-ray Cherenkov Telescope) is a dual-mirror prototype of Small-Sized-Telescopes proposed for the Cherenkov Telescope Array (CTA) and made by an Australian-Dutch-French-German-Indian-Japanese-UK-US consortium. The integration of this end-to-end telescope was achieved in 2015. On-site tests and measurements of the first Cherenkov images on the night sky began on November 2015. This contribution describes the telescope and plans for the pre-production and a large scale production within CTA.

  1. Structural properties and adsorption capacity of holocellulose aerogels synthesized from an alkali hydroxide-urea solution

    NASA Astrophysics Data System (ADS)

    Kwon, Gu-Joong; Kim, Dae-Young; Hwang, Jae-Hyun; Kang, Joo-Hyon

    2014-05-01

    A tulip tree was used to synthesize a holocellulose aerogel from an aqueous alkali hydroxide-urea solution with the substitution of an organic solvent followed by freeze-drying. For comparison, the synthesized holocellulose aerogels were divided into two groups according to the source of the hydrogel, an upper suspended layer and a bottom concentrated layer of the centrifuged solution of cellulose and NaOH/urea solvents. We investigated the effects of the temperature of the pre-cooled NaOH/urea solution ( i.e., dissolution temperature) on the pore structure and the adsorption capacity of the holocellulose aerogel. A nano-fibrillar network structure of the holocellulose aerogel was observed, with little morphological difference in pore structure for different dissolution temperatures. Both micropores and mesopores were observed in the holocellulose aerogel. The specific surface area of the holocellulose aerogel was generally greater at lower dissolution temperatures. In a series of adsorption tests using methylene blue, the holocellulose aerogel showed the greatest adsorption capacity at the lowest dissolution temperature tested (-2°C). However, the dissolution temperature generally had little effect on the adsorption capacity. The holocellulose aerogel produced from the upper suspended layer of the centrifuged hydrogel solution showed a greater porosity and adsorption capacity than the one produced from the bottom concentrated layer. Overall, the aerogel made by utilizing a delignified tulip tree display a high surface area and a high adsorption property, indicating its possible application in eco-friendly adsorption materials.

  2. Structure of plasmonic aerogel and the breakdown of the effective medium approximation.

    PubMed

    Grogan, Michael D W; Heck, Susannah C; Hood, Katie M; Maier, Stefan A; Birks, Tim A

    2011-02-01

    A method for making aerogel doped with gold nanoparticles (GNPs) produces a composite material with a well-defined localized surface plasmon resonance peak at 520 nm. The width of the extinction feature indicates the GNPs are well dispersed in the aerogel, making it suited to optical study. A simple effective medium approximation cannot explain the peak extinction wavelengths. The plasmonic field extends on a scale where aerogel cannot be considered isotropic, so a new model is required: a 5 nm glass coating on the GNPs models the extinction spectrum of the composite material, with air (aerogel), methanol (alcogel), or toluene filling the pores.

  3. Slow dynamics of nanocomposite polymer aerogels as revealed by X-ray photocorrelation spectroscopy (XPCS)

    SciTech Connect

    Hernández, Rebeca E-mail: aurora.nogales@csic.es; Mijangos, Carmen; Nogales, Aurora E-mail: aurora.nogales@csic.es; Ezquerra, Tiberio A.; Sprung, Michael

    2014-01-14

    We report on a novel slow dynamics of polymer xerogels, aerogels, and nanocomposite aerogels with iron oxide nanoparticles, as revealed by X-ray photon correlation spectroscopy. The polymer aerogel and its nanocomposite aerogels, which are porous in nature, exhibit hyper-diffusive dynamics at room temperature. In contrast, non-porous polymer xerogels exhibit an absence of this peculiar dynamics. This slow dynamical process has been assigned to a relaxation of the characteristic porous structure of these materials and not to the presence of nanoparticles.

  4. High resolution time interval counter

    NASA Technical Reports Server (NTRS)

    Zhang, Victor S.; Davis, Dick D.; Lombardi, Michael A.

    1995-01-01

    In recent years, we have developed two types of high resolution, multi-channel time interval counters. In the NIST two-way time transfer MODEM application, the counter is designed for operating primarily in the interrupt-driven mode, with 3 start channels and 3 stop channels. The intended start and stop signals are 1 PPS, although other frequencies can also be applied to start and stop the count. The time interval counters used in the NIST Frequency Measurement and Analysis System are implemented with 7 start channels and 7 stop channels. Four of the 7 start channels are devoted to the frequencies of 1 MHz, 5 MHz or 10 MHz, while triggering signals to all other start and stop channels can range from 1 PPS to 100 kHz. Time interval interpolation plays a key role in achieving the high resolution time interval measurements for both counters. With a 10 MHz time base, both counters demonstrate a single-shot resolution of better than 40 ps, and a stability of better than 5 x 10(exp -12) (sigma(sub chi)(tau)) after self test of 1000 seconds). The maximum rate of time interval measurements (with no dead time) is 1.0 kHz for the counter used in the MODEM application and is 2.0 kHz for the counter used in the Frequency Measurement and Analysis System. The counters are implemented as plug-in units for an AT-compatible personal computer. This configuration provides an efficient way of using a computer not only to control and operate the counters, but also to store and process measured data.

  5. The Cherenkov Telescope Array For Very High-Energy Astrophysics

    NASA Astrophysics Data System (ADS)

    Kaaret, Philip

    2015-08-01

    The field of very high energy (VHE) astrophysics had been revolutionized by the results from ground-based gamma-ray telescopes, including the current imaging atmospheric Cherenkov telescope (IACT) arrays: HESS, MAGIC and VERITAS. A worldwide consortium of scientists from 29 countries has formed to propose the Cherenkov Telescope Array (CTA) that will capitalize on the power of this technique to greatly expand the scientific reach of ground-based gamma-ray telescopes. CTA science will include key topics such as the origin of cosmic rays and cosmic particle acceleration, understanding extreme environments in regions close to neutron stars and black holes, and exploring physics frontiers through, e.g., the search for WIMP dark matter, axion-like particles and Lorentz invariance violation. CTA is envisioned to consist of two large arrays of Cherenkov telescopes, one in the southern hemisphere and one in the north. Each array will contain telescopes of different sizes to provide a balance between cost and array performance over an energy range from below 100 GeV to above 100 TeV. Compared to the existing IACT arrays, CTA will have substantially better angular resolution and energy resolution, will cover a much wider energy range, and will have up to an order of magnitude better sensitivity. CTA will also be operated as an open observatory and high-level CTA data will be placed into the public domain; these aspects will enable broad participation in CTA science from the worldwide scientific community to fully capitalize on CTA's potential. This talk will: 1) review the scientific motivation and capabilities of CTA, 2) provide an overview of the technical design and the status of prototype development, and 3) summarize the current status of the project in terms of its proposed organization and timeline. The plans for access to CTA data and opportunities to propose for CTA observing time will be highlighed.Presented on behalf of the CTA Consortium.

  6. Design constraints on Cherenkov telescopes with Davies-Cotton reflectors

    NASA Astrophysics Data System (ADS)

    Bretz, T.; Ribordy, M.

    2013-05-01

    This paper discusses the construction of high-performance ground-based gamma-ray Cherenkov telescopes with a Davies-Cotton reflector. For the design of such telescopes, usually physics constrains the field-of-view, while the photo-sensor size is defined by limited options. Including the effect of light-concentrators, it is demonstrated that these constraints are enough to mutually constrain all other design parameters. The dependability of the various design parameters naturally arises once a relationship between the value of the point-spread functions at the edge of the field-of-view and the pixel field-of-view is introduced. To be able to include this constraint into a system of equations, an analytical description for the point-spread function of a tessellated Davies-Cotton reflector is derived from Taylor developments and ray-tracing simulations. Including higher order terms renders the result precise on the percent level. Design curves are provided within the typical phase space of Cherenkov telescopes. The impact of all design parameters on the overall design is discussed. Allowing an immediate comparison of several options with identical physics performance allows the determination of the most cost efficient solution. Emphasis is given on the possible application of solid light concentrators with their typically about two times better concentration compared with hollow cones which allows the use of small photo sensors such as Geiger-mode avalanche photo diodes. This is discussed in more details in the context of possible design options for the Cherenkov Telescope Array. In particular, a solution for a 60 mm2 photo sensor with hollow cone is compared to a 36 mm2 with solid cone.

  7. Oscillatory counter-centrifugation

    NASA Astrophysics Data System (ADS)

    Xu, Shujing; Nadim, Ali

    2016-02-01

    In ordinary centrifugation, a suspended particle that is heavier than the displaced fluid migrates away from the rotation axis when the fluid-filled container rotates steadily about that axis. In contrast a particle that is lighter than the displaced fluid (e.g., a bubble) migrates toward the rotation axis in a centrifuge. In this paper, we show theoretically that if a fluid-filled container rotates in an oscillatory manner as a rigid body about an axis, at high enough oscillation frequencies, the sense of migration of suspended particles is reversed. That is, in that case particles denser than the fluid migrate inward, while those that are lighter than the fluid move outward. We term this unusual phenomenon "Oscillatory Counter-Centrifugation" or OCC, for short. Through application of the method of averaging to the equations of motion, we derive a simple criterion to predict the occurrence of OCC. The analysis also reveals that the time-average of the Coriolis force in the radial direction is the term that is responsible for this effect. In addition, we analyze the effects of the Basset history force and the Rubinow-Keller lift force on particle trajectories and find that OCC persists even when these forces are active. The phenomenon awaits experimental verification.

  8. Carbon XANES Data from Six Aerogel Picokeystones Cut from the Top and Bottom Sides of the Stardust Comet Sample Tray

    NASA Technical Reports Server (NTRS)

    Wirick, S.; Flynn, G. J.; Frank, D.; Sandford, S. A.; Zolensky, M. E.; Tsou, P.; Peltzer, C.; Jacobsen, C.

    2009-01-01

    Great care and a large effort was made to minimize the amount of organic matter contained within the flight aerogel used to collect Comet 81P/Wild 2 samples. Even so, by the very nature of the production process and silica aerogel s affinity for volatile organics keeping silica aerogel free from organics is a monumental task. Silica aerogel from three production batches was flown on the Stardust sample return mission. All 3 types had layered densities varying from 5mg/ml to 50 mg/ml where the densest aerogel was farthest away from the collection area. A 2 step gelation process was used to make the flight aerogel and organics used in this process were tetraethylorthosilicate, ethanol and acetonitrile. Both ammonium hydroxide and nitric acid were also used in the aerogel production process. The flight aerogel was baked at JPL at 300 C for 72 hours, most of the baking was done at atmosphere but twice a day the oven was pumped to 10 torr for hour [1]. After the aerogel was baked it was stored in a nitrogen purged cabinet until flight time. One aerogel cell was located in the SRC away from any sample collection area as a witness to possible contamination from out gassing of the space craft, re-entry gases and any other organic encounter. This aerogel was aerogel used in the interstellar collection sample tray and is the least dense of the 3 batches of aerogel flown. Organics found in the witness tile include organics containing Si-CH3 bonds, amines and PAHS. Besides organic contamination, hot spots of calcium were reported in the flight aerogel. Carbonates have been detected in comet 81P/Wild2 samples . During preflight analyses, no technique was used to analyze for carbonates in aerogel. To determine if the carbonates found in 81P/Wild2 samples were from the comet, it is necessary to analyze the flight aerogel for carbonate as well as for organics.

  9. Multiple channel programmable coincidence counter

    DOEpatents

    Arnone, Gaetano J.

    1990-01-01

    A programmable digital coincidence counter having multiple channels and featuring minimal dead time. Neutron detectors supply electrical pulses to a synchronizing circuit which in turn inputs derandomized pulses to an adding circuit. A random access memory circuit connected as a programmable length shift register receives and shifts the sum of the pulses, and outputs to a serializer. A counter is input by the adding circuit and downcounted by the seralizer, one pulse at a time. The decoded contents of the counter after each decrement is output to scalers.

  10. Nonlinear Cherenkov difference-frequency generation exploiting birefringence of KTP

    SciTech Connect

    Ni, R.; Du, L.; Wu, Y.; Hu, X. P. Zou, J.; Zhang, Y.; Zhu, S. N.; Sheng, Y.; Arie, A.

    2016-01-18

    In this letter, we demonstrate the realization of nonlinear Cherenkov difference-frequency generation (CDFG) exploiting the birefringence property of KTiOPO{sub 4} (KTP) crystal. The pump and signal waves were set to be along different polarizations, thus the phase-matching requirement of CDFG, which is, the refractive index of the pump wave should be smaller than that of the signal wave, was fulfilled. The radiation angles and the intensity dependence of the CDFG on the pump wave were measured, which agreed well with the theoretical ones.

  11. The fluid systems for the SLD Cherenkov ring imaging detector

    SciTech Connect

    Abe, K.; Hasegawa, K.; Hasegawa, Y.; Iwasaki, Y.; Suekane, F.; Yuta, H.; Antilogus, P.; Aston, D.; Bienz, T.; Bird, F.; Dasu, S.; Dolinsky, S.; Dunwoodie, W.; Hallewell, G.; Kawahara, H.; Kwon, Y.; Leith, D.W.G.S.; McCulloch, M.; McShurley, D.; Mueller, G.; Muller, D.; Nagamine, T.; Pavel, T.J.; Peterson, H.; Ratcliff, B.; Reif, R.; Rensing, P.; Schultz, D.; Shapiro, S.; Shaw, H.; Simopoulos, C.; Solodov, E.; Toge, N.; Vavra, J.; Watt, R.; Weber, T.; Williams, S.H.; Baird, K.; Jacques, P.; Kalelkar, M.; Plano, R.; Stamer, P.; Word, G.; Bean, A.; Caldwell, D.O.; Duboscq, J.; Huber, J.; Lu, A.; Mathys, L.; McHugh, S.; Yellin, S.; Ben-David, R.; Manly, S.; Snyder, J.; Turk, J.; Cavalli-Sforza, M.; Coyle, P.; Coyne, D.; Gagnon, P.; Liu, X.; Schneider, M.; Williams, D.A.; Coller, J.; Shank, J.T.; Whitaker, J.S.; d`Oliveira, A.; Johnson, R.A.; Martinez, J.; Nussbaum, M.; Santha, A.K.S.; Sokoloff, M.D.; Stockdale, I.; Wilson, R.J.

    1992-10-01

    We describe the design and operation of the fluid delivery, monitor and control systems for the SLD barrel Cherenkov Ring Imaging Detector (CRID). The systems deliver drift gas (C{sub 2}H{sub 6} + TMAE), radiator gas (C{sub 5}F{sub 12} + N{sub 2}) and radiator liquid (C{sub 6}F{sub 14}). Measured critical quantities such as electron lifetime in the drift gas and ultra-violet (UV) transparencies of the radiator fluids, together with the operational experience, are also reported.

  12. Application of imaging to the atmospheric Cherenkov technique

    NASA Technical Reports Server (NTRS)

    Cawley, M. F.; Fegan, D. J.; Gibbs, K.; Gorham, P. W.; Hillas, A. M.; Lamb, R. C.; Liebing, D. F.; Mackeown, P. K.; Porter, N. A.; Stenger, V. J.

    1985-01-01

    Turver and Weekes proposed using a system of phototubes in the focal plane of a large reflector to give an air Cherenkov camera for gamma ray astronomy. Preliminary results with a 19 element camera have been reported previously. In 1983 the camera was increased to 37 pixels; it has now been routinely operated for two years. A brief physical description of the camera, its mode of operation, and the data reduction procedures are presented. The Monte Carlo simultations on which these are based on also reviewed.

  13. Corrugated capillary as THz Cherenkov Smith-Purcell radiator

    NASA Astrophysics Data System (ADS)

    Lekomtsev, K. V.; Aryshev, A. S.; Tishchenko, A. A.; Ponomarenko, A. A.; Sukharev, V. M.; Terunuma, N.; Urakawa, J.; Strikhanov, M. N.

    2016-07-01

    In this article we discussed Particle In Cell electromagnetic simulations and mechanical design of dielectric capillaries that produce THz Cherenkov Smith-Purcell radiation (ChSPR), arising when a femtosecond electron multi-bunch beam propagates through corrugated and non-corrugated dielectric capillaries with metallic radiation reflectors. We investigated the influence of the four-bunch beam on the SPR field spectrum and on the ChSPR power spectrum, and the influence of the non-central beam propagation on the ChSPR power spectrum. We also discussed the design and assembly of the capillaries, constructed as sets of cylindrical rings.

  14. First scientific contributions from the High Altitude Water Cherenkov Observatory

    NASA Astrophysics Data System (ADS)

    León Vargas, H.; HAWC Collaboration

    2015-09-01

    The High Altitude Water Cherenkov Observatory (HAWC), located at the slopes of the volcanoes Sierra Negra and Pico de Orizaba in Mexico, was inaugurated on March 20, 2015. However, data taking started in August 2013 with a partially deployed observatory and since then the instrument has collected data as it got closer to its final configuration. HAWC is a ground based TeV gamma-ray observatory with a large field of view that will be used to study the Northern sky with high sensitivity. In this contribution we present some of the results obtained with the partially built instrument and the expected capabilities to detect different phenomena with the complete observatory.

  15. Initial Blazar Studies with the CELESTE Cherenkov Telescope

    NASA Astrophysics Data System (ADS)

    Münz, F.

    1999-08-01

    CELESTE began systematic blazar observations in March 1999 with a 40-heliostat array at the site of the solar array at Themis in the French Pyrenees. Data is recorded using 1 GHz Flash ADC's which allow faint Cherenkov pulses to be measured. The hybrid analog-logic trigger scheme provides good hadron rejection and high efficiency for low-energy showers. A trigger threshold below 50 GeV allows CELESTE to probe the region near the peak of the inverse compton spectrum observed in many blazars. In this first observation campaign we are concentrating on Mrk 421, Mrk 501, and 1ES 1426+428.

  16. Aerogel as a Soft Acoustic Metamaterial for Airborne Sound

    NASA Astrophysics Data System (ADS)

    Guild, Matthew D.; García-Chocano, Victor M.; Sánchez-Dehesa, José; Martin, Theodore P.; Calvo, David C.; Orris, Gregory J.

    2016-03-01

    Soft acoustic metamaterials utilizing mesoporous structures have been proposed recently as a means for tuning the overall effective properties of the metamaterial and providing better coupling to the surrounding air. In this paper, the use of silica aerogel is examined theoretically and experimentally as part of a compact soft acoustic metamaterial structure, which enables a wide range of exotic effective macroscopic properties to be demonstrated, including negative density, density near zero, and nonresonant broadband slow-sound propagation. Experimental data are obtained on the effective density and sound speed using an air-filled acoustic impedance tube for flexural metamaterial elements, which have been investigated previously only indirectly due to the large contrast in acoustic impedance compared to that of air. Experimental results are presented for silica aerogel arranged in parallel with either one or two acoustic ports and are in very good agreement with the theoretical model.

  17. Characterisation of Aerogel Inner Structure with Superfluid Helium Flow

    SciTech Connect

    Coleman, S.; Vassilicos, J. C.

    2006-09-07

    We have developed a numerical technique that firstly obtains the shape of an adsorbed film on a fractal structure via minimisation of the grand potential functional of the system. This film shape is then used to define the geometry of a potential flow problem, which models the flow of the superfluid film due to an external pressure gradient, with the assumption that the flow velocities are so small so as not to alter the shape of the film. Using a microscopic definition of tortuosity, it is found that in 2D, tortuosity scales with the amount of fluid condensed on the substrate, with an exponent {epsilon} = -1.5. These results are in qualitative agreement with previous experimental results using aerogel as the substrate. Our results also show that {epsilon} is a function of the fractal dimension, Df, and the random walk dimension, Dw of the aerogel, in contrast with previous theories.

  18. Heat-insulating aerogel composites for a hydrothermal reactor

    NASA Astrophysics Data System (ADS)

    Vedenin, A. D.; Vityaz', P. A.; Galinovskii, A. L.; Ivanova, I. S.; Mazalov, Yu. A.; Pustovgar, A. P.; Sudnik, L. V.

    2016-12-01

    The SiO2-TiO2 aerogel composites used in the heat insulation of a hydrothermal reactor and the method of their fabrication using a liquid glass technology are analyzed. The process of fabrication of the composite material includes the following stages: the ion exchange of sodium liquid glass with the formation of silica hydrosol; the concentration of hydrosol; the formation of hydrogel and its maturing; the formation of alcogel of an SiO2-TiO2 composite material; surface modification; subcritical drying of alcogel with the formation of SiO2-TiO2 composite ambigel; and its heat treatment, granulation, and classification. The influence of infrared absorber (titanium dioxide) and the temperature of heat treatment of an SiO2-TiO2 aerogel composite material on its structural and thermal characteristics is studied.

  19. From 1D to 3D - macroscopic nanowire aerogel monoliths

    NASA Astrophysics Data System (ADS)

    Cheng, Wei; Rechberger, Felix; Niederberger, Markus

    2016-07-01

    Here we present a strategy to assemble one-dimensional nanostructures into a three-dimensional architecture with macroscopic size. With the assistance of centrifugation, we successfully gel ultrathin W18O49 nanowires with diameters of 1 to 2 nm and aspect ratios larger than 100 into 3D networks, which are transformed into monolithic aerogels by supercritical drying.Here we present a strategy to assemble one-dimensional nanostructures into a three-dimensional architecture with macroscopic size. With the assistance of centrifugation, we successfully gel ultrathin W18O49 nanowires with diameters of 1 to 2 nm and aspect ratios larger than 100 into 3D networks, which are transformed into monolithic aerogels by supercritical drying. Electronic supplementary information (ESI) available: Experimental details, SEM and TEM images, and digital photographs. See DOI: 10.1039/c6nr04429h

  20. Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality

    NASA Astrophysics Data System (ADS)

    Si, Yang; Yu, Jianyong; Tang, Xiaomin; Ge, Jianlong; Ding, Bin

    2014-12-01

    Three-dimensional nanofibrous aerogels (NFAs) that are both highly compressible and resilient would have broad technological implications for areas ranging from electrical devices and bioengineering to damping materials; however, creating such NFAs has proven extremely challenging. Here we report a novel strategy to create fibrous, isotropically bonded elastic reconstructed (FIBER) NFAs with a hierarchical cellular structure and superelasticity by combining electrospun nanofibres and the fibrous freeze-shaping technique. Our approach causes the intrinsically lamellar deposited electrospun nanofibres to assemble into elastic bulk aerogels with tunable densities and desirable shapes on a large scale. The resulting FIBER NFAs exhibit densities of >0.12 mg cm-3, rapid recovery from deformation, efficient energy absorption and multifunctionality in terms of the combination of thermal insulation, sound absorption, emulsion separation and elasticity-responsive electric conduction. The successful synthesis of such fascinating materials may provide new insights into the design and development of multifunctional NFAs for various applications.

  1. Electrochemical behavior of carbon aerogels derived from different precursors

    SciTech Connect

    Pekala, R.W.; Alviso, C.T.; Nielson, J.K.; Tran, T.D.; Reynolds, G.M.; Dresshaus, M.S.

    1995-04-01

    The ability to tailor the structure and properties of porous carbons has led to their increased use as electrodes in energy storage devices. Our research focuses on the synthesis and characterization of carbon aerogels for use in electrochemical double layer capacitors. Carbon aerogels are formed from the sol-gel polymerization of (1) resorcinol-formaldehyde or (2) phenolic-furfural, followed by supercritical drying from carbon dioxide, and subsequent pyrolysis in an inert atmosphere. These materials can be produced as monoliths, composites, thin films, powders, or microspheres. In all cases, the areogels have an open-cell structure with an ultrafine pore size (<100 nm), high surface area (400-1 100 m{sup 2}/g), and a solid matrix composed of interconnected particles, fibers, or platelets with characteristic dimensions of 10 nm. This paper examines the effects of the carbon precursor and processing conditions on electrochemical performance in aqueous and organic electrolytes.

  2. High Resolution, Single-Step Patterning of Silica Aerogels

    NASA Technical Reports Server (NTRS)

    Bertino, M. F.; Hund, J. F.; Sosa, J.; Zhang, G.; Sotiriou-Leventis, C.; Leventis, N.; Tokuhiro, A. T.; Terry, J.

    2003-01-01

    Three-dimensional metallic structures are fabricated with high spatial resolution in silica aerogels. In our method, silica hydrogels are prepared with a standard base-catalyzed route, and exchanged with an aqueous solution typically containing Ag' ions (1 M) and 2-propanol (0.2 M). The metal ions are reduced photolytically with a table-top ultraviolet lamp, or radiolytically, with a focused X-ray beam. We fabricated dots and lines as small as 30 x 70 km, protruding for several mm into the bulk of the materials. The hydrogels are eventually supercritically dried to yield aerogels, without any measurable change in the shape and spatial resolution of the lithographed structures. Transmission electron microscopy shows that illuminated regions are composed of Ag clusters with a size of several pm, separated by thin layers of silica.

  3. Surface Plasmon Resonance Evaluation of Colloidal Metal Aerogel Filters

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Sibille, Laurent; Cronise, Raymond J.; Noever, David A.

    1997-01-01

    Surface plasmon resonance imaging has in the past been applied to the characterization of thin films. In this study we apply the surface plasmon technique not to determine macroscopic spatial variations but rather to determine average microscopic information. Specifically, we deduce the dielectric properties of the surrounding gel matrix and information concerning the dynamics of the gelation process from the visible absorption characteristics of colloidal metal nanoparticles contained in aerogel pores. We have fabricated aerogels containing gold and silver nanoparticles. Because the dielectric constant of the metal particles is linked to that of the host matrix at the surface plasmon resonance, any change 'in the dielectric constant of the material surrounding the metal nanoparticles results in a shift in the surface plasmon wavelength. During gelation the surface plasmon resonance shifts to the red as the average or effective dielectric constant of the matrix increases. Conversely, formation of an aerogel or xerogel through supercritical extraction or evaporation of the solvent produces a blue shift in the resonance indicating a decrease in the dielectric constant of the matrix. From the magnitude of this shift we deduce the average fraction of air and of silica in contact with the metal particles. The surface area of metal available for catalytic gas reaction may thus be determined.

  4. Effect of Aerogel Anisotropy in Superfluid 3He-A

    NASA Astrophysics Data System (ADS)

    Zimmerman, A. M.; Li, J. I. A.; Pollanen, J.; Collett, C. A.; Gannon, W. J.; Halperin, W. P.

    2014-03-01

    Two theories have been advanced to describe the effects of anisotropic impurity introduced by stretched silica aerogel on the orientation of the orbital angular momentum l& circ; in superfluid 3He-A. These theories disagree on whether the anisotropy will orient l& circ; perpendicular[2] or parallel[3] to the strain axis. In order to examine this question we have produced and characterized a homogeneous aerogel sample with uniaxial anisotropy introduced during growth, corresponding to stretching of the aerogel. These samples have been shown to stabilize two new chiral states;[4] the higher temperature state being the subject of the present study. Using pulsed NMR we have performed experiments on 3He-A imbibed in this sample in two orientations: strain parallel and perpendicular to the applied magnetic field. From the NMR frequency shifts as a function of tip angle and temperature, we find that the angular momentum l& circ; is oriented along the strain axis, providing evidence for the theory advanced by Sauls. This work was supported by the National Science Foundation, DMR-1103625.

  5. The water Cherenkov detectors of the HAWC Observatory

    NASA Astrophysics Data System (ADS)

    Longo, Megan; Mostafa, Miguel

    2012-10-01

    The High Altitude Water Cherenkov (HAWC) observatory is a very high-energy gamma-ray detector which is currently under construction at 4100 m in Sierra Negra, Mexico. The observatory will be composed of an array of 300 Water Cherenkov Detectors (WCDs). Each WCD consists of a 5 m tall by 7.3 m wide steel tank containing a hermetically sealed plastic bag, called a bladder, which is filled with 200,000 liters of purified water. The detectors are each equipped with four upward-facing photomultiplier tubes (PMTs), anchored to the bottom of the bladder. At Colorado State University (CSU) we have the only full-size prototype outside of the HAWC site. It serves as a testbed for installation and operation procedures for the HAWC observatory. The WCD at CSU has been fully operational since March 2011, and has several components not yet present at the HAWC site. In addition to the four HAWC position PMTs, our prototype has three additional PMTs, including one shrouded (dark) PMT. We also have five scintillator paddles, four buried underneath the HAWC position PMTs, and one freely moving paddle above the volume of water. These extra additions will allow us to work on muon reconstruction with a single WCD. We will describe the analysis being done with the data taken with the CSU prototype, its impact on the HAWC detector, and future plans for the prototype.

  6. Probing the inert doublet dark matter model with Cherenkov telescopes

    SciTech Connect

    Garcia-Cely, Camilo; Gustafsson, Michael; Ibarra, Alejandro E-mail: michael.gustafsson@theorie.physik.uni-goettingen.de

    2016-02-01

    We present a detailed study of the annihilation signals of the inert dark matter doublet model in its high mass regime. Concretely, we study the prospects to observe gamma-ray signals of the model in current and projected Cherenkov telescopes taking into account the Sommerfeld effect and including the contribution to the spectrum from gamma-ray lines as well as from internal bremsstrahlung. We show that present observations of the galactic center by the H.E.S.S. instrument are able to exclude regions of the parameter space that give the correct dark matter relic abundance. In particular, models with the charged and the neutral components of the inert doublet nearly degenerate in mass have strong gamma-ray signals. Furthermore, for dark matter particle masses above 1 TeV, we find that the non-observation of the continuum of photons generated by the hadronization of the annihilation products typically give stronger constraints on the model parameters than the sharp spectral features associated to annihilation into monochromatic photons and the internal bremsstrahlung process. Lastly, we also analyze the interplay between indirect and direct detection searches for this model, concluding that the prospects for the former are more promising. In particular, we find that the upcoming Cherenkov Telescope Array will be able to probe a significant part of the high mass regime of the model.

  7. Scientific verification of High Altitude Water Cherenkov observatory

    NASA Astrophysics Data System (ADS)

    Marinelli, Antonio; Sparks, Kathryne; Alfaro, Ruben; González, María Magdalena; Patricelli, Barbara; Fraija, Nissim

    2014-04-01

    The High Altitude Water Cherenkov (HAWC) observatory is a TeV gamma-ray and cosmic-ray detector currently under construction at an altitude of 4100 m close to volcano Sierra Negra in the state of Puebla, Mexico. The HAWC [1] observatory is an extensive air-shower array composed of 300 optically isolated water Cherenkov detectors (WCDs). Each WCD contains ~200,000 l of filtered water and four upward-facing photomultiplier tubes. In Fall 2014, when the HAWC observatory will reach an area of 22,000 m2, the sensitivity will be 15 times higher than its predecessor Milagro [2]. Since September 2012, more than 30 WCDs have been instrumented and taking data. This first commissioning phase has been crucial for the verification of the data acquisition and event reconstruction algorithms. Moreover, with the increasing number of instrumented WCDs, it is important to verify the data taken with different configuration geometries. In this work we present a comparison between Monte Carlo simulation and data recorded by the experiment during 24 h of live time between 14 and 15 April of 2013 when 29 WCDs were active.

  8. Upgraded cameras for the HESS imaging atmospheric Cherenkov telescopes

    NASA Astrophysics Data System (ADS)

    Giavitto, Gianluca; Ashton, Terry; Balzer, Arnim; Berge, David; Brun, Francois; Chaminade, Thomas; Delagnes, Eric; Fontaine, Gérard; Füßling, Matthias; Giebels, Berrie; Glicenstein, Jean-François; Gräber, Tobias; Hinton, James; Jahnke, Albert; Klepser, Stefan; Kossatz, Marko; Kretzschmann, Axel; Lefranc, Valentin; Leich, Holger; Lüdecke, Hartmut; Lypova, Iryna; Manigot, Pascal; Marandon, Vincent; Moulin, Emmanuel; de Naurois, Mathieu; Nayman, Patrick; Penno, Marek; Ross, Duncan; Salek, David; Schade, Markus; Schwab, Thomas; Simoni, Rachel; Stegmann, Christian; Steppa, Constantin; Thornhill, Julian; Toussnel, François

    2016-08-01

    The High Energy Stereoscopic System (H.E.S.S.) is an array of five imaging atmospheric Cherenkov telescopes, sensitive to cosmic gamma rays of energies between 30 GeV and several tens of TeV. Four of them started operations in 2003 and their photomultiplier tube (PMT) cameras are currently undergoing a major upgrade, with the goals of improving the overall performance of the array and reducing the failure rate of the ageing systems. With the exception of the 960 PMTs, all components inside the camera have been replaced: these include the readout and trigger electronics, the power, ventilation and pneumatic systems and the control and data acquisition software. New designs and technical solutions have been introduced: the readout makes use of the NECTAr analog memory chip, which samples and stores the PMT signals and was developed for the Cherenkov Telescope Array (CTA). The control of all hardware subsystems is carried out by an FPGA coupled to an embedded ARM computer, a modular design which has proven to be very fast and reliable. The new camera software is based on modern C++ libraries such as Apache Thrift, ØMQ and Protocol buffers, offering very good performance, robustness, flexibility and ease of development. The first camera was upgraded in 2015, the other three cameras are foreseen to follow in fall 2016. We describe the design, the performance, the results of the tests and the lessons learned from the first upgraded H.E.S.S. camera.

  9. SST dual-mirror telescopes for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Dumas, Delphine; Laporte, Philippe; Sol, Hélène; Pareschi, Giovanni; Canestrari, Rodolfo; Stringhetti, Luca; Catalano, Osvaldo; White, Richard; Greenshaw, Tim; Hinton, Jim; Blake, Simon

    2014-07-01

    The Cherenkov Telescope Array (CTA) is an international collaboration that aims to create the world's foremost very high energy gamma-ray observatory, composed of large, medium and small size telescopes (SST). The SSTs will be the most numerous telescopes on site and will focus on capturing the rarer highest energy photons. Three prototypes of SST are designed and currently under construction; two of them, ASTRI and SST-GATE, have been designed, based on a dual-mirror Schwarzschild-Couder (SC) design which has never been built before for any astronomical observation. The SC optical design allows for a small plate scale, a wide field of view and a lightweight cameras aiming to minimize the cost of SST telescopes in order to increase their number in the array. The aim of this article is to report the progress of the two telescope projects prototyping telescope structures and cameras for the Small Size Telescopes for CTA. After a discussion of the CTA project and its scientific objectives, the performance of the SC design is described, with focus on the specific designs of SST-GATE and ASTRI telescopes. The design of both prototypes and their progress is reported in the current prototyping phase. The designs of Cherenkov cameras, CHEC and ASTRI, to be mounted on these telescopes are discussed and progresses are reported.

  10. Tagging spallation backgrounds with showers in water Cherenkov detectors

    NASA Astrophysics Data System (ADS)

    Li, Shirley Weishi; Beacom, John F.

    2015-11-01

    Cosmic-ray muons and especially their secondaries break apart nuclei ("spallation") and produce fast neutrons and beta-decay isotopes, which are backgrounds for low-energy experiments. In Super-Kamiokande, these beta decays are the dominant background in 6-18 MeV, relevant for solar neutrinos and the diffuse supernova neutrino background. In a previous paper, we showed that these spallation isotopes are produced primarily in showers, instead of in isolation. This explains an empirical spatial correlation between a peak in the muon Cherenkov light profile and the spallation decay, which Super-Kamiokande used to develop a new spallation cut. However, the muon light profiles that Super-Kamiokande measured are grossly inconsistent with shower physics. We show how to resolve this discrepancy and how to reconstruct accurate profiles of muons and their showers from their Cherenkov light. We propose a new spallation cut based on these improved profiles and quantify its effects. Our results can significantly benefit low-energy studies in Super-Kamiokande, and will be especially important for detectors at shallower depths, like the proposed Hyper-Kamiokande.

  11. Multi-messenger particle astrophysics with the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Vandenbroucke, Justin; Cherenkov Telescope Array Collaboration

    2017-01-01

    The Cherenkov Telescope Array (CTA) is a next-generation array of imaging atmospheric Cherenkov telescopes. Building on the success of H.E.S.S., MAGIC, and VERITAS, in an energy range complementary to that of the Fermi Large Area Telescope (LAT), CTA will investigate the particle physics of the cosmos through observations of gamma rays between tens of GeV and several hundred TeV. The observatory is especially well suited for follow-up of transient events detected in other wavelengths and messengers including neutrinos and gravitational waves. CTA will feature one array in each hemisphere for full sky coverage. The largest telescopes will have a 20 GeV energy threshold and will be able to quickly (in less than 50 seconds) slew to transient targets. The excellent effective area of CTA (thousands of times greater than that of the Fermi LAT at 20 GeV) will enable it to provide powerful and unique contributions to multi-messenger particle astrophysics.

  12. The Cherenkov Surface Detector of the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Billoir, Pierre

    2014-12-01

    The Pierre Auger Observatory detects the atmospheric showers induced by cosmic rays of ultra-high energy (UHE). It is the first one to use the hybrid technique. A set of telescopes observes the fluorescence of the nitrogen molecules on clear moonless nights, giving access to the longitudinal profile of the shower. These telescopes surround a giant array of 1600 water Cherenkov tanks (covering more than 3000 km2), which works continuously and samples the particles reaching the ground (mainly muons, photons and electrons/positrons); the light produced within the water is recorded into FADC (Fast Analog to Digital Convertes) traces. A subsample of hybrid events provides a cross calibration of the two components. We describe the structure of the Cherenkov detectors, their sensitivity to different particles and the information they can give on the direction of origin, the energy and the nature of the primary UHE object; we discuss also their discrimination power for rare events (UHE photons or neutrinos). To cope with the variability of weather conditions and the limitations of the communication system, the procedures for trigger and real time calibration have been shared between local processors and a central acquisition system. The overall system has been working almost continuously for 10 years, while being progressively completed and increased by the creation of a dense "infill" subarray.

  13. Properties of a silica aerogel Cerenkov radiator used in a cosmic ray telescope

    NASA Technical Reports Server (NTRS)

    Cantin, M.; Engelmann, J. J.; Koch, L.; Masse, P.; Lund, N.; Byrnak, B.

    1975-01-01

    A silica aerogel Cerenkov radiator with a refractive index of 1.06 has been flown in a balloon borne cosmic ray telescope. Clear separation of the elements in the iron group was achieved even at high energies. No detectable scintillation component was found. Some optical properties of the silica aerogel used in this flight are presented.

  14. Characterisation of biodegradable pectin aerogels and their potential use as drug carriers.

    PubMed

    Veronovski, Anja; Tkalec, Gabrijela; Knez, Željko; Novak, Zoran

    2014-11-26

    The purpose of this work was to prepare stable citrus (CF) and apple (AF) pectin aerogels for potential pharmaceutical applications. Different shapes of low ester pectin aerogels were prepared by two fundamental methods of ionic cross-linking. Pectins' spherical and multi-membrane gels were first formed by the diffusion method using 0.2M CaCl2 solution as an ionic cross-linker. The highest specific surface area (593 m(2)/g) that had so far been reported for pectin aerogels was achieved using this method. Monolithic pectin gels were formed by the internal setting method. Pectin gels were further converted into aerogels by supercritical drying using CO2. As surface area/volume is one of the key parameters in controlling drug release, multi-membrane pectin aerogels were further used as drug delivery carriers. Theophylline and nicotinic acid were used as model drugs for the dissolution study. CF aerogels showed more controlled release behaviour than AF pectin aerogels. Moreover a higher release rate (100%) was observed with CF aerogels.

  15. Three-dimensional textural and compositional analysis of particle tracks and fragmentation history in aerogel

    NASA Astrophysics Data System (ADS)

    Ebel, D. S.; Greenberg, M.; Rivers, M. L.; Newville, M.

    2009-11-01

    We report analyses of aerogel tracks using (1 synchrotron X-ray computed microtomography (XRCMT), (2) laser confocal scanning microscopy (LCSM), and (3) synchrotron radiation X-ray fluorescence (SRXRF) of particles and their paths resulting from simulated hypervelocity impacts (1-2), and a single ~1 mm aerogel track from the Stardust cometary sample collector (1-3). Large aerogel pieces can be imaged sequentially, resulting in high spatial resolution images spanning many tomographic fields of view (‘lambda-tomography’). We report calculations of energy deposited, and tests on aromatic hydrocarbons showing no alteration in tomography experiments. Imaging at resolutions from ~17 to ~1 micron/pixel edge (XRCMT) and to <100 nm/ pixel edge (LCSM) illustrates track geometry and interaction of particles with aerogel, including rifling, particle fragmentation, and final particle location. We present a 3-D deconvolution method using an estimated point-spread function for aerogel, allowing basic corrections of LCSM data for axial distortion. LCSM allows rapid, comprehensive, non-destructive, high information return analysis of tracks in aerogel keystones, prior to destructive grain extraction. SRXRF with LCSM allows spatial correlation of grain size, chemical, and mineralogical data. If optical methods are precluded in future aerogel capture missions, XRCMT is a viable 3D imaging technique. Combinations of these methods allow for complete, nondestructive, quantitative 3-D analysis of captured materials at high spatial resolution. This data is fundamental to understanding the hypervelocity particle-aerogel interaction histories of Stardust grains.

  16. Three-dimensional textural and compositional analysis of particle tracks and fragmentation history in aerogel

    SciTech Connect

    Ebel, Denton S.; Greenberg, Michael; Rivers, Mark L.; Newville, Matthew

    2010-05-04

    We report analyses of aerogel tracks using (1) synchrotron X-ray computed microtomography (XRCMT), (2) laser confocal scanning microscopy (LCSM), and (3) synchrotron radiation X-ray fluorescence (SRXRF) of particles and their paths resulting from simulated hypervelocity impacts (1-2), and a single {approx}1 mm aerogel track from the Stardust cometary sample collector (1-3). Large aerogel pieces can be imaged sequentially, resulting in high spatial resolution images spanning many tomographic fields of view ('lambda-tomography'). We report calculations of energy deposited, and tests on aromatic hydrocarbons showing no alteration in tomography experiments. Imaging at resolutions from -17 to -1 micron/pixel edge (XRCMT) and to <100 nm/pixel edge (LCSM) illustrates track geometry and interaction of particles with aerogel, including rifling, particle fragmentation, and final particle location. We present a 3-D deconvolution method using an estimated point-spread function for aerogel, allowing basic corrections of LCSM data for axial distortion. LCSM allows rapid, comprehensive, non-destructive, high information return analysis of tracks in aerogel keystones, prior to destructive grain extraction. SRXRF with LCSM allows spatial correlation of grain size, chemical, and mineralogical data. If optical methods are precluded in future aerogel capture missions, XRCMT is a viable 3D imaging technique. Combinations of these methods allow for complete, nondestructive, quantitative 3-D analysis of captured materials at high spatial resolution. This data is fundamental to understanding the hypervelocity particle-aerogel interaction histories of Stardust grains.

  17. Preparation and characterization of silica aerogels from diatomite via ambient pressure drying

    NASA Astrophysics Data System (ADS)

    Wang, Baomin; Ma, Hainan; Song, Kai

    2014-07-01

    The silica aerogels were successfully fabricated under ambient pressure from diatomite. The influence of different dilution ratios of diatomite filtrate on physical properties of aerogels were studied. The microstructure, surface functional groups, thermal stability, morphology and mechanical properties of silica aerogels based on diatomite were investigated by BET adsorption, FT-IR, DTA-TG, FESEM, TEM, and nanoindentation methods. The results indicate that the filtrate diluted with distilled water in a proportion of 1: 2 could give silica aerogels in the largest size with highest transparency. The obtained aerogels with density of 0.122-0.203 g/m3 and specific surface area of 655.5-790.7 m2/g are crack free amorphous solids and exhibited a sponge-like structure. Moreover, the peak pore size resided at 9 nm. The initial aerogels were hydrophobic, when being heat-treated around 400°C, the aerogels were transformed into hydrophilic ones. The obtained aerogel has good mechanical properties.

  18. Optofluidic waveguides written in hydrophobic silica aerogels with a femtosecond laser

    NASA Astrophysics Data System (ADS)

    Yalizay, B.; Morova, Y.; Ozbakir, Y.; Jonas, A.; Erkey, C.; Kiraz, A.; Akturk, S.

    2015-02-01

    We present a new method to form liquid-core optofluidic waveguides inside hydrophobic silica aerogels. Due to their unique material properties, aerogels are very attractive for a wide variety of applications; however, it is very challenging to process them with traditional methods such as milling, drilling, or cutting because of their fragile structure. Therefore, there is a need to develop alternative processes for formation of complex structures within the aerogels without damaging the material. In our study, we used focused femtosecond laser pulses for high-precision ablation of hydrophobic silica aerogels. During the ablation, we directed the laser beam with a galvo-mirror system and, subsequently, focused the beam through a scanning lens on the surface of bulk aerogel which was placed on a three-axis translation stage. We succeeded in obtaining high-quality linear microchannels inside aerogel monoliths by synchronizing the motion of the galvo-mirror scanner and the translation stage. Upon ablation, we created multimode liquid-core optical waveguides by filling the empty channels inside low-refractive index aerogel blocks with highrefractive index ethylene glycol. In order to demonstrate light guiding and measure optical attenuation of these waveguides, we coupled light into the waveguides with an optical fiber and measured the intensity of transmitted light as a function of the propagation distance inside the channel. The measured propagation losses of 9.9 dB/cm demonstrate the potential of aerogel-based waveguides for efficient routing of light in optofluidic lightwave circuits.

  19. Starch-based aerogels: airy materials from amylose-sodium palmitate inclusion complexes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aerogels are a class of interesting low density porous materials prepared by replacing the water phase contained within a hydrogel with a gas phase while maintaining the three dimensional network structure of the gel. The investigation of starch and hydrocolloid-based aerogels has received attentio...

  20. Whey protein aerogel as blended with cellulose crystalline particles or loaded with fish oil.

    PubMed

    Ahmadi, Maede; Madadlou, Ashkan; Saboury, Ali Akbar

    2016-04-01

    Whey protein hydrogels blended with nanocrystalline and microcrystalline cellulose particles (NCC and MCC, respectively) were prepared, followed by freeze-drying, to produce aerogels. NCC blending increased the Young's modulus, and elastic character, of the protein aerogel. Aerogels were microporous and mesoporous materials, as characterized by the pores sizing 1.2 nm and 12.2 nm, respectively. Blending with NCC decreased the count of both microporous and mesoporous-classified pores at the sub-100 nm pore size range investigated. In contrast, MCC blending augmented the specific surface area and pores volume of the aerogel. It also increased moisture sorption affinity of aerogel. The feasibility of conveying hydrophobic nutraceuticals by aerogels was evaluated through loading fish oil into the non-blended aerogel. Oil loading altered its microstructure, corresponding to a peak displacement in Fourier-transform infra-red spectra, which was ascribed to increased hydrophobic interactions. Surface coating of aerogel with zein decreased the oxidation susceptibility of the loaded oil during subsequent storage.

  1. Aerogel detector with a Fresnel lens focalization: a test of the concept

    SciTech Connect

    Sokolov, O.; Paic, G.; Alfaro, R.

    2008-07-02

    We present a threshold aerogel detector that uses only the unscattered light in the aerogel, focused on a photomultiplier using a Fresnel lens. The results with n = 1.03 and 3'' photomultiplier are presented. The possibility to use 1.5'' PMT is discussed.

  2. pH-controllable synthesis of unique nanostructured tungsten oxide aerogel and its sensitive glucose biosensor.

    PubMed

    Sun, Qiang-Qiang; Xu, Maowen; Bao, Shu-Juan; Li, Chang Ming

    2015-03-20

    This work presents a controllable synthesis of nanowire-networked tungsten oxide aerogels, which was performed by varying the pH in a polyethyleneimine (PEI)-assisted hydrothermal process. An enzyme-tungsten oxide aerogel co-modified electrode shows high activity and selectivity toward glucose oxidation, thus holding great promise for applications in bioelectronics.

  3. Preparation, characterization, and activity of a peptide-cellulosic aerogel protease sensor from cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nanocellulosic aerogels (NA) provide a lightweight biocompatible material with structural properties of both high porosity and specific surface area for biosensor design. We report here the preparation, characterization, and activity of a peptide-nanocellulose aerogel (PA) made from unprocessed cot...

  4. Highly Porous, Rigid-Rod Polyamide Aerogels with Superior Mechanical Properties and Unusually High Thermal Conductivity.

    PubMed

    Williams, Jarrod C; Nguyen, Baochau N; McCorkle, Linda; Scheiman, Daniel; Griffin, Justin S; Steiner, Stephen A; Meador, Mary Ann B

    2017-01-18

    We report here the fabrication of polyamide aerogels composed of poly-p-phenylene-terephthalamide, the same backbone chemistry as DuPont's Kevlar. The all-para-substituted polymers gel without the use of cross-linker and maintain their shape during processing-an improvement over the meta-substituted cross-linked polyamide aerogels reported previously. Solutions containing calcium chloride (CaCl2) and para-phenylenediamine (pPDA) in N-methylpyrrolidinone (NMP) at low temperature are reacted with terephthaloyl chloride (TPC). Polymerization proceeds over the course of 5 min resulting in gelation. Removal of the reaction solvent via solvent exchange followed by extraction with supercritical carbon dioxide provides aerogels with densities ranging from 0.1 to 0.3 g/cm(3), depending on the concentration of calcium chloride, the formulated number of repeat units, n, and the concentration of polymer in the reaction mixture. These variables were assessed in a statistical experimental study to understand their effects on the properties of the aerogels. Aerogels made using at least 30 wt % CaCl2 had the best strength when compared to aerogels of similar density. Furthermore, aerogels made using 30 wt % CaCl2 exhibited the lowest shrinkage when aged at elevated temperatures. Notably, whereas most aerogel materials are highly insulating (thermal conductivities of 10-30 mW/m K), the polyamide aerogels produced here exhibit remarkably high thermal conductivities (50-80 mW/(m K)) at the same densities as other inorganic and polymer aerogels. These high thermal conductivities are attributed to efficient phonon transport by the rigid-rod polymer backbone. In conjunction with their low cost, ease of fabrication with respect to other polymer aerogels, low densities, and high mass-normalized strength and stiffness properties, these aerogels are uniquely valuable for applications such as lightweighting in consumer electronics, automobiles, and aerospace where weight reduction is

  5. Characterization of Dry-Air Aged Granules of Silver-Functionalized Silica Aerogel

    SciTech Connect

    Matyas, Josef; Fryxell, Glen E.; Robinson, Matthew J.

    2012-09-01

    This is a letter report to complete level 3 milestone "Assess aging characteristics of silica aerogels" for DOE FCRD program. Recently, samples of Ag0-functionalized silica aerogel were aged in flowing dry air for up to 6 months and then loaded with iodine. This dry-air aging simulated the impact of long-term exposure to process gases during process idling. The 6-month aged sample exhibited an iodine sorption capacity of 32 mass%, which was 9 mass % lower than that for an un-aged Ag0-functionalized silica aerogel. In an attempt to understand this decrease in sorption capacity, we characterized physical properties of the aged samples with Brunauer-Emmett-Teller (BET) nitrogen adsorption, X-ray diffraction (XRD), and high resolution scanning electron microscopy (SEM). The results showed no impact of aging on the aerogel microstructure or the silver nanoparticles in the aerogel, including their spatial distribution and morphology.

  6. Porous silica aerogel/honeycomb ceramic composites fabricated by an ultrasound stimulation process

    NASA Astrophysics Data System (ADS)

    Hong, Sun-Wook; Song, In-Hyuck; Park, Young-Jo; Yun, Hui-suk; Hwang, Ki-Young; Rhee, Young-Woo

    2012-06-01

    The synthesis behavior of nanoporous hydrophobic silica aerogel in honeycomb-type ceramics was observed using TEOS and MTES. Silica aerogel in the honeycomb ceramic structure was synthesized under ultrasound stimulation. The synthesized aerogel/honeycomb ceramic composites were dried under supercritical CO2 drying conditions. The values for the line shrinkage of the wet gels during supercritical CO2 drying declined from 19% to 4% with an increase in the H2O/TEOS molar ratio from 8 to 24. Low shrinkage was a key factor in increasing the interface compatibility with the aerogel/honeycomb ceramic composites. The optimum condition of silica aerogel in the honeycomb-type ceramic structure had a TEOS:MTES: H2O:glycerol ratio equal to 1:1.2:24:0.05 (mol%).

  7. Computer modeling of organic aerogels: Final report of 93-SR-062

    SciTech Connect

    Chandler, E.A.; Calef, D.; Ladd, A.J.C.

    1994-06-10

    Goal of the work was to develop computer models of organic aerogel structures, and to study transport process within these materials. During the course of the research understanding of the structure of all aerogels including acid and neutral-catalyzed silica aerogel was developed. The modeling of transport focused on fluid flow in aerogels. We successfully modified a novel state-of-the-art lattice Boltzmann code to simulate flow at low Knudsen number, and developed a simple molecular dynamics code for gas flow at extremely high Knudsen number (low density). These flow-modeling techniques can be used to study aerogel applications for technology transfer; in addition, these techniques can be used to study flow through other porous materials.

  8. Tailoring of Boehmite-Derived Aluminosilicate Aerogel Structure and Properties: Influence of Ti Addition

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.; Guo, Haiquan; Sheets, Erik J.; Miller, Derek R.; Newlin, Katy N.

    2010-01-01

    Aluminosilicate aerogels offer potential for extremely low thermal conductivities at temperatures greater than 900 C, beyond where silica aerogels reach their upper temperature limits. Aerogels have been synthesized at various Al:Si ratios, including mullite compositions, using Boehmite (AlOOH) as the Al source, and tetraethoxy orthosilicate as the Si precursor. The Boehmite-derived aerogels are found to form by a self-assembly process of AlOOH crystallites, with Si-O groups on the surface of an alumina skeleton. Morphology, surface area and pore size varies with the crystallite size of the starting Boehmite powder, as well as with synthesis parameters. Ternary systems, including Al-Si-Ti aerogels incorporating a soluble Ti precursor, are possible with careful control of pH. The addition of Ti influences sol viscosity, gelation time pore structure and pore size distribution, as well as phase formation on heat treatment.

  9. Aerogel microspheres from natural cellulose nanofibrils and their application as cell culture scaffold.

    PubMed

    Cai, Hongli; Sharma, Sudhir; Liu, Wenying; Mu, Wei; Liu, Wei; Zhang, Xiaodan; Deng, Yulin

    2014-07-14

    We demonstrated that ultralight pure natural aerogel microspheres can be fabricated using cellulose nanofibrials (CNF) directly. Experimentally, the CNF aqueous gel droplets, produced by spraying and atomizing through a steel nozzle, were collected into liquid nitrogen for instant freezing followed by freeze-drying. The aerogel microspheres are highly porous with bulk density as low as 0.0018 g cm(-3). The pore size of the cellulose aeogel microspheres ranges from nano- to macrometers. The unique ultralight and high porous structure ensured high moisture (~90 g g(-1)) and water uptake capacity (~100 g g(-1)) of the aerogel microspheres. Covalent cross-linking between the native nanofibrils and cross-linkers made the aerogel microspheres very stable even in a harsh environment. The present study also confirmed this kind of aerogel microspheres from native cellulose fibers can be used as cell culture scaffold.

  10. Strong, Thermally Superinsulating Biopolymer-Silica Aerogel Hybrids by Cogelation of Silicic Acid with Pectin.

    PubMed

    Zhao, Shanyu; Malfait, Wim J; Demilecamps, Arnaud; Zhang, Yucheng; Brunner, Samuel; Huber, Lukas; Tingaut, Philippe; Rigacci, Arnaud; Budtova, Tatiana; Koebel, Matthias M

    2015-11-23

    Silica aerogels are excellent thermal insulators, but their brittle nature has prevented widespread application. To overcome these mechanical limitations, silica-biopolymer hybrids are a promising alternative. A one-pot process to monolithic, superinsulating pectin-silica hybrid aerogels is presented. Their structural and physical properties can be tuned by adjusting the gelation pH and pectin concentration. Hybrid aerogels made at pH 1.5 exhibit minimal dust release and vastly improved mechanical properties while remaining excellent thermal insulators. The change in the mechanical properties is directly linked to the observed "neck-free" nanoscale network structure with thicker struts. Such a design is superior to "neck-limited", classical inorganic aerogels. This new class of materials opens up new perspectives for novel silica-biopolymer nanocomposite aerogels.

  11. Carbon nanotube-bonded graphene hybrid aerogels and their application to water purification

    NASA Astrophysics Data System (ADS)

    Lee, Byeongho; Lee, Sangil; Lee, Minwoo; Jeong, Dae Hong; Baek, Youngbin; Yoon, Jeyong; Kim, Yong Hyup

    2015-04-01

    We present carbon nanotube (CNT)-bonded graphene hybrid aerogels that are prepared by growing CNTs on a graphene aerogel surface with nickel catalyst. The presence of bonded CNTs in the graphene aerogel results in vastly improved mechanical and electrical properties. A significant increase in specific surface area is also realized. The presence of the CNTs transforms the hybrid aerogels into a mesoporous material. The viscoelasticity of the hybrid aerogels is found to be invariant with respect to temperature over a range of between -150 °C and 450 °C. These characteristics along with the improved properties make the hybrid aerogels an entirely different class of material with applications in the fields of biotechnology and electrochemistry. The mesoporous nature of the material along with its high specific surface area also makes the hybrid aerogel attractive for application in water treatment. Both anionic and cationic dyes can be effectively removed from water by the hybrid aerogel. A number of organics and oils can be selectively separated from water by the hybrid aerogel. The hybrid aerogel is easy to handle and separate from water due to its magnetic nature, and can readily be recycled and reused.We present carbon nanotube (CNT)-bonded graphene hybrid aerogels that are prepared by growing CNTs on a graphene aerogel surface with nickel catalyst. The presence of bonded CNTs in the graphene aerogel results in vastly improved mechanical and electrical properties. A significant increase in specific surface area is also realized. The presence of the CNTs transforms the hybrid aerogels into a mesoporous material. The viscoelasticity of the hybrid aerogels is found to be invariant with respect to temperature over a range of between -150 °C and 450 °C. These characteristics along with the improved properties make the hybrid aerogels an entirely different class of material with applications in the fields of biotechnology and electrochemistry. The mesoporous nature

  12. Improvements of reinforced silica aerogel nanocomposites thermal properties for architecture applications.

    PubMed

    Saboktakin, Amin; Saboktakin, Mohammad Reza

    2015-01-01

    An 1,4-cis polybutadiene rubber/carboxymethyl starch (CMS)-based silica aerogel nanocomposites as a insulation material was developed that will provide superior thermal insulation properties, flexibility, toughness, durability of the parent polymer, yet with the low density and superior insulation properties associated with the aerogels. In this study, reinforced 1,4-cis polybutadiene-CMS-silica aerogel nanocomposites were prepared from a silica aerogel with a surface area 710 m(2) g(-1), a pore size of 25.3 nm and a pore volume of 4.7 cm(3) g(-1). The tensile properties and dynamic mechanical properties of 1,4-cis polybutadiene/CMS nanocomposites were systematically enhanced at low silica loading. Similar improvements in tensile modulus and strength have been observed for 1,4-cis polybutadiene/CMS mesoporous silica aerogel nanocomposites.

  13. Carbon Nanofiber Incorporated Silica Based Aerogels with Di-Isocyanate Cross-Linking

    NASA Technical Reports Server (NTRS)

    Vivod, Stephanie L.; Meador, Mary Ann B.; Capadona, Lynn A.; Sullivan, Roy M.; Ghosn, Louis J.; Clark, Nicholas; McCorkle, Linda

    2008-01-01

    Lightweight materials with excellent thermal insulating properties are highly sought after for a variety of aerospace and aeronautic applications. (1) Silica based aerogels with their high surface area and low relative densities are ideal for applications in extreme environments such as insulators for the Mars Rover battery. (2) However, the fragile nature of aerogel monoliths prevents their widespread use in more down to earth applications. We have shown that the fragile aerogel network can be cross-linked with a di-isocyanate via amine decorated surfaces to form a conformal coating. (3) This coating reinforces the neck regions between secondary silica particles and significantly strengthens the aerogels with only a small effect on density or porosity. Scheme 1 depicts the cross-linking reaction with the di-isocyanate and exhibits the stages that result in polymer cross-linked aerogel monoliths.

  14. Redshifted Cherenkov Radiation for in vivo Imaging: Coupling Cherenkov Radiation Energy Transfer to multiple Förster Resonance Energy Transfers

    PubMed Central

    Bernhard, Yann; Collin, Bertrand; Decréau, Richard A.

    2017-01-01

    Cherenkov Radiation (CR), this blue glow seen in nuclear reactors, is an optical light originating from energetic β-emitter radionuclides. CR emitter 90Y triggers a cascade of energy transfers in the presence of a mixed population of fluorophores (which each other match their respective absorption and emission maxima): Cherenkov Radiation Energy Transfer (CRET) first, followed by multiple Förster Resonance Energy transfers (FRET): CRET ratios were calculated to give a rough estimate of the transfer efficiency. While CR is blue-weighted (300–500 nm), such cascades of Energy Transfers allowed to get a) fluorescence emission up to 710 nm, which is beyond the main CR window and within the near-infrared (NIR) window where biological tissues are most transparent, b) to amplify this emission and boost the radiance on that window: EMT6-tumor bearing mice injected with both a radionuclide and a mixture of fluorophores having a good spectral overlap, were shown to have nearly a two-fold radiance boost (measured on a NIR window centered on the emission wavelength of the last fluorophore in the Energy Transfer cascade) compared to a tumor injected with the radionuclide only. Some CR embarked light source could be converted into a near-infrared radiation, where biological tissues are most transparent. PMID:28338043

  15. Redshifted Cherenkov Radiation for in vivo Imaging: Coupling Cherenkov Radiation Energy Transfer to multiple Förster Resonance Energy Transfers.

    PubMed

    Bernhard, Yann; Collin, Bertrand; Decréau, Richard A

    2017-03-24

    Cherenkov Radiation (CR), this blue glow seen in nuclear reactors, is an optical light originating from energetic β-emitter radionuclides. CR emitter (90)Y triggers a cascade of energy transfers in the presence of a mixed population of fluorophores (which each other match their respective absorption and emission maxima): Cherenkov Radiation Energy Transfer (CRET) first, followed by multiple Förster Resonance Energy transfers (FRET): CRET ratios were calculated to give a rough estimate of the transfer efficiency. While CR is blue-weighted (300-500 nm), such cascades of Energy Transfers allowed to get a) fluorescence emission up to 710 nm, which is beyond the main CR window and within the near-infrared (NIR) window where biological tissues are most transparent, b) to amplify this emission and boost the radiance on that window: EMT6-tumor bearing mice injected with both a radionuclide and a mixture of fluorophores having a good spectral overlap, were shown to have nearly a two-fold radiance boost (measured on a NIR window centered on the emission wavelength of the last fluorophore in the Energy Transfer cascade) compared to a tumor injected with the radionuclide only. Some CR embarked light source could be converted into a near-infrared radiation, where biological tissues are most transparent.

  16. Redshifted Cherenkov Radiation for in vivo Imaging: Coupling Cherenkov Radiation Energy Transfer to multiple Förster Resonance Energy Transfers

    NASA Astrophysics Data System (ADS)

    Bernhard, Yann; Collin, Bertrand; Decréau, Richard A.

    2017-03-01

    Cherenkov Radiation (CR), this blue glow seen in nuclear reactors, is an optical light originating from energetic β-emitter radionuclides. CR emitter 90Y triggers a cascade of energy transfers in the presence of a mixed population of fluorophores (which each other match their respective absorption and emission maxima): Cherenkov Radiation Energy Transfer (CRET) first, followed by multiple Förster Resonance Energy transfers (FRET): CRET ratios were calculated to give a rough estimate of the transfer efficiency. While CR is blue-weighted (300–500 nm), such cascades of Energy Transfers allowed to get a) fluorescence emission up to 710 nm, which is beyond the main CR window and within the near-infrared (NIR) window where biological tissues are most transparent, b) to amplify this emission and boost the radiance on that window: EMT6-tumor bearing mice injected with both a radionuclide and a mixture of fluorophores having a good spectral overlap, were shown to have nearly a two-fold radiance boost (measured on a NIR window centered on the emission wavelength of the last fluorophore in the Energy Transfer cascade) compared to a tumor injected with the radionuclide only. Some CR embarked light source could be converted into a near-infrared radiation, where biological tissues are most transparent.

  17. Ultra-high resolution of radiocesium distribution detection based on Cherenkov light imaging

    NASA Astrophysics Data System (ADS)

    Yamamoto, Seiichi; Ogata, Yoshimune; Kawachi, Naoki; Suzui, Nobuo; Yin, Yong-Gen; Fujimaki, Shu

    2015-03-01

    After the nuclear disaster in Fukushima, radiocesium contamination became a serious scientific concern and research of its effects on plants increased. In such plant studies, high resolution images of radiocesium are required without contacting the subjects. Cherenkov light imaging of beta radionuclides has inherently high resolution and is promising for plant research. Since 137Cs and 134Cs emit beta particles, Cherenkov light imaging will be useful for the imaging of radiocesium distribution. Consequently, we developed and tested a Cherenkov light imaging system. We used a high sensitivity cooled charge coupled device (CCD) camera (Hamamatsu Photonics, ORCA2-ER) for imaging Cherenkov light from 137Cs. A bright lens (Xenon, F-number: 0.95, lens diameter: 25 mm) was mounted on the camera and placed in a black box. With a 100-μm 137Cs point source, we obtained 220-μm spatial resolution in the Cherenkov light image. With a 1-mm diameter, 320-kBq 137Cs point source, the source was distinguished within 2-s. We successfully obtained Cherenkov light images of a plant whose root was dipped in a 137Cs solution, radiocesium-containing samples as well as line and character phantom images with our imaging system. Cherenkov light imaging is promising for the high resolution imaging of radiocesium distribution without contacting the subject.

  18. Aerogels from unaltered bacterial cellulose: application of scCO2 drying for the preparation of shaped, ultra-lightweight cellulosic aerogels.

    PubMed

    Liebner, Falk; Haimer, Emmerich; Wendland, Martin; Neouze, Marie-Alexandra; Schlufter, Kerstin; Miethe, Peter; Heinze, Thomas; Potthast, Antje; Rosenau, Thomas

    2010-04-08

    Bacterial cellulose produced by the gram-negative bacterium Gluconacetobacter xylinum was found to be an excellent native starting material for preparing shaped ultra-lightweight cellulose aerogels. The procedure comprises thorough washing and sterilization of the aquogel, quantitative solvent exchange and subsequent drying with supercritical carbon dioxide at 40 degrees C and 100 bar. The average density of the obtained dry cellulose aerogels is only about 8 mg x cm(-3) which is comparable to the most lightweight silica aerogels and distinctly lower than all values for cellulosic aerogels obtained from plant cellulose so far. SEM, ESEM and nitrogen adsorption experiments at 77 K reveal an open-porous network structure that consists of a comparatively high percentage of large mesopores and smaller macropores.

  19. Underground muon counters as a tool for composition analyses

    NASA Astrophysics Data System (ADS)

    Supanitsky, A. D.; Etchegoyen, A.; Medina-Tanco, G.; Allekotte, I.; Gómez Berisso, M.; Medina, M. C.

    2008-07-01

    The transition energy from galactic to extragalactic cosmic ray sources is still uncertain, but it should be associated either with the region of the spectrum known as the second knee or with the ankle. The baseline design of the Pierre Auger Observatory was optimized for the highest energies. The surface array is fully efficient above 3 × 10 18 eV and, even if the hybrid mode can extend this range below 10 18 eV, the second knee and a considerable portion of the wide ankle structure are left outside its operating range. Therefore, in order to encompass these spectral features and gain further insight into the cosmic ray composition variation along the transition region, enhancements to the surface and fluorescence components of the baseline design are being implemented that will lower the full efficiency regime of the Observatory down to ˜10 17 eV. The surface enhancements consist of a graded infilled area of standard Auger water Cherenkov detectors deployed in two triangular grids of 433 m and 750 m of spacing. Each surface station inside this area will have an associated muon counter detector. The fluorescence enhancement, on the other hand, consists of three additional fluorescence telescopes with higher elevation angle (30°-58°) than the ones in operation at present. The aim of this paper is threefold. We study the effect of the segmentation of the muon counters and find an analytical expression to correct for the under counting due to muon pile-up. We also present a detailed method to reconstruct the muon lateral distribution function for the 750 m spacing array. Finally, we study the mass discrimination potential of a new parameter, the number of muons at 600 m from the shower axis, obtained by fitting the muon data with the above mentioned reconstruction method.

  20. Biocompatibility of surfactant-templated polyurea-nanoencapsulated macroporous silica aerogels with plasma platelets and endothelial cells.

    PubMed

    Yin, Wei; Venkitachalam, Subramaniam M; Jarrett, Ellen; Staggs, Sarah; Leventis, Nicholas; Lu, Hongbing; Rubenstein, David A

    2010-03-15

    The recently synthesized polyurea-nanoencapsulated surfactant-templated aerogels (X-aerogels) are porous materials with significantly improved mechanical strengths. Surface-wise they resemble polyurethane, a common biocompatible material, but their biocompatibility has never been investigated. As lightweight and strong materials, if X-aerogels also have acceptable biocompatibility, they may be used in many implantable devices. The goal of this study was to investigate their biocompatibility toward platelets, blood plasma, and vascular endothelial cells, in terms of cell activation and inflammatory responses. Platelets were incubated with X-aerogel and platelet activation was measured through CD62P and phosphatidylserine expression. Platelet aggregation was also measured. Contact with X-aerogel did not induce platelet activation or impair aggregation. To determine X-aerogel-induced inflammation, plasma anaphylatoxin C3a level was measured after incubation with X-aerogel. Results showed that X-aerogel induced no changes in plasma C3a levels. SEM and SDS-PAGE were used to examine cellular/protein deposition on X-aerogel samples after plasma incubation. No structural change or organic deposition was detected. Furthermore, X-aerogel samples did not induce any significant changes in vascular endothelial cell culture parameters after 5 days of incubation. These observations suggest that X-aerogels have a suitable biocompatibility toward platelets, plasma, and vascular endothelial cells, and they have potential for use in blood implantable devices.

  1. Synthesis, Processing, and Characterization of Inorganic-Organic Hybrid Cross-Linked Silica, Organic Polyimide, and Inorganic Aluminosilicate Aerogels

    NASA Technical Reports Server (NTRS)

    Nguyen, Baochau N.; Guo, Haiquan N.; McCorkle, Linda S.

    2014-01-01

    As aerospace applications become ever more demanding, novel insulation materials with lower thermal conductivity, lighter weight and higher use temperature are required to fit the aerospace application needs. Having nanopores and high porosity, aerogels are superior thermal insulators, among other things. The use of silica aerogels in general is quite restricted due to their inherent fragility, hygroscopic nature, and poor mechanical properties, especially in extereme aerospace environments. Our research goal is to develop aerogels with better mechanical and environmental stability for a variety of aeronautic and space applications including space suit insulation for planetary surface missions, insulation for inflatable structures for habitats, inflatable aerodynamic decelerators for entry, descent and landing (EDL) operations, and cryotank insulation for advance space propulsion systems. Different type of aerogels including organic-inorganic polymer reinforced (hybrid) silica-based aerogels, polyimide aerogels and inorganic aluminosilicate aerogels have been developed and examined.

  2. Pyrochemical neutron multiplicity counter design

    SciTech Connect

    Langner, D.G.; Ensslin, N.; Krick, M.S.

    1990-01-01

    Pyrochemical process materials are difficult to measure using conventional neutron counting methods because of significant self- multiplication and variable ({alpha},n) reaction rates. Multiplicity counters measure the first three moments of the neutron multiplicity distribution and thus make it possible to determine sample mass even when multiplication and ({alpha},n) rate are unknown. A new multiplicity counter suitable for inplant measurement of pyrochemical process materials has been designed using Monte Carlo simulations. The goals were to produce a counter that has high neutron detection efficiency, low die-away time, a flat spatial efficiency profile, and is insensitive to the neutron energy spectrum. Monte Carlo calculations were performed for several prototype models consisting of four rings of 71-cm active length {sup 3}He tubes in a polyethylene body. The cadmium-lined sample well is 25 cm in diameter to accommodate a wide variety of inplant sample containers. The counter can be free-standing or in-line without mechanical modification. The calculations were performed to determine the above design criteria for several configurations of tube spacing, cadmium liners, and sample height. Calculations were also performed for distributed sample sources to understand the integrated effects of variable neutron spectra on the counter. 5 refs., 8 figs., 1 tab.

  3. First year operational experience with the Cherenkov Detector (DIRC) of BaBar

    SciTech Connect

    Adam, I.; BaBar Collaboration

    2000-04-01

    The DIRC (acronym for Detection of Internally Reflected Cherenkov (light)) is a new type of Cherenkov ring imaging detector based on total internal reflection that is used for the first time in the BaBar detector at PEP-II ring of SLAC. The Cherenkov radiators are long rectangular bars made of synthetic fused silica. The photon detector is a water tank equipped with an array of 10,752 conventional photomultipliers. The first year operational experience in the BaBar detector is presented using cosmic data and collision data in the energy region of the Y(4s) resonance.

  4. First Year Operational Experience with the Cherenkov Detector (DIRC) of BaBar

    SciTech Connect

    Spanier, Stefane

    2000-04-21

    The DIRC (acronym for Detection of Internally Reflected Cherenkov (light)) is a new type of Cherenkov ring imaging detector based on total internal reflection that is used for the first time in the BaBar detector at PEP-II ring of SLAC. The Cherenkov radiators are long rectangular bars made of synthetic fused silica. The photon detector is a water tank equipped with an array of 10,752 conventional photomultipliers. The first year operational experience in the BaBar detector is presented using cosmic data and collision data in the energy region of the Upsilon(4S) resonance.

  5. About a Gadolinium-doped Water Cherenkov LAGUNA Detector

    SciTech Connect

    Labarga, Luis

    2010-11-24

    Water Cherenkov (wC) detectors are extremely powerful apparatuses for scientific research. Nevertheless they lack of neutron tagging capabilities, which translates, mainly, into an inability to identify the anti-matter nature of the reacting incoming anti-neutrino particles. A solution was proposed by R. Beacon and M. Vagins back in 2004: by dissolving in the water a compound with nucleus with very large cross section for neutron capture like the Gadolinium, with a corresponding emission of photons of enough energy to be detected, they can tag thermal neutrons with an efficiency larger than 80%. In this talk we detail the technique and its implications in the measurement capabilities and, as well, the new backgrounds induced. We discuss the improvement on their physics program, also for the case of LAGUNA type detectors. We comment shortly the status of the pioneering R and D program of the Super-Kamiokande Collaboration towards dissolving a Gadolinium compound in its water.

  6. Coherent Cherenkov radiation as an intense THz source

    NASA Astrophysics Data System (ADS)

    Bleko, V.; Karataev, P.; Konkov, A.; Kruchinin, K.; Naumenko, G.; Potylitsyn, A.; Vaughan, T.

    2016-07-01

    Diffraction and Cherenkov radiation of relativistic electrons from a dielectric target has been proposed as mechanism for production of intense terahertz (THz) radiation. The use of an extremely short high-energy electron beam of a 4th generation light source (X-ray free electron laser) appears to be very promising. A moderate power from the electron beam can be extracted and converted into THz radiation with nearly zero absorption losses. The initial experiment on THz observation will be performed at CLARA/VELA FEL test facility in the UK to demonstrate the principle to a wider community and to develop the radiator prototype. In this paper, we present our theoretical predictions (based on the approach of polarization currents), which provides the basis for interpreting the future experimental measurements. We will also present our hardware design and discuss a plan of the future experiment.

  7. Status of Coherent Cherenkov Wakefield Experiment at UCLA

    SciTech Connect

    Cook, A. M.; Knyazik, A.; Rosenzweig, J. B.; Tikhoplav, R.; Travish, G.; Williams, O. B.

    2009-01-22

    Coherent Cherenkov radiation (CCR) wakefields are produced when a compressed electron beam travels along the axis of a hollow cylindrical dielectric tube. In a dielectric wakefield accelerator (DWA) these wakefields accelerate either a trailing electron bunch or the tail of the driving bunch, depending on the modal structure of the radiation. For an appropriate choice of dielectric structure geometry and beam parameters the device operates in a single-mode regime, producing sinusoidal wakefields with wavelengths in the THz range. We report on preliminary results of an experiment at UCLA studying the potential of a DWA structure to produce high-power, narrow-band THz radiation. First measurements include observation of 1 MW peak-power pulses of coherent broadband radiation from a compact dipole beam dump magnet.

  8. First year results of the High Altitude Water Cherenkov observatory

    NASA Astrophysics Data System (ADS)

    Carramiñana, Alberto

    2016-10-01

    The High Altitude Water Cherenkov (HAWC) γ-ray observatory is a wide field of view (1.8 Sr) and high duty cycle (> 95% up-time) detector of unique capabilities for the study of TeV gamma-ray sources. Installed at an altitude of 4100m in the Northern slope of Volcan Sierra Negra, Puebla, by a collaboration of about thirty institutions of Mexico and the United States, HAWC has been in full operations since March 2015, surveying 2/3 of the sky every sidereal day, monitoring active galaxies and mapping sources in the Galactic Plane to a detection level of 1 Crab per day. This contribution summarizes the main results of the first year of observations of the HAWC γ-ray observatory.

  9. The major atmospheric gamma-ray imaging Cherenkov telescope

    NASA Astrophysics Data System (ADS)

    Garczarczyk, Markus; MAGIC Collaboration

    2011-05-01

    MAGIC is a system of two 17 m diameter Imaging Atmospheric Cherenkov Telescopes (IACTs) for ground-based γ-ray astronomy. During many years, starting with the design phase of the first telescope in 2003, the upgrade of the second telescope in 2008 up to now, novel technologies have been developed, commissioned and continuously improved. Most components and subsystems represent nowadays state of the art techniques and are under consideration to be used in future detectors. The large reflector area, together with small diameter, high quantum efficiency (QE) photomultipliers (PMTs) in combination with an improved trigger and readout system permits an analysis threshold of 25 GeV, the lowest among current IACTs. MAGIC overlaps in energy with the upper end of current satellite experiments and gives the unique opportunity, for the first time, to cross-calibrate ground based versus satellite born detectors. Some selected techniques used in MAGIC, which are in context with this conference, are presented.

  10. Feasibility study of airborne calibration of the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Brown, Anthony M.; Chadwick, Paula M.; Frizzelle, Miranda; Gaug, Markus; Clark, Paul; Graham, Jamie; Armstrong, Thomas

    2016-07-01

    The advances in battery life, flight control software and carbon fibre technology over recent years have made the use of small unmanned aerial vehicles (UAVs) as an airborne calibration platform for astronomical facilities a possibility. This is especially attractive for arrays of telescopes spread over a large area such as the Cherenkov Telescope Array (CTA). It is envisaged that the CTA will use UAVs to perform a range of calibration routines, with the primary routines being the cross-calibration of the optical throughput for different telescope types, as well as monitoring of the multi-wavelength performance of CTA's telescopes and the characterisation of the atmosphere above CTA. In this contribution, the cross-calibrating performance of an airborne calibration device is described, together with some preliminary test flights to characterise the flight performance of a UAV carrying the calibration payload.

  11. Suppressing the numerical Cherenkov radiation in the Yee numerical scheme

    SciTech Connect

    Nuter, Rachel Tikhonchuk, Vladimir

    2016-01-15

    The next generation of laser facilities will routinely produce relativistic particle beams from the interaction of intense laser pulses with solids and/or gases. Their modeling with Particle-In-Cell (PIC) codes needs dispersion-free Maxwell solvers in order to properly describe the interaction of electromagnetic waves with relativistic particles. A particular attention is devoted to the suppression of the numerical Cherenkov instability, responsible for the noise generation. It occurs when the electromagnetic wave is artificially slowed down because of the finite mesh size, thus allowing for the high energy particles to propagate with super-luminous velocities. In the present paper, we show how a slight increase of the light velocity in the Maxwell's equations enables to suppress this instability while keeping a good overall precision of calculations.

  12. The Non-Imaging CHErenkov (NICHE) Array: A TA/TALE extension using Cherenkov radiation to measure Cosmic Ray Composition to sub-PeV energies

    NASA Astrophysics Data System (ADS)

    Krizmanic, John; Bergman, Douglas; Tsunesada, Yoshiki; Abu-Zayyad, Tareq; Belz, John; Thomson, Gordon

    2017-01-01

    Co-sited with the Telescope Array (TA) Low Energy (TALE) extension, the Non-Imaging CHErenkov (NICHE) Array will measure the flux and nuclear composition evolution of cosmic rays (CRs) from below 1 PeV to 1 EeV in its eventual full deployment. NICHE will co-measure CR air showers with TA/TALE and will initially be deployed to observe events simultaneously with the TALE telescopes acting in imaging-Cherenkov mode, providing the first hybrid-Cherenkov (simultaneous imaging and non-imaging Cherenkov) measurements of CRs in the Knee region of the CR energy spectrum. NICHE uses easily deployable detectors to measure the amplitude and time-spread of the air-shower Cherenkov signal to achieve an event-by-event measurement of Xmax and energy, each with excellent resolution. First generation detectors are under construction and will form an initial prototype array (jNICHE) that will be deployed in early 2017 at the TA/TALE site. In this talk, the NICHE design, array performance, jNICHE development, and status will be discussed as well as NICHE's ability to measure the cosmic ray nuclear composition as a function of energy.

  13. Lunar Laser Ranging with Imaging Atmospheric Cherenkov Telescopes

    NASA Astrophysics Data System (ADS)

    Reitzes, Sarah; Perkins, J.

    2014-01-01

    Lunar laser ranging is the process through which light pulses are bounced off of retroreflectors on the Moon. The travel time of the photons is measured and multiplied by the speed of light to calculate the Earth-Moon distance. The measured Earth-Moon distance can be compared to the Earth-Moon distance predicted by the theory of General Relativity. In that way, possible shortcomings of General Relativity are exposed. The current best measurements are performed by the Apache Point Observatory Lunar Laser-ranging Operation using the ARC 3.5-m Ritchey-Chretien reflector at the Apache Point Observatory yielding errors of less than 1 mm. Upon launching pulses of 3 x 10^17 photons, this telescope yields a one to two photon per pulse return. This study investigates whether the larger surface area of Imaging Atmospheric Cherenkov Telescopes, such as the four 12-m diameter Davies-Cotton dishes that are part of the Very Energetic Radiation Imaging Telescope Array System, allows for a greater photon per pulse return rate and thus a more accurate measurement of the Earth-Moon distance. The feasibility of using these telescopes for lunar laser ranging is assessed, taking into account the poorer optical quality of Davies-Cotton reflectors. It is found that the Davies-Cotton dishes cannot be used as the outgoing beams in lunar laser ranging, so the feasibility of using other telescopes located close to the Very Energetic Radiation Imaging Telescope Array System as outgoing beams is also examined. Other Imaging Atmospheric Cherenkov telescope systems are considered, and the relationship between dish size and the length of time delay present with Davies-Cotton dishes is examined.

  14. Optical properties of water for the Yangbajing water cherenkov detector

    NASA Astrophysics Data System (ADS)

    Gao, Shang-qi; Sun, Zhi-bin; Jiang, Yuan-da; Wang, Chao; Du, Ke-ming

    2011-08-01

    Cherenkov radiation is used to study the production of particles during collisions, cosmic rays detections and distinguishing between different types of neutrinos and electrons. The optical properties of water are very important to the research of Cherenkov Effect. Lambert-beer law is a method to study the attenuation of light through medium. In this paper, optical properties of water are investigated by use of a water attenuation performance test system. The system is composed of the light-emitting diode (LED) light source and the photon receiver models. The LED light source model provides a pulse light signal which frequency is 1 kHz and width is 100ns. In photon receiver model, a high sensitivity photomultiplier tube (PMT) is used to detect the photons across the water. Because the output voltage amplitude of PMT is weak which is from 80mv to 120mV, a low noise pre-amplifier is used to improve the detector precise. An effective detector maximum time window of PMT is 100ns for a long lifetime, so a peak holder circuit is used to hold the maximum peak amplitude of PMT for the induced photons signal before the digitalization. In order to reduce the noise of peak holder, a multi-pulse integration is used before the sampling of analog to digital converter. At last, the detector of photons from the light source to the PMT across the water is synchronized to the pulse width of the LED. In order to calculate the attenuation coefficient and attenuation length of water precisely, the attenuation properties of air-to-water boundary is considered in the calculation.

  15. Drastic increase in the Cherenkov losses of Josephson vortices propagating under the influence of transport current

    NASA Astrophysics Data System (ADS)

    Malishevskiĭ, A. S.; Silin, V. P.; Uryupin, S. A.; Uspenskiĭ, S. G.

    2007-06-01

    It is demonstrated that when the velocity of vortices in a Josephson junction magnetically coupled to a waveguide approaches the limits of the allowed ranges, the relative contribution of the Cherenkov losses to the transport current density increases drastically.

  16. Thermal Performance Of Space Suit Elements With Aerogel Insulation For Moon And Mars Exploration

    NASA Technical Reports Server (NTRS)

    Tang, Henry H.; Orndoff, Evelyne S.; Trevino, Luis A.

    2006-01-01

    Flexible fiber-reinforced aerogel composites were studied for use as insulation materials of a future space suit for Moon and Mars exploration. High flexibility and good thermal insulation properties of fiber-reinforced silica aerogel composites at both high and low vacuum conditions make it a promising insulation candidate for the space suit application. This paper first presents the results of a durability (mechanical cycling) study of these aerogels composites in the context of retaining their thermal performance. The study shows that some of these Aerogels materials retained most of their insulation performance after up to 250,000 cycles of mechanical flex cycling. This paper also examines the problem of integrating these flexible aerogel composites into the current space suit elements. Thermal conductivity evaluations are proposed for different types of aerogels space suit elements to identify the lay-up concept that may have the best overall thermal performance for both Moon and Mars environments. Potential solutions in mitigating the silica dusting issue related to the application of these aerogels materials for the space suit elements are also discussed.

  17. Transparent Ethylene-Bridged Polymethylsiloxane Aerogels and Xerogels with Improved Bending Flexibility.

    PubMed

    Shimizu, Taiyo; Kanamori, Kazuyoshi; Maeno, Ayaka; Kaji, Hironori; Nakanishi, Kazuki

    2016-12-20

    Transparent, monolithic aerogels with nanosized colloidal skeletons have been obtained from a single precursor of 1,2-bis(methyldiethoxysilyl)ethane (BMDEE) by adopting a liquid surfactant and a two-step process involving strong-acid, followed by strong-base, sol-gel reactions. This precursor BMDEE forms the ethylene-bridged polymethylsiloxane (EBPMS, O2/2(CH3)Si-CH2CH2-Si(CH3)O2/2) network, in which each silicon has one methyl, two bridging oxygens, and one bridging ethylene, exhibiting an analogous structure to that of the previously reported polymethylsilsesquioxane (PMSQ, CH3SiO3/2) aerogels having one methyl and three bridging oxygen atoms. Obtained aerogels consist of fine colloidal skeletons and show high visible-light transparency and a flexible deformation behavior against compression without collapse. Similar to the PMSQ aerogels, a careful tuning of synthetic conditions can produce low-density (0.19 g cm(-3)) and highly transparent (76% at 550 nm, corresponding to 10 mm thick samples) xerogels via ambient pressure drying by solvent evaporation due to their high strength and resilience against compression. Moreover, EBPMS aerogels exhibit higher bending strength and bending strain at break against the three-point bending mode compared to PMSQ aerogels. This improved bendability is presumably derived from the introduced ethylene-bridging parts, suggesting the potential for realizing transparent and bendable aerogels in such polysiloxane materials with organic linking units.

  18. Heat insulation performance, mechanics and hydrophobic modification of cellulose-SiO2 composite aerogels.

    PubMed

    Shi, Jianjun; Lu, Lingbin; Guo, Wantao; Zhang, Jingying; Cao, Yang

    2013-10-15

    Cellulose-SiO2 composite hydrogel was prepared by combining the NaOH/thiourea/H2O solvent system and the immersion method with controlling the hydrolysis-fasculation rate of tetraethyl orthosilicate (TEOS). The hydrophobic composite aerogels were obtained through the freeze-drying technology and the cold plasma modification technology. Composite SiO2 could obviously reduce the thermal conductivity of cellulose aerogel. The thermal conductivity could be as low as 0.026 W/(mK). The thermal insulation mechanism of the aerogel material was discussed. Composite SiO2 reduced hydrophilicity of cellulose aerogel, but environmental humidity had a significant influence on heat insulation performance. After hydrophobic modification using CCl4 as plasma was conducted, the surface of composite aerogel was changed from hydrophilic to hydrophobic and water contact angle was as high as 132°. The modified composite aerogel still kept good heat insulation performance. This work provided a foundation for the possibility of applying cellulose-SiO2 composite aerogel in the insulating material field.

  19. Effect of Bulky Substituents in the Polymer Backbone on the Properties of Polyimide Aerogels.

    PubMed

    Viggiano, Rocco P; Williams, Jarrod C; Schiraldi, David A; Meador, Mary Ann B

    2017-03-08

    With unique advantages over inorganic aerogels including higher strengths and compressive moduli, greater toughness, and the ability to be fabricated as a flexible thin film, polymer aerogels have the potential to supplant inorganic aerogels in numerous applications. Among polymer aerogels, polyimide aerogels possess a high degree of high thermal stability as well as outstanding mechanical properties. However, while the onset of thermal decomposition for these materials is typically very high (greater than 500 °C), the polyimide aerogels undergo dramatic thermally induced shrinkage at temperatures well below their glass transition (Tg) or decomposition temperature, which limits their use. In this study, we show that shrinkage is reduced when a bulky moiety is incorporated in the polymer backbone. Twenty different formulations of polyimide aerogels were synthesized from 3,3,'4,4'-biphenyltetracarboxylic dianhydride (BPDA) and 4,4'-oxidianiline (ODA) or a combination of ODA and 9,9'-bis(4-aminophenyl)fluorene (BAPF) and cross-linked with 1,3,5-benzenetricarbonyl trichloride (BTC) in a statistically designed study. The polymer concentration, n-value, and molar concentration of ODA and BAPF were varied to demonstrate the effect of these variables on certain properties. Samples containing BAPF showed a reduction in shrinkage by as much as 50% after aging at elevated temperatures for 500 h compared to those made with ODA alone.

  20. Preparation of Three-Dimensional Chitosan-Graphene Oxide Aerogel for Residue Oil Removal.

    PubMed

    Guo, Xiaoqing; Qu, Lijun; Zhu, Shifeng; Tian, Mingwei; Zhang, Xiansheng; Sun, Kaikai; Tang, Xiaoning

    2016-08-01

    Graphene oxide has been used as an adsorbent in wastewater treatment. However, the hydrophily and dispersibility in aqueous solution limit its practical application in environmental protection. In this paper, a novel, environmentally friendly adsorbent, chitosan and chitosan-graphene oxide aerogels with a diverse shape, large specific surface area, and unique porous structure were prepared by a freeze-drying method. The structure of the adsorbents was investigated using scanning electron microscopy, Fourier transform-infrared spectroscopy, and X-ray diffraction (XRD); the specific surface area and swelling capability were also characterized. In addition, removal of diesel oil from seawater by chitosan aerogel (CSAG) and chitosan-graphene oxide aerogel (AGGO-1 and AGGO-2) was studied and batch adsorption experiments were carried out as a function of different adsorbent dosages (0-6 g), contact time (0-120 minutes), pH (3-9), and initial concentrations of oil residue (3-30 g/L) to determine the optimum condition for the adsorption of residue oil from seawater. The results showed that the chitosan-graphene oxide aerogels were more effective to remove diesel oil from seawater compared with pure chitosan aerogel. A removal efficiency ≥ 95% of the chitosan-graphene oxide aerogels could be achieved easily at the initial concentrations of 20 g/L, which indicated that the chitosan-graphene oxide aerogels can be used to treat the industrial oil leakage or effluent in the natural water.

  1. Deformation Studies and Elasticity Measurements of Hydrophobic Silica Aerogels using Double Exposure Holographic Interferometry

    NASA Astrophysics Data System (ADS)

    Chikode, Prashant; Sabale, Sandip; Chavan, Sugam

    2017-01-01

    Holographic interferometry is mainly used for the non-destructive testing of various materials and metals in industry, engineering and technological fields. This technique may used to study the elastic properties of materials. We have used the double exposure holographic interferometry (DEHI) to study the surface deformation and elastic constant such as Young's modulus of mechanically stressed aerogel samples. Efforts have been made in the past to use non-destructive techniques like sound velocity measurements through aerogels. Hydrophobic Silica aerogels were prepared by the sol-gel process followed by supercritical methanol drying. The molar ratio of tetramethoxysilane: methyltrimethoxysilane: H2O constant at 1.2:0.8:6 while the methanol / tetramethoxysilane molar ratio (M) was varied systematically from 14 to 20 to obtain hydrophobic silica aerogels. After applying the weights on the sample in grams, double exposure holograms of aerogel samples have been successfully recorded. Double exposure causes localization of interference fringes on the aerogel surface and these fringes are used to determine the surface deformation and elastic modulus of the aerogels and they are in good agreement with the experiments performed by using four point bending. University Grants Commission for Minor Research Project and Department of Science and Technology for FIST Program.

  2. Preparation and characterization of hydrophobic silica aerogel sphere products by co-precursor method

    NASA Astrophysics Data System (ADS)

    Yu, Huijun; Liang, Xiaofeng; Wang, Junxia; Wang, Minmin; Yang, Shiyuan

    2015-10-01

    In the present paper, silica aerogel balls were prepared using methyltriethoxysilane (MTES) and tetraethoxysilane (TEOS) co-precursor with different MTES/TEOS molar ratio (I) by two-step acid-base catalyzed sol-gel process and molding technology followed by the carbon dioxide supercritical drying. The physical properties of various silica aerogels whose I varied from 0 to 1.0 were studied by BET and SEM. Approving aerogel ball was obtained by using acetone as exchanging solvent at I of 0.8. Better properties are less crack, little shrinking percentage (17%), low apparent density (0.103 g/cm3), large surface area (996.35 m2/g) and high pore volume (3.32 cm3/g). Characterized by contact angle measurements and thermal stability, the characterizations of aerogel spheres were strongly affected by the MTES/TEOS molar ratio. Hydrophobic property increased with the increase in I value, and silica aerogels at I = 0.8 and 1.0 have a superhydrophobic characterization with the highest contact angle (152°). The TG-DTA analysis shows that the silica aerogel spheres transform hydrophobic to hydrophilic at around 450 °C, which is due to oxidation of Si-CH3 to Si-OH groups. The surface chemical modification was confirmed by FT-IR spectrums, which demonstrated that Si-CH3 groups be beneficial to molding of silica aerogels.

  3. Inorganic hollow nanotube aerogels by atomic layer deposition onto native nanocellulose templates.

    PubMed

    Korhonen, Juuso T; Hiekkataipale, Panu; Malm, Jari; Karppinen, Maarit; Ikkala, Olli; Ras, Robin H A

    2011-03-22

    Hollow nano-objects have raised interest in applications such as sensing, encapsulation, and drug-release. Here we report on a new class of porous materials, namely inorganic nanotube aerogels that, unlike other aerogels, have a framework consisting of inorganic hollow nanotubes. First we show a preparation method for titanium dioxide, zinc oxide, and aluminum oxide nanotube aerogels based on atomic layer deposition (ALD) on biological nanofibrillar aerogel templates, that is, nanofibrillated cellulose (NFC), also called microfibrillated cellulose (MFC) or nanocellulose. The aerogel templates are prepared from nanocellulose hydrogels either by freeze-drying in liquid nitrogen or liquid propane or by supercritical drying, and they consist of a highly porous percolating network of cellulose nanofibrils. They can be prepared as films on substrates or as freestanding objects. We show that, in contrast to freeze-drying, supercritical drying produces nanocellulose aerogels without major interfibrillar aggregation even in thick films. Uniform oxide layers are readily deposited by ALD onto the fibrils leading to organic-inorganic core-shell nanofibers. We further demonstrate that calcination at 450 °C removes the organic core leading to purely inorganic self-supporting aerogels consisting of hollow nanotubular networks. They can also be dispersed by grinding, for example, in ethanol to create a slurry of inorganic hollow nanotubes, which in turn can be deposited to form a porous film. Finally we demonstrate the use of a titanium dioxide nanotube network as a resistive humidity sensor with a fast response.

  4. Carbon nanotube spaced graphene aerogels with enhanced capacitance in aqueous and ionic liquid electrolytes

    NASA Astrophysics Data System (ADS)

    Shao, Qingguo; Tang, Jie; Lin, Yuexian; Li, Jing; Qin, Faxiang; Yuan, Jinshi; Qin, Lu-Chang

    2015-03-01

    Carbon nanotube spaced graphene aerogels have been prepared by a hydrothermal method and used for supercapacitor applications. The specific surface area and specific capacitance can be controlled by tuning the amount of added carbon nanotubes. The as-prepared composite aerogels retain the advantage of aerogel structure in providing macropores to ensure electrodes fast wetted by the electrolyte ions and also possess additional mesopores created by the carbon nanotube spacers for more ion adsorption. Benefited from that, the composite aerogels exhibit significantly enhanced supercapacitor properties in both aqueous and ionic liquid electrolyte. Compared with graphene aerogels, the composite aerogels show a 37% larger specific capacitance of 245.5 F g-1 at a current density of 2.5 A g-1 and high rate capability of 197.0 F g-1 at a high current density of 80 A g-1 in aqueous electrolyte. Moreover, the composite aerogels deliver a 33% larger specific capacitance of 183.3 F g-1 at 0.5 A g-1 and a high energy density of 80 Wh kg-1 when using an ionic liquid (EMIMBF4) as the electrolyte.

  5. Copper Nanowire Based Aerogel with Tunable Pore Structure and Its Application as Flexible Pressure Sensor.

    PubMed

    Xu, Xiaojuan; Wang, Ranran; Nie, Pu; Cheng, Yin; Lu, Xiaoyu; Shi, Liangjing; Sun, Jing

    2017-04-11

    Aerogel is a kind of material with high porosity and low density. However, the research on metal-based aerogel with good conductivity is quite limited, which hinders its usage in electronic devices, such as flexible pressure sensors. In this work, we successfully fabricate copper nanowire (CuNW) based aerogel through a one-pot method, and the dynamics for the assembly of CuNWs into hydrogel is intensively investigated. The "bubble controlled assembly" mechanism is put forward for the first time, according to which tunable pore structures and densities (4.3 mg cm-3~7.5 mg cm-3) of the nanowire aerogel is achieved. Subsequently, ultralight flexible pressure sensors with tunable sensitivities (0.02 kPa-1 to 0.7 kPa-1) are fabricated from the Cu NWs aerogels, and the negative correlation behavior of the sensitivity to the density of the aerogel sensors is disclosed systematically. This work provides a versatile strategy for the fabrication of nanowire based aerogels, which greatly broadens their application potential.

  6. Operating performance of the gamma-ray Cherenkov telescope: An end-to-end Schwarzschild-Couder telescope prototype for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Dournaux, J. L.; De Franco, A.; Laporte, P.; White, R.; Greenshaw, T.; Sol, H.; Abchiche, A.; Allan, D.; Amans, J. P.; Armstrong, T. P.; Balzer, A.; Berge, D.; Boisson, C.; Bousquet, J. J.; Brown, A. M.; Bryan, M.; Buchholtz, G.; Chadwick, P. M.; Costantini, H.; Cotter, G.; Daniel, M.; De Frondat, F.; Dumas, D.; Ernenwein, J. P.; Fasola, G.; Funk, S.; Gaudemard, J.; Graham, J. A.; Gironnet, J.; Hervet, O.; Hidaka, N.; Hinton, J. A.; Huet, J. M.; Jégouzo, I.; Jogler, T.; Kawashima, T.; Kraus, M.; Lapington, J. S.; Lefaucheur, J.; Markoff, S.; Melse, T.; Morhrmann, L.; Molnyeux, P.; Nolan, S. J.; Okumura, A.; Parsons, R. D.; Ross, D.; Rowell, G.; Sato, Y.; Sayède, F.; Schmoll, J.; Schoorlemmer, H.; Servillat, M.; Stamatescu, V.; Stephan, M.; Stuik, R.; Sykes, J.; Tajima, H.; Thornhill, J.; Tibaldo, L.; Trichard, C.; Vink, J.; Watson, J.; Yamane, N.; Zech, A.; Zink, A.

    2017-02-01

    The Cherenkov Telescope Array (CTA) consortium aims to build the next-generation ground-based very-high-energy gamma-ray observatory. The array will feature different sizes of telescopes allowing it to cover a wide gamma-ray energy band from about 20 GeV to above 100 TeV. The highest energies, above 5 TeV, will be covered by a large number of Small-Sized Telescopes (SSTs) with a field-of-view of around 9°. The Gamma-ray Cherenkov Telescope (GCT), based on Schwarzschild-Couder dual-mirror optics, is one of the three proposed SST designs. The GCT is described in this contribution and the first images of Cherenkov showers obtained using the telescope and its camera are presented. These were obtained in November 2015 in Meudon,

  7. Simplified procedure for encapsulating cytochrome c in silica aerogel nanoarchitectures while retaining gas-phase bioactivity.

    PubMed

    Harper-Leatherman, Amanda S; Iftikhar, Mariam; Ndoi, Adela; Scappaticci, Steven J; Lisi, George P; Buzard, Kaitlyn L; Garvey, Elizabeth M

    2012-10-16

    Cytochrome c (cyt. c) has been encapsulated in silica sol-gels and processed to form bioaerogels with gas-phase activity for nitric oxide through a simplified synthetic procedure. Previous reports demonstrated a need to adsorb cyt. c to metal nanoparticles prior to silica sol-gel encapsulation and processing to form aerogels. We report that cyt. c can be encapsulated in aerogels without added nanoparticles and retain structural stability and gas-phase activity for nitric oxide. While the UV-visible Soret absorbance and nitric oxide response indicate that cyt. c encapsulated with nanoparticles in aerogels remains slightly more stable and functional than cyt. c encapsulated alone, these properties are not very different in the two types of aerogels. From UV-visible and Soret circular dichroism results, we infer that cyt. c encapsulated alone self-organizes to reduce contact with the silica gel in a way that may bear at least some resemblance to the way cyt. c self-organizes into superstructures of protein within aerogels when nanoparticles are present. Both the buffer concentration and the cyt. c concentration of solutions used to synthesize the bioaerogels affect the structural integrity of the protein encapsulated alone within the dried aerogels. Optimized bioaerogels are formed when cyt. c is encapsulated from 40 mM phosphate buffered solutions, and when the loaded cyt. c concentration in the aerogel is in the range of 5 to 15 μM. Increased viability of cyt. c in aerogels is also observed when supercritical fluid used to produce aerogels is vented over relatively long times.

  8. Hierarchical Nafion enhanced carbon aerogels for sensing applications

    NASA Astrophysics Data System (ADS)

    Weng, Bo; Ding, Ailing; Liu, Yuqing; Diao, Jianglin; Razal, Joselito; Lau, King Tong; Shepherd, Roderick; Li, Changming; Chen, Jun

    2016-02-01

    This work describes the fabrication of hierarchical 3D Nafion enhanced carbon aerogels (NECAGs) for sensing applications via a fast freeze drying method. Graphene oxide, multiwalled carbon nanotubes and Nafion were mixed and extruded into liquid nitrogen followed by the removal of ice crystals by freeze drying. The addition of Nafion enhanced the mechanical strength of NECAGs and effective control of the cellular morphology and pore size was achieved. The resultant NECAGs demonstrated high strength, low density, and high specific surface area and can achieve a modulus of 20 kPa, an electrical conductivity of 140 S m-1, and a specific capacity of 136.8 F g-1 after reduction. Therefore, NECAG monoliths performed well as a gas sensor and as a biosensor with high sensitivity and selectivity. The remarkable sensitivity of 8.52 × 103 μA mM-1 cm-2 was obtained in dopamine (DA) detection, which is two orders of magnitude better than the literature reported values using graphene aerogel electrodes made from a porous Ni template. These outstanding properties make the NECAG a promising electrode candidate for a wide range of applications. Further in-depth investigations are being undertaken to probe the structure-property relationship of NECAG monoliths prepared under various conditions.This work describes the fabrication of hierarchical 3D Nafion enhanced carbon aerogels (NECAGs) for sensing applications via a fast freeze drying method. Graphene oxide, multiwalled carbon nanotubes and Nafion were mixed and extruded into liquid nitrogen followed by the removal of ice crystals by freeze drying. The addition of Nafion enhanced the mechanical strength of NECAGs and effective control of the cellular morphology and pore size was achieved. The resultant NECAGs demonstrated high strength, low density, and high specific surface area and can achieve a modulus of 20 kPa, an electrical conductivity of 140 S m-1, and a specific capacity of 136.8 F g-1 after reduction. Therefore, NECAG

  9. The Eros of Counter Education

    ERIC Educational Resources Information Center

    Luzon, Pinhas

    2016-01-01

    Erotic Counter Education (ECE) is the educational position of the late Ilan Gur-Ze'ev. In ECE Gur-Ze'ev combines two opposing positions in the philosophy of education, one teleological and anti-utopian, the other teleological and utopian. In light of this unique combination, I ask what mediates between these two poles and suggest that the answer…

  10. High resolution time interval counter

    DOEpatents

    Condreva, K.J.

    1994-07-26

    A high resolution counter circuit measures the time interval between the occurrence of an initial and a subsequent electrical pulse to two nanoseconds resolution using an eight megahertz clock. The circuit includes a main counter for receiving electrical pulses and generating a binary word--a measure of the number of eight megahertz clock pulses occurring between the signals. A pair of first and second pulse stretchers receive the signal and generate a pair of output signals whose widths are approximately sixty-four times the time between the receipt of the signals by the respective pulse stretchers and the receipt by the respective pulse stretchers of a second subsequent clock pulse. Output signals are thereafter supplied to a pair of start and stop counters operable to generate a pair of binary output words representative of the measure of the width of the pulses to a resolution of two nanoseconds. Errors associated with the pulse stretchers are corrected by providing calibration data to both stretcher circuits, and recording start and stop counter values. Stretched initial and subsequent signals are combined with autocalibration data and supplied to an arithmetic logic unit to determine the time interval in nanoseconds between the pair of electrical pulses being measured. 3 figs.

  11. High resolution time interval counter

    DOEpatents

    Condreva, Kenneth J.

    1994-01-01

    A high resolution counter circuit measures the time interval between the occurrence of an initial and a subsequent electrical pulse to two nanoseconds resolution using an eight megahertz clock. The circuit includes a main counter for receiving electrical pulses and generating a binary word--a measure of the number of eight megahertz clock pulses occurring between the signals. A pair of first and second pulse stretchers receive the signal and generate a pair of output signals whose widths are approximately sixty-four times the time between the receipt of the signals by the respective pulse stretchers and the receipt by the respective pulse stretchers of a second subsequent clock pulse. Output signals are thereafter supplied to a pair of start and stop counters operable to generate a pair of binary output words representative of the measure of the width of the pulses to a resolution of two nanoseconds. Errors associated with the pulse stretchers are corrected by providing calibration data to both stretcher circuits, and recording start and stop counter values. Stretched initial and subsequent signals are combined with autocalibration data and supplied to an arithmetic logic unit to determine the time interval in nanoseconds between the pair of electrical pulses being measured.

  12. Advances in Multi-Pixel Photon Counter technology: First characterization results

    NASA Astrophysics Data System (ADS)

    Bonanno, G.; Marano, D.; Romeo, G.; Garozzo, S.; Grillo, A.; Timpanaro, M. C.; Catalano, O.; Giarrusso, S.; Impiombato, D.; La Rosa, G.; Sottile, G.

    2016-01-01

    Due to the recent advances in silicon photomultiplier technology, new types of Silicon Photomultiplier (SiPM), also named Multi-Pixel Photon Counter (MPPC) detectors have become recently available, demonstrating superior performance in terms of their most important electrical and optical parameters. This paper presents the latest characterization results of the novel Low Cross-Talk (LCT) MPPC families from Hamamatsu, where a noticeable fill-factor enhancement and cross-talk reduction is achieved. In addition, the newly adopted resin coating has been proven to yield improved photon detection capabilities in the 280-320 nm spectral range, making the new LCT MPPCs particularly suitable for emerging applications like Cherenkov Telescope Array, and Astroparticle Physics.

  13. The Accelerator Neutrino Neutron Interaction Experiment (ANNIE) Front Anti-Coincidence Counter (FACC) Testing

    NASA Astrophysics Data System (ADS)

    Chen, Mingqian

    The searching for proton decay (PDK) is going on current Water Cherenkov (WCh) detectors such as Super-Kamiokande. However, PDK-like backgrounds produced by the neutrino interactions will limit the sensitivity of the detectors. The Accelerator Neutrino Neutron Interaction Experiment (ANNIE) is going to measure the neutron yield of neutrino interactions in gadolinium-loaded water by the Booster Neutrino Beam (BNB) with known characteristics. In this thesis, neutrino, neutrino oscillations, Dirac neutrino and Majorana neutrino and neutrino interactions are introduced. ANNIE experiment is also introduced. And two modes of proton decays are discussed. The ANNIE experiment requires detection of the neutrons produced by the BNB interactions with water. However, dirt muons produced by the interaction of the BNB with the rock and dirt upstream of the ANNIE hall will cause a correlated background. Therefore, the Front Anti-Coincidence Counter (FACC) was built to measure the rock muons. This thesis details the design, installation, and commissioning of the ANNIE FACC.

  14. Synthesis of reduced graphene oxide/thorn-like titanium dioxide nanofiber aerogels with enhanced electrochemical performance for supercapacitor.

    PubMed

    Kim, Tae-Woong; Park, Soo-Jin

    2017-01-15

    Reduced graphene oxide (rGO)/thorn-like TiO2 nanofiber (TTF) aerogels, or GTTF aerogels, with different TTF weight ratios were successfully prepared by electrospinning, silica etching and hydrothermal combination method. During the hydrothermal reaction, the rGO nanosheets and TTF self-assembled into three-dimensional (3D) interconnected networks, in which the TTF is loaded onto the rGO nanosheets. The electrochemical performance of the GTTF aerogels was assessed using cyclic voltammetry and galvanostatic charge-discharge measurements in a 1M aqueous Na2SO4 electrolyte. The TTF-to-rGO ratio of the aerogel material significantly affected the electrochemical performance of the aerogel electrodes, and the GTTF aerogels prepared with 20wt% TTF (denoted GTTF-20) exhibited excellent electrochemical performance. The maximum specific capacitance of this aerogel electrode was 178F/g at a current density of 1A/g. The GTTF-20 aerogel also exhibited good electrochemical stability with a capacitance degradation of less than 10% after 3000cycles. We can deduce that the electrochemical performance of the as-prepared aerogels may be enhanced by increasing the chemical interactions between rGO and TiO2. The results indicate that the GTTF aerogels show enormous potential for application in energy storage devices.

  15. Coherent Cherenkov-Cyclotron Radiation Excited by an Electron Beam in a Metamaterial Waveguide.

    PubMed

    Hummelt, J S; Lu, X; Xu, H; Mastovsky, I; Shapiro, M A; Temkin, R J

    2016-12-02

    An electron beam passing through a metamaterial structure is predicted to generate reversed Cherenkov radiation, an unusual and potentially very useful property. We present an experimental test of this phenomenon using an intense electron beam passing through a metamaterial loaded waveguide. Power levels of up to 5 MW are observed in backward wave modes at a frequency of 2.40 GHz using a one microsecond pulsed electron beam of 490 keV, 84 A in a 400 G magnetic field. Contrary to expectations, the output power is not generated in the Cherenkov mode. Instead, the presence of the magnetic field, which is required to transport the electron beam, induces a Cherenkov-cyclotron (or anomalous Doppler) instability at a frequency equal to the Cherenkov frequency minus the cyclotron frequency. Nonlinear simulations indicate that the Cherenkov-cyclotron mode should dominate over the Cherenkov instability at a lower magnetic field where the highest output power is obtained.

  16. Angular distribution of Cherenkov radiation from relativistic heavy ions taking into account deceleration in the radiator

    SciTech Connect

    Bogdanov, O. V. Fiks, E. I.; Pivovarov, Yu. L.

    2012-09-15

    Numerical methods are used to study the dependence of the structure and the width of the angular distribution of Vavilov-Cherenkov radiation with a fixed wavelength in the vicinity of the Cherenkov cone on the radiator parameters (thickness and refractive index), as well as on the parameters of the relativistic heavy ion beam (charge and initial energy). The deceleration of relativistic heavy ions in the radiator, which decreases the velocity of ions, modifies the condition of structural interference of the waves emitted from various segments of the trajectory; as a result, a complex distribution of Vavilov-Cherenkov radiation appears. The main quantity is the stopping power of a thin layer of the radiator (average loss of the ion energy), which is calculated by the Bethe-Bloch formula and using the SRIM code package. A simple formula is obtained to estimate the angular distribution width of Cherenkov radiation (with a fixed wavelength) from relativistic heavy ions taking into account the deceleration in the radiator. The measurement of this width can provide direct information on the charge of the ion that passes through the radiator, which extends the potentialities of Cherenkov detectors. The isotopic effect (dependence of the angular distribution of Vavilov-Cherenkov radiation on the ion mass) is also considered.

  17. Polyvinyl alcohol-cellulose nanofibrils-graphene oxide hybrid organic aerogels.

    PubMed

    Javadi, Alireza; Zheng, Qifeng; Payen, Francois; Javadi, Abdolreza; Altin, Yasin; Cai, Zhiyong; Sabo, Ronald; Gong, Shaoqin

    2013-07-10

    Hybrid organic aerogels consisting of polyvinyl alcohol (PVA), cellulose nanofibrils (CNFs), and graphene oxide nanosheets (GONSs) were prepared using an environmentally friendly freeze-drying process. The material properties of these fabricated aerogels were measured and analyzed using various characterization techniques including compression testing, scanning electron microscopy, thermogravimetric (TGA) analysis, Brunauer-Emmet-Teller (BET) surface area analysis, and contact angle measurements. These environmentally friendly, biobased hybrid organic aerogels exhibited a series of desirable properties including a high specific compressive strength and compressive failure strain, ultralow density and thermal conductivity, good thermal stability, and moisture resistance, making them potentially useful for a broad range of applications including thermal insulation.

  18. Accurate bulk density determination of irregularly shaped translucent and opaque aerogels

    NASA Astrophysics Data System (ADS)

    Petkov, M. P.; Jones, S. M.

    2016-05-01

    We present a volumetric method for accurate determination of bulk density of aerogels, calculated from extrapolated weight of the dry pure solid and volume estimates based on the Archimedes' principle of volume displacement, using packed 100 μm-sized monodispersed glass spheres as a "quasi-fluid" media. Hard particle packing theory is invoked to demonstrate the reproducibility of the apparent density of the quasi-fluid. Accuracy rivaling that of the refractive index method is demonstrated for both translucent and opaque aerogels with different absorptive properties, as well as for aerogels with regular and irregular shapes.

  19. Pairing states of superfluid {sup 3}He in uniaxially anisotropic aerogel

    SciTech Connect

    Aoyama, Kazushi; Ikeda, Ryusuke

    2006-02-01

    Stable pairing states of superfluid {sup 3}He in aerogel are examined in the case with a global uniaxial anisotropy which may be created by applying a uniaxial stress to the aerogel. Due to such a global anisotropy, the stability region of an Anderson-Brinkman-Morel (ABM) pairing state becomes wider. In a uniaxially stretched aerogel, the pure polar pairing state with a horizontal line node is predicted to occur, as a three-dimensional superfluid phase, over a measurable width just below the superfluid transition at T{sub c}(P). A possible relevance of the present results to the case with no global anisotropy is also discussed.

  20. Method of low pressure and/or evaporative drying of aerogel

    DOEpatents

    Mayer, Steven T.; Kaschmitter, James L.; Pekala, Richard W.

    1995-01-01

    A process whereby Resorcinol/Formaldehyde (RF) aerogel having a density of about 0.4-1.2 g/cc can be manufactured using a simple air drying procedure. This process is inherently simpler, quicker, and less expensive than the more conventional supercritical or subcritical CO.sub.2 extraction procedures. RF aerogels can be used as produced, such as in insulation applications, or pyrolyzed to form carbon aerogels with a density of about 0.9 g/cc for use in applications such as batteries, supercapacitors, etc.