Science.gov

Sample records for aerogel composite materials

  1. Aerogel/polymer composite materials

    NASA Technical Reports Server (NTRS)

    Williams, Martha K. (Inventor); Smith, Trent M. (Inventor); Fesmire, James E. (Inventor); Roberson, Luke B. (Inventor); Clayton, LaNetra M. (Inventor)

    2010-01-01

    The invention provides new composite materials containing aerogels blended with thermoplastic polymer materials at a weight ratio of aerogel to thermoplastic polymer of less than 20:100. The composite materials have improved thermal insulation ability. The composite materials also have better flexibility and less brittleness at low temperatures than the parent thermoplastic polymer materials.

  2. Improved Silica Aerogel Composite Materials

    NASA Technical Reports Server (NTRS)

    Paik, Jong-Ah; Sakamoto, Jeffrey; Jones, Steven

    2008-01-01

    A family of aerogel-matrix composite materials having thermal-stability and mechanical- integrity properties better than those of neat aerogels has been developed. Aerogels are known to be excellent thermal- and acoustic-insulation materials because of their molecular-scale porosity, but heretofore, the use of aerogels has been inhibited by two factors: (1) Their brittleness makes processing and handling difficult. (2) They shrink during production and shrink more when heated to high temperatures during use. The shrinkage and the consequent cracking make it difficult to use them to encapsulate objects in thermal-insulation materials. The underlying concept of aerogel-matrix composites is not new; the novelty of the present family of materials lies in formulations and processes that result in superior properties, which include (1) much less shrinkage during a supercritical-drying process employed in producing a typical aerogel, (2) much less shrinkage during exposure to high temperatures, and (3) as a result of the reduction in shrinkage, much less or even no cracking.

  3. Novel Cryogenic Insulation Materials: Aerogel Composites

    NASA Technical Reports Server (NTRS)

    White, Susan

    2001-01-01

    New insulation materials are being developed to economically and reliably insulate future reusable spacecraft cryogenic tanks over a planned lifecycle of extreme thermal challenges. These insulation materials must prevent heat loss as well as moisture and oxygen condensation on the cryogenic tanks during extended groundhold, must withstand spacecraft launch conditions, and must protect a partly full or empty reusable cryogenic tank from significant reentry heating. To perform over such an extreme temperature range, novel composites were developed from aerogels and high-temperature matrix material such as Space Shuttle tile. These materials were fabricated and tested for use both as cryogenic insulation and as high-temperature insulation. The test results given in this paper were generated during spacecraft re-entry heating simulation tests using cryogenic cooling.

  4. Durable polymer-aerogel based superhydrophobic coatings, a composite material

    DOEpatents

    Kissel, David J; Brinker, Charles Jeffrey

    2014-03-04

    Provided are polymer-aerogel composite coatings, devices and articles including polymer-aerogel composite coatings, and methods for preparing the polymer-aerogel composite. The exemplary article can include a surface, wherein the surface includes at least one region and a polymer-aerogel composite coating disposed over the at least one region, wherein the polymer-aerogel composite coating has a water contact angle of at least about 140.degree. and a contact angle hysteresis of less than about 1.degree.. The polymer-aerogel composite coating can include a polymer and an ultra high water content catalyzed polysilicate aerogel, the polysilicate aerogel including a three dimensional network of silica particles having surface functional groups derivatized with a silylating agent and a plurality of pores.

  5. Durable polymer-aerogel based superhydrophobic coatings: a composite material

    DOEpatents

    Kissel, David J.; Brinker, Charles Jeffrey

    2016-02-02

    Provided are polymer-aerogel composite coatings, devices and articles including polymer-aerogel composite coatings, and methods for preparing the polymer-aerogel composite. The exemplary article can include a surface, wherein the surface includes at least one region and a polymer-aerogel composite coating disposed over the at least one region, wherein the polymer-aerogel composite coating has a water contact angle of at least about 140.degree. and a contact angle hysteresis of less than about 1.degree.. The polymer-aerogel composite coating can include a polymer and an ultra high water content catalyzed polysilicate aerogel, the polysilicate aerogel including a three dimensional network of silica particles having surface functional groups derivatized with a silylating agent and a plurality of pores.

  6. Method of manufacturing aerogel composites

    DOEpatents

    Cao, Wanqing; Hunt, Arlon Jason

    1999-01-01

    Disclosed herewith is a process of forming an aerogel composite which comprises introducing a gaseous material into a formed aerogel monolith or powder, and causing decomposition of said gaseous material in said aerogel in amounts sufficient to cause deposition of the decomposition products of the gas on the surfaces of the pores of the said aerogel.

  7. Method of manufacturing aerogel composites

    DOEpatents

    Cao, W.; Hunt, A.J.

    1999-03-09

    Disclosed herewith is a process of forming an aerogel composite which comprises introducing a gaseous material into a formed aerogel monolith or powder, and causing decomposition of said gaseous material in said aerogel in amounts sufficient to cause deposition of the decomposition products of the gas on the surfaces of the pores of the said aerogel.

  8. Aerogel nanocomposite materials

    SciTech Connect

    Hunt, A.J.; Ayers, M.; Cao, W.

    1995-05-01

    Aerogels are porous, low density, nanostructured solids with many unusual properties including very low thermal conductivity, good transparency, high surface area, catalytic activity, and low sound velocity. This research is directed toward developing new nanocomposite aerogel materials for improved thermal insulation and several other applications. A major focus of the research has been to further increase the thermal resistance of silica aerogel by introducing infrared opacification agents into the aerogel to produce a superinsulating composite material. Opacified superinsulating aerogel permit a number of industrial applications for aerogel-based insulation. The primary benefits from this recently developed superinsulating composite aerogel insulation are: to extend the range of applications to higher temperatures, to provide a more compact insulation for space sensitive-applications, and to lower costs of aerogel by as much as 30%. Superinsulating aerogels can replace existing CFC-containing polyurethane in low temperature applications to reduce heat losses in piping, improve the thermal efficiency of refrigeration systems, and reduce energy losses in a variety of industrial applications. Enhanced aerogel insulation can also replace steam and process pipe insulation in higher temperature applications to substantially reduce energy losses and provide much more compact insulation.

  9. Tailoring Advanced Nanoscale Materials Through Synthesis of Composite Aerogel Architectures

    DTIC Science & Technology

    2000-01-01

    Introducing a desired solid guest to an about-to- gel silica sol prevents complete encapsulation of the guest particles by the silica, such that the...engineered at multiple points during sol gel processing by modifying the host solid, the guest solid, the composite gel , or the composite aerogel.

  10. Aerogel composites and method of manufacture

    DOEpatents

    Cao, Wanqing; Hunt, Arlon Jason

    1999-01-01

    Disclosed herewith is a process of forming an aerogel composite which comprises introducing a gaseous material into a formed aerogel monolith or powder, and causing decomposition of said gaseous material in said aerogel in amounts sufficient to cause deposition of the decomposition products of the gas on the surfaces of the pores of the said aerogel. Also disclosed are the composites made by the process.

  11. Metal Nanoparticle Aerogel Composites

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Sibille, Laurent; Ignont, Erica; Snow, Lanee; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We have fabricated sol-gels containing gold and silver nanoparticles. Formation of an aerogel produces a blue shift in the surface plasmon resonance as a result of the decrease in the dielectric constant of the matrix upon supercritical extraction of the solvent. However, as a result of chemical interface damping this blue shift does not obey effective medium theories. Annealing the samples in a reducing atmosphere at 400 C eliminates this discrepancy and results in narrowing and further blue shifting of the plasmon resonance. Metal particle aggregation also results in a deviation from the predictions of effective medium theories, but can be controlled through careful handling and by avoiding the use of alcohol. By applying effective medium theories to the heterogeneous interlayer surrounding each metal particle, we extend the technique of immersion spectroscopy to inhomogeneous materials characterized by spatially dependent dielectric constants, such as aerogels. We demonstrate that the shift in the surface plasmon wavelength provides the average fractional composition of each component (air and silica) in this inhomogeneous layer, i.e. the porosity of the aerogel or equivalently, for these materials, the catalytic dispersion. Additionally, the kinetics suggest that collective particle interactions in coagulated metal clusters are perturbed during silica gelation resulting in a change in the aggregate geometry.

  12. Foam/aerogel composite materials for thermal and acoustic insulation and cryogen storage

    NASA Technical Reports Server (NTRS)

    Williams, Martha K. (Inventor); Smith, Trent M. (Inventor); Fesmire, James E. (Inventor); Weiser, Erik S. (Inventor); Sass, Jared P. (Inventor)

    2010-01-01

    The invention involves composite materials containing a polymer foam and an aerogel. The composite materials have improved thermal insulation ability, good acoustic insulation, and excellent physical mechanical properties. The composite materials can be used, for instance, for heat and acoustic insulation on aircraft, spacecraft, and maritime ships in place of currently used foam panels and other foam products. The materials of the invention can also be used in building construction with their combination of light weight, strength, elasticity, ability to be formed into desired shapes, and superior thermal and acoustic insulation power. The materials have also been found to have utility for storage of cryogens. A cryogenic liquid or gas, such as N.sub.2 or H.sub.2, adsorbs to the surfaces in aerogel particles. Thus, another embodiment of the invention provides a storage vessel for a cryogen.

  13. Foam/Aerogel Composite Materials for Thermal and Acoustic Insulation and Cryogen Storage

    NASA Technical Reports Server (NTRS)

    Williams, Martha K. (Inventor); Smith, Trent M. (Inventor); Fesmire, James E. (Inventor); Weiser, Erik S. (Inventor); Sass, Jared P. (Inventor)

    2011-01-01

    The invention involves composite materials containing a polymer foam and an aerogel. The composite materials have improved thermal insulation ability, good acoustic insulation, and excellent physical mechanical properties. The composite materials can be used, for instance, for heat and acoustic insulation on aircraft, spacecraft, and maritime ships in place of currently used foam panels and other foam products. The materials of the invention can also be used in building construction with their combination of light weight, strength, elasticity, ability to be formed into desired shapes, and superior thermal and acoustic insulation power. The materials have also been found to have utility for storage of cryogens. A cryogenic liquid or gas, such as N.sub.2 or H.sub.2, adsorbs to the surfaces in aerogel particles. Thus, another embodiment of the invention provides a storage vessel for a cryogen.

  14. Benzimidazole Based Aerogel Materials

    NASA Technical Reports Server (NTRS)

    Rhine, Wendell E. (Inventor); Mihalcik, David (Inventor)

    2016-01-01

    The present invention provides aerogel materials based on imidazoles and polyimidazoles. The polyimidazole based aerogel materials can be thermally stable up to 500 C or more, and can be carbonized to produce a carbon aerogel having a char yield of 60% or more, specifically 70% or more. The present invention also provides methods of producing polyimidazole based aerogel materials by reacting at least one monomer in a suitable solvent to form a polybenzimidazole gel precursor solution, casting the polybenzimidazole gel precursor solution into a fiber reinforcement phase, allowing the at least one gel precursor in the precursor solution to transition into a gel material, and drying the gel materials to remove at least a portion of the solvent, to obtain an polybenzimidazole-based aerogel material.

  15. Polyurea-Based Aerogel Monoliths and Composites

    NASA Technical Reports Server (NTRS)

    Lee, Je Kyun

    2012-01-01

    aerogel insulation material was developed that will provide superior thermal insulation and inherent radiation protection for government and commercial applications. The rubbery polyureabased aerogel exhibits little dustiness, good flexibility and toughness, and durability typical of the parent polyurea polymer, yet with the low density and superior insulation properties associated with aerogels. The thermal conductivity values of polyurea-based aerogels at lower temperature under vacuum pressures are very low and better than that of silica aerogels. Flexible, rubbery polyurea-based aerogels are able to overcome the weak and brittle nature of conventional inorganic and organic aerogels, including polyisocyanurate aerogels, which are generally prepared with the one similar component to polyurethane rubber aerogels. Additionally, with higher content of hydrogen in their structures, the polyurea rubber-based aerogels will also provide inherently better radiation protection than those of inorganic and carbon aerogels. The aerogel materials also demonstrate good hydrophobicity due to their hydrocarbon molecular structure. There are several strategies to overcoming the drawbacks associated with the weakness and brittleness of silica aerogels. Development of the flexible fiber-reinforced silica aerogel composite blanket has proven to be one promising approach, providing a conveniently fielded form factor that is relatively robust in industrial environments compared to silica aerogel monoliths. However, the flexible, silica aerogel composites still have a brittle, dusty character that may be undesirable, or even intolerable, in certain application environments. Although the cross - linked organic aerogels, such as resorcinol- formaldehyde (RF), polyisocyanurate, and cellulose aerogels, show very high impact strength, they are also very brittle with little elongation (i.e., less rubbery). Also, silica and carbon aerogels are less efficient radiation shielding materials due

  16. Composite Aerogel Multifoil Protective Shielding

    NASA Technical Reports Server (NTRS)

    Jones, Steven M.

    2013-01-01

    New technologies are needed to survive the temperatures, radiation, and hypervelocity particles that exploration spacecraft encounter. Multilayer insulations (MLIs) have been used on many spacecraft as thermal insulation. Other materials and composites have been used as micrometeorite shielding or radiation shielding. However, no material composite has been developed and employed as a combined thermal insulation, micrometeorite, and radiation shielding. By replacing the scrims that have been used to separate the foil layers in MLIs with various aerogels, and by using a variety of different metal foils, the overall protective performance of MLIs can be greatly expanded to act as thermal insulation, radiation shielding, and hypervelocity particle shielding. Aerogels are highly porous, low-density solids that are produced by the gelation of metal alkoxides and supercritical drying. Aerogels have been flown in NASA missions as a hypervelocity particle capture medium (Stardust) and as thermal insulation (2003 MER). Composite aerogel multifoil protective shielding would be used to provide thermal insulation, while also shielding spacecraft or components from radiation and hypervelocity particle impacts. Multiple layers of foil separated by aerogel would act as a thermal barrier by preventing the transport of heat energy through the composite. The silica aerogel would act as a convective and conductive thermal barrier, while the titania powder and metal foils would absorb and reflect the radiative heat. It would also capture small hypervelocity particles, such as micrometeorites, since it would be a stuffed, multi-shock Whipple shield. The metal foil layers would slow and break up the impacting particles, while the aerogel layers would convert the kinetic energy of the particles to thermal and mechanical energy and stop the particles.

  17. Composite Silica Aerogels Opacified with Titania

    NASA Technical Reports Server (NTRS)

    Paik, Jon-Ah; Sakamoto, Jeffrey; Jones, Steven; Fleurial, Jean-Pierre; DiStefano, Salvador; Nesmith, Bill

    2009-01-01

    A further improvement has been made to reduce the high-temperature thermal conductivities of the aerogel-matrix composite materials described in Improved Silica Aerogel Composite Materials (NPO-44287), NASA Tech Briefs, Vol. 32, No. 9 (September 2008), page 50. Because the contribution of infrared radiation to heat transfer increases sharply with temperature, the effective high-temperature thermal conductivity of a thermal-insulation material can be reduced by opacifying the material to reduce the radiative contribution. Therefore, the essence of the present improvement is to add an opacifying constituent material (specifically, TiO2 powder) to the aerogel-matrix composites.

  18. Polyimide Cellulose Nanocrystal Composite Aerogels

    NASA Technical Reports Server (NTRS)

    Nguyen, Baochau N.; Meador, Mary Ann; Rowan, Stuart; Cudjoe, Elvis; Sandberg, Anna

    2014-01-01

    Polyimide (PI) aerogels are highly porous solids having low density, high porosity and low thermal conductivity with good mechanical properties. They are ideal for various applications including use in antenna and insulation such as inflatable decelerators used in entry, decent and landing operations. Recently, attention has been focused on stimuli responsive materials such as cellulose nano crystals (CNCs). CNCs are environmentally friendly, bio-renewable, commonly found in plants and the dermis of sea tunicates, and potentially low cost. This study is to examine the effects of CNC on the polyimide aerogels. The CNC used in this project are extracted from mantle of a sea creature called tunicates. A series of polyimide cellulose nanocrystal composite aerogels has been fabricated having 0-13 wt of CNC. Results will be discussed.

  19. Nonflammable, Hydrophobic Aerogel Composites for Insulation

    NASA Technical Reports Server (NTRS)

    Redouane, Begag

    2005-01-01

    Aerogel composites that are both nonflammable and hydrophobic have been developed for use as lightweight thermal- insulation materials for cryogenic systems. Aerogels are well known in the industry for their effectiveness as thermal insulators under cryogenic conditions, but the treatments used heretofore to render them hydrophobic also make them flammable. Nonflammability would make it safer to use aerogel insulation, especially in oxygen-rich environments and on cryogenic systems that contain liquid oxygen. A composite of this type is a silica aerogel reinforced with fibers. In comparison with unreinforced aerogels, the aerogel composite is about ten times as stiff and strong, better able to withstand handling, and more amenable to machining to required shapes. The composite can be made hydrophobic and nonflammable by appropriate design of a sol-gel process used to synthesize the aerogel component. In addition to very low thermal conductivity needed for insulation, aerogel composites of this type have been found to exhibit high resistance to moisture and nonflammability in oxygen-rich atmospheres: Samples floating on water for months gained no weight and showed no signs of deterioration. Samples were found to be nonflammable, even in pure oxygen at atmospheric pressure [14.7 psia (0.10 MPa)

  20. Aerogel Blanket Insulation Materials for Cryogenic Applications

    NASA Technical Reports Server (NTRS)

    Coffman, B. E.; Fesmire, J. E.; White, S.; Gould, G.; Augustynowicz, S.

    2009-01-01

    Aerogel blanket materials for use in thermal insulation systems are now commercially available and implemented by industry. Prototype aerogel blanket materials were presented at the Cryogenic Engineering Conference in 1997 and by 2004 had progressed to full commercial production by Aspen Aerogels. Today, this new technology material is providing superior energy efficiencies and enabling new design approaches for more cost effective cryogenic systems. Aerogel processing technology and methods are continuing to improve, offering a tailor-able array of product formulations for many different thermal and environmental requirements. Many different varieties and combinations of aerogel blankets have been characterized using insulation test cryostats at the Cryogenics Test Laboratory of NASA Kennedy Space Center. Detailed thermal conductivity data for a select group of materials are presented for engineering use. Heat transfer evaluations for the entire vacuum pressure range, including ambient conditions, are given. Examples of current cryogenic applications of aerogel blanket insulation are also given. KEYWORDS: Cryogenic tanks, thermal insulation, composite materials, aerogel, thermal conductivity, liquid nitrogen boil-off

  1. Fibrous-Ceramic/Aerogel Composite Insulating Tiles

    NASA Technical Reports Server (NTRS)

    White, Susan M.; Rasky, Daniel J.

    2004-01-01

    Fibrous-ceramic/aerogel composite tiles have been invented to afford combinations of thermal-insulation and mechanical properties superior to those attainable by making tiles of fibrous ceramics alone or aerogels alone. These lightweight tiles can be tailored to a variety of applications that range from insulating cryogenic tanks to protecting spacecraft against re-entry heating. The advantages and disadvantages of fibrous ceramics and aerogels can be summarized as follows: Tiles made of ceramic fibers are known for mechanical strength, toughness, and machinability. Fibrous ceramic tiles are highly effective as thermal insulators in a vacuum. However, undesirably, the porosity of these materials makes them permeable by gases, so that in the presence of air or other gases, convection and gas-phase conduction contribute to the effective thermal conductivity of the tiles. Other disadvantages of the porosity and permeability of fibrous ceramic tiles arise because gases (e.g., water vapor or cryogenic gases) can condense in pores. This condensation contributes to weight, and in the case of cryogenic systems, the heat of condensation undesirably adds to the heat flowing to the objects that one seeks to keep cold. Moreover, there is a risk of explosion associated with vaporization of previously condensed gas upon reheating. Aerogels offer low permeability, low density, and low thermal conductivity, but are mechanically fragile. The basic idea of the present invention is to exploit the best features of fibrous ceramic tiles and aerogels. In a composite tile according to the invention, the fibrous ceramic serves as a matrix that mechanically supports the aerogel, while the aerogel serves as a low-conductivity, low-permeability filling that closes what would otherwise be the open pores of the fibrous ceramic. Because the aerogel eliminates or at least suppresses permeation by gas, gas-phase conduction, and convection, the thermal conductivity of such a composite even at

  2. Aerogel and xerogel composites for use as carbon anodes

    DOEpatents

    Cooper, John F.; Tillotson, Thomas M.; Hrubesh, Lawrence W.

    2008-08-12

    Disclosed herein are aerogel and xerogel composite materials suitable for use as anodes in fuel cells and batteries. Precursors to the aerogel and xerogel compounds are infused with inorganic polymeric materials or carbon particles and then gelled. The gels are then pyrolyzed to form composites with internal structural support.

  3. Aerogel/Particle Composites for Thermoelectric Devices

    NASA Technical Reports Server (NTRS)

    Paik, Jong-Ah; Sakamoto, Jeffrey; Jones, Steven

    2006-01-01

    Optimizing solution chemistry and the addition of titania and fumed silica powder reduces shrinkage. These materials would serve to increase thermal efficiency by providing thermal insulation to suppress lateral heat leaks. They would also serve to prolong operational lifetime by suppressing sublimation of certain constituents of thermoelectric materials (e.g., sublimation of Sb from CoSb3) at typical high operating temperatures. [The use of pure silica aerogels as cast-in-place thermal-insulation and sublimation-suppression materials was described in "Aerogels for Thermal Insulation of Thermoelectric Devices" (NPO-40630), NASA Tech Briefs, Vol. 30, No. 7 (July 2006), page 50.] A silica aerogel is synthesized in a solgel process that includes preparation of a silica sol, gelation of the sol, and drying of the gel in a solvent at a supercritical temperature and pressure. The utility of pure silica aerogel is diminished by a tendency to shrink (and, therefore, also to crack) during the gelation and supercritical-drying stages. Moreover, to increase suppression of sublimation, it is advantageous to make an aerogel having greater density, but shrinkage and cracking tend to increase with density. A composite material of the type under investigation consists mostly of titania oxide powder particles and a small addition of fumed silica powder, which are mixed into the sol along with other ingredients prior to the gelation stage of processing. The silica aerogel and fumed silica act as a binder, gluing the titania particles together. It is believed that the addition of fumed silica stiffens the aerogel network and reduces shrinkage during the supercritical-drying stage. Minimization of shrinkage enables establishment of intimate contact between thermoelectric legs and the composite material, thereby maximizing the effectiveness of the material for thermal insulation and suppression of sublimation. To some extent, the properties of the composite can be tailored via the

  4. Aerogel Composites: Strong and Waterproof

    NASA Technical Reports Server (NTRS)

    White, Susan; Hsu, Ming-ta; Arnold, James O. (Technical Monitor)

    1999-01-01

    Aerogels are exotic materials having superior thermal and physical properties with great potential for both space and industrial uses. Although aerogels are excellent low-density insulators with unique acoustic and optical properties, their commercialization potential is currently limited by moisture absorption, fragility, and cost. This paper describes useful, easily scaled-up solutions to the first two of these three problems. The waterproofing and water-repellent method described here is a cheaper and simpler improvement over previous permanent methods.

  5. Self-Assembly-Directed Aerogel and Membrane Formation from a Magnetic Composite: An Approach to Developing Multifunctional Materials.

    PubMed

    Vivek, Balachandran; Prasad, Edamana

    2017-03-01

    Herein, we report the preparation of an aerogel and a membrane from a magnetic composite material by tuning the self-assembly at the molecular level. The gel exhibits an excellent oil absorption property, and the membrane shows a remarkable autonomous self-healing property. The composite is formed from an organosilicon-modified poly(amidoamine) (PAMAM) dendrimer, which is linked with iron oxide nanoparticles and poly(vinyl alcohol). Upon the addition of a cross-linker (formaldehyde), the system undergoes a fast self-assembly and gelation process. The aerogel, obtained after drying of the hydrogel, was modified with 1- bromohexadecane at room temperature and utilized for the removal of oil from water with 22.9 g/g absorption capacity. Intriguingly, the same system forms a membrane with 97% autonomous self-healing ability, in the absence of the cross-linker. The membrane was used to remove the salt content from water with an efficiency of 85%. The control experiments suggest that the presence of the magnetic material (iron oxide) plays a key role in the formation of both the aerogel and membrane.

  6. Aerogel Derived Nanostructured Thermoelectric Materials

    SciTech Connect

    Wendell E Rhine, PI; Dong, Wenting; Greg Caggiano, PM

    2010-10-08

    America’s dependence on foreign sources for fuel represents a economic and security threat for the country. These non renewable resources are depleting, and the effects of pollutants from fuels such as oil are reaching a problematic that affects the global community. Solar concentration power (SCP) production systems offer the opportunity to harness one of the United States’ most under utilized natural resources; sunlight. While commercialization of this technology is increasing, in order to become a significant source of electricity production in the United States the costs of deploying and operating SCP plants must be further reduced. Parabolic Trough SCP technologies are close to meeting energy production cost levels that would raise interest in the technology and help accelerate its adoption as a method to produce a significant portion of the Country’s electric power needs. During this program, Aspen Aerogels will develop a transparent aerogel insulation that can replace the costly vacuum insulation systems that are currently used in parabolic trough designs. During the Phase I program, Aspen Aerogels will optimize the optical and thermal properties of aerogel to meet the needs of this application. These properties will be tested, and the results will be used to model the performance of a parabolic trough HCE system which uses this novel material in place of vacuum. During the Phase II program, Aspen Aerogels will scale up this technology. Together with industry partners, Aspen Aerogels will build and test a prototype Heat Collection Element that is insulated with the novel transparent aerogel material. This new device will find use in parabolic trough SCP applications.

  7. Composition containing aerogel substrate loaded with tritium

    DOEpatents

    Ashley, Carol S.; Brinker, C. Jeffrey; Ellefson, Robert E.; Gill, John T.; Reed, Scott; Walko, Robert J.

    1992-01-01

    The invention provides a process for loading an aerogel substrate with tritium and the resultant compositions. According to the process, an aerogel substrate is hydrolyzed so that surface OH groups are formed. The hydrolyzed aerogel is then subjected to tritium exchange employing, for example, a tritium-containing gas, whereby tritium atoms replace H atoms of surface OH groups. OH and/or CH groups of residual alcohol present in the aerogel may also undergo tritium exchange.

  8. Composite ceria-coated aerogels and methods of making the same

    DOEpatents

    Eyring, Edward M; Ernst, Richard D; Turpin, Gregory C; Dunn, Brian C

    2013-05-07

    Ceria-coated aerogels can include an aerogel support material having a stabilized ceria coating thereon. The ceria coating can be formed by solution or vapor deposition of alcogels or aerogels. Additional catalytic metal species can also be incorporated into the coating to form multi-metallic compounds having improved catalytic activity. Further, the ceria coated aerogels retain high surface areas at elevated temperatures. Thus, improvements in catalytic activity and thermal stability can be achieved using these ceria-coated composite aerogels.

  9. High-Performance Energy Storage and Conversion Materials Derived from a Single Metal-Organic Framework/Graphene Aerogel Composite.

    PubMed

    Xia, Wei; Qu, Chong; Liang, Zibin; Zhao, Bote; Dai, Shuge; Qiu, Bin; Jiao, Yang; Zhang, Qiaobao; Huang, Xinyu; Guo, Wenhan; Dang, Dai; Zou, Ruqiang; Xia, Dingguo; Xu, Qiang; Liu, Meilin

    2017-04-13

    Metal oxides and carbon-based materials are the most promising electrode materials for a wide range of low-cost and highly efficient energy storage and conversion devices. Creating unique nanostructures of metal oxides and carbon materials is imperative to the development of a new generation of electrodes with high energy and power density. Here we report our findings in the development of a novel graphene aerogel assisted method for preparation of metal oxide nanoparticles (NPs) derived from bulk MOFs (Co-based MOF, Co(mIM)2 (mIM = 2-methylimidazole). The presence of cobalt oxide (CoOx) hollow NPs with a uniform size of 35 nm monodispersed in N-doped graphene aerogels (NG-A) was confirmed by microscopic analyses. The evolved structure (denoted as CoOx/NG-A) served as a robust Pt-free electrocatalyst with excellent activity for the oxygen reduction reaction (ORR) in an alkaline electrolyte solution. In addition, when Co was removed, the resulting nitrogen-rich porous carbon-graphene composite electrode (denoted as C/NG-A) displayed exceptional capacitance and rate capability in a supercapacitor. Further, this method is readily applicable to creation of functional metal oxide hollow nanoparticles on the surface of other carbon materials such as graphene and carbon nanotubes, providing a good opportunity to tune their physical or chemical activities.

  10. Electroless synthesis of cellulose-metal aerogel composites

    NASA Astrophysics Data System (ADS)

    Schestakow, M.; Muench, F.; Reimuth, C.; Ratke, L.; Ensinger, W.

    2016-05-01

    An environmentally benign electroless plating procedure enables a dense coating of silver nanoparticles onto complex cellulose aerogel structures. In the course of the nanoparticle deposition, the morphological characteristics of the aerogel are preserved, such as the continuous self-supporting network structure. While achieving a high metal loading, the large specific surface area as well as the low density is retained in the cellulose-metal aerogel composite. Due to the interesting features of cellulose aerogel substrates (e.g., the accessibility of its open-porous network) and electroless plating (e.g., the possibility to control the density, size, and composition of the deposited metal nanoparticles), the outlined synthetic scheme provides a facile and flexible route towards advanced materials in heterogeneous catalysis, plasmonics, and sensing.

  11. Polyimide-Foam/Aerogel Composites for Thermal Insulation

    NASA Technical Reports Server (NTRS)

    Williams, Martha; Fesmire, James; Sass, Jared; Smith, Trent; Weoser. Erol

    2009-01-01

    Composites of specific types of polymer foams and aerogel particles or blankets have been proposed to obtain thermal insulation performance superior to those of the neat polyimide foams. These composites have potential to also provide enhanced properties for vibration dampening or acoustic attenuation. The specific type of polymer foam is denoted "TEEK-H", signifying a series, denoted H, within a family of polyimide foams that were developed at NASA s Langley Research Center and are collectively denoted TEEK (an acronym of the inventors names). The specific types of aerogels include Nanogel aerogel particles from Cabot Corporation in Billerica, MA. and of Spaceloft aerogel blanket from Aspen Aerogels in Northborough, MA. The composites are inherently flame-retardant and exceptionally thermally stable. There are numerous potential uses for these composites, at temperatures from cryogenic to high temperatures, in diverse applications that include aerospace vehicles, aircraft, ocean vessels, buildings, and industrial process equipment. Some low-temperature applications, for example, include cryogenic storage and transfer or the transport of foods, medicines, and chemicals. Because of thermal cycling, aging, and weathering most polymer foams do not perform well at cryogenic temperatures and will undergo further cracking over time. The TEEK polyimides are among the few exceptions to this pattern, and the proposed composites are intended to have all the desirable properties of TEEK-H foams, plus improved thermal performance along with enhanced vibration or acoustic-attenuation performance. A composite panel as proposed would be fabricated by adding an appropriate amount of TEEK friable balloons into a mold to form a bottom layer. A piece of flexible aerogel blanket material, cut to the desired size and shape, would then be placed on the bottom TEEK layer and sandwiched between another top layer of polyimide friable balloons so that the aerogel blanket would become

  12. Silica/Polymer and Silica/Polymer/Fiber Composite Aerogels

    NASA Technical Reports Server (NTRS)

    Ou, Danny; Stepanian, Christopher J.; Hu, Xiangjun

    2010-01-01

    Aerogels that consist, variously, of neat silica/polymer alloys and silica/polymer alloy matrices reinforced with fibers have been developed as materials for flexible thermal-insulation blankets. In comparison with prior aerogel blankets, these aerogel blankets are more durable and less dusty. These blankets are also better able to resist and recover from compression . an important advantage in that maintenance of thickness is essential to maintenance of high thermal-insulation performance. These blankets are especially suitable as core materials for vacuum- insulated panels and vacuum-insulated boxes of advanced, nearly seamless design. (Inasmuch as heat leakage at seams is much greater than heat leakage elsewhere through such structures, advanced designs for high insulation performance should provide for minimization of the sizes and numbers of seams.) A silica/polymer aerogel of the present type could be characterized, somewhat more precisely, as consisting of multiply bonded, linear polymer reinforcements within a silica aerogel matrix. Thus far, several different polymethacrylates (PMAs) have been incorporated into aerogel networks to increase resistance to crushing and to improve other mechanical properties while minimally affecting thermal conductivity and density. The polymethacrylate phases are strongly linked into the silica aerogel networks in these materials. Unlike in other organic/inorganic blended aerogels, the inorganic and organic phases are chemically bonded to each other, by both covalent and hydrogen bonds. In the process for making a silica/polymer alloy aerogel, the covalent bonds are introduced by prepolymerization of the methacrylate monomer with trimethoxysilylpropylmethacrylate, which serves as a phase cross-linker in that it contains both organic and inorganic monomer functional groups and hence acts as a connector between the organic and inorganic phases. Hydrogen bonds are formed between the silanol groups of the inorganic phase and the

  13. Composite aerogel insulation for cryogenic liquid storage

    NASA Astrophysics Data System (ADS)

    Kyeongho, Kim; Hyungmook, Kang; Soojin, Shin; In Hwan, Oh; Changhee, Son; Hyung, Cho Yun; Yongchan, Kim; Sarng Woo, Karng

    2017-02-01

    High porosity materials such as aerogel known as a good insulator in a vacuum range (10-3 ∼ 1 Torr) was widely used to storage and to transport cryogenic fluids. It is necessary to be investigated the performance of aerogel insulations for cryogenic liquid storage in soft vacuum range to atmospheric pressure. A one-dimensional insulating experimental apparatus was designed and fabricated to consist of a cold mass tank, a heat absorber and an annular vacuum space with 5-layer (each 10 mm thickness) of the aerogel insulation materials. Aerogel blanket for cryogenic (used maximum temperature is 400K), aerogel blanket for normal temperature (used maximum temperature is 923K), and combination of the two kinds of aerogel blankets were 5-layer laminated between the cryogenic liquid wall and the ambient wall in vacuum space. Also, 1-D effective thermal conductivities of the insulation materials were evaluated by measuring boil-off rate from liquid nitrogen and liquid argon. In this study, the effective thermal conductivities and the temperature-thickness profiles of the two kinds of insulators and the layered combination of the two different aerogel blankets were presented.

  14. Heat-insulating aerogel composites for a hydrothermal reactor

    NASA Astrophysics Data System (ADS)

    Vedenin, A. D.; Vityaz', P. A.; Galinovskii, A. L.; Ivanova, I. S.; Mazalov, Yu. A.; Pustovgar, A. P.; Sudnik, L. V.

    2016-12-01

    The SiO2-TiO2 aerogel composites used in the heat insulation of a hydrothermal reactor and the method of their fabrication using a liquid glass technology are analyzed. The process of fabrication of the composite material includes the following stages: the ion exchange of sodium liquid glass with the formation of silica hydrosol; the concentration of hydrosol; the formation of hydrogel and its maturing; the formation of alcogel of an SiO2-TiO2 composite material; surface modification; subcritical drying of alcogel with the formation of SiO2-TiO2 composite ambigel; and its heat treatment, granulation, and classification. The influence of infrared absorber (titanium dioxide) and the temperature of heat treatment of an SiO2-TiO2 aerogel composite material on its structural and thermal characteristics is studied.

  15. Material Properties for Fiber-Reinforced Silica Aerogels

    NASA Technical Reports Server (NTRS)

    White, Susan; Rouanet, Stephane; Moses, John; Arnold, James O. (Technical Monitor)

    1994-01-01

    Ceramic fiber-reinforced silica aerogels are novel materials for high performance insulation, including thermal protection materials. Experimental data are presented for the thermal and mechanical properties, showing the trends exhibited over a range of fiber loadings and silica aerogel densities. Test results are compared to that of unreinforced bulk aerogels.

  16. Lightweight and thermally insulating aerogel glass materials

    NASA Astrophysics Data System (ADS)

    Gao, Tao; Jelle, Bjørn Petter; Gustavsen, Arild; He, Jianying

    2014-07-01

    Glass represents an important and widely used building material, and crucial aspects to be addressed include thermal conductivity, visible light transmittance, and weight for windows with improved energy efficiency. In this work, by sintering monolithic silica aerogel precursors at elevated temperatures, aerogel glass materials were successfully prepared, which were characterized by low thermal conductivity [k ≈ 0.17-0.18 W/(mK)], high visible transparency (T vis ≈ 91-96 % at 500 nm), low density (ρ ≈ 1.60-1.79 g/cm3), and enhanced mechanical strength (typical elastic modulus E r ≈ 2.0-6.4 GPa). These improved properties were derived from a series of successive gelation and aging steps during the desiccation of silica aerogels. The involved sol → gel → glass transformation was investigated by means of thermo-gravimetric analysis, scanning electron microscopy, nanoindentation, and Fourier transform infrared spectroscopy. Strategies of improving further the mechanical strength of the obtained aerogel glass materials are also discussed.

  17. Hydrothermal synthesis of layer-controlled MoS2/graphene composite aerogels for lithium-ion battery anode materials

    NASA Astrophysics Data System (ADS)

    Zhao, Bing; Wang, Zhixuan; Gao, Yang; Chen, Lu; Lu, Mengna; Jiao, Zheng; Jiang, Yong; Ding, Yuanzhang; Cheng, Lingli

    2016-12-01

    Layer-controlled MoS2/graphene aerogels (MoS2/GA) composites are synthesized by a facile hydrothermal route, in which few-layer (5-15 layers) MoS2 nanosheets with high crystalline are decorated on the surface of graphene nanosheets homogeneously and tightly. The number of the MoS2 layers can be easily controlled through adjusting the amount of molybdenum source in the reaction system. Moreover, the growth mechanism of the lay-controlled MoS2/GA composites is proposed. The three-dimensional MoS2/GA with macroporous micro-structure not only shortens the transportation length of electrons and ions, but also restrains the re-stacking of MoS2 effectively, stabilizing the electrode structure during repeated charging/discharging processes. Electrochemical tests demonstrate that this few-layer MoS2/GA composite exhibits a high reversible capacity of 1085.0 mAh g-1 at current density of 100 mA g-1, as well as extraordinarily high cycling stability and rate capability.

  18. Heat insulation performance, mechanics and hydrophobic modification of cellulose-SiO2 composite aerogels.

    PubMed

    Shi, Jianjun; Lu, Lingbin; Guo, Wantao; Zhang, Jingying; Cao, Yang

    2013-10-15

    Cellulose-SiO2 composite hydrogel was prepared by combining the NaOH/thiourea/H2O solvent system and the immersion method with controlling the hydrolysis-fasculation rate of tetraethyl orthosilicate (TEOS). The hydrophobic composite aerogels were obtained through the freeze-drying technology and the cold plasma modification technology. Composite SiO2 could obviously reduce the thermal conductivity of cellulose aerogel. The thermal conductivity could be as low as 0.026 W/(mK). The thermal insulation mechanism of the aerogel material was discussed. Composite SiO2 reduced hydrophilicity of cellulose aerogel, but environmental humidity had a significant influence on heat insulation performance. After hydrophobic modification using CCl4 as plasma was conducted, the surface of composite aerogel was changed from hydrophilic to hydrophobic and water contact angle was as high as 132°. The modified composite aerogel still kept good heat insulation performance. This work provided a foundation for the possibility of applying cellulose-SiO2 composite aerogel in the insulating material field.

  19. Aerogel and xerogel composites for use as carbon anodes

    DOEpatents

    Cooper, John F.; Tillotson, Thomas M.; Hrubesh, Lawrence W.

    2010-10-12

    A method for forming a reinforced rigid anode monolith and fuel and product of such method. The method includes providing a solution of organic aerogel or xerogel precursors including at least one of a phenolic resin, phenol (hydroxybenzene), resorcinol(1,3-dihydroxybenzene), or catechol(1,2-dihydroxybenzene); at least one aldehyde compound selected from the group consisting of formaldehyde, acetaldehyde, and furfuraldehyde; and an alkali carbonate or phosphoric acid catalyst; adding internal reinforcement materials comprising carbon to said precursor solution to form a precursor mixture; gelling said precursor mixture to form a composite gel; drying said composite gel; and pyrolyzing said composite gel to form a wettable aerogel/carbon composite or a wettable xerogel/carbon composite, wherein said composites comprise chars and said internal reinforcement materials, and wherein said composite is suitable for use as an anode with the chars being fuel capable of being combusted in a molten salt electrochemical fuel cell in the range from 500 C to 800 C to produce electrical energy. Additional methods and systems/compositions are also provided.

  20. Sulfur-Containing Organic-Inorganic Hybrid Gel Compositions and Aerogels

    NASA Technical Reports Server (NTRS)

    Evans, Owen R. (Inventor); Dong, Wenting (Inventor); Deshpande, Kiranmayi (Inventor)

    2015-01-01

    Methods and materials are described for preparing organic-inorganic hybrid gel compositions where a sulfur-containing cross-linking agent covalently links the organic and inorganic components. The gel compositions are further dried to provide porous gel compositions and aerogels. The mechanical and thermal properties of the dried gel compositions are also disclosed.

  1. Mechanically Strong Lightweight Materials for Aerospace Applications (x-aerogels)

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas

    2005-01-01

    The X-Aerogel is a new NASA-developed strong lightweight material made by reacting the mesoporous surfaces of 3-D networks of inorganic nanoparticles with polymeric crosslinkers. Since the relative amount of the crosslinker and the backbone are comparable, X-Aerogels can be viewed either as aerogels modified by templated accumulation of polymer on the skeletal nanoparticles, or as nanoporous polymers made by templated casting of polymeric precursors on a nanostructured framework. The most striking feature of X-Aerogels is that for a nominal 3-fold increase in density (still a ultralightweight material), the mechanical strength can be up to 300 times higher than the strength of the underlying native aerogel. Thus, X-Aerogels combine a multiple of the specific compressive strength of steel, with the thermal conductivity of styrofoam. XAerogels have been demonstrated with several polymers such as polyurethanes/polyureas, epoxies and polyolefins, while crosslinking of approximately 35 different oxide aerogels yields a wide variety of dimensionally stable, porous lightweight materials with interesting structural, magnetic and optical properties. X-Aerogels are evaluated for cryogenic rocket fuel storage tanks and for Advanced EVA suits, where they will play the dual role of the thermal insulator/structural material. Along the same lines, major impact is also expected by the use of X-Aerogels in structural components/thermal protection for small satellites, spacecrafts, planetary vehicles and habitats.

  2. Multi-scale cellulose based new bio-aerogel composites with thermal super-insulating and tunable mechanical properties.

    PubMed

    Seantier, Bastien; Bendahou, Dounia; Bendahou, Abdelkader; Grohens, Yves; Kaddami, Hamid

    2016-03-15

    Bio-composite aerogels based on bleached cellulose fibers (BCF) and cellulose nanoparticles having various morphological and physico-chemical characteristics are prepared by a freeze-drying technique and characterized. The various composite aerogels obtained were compared to a BCF aerogel used as the reference. Severe changes in the material morphology were observed by SEM and AFM due to a variation of the cellulose nanoparticle properties such as the aspect ratio, the crystalline index and the surface charge density. BCF fibers form a 3D network and they are surrounded by the cellulose nanoparticle thin films inducing a significant reduction of the size of the pores in comparison with a neat BCF based aerogel. BET analyses confirm the appearance of a new organization structure with pores of nanometric sizes. As a consequence, a decrease of the thermal conductivities is observed from 28mWm(-1)K(-1) (BCF aerogel) to 23mWm(-1)K(-1) (bio-composite aerogel), which is below the air conductivity (25mWm(-1)K(-1)). This improvement of the insulation properties for composite materials is more pronounced for aerogels based on cellulose nanoparticles having a low crystalline index and high surface charge (NFC-2h). The significant improvement of their insulation properties allows the bio-composite aerogels to enter the super-insulating materials family. The characteristics of cellulose nanoparticles also influence the mechanical properties of the bio-composite aerogels. A significant improvement of the mechanical properties under compression is obtained by self-organization, yielding a multi-scale architecture of the cellulose nanoparticles in the bio-composite aerogels. In this case, the mechanical property is more dependent on the morphology of the composite aerogel rather than the intrinsic characteristics of the cellulose nanoparticles.

  3. Non-silica aerogels as hypervelocity particle capture materials

    NASA Astrophysics Data System (ADS)

    Jones, Steven M.

    2010-01-01

    The Stardust sample return mission to the comet Wild 2 used silica aerogel as the principal cometary and interstellar particle capture and return medium. However, since both cometary dust and interstellar grains are composed largely of silica, using a silica collector complicates the science that can be accomplished with these particles. The use of non-silica aerogel in future extra-terrestrial particle capture and return missions would expand the scientific value of these missions. Alumina, titania, germania, zirconia, tin oxide, and resorcinol/formaldehyde aerogels were produced and impact tested with 20, 50, and 100μm glass microspheres to determine the suitability of different non-silica aerogels as hypervelocity particle capture mediums. It was found that non-silica aerogels do perform as efficient hypervelocity capture mediums, with alumina, zirconia, and resorcinol/formaldehyde aerogels proving to be the best of the materials tested.

  4. Organic and composite aerogels through ring opening metathesis polymerization (ROMP)

    NASA Astrophysics Data System (ADS)

    Mohite, Dhairyashil P.

    Aerogels are open-cell nanoporous materials, unique in terms of low density, low thermal conductivity, low dielectric constants and high acoustic attenuation. Those exceptional properties stem from their complex hierarchical solid framework (agglomerates of porous, fractal secondary nanoparticles), but they also come at a cost: low mechanical strength. This issue has been resolved by crosslinking silica aerogels with organic polymers. The crosslinking polymer has been assumed to form a conformal coating on the surface of the skeletal framework by covalent bridging elementary building blocks. However, "assuming" is not enough: for correlating nanostructure with bulk material properties, it is important to know the exact location of the polymer on the aerogel backbone. For that investigation, we synthesized a new norbornene derivative of triethoxysilane (Si-NAD) that can be attached to skeletal silica nanoparticles. Those norbornene-modified silica aerogels were crosslinked with polynorbornene by ring opening metathesis polymerization (ROMP). The detailed correlation between nanostructure and mechanical strength was probed with a wide array of characterization methods ranging from molecular to bulk through nano. Subsequently, it was reasoned that since the polymer dominates the exceptional mechanical properties of polymer crosslinked aerogels, purely organic aerogels with the same nanostructure and interparticle connectivity should behave similarly. That was explored and confirmed by: (a) synthesis of a difunctional nadimide monomer (bis-NAD), and preparation of robust polyimide aerogels by ROMP of its norbornene end-caps; and, (b) synthesis of dimensionally stable ROMP-derived polydicyclopentadiene aerogels by grafting the nanostructure with polymethylmethacrylate (PMMA) via free radical chemistry.

  5. Compression molding of aerogel microspheres

    DOEpatents

    Pekala, Richard W.; Hrubesh, Lawrence W.

    1998-03-24

    An aerogel composite material produced by compression molding of aerogel microspheres (powders) mixed together with a small percentage of polymer binder to form monolithic shapes in a cost-effective manner. The aerogel composites are formed by mixing aerogel microspheres with a polymer binder, placing the mixture in a mold and heating under pressure, which results in a composite with a density of 50-800 kg/m.sup.3 (0.05-0.80 g/cc). The thermal conductivity of the thus formed aerogel composite is below that of air, but higher than the thermal conductivity of monolithic aerogels. The resulting aerogel composites are attractive for applications such as thermal insulation since fabrication thereof does not require large and expensive processing equipment. In addition to thermal insulation, the aerogel composites may be utilized for filtration, ICF target, double layer capacitors, and capacitive deionization.

  6. Compression molding of aerogel microspheres

    DOEpatents

    Pekala, R.W.; Hrubesh, L.W.

    1998-03-24

    An aerogel composite material produced by compression molding of aerogel microspheres (powders) mixed together with a small percentage of polymer binder to form monolithic shapes in a cost-effective manner is disclosed. The aerogel composites are formed by mixing aerogel microspheres with a polymer binder, placing the mixture in a mold and heating under pressure, which results in a composite with a density of 50--800 kg/m{sup 3} (0.05--0.80 g/cc). The thermal conductivity of the thus formed aerogel composite is below that of air, but higher than the thermal conductivity of monolithic aerogels. The resulting aerogel composites are attractive for applications such as thermal insulation since fabrication thereof does not require large and expensive processing equipment. In addition to thermal insulation, the aerogel composites may be utilized for filtration, ICF target, double layer capacitors, and capacitive deionization. 4 figs.

  7. Mechanically Strong, Lightweight Porous Materials Developed (X-Aerogels)

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas

    2005-01-01

    Aerogels are attractive materials for a variety of NASA missions because they are ultralightweight, have low thermal conductivity and low-dielectric constants, and can be readily doped with other materials. Potential NASA applications for these materials include lightweight insulation for spacecraft, habitats, and extravehicular activity (EVA) suits; catalyst supports for fuel cell and in situ resource utilization; and sensors for air- and water-quality monitoring for vehicles, habitats, and EVA suits. Conventional aerogels are extremely fragile and require processing via supercritical fluid extraction, which adds cost to the production of an aerogel and limits the sizes and geometries of samples that can be produced from these materials. These issues have severely hampered the application of aerogels in NASA missions.

  8. Few-layer MoS2-anchored graphene aerogel paper for free-standing electrode materials

    NASA Astrophysics Data System (ADS)

    Lee, Wee Siang Vincent; Peng, Erwin; Loh, Tamie Ai Jia; Huang, Xiaolei; Xue, Jun Min

    2016-04-01

    To reduce the reliance on polymeric binders, conductive additives, and metallic current collectors during the electrode preparation process, as well as to assess the true performance of lithium ion battery (LIB) anodes, a free-standing electrode has to be meticulously designed. Graphene aerogel is a popular scaffolding material that has been widely used with embedded nanoparticles for application in LIB anodes. However, the current graphene aerogel/nanoparticle composite systems still involve decomposition into powder and the addition of additives during electrode preparation because of the thick aerogel structure. To further enhance the capacity of the system, MoS2 was anchored onto a graphene aerogel paper and the composite was used directly as an LIB anode. The resultant additive-free MoS2/graphene aerogel paper composite exhibited long cyclic performance with 101.1% retention after 700 cycles, which demonstrates the importance of free-standing electrodes in enhancing cyclic stability.To reduce the reliance on polymeric binders, conductive additives, and metallic current collectors during the electrode preparation process, as well as to assess the true performance of lithium ion battery (LIB) anodes, a free-standing electrode has to be meticulously designed. Graphene aerogel is a popular scaffolding material that has been widely used with embedded nanoparticles for application in LIB anodes. However, the current graphene aerogel/nanoparticle composite systems still involve decomposition into powder and the addition of additives during electrode preparation because of the thick aerogel structure. To further enhance the capacity of the system, MoS2 was anchored onto a graphene aerogel paper and the composite was used directly as an LIB anode. The resultant additive-free MoS2/graphene aerogel paper composite exhibited long cyclic performance with 101.1% retention after 700 cycles, which demonstrates the importance of free-standing electrodes in enhancing cyclic

  9. Selenium sulfide@mesoporous carbon aerogel composite for rechargeable lithium batteries with good electrochemical performance

    NASA Astrophysics Data System (ADS)

    Zhang, Zhian; Jiang, Shaofeng; Lai, Yanqing; Li, Junming; Song, Junxiao; Li, Jie

    2015-06-01

    Selenium sulfide (SeS2) encapsulated into 3D interconnected mesoporous carbon aerogels (MCA) as a selenium sulfide/carbon composite material was prepared for lithium batteries. Scanning electron microscope (SEM) and transmission electron microscope (TEM) observations show the mesoporous structures of the carbon aerogels and the homogeneous distribution of selenium sulfide in the composite. The electrochemical performances of the selenium sulfide@mesoporous carbon aerogel (SeS2@MCA) composite cathode was evaluated using cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy. It is found that the SeS2@MCA cathode shows a better electrochemical performance than the pristine SeS2 cathode. The SeS2@MCA composite with selenium sulfide content of 49.3 wt.% displays an initial discharge capacity of 1150 mAh g-1 at 50 mA g-1 and a reversible discharge capacity of 601 mAh g-1 after 10 cycles at 500 mA g-1. The better electrochemical performance benefit from the high electron conductivity and 3D interconnected porous structures of the carbon aerogels, which contribute to dispersing SeS2 and trapping polysulfide and polyselenide intermediates within the skeleton structure of the mesoporous carbon aerogels.

  10. Using Silica Sol as a Nanoglue to Prepare Nanoscale Mesoporous Composite Gel and Aerogels

    DTIC Science & Technology

    2000-03-31

    entitled: "USING SILICA SOL AS A NANOGLUE TO PREPARE NANOSCALE MESOPOROUS COMPOSITE GEL AND AEROGELS" Request for release for publication. REF...L. Anderson, Karen E. Swider Lyons, Ceha I. Merzbacher, Joseph V. Ryan and Veronica M. Cepak 3 MESOPOROUS COMPOSITE GELS AND AEROGELS 4 5 6 1...to mesoporous composite gels and aerogels and their various uses. 9 10 2. Description of the Background Art 11 Xerogels and aerogels

  11. Scrubbing of contaminants from contaminated air streams with aerogel materials with optional photocatalytic destruction

    DOEpatents

    Attia, Yosry A.

    2000-01-01

    Disclosed is a method for separating a vaporous or gaseous contaminant from an air stream contaminated therewith. This method includes the steps of: (a) passing said contaminated air into a contact zone in which is disposed an aerogel material capable of selecting adsorbing said contaminant from air and therein contacting said contaminated air with an aerogel material; and (b) withdrawing from said zone, air depleted of said contaminant. For present purposes, "contaminant" means a material not naturally occurring in ambient air and/or a material naturally occurring in air but present at a concentration above that found in ambient air. Thus, the present invention scrubs (or treats) air for the purpose of returning it to its ambient composition. Also disclosed herein is a process for the photocatalytic destruction of contaminants from an air stream wherein the contaminated air stream is passed into a control cell or contact zone in which is disposed a photocatalytic aerogel and exposing said aerogel to ultraviolet (UV) radiation for photocatalytically destroying the adsorbed contaminant, and withdrawing from said cell an exhaust air stream depleted in said contaminant.

  12. Polyolefin-Based Aerogels

    NASA Technical Reports Server (NTRS)

    Lee, Je Kyun; Gould, George

    2012-01-01

    An organic polybutadiene (PB) rubberbased aerogel insulation material was developed that will provide superior thermal insulation and inherent radiation protection, exhibiting the flexibility, resiliency, toughness, and durability typical of the parent polymer, yet with the low density and superior insulation properties associated with the aerogels. The rubbery behaviors of the PB rubber-based aerogels are able to overcome the weak and brittle nature of conventional inorganic and organic aerogel insulation materials. Additionally, with higher content of hydrogen in their structure, the PB rubber aerogels will also provide inherently better radiation protection than those of inorganic and carbon aerogels. Since PB rubber aerogels also exhibit good hydrophobicity due to their hydrocarbon molecular structure, they will provide better performance reliability and durability as well as simpler, more economic, and environmentally friendly production over the conventional silica or other inorganic-based aerogels, which require chemical treatment to make them hydrophobic. Inorganic aerogels such as silica aerogels demonstrate many unusual and useful properties. There are several strategies to overcoming the drawbacks associated with the weakness and brittleness of silica aerogels. Development of the flexible fiber-reinforced silica aerogel composite blanket has proven one promising approach, providing a conveniently fielded form factor that is relatively robust toward handling in industrial environments compared to silica aerogel monoliths. However, the flexible silica aerogel composites still have a brittle, dusty character that may be undesirable, or even intolerable, in certain applications. Although the cross-linked organic aerogels such as resorcinol-formaldehyde (RF), polyisocyanurate, and cellulose aerogels show very high impact strength, they are also very brittle with little elongation (i.e., less rubbery). Also, silica and carbon aerogels are less efficient

  13. Experimental impact features in Stardust aerogel: How track morphology reflects particle structure, composition, and density

    NASA Astrophysics Data System (ADS)

    Kearsley, Anton T.; Burchell, Mark J.; Price, Mark C.; Cole, Michael J.; Wozniakiewicz, Penelope J.; Ishii, Hope A.; Bradley, John P.; Fries, Marc; Foster, Nicholas J.

    2012-04-01

    The Stardust collector shows diverse aerogel track shapes created by impacts of cometary dust. Tracks have been classified into three broad types (A, B, and C), based on relative dimensions of the elongate "stylus" (in Type A "carrots") and broad "bulb" regions (Types B and C), with occurrence of smaller "styli" in Type B. From our experiments, using a diverse suite of projectile particles shot under Stardust cometary encounter conditions onto similar aerogel targets, we describe differences in impactor behavior and aerogel response resulting in the observed range of Stardust track shapes. We compare tracks made by mineral grains, natural and artificial aggregates of differing subgrain sizes, and diverse organic materials. Impacts of glasses and robust mineral grains generate elongate, narrow Type A tracks (as expected), but with differing levels of abrasion and lateral branch creation. Aggregate particles, both natural and artificial, of a wide range of compositions and volatile contents produce diverse Type B or C shapes. Creation of bulbous tracks is dependent upon impactor internal structure, grain size distribution, and strength, rather than overall grain density or content of volatile components. Nevertheless, pure organic particles do create Type C, or squat Type A* tracks, with length to width ratios dependent upon both specific organic composition and impactor grain size. From comparison with the published shape data for Stardust aerogel tracks, we conclude that the abundant larger Type B tracks on the Stardust collector represent impacts by particles similar to our carbonaceous chondrite meteorite powders.

  14. Ultrafast Sol-Gel Synthesis of Graphene Aerogel Materials

    SciTech Connect

    Lim, Mathew; Hu, Matthew; Manandhar, Sandeep; Sakshaug, Avery; Strong, Adam; Riley, Leah; Pauzauskie, Peter J.

    2015-12-01

    Graphene aerogels derived from graphene-oxide (GO) starting materials recently have been shown to exhibit a combination of high electrical conductivity, chemical stability, and low cost that has enabled a range of electrochemical applications. Standard synthesis protocols for manufacturing graphene aerogels require the use of sol-gel chemical reactions that are maintained at high temperatures for long periods of time ranging from 12 hours to several days. Here we report an ultrafast, acid-catalyzed sol-gel formation process in acetonitrile in which wet GO-loaded gels are realized within 2 hours at temperatures below 45°C. Spectroscopic and electrochemical analysis following supercritical drying and pyrolysis confirms the reduction of the GO in the aerogels to sp2 carbon crystallites with no residual carbon–nitrogen bonds from the acetonitrile or its derivatives. This rapid synthesis enhances the prospects for large-scale manufacturing of graphene aerogels for use in numerous applications including sorbents for environmental toxins, support materials for electrocatalysis, and high-performance electrodes for electrochemical capacitors and solar cells.

  15. Flexible, Mechanically Durable Aerogel Composites for Oil Capture and Recovery.

    PubMed

    Karatum, Osman; Steiner, Stephen A; Griffin, Justin S; Shi, Wenbo; Plata, Desiree L

    2016-01-13

    More than 30 years separate the two largest oil spills in North American history (the Ixtoc I and Macondo well blowouts), yet the responses to both disasters were nearly identical in spite of advanced material innovation during the same time period. Novel, mechanically durable sorbents could enable (a) sorbent use in the open ocean, (b) automated deployment to minimize workforce exposure to toxic chemicals, and (c) mechanical recovery of spilled oils. Here, we explore the use of two mechanically durable, low-density (0.1-0.2 g cm(-3)), highly porous (85-99% porosity), hydrophobic (water contact angles >120°), flexible aerogel composite blankets as sorbent materials for automated oil capture and recovery: Cabot Thermal Wrap (TW) and Aspen Aerogels Spaceloft (SL). Uptake of crude oils (Iraq and Sweet Bryan Mound oils) was 8.0 ± 0.1 and 6.5 ± 0.3 g g(-1) for SL and 14.0 ± 0.1 and 12.2 ± 0.1 g g(-1) for TW, respectively, nearly twice as high as similar polyurethane- and polypropylene-based devices. Compound-specific uptake experiments and discrimination against water uptake suggested an adsorption-influenced sorption mechanism. Consistent with that mechanism, chemical extraction oil recoveries were 95 ± 2 (SL) and 90 ± 2% (TW), but this is an undesirable extraction route in decentralized oil cleanup efforts. In contrast, mechanical extraction routes are favorable, and a modest compression force (38 N) yielded 44.7 ± 0.5% initially to 42.0 ± 0.4% over 10 reuse cycles for SL and initially 55.0 ± 0.1% for TW, degrading to 30.0 ± 0.2% by the end of 10 cycles. The mechanical integrity of SL deteriorated substantially (800 ± 200 to 80 ± 30 kPa), whereas TW was more robust (380 ± 80 to 700 ± 100 kPa) over 10 uptake-and-compression extraction cycles.

  16. 1-Dimensional AgVO3 nanowires hybrid with 2-dimensional graphene nanosheets to create 3-dimensional composite aerogels and their improved electrochemical properties.

    PubMed

    Liang, Liying; Xu, Yimeng; Lei, Yong; Liu, Haimei

    2014-04-07

    Three-dimensional (3D) porous composite aerogels have been synthesized via an innovative in situ hydrothermal method assisted by a freeze-drying process. In this hybrid structure, one-dimensional (1D) AgVO3 nanowires are uniformly dispersed on two-dimensional (2D) graphene nanosheet surfaces and/or are penetrated through the graphene sheets, forming 3D porous composite aerogels. As cathode materials for lithium-ion batteries, the composite aerogels exhibit high discharge capacity, excellent rate capability, and good cycling stability.

  17. Composite,Cryogenic, Conformal, Common Bulkhead, Aerogel-Insulated Tank (CBAT)

    NASA Technical Reports Server (NTRS)

    Roberts, J. K.; Kovach, M. P.; McMahon, W. M.; Finckenor, J. L.

    2001-01-01

    The objective of the Composite, Cryogenic, Conformal, Common Bulkhead, Aerogel-insulated Tank (CBAT) Program is to evaluate the potential for using various new technologies in next generation Reusable Launch Vehicles (RLVs) through design, fabrication, and testing of a subscale system. The new technologies include polymer matrix composites (PMCs), conformal propellant storage, common bulkhead packaging, and aerogel insulation. The National Aeronautics and Space Administration (NASA) and Thiokol Propulsion from Cordant Technologies are working together to develop a design and the processing methodologies which will allow integration of these technologies into a single structural component assembly. Such integration will significantly decrease subsystem weight and reduce shape, volume, and placement restrictions, thereby enhancing overall launch system performance. This paper/presentation focuses on the challenges related to materials and processes that were encountered and overcome during this program to date.

  18. Advanced Aerogel Technology

    NASA Technical Reports Server (NTRS)

    Jones, Steven

    2013-01-01

    The JPL Aerogel Laboratory has made aerogels for NASA flight missions, e.g., Stardust, 2003 Mars Exploration Rovers and the 2011 Mars Science Laboratory, as well as NASA research projects for the past 14 years. During that time it has produced aerogels of a range of shapes, sizes, densities and compositions. Research is ongoing in the development of aerogels for future sample capture and return missions and for thermal insulation for both spacecraft and scientific instruments. For the past several years, the JPL Aerogel Laboratory has been developing, producing and testing a new composite material for use as the high temperature thermal insulation in the Advanced Sterling Radioisotope Generator (ASRG) being developed by Lockheed Martin and NASA. The composite is made up of a glass fiber felt, silica aerogel, Titania powder, and silica powder. The oxide powders are included to reduce irradiative heat transport at elevated temperatures. These materials have thermal conductivity values that are the same as the best commercially produced high temperature insulation materials, and yet are 40% lighter. By greatly reducing the amount of oxide powder in the composite, the density, and therefore for the value of the thermal conductivity, would be reduced. The JPL Aerogel Laboratory has experimented with using glass fiber felt, expanded glass fiber felt and loose fibers to add structural integrity to silica aerogels. However, this work has been directed toward high temperature applications. By conducting a brief investigation of the optimal combination of fiber reinforcement and aerogel density, a durable, extremely efficient thermal insulation material for ambient temperature applications would be produced. If a transparent thermal insulation is desired, then aerogel is an excellent candidate material. At typical ambient temperatures, silica aerogel prevents the transport of heat via convection and conduction due to its highly porous nature. To prevent irradiative thermal

  19. Polyolefin-based aerogels

    NASA Technical Reports Server (NTRS)

    Lee, Je Kyun (Inventor); Gould, Gerogle L. (Inventor)

    2010-01-01

    The present invention relates to cross-linked polyolefin aerogels in simple and fiber-reinforced composite form. Of particular interest are polybutadiene aerogels. Especially aerogels derived from polybutadienes functionalized with anhydrides, amines, hydroxyls, thiols, epoxies, isocyanates or combinations thereof.

  20. Carbon aerogels: An update on structure, properties, and applications

    SciTech Connect

    Pekala, R.W.; Mayer, S.T.; Kaschmitter, J.L.; Kong, F.M.

    1993-07-01

    Aerogels are unique porous materials whose composition, structure, and properties can be controlled at the nanometer scale. This paper examines the synthesis of organic aerogels and their carbonized derivatives. Carbon aerogels have low electrical resistivity, high surface area, and a tunable pore size. These materials are finding applications as electrodes in double layer capacitors.

  1. Porous silica aerogel/honeycomb ceramic composites fabricated by an ultrasound stimulation process

    NASA Astrophysics Data System (ADS)

    Hong, Sun-Wook; Song, In-Hyuck; Park, Young-Jo; Yun, Hui-suk; Hwang, Ki-Young; Rhee, Young-Woo

    2012-06-01

    The synthesis behavior of nanoporous hydrophobic silica aerogel in honeycomb-type ceramics was observed using TEOS and MTES. Silica aerogel in the honeycomb ceramic structure was synthesized under ultrasound stimulation. The synthesized aerogel/honeycomb ceramic composites were dried under supercritical CO2 drying conditions. The values for the line shrinkage of the wet gels during supercritical CO2 drying declined from 19% to 4% with an increase in the H2O/TEOS molar ratio from 8 to 24. Low shrinkage was a key factor in increasing the interface compatibility with the aerogel/honeycomb ceramic composites. The optimum condition of silica aerogel in the honeycomb-type ceramic structure had a TEOS:MTES: H2O:glycerol ratio equal to 1:1.2:24:0.05 (mol%).

  2. Simplified Waterproofing of Aerogels

    NASA Technical Reports Server (NTRS)

    Hsu, Ming-Ta S.; Chen, Timothy S.; White, Susan; Rasky, Daniel J.

    2003-01-01

    A relatively simple silanization process has been developed for waterproofing or rewaterproofing aerogels, xerogels, and aerogel/tile composites, and other, similar low-density, highly microporous materials. Such materials are potentially attractive for a variety of applications especially for thermal-insulation panels that are required to be thin and lightweight. Unfortunately, such materials are also hydrophilic and tend to collapse after adsorbing water from the air. Hence, an effective means of waterproofing is necessary to enable practical exploitation of aerogels and the like. Older processes for waterproofing aerogels are time-consuming, labor-intensive, and expensive, relative to the present process. Each of the older processes includes a number of different chemical treatment steps, and some include the use of toxic halogenated surface-modifying compounds, pressures as high as hundreds of atmospheres, and/or temperatures as high as 1,000 C.

  3. Starch-based aerogels: airy materials from amylose-sodium palmitate inclusion complexes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aerogels are a class of interesting low density porous materials prepared by replacing the water phase contained within a hydrogel with a gas phase while maintaining the three dimensional network structure of the gel. The investigation of starch and hydrocolloid-based aerogels has received attentio...

  4. Flexible aerogel composite for mechanical stability and process of fabrication

    DOEpatents

    Coronado, Paul R.; Poco, John F.

    1999-01-01

    A flexible aerogel and process of fabrication. An aerogel solution is mixed with fibers in a mold and allowed to gel. The gel is then processed by supercritical extraction, or by air drying, to produce a flexible aerogel formed to the shape of the mold. The flexible aerogel has excellent thermal and acoustic properties, and can be utilized in numerous applications, such as for energy absorption, insulation (temperature and acoustic), to meet the contours of aircraft shapes, and where space is limited since an inch of aerogel is a 4-5 times better insulator than an inch of fiberglass. The flexible aerogel may be of an inorganic (silica) type or an organic (carbon) type, but containing fibers, such as glass or carbon fibers.

  5. Flexible aerogel composite for mechanical stability and process of fabrication

    DOEpatents

    Coronado, Paul R.; Poco, John F.

    2000-01-01

    A flexible aerogel and process of fabrication. An aerogel solution is mixed with fibers in a mold and allowed to gel. The gel is then processed by supercritical extraction, or by air drying, to produce a flexible aerogel formed to the shape of the mold. The flexible aerogel has excellent thermal and acoustic properties, and can be utilized in numerous applications, such as for energy absorption, insulation (temperature and acoustic), to meet the contours of aircraft shapes, and where space is limited since an inch of aerogel is a 4-5 times better insulator than an inch of fiberglass. The flexible aerogel may be of an inorganic (silica) type or an organic (carbon) type, but containing fibers, such as glass or carbon fibers.

  6. Three-dimensional textural and compositional analysis of particle tracks and fragmentation history in aerogel

    NASA Astrophysics Data System (ADS)

    Ebel, D. S.; Greenberg, M.; Rivers, M. L.; Newville, M.

    2009-11-01

    We report analyses of aerogel tracks using (1 synchrotron X-ray computed microtomography (XRCMT), (2) laser confocal scanning microscopy (LCSM), and (3) synchrotron radiation X-ray fluorescence (SRXRF) of particles and their paths resulting from simulated hypervelocity impacts (1-2), and a single ~1 mm aerogel track from the Stardust cometary sample collector (1-3). Large aerogel pieces can be imaged sequentially, resulting in high spatial resolution images spanning many tomographic fields of view (‘lambda-tomography’). We report calculations of energy deposited, and tests on aromatic hydrocarbons showing no alteration in tomography experiments. Imaging at resolutions from ~17 to ~1 micron/pixel edge (XRCMT) and to <100 nm/ pixel edge (LCSM) illustrates track geometry and interaction of particles with aerogel, including rifling, particle fragmentation, and final particle location. We present a 3-D deconvolution method using an estimated point-spread function for aerogel, allowing basic corrections of LCSM data for axial distortion. LCSM allows rapid, comprehensive, non-destructive, high information return analysis of tracks in aerogel keystones, prior to destructive grain extraction. SRXRF with LCSM allows spatial correlation of grain size, chemical, and mineralogical data. If optical methods are precluded in future aerogel capture missions, XRCMT is a viable 3D imaging technique. Combinations of these methods allow for complete, nondestructive, quantitative 3-D analysis of captured materials at high spatial resolution. This data is fundamental to understanding the hypervelocity particle-aerogel interaction histories of Stardust grains.

  7. Three-dimensional textural and compositional analysis of particle tracks and fragmentation history in aerogel

    SciTech Connect

    Ebel, Denton S.; Greenberg, Michael; Rivers, Mark L.; Newville, Matthew

    2010-05-04

    We report analyses of aerogel tracks using (1) synchrotron X-ray computed microtomography (XRCMT), (2) laser confocal scanning microscopy (LCSM), and (3) synchrotron radiation X-ray fluorescence (SRXRF) of particles and their paths resulting from simulated hypervelocity impacts (1-2), and a single {approx}1 mm aerogel track from the Stardust cometary sample collector (1-3). Large aerogel pieces can be imaged sequentially, resulting in high spatial resolution images spanning many tomographic fields of view ('lambda-tomography'). We report calculations of energy deposited, and tests on aromatic hydrocarbons showing no alteration in tomography experiments. Imaging at resolutions from -17 to -1 micron/pixel edge (XRCMT) and to <100 nm/pixel edge (LCSM) illustrates track geometry and interaction of particles with aerogel, including rifling, particle fragmentation, and final particle location. We present a 3-D deconvolution method using an estimated point-spread function for aerogel, allowing basic corrections of LCSM data for axial distortion. LCSM allows rapid, comprehensive, non-destructive, high information return analysis of tracks in aerogel keystones, prior to destructive grain extraction. SRXRF with LCSM allows spatial correlation of grain size, chemical, and mineralogical data. If optical methods are precluded in future aerogel capture missions, XRCMT is a viable 3D imaging technique. Combinations of these methods allow for complete, nondestructive, quantitative 3-D analysis of captured materials at high spatial resolution. This data is fundamental to understanding the hypervelocity particle-aerogel interaction histories of Stardust grains.

  8. Synthesis and characterization of a nanocrystalline diamond aerogel

    SciTech Connect

    Pauzauskie, Peter J.; Crowhurst, Jonathan C.; Worsley, Marcus A.; Laurence, Ted A.; Kilcoyne, A. L. David; Wang, Yinmin; Willey, Trevor M.; Visbeck, Kenneth S.; Fakra, Sirine C.; Evans, William J.; Zaug, Joseph M.; Satcher, Jr., Joe H.

    2011-07-06

    Aerogel materials have myriad scientific and technological applications due to their large intrinsic surface areas and ultralow densities. However, creating a nanodiamond aerogel matrix has remained an outstanding and intriguing challenge. Here we report the high-pressure, high-temperature synthesis of a diamond aerogel from an amorphous carbon aerogel precursor using a laser-heated diamond anvil cell. Neon is used as a chemically inert, near-hydrostatic pressure medium that prevents collapse of the aerogel under pressure by conformally filling the aerogel's void volume. Electron and X-ray spectromicroscopy confirm the aerogel morphology and composition of the nanodiamond matrix. Time-resolved photoluminescence measurements of recovered material reveal the formation of both nitrogen- and silicon- vacancy point-defects, suggesting a broad range of applications for this nanocrystalline diamond aerogel.

  9. Aerogel Development

    NASA Technical Reports Server (NTRS)

    Sahai, Rashmi K.

    2005-01-01

    Aerogel is one of the most promising materials of the future. It's unique properties, including high porosity, transparency, very high thermal tolerance, and environmental friendliness give it the potential of replacing many different products used in society today. However, the market for aerogel is still very limited because of the cost of producing the material and its fragility. The principle objective of my project has been to find new ways to apply aerogel in order to increase its practicality and appeal to different aspects of society. More specifically, I have focused on finding different chemicals that will coat aerogel and increase its durability. Because aerogel is so fragile and will crumble under the pressure of most coatings this has been no easy task. However, by experimenting with many different coatings and combinations of aerogel properties, I have made several significant discoveries. Aerogel (ideally, high density and hydrophobic) can be coated with several acrylic polymers, including artist's gel and nail polish. These materials provide a protective layering around the aerogel and keep it from breaking as easily. Because fragility is one of the main reasons applications of aerogel are limited, these discoveries will hopefully aid in finding future applications for this extraordinary material.

  10. Silica-titania composite aerogel photocatalysts by chemical liquid deposition of titania onto nanoporous silica scaffolds.

    PubMed

    Zu, Guoqing; Shen, Jun; Wang, Wenqin; Zou, Liping; Lian, Ya; Zhang, Zhihua

    2015-03-11

    Silica-titania composite aerogels were synthesized by chemical liquid deposition of titania onto nanoporous silica scaffolds. This novel deposition process was based on chemisorption of partially hydrolyzed titanium alkoxides from solution onto silica nanoparticle surfaces and subsequent hydrolysis and condensation to afford titania nanoparticles on the silica surface. The titania is homogeneously distributed in the silica-titania composite aerogels, and the titania content can be effectively controlled by regulating the deposition cycles. The resultant composite aerogel with 15 deposition cycles possessed a high specific surface area (SSA) of 425 m(2)/g, a small particle size of 5-14 nm, and a large pore volume and pore size of 2.41 cm(3)/g and 18.1 nm, respectively, after heat treatment at 600 °C and showed high photocatalytic activity in the photodegradation of methylene blue under UV-light irradiation. Its photocatalytic activity highly depends on the deposition cycles and heat treatment. The combination of small particle size, high SSA, and enhanced crystallinity after heat treatment at 600 °C contributes to the excellent photocatalytic property of the silica-titania composite aerogel. The higher SSAs compared to those of the reported titania aerogels (<200 m(2)/g at 600 °C) at high temperatures combined with the simple method makes the silica-titania aerogels promising candidates as photocatalysts.

  11. Octahedral Tin Dioxide Nanocrystals Anchored on Vertically Aligned Carbon Aerogels as High Capacity Anode Materials for Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Liu, Mingkai; Liu, Yuqing; Zhang, Yuting; Li, Yiliao; Zhang, Peng; Yan, Yan; Liu, Tianxi

    2016-08-01

    A novel binder-free graphene - carbon nanotubes - SnO2 (GCNT-SnO2) aerogel with vertically aligned pores was prepared via a simple and efficient directional freezing method. SnO2 octahedrons exposed of {221} high energy facets were uniformly distributed and tightly anchored on multidimensional graphene/carbon nanotube (GCNT) composites. Vertically aligned pores can effectively prevent the emersion of “closed” pores which cannot load the active SnO2 nanoparticles, further ensure quick immersion of electrolyte throughout the aerogel, and can largely shorten the transport distance between lithium ions and active sites of SnO2. Especially, excellent electrical conductivity of GCNT-SnO2 aerogel was achieved as a result of good interconnected networks of graphene and CNTs. Furthermore, meso- and macroporous structures with large surface area created by the vertically aligned pores can provide great benefit to the favorable transport kinetics for both lithium ion and electrons and afford sufficient space for volume expansion of SnO2. Due to the well-designed architecture of GCNT-SnO2 aerogel, a high specific capacity of 1190 mAh/g with good long-term cycling stability up to 1000 times was achieved. This work provides a promising strategy for preparing free-standing and binder-free active electrode materials with high performance for lithium ion batteries and other energy storage devices.

  12. Octahedral Tin Dioxide Nanocrystals Anchored on Vertically Aligned Carbon Aerogels as High Capacity Anode Materials for Lithium-Ion Batteries

    PubMed Central

    Liu, Mingkai; Liu, Yuqing; Zhang, Yuting; Li, Yiliao; Zhang, Peng; Yan, Yan; Liu, Tianxi

    2016-01-01

    A novel binder-free graphene - carbon nanotubes - SnO2 (GCNT-SnO2) aerogel with vertically aligned pores was prepared via a simple and efficient directional freezing method. SnO2 octahedrons exposed of {221} high energy facets were uniformly distributed and tightly anchored on multidimensional graphene/carbon nanotube (GCNT) composites. Vertically aligned pores can effectively prevent the emersion of “closed” pores which cannot load the active SnO2 nanoparticles, further ensure quick immersion of electrolyte throughout the aerogel, and can largely shorten the transport distance between lithium ions and active sites of SnO2. Especially, excellent electrical conductivity of GCNT-SnO2 aerogel was achieved as a result of good interconnected networks of graphene and CNTs. Furthermore, meso- and macroporous structures with large surface area created by the vertically aligned pores can provide great benefit to the favorable transport kinetics for both lithium ion and electrons and afford sufficient space for volume expansion of SnO2. Due to the well-designed architecture of GCNT-SnO2 aerogel, a high specific capacity of 1190 mAh/g with good long-term cycling stability up to 1000 times was achieved. This work provides a promising strategy for preparing free-standing and binder-free active electrode materials with high performance for lithium ion batteries and other energy storage devices. PMID:27510357

  13. Surface modified aerogel monoliths

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas (Inventor); Johnston, James C. (Inventor); Kuczmarski, Maria A. (Inventor); Meador, Mary Ann B. (Inventor)

    2013-01-01

    This invention comprises reinforced aerogel monoliths such as silica aerogels having a polymer coating on its outer geometric surface boundary, and to the method of preparing said aerogel monoliths. The polymer coatings on the aerogel monoliths are derived from polymer precursors selected from the group consisting of isocyanates as a precursor, precursors of epoxies, and precursors of polyimides. The coated aerogel monoliths can be modified further by encapsulating the aerogel with the polymer precursor reinforced with fibers such as carbon or glass fibers to obtain mechanically reinforced composite encapsulated aerogel monoliths.

  14. Adsorption and desorption performance of benzene over hierarchically structured carbon-silica aerogel composites.

    PubMed

    Dou, Baojuan; Li, Jinjun; Wang, Yufei; Wang, Hailin; Ma, Chunyan; Hao, Zhengping

    2011-11-30

    Hierarchically structured carbon-silica aerogel (CSA) composites were synthesized from cheap water glass precursors and granulated activated carbon via a post-synthesis surface modification with trimethylchlorosilane (TMCS) and a low-cost ambient pressure drying procedure. The resultant CSA composites possess micro/mesoporous structure and hydrophobic surface. The adsorption and desorption performance of benzene on carbon-silica aerogel composite (CSA-2) under static and dynamic conditions were investigated, comparing with pure silica aerogel (CSA-0) and microporous activated carbon (AC). It was found that CSA-2 has high affinity towards aromatic molecules and fast adsorption kinetics. Excellent performance of dynamic adsorption and desorption observed on CSA-2 is related to its higher adsorption capacity than CSA-0 and less mass transfer resistance than AC, arising from the well-developed microporosity and open foam mesostructure in the CSA composites.

  15. Organic compound alteration during hypervelocity collection of carbonaceous materials in aerogel

    NASA Astrophysics Data System (ADS)

    Spencer, M. K.; Clemett, S. J.; Sandford, S. A.; McKay, D. S.; Zare, R. N.

    2009-03-01

    The NASA Stardust mission brought to Earth micron-size particles from the coma of comet 81P/Wild 2 using aerogel, a porous silica material, as the capture medium. A major challenge in understanding the organic inventory of the returned comet dust is identifying, unambiguously, which organic molecules are indigenous to the cometary particles, which are produced from carbon contamination in the Stardust aerogel, and which are cometary organics that have been modified by heating during the particle capture process. Here it is shown that 1) alteration of cometary organic molecules along impact tracks in aerogel is highly dependent on the original particle morphology, and 2) organic molecules on test-shot terminal particles are mostly preserved. These conclusions are based on two-step laser mass spectrometry (L2MS) examinations of test shots with organic-laden particles (both tracks in aerogel and the terminal particles themselves).

  16. Identification of minerals and meteoritic materials via Raman techniques after capture in hypervelocity impacts on aerogel

    SciTech Connect

    Burchell, M J; Mann, J; Creighton, J A; Kearsley, A; Graham, G A; Esposito, A P; Franchi, I A; Westphal, A J; Snead, C

    2004-10-04

    For this study, an extensive suite of mineral particles analogous to components of cosmic dust were tested to determine if their Raman signatures can be recognized after hypervelocity capture in aerogel. The mineral particles were mainly of greater than 20 micrometers in size and were accelerated onto the silica aerogel by light gas gun shots. It was found that all the individual minerals captured in aerogel could be subsequently identified using Raman (or fluorescent) spectra. The beam spot size used for the laser illumination was of the order of 5 micrometers, and in some cases the captured particles were of a similar small size. In some samples fired into aerogel there was observed a shift in the wavenumbers of some of the Raman bands, a result of the trapped particles being at quite high temperatures due to heating by the laser. Temperatures of samples under laser illumination were estimated from the relative intensities of Stokes and anti-Stokes Raman bands, or, in the case of ruby particles, from the wavenumber of fluorescence bands excited by the laser. It was found that the temperature of particles in aerogel varied greatly, dependent upon laser power and the nature of the particle. In the worst case, some particles were shown to have temperatures in the 500-700 C range at a laser power of about 3 mW at the sample. However most of the mineral particles examined at this laser power had temperatures below 200 C. This is sufficiently low a temperature not to damage most materials expected to be found captured in aerogel in space. In addition, selected meteorite samples were examined to obtain Raman signatures of their constituent minerals and were then shot into aerogel. It was possible to find several Raman signatures after capture in aerogel and obtain a Raman map of a whole grain in situ in the aerogel. Finally, a Raman analysis was carried out of a particle captured in aerogel in space and carbonaceous material identified. In general therefore it is

  17. Graphene-carbon nanotube composite aerogel for selective detection of uric acid

    NASA Astrophysics Data System (ADS)

    Zhang, Feifei; Tang, Jie; Wang, Zonghua; Qin, Lu-Chang

    2013-12-01

    Graphene and single-walled carbon nanotube (SWNT) composite aerogel has been prepared by hydrothermal synthesis. The restacking of graphene is effectively reduced by SWNTs inserted in between graphene layers in order to make available more active sites and reactive surface area. Electrochemical experiments show that the graphene-SWNT composite electrode has superior catalytic performance in selective detection of uric acid (UA).

  18. Silica-Aerogel Composites Opacified with La(0.7)Sr(0.3)MnO3

    NASA Technical Reports Server (NTRS)

    Rhine, Wendell; Polli, Andrew; Deshpande, Kiranmayi

    2009-01-01

    As part of an effort to develop improved lightweight thermal-insulation tiles to withstand temperatures up to 1,000 C, silica aerogel/fused-quartz-fiber composite materials containing La0.7Sr0.3MnO3 particles as opacifiers have been investigated as potentially offering thermal conductivities lower than those of the otherwise equivalent silica-aerogel composite materials not containing La(0.7)Sr(0.3)MnO3 particles. The basic idea of incorporating opacifying particles into silica-aerogels composite to reduce infrared radiative contributions to thermal conductivities at high temperatures is not new: it has been reported in a number of previous NASA Tech Briefs articles. What is new here is the selection of La(0.7)Sr(0.3)MnO3 particles as candidate opacifiers that, in comparison with some prior opacifiers (carbon black and metal nanoparticles), are more thermally stable. The preparation of a composite material of the present type includes synthesis of the silica-aerogel component in a sol-gel process. The La(0.7)Sr(0.3)MnO3 particles, made previously in a separate process, are mixed into the sol, which is then cast onto fused-quartz-fiber batting. Then the aerogel-casting solution is poured into the mold, where it permeates the silica fiber felt. After the sol has gelled, the casting is aged and then subjected to supercritical drying to convert the gel to the final aerogel form. The separate process for making the La(0.7)Sr(0.3)MnO3 particles begins with the slow addition of corresponding proportions of La(CH3COOH)3, Mn(CH3COOH)3, and Sr(NO3)2 to a solution of H2O2 in H2O. The solution is then peptized by drop-wise addition of NH4OH to obtain a sol. Next, the sol is dried in an oven at a temperature of 120 C to obtain a glassy solid. The solid is calcined at 700 C to convert it to La(0.7)Sr(0.3)MnO3. Then La(0.7)Sr(0.3)MnO3 particles are made by ball-milling the calcined solid. The effectiveness of La(0.7)Sr(0.3)MnO3 particles as opacifiers and thermal

  19. Synthesis and characterization of a nanocrystalline diamond aerogel

    PubMed Central

    Pauzauskie, Peter J.; Crowhurst, Jonathan C.; Worsley, Marcus A.; Laurence, Ted A.; Kilcoyne, A. L. David; Wang, Yinmin; Willey, Trevor M.; Visbeck, Kenneth S.; Fakra, Sirine C.; Evans, William J.; Zaug, Joseph M.; Satcher, Joe H.

    2011-01-01

    Aerogel materials have myriad scientific and technological applications due to their large intrinsic surface areas and ultralow densities. However, creating a nanodiamond aerogel matrix has remained an outstanding and intriguing challenge. Here we report the high-pressure, high-temperature synthesis of a diamond aerogel from an amorphous carbon aerogel precursor using a laser-heated diamond anvil cell. Neon is used as a chemically inert, near-hydrostatic pressure medium that prevents collapse of the aerogel under pressure by conformally filling the aerogel’s void volume. Electron and X-ray spectromicroscopy confirm the aerogel morphology and composition of the nanodiamond matrix. Time-resolved photoluminescence measurements of recovered material reveal the formation of both nitrogen- and silicon- vacancy point-defects, suggesting a broad range of applications for this nanocrystalline diamond aerogel. PMID:21555550

  20. Crosslinking Amine-Modified Silica Aerogels with Epoxies: Mechanically Strong Lightweight Porous Materials

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Fabrizio, Eve F.; Ilhan, Faysal; Dass, Amala; Zhang, Guo-Hui; Vassilaras, Plousia; Johnston, J. Chris; Leventis, Nicholas

    2005-01-01

    The mesoporous surfaces of TMOS-derived silica aerogels have been modified with amines by co-polymerization of TMOS with APTES. The amine sites have become anchors for crosslinking the nanoparticles of the skeletal backbone of the aerogel by attachment of di-, tri and tetra-functional epoxies. The resulting conformal coatings increase the density of the native aerogels by a factor of 2-3 but the strength of the resulting materials may increase by more than two orders of magnitude. Processing variables such as amount of APTES used to make the gels, the epoxy type and concentration used for crosslinking, as well as the crosslinking temperature and time were varied according to a multivariable design-of-experiments (DOE) model. It was found that while elastic modulus follows a similar trend with density, maximum strength is attained neither at the maximum density nor at the highest concentration of -NH2 groups, suggesting surface saturation effects. Aerogels crosslinked with the tri-functional epoxide always show improved strength compared with aerogels crosslinked with the other two epoxides under identical conditions. Solid C-13 NMR studies show residual unreacted epoxides, which condense with ne another by heating crosslinked aerogels at 150 C.

  1. Nanoporous Cu-C composites based on carbon-nanotube aerogels

    SciTech Connect

    Charnvanichborikarn, S.; Shin, S. J.; Worsley, M. A.; Tran, I. C.; Willey, T. M.; van Buuren, T.; Felter, T. E.; Colvin, J. D.; Kucheyev, S. O.

    2013-11-22

    Current synthesis methods of nanoporous Cu–C composites offer limited control of the material composition, structure, and properties, particularly for large Cu loadings of ≳20 wt%. Here, we describe two related approaches to realize novel nanoporous Cu–C composites based on the templating of recently developed carbon-nanotube aerogels (CNT-CAs). Our first approach involves the trapping of Cu nanoparticles while CNT-CAs undergo gelation. This method yields nanofoams with relatively high densities of ≳65 mg cm-3 for Cu loadings of ≳10 wt%. Our second approach overcomes this limitation by filling the pores of undoped CNT-CA monoliths with an aqueous solution of CuSO4 followed by (i) freeze-drying to remove water and (ii) thermal decomposition of CuSO4. With this approach, we demonstrate Cu–C composites with a C matrix density of -25 mg cm-3 and Cu loadings of up to 70 wt%. These versatile methods could be extended to fabricate other nanoporous metal–carbon composite materials geared for specific applications.

  2. A facile route for 3D aerogels from nanostructured 1D and 2D materials

    NASA Astrophysics Data System (ADS)

    Jung, Sung Mi; Jung, Hyun Young; Dresselhaus, Mildred S.; Jung, Yung Joon; Kong, Jing

    2012-11-01

    Aerogels have numerous applications due to their high surface area and low densities. However, creating aerogels from a large variety of materials has remained an outstanding challenge. Here, we report a new methodology to enable aerogel production with a wide range of materials. The method is based on the assembly of anisotropic nano-objects (one-dimensional (1D) nanotubes, nanowires, or two-dimensional (2D) nanosheets) into a cross-linking network from their colloidal suspensions at the transition from the semi-dilute to the isotropic concentrated regime. The resultant aerogels have highly porous and ultrafine three-dimensional (3D) networks consisting of 1D (Ag, Si, MnO2, single-walled carbon nanotubes (SWNTs)) and 2D materials (MoS2, graphene, h-BN) with high surface areas, low densities, and high electrical conductivities. This method opens up a facile route for aerogel production with a wide variety of materials and tremendous opportunities for bio-scaffold, energy storage, thermoelectric, catalysis, and hydrogen storage applications.

  3. Nanocellulose Composite Materials Synthesizes with Ultrasonic Agitation

    NASA Astrophysics Data System (ADS)

    Kidd, Timothy; Folken, Andrew; Fritch, Byron; Bradley, Derek

    We have extended current techniques in forming nanocellulose composite solids, suspensions and aerogels to enhance the breakdown of cellulose into its molecular components. Using only mechanical processing which includes ball milling, using a simple mortar and pestle, and ultrasonic agitation, we are able to create very low concentration uniform nanocellulose suspensions in water, as well as incorporate other materials such as graphite, carbon nanotubes, and magnetic materials. Of interest is that no chemical processing is necessary, nor is the use of nanoparticles, necessary for composite formation. Using both graphite and carbon nanotubes, we are able to achieve conducting nanocellulose solids and aerogels. Standard magnetic powder can also be incorporated to create magnetic solids. The technique also allows for the creation of an extremely fine nanocellulose suspension in water. Using extremely low concentrations, less than 1% cellulose by mass, along with careful control over processing parameters, we are able to achieve highly dilute, yet homogenous nanocellulose suspensions. When air dried, these suspensions have similar hardness and strength properties to those created with more typical starting cellulose concentrations (2-10%). However, when freeze-dried, these dilute suspensions form aerogels with a new morphology with much higher surface area than those with higher starting concentrations. We are currently examining the effect of this higher surface area on the properties of nanocellulose aerogel composites and how it influences the impact of incorporating nanocellulose into other polymer materials.

  4. Sorption Properties of Aerogel in Liquid Nitrogen

    NASA Technical Reports Server (NTRS)

    Johnson, Wesley L.

    2006-01-01

    Aerogel products are now available as insulation materials of the future. The Cryogenics Test Laboratory at the NASA Kennedy Space Center is developing aerogel-based thermal insulation systems for space launch applications. Aerogel beads (Cabot Nanogel ) and aerogel blankets (Aspen Aerogels Spaceloft ) have outstanding ambient pressure thermal performance that makes them useful for applications where sealing is not possible. Aerogel beads are open-celled silicone dioxide and have tiny pores that run throughout the body of the bead. It has also recently been discovered that aerogel beads can be used as a filtering device for aqueous compounds at room temperature. With their hydrophobic covering, the beads absorb any non-polar substance and they can be chemically altered to absorb hot gases. The combination of the absorption and cryogenic insulating properties of aerogel beads have never been studied together. For future cryogenic insulation applications, it is crucial to know how the beads react while immersed in cryogenic liquids, most notably liquid nitrogen. Aerogel beads in loose-fill situation and aerogel blankets with composite fiber structure have been tested for absorption properties. Depending on the type of aerogel used and the preparation, preliminary results show the material can absorb up to seven times its own weight of liquid nitrogen, corresponding to a volumetric ratio of 0.70 (unit volume nitrogen per unit volume aerogel). These tests allow for an estimate on how much insulation is needed in certain situations. The theory behind the different processes of sorption is necessary for a better understanding of the preparation of the beads before they are used in an insulation system.

  5. Composite material

    DOEpatents

    Hutchens, Stacy A [Knoxville, TN; Woodward, Jonathan [Solihull, GB; Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN

    2012-02-07

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  6. Recovering the Elemental Composition of Comet Wild 2 Dust in Five Stardust Impact Tracks and Terminal Particles in Aerogel

    SciTech Connect

    Ishii, H A; Brennan, S; Bradley, J P; Luening, K; Ignatyev, K; Pianetta, P

    2007-01-04

    The elemental (non-volatile) composition of five Stardust impact tracks and terminal particles left from capture of Comet 81P/Wild 2 dust were mapped in a synchrotron x-ray scanning microprobe with full fluorescence spectra at each pixel. Because aerogel includes background levels of several elements of interest, we employ a novel 'dual threshold' approach to discriminate against background contaminants: an upper threshold, above which a spectrum contains cometary material plus aerogel and a lower threshold below which it contains only aerogel. The difference between normalized cometary-plus-background and background-only spectra is attributable to cometary material. The few spectra in between are discarded since misallocation is detrimental: cometary material incorrectly placed in the background spectrum is later subtracted from the cometary spectrum, doubling the loss of reportable cometary material. This approach improves precision of composition quantification. We present the refined whole impact track and terminal particle elemental abundances for the five impact tracks. One track shows mass increases in Cr and Mn (1.4x), Cu, As and K (2x), Zn (4x) and total mass (13%) by dual thresholds compared to a single threshold. Major elements Fe and Ni are not significantly affected. The additional Cr arises from cometary material containing little Fe. We exclude Au intermixed with cometary material because it is found to be a localized surface contaminant carried by comet dust into an impact track. The dual threshold technique can be used in other situations where elements of interest in a small sample embedded in a matrix are also present in the matrix itself.

  7. Comparative Investigation on Thermal Insulation of Polyurethane Composites Filled with Silica Aerogel and Hollow Silica Microsphere.

    PubMed

    Liu, Chunyuan; Kim, Jin Seuk; Kwon, Younghwan

    2016-02-01

    This paper presents a comparative study on thermal conductivity of PU composites containing open-cell nano-porous silica aerogel and closed-cell hollow silica microsphere, respectively. The thermal conductivity of PU composites is measured at 30 degrees C with transient hot bridge method. The insertion of polymer in pores of silica aerogel creates mixed interfaces, increasing the thermal conductivity of resulting composites. The measured thermal conductivity of PU composites filled with hollow silica microspheres is estimated using theoretical models, and is in good agreement with Felske model. It appears that the thermal conductivity of composites decreases with increasing the volume fraction (phi) when hollow silica microsphere (eta = 0.916) is used.

  8. Plasmonic enhancement of visible-light water splitting with Au-TiO2 composite aerogels.

    PubMed

    DeSario, Paul A; Pietron, Jeremy J; DeVantier, Devyn E; Brintlinger, Todd H; Stroud, Rhonda M; Rolison, Debra R

    2013-09-07

    We demonstrate plasmonic enhancement of visible-light-driven splitting of water at three-dimensionally (3D) networked gold-titania (Au-TiO2) aerogels. The sol-gel-derived ultraporous composite nanoarchitecture, which contains 1 to 8.5 wt% Au nanoparticles and titania in the anatase form, retains the high surface area and mesoporosity of unmodified TiO2 aerogels and maintains stable dispersion of the ~5 nm Au guests. A broad surface plasmon resonance (SPR) feature centered at ~550 nm is present for the Au-TiO2 aerogels, but not Au-free TiO2 aerogels, and spans a wide range of the visible spectrum. Gold-derived SPR in Au-TiO2 aerogels cast as films on transparent electrodes drives photoelectrochemical oxidation of aqueous hydroxide and extends the photocatalytic activity of TiO2 from the ultraviolet region to visible wavelengths exceeding 700 nm. Films of Au-TiO2 aerogels in which Au nanoparticles are deposited on pre-formed TiO2 aerogels by a deposition-precipitation method (DP Au/TiO2) also photoelectrochemically oxidize aqueous hydroxide, but less efficiently than 3D Au-TiO2, despite having an essentially identical Au nanoparticle weight fraction and size distribution. For example, 3D Au-TiO2 containing 1 wt% Au is as active as DP Au/TiO2 with 4 wt% Au. The higher photocatalytic activity of 3D Au-TiO2 derives only in part from its ability to retain the surface area and porosity of unmodified TiO2 aerogel. The magnitude of improvement indicates that in the 3D arrangement either a more accessible photoelectrochemical reaction interphase (three-phase boundary) exists or more efficient conversion of excited surface plasmons into charge carriers occurs, thereby amplifying reactivity over DP Au/TiO2. The difference in photocatalytic efficiency between the two forms of Au-TiO2 demonstrates the importance of defining the structure of Au[parallel]TiO2 interfaces within catalytic Au-TiO2 nanoarchitectures.

  9. [Preparation and characteristics of aerogel-based bioactive materials used in dentistry].

    PubMed

    Lázár, István; Kuttor, Andrea; Győri, Enikö; Veres, Péter; Fábián, István; Manó, Sándor; Hegedüs, Csaba

    2015-03-01

    A variety of bioactive materials have been investigated as substitute materials for diseased or damaged bone tissues in dentistry. The aim of this study was to prepare mesoporous silica containing biomaterials by sol-gel technology. These materials may be combinated with hydroxyapatite and β-tricalcium phosphate, as bioactive agents. The synthesis and testing of important physical parameters were performed. Based on these measurements, the silica aerogel can be an applicable material in the dental field in the future.

  10. Aerogel sorbents

    DOEpatents

    Begag, Redouane; Rhine, Wendell E; Dong, Wenting

    2016-04-05

    The current invention describes methods and compositions of various sorbents based on aerogels of various silanes and their use as sorbent for carbon dioxide. Methods further provide for optimizing the compositions to increase the stability of the sorbents for prolonged use as carbon dioxide capture matrices.

  11. Aerogel-Positronium Technology for the Detection of Small Quantities of Organic and/or Toxic Materials

    NASA Technical Reports Server (NTRS)

    Petkov, Mihail P.; Jones, Steven M.

    2010-01-01

    The Ps-aerogel system [Ps is positronium (an electron-positron-hydrogen-like atom)] has been evaluated and optimized as a potential tool for planetary exploration missions. Different configurations of use were assessed, and the results provide a quantitative measure of the expected performance. The aerogel density is first optimized to attain maximum production of Ps that reaches the pores of the aerogel. This has been accomplished, and the optimum aerogel density is .70 mg/cm3. The aerogel is used as a concentrator for target volatile moieties, which accumulate in its open porosity over an extended period of time. For the detection of the accumulated materials, the use of Ps as a probe for the environment at the pore surface, has been proposed. This concept is based on two steps: (1) using aerogel to produce Ps and (2) using the propensity of Ps to interact differently with organic and inorganic matter. The active area of such a detector will comprise aerogel with a certain density, specific surface area, and gas permeability optimized for Ps production and gas diffusion and adsorption. The aerogel is a natural adsorber of organic molecules, which adhere to its internal surface, where their presence is detected by the Ps probe. Initial estimates indicate that, e.g., trace organic molecules in the Martian atmosphere, can be detected at the ppm level, which rivals current methods having significantly higher complexity, volume, mass, and power consumption (e.g. Raman, IR).

  12. An emerging platform for drug delivery: aerogel based systems.

    PubMed

    Ulker, Zeynep; Erkey, Can

    2014-03-10

    Over the past few decades, advances in "aerogel science" have provoked an increasing interest for these materials in pharmaceutical sciences for drug delivery applications. Because of their high surface areas, high porosities and open pore structures which can be tuned and controlled by manipulation of synthesis conditions, nanostructured aerogels represent a promising class of materials for delivery of various drugs as well as enzymes and proteins. Along with biocompatible inorganic aerogels and biodegradable organic aerogels, more complex systems such as surface functionalized aerogels, composite aerogels and layered aerogels have also been under development and possess huge potential. Emphasis is given to the details of the aerogel synthesis and drug loading methods as well as the influence of synthesis parameters and loading methods on the adsorption and release of the drugs. Owing to their ability to increase the bioavailability of low solubility drugs, to improve both their stability and their release kinetics, there are an increasing number of research articles concerning aerogels in different drug delivery applications. This review presents an up to date overview of the advances in all kinds of aerogel based drug delivery systems which are currently under investigation.

  13. Mechanically robust, electrically conductive ultralow-density carbon nanotube-based aerogels

    DOEpatents

    Worsley, Marcus A.; Baumann, Theodore F.; Satcher, Jr., Joe H.

    2016-10-04

    Disclosed here is a device comprising a porous carbon aerogel or composite thereof as an energy storage material, catalyst support, sensor or adsorbent, wherein the porous carbon aerogel comprises a network of interconnected struts comprising carbon nanotube bundles covalently crosslinked by graphitic carbon nanoparticles, wherein the carbon nanotubes account for 5 to 95 wt. % of the aerogel and the graphitic carbon nanoparticles account for 5 to 95 wt. % of the aerogel, and wherein the aerogel has an electrical conductivity of at least 10 S/m and is capable of withstanding strains of more than 10% before fracture.

  14. Inorganic/organic doped carbon aerogels as biosensing materials for the detection of hydrogen peroxide.

    PubMed

    Dong, Sheying; Li, Nan; Suo, Gaochao; Huang, Tinglin

    2013-12-17

    In this article, three different inorganic/organic doped carbon aerogel (CA) materials (Ni-CA, Pd-CA, and Ppy-CA) were, respectively, mixed with ionic liquid (IL) to form three stable composite films, which were used as enhanced elements for an integrated sensing platform to increase the surface area and to improve the electronic transmission rate. Subsequently, the effect of the materials performances such as adsorption, specific surface area and conductivity on electrochemistry for myoglobin (Mb) was discussed using N2 adsorption-desorption isotherm measurements, scanning electron microscopy (SEM), and electrochemical impedance spectroscopy (EIS). Moreover, they could act as sensors toward the detection of hydrogen peroxide (H2O2) with lower detection limits (1.68 μM, 1.02 μM, and 0.85 μM, for Ni-CA/IL/Mb-CPE, Pd-CA/IL/Mb-CPE, and Ppy-CA/IL/Mb-CPE, respectively) and smaller apparent Michaelis-Menten constants KM. The results indicated that the electroconductibility of the doped CA materials would become dominant, thus playing an important role in facilitating the electron transfer. Meanwhile, the synergetic effect with [BMIm]BF4 IL improved the capability of the composite inorganic/organic doped CA/IL matrix for protein immobilization. This work demonstrates the feasibility and the potential of a series of CA-based hybrid materials as biosensors, and further research and development are required to prepare other functional CAs and make them valuable for more extensive application in biosensing.

  15. Synthesis and biomedical applications of aerogels: Possibilities and challenges.

    PubMed

    Maleki, Hajar; Durães, Luisa; García-González, Carlos A; Del Gaudio, Pasquale; Portugal, António; Mahmoudi, Morteza

    2016-10-01

    Aerogels are an exceptional group of nanoporous materials with outstanding physicochemical properties. Due to their unique physical, chemical, and mechanical properties, aerogels are recognized as promising candidates for diverse applications including, thermal insulation, catalysis, environmental cleaning up, chemical sensors, acoustic transducers, energy storage devices, metal casting molds and water repellant coatings. Here, we have provided a comprehensive overview on the synthesis, processing and drying methods of the mostly investigated types of aerogels used in the biological and biomedical contexts, including silica aerogels, silica-polymer composites, polymeric and biopolymer aerogels. In addition, the very recent challenges on these aerogels with regard to their applicability in biomedical field as well as for personalized medicine applications are considered and explained in detail.

  16. Fabrication and Atomic Force Microscopy Characterization of Molecular Composites of Fullerenes in Aerogel Matrix for Optical Limiting

    NASA Technical Reports Server (NTRS)

    Lu, W. J .; Sunkara, H. B.; Shi, D.; Morgan, S. H.; Penn, B.; Frazier, D.; Collins, W. E.

    1998-01-01

    An optical limiter is a device which exhibits a decrease in the transmittance in a material with an increase in intensity of light. Sol-gel techniques offer many advantages in the fabrication of materials. These materials possess many desirable properties for nonlinear optical (NLO) device applications which include transparency, high thermal and chemical stabilities, very low refractive index and dielectric constants. C60 shows a higher excited state absorption cross section than the ground state absorption cross section over the complete visible spectrum, and the spectrum of the excited state absorption of C60 has the same general shape as the ground state absorption. This fact suggests that fullerenes are ideal optical limiting materials. Aerogels are fabricated by sol-gel processing. One of the key issues is the dispersion of fullerenes into small and uniform pores of silica aerogel host matrices. The aerogel network was characterized by Raman spectroscopy. Atomic force microscopy is a technique with many advantages to characterize the aerogel materials. The morphology of the cleaved surface for a C60/aerogel sample shows that there are long paralleled shaped stripes with 20-30 nm in width and about 500 nm in length on the cleaved surface. The cleaved surface also was etched by 5% HF solution for one minutes, and it became smoother after HF etching. The main feature in on the surface is the spherical particles with the size of few nanometers, and no aggregated fullerenes appear. The fullerenes are well dispersed in the aerogel matrices.

  17. Cellulose-silica aerogels.

    PubMed

    Demilecamps, Arnaud; Beauger, Christian; Hildenbrand, Claudia; Rigacci, Arnaud; Budtova, Tatiana

    2015-05-20

    Aerogels based on interpenetrated cellulose-silica networks were prepared and characterised. Wet coagulated cellulose was impregnated with silica phase, polyethoxydisiloxane, using two methods: (i) molecular diffusion and (ii) forced flow induced by pressure difference. The latter allowed an enormous decrease in the impregnation times, by almost three orders of magnitude, for a sample with the same geometry. In both cases, nanostructured silica gel was in situ formed inside cellulose matrix. Nitrogen adsorption analysis revealed an almost threefold increase in pores specific surface area, from cellulose aerogel alone to organic-inorganic composite. Morphology, thermal conductivity and mechanical properties under uniaxial compression were investigated. Thermal conductivity of composite aerogels was lower than that of cellulose aerogel due to the formation of superinsulating mesoporous silica inside cellulose pores. Furthermore, composite aerogels were stiffer than each of reference aerogels.

  18. Ambient Dried Aerogels

    NASA Technical Reports Server (NTRS)

    Jones, Steven M.; Paik, Jong-Ah

    2013-01-01

    A method has been developed for creating aerogel using normal pressure and ambient temperatures. All spacecraft, satellites, and landers require the use of thermal insulation due to the extreme environments encountered in space and on extraterrestrial bodies. Ambient dried aerogels introduce the possibility of using aerogel as thermal insulation in a wide variety of instances where supercritically dried aerogels cannot be used. More specifically, thermoelectric devices can use ambient dried aerogel, where the advantages are in situ production using the cast-in ability of an aerogel. Previously, aerogels required supercritical conditions (high temperature and high pressure) to be dried. Ambient dried aerogels can be dried at room temperature and pressure. This allows many materials, such as plastics and certain metal alloys that cannot survive supercritical conditions, to be directly immersed in liquid aerogel precursor and then encapsulated in the final, dried aerogel. Additionally, the metalized Mylar films that could not survive the previous methods of making aerogels can survive the ambient drying technique, thus making multilayer insulation (MLI) materials possible. This results in lighter insulation material as well. Because this innovation does not require high-temperature or high-pressure drying, ambient dried aerogels are much less expensive to produce. The equipment needed to conduct supercritical drying costs many tens of thousands of dollars, and has associated running expenses for power, pressurized gasses, and maintenance. The ambient drying process also expands the size of the pieces of aerogel that can be made because a high-temperature, high-pressure system typically has internal dimensions of up to 30 cm in diameter and 60 cm in height. In the case of this innovation, the only limitation on the size of the aerogels produced would be in the ability of the solvent in the wet gel to escape from the gel network.

  19. Insights into the Controllable Chemical Composition of Metal Oxide Nanowires and Graphene Aerogels

    NASA Astrophysics Data System (ADS)

    Goldstein, Anna Patrice

    briefly, then isolated pockets of MTiO3 are formed on the nanowire surface. This structure retains the conductive channel in the center of the nanowire, which can be useful for charge separation. Longer annealing times result in segmented nanowires; the segments formed from a Ni-coated nanowire are bounded by TiO2(01-1) twin planes and NiTiO 3{100}/TiO2{03-1} interfaces. An alternative strategy for storing solar energy takes advantage of the capacitance between a semiconductor surface and adsorbed ions in solution. This type of energy storage device is called an electric double layer capacitor (EDLC). Graphene-based aerogels, which are porous materials composed of few-layer graphitic sheets, have the potential for higher surface area and higher conductivity than standard carbon aerogels. These properties make graphene-based aerogels a good material candidate for EDLC electrodes. Graphene oxide (GO) is the precursor material for the synthesis of a graphene-based aerogel, and it has been widely studied. Yet its hydrothermal gelation is still not fully understood, due to the high pressure reaction conditions and the non-uniform nature of GO. We demonstrate a number of changes that occur to the GO sheets during gelation: wrinkling, formation of a densified monolith, deoxygenation, increasing thermal stability, and color change. Plotting the time evolution of all these properties shows that they are simultaneous and likely of common origin. Possible mechanisms for gelation are explored. Graphene aerogels are synthesized by vapor phase thermal reduction of GO aerogels at temperatures up to 1600 °C. Further deoxygenation is observed in the aerogel during thermal reduction, along with enhanced crystallinity and an associated change in the electronic structure. When graphene aerogels are exposed to high-temperature boron oxide vapor, they are converted to boron nitride (BN) aerogels. The structure of the BN aerogel is investigated and shown to be similar in nanoscale morphology

  20. Polymethylsilsesquioxane-cellulose nanofiber biocomposite aerogels with high thermal insulation, bendability, and superhydrophobicity.

    PubMed

    Hayase, Gen; Kanamori, Kazuyoshi; Abe, Kentaro; Yano, Hiroyuki; Maeno, Ayaka; Kaji, Hironori; Nakanishi, Kazuki

    2014-06-25

    Polymethylsilsesquioxane-cellulose nanofiber (PMSQ-CNF) composite aerogels have been prepared through sol-gel in a solvent containing a small amount of CNFs as suspension. Since these composite aerogels do not show excessive aggregation of PMSQ and CNF, the original PMSQ networks are not disturbed. Composite aerogels with low density (0.020 g cm(-3) at lowest), low thermal conductivity (15 mW m(-1) K(-1)), visible light translucency, bending flexibility, and superhydrophobicity thus have been successfully obtained. In particular, the lowest density and bending flexibility have been achieved with the aid of the physical supporting effect of CNFs, and the lowest thermal conductivity is comparable with the original PMSQ aerogels and standard silica aerogels. The PMSQ-CNF composite aerogels would be a candidate to practical high-performance thermal insulating materials.

  1. Nanoporous aerogel as a bacteria repelling hygienic material for healthcare environment.

    PubMed

    Oh, Jun Kyun; Kohli, Nandita; Zhang, Yuanzhong; Min, Younjin; Jayaraman, Arul; Cisneros-Zevallos, Luis; Akbulut, Mustafa

    2016-02-26

    Healthcare-associated infections (HAIs) caused by pathogenic bacteria are a worldwide problem and responsible for numerous cases of morbidity and mortality. Exogenous cross-contamination is one of the main mechanisms contributing to such infections. This work investigates the potential of hydrophobically modified nanoporous silica aerogel as an antiadhesive hygienic material that can inhibit exogenous bacterial contamination. Nanoporous silica aerogels were synthesized via sol-gel polymerization of tetraethyl orthosilicate and hydrophobized using trimethylsilyl chloride. Bacterial adhesion characteristics were evaluated via dip-inoculation in suspensions of Gram-negative Escherichia coli O157:H7 and Gram-positive Staphylococcus aureus. The attachment of E. coli O157:H7 and S. aureus to hydrophobic nanoporous silica aerogel (HNSA) was found to be significantly lower than that to hydrophilic and hydrophobic nonporous silica materials: 99.91% (E. coli O157:H7) and 99.93% (S. aureus) reduction in comparison to hydrophilic nonporous silica, and 82.95% (E. coli O157:H7) and 84.90% (S. aureus) reduction in comparison to hydrophobic nonporous silica. These results suggest that the use of HNSA as surfaces that come into contact with bacterial pathogens in the healthcare environment can improve bacterial hygiene, and therefore may reduce the rate of HAIs.

  2. Nanoporous aerogel as a bacteria repelling hygienic material for healthcare environment

    NASA Astrophysics Data System (ADS)

    Oh, Jun Kyun; Kohli, Nandita; Zhang, Yuanzhong; Min, Younjin; Jayaraman, Arul; Cisneros-Zevallos, Luis; Akbulut, Mustafa

    2016-02-01

    Healthcare-associated infections (HAIs) caused by pathogenic bacteria are a worldwide problem and responsible for numerous cases of morbidity and mortality. Exogenous cross-contamination is one of the main mechanisms contributing to such infections. This work investigates the potential of hydrophobically modified nanoporous silica aerogel as an antiadhesive hygienic material that can inhibit exogenous bacterial contamination. Nanoporous silica aerogels were synthesized via sol-gel polymerization of tetraethyl orthosilicate and hydrophobized using trimethylsilyl chloride. Bacterial adhesion characteristics were evaluated via dip-inoculation in suspensions of Gram-negative Escherichia coli O157:H7 and Gram-positive Staphylococcus aureus. The attachment of E. coli O157:H7 and S. aureus to hydrophobic nanoporous silica aerogel (HNSA) was found to be significantly lower than that to hydrophilic and hydrophobic nonporous silica materials: 99.91% (E. coli O157:H7) and 99.93% (S. aureus) reduction in comparison to hydrophilic nonporous silica, and 82.95% (E. coli O157:H7) and 84.90% (S. aureus) reduction in comparison to hydrophobic nonporous silica. These results suggest that the use of HNSA as surfaces that come into contact with bacterial pathogens in the healthcare environment can improve bacterial hygiene, and therefore may reduce the rate of HAIs.

  3. Structure of plasmonic aerogel and the breakdown of the effective medium approximation.

    PubMed

    Grogan, Michael D W; Heck, Susannah C; Hood, Katie M; Maier, Stefan A; Birks, Tim A

    2011-02-01

    A method for making aerogel doped with gold nanoparticles (GNPs) produces a composite material with a well-defined localized surface plasmon resonance peak at 520 nm. The width of the extinction feature indicates the GNPs are well dispersed in the aerogel, making it suited to optical study. A simple effective medium approximation cannot explain the peak extinction wavelengths. The plasmonic field extends on a scale where aerogel cannot be considered isotropic, so a new model is required: a 5 nm glass coating on the GNPs models the extinction spectrum of the composite material, with air (aerogel), methanol (alcogel), or toluene filling the pores.

  4. Advanced Multifunctional Properties of Aligned Carbon Nanotube-Epoxy Composites from Carbon Nanotube Aerogel Method

    NASA Astrophysics Data System (ADS)

    Tran, Thang; Liu, Peng; Fan, Zeng; Ngern, Nigel; Duong, Hai

    2015-03-01

    Unlike previous methods of making carbon nanotube (CNT) thin films, aligned CNT thin films in this work are synthesized directly from CNT aerogels in a CVD process. CH4/H2/He gases and ferrocene/thiophene catalysts are mixed and reacted in the reactor at 1200 °C to form CNT aerogel socks. By pulling out the socks with a metal rod, CNT thin films with 15-nm diameter MWNTs are aligned and produced continuously at a speed of a few meters per minute. The number of the aligned CNT thin film layers/ thickness can also be controlled well. The as-synthesized aligned CNT films are further condensed by acetone spray and post-treated by UV light. The aligned CNT films without any above post-treatment have a high electrical conductivity of 400S/cm. We also develop aligned CNT-epoxy composites by infiltrating epoxy into the above aligned CNT thin films using Vacuum Assisted Resin Transfer Molding (VARTM) method. Our cost-effective fabrication method of the aligned CNT films is more advanced for developing the composites having CNT orientation control. The mechanical, electrical and optical properties of the aligned CNT epoxy composites are measured. About 2% of the aligned CNTs can enhance significantly the electrical conductivity and hardness of aligned CNT-epoxy composite films. Effects of morphologies, volume fraction, and alignment of the CNTs on the advanced multifunctional properties of the aligned CNT-epoxy composites are also quantified.

  5. Composite Materials

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Composites are lighter and stronger than metals. Aramid fibers like Kevlar and Nomex were developed by DuPont Corporation and can be combined in a honeycomb structure which can give an airplane a light, tough structure. Composites can be molded into many aerodynamic shapes eliminating rivets and fasteners. Langley Research Center has tested composites for both aerospace and non-aerospace applications. They are also used in boat hulls, military shelters, etc.

  6. In-Situ Chemical Analysis of Extraterrestrial Material Captured in Aerogel

    NASA Astrophysics Data System (ADS)

    Flynn, G. J.; Horz, F.; Bajt, S.; Sutton, S. R.

    1996-03-01

    High-speed interplanetary dust and orbital debris can be collected non-destructively using aerogel capture cells on earth- orbiting spacecraft and the STARDUST comet sample return mission. In-situ chemical analysis of captured particles is highly desirable for initial classification as space debris or interplanetary dust, allowing quick determination of the dust to debris ratio, and selection of an appropriate analytical protocol for each particle based on a prior knowledge of its type. In a proof-of-principle experiment the X-Ray Microprobe at the National Synchrotron Light Source was used to analyze 50 micron diameter Allende fragments shot into 20 mg/cc silica aerogel at 3 to 6 km/s. A one-second data acquisition allowed determination of Fe/Ni ratios. Five minute data acquisitions allowed analysis of Fe, Ni, Cu, and Zn in Allende fragments as deep as 5 mm below the aerogel surface and Ca was detected in fragments up to 3.6 mm below the surface, demonstrating the ability to identify chondritic material, and distinguish it from orbital debris, by in-situ chemical analysis.

  7. Carbon nanomaterials in silica aerogel matrices

    SciTech Connect

    Hamilton, Christopher E; Chavez, Manuel E; Duque, Juan G; Gupta, Gautam; Doorn, Stephen K; Dattelbaum, Andrew M; Obrey, Kimberly A D

    2010-01-01

    Silica aerogels are ultra low-density, high surface area materials that are extremely good thermal insulators and have numerous technical applications. However, their mechanical properties are not ideal, as they are brittle and prone to shattering. Conversely, single-walled carbon nanotubes (SWCNTs) and graphene-based materials, such as graphene oxide, have extremely high tensile strength and possess novel electronic properties. By introducing SWCNTs or graphene-based materials into aerogel matrices, it is possible to produce composites with the desirable properties of both constituents. We have successfully dispersed SWCNTs and graphene-based materials into silica gels. Subsequent supercritical drying results in monolithic low-density composites having improved mechanical properties. These nanocomposite aerogels have great potential for use in a wide range of applications.

  8. Crystalline boron nitride aerogels

    DOEpatents

    Zettl, Alexander K.; Rousseas, Michael; Goldstein, Anna P.; Mickelson, William; Worsley, Marcus A.; Woo, Leta

    2017-04-04

    This disclosure provides methods and materials related to boron nitride aerogels. In one aspect, a material comprises an aerogel comprising boron nitride. The boron nitride has an ordered crystalline structure. The ordered crystalline structure may include atomic layers of hexagonal boron nitride lying on top of one another, with atoms contained in a first layer being superimposed on atoms contained in a second layer.

  9. Technical applications of aerogels

    SciTech Connect

    Hrubesh, L.W.

    1997-08-18

    Aerogel materials posses such a wide variety of exceptional properties that a striking number of applications have developed for them. Many of the commercial applications of aerogels such as catalysts, thermal insulation, windows, and particle detectors are still under development and new application as have been publicized since the ISA4 Conference in 1994: e.g.; supercapacitors, insulation for heat storage in automobiles, electrodes for capacitive deionization, etc. More applications are evolving as the scientific and engineering community becomes familiar with the unusual and exceptional physical properties of aerogels, there are also scientific and technical application, as well. This paper discusses a variety of applications under development at Lawrence Livermore National Laboratory for which several types of aerogels are formed in custom sizes and shapes. Particular discussions will focus on the uses of aerogels for physics experiments which rely on the exceptional, sometimes unique, properties of aerogels.

  10. Aerogel derived catalysts

    SciTech Connect

    Reynolds, J. G., LLNL

    1996-12-11

    Aerogels area class of colloidal materials which have high surface areas and abundant mesoporous structure. SiO{sub 2} aerogels show unique physical, optical and structural properties. When catalytic metals are incorporated in the aerogel framework, the potential exists for new and very effective catalysts for industrial processes. Three applications of these metal-containing SiO{sub 2} aerogels as catalysts are briefly reviewed in this paper--NO{sub x} reduction, volatile organic compound destruction, and partial oxidation of methane.

  11. Flame Retardant Effect of Aerogel and Nanosilica on Engineered Polymers

    NASA Technical Reports Server (NTRS)

    Williams, Martha K.; Smith, Trent M.; Roberson, Luke B.; Yang, Feng; Nelson, Gordon L.

    2010-01-01

    Aerogels are typically manufactured vIa high temperature and pressure-critical-point drying of a colloidal metal oxide gel filled with solvents. Aerogel materials derived from silica materials represent a structural morphology (amorphous, open-celled nanofoams) rather than a particular chemical constituency. Aerogel is not like conventional foams in that it is a porous material with extreme microporosity and composed of individual features only a few nanometers in length with a highly porous dendriticlike structure. This unique substance has unusual properties such as low thermal conductivity, refractive index and sound suppression; in addition to its exceptional ability to capture fast moving dust. The highly porous nature of the aerogel's structure provides large amounts of surface area per unit weight. For instance, a silica aerogel material with a density of 100 kilograms per cubic meters can have surface areas of around 800 to 1500 square meters per gram depending on the precursors and process utilized to produce it. To take advantage of the unique properties of silica aerogels, especially the ultra light weight and low thermal conductivity, their composites with various engineering polymers were prepared and their flammability was investigated by Cone Calorimetry. The flammability of various polystyrene/silica aerogel nanocomposites were measured. The combination of these nanocomposites with a NASA patented flame retardant SINK were also studied. The results were compared with the base polymer to show the differences between composites with different forms of silica.

  12. Cryogenic Thermal Performance Testing of Bulk-Fill and Aerogel Insulation Materials

    NASA Technical Reports Server (NTRS)

    Scholtens, B. E.; Fesmire, J. E.; Sass, J. P.; Augustynowicz, S. D.; Heckle, K. W.

    2007-01-01

    The research testing and demonstration of new bulk-fill materials for cryogenic thermal insulation systems was performed by the Cryogenics Test Laboratory at NASA Kennedy Space Center. Thermal conductivity testing under actual-use cryogenic conditions is a key to understanding the total system performance encompassing engineering, economics, and materials factors. A number of bulk fill insulation materials, including aerogel beads, glass bubbles, and perlite powder, were tested using a new cylindrical cryostat. Boundary temperatures for the liquid nitrogen boil-off method were 293 K and 78 K. Tests were performed as a function of cold vacuum pressure from high vacuum to no vacuum conditions. Results are compared with other complementary test methods in the range of 300 K to 20 K. Various testing techniques are shown to be required to obtain a complete understanding of the operating performance of a material and to provide data for answers to design engineering questions.

  13. Using Aerogel-Based Insulation Material To Prevent Foam Loss on the Liquid-Hydrogen Intertank

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Uninsulated areas on cryogenic propellant tanks and feedlines cause moisture in the air to condense or ice to form. Flange joints, bracket supports, expansion bellows, and other cavities are uninsulated by design. These areas cannot be sealed because conventional thermal insulation materials would restrict mechanical articulations. Aerogel-based thermal insulation systems are able to seal critical locations such as the liquid-oxygen (LO2) feedline bellows. A new thermal insulation system was also necessary between the intertank wall, flange, and the liquid-hydrogen (LH2) tank dome, where there is a cavity (or crevice) with an exposed 20-K surface. When nitrogen gas is used for purging within the intertank volume, it condenses on this cold surface. Some solid nitrogen may also form on the colder side of the crevice. Voids or discontinuities within the foam can pressurize and cause areas of foam to weaken and break off, reducing thermal efficiency and creating potentially dangerous debris. To prevent this foam loss, we developed a thermal insulation system using bulk-fill aerogel material and demonstrated it with a one-tenth-scale model of the LH2 intertank flange area

  14. High surface area silicon carbide-coated carbon aerogel

    DOEpatents

    Worsley, Marcus A; Kuntz, Joshua D; Baumann, Theodore F; Satcher, Jr, Joe H

    2014-01-14

    A metal oxide-carbon composite includes a carbon aerogel with an oxide overcoat. The metal oxide-carbon composite is made by providing a carbon aerogel, immersing the carbon aerogel in a metal oxide sol under a vacuum, raising the carbon aerogel with the metal oxide sol to atmospheric pressure, curing the carbon aerogel with the metal oxide sol at room temperature, and drying the carbon aerogel with the metal oxide sol to produce the metal oxide-carbon composite. The step of providing a carbon aerogel can provide an activated carbon aerogel or provide a carbon aerogel with carbon nanotubes that make the carbon aerogel mechanically robust. Carbon aerogels can be coated with sol-gel silica and the silica can be converted to silicone carbide, improved the thermal stability of the carbon aerogel.

  15. Ultralight boron nitride aerogels via template-assisted chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Song, Yangxi; Li, Bin; Yang, Siwei; Ding, Guqiao; Zhang, Changrui; Xie, Xiaoming

    2015-05-01

    Boron nitride (BN) aerogels are porous materials with a continuous three-dimensional network structure. They are attracting increasing attention for a wide range of applications. Here, we report the template-assisted synthesis of BN aerogels by catalyst-free, low-pressure chemical vapor deposition on graphene-carbon nanotube composite aerogels using borazine as the B and N sources with a relatively low temperature of 900 °C. The three-dimensional structure of the BN aerogels was achieved through the structural design of carbon aerogel templates. The BN aerogels have an ultrahigh specific surface area, ultralow density, excellent oil absorbing ability, and high temperature oxidation resistance. The specific surface area of BN aerogels can reach up to 1051 m2 g-1, 2-3 times larger than the reported BN aerogels. The mass density can be as low as 0.6 mg cm-3, much lower than that of air. The BN aerogels exhibit high hydrophobic properties and can absorb up to 160 times their weight in oil. This is much higher than porous BN nanosheets reported previously. The BN aerogels can be restored for reuse after oil absorption simply by burning them in air. This is because of their high temperature oxidation resistance and suggests broad utility as water treatment tools.

  16. Ultralight boron nitride aerogels via template-assisted chemical vapor deposition

    PubMed Central

    Song, Yangxi; Li, Bin; Yang, Siwei; Ding, Guqiao; Zhang, Changrui; Xie, Xiaoming

    2015-01-01

    Boron nitride (BN) aerogels are porous materials with a continuous three-dimensional network structure. They are attracting increasing attention for a wide range of applications. Here, we report the template-assisted synthesis of BN aerogels by catalyst-free, low-pressure chemical vapor deposition on graphene-carbon nanotube composite aerogels using borazine as the B and N sources with a relatively low temperature of 900 °C. The three-dimensional structure of the BN aerogels was achieved through the structural design of carbon aerogel templates. The BN aerogels have an ultrahigh specific surface area, ultralow density, excellent oil absorbing ability, and high temperature oxidation resistance. The specific surface area of BN aerogels can reach up to 1051 m2 g−1, 2-3 times larger than the reported BN aerogels. The mass density can be as low as 0.6 mg cm−3, much lower than that of air. The BN aerogels exhibit high hydrophobic properties and can absorb up to 160 times their weight in oil. This is much higher than porous BN nanosheets reported previously. The BN aerogels can be restored for reuse after oil absorption simply by burning them in air. This is because of their high temperature oxidation resistance and suggests broad utility as water treatment tools. PMID:25976019

  17. Surfactant doped silica aerogels dried at supercritical pressure

    NASA Astrophysics Data System (ADS)

    Parale, V. G.; Mahadik, D. B.; Kavale, M. S.; Rao, A. Venkateswara; Vhatkar, R. S.; Wagh, P. B.; Gupta, Satish C.

    2013-02-01

    By combining the molecular silica precursor methyltrimethoxysilane (MTMS) with methanol, water and Tween-80 solution, we get surfactant-doped silica alcogels. The wet alcogels can be exchanged with methanol and then supercritically extracted with nitrogen to produce surfactant-doped silica aerogels (SDSAs). SDSAs represent a new class of aerogels that are composed of aggregated submicron porous particles that have tunable interparticle nanoporosity. As we increased the percentage of surfactant, the physical properties of silica aerogels changes. In this study we characterized the SDSAs by SEM for morphological study, FTIR for the material composition, contact angle for hydrophobicity determination and thermal conductivity measurements are carried out for thermal insulation application.

  18. Efficient sorption and reduction of U(VI) on zero-valent iron-polyaniline-graphene aerogel ternary composite.

    PubMed

    Chen, Lili; Feng, Shaojie; Zhao, Donglin; Chen, Shaohua; Li, Feifei; Chen, Changlun

    2017-03-15

    In this work, zero-valent iron-polyaniline-graphene aerogel composite (Fe-PANI-GA) was prepared and applied in the removal of U(VI) from aqueous solutions by batch sorption experiments. The experimental results showed that the Fe-PANI-GA composite had an excellent removal capacity for the removal of U(VI) in acidic solutions. The results also showed that the maximum removal capacity of the Fe-PANI-GA toward U(VI) was 350.47mg/g at pH 5.5. The sorption kinetics data were well-described by pseudo-second-order. The sorption isotherms of U(VI) fitted well with Langmuir isotherm and exhibited better removal efficiency with the increase of temperature. The thermodynamic parameters (ΔG, ΔS, ΔH) indicated that the sorption of U(VI) on the Fe-PANI-GA was an endothermic and spontaneous process. Moreover, removal mechanisms were studied based on the results of XRD, FTIR and XPS. Both U(VI) sorption and partially reductive precipitation of U(VI) to U(IV) contributed to the removal of U(VI) on Fe-PANI-GA. Therefore, Fe-PANI-GA was an economic and effective material for the removal of uranium from nuclear waste in practical application.

  19. Clay Nanocomposite/Aerogel Sandwich Structures for Cryotanks

    NASA Technical Reports Server (NTRS)

    Miller, Sandi; Leventis, Nicholas; Johnston, J. Chris; Meador, Michael

    2006-01-01

    GRC research has led to the development of epoxy-clay nanocomposites with 60-70% lower gas permeability than the base epoxy resin. Filament wound carbon fiber reinforced tanks made with this nanocomposite had a five-fold lower helium leak rate than the corresponding tanks made without clay. More recent work has produced new composites with more than a 100-fold reduction in helium permeability. Use of these advanced, high barrier composites would eliminate the need for a liner in composite cryotanks, thereby simplifying construction and reducing propellant leakage. Aerogels are attractive materials for use as cryotank insulation because of their low density and low thermal conductivity. However, aerogels are fragile and have poor environmental stability, which have limited their use to certain applications in specialized environments (e.g., in certain types of nuclear reactors as Cerenkov radiation detectors, and as thermal insulators aboard space rovers on Mars). New GRC developed polymer crosslinked aerogels (X-Aerogels) retain the low density of conventional aerogels, but they demonstrate a 300-fold increase in their mechanical strength. Currently, our strongest materials combine a density of approx. 0.45 g/cc, a thermal conductivity of approx. 0.04 W/mK and a compressive strength of 185 MPa. Use of these novel aerogels as insulation materials/structural components in combination with the low permeability of epoxy-clay nanocomposites could significantly reduce cryotank weight and improve durability.

  20. Aerogel Projects Ongoing in MSFC's Engineering Directorate

    NASA Technical Reports Server (NTRS)

    Shular, D. A.; Smithers, G. A.; Plawsky, J. L.

    2001-01-01

    When we speak of an aerogel material, we are referring more to process and structure than to a specific substance. Aerogel, considered the lightest solid material, has been made from silica for seventy years. Resorcinol-formaldehyde, organic aerogels have been developed more recently. However, aerogel can be made from almost any type of substance, even lead. Because an aerogel is mostly air (about 99%), the solid substance used will affect the weight very little. The problem with aerogels is their low tensile strength and lack of elasticity. Therefore, the challenge is to find ways to make the stronger or ways to circumvent the strength issue. Organic aerogels have slightly higher strength than base silica aerogels, while the carbonized version has three to five times the break strength of the base aerogel.

  1. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Loewy, R. G.; Wiberley, S. E.

    1985-01-01

    Various topics relating to composite structural materials for use in aircraft structures are discussed. The mechanical properties of high performance carbon fibers, carbon fiber-epoxy interface bonds, composite fractures, residual stress in high modulus and high strength carbon fibers, fatigue in composite materials, and the mechanical properties of polymeric matrix composite laminates are among the topics discussed.

  2. Mechanical Properties of Aerogels

    NASA Technical Reports Server (NTRS)

    Parmenter, Kelly E.; Milstein, Frederick

    1995-01-01

    Aerogels are extremely low density solids that are characterized by a high porosity and pore sizes on the order of nanometers. Their low thermal conductivity and sometimes transparent appearance make them desirable for applications such as insulation in cryogenic vessels and between double paned glass in solar architecture. An understanding of the mechanical properties of aerogels is necessary before aerogels can be used in load bearing applications. In the present study, the mechanical behavior of various types of fiber-reinforced silica aerogels was investigated with hardness, compression, tension and shear tests. Particular attention was paid to the effects of processing parameters, testing conditions, storage environment, and age on the aerogels' mechanical response. The results indicate that the addition of fibers to the aerogel matrix generally resulted in softer, weaker materials with smaller elastic moduli. Furthermore, the testing environment significantly affected compression results. Tests in ethanol show an appreciable amount of scatter, and are not consistent with results for tests in air. In fact, the compression specimens appeared to crack and begin to dissolve upon exposure to the ethanol solution. This is consistent with the inherent hydrophobic nature of these aerogels. In addition, the aging process affected the aerogels' mechanical behavior by increasing their compressive strength and elastic moduli while decreasing their strain at fracture. However, desiccation of the specimens did not appreciably affect the mechanical properties, even though it reduced the aerogel density by removing trapped moisture. Finally, tension and shear test results indicate that the shear strength of the aerogels exceeds the tensile strength. This is consistent with the response of brittle materials. Future work should concentrate on mechanical testing at cryogenic temperatures, and should involve more extensive tensile tests. Moreover, before the mechanical response

  3. Nonequilibrium Catalyst Materials Stabilized by the Aerogel Effect: Solvent Free and Continuous Synthesis of Gamma-Alumina with Hierarchical Porosity.

    PubMed

    Hagedorn, Kay; Bahnmüller, Ulrich; Schachtschneider, Andreas; Frei, Maren; Li, Wenyu; Schmedt Auf der Günne, Jörn; Polarz, Sebastian

    2017-04-05

    Heterogeneous catalysis can be understood as a phenomenon which strongly relies on the occurrence of thermodynamically less favorable surface motifs like defects or high-energy planes. Because it is very difficult to control such parameters, an interesting approach is to explore metastable polymorphs of the respective solids. The latter is not an easy task as well because the emergence of polymorphs is dictated by kinetic control and materials with high surface area are required. Further, an inherent problem is that high temperatures required for many catalytic reactions can also induce the transformation to the thermodynamically stable modification. Alumina (Al2O3) was selected for the current study as it exists not only in the stable α-form but also as the metastable γ-polymorph. Kinetic control was realized by combining an aerosol-based synthesis approach and a highly reactive, volatile precursor (AlMe3). Monolithic flakes of Al2O3 with a highly porous, hierarchical structure (micro-, meso-, and macropores connected to each other) resemble so-called aerogels, which are normally known only from wet sol-gel routes. Monolothic aerogel flakes can be separated from the gas phase without supercritical drying, which in principle allows for a continuous preparation of the materials. Process parameters can be adjusted so the material is composed exclusively of the desired γ-modification. The γ-Al2O3 aerogels were much more stable than they should be, and even after extended (80 h) high-temperature (1200 °C) treatment only an insignificant part has converted to the thermodynamically stable α-phase. The latter phenomenon was assigned to the extraordinary thermal insulation properties of aerogels. Finally, the material was tested concerning the catalytic dehydration of 1-hexanol. Comparison to other Al2O3 materials with the same surface area demonstrates that the γ-Al2O3 are superior in activity and selectivity regarding the formation of the desired product 1-hexene.

  4. Super-hydrophobic fluorine containing aerogels

    DOEpatents

    Coronado, Paul R.; Poco, John F.; Hrubesh, Lawrence W.

    2007-05-01

    An aerogel material with surfaces containing fluorine atoms which exhibits exceptional hydrophobicity, or the ability to repel liquid water. Hydrophobic aerogels are efficient absorbers of solvents from water. Solvents miscible with water are separated from it because the solvents are more volatile than water and they enter the porous aerogel as a vapor across the liquid water/solid interface. Solvents that are immisicble with water are separated from it by selectively wetting the aerogel. The hydrophobic property is achieved by formulating the aerogel using fluorine containing molecules either directly by addition in the sol-gel process, or by treating a standard dried aerogel using the vapor of fluorine containing molecules.

  5. Thermal Performance Of Space Suit Elements With Aerogel Insulation For Moon And Mars Exploration

    NASA Technical Reports Server (NTRS)

    Tang, Henry H.; Orndoff, Evelyne S.; Trevino, Luis A.

    2006-01-01

    Flexible fiber-reinforced aerogel composites were studied for use as insulation materials of a future space suit for Moon and Mars exploration. High flexibility and good thermal insulation properties of fiber-reinforced silica aerogel composites at both high and low vacuum conditions make it a promising insulation candidate for the space suit application. This paper first presents the results of a durability (mechanical cycling) study of these aerogels composites in the context of retaining their thermal performance. The study shows that some of these Aerogels materials retained most of their insulation performance after up to 250,000 cycles of mechanical flex cycling. This paper also examines the problem of integrating these flexible aerogel composites into the current space suit elements. Thermal conductivity evaluations are proposed for different types of aerogels space suit elements to identify the lay-up concept that may have the best overall thermal performance for both Moon and Mars environments. Potential solutions in mitigating the silica dusting issue related to the application of these aerogels materials for the space suit elements are also discussed.

  6. Composite material dosimeters

    DOEpatents

    Miller, Steven D.

    1996-01-01

    The present invention is a composite material containing a mix of dosimeter material powder and a polymer powder wherein the polymer is transparent to the photon emission of the dosimeter material powder. By mixing dosimeter material powder with polymer powder, less dosimeter material is needed compared to a monolithic dosimeter material chip. Interrogation is done with excitation by visible light.

  7. Mechanically Strong, Polymer Cross-linked Aerogels (X-Aerogels)

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas

    2006-01-01

    Aerogels comprise a class of low-density, high porous solid objects consisting of dimensionally quasi-stable self-supported three-dimensional assemblies of nanoparticles. Aerogels are pursued because of properties above and beyond those of the individual nanoparticles, including low thermal conductivity, low dielectric constant and high acoustic impedance. Possible applications include thermal and vibration insulation, dielectrics for fast electronics, and hosting of functional guests for a wide variety of optical, chemical and electronic applications. Aerogels, however, are extremely fragile materials, hence they have found only limited application in some very specialized environments, for example as Cerenkov radiation detectors in certain types of nuclear reactors, aboard spacecraft as collectors of hypervelocity particles (refer to NASA's Stardust program) and as thermal insulators on planetary vehicles on Mars (refer to Sojourner Rover in 1997 and Spirit and Opportunity in 2004). Along these lines, the X-Aerogel is a new NASA-developed strong lightweight material that has resolved the fragility problem of traditional (native) aerogels. X-Aerogels are made by applying a conformal polymer coating on the surfaces of the skeletal nanoparticles of native aerogels (see Scanning Electron Micrographs). Since the relative amounts of the polymeric crosslinker and the backbone are comparable, X-Aerogels can be viewed either as aerogels modified by the templated accumulation of polymer on the skeletal nanoparticles, or as nanoporous polymers made by remplated casting of polymer on a nanostructured framework. The most striking feature of X-Aerogels is that for a nominal 3-fold increase in density (still a ultralighweight material), the mechanical strength can be up to 300 times higher than the strength of the underlying native aerogel. Thus, X-Aerogels combine a multiple of the specific compressive strength of steel, with the the thermal conductivity of styrofoam. X-Aerogels

  8. Sprayable Aerogel Bead Compositions With High Shear Flow Resistance and High Thermal Insulation Value

    NASA Technical Reports Server (NTRS)

    Ou, Danny; Trifu, Roxana; Caggiano, Gregory

    2013-01-01

    A sprayable aerogel insulation has been developed that has good mechanical integrity and lower thermal conductivity than incumbent polyurethane spray-on foam insulation, at similar or lower areal densities, to prevent insulation cracking and debonding in an effort to eliminate the generation of inflight debris. This new, lightweight aerogel under bead form can be used as insulation in various thermal management systems that require low mass and volume, such as cryogenic storage tanks, pipelines, space platforms, and launch vehicles.

  9. Photoluminescence properties of silica aerogel/porous silicon nanocomposites

    NASA Astrophysics Data System (ADS)

    Karlash, A. Yu; Zakharko, Yu E.; Skryshevsky, V. A.; Tsiganova, A. I.; Kuznetsov, G. V.

    2010-08-01

    The luminescent properties of nanocomposite pellets based on silica aerogel and porous Si powder are studied depending on the ratio of chemical compounds. The photoluminescence of nanocomposites is characterized by a red-orange band related to silicon nanoparticles and a blue-green band related to silica aerogel with close values of decay time and activation energy. Remarkable tuning of nanocomposites' photoluminescence spectra in the RGB region is established allowing their use as promising phosphor materials for light-emitting diodes. The outgoing spectra of pellet photoluminescence are guided by the chemical composition ratio, porous Si and silica aerogel technology, and the storage time in ambient atmosphere. It was shown that using the silica aerogel as a dielectric matrix considerably increases the stability of photoluminescence yield of silicon nanoparticles.

  10. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1983-01-01

    Transverse properties of fiber constituents in composites, fatigue in composite materials, matrix dominated properties of high performance composites, numerical investigation of moisture effects, numerical investigation of the micromechanics of composite fracture, advanced analysis methods, compact lug design, and the RP-1 and RP-2 sailplanes projects are discussed.

  11. Epoxy Crosslinked Silica Aerogels (X-Aerogels)

    NASA Technical Reports Server (NTRS)

    fabrizio, Eve; Ilhan, Faysal; Meador, Mary Ann; Johnston, Chris; Leventis, Nicholas

    2004-01-01

    NASA is interested in the development of strong lightweight materials for the dual role of thermal insulator and structural component for space vehicles; freeing more weight for useful payloads. Aerogels are very-low density materials (0.010 to 0.5 g/cc) that, due to high porosity (meso- and microporosity), can be, depending on the chemical nature of the network, ideal thermal insulators (thermal conductivity approx. 15 mW/mK). However, aerogels are extremely fragile. For practical application of aerogels, one must increase strength without compromising the physical properties attributed to low density. This has been achieved by templated growth of an epoxy polymer layer that crosslinks the "pearl necklace" network of nanoparticles: the framework of a typical silica aerogel. The requirement for conformal accumulation of the epoxy crosslinker is reaction both with the surface of silica and with itself. After cross-linking, the strength of a typical aerogel monolith increases by a factor of 200, in the expense of only a 2-fold increase in density. Strength is increased further by coupling residual unreacted epoxides with diamine.

  12. Coated Aerogel Beads

    NASA Technical Reports Server (NTRS)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2014-01-01

    Methods and apparatus for coating particulate material are provided. The apparatus includes a vessel having a top and a bottom, a vertically extending conduit having an inlet in the vessel and an outlet outside of the vessel, a first fluid inlet in the bottom of the vessel for introducing a transfer fluid, a second fluid inlet in the bottom of the vessel for introducing a coating fluid, and a fluid outlet from the vessel. The method includes steps of agitating a material, contacting the material with a coating material, and drying the coating material to produce a coated material. The invention may be adapted to coat aerogel beads, among other materials. A coated aerogel bead and an aerogel-based insulation material are also disclosed.

  13. Tough Composite Materials

    NASA Technical Reports Server (NTRS)

    Vosteen, L. F. (Compiler); Johnson, N. J. (Compiler); Teichman, L. A. (Compiler)

    1984-01-01

    Papers and working group summaries are presented which address composite material behavior and performance improvement. Topic areas include composite fracture toughness and impact characterization, constituent properties and interrelationships, and matrix synthesis and characterization.

  14. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1979-01-01

    Technology utilization of fiber reinforced composite materials is discussed in the areas of physical properties, and life prediction. Programs related to the Composite Aircraft Program are described in detail.

  15. Nano-composite materials

    DOEpatents

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland

    2010-05-25

    Nano-composite materials are disclosed. An exemplary method of producing a nano-composite material may comprise co-sputtering a transition metal and a refractory metal in a reactive atmosphere. The method may also comprise co-depositing a transition metal and a refractory metal composite structure on a substrate. The method may further comprise thermally annealing the deposited transition metal and refractory metal composite structure in a reactive atmosphere.

  16. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1979-01-01

    A multifaceted program is described in which aeronautical, mechanical, and materials engineers interact to develop composite aircraft structures. Topics covered include: (1) the design of an advanced composite elevator and a proposed spar and rib assembly; (2) optimizing fiber orientation in the vicinity of heavily loaded joints; (3) failure mechanisms and delamination; (4) the construction of an ultralight sailplane; (5) computer-aided design; finite element analysis programs, preprocessor development, and array preprocessor for SPAR; (6) advanced analysis methods for composite structures; (7) ultrasonic nondestructive testing; (8) physical properties of epoxy resins and composites; (9) fatigue in composite materials, and (10) transverse thermal expansion of carbon/epoxy composites.

  17. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1984-01-01

    Progress is reported in studies of constituent materials composite materials, generic structural elements, processing science technology, and maintaining long-term structural integrity. Topics discussed include: mechanical properties of high performance carbon fibers; fatigue in composite materials; experimental and theoretical studies of moisture and temperature effects on the mechanical properties of graphite-epoxy laminates and neat resins; numerical investigations of the micromechanics of composite fracture; delamination failures of composite laminates; effect of notch size on composite laminates; improved beam theory for anisotropic materials; variation of resin properties through the thickness of cured samples; numerical analysis composite processing; heat treatment of metal matrix composites, and the RP-1 and RP2 gliders of the sailplane project.

  18. Graphene aerogels

    DOEpatents

    Pauzauskie, Peter J; Worsley, Marcus A; Baumann, Theodore F; Satcher, Jr., Joe H; Biener, Juergen

    2015-03-31

    Graphene aerogels with high conductivity and surface areas including a method for making a graphene aerogel, including the following steps: (1) preparing a reaction mixture comprising a graphene oxide suspension and at least one catalyst; (2) curing the reaction mixture to produce a wet gel; (3) drying the wet gel to produce a dry gel; and (4) pyrolyzing the dry gel to produce a graphene aerogel. Applications include electrical energy storage including batteries and supercapacitors.

  19. Thermal properties of organic and modified inorganic aerogels

    SciTech Connect

    Pekala, R.W.; Hrubesh, L.W.

    1992-08-01

    Aerogels are open-cell foams that have already been shown to be among the best thermal insulating solid materials known. Improvements in the thermal insulating properties of aerogels are possible by synthesizing new organic varieties, by using additives within existing aerogel matrix, and by optimizing their nanostructures. We discuss these approaches and give some examples of aerogels which demonstrate the improvements.

  20. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Wiberley, S. E.

    1978-01-01

    The purpose of the RPI composites program is to develop advanced technology in the areas of physical properties, structural concepts and analysis, manufacturing, reliability and life prediction. Concommitant goals are to educate engineers to design and use composite materials as normal or conventional materials. A multifaceted program was instituted to achieve these objectives.

  1. Cytochrome c Stabilization and Immobilization in Aerogels.

    PubMed

    Harper-Leatherman, Amanda S; Wallace, Jean Marie; Rolison, Debra R

    2017-01-01

    Sol-gel-derived aerogels are three-dimensional, nanoscale materials that combine large surface area with high porosity. These traits make them useful for any rate-critical chemical process, particularly sensing or electrochemical applications, once physical or chemical moieties are incorporated into the gels to add their functionality to the ultraporous scaffold. Incorporating biomolecules into aerogels, other than such rugged species as lipases or cellulose, has been challenging due to the inability of most biomolecules to remain structurally intact within the gels during the necessary supercritical fluid (SCF) processing. However, the heme protein cytochrome c (cyt.c) forms self-organized superstructures around gold (or silver) nanoparticles in buffer that can be encapsulated into wet gels as the sol undergoes gelation. The guest-host wet gel can then be processed to form composite aerogels in which cyt.c retains its characteristic visible absorption. The gold (or silver) nanoparticle-nucleated superstructures protect the majority of the protein from the harsh physicochemical conditions necessary to form an aerogel. The Au~cyt.c superstructures exhibit rapid gas-phase recognition of nitric oxide (NO) within the bioaerogel matrix, as facilitated by the high-quality pore structure of the aerogel, while remaining viable for weeks at room temperature. More recently, careful control of synthetic parameters (e.g., buffer concentration, protein concentration, SCF extraction rate) have allowed for the preparation of cyt.c-silica aerogels, sans nucleating nanoparticles; these bioaerogels also exhibit rapid gas-phase sensing while retaining protein structural stability.

  2. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Loewy, R.; Wiberley, S. E.

    1986-01-01

    Overall emphasis is on basic long-term research in the following categories: constituent materials, composite materials, generic structural elements, processing science technology; and maintaining long-term structural integrity. Research in basic composition, characteristics, and processing science of composite materials and their constituents is balanced against the mechanics, conceptual design, fabrication, and testing of generic structural elements typical of aerospace vehicles so as to encourage the discovery of unusual solutions to present and future problems. Detailed descriptions of the progress achieved in the various component parts of this comprehensive program are presented.

  3. Electrically conductive composite material

    DOEpatents

    Clough, R.L.; Sylwester, A.P.

    1988-06-20

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  4. Electrically conductive composite material

    SciTech Connect

    Clough, R.L.; Sylwester, A.P.

    1989-05-23

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  5. Composite Structural Materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberly, S. E.

    1984-01-01

    The development and application of filamentary composite materials, is considered. Such interest is based on the possibility of using relatively brittle materials with high modulus, high strength, but low density in composites with good durability and high tolerance to damage. Fiber reinforced composite materials of this kind offer substantially improved performance and potentially lower costs for aerospace hardware. Much progress has been made since the initial developments in the mid 1960's. There were only limited applied to the primary structure of operational vehicles, mainly as aircrafts.

  6. Electrically conductive composite material

    DOEpatents

    Clough, Roger L.; Sylwester, Alan P.

    1989-01-01

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistant pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like.

  7. Polymer-Attached Functional Inorganic-Organic Hybrid Nano-Composite Aerogels

    DTIC Science & Technology

    2003-01-01

    Aldrich) monomer and dibutyltin dilaurate catalyst were mixed in a 20 ml glass vial. After it was heated at 67OC for 7 hrs, the mixture was washed by THF...and then vacuum dried. Second, 0.057 g HMDI modified chitosan silica aerogel, X-Si0 2 -NCO, was mixed with calculated amount of HEMA and dibutyltin

  8. Analytical Methods for Discriminating Stardust in Aerogel Capture Media

    SciTech Connect

    Brennan, S; Ishii, H A; Bradley, J P; Luening, K; Ignatyev, K; Pianetta, P

    2007-09-04

    Comet 81P/Wild 2's serendipitous orbit change to the inner solar system in 1974 offered researchers a rare opportunity to sample cometary material from the Kuiper belt, a repository of material left over from solar system formation {approx}4.6 Gyr ago. NASA's Stardust mission intercepted the comet in January 2004 and returned with material collected from its tail in January 2006. The cometary material, consisting of particles ranging from 10 microns down to <2 nm, was collected in aerogel, a very low density ({approx}3 mg/cm cm3) silica foam, to minimize the effects of deceleration from 6.1 km/s. The entire deceleration track is extracted from the aerogel block as a pyramidal shape known as a keystone which can be mapped using x-ray fluorescence prior to extraction of terminal or intermediate particles for other analyses. One goal of the track mapping is to determine the bulk composition of the cometary material returned. Unfortunately, although the aerogel is predominantly SiO{sub 2}, there are sufficient quantities of trace elements similar to those expected in the cometary material to require sophisticated discrimination techniques in order to decide whether a fluorescence map pixel contains only aerogel or both aerogel and cometary material. We have developed a dual threshold analysis approach for better distinguishing cometary material from aerogel contaminants and have applied it to five Stardust impact tracks and terminal particles. Here, we present aspects of the dual threshold approach and demonstrate its impact on track composition for one track.

  9. Carbon nanotube-bonded graphene hybrid aerogels and their application to water purification

    NASA Astrophysics Data System (ADS)

    Lee, Byeongho; Lee, Sangil; Lee, Minwoo; Jeong, Dae Hong; Baek, Youngbin; Yoon, Jeyong; Kim, Yong Hyup

    2015-04-01

    of the material along with its high specific surface area also makes the hybrid aerogel attractive for application in water treatment. Both anionic and cationic dyes can be effectively removed from water by the hybrid aerogel. A number of organics and oils can be selectively separated from water by the hybrid aerogel. The hybrid aerogel is easy to handle and separate from water due to its magnetic nature, and can readily be recycled and reused. Electronic supplementary information (ESI) available: TEM images of interface between graphene and CVD-grown CNT, SEM images of 3D graphene hybrid structures at low-magnification. XRD, Raman and EDS spectra (elemental composition table by EDS), SEM images of bridging CNTs between graphene layers. Nitrogen sorption isotherms and pore size distribution of 3D graphene hybrid structures. Viscoelastic properties (storage and loss modulus according to temperature). UV-vis spectra of the dye solutions according to absorption time, solvent/oil absorption capacity and regeneration for dye adsorption and solvent/oil absorption and a summary of properties of 3D graphene hybrid structures. See DOI: 10.1039/c5nr01018g

  10. High specific surface area aerogel cryoadsorber for vacuum pumping applications

    DOEpatents

    Hill, Randal M.; Fought, Eric R.; Biltoft, Peter J.

    2000-01-01

    A cryogenic pumping system is provided, comprising a vacuum environment, an aerogel sorbent formed from a carbon aerogel disposed within the vacuum environment, and cooling means for cooling the aerogel sorbent sufficiently to adsorb molecules from the vacuum environment onto the aerogel sorbent. Embodiments of the invention include a liquid refrigerant cryosorption pump, a compressed helium cryogenic pump, a cryopanel and a Meissner coil, each of which uses carbon aerogel as a sorbent material.

  11. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1982-01-01

    The promise of filamentary composite materials, whose development may be considered as entering its second generation, continues to generate intense interest and applications activity. Fiber reinforced composite materials offer substantially improved performance and potentially lower costs for aerospace hardware. Much progress has been achieved since the initial developments in the mid 1960's. Rather limited applications to primary aircraft structure have been made, however, mainly in a material-substitution mode on military aircraft, except for a few experiments currently underway on large passenger airplanes in commercial operation. To fulfill the promise of composite materials completely requires a strong technology base. NASA and AFOSR recognize the present state of the art to be such that to fully exploit composites in sophisticated aerospace structures, the technology base must be improved. This, in turn, calls for expanding fundamental knowledge and the means by which it can be successfully applied in design and manufacture.

  12. Composite Material Switches

    NASA Technical Reports Server (NTRS)

    Javadi, Hamid (Inventor)

    2001-01-01

    A device to protect electronic circuitry from high voltage transients is constructed from a relatively thin piece of conductive composite sandwiched between two conductors so that conduction is through the thickness of the composite piece. The device is based on the discovery that conduction through conductive composite materials in this configuration switches to a high resistance mode when exposed to voltages above a threshold voltage.

  13. Ultralight carbon aerogel from nanocellulose as a highly selective oil absorption material

    DOE PAGES

    Meng, Yujie; Yang, Timothy M.; Liu, Peizhi; ...

    2014-12-04

    The synthesis of a sponge-like carbon aerogel from microfibril cellulose (MFC), with high porosity (99%), ultra-low density (0.01 g/cm3), hydrophobic properties (149° static contact angle) and reusability is reported in this paper. The physical properties, internal morphology, thermal properties, and chemical properties of carbon aerogels heat-treated at 700 and 900 °C (Samples C-700 and C-900) were examined. Stabilization and carbonization parameters were optimized in terms of residual carbon yield. The BET surface area of Sample C-700 (521 m2 /g) was significantly higher than of Sample C-950 (149 m2 /g). Graphitic-like domains were observed in C-950. The highest normalized sorption capacitymore » (86 g/g) for paraffin oil was observed in sample C-700. The removal of hydrophilic function groups during carbonization causes carbon aerogel to present highly hydrophobic properties. Lastly, carbon aerogel's ability to absorb oil is enhanced by its highly porous 3D network structure with interconnected cellulose nanofibrils.« less

  14. Ultralight carbon aerogel from nanocellulose as a highly selective oil absorption material

    SciTech Connect

    Meng, Yujie; Yang, Timothy M.; Liu, Peizhi; Contescu, Cristian I.; Huang, Biao; Wang, Siqun

    2014-12-04

    The synthesis of a sponge-like carbon aerogel from microfibril cellulose (MFC), with high porosity (99%), ultra-low density (0.01 g/cm3), hydrophobic properties (149° static contact angle) and reusability is reported in this paper. The physical properties, internal morphology, thermal properties, and chemical properties of carbon aerogels heat-treated at 700 and 900 °C (Samples C-700 and C-900) were examined. Stabilization and carbonization parameters were optimized in terms of residual carbon yield. The BET surface area of Sample C-700 (521 m2 /g) was significantly higher than of Sample C-950 (149 m2 /g). Graphitic-like domains were observed in C-950. The highest normalized sorption capacity (86 g/g) for paraffin oil was observed in sample C-700. The removal of hydrophilic function groups during carbonization causes carbon aerogel to present highly hydrophobic properties. Lastly, carbon aerogel's ability to absorb oil is enhanced by its highly porous 3D network structure with interconnected cellulose nanofibrils.

  15. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1982-01-01

    Research in the basic composition, characteristics, and processng science of composite materials and their constituents is balanced against the mechanics, conceptual design, fabrication, and testing of generic structural elements typical of aerospace vehicles so as to encourage the discovery of unusual solutions to problems. Detailed descriptions of the progress achieved in the various component parts of his program are presented.

  16. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Loewy, Robert G.; Wiberley, Stephen E.

    1987-01-01

    The development and application of composite materials to aerospace vehicle structures which began in the mid 1960's has now progressed to the point where what can be considered entire airframes are being designed and built using composites. Issues related to the fabrication of non-resin matrix composites and the micro, mezzo and macromechanics of thermoplastic and metal matrix composites are emphasized. Several research efforts are presented. They are entitled: (1) The effects of chemical vapor deposition and thermal treatments on the properties of pitch-based carbon fiber; (2) Inelastic deformation of metal matrix laminates; (3) Analysis of fatigue damage in fibrous MMC laminates; (4) Delamination fracture toughness in thermoplastic matrix composites; (5) Numerical investigation of the microhardness of composite fracture; and (6) General beam theory for composite structures.

  17. Basic science of new aerogels. Final report

    SciTech Connect

    1996-08-01

    Feasibility of making monolithic composite aerogels containing silica and natural clay minerals, synthetic clay minerals or zeolites has been demonstrated, using two different processes; up to 30 wt% of the mineral phase has been successfully added. Addition of natural and synthetic clay minerals or zeolites to silica aerosols was shown to retard densification. Composite silica aerogels showed significant surface area still present after sintering at 800 or 1000 C. For most samples, 1 wt% of the second phase is equally effective in retarding densification as 10 wt%. Composite aerogels, in general, had lower hardness values than pure silica. Hardness values were inversely proportional to aerogel pore radius.

  18. Van der Waal Interactions in Ultrafine Nanocellulose Aerogels

    NASA Astrophysics Data System (ADS)

    Fritch, Byron; Bradley, Derek; Kidd, Tim

    Nanocellulose aerogels have shown an ability to be used in many different applications ranging from oil sponges to conductive materials to possibly a low calorie food substitute. Not much is known about the structural and physical property changes that occur when the composition of the aerogel changes. We studied what properties change when the aerogel amounts change, as well as how sticky the aerogels are and how strong they are. The higher concentrations appeared to have more plate-like structures while the lower concentrations had a more fibrous material. These fibers in the low concentrations had a smaller diameter than a human hair. Only the low concentration aerogels were able to stick to a glass surface in the adhesion test, but were able to support a mass much larger than their own. These low concentrations also would stick to your finger when lightly touched. Preliminary tests show that a concentration that is not too low, but not too high, is best for tensile strength. All concentrations were able to hold many times their own mass. Cellulose should be studied more because it is a renewable material and is easily accessed. Nanocellulose is also not environmentally dangerous allowing it to be used in applications involving humans and the environment like noted above. National Science Foundation Grant DMR-1410496.

  19. Protective Skins for Aerogel Monoliths

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas; Johnston, James C.; Kuczmarski, Maria A.; Meador, Ann B.

    2007-01-01

    A method of imparting relatively hard protective outer skins to aerogel monoliths has been developed. Even more than aerogel beads, aerogel monoliths are attractive as thermal-insulation materials, but the commercial utilization of aerogel monoliths in thermal-insulation panels has been inhibited by their fragility and the consequent difficulty of handling them. Therefore, there is a need to afford sufficient protection to aerogel monoliths to facilitate handling, without compromising the attractive bulk properties (low density, high porosity, low thermal conductivity, high surface area, and low permittivity) of aerogel materials. The present method was devised to satisfy this need. The essence of the present method is to coat an aerogel monolith with an outer polymeric skin, by painting or spraying. Apparently, the reason spraying and painting were not attempted until now is that it is well known in the aerogel industry that aerogels collapse in contact with liquids. In the present method, one prevents such collapse through the proper choice of coating liquid and process conditions: In particular, one uses a viscous polymer precursor liquid and (a) carefully controls the amount of liquid applied and/or (b) causes the liquid to become cured to the desired hard polymeric layer rapidly enough that there is not sufficient time for the liquid to percolate into the aerogel bulk. The method has been demonstrated by use of isocyanates, which, upon exposure to atmospheric moisture, become cured to polyurethane/polyurea-type coats. The method has also been demonstrated by use of commercial epoxy resins. The method could also be implemented by use of a variety of other resins, including polyimide precursors (for forming high-temperature-resistant protective skins) or perfluorinated monomers (for forming coats that impart hydrophobicity and some increase in strength).

  20. Nanostructured composite reinforced material

    DOEpatents

    Seals, Roland D [Oak Ridge, TN; Ripley, Edward B [Knoxville, TN; Ludtka, Gerard M [Oak Ridge, TN

    2012-07-31

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  1. Modified Composite Materials Workshop

    NASA Technical Reports Server (NTRS)

    Dicus, D. L. (Compiler)

    1978-01-01

    The reduction or elimination of the hazard which results from accidental release of graphite fibers from composite materials was studied at a workshop. At the workshop, groups were organized to consider six topics: epoxy modifications, epoxy replacement, fiber modifications, fiber coatings and new fibers, hybrids, and fiber release testing. Because of the time required to develop a new material and acquire a design data base, most of the workers concluded that a modified composite material would require about four to five years of development and testing before it could be applied to aircraft structures. The hybrid working group considered that some hybrid composites which reduce the risk of accidental fiber release might be put into service over the near term. The fiber release testing working group recommended a coordinated effort to define a suitable laboratory test.

  2. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1983-01-01

    Progress and plans are reported for investigations of: (1) the mechanical properties of high performance carbon fibers; (2) fatigue in composite materials; (3) moisture and temperature effects on the mechanical properties of graphite-epoxy laminates; (4) the theory of inhomogeneous swelling in epoxy resin; (5) numerical studies of the micromechanics of composite fracture; (6) free edge failures of composite laminates; (7) analysis of unbalanced laminates; (8) compact lug design; (9) quantification of Saint-Venant's principles for a general prismatic member; (10) variation of resin properties through the thickness of cured samples; and (11) the wing fuselage ensemble of the RP-1 and RP-2 sailplanes.

  3. Noble metal aerogels-synthesis, characterization, and application as electrocatalysts.

    PubMed

    Liu, Wei; Herrmann, Anne-Kristin; Bigall, Nadja C; Rodriguez, Paramaconi; Wen, Dan; Oezaslan, Mehtap; Schmidt, Thomas J; Gaponik, Nikolai; Eychmüller, Alexander

    2015-02-17

    CONSPECTUS: Metallic and catalytically active materials with high surface area and large porosity are a long-desired goal in both industry and academia. In this Account, we summarize the strategies for making a variety of self-supported noble metal aerogels consisting of extended metal backbone nanonetworks. We discuss their outstanding physical and chemical properties, including their three-dimensional network structure, the simple control over their composition, their large specific surface area, and their hierarchical porosity. Additionally, we show some initial results on their excellent performance as electrocatalysts combining both high catalytic activity and high durability for fuel cell reactions such as ethanol oxidation and the oxygen reduction reaction (ORR). Finally, we give some hints on the future challenges in the research area of metal aerogels. We believe that metal aerogels are a new, promising class of electrocatalysts for polymer electrolyte fuel cells (PEFCs) and will also open great opportunities for other electrochemical energy systems, catalysis, and sensors. The commercialization of PEFCs encounters three critical obstacles, viz., high cost, insufficient activity, and inadequate long-term durability. Besides others, the sluggish kinetics of the ORR and alcohol oxidation and insufficient catalyst stability are important reasons for these obstacles. Various approaches have been taken to overcome these obstacles, e.g., by controlling the catalyst particle size in an optimized range, forming multimetallic catalysts, controlling the surface compositions, shaping the catalysts into nanocrystals, and designing supportless catalysts with extended surfaces such as nanostructured thin films, nanotubes, and porous nanostructures. These efforts have produced plenty of excellent electrocatalysts, but the development of multisynergetic functional catalysts exhibiting low cost, high activity, and high durability still faces great challenges. In this

  4. A facile approach for preparation of underwater superoleophobicity cellulose/chitosan composite aerogel for oil/water separation

    NASA Astrophysics Data System (ADS)

    Peng, Huili; Wu, Jianning; Wang, Yixi; Wang, Hao; Liu, Zhiyong; Shi, Yulin; Guo, Xuhong

    2016-05-01

    We fabricate cellulose/chitosan (CE/CS) aerogel with stable superhydrophilic ( θ ≈ 0°) and underwater superoleophobic ( θ oil > 150°) through a simple way. During the process of preparation of CE/CS aerogel, chitosan will self-assemble into number micron diameter particles on the surface of aerogel. Furthermore, the hydrogen bonding network structure of cellulose was destroyed and more hydrophilic groups (-OH) were exposed. Rough surface and hydrophilicity make CE/CS aerogel have a property of underwater superoleophobicity. CE/CS aerogel shows underwater superoleophobicity to different oils, and it still have stable superoleophobicity in corrosive solution. The important thing is that CE/CS aerogel can separate free oil/water mixture and surfactant-stabilized emulsions under gravity effectively. The sample is green, low cost, and environmental friendly, which is a promising candidate to be used in oil/water separation.

  5. Optothermal nonlinearity of silica aerogel

    NASA Astrophysics Data System (ADS)

    Braidotti, Maria Chiara; Gentilini, Silvia; Fleming, Adam; Samuels, Michiel C.; Di Falco, Andrea; Conti, Claudio

    2016-07-01

    We report on the characterization of silica aerogel thermal optical nonlinearity, obtained by z-scan technique. The results show that typical silica aerogels have nonlinear optical coefficient similar to that of glass (≃10-12 m2/W), with negligible optical nonlinear absorption. The nonlinear coefficient can be increased to values in the range of 10-10 m2/W by embedding an absorbing dye in the aerogel. This value is one order of magnitude higher than that observed in the pure dye and in typical highly nonlinear materials like liquid crystals.

  6. Electrochemical behavior of carbon aerogels derived from different precursors

    SciTech Connect

    Pekala, R.W.; Alviso, C.T.; Nielsen, J.K.; Tran, T.D.; Reynolds, G.A.M.; Dresselhaus, M.S.

    1995-12-31

    The ability to tailor the structure and properties of porous carbons has led to their increased use as electrodes in energy storage devices. The research focuses on the synthesis and characterization of carbon aerogels for use in electrochemical double layer capacitors.Carbon aerogels are formed from the sol-gel polymerization of (1) resorcinol-formaldehyde or (2) phenolic-furfural, followed by supercritical drying from carbon dioxide, and subsequent pyrolysis in an inert atmosphere. These materials can be produced as monoliths, composites, thin films, powders, or microspheres. In all cases, the aerogels have an open-cell structure with an ultrafine pore size (< 100 nm), high surface area (400--1,100 m{sup 2}/g), and a solid matrix composed of interconnected particles, fibers, or platelets with characteristic dimensions of 10 nm. This paper examines the effects of the carbon precursor and processing conditions on electrochemical performance in aqueous and organic electrolytes.

  7. Fracture, failure and compression behaviour of a 3D interconnected carbon aerogel (Aerographite) epoxy composite

    DOE PAGES

    Chandrasekaran, S.; Liebig, W. V.; Mecklenberg, M.; ...

    2015-11-04

    Aerographite (AG) is a mechanically robust, lightweight synthetic cellular material, which consists of a 3D interconnected network of tubular carbon [1]. The presence of open channels in AG aids to infiltrate them with polymer matrices, thereby yielding an electrical conducting and lightweight composite. Aerographite produced with densities in the range of 7–15 mg/cm3 was infiltrated with a low viscous epoxy resin by means of vacuum infiltration technique. Detailed morphological and structural investigations on synthesized AG and AG/epoxy composite were performed by scanning electron microscopic techniques. Our present study investigates the fracture and failure of AG/epoxy composites and its energy absorptionmore » capacity under compression. The composites displayed an extended plateau region when uni-axially compressed, which led to an increase in energy absorption of ~133% per unit volume for 1.5 wt% of AG, when compared to pure epoxy. Preliminary results on fracture toughness showed an enhancement of ~19% in KIC for AG/epoxy composites with 0.45 wt% of AG. Furthermore, our observations of fractured surfaces under scanning electron microscope gives evidence of pull-out of arms of AG tetrapod, interface and inter-graphite failure as the dominating mechanism for the toughness improvement in these composites. These observations were consistent with the results obtained from photoelasticity experiments on a thin film AG/epoxy model composite.« less

  8. Fracture, failure and compression behaviour of a 3D interconnected carbon aerogel (Aerographite) epoxy composite

    SciTech Connect

    Chandrasekaran, S.; Liebig, W. V.; Mecklenberg, M.; Fiedler, B.; Smazna, D.; Adelung, R.; Schulte, K.

    2015-11-04

    Aerographite (AG) is a mechanically robust, lightweight synthetic cellular material, which consists of a 3D interconnected network of tubular carbon [1]. The presence of open channels in AG aids to infiltrate them with polymer matrices, thereby yielding an electrical conducting and lightweight composite. Aerographite produced with densities in the range of 7–15 mg/cm3 was infiltrated with a low viscous epoxy resin by means of vacuum infiltration technique. Detailed morphological and structural investigations on synthesized AG and AG/epoxy composite were performed by scanning electron microscopic techniques. Our present study investigates the fracture and failure of AG/epoxy composites and its energy absorption capacity under compression. The composites displayed an extended plateau region when uni-axially compressed, which led to an increase in energy absorption of ~133% per unit volume for 1.5 wt% of AG, when compared to pure epoxy. Preliminary results on fracture toughness showed an enhancement of ~19% in KIC for AG/epoxy composites with 0.45 wt% of AG. Furthermore, our observations of fractured surfaces under scanning electron microscope gives evidence of pull-out of arms of AG tetrapod, interface and inter-graphite failure as the dominating mechanism for the toughness improvement in these composites. These observations were consistent with the results obtained from photoelasticity experiments on a thin film AG/epoxy model composite.

  9. Nano-sized Mn-doped activated carbon aerogel as electrode material for electrochemical capacitor: effect of activation conditions.

    PubMed

    Lee, Yoon Jae; Park, Hai Woong; Park, Sunyoung; Song, In Kyu

    2012-07-01

    Carbon aerogel (CA) was prepared by a sol-gel polymerization of resorcinol and formaldehyde, and a series of activated carbon aerogels (ACA-KOH-X, X = 0, 0.3, 0.7, 1, and 2) were then prepared by a chemical activation using different amount of potassium hydroxide (X represented weight ratio of KOH with respect to CA). Specific capacitances of activated carbon aerogels were measured by cyclic voltammetry and galvanostatic charge/discharge methods in 6 M KOH electrolyte. Among the samples prepared, ACA-KOH-0.7 showed the highest specific capacitance (149 F/g). In order to combine excellent electrochemical performance of activated carbon aerogel with pseudocapacitive property of manganese oxide, 7 wt% Mn was doped on activated carbon aerogel (Mn/ACA-KOH-0.7) by an incipient wetness impregnation method. For comparison, 7 wt% Mn was also impregnated on carbon aerogel (Mn/ACA-KOH-0) by the same method. It was revealed that 7 wt% Mn-doped activated carbon aerogel (Mn/ACA-KOH-0.7) showed higher specific capacitance than 7 wt% Mn-doped carbon aerogel (Mn/ACA-KOH-0) (178 F/g vs. 98 F/g). The enhanced capacitance of Mn/ACA-KOH-0.7 was attributed to the outstanding electric properties of activated carbon aerogel as well as the faradaic redox reactions of manganese oxide.

  10. Thermal Performance Testing of Order Dependancy of Aerogels Multilayered Insulation

    NASA Technical Reports Server (NTRS)

    Johnson, Wesley L.; Fesmire, James E.; Demko, J. A.

    2009-01-01

    Robust multilayer insulation systems have long been a goal of many research projects. Such insulation systems must provide some degree of structural support and also mechanical integrity during loss of vacuum scenarios while continuing to provide insulative value to the vessel. Aerogel composite blankets can be the best insulation materials in ambient pressure environments; in high vacuum, the thermal performance of aerogel improves by about one order of magnitude. Standard multilayer insulation (MU) is typically 50% worse at ambient pressure and at soft vacuum, but as much as two or three orders of magnitude better at high vacuum. Different combinations of aerogel and multilayer insulation systems have been tested at Cryogenics Test Laboratory of NASA Kennedy Space Center. Analysis performed at Oak Ridge National Laboratory showed an importance to the relative location of the MU and aerogel blankets. Apparent thermal conductivity testing under cryogenic-vacuum conditions was performed to verify the analytical conclusion. Tests results are shown to be in agreement with the analysis which indicated that the best performance is obtained with aerogel layers located in the middle of the blanket insulation system.

  11. European Composite Honeycomb Material

    NASA Astrophysics Data System (ADS)

    Tschepe, Christoph; Sauerbrey, Martin; Klebor, Maximillian; Henriksen, Torben

    2014-06-01

    A European CFRP honeycomb material for high demanding structure applications like antenna reflectors and optical benches was developed in the frame of an ESA GSTP project.The composite honeycomb was designed according to requirements defined by the European space industry. A developed manufacturing technique based on prepreg moulding enables the production of homogeneous CFRP honeycomb blocks. All characteristic material properties, including compression, tension and shear strength and CTE, were determined in a comprehensive verification test campaign. Competitiveness to comparable products was further verified by a representative breadboard.

  12. Larnite powders and larnite/silica aerogel composites as effective agents for CO2 sequestration by carbonation.

    PubMed

    Santos, A; Ajbary, M; Morales-Flórez, V; Kherbeche, A; Piñero, M; Esquivias, L

    2009-09-15

    This paper presents the results of the carbonation reaction of two sample types: larnite (Ca(2)SiO(4)) powders and larnite/silica aerogel composites, the larnite acting as an active phase in a process of direct mineral carbonation. First, larnite powders were synthesized by the reaction of colloidal silica and calcium nitrate in the presence of ethylene glycol. Then, to synthesize the composites, the surface of the larnite powders was chemically modified with 3-aminopropyltriethoxysilane (APTES), and later this mixture was added to a silica sol previously prepared from tetraethylorthosilicate (TEOS). The resulting humid gel was dried in an autoclave under supercritical conditions for the ethanol. The textures and chemical compositions of the powders and composites were characterized.The carbonation reaction of both types of samples was evaluated by means of X-ray diffraction and thermogravimetric analysis. Both techniques confirm the high efficiency of the reaction at room temperature and atmospheric pressure. A complete transformation of the silicate into carbonate resulted after submitting the samples to a flow of pure CO(2) for 15 min. This indicates that for this reaction time, 1t of larnite could eliminate about 550 kg of CO(2). The grain size, porosity, and specific surface area are the factors controlling the reaction.

  13. Aerogel commercialization pilot project. Final program report

    SciTech Connect

    1996-02-13

    Aerogels are extremely light weight, high surface area, very insulative materials that offer many potential improvements to commercial products. Aerogels have been the subject of extensive research at Department of Energy Laboratories and have been considered one of the technology most ready for commercialization. However, commercialization of the technology had been difficult for the National Laboratories since end users were not interested in the high temperature and high pressure chemical processes involved in manufacturing the raw material. Whereas, Aerojet as a supplier of rocket fuels, specialty chemicals and materials had the manufacturing facilities and experience to commercially produce aerogel-type products. Hence the TRP provided a link between the technology source (National Laboratories), the manufacturing (Aerojet) and the potential end users (other TRP partners). The program successfully produced approximately 500 ft{sup 2} of organic aerogel but failed to make significant quantities of silica aerogel. It is significant that this production represents both the largest volume and biggest pieces of organic aerogel ever produced. Aerogels, available from this program, when tested in several prototype commercial products were expected to improve the products performance, but higher than expected projected production costs for large scale manufacture of aerogels has limited continued commercial interest from these partners. Aerogels do, however, offer potential as a specialty material for some high value technology and defense products.

  14. Advanced composite materials and processes

    NASA Technical Reports Server (NTRS)

    Baucom, Robert M.

    1991-01-01

    Composites are generally defined as two or more individual materials, which, when combined into a single material system, results in improved physical and/or mechanical properties. The freedom of choice of the starting components for composites allows the generation of materials that can be specifically tailored to meet a variety of applications. Advanced composites are described as a combination of high strength fibers and high performance polymer matrix materials. These advanced materials are required to permit future aircraft and spacecraft to perform in extended environments. Advanced composite precursor materials, processes for conversion of these materials to structures, and selected applications for composites are reviewed.

  15. Hybrid Multifoil Aerogel Thermal Insulation

    NASA Technical Reports Server (NTRS)

    Sakamoto, Jeffrey; Paik, Jong-Ah; Jones, Steven; Nesmith, Bill

    2008-01-01

    This innovation blends the merits of multifoil insulation (MFI) with aerogel-based insulation to develop a highly versatile, ultra-low thermally conductive material called hybrid multifoil aerogel thermal insulation (HyMATI). The density of the opacified aerogel is 240 mg/cm3 and has thermal conductivity in the 20 mW/mK range in high vacuum and 25 mW/mK in 1 atmosphere of gas (such as argon) up to 800 C. It is stable up to 1,000 C. This is equal to commercially available high-temperature thermal insulation. The thermal conductivity of the aerogel is 36 percent lower compared to several commercially available insulations when tested in 1 atmosphere of argon gas up to 800 C.

  16. Aerogel: From Aerospace to Apparel

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Aspen Systems Inc. developed an aerogel-manufacturing process solved the handling problems associated with aerogel-based insulation products. Their aerogels can now be manufactured into blankets, thin sheets, beads, and molded parts; and may be transparent, translucent, or opaque. Aspen made the material effective for window and skylight insulation, non-flammable building insulation, and inexpensive firewall insulation that will withstand fires in homes and buildings, and also assist in the prevention of forest fires. Another Aspen product is Spaceloft(TM); an inexpensive, flexible blanket that incorporates a thin layer of aerogel embedded directly into the fabric. Spaceloft, is incorporated into jackets intended for wear in extremely harsh conditions and activities, such as Antarctic expeditions.

  17. Contact-active antibacterial aerogels from cellulose nanofibrils.

    PubMed

    Henschen, Jonatan; Illergård, Josefin; Larsson, Per A; Ek, Monica; Wågberg, Lars

    2016-10-01

    The use of cellulose aerogels as antibacterial materials has been investigated by applying a contact-active layer-by-layer modification to the aerogel surface. Studying the adsorption of multilayers of polyvinylamine (PVAm) and polyacrylic acid to aerogels comprising crosslinked cellulose nanofibrils and monitoring the subsequent bacterial adhesion revealed that up to 26mgPVAmgaerogel(-1) was adsorbed without noticeably affecting the aerogel structure. The antibacterial effect was tested by measuring the reduction of viable bacteria in solution when the aerogels were present. The results show that >99.9% of the bacteria adhered to the surface of the aerogels. Microscopy further showed adherence of bacteria to the surfaces of the modified aerogels. These results indicate that it is possible to create materials with three-dimensional cellulose structures that adsorb bacteria with very high efficiency utilizing the high specific surface area of the aerogels in combination with their open structure.

  18. How We 3D-Print Aerogel

    SciTech Connect

    2015-04-23

    A new type of graphene aerogel will make for better energy storage, sensors, nanoelectronics, catalysis and separations. Lawrence Livermore National Laboratory researchers have made graphene aerogel microlattices with an engineered architecture via a 3D printing technique known as direct ink writing. The research appears in the April 22 edition of the journal, Nature Communications. The 3D printed graphene aerogels have high surface area, excellent electrical conductivity, are lightweight, have mechanical stiffness and exhibit supercompressibility (up to 90 percent compressive strain). In addition, the 3D printed graphene aerogel microlattices show an order of magnitude improvement over bulk graphene materials and much better mass transport.

  19. Chemistry in an inorganic-organic hybrid aerogel: Chitosan-silica aerogel

    NASA Astrophysics Data System (ADS)

    Liu, Xipeng

    2005-11-01

    In this thesis, chemistry in a nanoporous inorganic-organic hybrid aerogel (X-silica aerogel) has been explored. The aerogel typically consisted of 10%w/w bioderived polymer (chitosan), and 90%w/w inorganic silica, which interact at the molecule level. The aerogel has a low density in the range of 0.2--0.3 g/cm3, high surface area in the range of 500--950m 2/g, and large pore volume about 90%. The pores are about 3--5 nm in diameter and the size of the primary particles comprising the aerogel network is about 1.5nm. Chemical studies of X-silica aerogels were carried out in the first instance with organic molecules, including dansyl chloride (DC), succinic anhydride (SA), bis(4-isocynatocyclohexyl) methane (HMDI), and isocyanatoethyl methacrylate (IEMA). These reactions lead to modified X-silica aerogel products imparted with valuable functionalities, including fluorescence, carboxylic acid groups, and pendant isocyanate and methacrylate groups. The functionalized aerogels then were utilized to form novel composites. The isocyanate functionalized aerogels were combined with amine-containing silicone polymers to produce aerogel-silicone polymer composites, and methacrylate functionalized aerogels were reacted with hydroxyethylmethacrylate (HEMA) monomer to produce aerogel-polyHEMA composites. The chemical studies were extended to gold-ion Au(III)-X-silica aerogels. Photoreduction of the Au(IIl)-X-silica aerogels by UV irradiation at 254nm reduced the Au(III) ions into Au(0) nanoparticles (AuNPs) while oxidizing the chitosan. Various sizes of AuNPs, with mean diameters from 8--87nm were obtained by varying the Au(III) ions concentration in aerogels from Au(III)/-NH 2 (-NH2 amine groups on chitosan) ratio 1:120 to 1:5. The intensity and time of exposure to the UV light were varied to explore their effect. Two dimensional patterns of Au(0)-X-silica aerogels were achieved by UV irradiation through a mask. Photo-reduction of Au(III)-X-silica aerogels in the presence of

  20. Processing composite materials

    NASA Technical Reports Server (NTRS)

    Baucom, R. M.

    1982-01-01

    The fabrication of several composite structural articles including DC-10 upper aft rudders, L-1011 vertical fins and composite biomedical appliances are discussed. Innovative composite processing methods are included.

  1. Well-dispersed LiFePO4 nanoparticles anchored on a three-dimensional graphene aerogel as high-performance positive electrode materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Tian, Xiaohui; Zhou, Yingke; Tu, Xiaofeng; Zhang, Zhongtang; Du, Guodong

    2017-02-01

    A three-dimensional graphene aerogel supporting LiFePO4 nanoparticles (LFP/GA) has been synthesized by a hydrothermal process. The morphology and microstructure of LFP/GA were investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and thermal gravimetric analysis. The electrochemical properties were evaluated by constant-current charge/discharge tests, cyclic voltammetry and electrochemical impedance spectroscopy. Well-distributed LFP nanoparticles are anchored on both sides of graphene and then assemble into a highly porous three-dimensional aerogel architecture. Conductive graphene networks provide abundant paths to facilitate the transfer of electrons, while the aerogel structures offer plenty of interconnected open pores for the storage of electrolyte to enable the fast supply of Li ions. The LFP and graphene aerogel composites present superior specific capacity, rate capability and cycling performance in comparison to the pristine LFP or LFP supported on graphene sheets and are thus promising for lithium-ion battery applications.

  2. Porous silicon nanocrystals in a silica aerogel matrix

    NASA Astrophysics Data System (ADS)

    Amonkosolpan, Jamaree; Wolverson, Daniel; Goller, Bernhard; Polisski, Sergej; Kovalev, Dmitry; Rollings, Matthew; Grogan, Michael D. W.; Birks, Timothy A.

    2012-07-01

    Silicon nanoparticles of three types (oxide-terminated silicon nanospheres, micron-sized hydrogen-terminated porous silicon grains and micron-size oxide-terminated porous silicon grains) were incorporated into silica aerogels at the gel preparation stage. Samples with a wide range of concentrations were prepared, resulting in aerogels that were translucent (but weakly coloured) through to completely opaque for visible light over sample thicknesses of several millimetres. The photoluminescence of these composite materials and of silica aerogel without silicon inclusions was studied in vacuum and in the presence of molecular oxygen in order to determine whether there is any evidence for non-radiative energy transfer from the silicon triplet exciton state to molecular oxygen adsorbed at the silicon surface. No sensitivity to oxygen was observed from the nanoparticles which had partially H-terminated surfaces before incorporation, and so we conclude that the silicon surface has become substantially oxidised. Finally, the FTIR and Raman scattering spectra of the composites were studied in order to establish the presence of crystalline silicon; by taking the ratio of intensities of the silicon and aerogel Raman bands, we were able to obtain a quantitative measure of the silicon nanoparticle concentration independent of the degree of optical attenuation.

  3. Porous silicon nanocrystals in a silica aerogel matrix

    PubMed Central

    2012-01-01

    Silicon nanoparticles of three types (oxide-terminated silicon nanospheres, micron-sized hydrogen-terminated porous silicon grains and micron-size oxide-terminated porous silicon grains) were incorporated into silica aerogels at the gel preparation stage. Samples with a wide range of concentrations were prepared, resulting in aerogels that were translucent (but weakly coloured) through to completely opaque for visible light over sample thicknesses of several millimetres. The photoluminescence of these composite materials and of silica aerogel without silicon inclusions was studied in vacuum and in the presence of molecular oxygen in order to determine whether there is any evidence for non-radiative energy transfer from the silicon triplet exciton state to molecular oxygen adsorbed at the silicon surface. No sensitivity to oxygen was observed from the nanoparticles which had partially H-terminated surfaces before incorporation, and so we conclude that the silicon surface has become substantially oxidised. Finally, the FTIR and Raman scattering spectra of the composites were studied in order to establish the presence of crystalline silicon; by taking the ratio of intensities of the silicon and aerogel Raman bands, we were able to obtain a quantitative measure of the silicon nanoparticle concentration independent of the degree of optical attenuation. PMID:22805684

  4. Water extractable arabinoxylan aerogels prepared by supercritical CO2 drying.

    PubMed

    Marquez-Escalante, Jorge; Carvajal-Millan, Elizabeth; Miki-Yoshida, Mario; Alvarez-Contreras, Lorena; Toledo-Guillén, Alma Rosa; Lizardi-Mendoza, Jaime; Rascón-Chu, Agustín

    2013-05-14

    Water extractable arabinoxylan (WEAX) aerogels were prepared by extracting the solvent from the alcogels (WEAX hydrogels with an alcohol as the solvent) with carbon dioxide under supercritical conditions. WEAX aerogels were characterized using scanning electron microscopy and adsorption and desorption nitrogen isotherms. The micrographs indicate a heterogeneous porous network structure in WEAX aerogel. Adsorption/desorption nitrogen isotherms of this material were type IV, which confirm that this material possess a mesoporous structure. WEAX aerogels rehydration capability was evaluated and the water absorption mechanism was determined. The WEAX aerogels water absorption mechanism was non-Fickian (n = 0.54).

  5. Particle Tracks in Aerogel

    NASA Technical Reports Server (NTRS)

    2005-01-01

    In an experiment using a special air gun, particles are shot into aerogel at high velocities. Closeup of particles that have been captured in aerogel are shown here. The particles leave a carrot-shaped trail in the aerogel. Aerogel was used on the Stardust spacecraft to capture comet particles from Comet Wild 2.

  6. Synthesis and Functionalization of 3D Nano-graphene Materials: Graphene Aerogels and Graphene Macro Assemblies.

    PubMed

    Campbell, Patrick G; Worsley, Marcus A; Hiszpanski, Anna M; Baumann, Theodore F; Biener, Juergen

    2015-11-05

    Efforts to assemble graphene into three-dimensional monolithic structures have been hampered by the high cost and poor processability of graphene. Additionally, most reported graphene assemblies are held together through physical interactions (e.g., van der Waals forces) rather than chemical bonds, which limit their mechanical strength and conductivity. This video method details recently developed strategies to fabricate mass-producible, graphene-based bulk materials derived from either polymer foams or single layer graphene oxide. These materials consist primarily of individual graphene sheets connected through covalently bound carbon linkers. They maintain the favorable properties of graphene such as high surface area and high electrical and thermal conductivity, combined with tunable pore morphology and exceptional mechanical strength and elasticity. This flexible synthetic method can be extended to the fabrication of polymer/carbon nanotube (CNT) and polymer/graphene oxide (GO) composite materials. Furthermore, additional post-synthetic functionalization with anthraquinone is described, which enables a dramatic increase in charge storage performance in supercapacitor applications.

  7. Supercapacitors Based on Three-Dimensional Hierarchical Graphene Aerogels with Periodic Macropores.

    PubMed

    Zhu, Cheng; Liu, Tianyu; Qian, Fang; Han, T Yong-Jin; Duoss, Eric B; Kuntz, Joshua D; Spadaccini, Christopher M; Worsley, Marcus A; Li, Yat

    2016-06-08

    Graphene is an atomically thin, two-dimensional (2D) carbon material that offers a unique combination of low density, exceptional mechanical properties, thermal stability, large surface area, and excellent electrical conductivity. Recent progress has resulted in macro-assemblies of graphene, such as bulk graphene aerogels for a variety of applications. However, these three-dimensional (3D) graphenes exhibit physicochemical property attenuation compared to their 2D building blocks because of one-fold composition and tortuous, stochastic porous networks. These limitations can be offset by developing a graphene composite material with an engineered porous architecture. Here, we report the fabrication of 3D periodic graphene composite aerogel microlattices for supercapacitor applications, via a 3D printing technique known as direct-ink writing. The key factor in developing these novel aerogels is creating an extrudable graphene oxide-based composite ink and modifying the 3D printing method to accommodate aerogel processing. The 3D-printed graphene composite aerogel (3D-GCA) electrodes are lightweight, highly conductive, and exhibit excellent electrochemical properties. In particular, the supercapacitors using these 3D-GCA electrodes with thicknesses on the order of millimeters display exceptional capacitive retention (ca. 90% from 0.5 to 10 A·g(-1)) and power densities (>4 kW·kg(-1)) that equal or exceed those of reported devices made with electrodes 10-100 times thinner. This work provides an example of how 3D-printed materials, such as graphene aerogels, can significantly expand the design space for fabricating high-performance and fully integrable energy storage devices optimized for a broad range of applications.

  8. Composite material and method for production of improved composite material

    NASA Technical Reports Server (NTRS)

    Farley, Gary L. (Inventor)

    1996-01-01

    A laminated composite material with improved interlaminar strength and damage tolerance having short rods distributed evenly throughout the composite material perpendicular to the laminae. Each rod is shorter than the thickness of the finished laminate, but several times as long as the thickness of each lamina. The laminate is made by inserting short rods in layers of prepreg material, and then stacking and curing prepreg material with rods inserted therethrough.

  9. Erosion-resistant composite material

    DOEpatents

    Finch, C.B.; Tennery, V.J.; Curlee, R.M.

    A highly erosion-resistant composite material is formed of chemical vapor-deposited titanium diboride on a sintered titanium diboride-nickel substrate. This material may be suitable for use in cutting tools, coal liquefaction systems, etc.

  10. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1981-01-01

    The composite aircraft program component (CAPCOMP) is a graduate level project conducted in parallel with a composite structures program. The composite aircraft program glider (CAPGLIDE) is an undergraduate demonstration project which has as its objectives the design, fabrication, and testing of a foot launched ultralight glider using composite structures. The objective of the computer aided design (COMPAD) portion of the composites project is to provide computer tools for the analysis and design of composite structures. The major thrust of COMPAD is in the finite element area with effort directed at implementing finite element analysis capabilities and developing interactive graphics preprocessing and postprocessing capabilities. The criteria for selecting research projects to be conducted under the innovative and supporting research (INSURE) program are described.

  11. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Loewy, Robert G.; Wiberley, Stephen E.

    1988-01-01

    A decade long program to develop critical advanced composite technology in the areas of physical properties, structural concept and analysis, manufacturing, reliability, and life predictions is reviewed. Specific goals are discussed. The status of the chemical vapor deposition effects on carbon fiber properties; inelastic deformation of metal matrix laminates; fatigue damage in fibrous MMC laminates; delamination fracture toughness in thermoplastic matrix composites; and numerical analysis of composite micromechanical behavior are presented.

  12. Reinforcement of bacterial cellulose aerogels with biocompatible polymers

    PubMed Central

    Pircher, N.; Veigel, S.; Aigner, N.; Nedelec, J.M.; Rosenau, T.; Liebner, F.

    2014-01-01

    Bacterial cellulose (BC) aerogels, which are fragile, ultra-lightweight, open-porous and transversally isotropic materials, have been reinforced with the biocompatible polymers polylactic acid (PLA), polycaprolactone (PCL), cellulose acetate (CA), and poly(methyl methacrylate) (PMMA), respectively, at varying BC/polymer ratios. Supercritical carbon dioxide anti-solvent precipitation and simultaneous extraction of the anti-solvent using scCO2 have been used as core techniques for incorporating the secondary polymer into the BC matrix and to convert the formed composite organogels into aerogels. Uniaxial compression tests revealed a considerable enhancement of the mechanical properties as compared to BC aerogels. Nitrogen sorption experiments at 77 K and scanning electron micrographs confirmed the preservation (or even enhancement) of the surface-area-to-volume ratio for most of the samples. The formation of an open-porous, interpenetrating network of the second polymer has been demonstrated by treatment of BC/PMMA hybrid aerogels with EMIM acetate, which exclusively extracted cellulose, leaving behind self-supporting organogels. PMID:25037381

  13. Solid phase microextraction device using aerogel

    DOEpatents

    Miller, Fred S.; Andresen, Brian D.

    2005-06-14

    A sample collection substrate of aerogel and/or xerogel materials bound to a support structure is used as a solid phase microextraction (SPME) device. The xerogels and aerogels may be organic or inorganic and doped with metals or other compounds to target specific chemical analytes. The support structure is typically formed of a glass fiber or a metal wire (stainless steel or kovar). The devices are made by applying gel solution to the support structures and drying the solution to form aerogel or xerogel. Aerogel particles may be attached to the wet layer before drying to increase sample collection surface area. These devices are robust, stable in fields of high radiation, and highly effective at collecting gas and liquid samples while maintaining superior mechanical and thermal stability during routine use. Aerogel SPME devices are advantageous for use in GC/MS analyses due to their lack of interfering background and tolerance of GC thermal cycling.

  14. Preparation of Biopolymer Aerogels Using Green Solvents

    PubMed Central

    Subrahmanyam, Raman; Gurikov, Pavel; Meissner, Imke; Smirnova, Irina

    2016-01-01

    Although the first reports on aerogels made by Kistler1 in the 1930s dealt with aerogels from both inorganic oxides (silica and others) and biopolymers (gelatin, agar, cellulose), only recently have biomasses been recognized as an abundant source of chemically diverse macromolecules for functional aerogel materials. Biopolymer aerogels (pectin, alginate, chitosan, cellulose, etc.) exhibit both specific inheritable functions of starting biopolymers and distinctive features of aerogels (80-99% porosity and specific surface up to 800 m2/g). This synergy of properties makes biopolymer aerogels promising candidates for a wide gamut of applications such as thermal insulation, tissue engineering and regenerative medicine, drug delivery systems, functional foods, catalysts, adsorbents and sensors. This work demonstrates the use of pressurized carbon dioxide (5 MPa) for the ionic cross linking of amidated pectin into hydrogels. Initially a biopolymer/salt dispersion is prepared in water. Under pressurized CO2 conditions, the pH of the biopolymer solution is lowered to 3 which releases the crosslinking cations from the salt to bind with the biopolymer yielding hydrogels. Solvent exchange to ethanol and further supercritical CO2 drying (10 - 12 MPa) yield aerogels. Obtained aerogels are ultra-porous with low density (as low as 0.02 g/cm3), high specific surface area (350 - 500 m2/g) and pore volume (3 - 7 cm3/g for pore sizes less than 150 nm). PMID:27403649

  15. Composite materials: A compilation

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Design, analysis and fabrication techniques for boron-aluminum composite-structure technology is presented and a new method of joining different laminated composites without mechanical fasteners is proposed. Also discussed is a low-cost procedure for rigidifying expanded honeycomb tubing and piping simulations. A brief note on patent information is added.

  16. Aerogel Projects Ongoing in MSFC's Engineering Directorate

    NASA Technical Reports Server (NTRS)

    Shular, David A.; Smithers, Gweneth A.; Plawsky, Joel L.; Whitaker, Ann F. (Technical Monitor)

    2000-01-01

    When we speak of an aerogel material, we are referring more to process and structure am to a specific substance. Aerogel, considered the lightest solid material, has been made from silica for seventy years. Resorcinol-formaldehyde, organic aerogels have been developed more recently. However, aerogel can be made from almost any type of substance, even lead. Because an aerogel is mostly air (about 99 %), the solid substance used will affect the weight very little. The term "aerogel" connotes the sol-gel process used to manufacture the material. The aerogel begins as a liquid "sol," becomes a solid "alcogel," and is then dried to become an "aerogel." The final product has a unique structure, useful for exploitation. It is an "open pore" system with nano-sized particles and pores, has very high surface area, and is highly interconnected. Besides low weight, aerogels have ultimate (lowest) values in other properties: thermal conductivity, refractive index, sound speed, and dielectric constant. Aerogels were first prepared in 1931 by Steven Kistler, who used a supercritical drying step to replace the liquid in a gel with air, preserving the structure (1). Kistler's procedure involved a water-to-alcohol exchange step; in the 1970's, this step was eliminated when a French investigator introduced the use of tetramethylorthosilicate. Still, alcohol drying involved dangerously high temperatures and pressures. In the 1980's, the Microstructured Materials Group at Berkeley Laboratory found that the alcohol in the gel could be replaced with liquid carbon dioxide before supercritical drying, which greatly improved safety (2). 'Me most recent major contribution has been that of Deshpande, Smith and Brinker in New Mexico, who are working to eliminate the supercritical drying step (3). When aerogels were first being developed, they were evaporatively dried. However, the wet gel, when dried, underwent severe shrinkage and cracking; this product was termed "xerogel." When the

  17. Strain-Detecting Composite Materials

    NASA Technical Reports Server (NTRS)

    Wallace, Terryl A. (Inventor); Smith, Stephen W. (Inventor); Piascik, Robert S. (Inventor); Horne, Michael R. (Inventor); Messick, Peter L. (Inventor); Alexa, Joel A. (Inventor); Glaessgen, Edward H. (Inventor); Hailer, Benjamin T. (Inventor)

    2016-01-01

    A composite material includes a structural material and a shape-memory alloy embedded in the structural material. The shape-memory alloy changes crystallographic phase from austenite to martensite in response to a predefined critical macroscopic average strain of the composite material. In a second embodiment, the composite material includes a plurality of particles of a ferromagnetic shape-memory alloy embedded in the structural material. The ferromagnetic shape-memory alloy changes crystallographic phase from austenite to martensite and changes magnetic phase in response to the predefined critical macroscopic average strain of the composite material. A method of forming a composite material for sensing the predefined critical macroscopic average strain includes providing the shape-memory alloy having an austenite crystallographic phase, changing a size and shape of the shape-memory alloy to thereby form a plurality of particles, and combining the structural material and the particles at a temperature of from about 100-700.degree. C. to form the composite material.

  18. Co3O4/carbon aerogel hybrids as anode materials for lithium-ion batteries with enhanced electrochemical properties.

    PubMed

    Hao, Fengbin; Zhang, Zhiwei; Yin, Longwei

    2013-09-11

    A facile hydrothermal and sol-gel polymerization route was developed for large-scale fabrication of well-designed Co3O4 nanoparticles anchored carbon aerogel (CA) architecture hybrids as anode materials for lithium-ion batteries with improved electrochemical properties. The three-dimensional (3D) mesoporous Co3O4/CA hierarchical hybrids display an improved lithium storage performance and cycling stability, because of the intimate integration and strong synergistic effects between the Co3O4 nanoparticles and CA matrices. Such an interconnected Co3O4/CA hierarchical hybrid can effectively utilize the good conductivity, large surface area, 3D interconnected mesoporous structure, mechanical flexibility, chemical stability, and the short length of Li-ion transport of the CA matrix. The incorporation of Co3O4 nanoparticles into the interconnected CA matrix effectively reduces the number of active sites of Co3O4/CA hybrids, thus greatly increasing the reversible specific capacity and the initial Coulombic efficiency of the hybrids. The Co3O4/CA hybrid material displays the best lithium storage performance and good cycling stability as the Co3O4 loading content is up to 25 wt %, retains a Coulombic efficiency of 99.5% and a specific discharge capacity of 779 mAh g(-1) after 50 cycles, 10.1 and 1.6 times larger than the specific discharge capacity of 73 mAh g(-1) and 478 mAh g(-1) for Co3O4 and CA samples, respectively. The hierarchical hybrid nanostructures with enhanced electrochemical activities using a CA matrix framework can find potential applications in the related conversion reaction electrodes.

  19. Composite structural materials. [aircraft structures

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1980-01-01

    The use of filamentary composite materials in the design and construction of primary aircraft structures is considered with emphasis on efforts to develop advanced technology in the areas of physical properties, structural concepts and analysis, manufacturing, and reliability and life prediction. The redesign of a main spar/rib region on the Boeing 727 elevator near its actuator attachment point is discussed. A composite fabrication and test facility is described as well as the use of minicomputers for computer aided design. Other topics covered include (1) advanced structural analysis methids for composites; (2) ultrasonic nondestructive testing of composite structures; (3) optimum combination of hardeners in the cure of epoxy; (4) fatigue in composite materials; (5) resin matrix characterization and properties; (6) postbuckling analysis of curved laminate composite panels; and (7) acoustic emission testing of composite tensile specimens.

  20. Carbon aerogel electrodes for direct energy conversion

    DOEpatents

    Mayer, S.T.; Kaschmitter, J.L.; Pekala, R.W.

    1997-02-11

    A direct energy conversion device, such as a fuel cell, using carbon aerogel electrodes is described, wherein the carbon aerogel is loaded with a noble catalyst, such as platinum or rhodium and soaked with phosphoric acid, for example. A separator is located between the electrodes, which are placed in a cylinder having plate current collectors positioned adjacent the electrodes and connected to a power supply, and a pair of gas manifolds, containing hydrogen and oxygen positioned adjacent the current collectors. Due to the high surface area and excellent electrical conductivity of carbon aerogels, the problems relative to high polarization resistance of carbon composite electrodes conventionally used in fuel cells are overcome. 1 fig.

  1. Carbon aerogel electrodes for direct energy conversion

    DOEpatents

    Mayer, Steven T.; Kaschmitter, James L.; Pekala, Richard W.

    1997-01-01

    A direct energy conversion device, such as a fuel cell, using carbon aerogel electrodes, wherein the carbon aerogel is loaded with a noble catalyst, such as platinum or rhodium and soaked with phosphoric acid, for example. A separator is located between the electrodes, which are placed in a cylinder having plate current collectors positioned adjacent the electrodes and connected to a power supply, and a pair of gas manifolds, containing hydrogen and oxygen positioned adjacent the current collectors. Due to the high surface area and excellent electrical conductivity of carbon aerogels, the problems relative to high polarization resistance of carbon composite electrodes conventionally used in fuel cells are overcome.

  2. Thio-,amine-,nitro-,and macrocyclic containing organic aerogels & xerogels

    DOEpatents

    Fox, Glenn A.; Tillotson, Thomas M.

    2005-08-02

    An organic aerogel or xerogel formed by a sol-gel reaction using starting materials that exhibit similar reactivity to the most commonly used resorcinol starting material. The new starting materials, including thio-, amine- and nitro-containing molecules and functionalized macrocyclic molecules will produce organic xerogels and aerogels that have improved performance in the areas of detection and sensor technology, as well as water stream remediation. Also, further functionalization of these new organic aerogels or xerogels will yield material that can be extracted with greater facility than current organic aerogels.

  3. Biodegradable Pectin/clay Aerogels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodegradable, foamlike materials based on renewable pectin and sodium montmorillonite clay were fabricated through a simple, environmentally friendly freeze-drying process. Addition of multivalent cations (Ca2+ and Al3+) resulted in apparent crosslinking of the polymer, and enhancement of aerogel p...

  4. Modern Inorganic Aerogels.

    PubMed

    Eychmüller, Alexander; Ziegler, Christoph; Wolf, André; Liu, Wei; Herrmann, Anne-Kristin; Gaponik, Nikolai

    2017-02-03

    Essentially, the term aerogel describes a special geometric structure of matter. It is neither limited to any material nor to any synthesis procedure. Hence, the possible variety of materials and therefore the multitude of their applications are almost unbounded. In fact, the same applies for nanoparticles. These are also just defined by their geometrical properties. In the past decades nano-sized materials were intensively studied and possible applications appeared in nearly all areas of natural sciences. To date a large variety of metal, semiconductor, oxide and other nanoparticles are available from colloidal synthesis. However, for many applications of these materials an assembly into macroscopic structures is needed. Here we present a comprehensive picture of the developments that enabled the fusion of the colloidal nanoparticle and the aerogel world. This became possible by the controlled destabilization of pre-formed nanoparticles, which leads to their assembly into three-dimensional macroscopic networks. This revolutionary approach makes it possible to use precisely controlled nanoparticles as building blocks for macroscopic porous structures with programmable properties.

  5. Composite Materials for Maxillofacial Prostheses.

    DTIC Science & Technology

    1979-08-01

    block number) MAXILLOFACIAL PROSTHESES; PROSTHETIC MATERIALS; MICROCAPSULES ; SOFT FILLERS; ELASTuMER COMPOSITES 20,_ ABSTRACT ’Continue on reverse side...approaches were pursued toward making such microcapsules . One approach involves coaxial extrusion of a catalyzed elastomer precursor and core liquid into a...fabrication of maxillofacial prostheses. The projected composite systems are elastomeric-shelled, liquid-filled microcapsules . Two experimental approaches were

  6. Composite structural materials. [aircraft applications

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1981-01-01

    The development of composite materials for aircraft applications is addressed with specific consideration of physical properties, structural concepts and analysis, manufacturing, reliability, and life prediction. The design and flight testing of composite ultralight gliders is documented. Advances in computer aided design and methods for nondestructive testing are also discussed.

  7. Nondestructive Characterization of Composite Materials

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.

    1993-01-01

    Increasingly, composite materials are applied to fracture-critical structures of aircraft and spacecraft...Ultrasonics offer the most capable inspection technology and recently developed techniques appear to improve this technology significantly... Recent progress in ultrasonic NDE of composites will be reviewed.

  8. Carbon nanotube composite materials

    DOEpatents

    O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2015-03-24

    A material consisting essentially of a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes dissolved in a solvent. Un-functionalized carbon nanotube concentrations up to 30 wt % and hydroxylated carbon nanotube concentrations up to 40 wt % can be used with even small concentrations of each (less than 2 wt %) useful in producing enhanced conductivity properties of formed thin films.

  9. Aerogel Track Morphology: Measurement, Three Dimensional Reconstruction and Particle Location using Confocal Laser Scanning Microscopy

    NASA Technical Reports Server (NTRS)

    Kearsley, A. T.; Ball, A. D.; Wozniakiewicz, P. A.; Graham, G. A.; Burchell, M. J.; Cole, M. J.; Horz, F.; See, T. H.

    2007-01-01

    The Stardust spacecraft returned the first undoubted samples of cometary dust, with many grains embedded in the silica aerogel collector . Although many tracks contain one or more large terminal particles of a wide range of mineral compositions , there is also abundant material along the track walls. To help interpret the full particle size, structure and mass, both experimental simulation of impact by shots and numerical modeling of the impact process have been attempted. However, all approaches require accurate and precise measurement of impact track size parameters such as length, width and volume of specific portions. To make such measurements is not easy, especially if extensive aerogel fracturing and discoloration has occurred. In this paper we describe the application and limitations of laser confocal imagery for determination of aerogel track parameters, and for the location of particle remains.

  10. Reducing Logistics Footprints and Replenishment Demands: Nano-engineered Silica Aerogels a Proven Method for Water Treatment

    SciTech Connect

    Daily, W; Coleman, S; Love, A; Reynolds, J; O'Brien, K; Gammon, S

    2004-09-22

    Rapid deployment and the use of objective force aggressively reduce logistic footprints and replenishment demands. Maneuver Sustainment requires that Future Combat Systems be equipped with water systems that are lightweight, have small footprints, and are highly adaptable to a variety of environments. Technologies employed in these settings must be able to meet these demands. Lawrence Livermore National Laboratory has designed and previously field tested nano-engineered materials for the treatment of water. These materials have been either based on silica aerogel materials or consist of composites of these aerogels with granular activated carbon (GAC). Recent tests have proven successful for the removal of contaminants including uranium, hexavalent chromium, and arsenic. Silica aerogels were evaluated for their ability to purify water that had been spiked with the nerve agent VX (O-ethyl S-(2-diisopropylaminoethyl) methylphosphonothiolate). These results demonstrated that silica aerogels were able to remove the VX from the supply water and were nearly 30 times more adsorbent than GAC. This performance could result in REDUCING CHANGEOUT FREQUENCY BY A FACTOR OF 30 or DECREASING the VOLUME of adsorbent BY A FACTOR OF 30; thereby significantly reducing logistic footprints and replenishment demands. The use of the nano-engineered Silica Aerogel/GAC composites would provide a water purification technology that meets the needs of Future Combat Systems.

  11. High Temperature Aerogels for Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.; Mbah, Godfrey C.

    2008-01-01

    High temperature aerogels in the Al2O3-SiO2 system are being investigated as possible constituents for lightweight integrated thermal protection system (TPS) designs for use in supersonic and hypersonic applications. Gels are synthesized from ethoxysilanes and AlCl3.6H2O, using an epoxide catalyst. The influence of Al:Si ratio, solvent, water to metal and water to alcohol ratios on aerogel composition, morphology, surface area, and pore size distribution were examined, and phase transformation on heat treatment characterized. Aerogels have been fabricated which maintain porous, fractal structures after brief exposures to 1000 C. Incorporation of nanofibers, infiltration of aerogels into SiC foams, use of polymers for crosslinking the aerogels, or combinations of these, offer potential for toughening and integration of TPS with composite structure. Woven fabric composites having Al2O3-SiO2 aerogels as a matrix also have been fabricated. Continuing work is focused on reduction in shrinkage and optimization of thermal and physical properties.

  12. Multilayer Electroactive Polymer Composite Material

    NASA Technical Reports Server (NTRS)

    Ounaies, Zoubeida (Inventor); Park, Cheol (Inventor); Harrison, Joycelyn S. (Inventor); Holloway, Nancy M. (Inventor); Draughon, Gregory K. (Inventor)

    2011-01-01

    An electroactive material comprises multiple layers of electroactive composite with each layer having unique dielectric, electrical and mechanical properties that define an electromechanical operation thereof when affected by an external stimulus. For example, each layer can be (i) a 2-phase composite made from a polymer with polarizable moieties and an effective amount of carbon nanotubes incorporated in the polymer for a predetermined electromechanical operation, or (ii) a 3-phase composite having the elements of the 2-phase composite and further including a third component of micro-sized to nano-sized particles of an electroactive ceramic incorporated in the polymer matrix.

  13. Nanophase and Composite Optical Materials

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This talk will focus on accomplishments, current developments, and future directions of our work on composite optical materials for microgravity science and space exploration. This research spans the order parameter from quasi-fractal structures such as sol-gels and other aggregated or porous media, to statistically random cluster media such as metal colloids, to highly ordered materials such as layered media and photonic bandgap materials. The common focus is on flexible materials that can be used to produce composite or artificial materials with superior optical properties that could not be achieved with homogeneous materials. Applications of this work to NASA exploration goals such as terraforming, biosensors, solar sails, solar cells, and vehicle health monitoring, will be discussed.

  14. Electrochemical behavior of carbon aerogels derived from different precursors

    SciTech Connect

    Pekala, R.W.; Alviso, C.T.; Nielson, J.K.; Tran, T.D.; Reynolds, G.M.; Dresshaus, M.S.

    1995-04-01

    The ability to tailor the structure and properties of porous carbons has led to their increased use as electrodes in energy storage devices. Our research focuses on the synthesis and characterization of carbon aerogels for use in electrochemical double layer capacitors. Carbon aerogels are formed from the sol-gel polymerization of (1) resorcinol-formaldehyde or (2) phenolic-furfural, followed by supercritical drying from carbon dioxide, and subsequent pyrolysis in an inert atmosphere. These materials can be produced as monoliths, composites, thin films, powders, or microspheres. In all cases, the areogels have an open-cell structure with an ultrafine pore size (<100 nm), high surface area (400-1 100 m{sup 2}/g), and a solid matrix composed of interconnected particles, fibers, or platelets with characteristic dimensions of 10 nm. This paper examines the effects of the carbon precursor and processing conditions on electrochemical performance in aqueous and organic electrolytes.

  15. Clay exfoliation and polymer/clay aerogels by supercritical carbon dioxide

    PubMed Central

    Longo, Simona; Mauro, Marco; Daniel, Christophe; Galimberti, Maurizio; Guerra, Gaetano

    2013-01-01

    Supercritical carbon dioxide (scCO2) treatments of a montmorillonite (MMT) intercalated with ammonium cations bearing two long hydrocarbon tails (organo-modified MMT, OMMT) led to OMMT exfoliation, with loss of the long-range order in the packing of the hydrocarbon tails and maintenance of the long-range order in the clay layers. The intercalated and the derived exfoliated OMMT have been deeply characterized, mainly by X-ray diffraction analyses. Monolithic composite aerogels, with large amounts of both intercalated and exfoliated OMMT and including the nanoporous-crystalline δ form of syndiotactic polystyrene (s-PS), have been prepared, by scCO2 extractions of s-PS-based gels. Also for high OMMT content, the gel and aerogel preparation procedures occur without re-aggregation of the exfoliated clay, which is instead observed for other kinds of polymer processing. Aerogels with the exfoliated OMMT have more even dispersion of the clay layers, higher elastic modulus and larger surface area than aerogels with the intercalated OMMT. Extremely light materials with relevant transport properties could be prepared. Moreover, s-PS-based aerogels with exfoliated OMMT could be helpful for the handling of exfoliated clay minerals. PMID:24790956

  16. Highly compressible 3D periodic graphene aerogel microlattices

    SciTech Connect

    Zhu, Cheng; Han, T. Yong-Jin; Duoss, Eric B.; Golobic, Alexandra M.; Kuntz, Joshua D.; Spadaccini, Christopher M.; Worsley, Marcus A.

    2015-04-22

    Graphene is a two-dimensional material that offers a unique combination of low density, exceptional mechanical properties, large surface area and excellent electrical conductivity. Recent progress has produced bulk 3D assemblies of graphene, such as graphene aerogels, but they possess purely stochastic porous networks, which limit their performance compared with the potential of an engineered architecture. Here we report the fabrication of periodic graphene aerogel microlattices, possessing an engineered architecture via a 3D printing technique known as direct ink writing. The 3D printed graphene aerogels are lightweight, highly conductive and exhibit supercompressibility (up to 90% compressive strain). Moreover, the Young’s moduli of the 3D printed graphene aerogels show an order of magnitude improvement over bulk graphene materials with comparable geometric density and possess large surface areas. Ultimately, adapting the 3D printing technique to graphene aerogels realizes the possibility of fabricating a myriad of complex aerogel architectures for a broad range of applications.

  17. Highly compressible 3D periodic graphene aerogel microlattices

    NASA Astrophysics Data System (ADS)

    Zhu, Cheng; Han, T. Yong-Jin; Duoss, Eric B.; Golobic, Alexandra M.; Kuntz, Joshua D.; Spadaccini, Christopher M.; Worsley, Marcus A.

    2015-04-01

    Graphene is a two-dimensional material that offers a unique combination of low density, exceptional mechanical properties, large surface area and excellent electrical conductivity. Recent progress has produced bulk 3D assemblies of graphene, such as graphene aerogels, but they possess purely stochastic porous networks, which limit their performance compared with the potential of an engineered architecture. Here we report the fabrication of periodic graphene aerogel microlattices, possessing an engineered architecture via a 3D printing technique known as direct ink writing. The 3D printed graphene aerogels are lightweight, highly conductive and exhibit supercompressibility (up to 90% compressive strain). Moreover, the Young's moduli of the 3D printed graphene aerogels show an order of magnitude improvement over bulk graphene materials with comparable geometric density and possess large surface areas. Adapting the 3D printing technique to graphene aerogels realizes the possibility of fabricating a myriad of complex aerogel architectures for a broad range of applications.

  18. Highly compressible 3D periodic graphene aerogel microlattices

    PubMed Central

    Zhu, Cheng; Han, T. Yong-Jin; Duoss, Eric B.; Golobic, Alexandra M.; Kuntz, Joshua D.; Spadaccini, Christopher M.; Worsley, Marcus A.

    2015-01-01

    Graphene is a two-dimensional material that offers a unique combination of low density, exceptional mechanical properties, large surface area and excellent electrical conductivity. Recent progress has produced bulk 3D assemblies of graphene, such as graphene aerogels, but they possess purely stochastic porous networks, which limit their performance compared with the potential of an engineered architecture. Here we report the fabrication of periodic graphene aerogel microlattices, possessing an engineered architecture via a 3D printing technique known as direct ink writing. The 3D printed graphene aerogels are lightweight, highly conductive and exhibit supercompressibility (up to 90% compressive strain). Moreover, the Young's moduli of the 3D printed graphene aerogels show an order of magnitude improvement over bulk graphene materials with comparable geometric density and possess large surface areas. Adapting the 3D printing technique to graphene aerogels realizes the possibility of fabricating a myriad of complex aerogel architectures for a broad range of applications. PMID:25902277

  19. Tailoring mechanical properties of aerogels for aerospace applications.

    PubMed

    Randall, Jason P; Meador, Mary Ann B; Jana, Sadhan C

    2011-03-01

    Silica aerogels are highly porous solid materials consisting of three-dimensional networks of silica particles and are typically obtained by removing the liquid in silica gels under supercritical conditions. Several unique attributes such as extremely low thermal conductivity and low density make silica aerogels excellent candidates in the quest for thermal insulation materials used in space missions. However, native silica aerogels are fragile at relatively low stresses. More durable aerogels with higher strength and stiffness are obtained by proper selection of silane precursors and by reinforcement with polymers. This paper first presents a brief review of the literature on methods of silica aerogel reinforcement and then discusses our recent activities in improving not only the strength but also the elastic response of polymer-reinforced silica aerogels. Several alkyl-linked bis-silanes were used in promoting flexibility of the silica networks in conjunction with polymer reinforcement by epoxy.

  20. Composite material impregnation unit

    NASA Technical Reports Server (NTRS)

    Wilkinson, S. P.; Marchello, J. M.; Johnston, N. J.

    1993-01-01

    This memorandum presents an introduction to the NASA multi-purpose prepregging unit which is now installed and fully operational at the Langley Research Center in the Polymeric Materials Branch. A description of the various impregnation methods that are available to the prepregger are presented. Machine operating details and protocol are provided for its various modes of operation. These include, where appropriate, the related equations for predicting the desired prepreg specifications. Also, as the prepregger is modular in its construction, each individual section is described and discussed. Safety concerns are an important factor and a chapter has been included that highlights the major safety features. Initial experiences and observations for fiber impregnation are described. These first observations have given great insight into the areas of future work that need to be addressed. Future memorandums will focus on these individual processes and their related problems.

  1. Polyimide Aerogel Thin Films

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann; Guo, Haiquan

    2012-01-01

    Polyimide aerogels have been crosslinked through multifunctional amines. This invention builds on "Polyimide Aerogels With Three-Dimensional Cross-Linked Structure," and may be considered as a continuation of that invention, which results in a polyimide aerogel with a flexible, formable form. Gels formed from polyamic acid solutions, end-capped with anhydrides, and cross-linked with the multifunctional amines, are chemically imidized and dried using supercritical CO2 extraction to give aerogels having density around 0.1 to 0.3 g/cubic cm. The aerogels are 80 to 95% porous, and have high surface areas (200 to 600 sq m/g) and low thermal conductivity (as low as 14 mW/m-K at room temperature). Notably, the cross-linked polyimide aerogels have higher modulus than polymer-reinforced silica aerogels of similar density, and can be fabricated as both monoliths and thin films.

  2. Composite materials for space applications

    NASA Technical Reports Server (NTRS)

    Rawal, Suraj P.; Misra, Mohan S.; Wendt, Robert G.

    1990-01-01

    The objectives of the program were to: generate mechanical, thermal, and physical property test data for as-fabricated advanced materials; design and fabricate an accelerated thermal cycling chamber; and determine the effect of thermal cycling on thermomechanical properties and dimensional stability of composites. In the current program, extensive mechanical and thermophysical property tests of various organic matrix, metal matrix, glass matrix, and carbon-carbon composites were conducted, and a reliable database was constructed for spacecraft material selection. Material property results for the majority of the as-fabricated composites were consistent with the predicted values, providing a measure of consolidation integrity attained during fabrication. To determine the effect of thermal cycling on mechanical properties, microcracking, and thermal expansion behavior, approximately 500 composite specimens were exposed to 10,000 cycles between -150 and +150 F. These specimens were placed in a large (18 cu ft work space) thermal cycling chamber that was specially designed and fabricated to simulate one year low earth orbital (LEO) thermal cycling in 20 days. With this rate of thermal cycling, this is the largest thermal cycling unit in the country. Material property measurements of the thermal cycled organic matrix composite laminate specimens exhibited less than 24 percent decrease in strength, whereas, the remaining materials exhibited less than 8 percent decrease in strength. The thermal expansion response of each of the thermal cycled specimens revealed significant reduction in hysteresis and residual strain, and the average CTE values were close to the predicted values.

  3. Thermal Energy in Carbon Nanotube and Graphene Composite Materials

    NASA Astrophysics Data System (ADS)

    Schiffres, Scott N.

    Low-dimensional materials, like carbon nanotubes (CNTs) and graphene, possess extraordinary properties---higher thermal conductivity than any bulk material, mechanical strength 10-100 times greater than steel on a mass basis, and electrical current capacity 1000 times greater than copper. While composites incorporating these low-dimensional materials promise solutions to global sustainability challenges, significant transport barriers exist at the matrix interface that influence the composite properties. My PhD research sought to address this knowledge gap. I've experimentally explored how CNTs and graphene impact thermal conductivity when added in small volume fractions to gases, liquids and solids through the study of CNT aerogels (ultra lightweight, 8 kg/m3, 99.6% void space), and phase change nanocomposites (hexadecane-graphene). I measured the thermal conductivity of the CNT aerogel with various filling gases versus pressure using a novel technique that targeted ultralow thermal conductivity materials, called metal-coated 3o. I observed amplified energy transport length scales resulting from low gas accommodation, which is a general feature of carbon based nanoporous materials. Our evidence also shows that despite the high thermal conductivity of CNTs, thermal conduction through the CNT network is limited by the high thermal boundary resistance at van der Waals bonded CNT junctions. In the second system, I studied thermal and electrical conductivity of hexadecane- multi-layered-graphene (MLG) phase change nanocomposites to understand how morphology of the MLG network impacts transport. By adjusting the freezing rate, the electrical conductivity in the solid phase can be tuned between 1 and 5 orders-of-magnitude and the solid-liquid thermal conductivity ratio can be varied between 2.6 to 3.0. This research has yielded interesting insights into the tunability of nanocomposites and the physics underlying it, including evidence to indicate that the presence of

  4. Fiber composite materials technology development

    SciTech Connect

    Chiao, T.T.

    1980-10-23

    The FY1980 technical accomplishments from the Lawrence Livermore National laboratory (LLNL) for the Fiber Composite Materials Technology Development Task fo the MEST project are summarized. The task is divided into three areas: Engineering data base for flywheel design (Washington University will report this part separately), new materials evaluation, and time-dependent behavior of Kevlar composite strands. An epoxy matrix was formulated which can be used in composites for 120/sup 0/C service with good processing and mechanical properties. Preliminary results on the time-dependent properties of the Kevlar 49/epoxy strands indicate: Fatigue loading, as compared to sustained loading, drastically reduces the lifetime of a Kevlar composie; the more the number of on-off load cycles, the less the lifetime; and dynamic fatigue of the Kevlar composite can not be predicted by current damage theories such as Miner's Rule.

  5. Energy dissipation at the silica glass/compressed aerogel interface: The fate of Wild 2 mineral grains and fragments smaller than ~100 nm

    NASA Astrophysics Data System (ADS)

    Rietmeijer, Frans J. M.

    2016-10-01

    Allocation FC6,0,10,0,26 from Stardust track 10 shows a slightly wavy silica glass/compressed silica aerogel interface exposing a patchwork of compressed silica aerogel domains and domains of silica glass with embedded Wild 2 materials in ultra-thin TEM sections. This interface is where molten silica encountered compressed silica aerogel at temperatures <100 °C, and probably near room temperature, causing steep thermal gradients. An Mg, Fe-olivine grain, and a plagioclase-leucite intergrowth survived without melting in silica glass. A Mg-, Al-, Ca-, K-bearing silica globule moved independently as a single object. Two clusters of pure iron, low-Ni iron, and low-Ni, low-sulfur Fe-Ni-S grains also survived intact and came to rest right at the interface between silica glass/compressed silica aerogel. There are numerous Fe-Ni-S nanograins scattered throughout MgO-rich magnesiosilica glass, but compositionally similar Fe-Ni-S are also found in the compressed silica aerogel, where they are not supposed to be. This work could not establish how deep they had penetrated the aerogel. Iron nanograins in this allocation form core-ring grains with a gap between the iron core and a surrounding ring of thermally modified aerogel. This structure was caused when rapid, thermal expansion of the core heated the surrounding compressed aerogel that upon rapid cooling remained fixed in place while the iron core shrank back to its original size. The well-known volume expansion of pure iron allowed reconstruction of the quench temperature for individual core-ring grains. These temperatures showed the small scale of thermal energy loss at the silica glass/compressed silica aerogel interface. The data support fragmentation of olivine, plagioclase, and iron and Fe ± low-Ni grains from comet 81P/Wild 2 during hypervelocity capture.

  6. Composite Materials for Maxillofacial Prostheses.

    DTIC Science & Technology

    1982-11-01

    1(AXILLOFACIAL PROSTHESES; PROSTHETIC MATERIALS: MICROCAPSULES : SOFT FILLERS; ELASTOMER COMPOSITES *ASTRAC7 lCofIflU Ir F*vsda Side It neceOaeen anud...composite systems are elastomeric-shelled, liquid-filled microcapsules . Experiments continued on the interfacial polymerization process, with spherical...sealed, capsules achieved. The diamine bath has been E] improved and an automatic system has been developed for producing the microcapsules . The one

  7. Fatigue Damage in Composite Materials

    NASA Astrophysics Data System (ADS)

    Revuelta, D.; Miravete, A.

    2002-02-01

    The phenomenon of fatigue is critical for designing structures including elements made of composite materials. The accurate prediction of the life and fatigue resistance of laminated composites is one of the subjects of inquiry in materials science. The ability of predicting the life of laminates is important for designing, operation, and safety analysis of a composite structure under specific conditions. To predict reliably the life of structures, it is necessary to know the mechanisms of cyclic deformation and damage. It is also necessary to develop a qualitative theory of fatigue failure that should be based on the concepts of solids mechanics. Developing such a theory requires to evaluate the microscopic parameters and the macroscopic variables of the material at the level of a laminate and the structure and to determine exactly the load modes acting on the system.

  8. Homogeneity and elemental distribution in self-assembled bimetallic Pd-Pt aerogels prepared by a spontaneous one-step gelation process.

    PubMed

    Oezaslan, M; Liu, W; Nachtegaal, M; Frenkel, A I; Rutkowski, B; Werheid, M; Herrmann, A-K; Laugier-Bonnaud, C; Yilmaz, H-C; Gaponik, N; Czyrska-Filemonowicz, A; Eychmüller, A; Schmidt, T J

    2016-07-27

    Multi-metallic aerogels have recently emerged as a novel and promising class of unsupported electrocatalyst materials due to their high catalytic activity and improved durability for various electrochemical reactions. Aerogels can be prepared by a spontaneous one-step gelation process, where the chemical co-reduction of metal precursors and the prompt formation of nanochain-containing hydrogels, as a preliminary stage for the preparation of aerogels, take place. However, detailed knowledge about the homogeneity and chemical distribution of these three-dimensional Pd-Pt aerogels at the nano-scale as well as at the macro-scale is still unclear. Therefore, we used a combination of spectroscopic and microscopic techniques to obtain a better insight into the structure and elemental distribution of the various Pd-rich Pd-Pt aerogels prepared by the spontaneous one-step gelation process. Synchrotron-based extended X-ray absorption fine structure (EXAFS) spectroscopy and high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) in combination with energy-dispersive X-ray spectroscopy (EDX) were employed in this work to uncover the structural architecture and chemical composition of the various Pd-rich Pd-Pt aerogels over a broad length range. The Pd80Pt20, Pd60Pt40 and Pd50Pt50 aerogels showed heterogeneity in the chemical distribution of the Pt and Pd atoms inside the macroscopic nanochain-network. The features of mono-metallic clusters were not detected by EXAFS or STEM-EDX, indicating alloyed nanoparticles. However, the local chemical composition of the Pd-Pt alloys strongly varied along the nanochains and thus within a single aerogel. To determine the electrochemically active surface area (ECSA) of the Pd-Pt aerogels for application in electrocatalysis, we used the electrochemical CO stripping method. Due to their high porosity and extended network structure, the resulting values of the ECSA for the Pd-Pt aerogels were higher than that for

  9. A binder-free sulfur/reduced graphene oxide aerogel as high performance electrode materials for lithium sulfur batteries.

    PubMed

    Nitze, Florian; Agostini, Marco; Lundin, Filippa; Palmqvist, Anders E C; Matic, Aleksandar

    2016-12-23

    Societies' increasing need for energy storage makes it necessary to explore new concepts beyond the traditional lithium ion battery. A promising candidate is the lithium-sulfur technology with the potential to increase the energy density of the battery by a factor of 3-5. However, so far the many problems with the lithium-sulfur system have not been solved satisfactory. Here we report on a new approach utilizing a self-standing reduced graphene oxide based aerogel directly as electrodes, i.e. without further processing and without the addition of binder or conducting agents. We can thereby disrupt the common paradigm of "no battery without binder" and can pave the way to a lithium-sulfur battery with a high practical energy density. The aerogels are synthesized via a one-pot method and consist of more than 2/3 sulfur, contained inside a porous few-layered reduced graphene oxide matrix. By combining the graphene-based aerogel cathode with an electrolyte and a lithium metal anode, we demonstrate a lithium-sulfur cell with high areal capacity (more than 3 mAh/cm(2) after 75 cycles), excellent capacity retention over 200 cycles and good sulfur utilization. Based on this performance we estimate that the energy density of this concept-cell can significantly exceed the Department of Energy (DEO) 2020-target set for transport applications.

  10. A binder-free sulfur/reduced graphene oxide aerogel as high performance electrode materials for lithium sulfur batteries

    PubMed Central

    Nitze, Florian; Agostini, Marco; Lundin, Filippa; Palmqvist, Anders E. C.; Matic, Aleksandar

    2016-01-01

    Societies’ increasing need for energy storage makes it necessary to explore new concepts beyond the traditional lithium ion battery. A promising candidate is the lithium-sulfur technology with the potential to increase the energy density of the battery by a factor of 3–5. However, so far the many problems with the lithium-sulfur system have not been solved satisfactory. Here we report on a new approach utilizing a self-standing reduced graphene oxide based aerogel directly as electrodes, i.e. without further processing and without the addition of binder or conducting agents. We can thereby disrupt the common paradigm of “no battery without binder” and can pave the way to a lithium-sulfur battery with a high practical energy density. The aerogels are synthesized via a one-pot method and consist of more than 2/3 sulfur, contained inside a porous few-layered reduced graphene oxide matrix. By combining the graphene-based aerogel cathode with an electrolyte and a lithium metal anode, we demonstrate a lithium-sulfur cell with high areal capacity (more than 3 mAh/cm2 after 75 cycles), excellent capacity retention over 200 cycles and good sulfur utilization. Based on this performance we estimate that the energy density of this concept-cell can significantly exceed the Department of Energy (DEO) 2020-target set for transport applications. PMID:28008981

  11. A binder-free sulfur/reduced graphene oxide aerogel as high performance electrode materials for lithium sulfur batteries

    NASA Astrophysics Data System (ADS)

    Nitze, Florian; Agostini, Marco; Lundin, Filippa; Palmqvist, Anders E. C.; Matic, Aleksandar

    2016-12-01

    Societies’ increasing need for energy storage makes it necessary to explore new concepts beyond the traditional lithium ion battery. A promising candidate is the lithium-sulfur technology with the potential to increase the energy density of the battery by a factor of 3–5. However, so far the many problems with the lithium-sulfur system have not been solved satisfactory. Here we report on a new approach utilizing a self-standing reduced graphene oxide based aerogel directly as electrodes, i.e. without further processing and without the addition of binder or conducting agents. We can thereby disrupt the common paradigm of “no battery without binder” and can pave the way to a lithium-sulfur battery with a high practical energy density. The aerogels are synthesized via a one-pot method and consist of more than 2/3 sulfur, contained inside a porous few-layered reduced graphene oxide matrix. By combining the graphene-based aerogel cathode with an electrolyte and a lithium metal anode, we demonstrate a lithium-sulfur cell with high areal capacity (more than 3 mAh/cm2 after 75 cycles), excellent capacity retention over 200 cycles and good sulfur utilization. Based on this performance we estimate that the energy density of this concept-cell can significantly exceed the Department of Energy (DEO) 2020-target set for transport applications.

  12. Organically modified silicate aerogels, ``Aeromosils``

    SciTech Connect

    Kramer, S.J.; Mackenzie, J.D.; Rubio-Alonso, F.

    1996-12-31

    Aerogels derived from sol-gel oxides such as silica have become quite scientifically popular because of their extremely low densities, high surface areas, and their interesting optical, dielectric, thermal and acoustic properties. However, their commercial applicability has thus far been rather limited, due in great part to their brittleness and hydrophilicity. In prior work by the research group, modifying silicate gel structures with flexible, organic containing polymers such as polydimethylsiloxane imparted significant compliance (even rubbery behavior) and hydrophobicity. These materials have been referred to as Ormosils. This study expounds on the current effort to extend these desirable properties to aerogels, and in-so-doing, creating novel ``Aeromosils``. Reactive incorporation of hydroxy-terminal polydimethylsiloxane (PDMS) into silica sol-gels was made using both acid and two-step acid/base catalyzed processes. Aerogels were derived by employing the supercritical CO{sub 2} technique. Analyses of microstructure were made using nitrogen adsorption (BET surface area and pore size distribution), and some mechanical strengths were derived from tensile strength testing. Interesting Aeromosil properties obtained include optical transparency, surface areas of up to 1,200 m{sup 2}/g, rubberiness, and better strength than corresponding silica aerogels with elongations at break exceeding 5% in some cases.

  13. Delamination growth in composite materials

    NASA Technical Reports Server (NTRS)

    Gillespie, J. W., Jr.; Carlson, L. A.; Pipes, R. B.; Rothschilds, R.; Trethewey, B.; Smiley, A.

    1985-01-01

    Research related to growth of an imbedded through-width delamination (ITWD) in a compression loaded composite structural element is presented. Composites with widely different interlaminar fracture resistance were examined, viz., graphite/epoxy (CYCOM 982) and graphite/PEEK (APC-2). The initial part of the program consisted of characterizing the material in tension, compression and shear mainly to obtain consistent material properties for analysis, but also as a check of the processing method developed for the thermoplastic APC-2 material. The characterization of the delamination growth in the ITWD specimen, which for the unidirectional case is essentially a mixed Mode 1 and 2 geometry, requires verified mixed-mode growth criteria for the two materials involved. For this purpose the main emphasis during this part of the investigation was on Mode 1 and 2 fracture specimens, namely the Double Cantilever Beam (DCB) and End Notched Flexure (ENF) specimens.

  14. Self-assembled and pyrolyzed carbon aerogels: an overview of their preparation mechanisms, properties and applications

    NASA Astrophysics Data System (ADS)

    Allahbakhsh, Ahmad; Bahramian, Ahmad Reza

    2015-08-01

    An overview of the synthesis conditions and mechanisms for the fabrication of different types of carbon aerogels, as well as the structural and functional properties of these materials, is presented here. In this overview, carbon aerogels are classified into three major categories: (i) conventional pyrolyzed organic-based carbon aerogels, which are products of the pyrolysis process of organic aerogels; (ii) self-assembled carbon aerogels, which are products of a reduction process; and (iii) nanocomposite carbon aerogels. Synthesis mechanisms for the sol-gel process of organic aerogels are reviewed using different mechanisms suggested in the literature. Moreover, the overall fabrication process of self-assembled carbon aerogels (graphene and carbon nanotube aerogels) is covered and the suggested mechanism for the gelation process of self-assembled carbon aerogels during the reduction process is investigated using reported mechanisms. The structural performance and functional properties (electrochemical and thermal properties) of different types of carbon aerogels are covered in detail. Moreover, different structural features of carbon aerogels and the influence of synthesis conditions on these structural characteristics are assessed and compared. Based on the literature results covered in this review paper, carbon aerogels are perfect candidates for the fabrication of ultra-low density supercapacitors, as well as thermal insulating materials.

  15. Evaluating Dimethyldiethoxysilane for use in Polyurethane Crosslinked Silica Aerogels

    NASA Technical Reports Server (NTRS)

    Randall, Jason P.; Meador, Mary Ann B.; Jana, Sadhan C.

    2008-01-01

    Silica aerogels are highly porous materials which exhibit exceptionally low density and thermal conductivity. Their "pearl necklace" nanostructure, however, is inherently weak; most silica aerogels are brittle and fragile. The strength of aerogels can be improved by employing an additional crosslinking step using isocyanates. In this work, dimethyldiethoxysilane (DMDES) is evaluated for use in the silane backbone of polyurethane crosslinked aerogels. Approximately half of the resulting aerogels exhibited a core/shell morphology of hard crosslinked aerogel surrounding a softer, uncrosslinked center. Solid state NMR and scanning electron microscopy results indicate the DMDES incorporated itself as a conformal coating around the outside of the secondary silica particles, in much the same manner as isocyanate crosslinking. Response surface curves were generated from compression data, indicating levels of reinforcement comparable to that in previous literature, despite the core/shell morphology.

  16. Composite Materials: An Educational Need.

    ERIC Educational Resources Information Center

    Saliba, Tony E.; Snide, James A.

    1990-01-01

    Described is the need to incorporate the concepts and applications of advanced composite materials into existing chemical engineering programs. Discussed are the justification for, and implementation of topics including transport phenomena, kinetics and reactor design, unit operations, and product and process design. (CW)

  17. Composite Materials for Maxillofacial Prostheses.

    DTIC Science & Technology

    1981-08-01

    necessary and Identify byv block number) MAXILLOFACIAL PROSTHESES; PROSTHETIC MATERIALS: MICROCAPSULES : SOFT FILLERS; ELASTOMER COMPOSITES 2,. ABSTRACT...used as fillers in the fabrication of maxillofacial prostheses. The projected systems are elastomeric-shelled, liquid-filled microcapsules . Improvements...elastomeric-shelled, liquid-filled microcapsules . Experiments continued on the interfacial polymerization process, with spherical, sealed, capsules

  18. Composite Materials for Maxillofacial Prostheses.

    DTIC Science & Technology

    1983-02-01

    the most promise for producing elastomeric-shelled microcapsules containing an inert liquid. While much of the diverse field of microencapsulation is...Processes and Applications, Chicago, 28 August 1973. 11. Gutchko, M. H., Microcapsules and Microencapsulation Techniques. Noyes Data Corporation, Park Ridge...necesaryv and identify by block number) * MAXILLOFACIAL PROSTHESES; PROSTHETIC MATERIALS: MICROCAPSULES : * SOFT FILLERS; ELASTOMER COMPOSITES 2L

  19. Joining of polymer composite materials

    SciTech Connect

    Magness, F.H.

    1990-11-01

    Under ideal conditions load bearing structures would be designed without joints, thus eliminating a source of added weight, complexity and weakness. In reality the need for accessibility, repair, and inspectability, added to the size limitations imposed by the manufacturing process and transportation/assembly requirements mean that some minimum number of joints will be required in most structures. The designer generally has two methods for joining fiber composite materials, adhesive bonding and mechanical fastening. As the use of thermoplastic materials increases, a third joining technique -- welding -- will become more common. It is the purpose of this document to provide a review of the available sources pertinent to the design of joints in fiber composites. The primary emphasis is given to adhesive bonding and mechanical fastening with information coming from documentary sources as old as 1961 and as recent as 1989. A third, shorter section on composite welding is included in order to provide a relatively comprehensive treatment of the subject.

  20. Method of casting aerogels

    DOEpatents

    Poco, J.F.

    1993-09-07

    The invention describes a method for making monolithic castings of transparent silica aerogel with densities in the range from 0.001 g/cm[sup 3] to 0.6 g/cm[sup 3]. Various shapes of aerogels are cast in flexible polymer molds which facilitate removal and eliminate irregular surfaces. Mold dimensions are preselected to account for shrinkage of aerogel which occurs during the drying step of supercritical extraction of solvent. 2 figures.

  1. Energy absorption of composite materials

    NASA Technical Reports Server (NTRS)

    Farley, G. L.

    1983-01-01

    Results of a study on the energy absorption characteristics of selected composite material systems are presented and the results compared with aluminum. Composite compression tube specimens were fabricated with both tape and woven fabric prepreg using graphite/epoxy (Gr/E), Kevlar (TM)/epoxy (K/E) and glass/epoxy (Gl/E). Chamfering and notching one end of the composite tube specimen reduced the peak load at initial failure without altering the sustained crushing load, and prevented catastrophic failure. Static compression and vertical impact tests were performed on 128 tubes. The results varied significantly as a function of material type and ply orientation. In general, the Gr/E tubes absorbed more energy than the Gl/E or K/E tubes for the same ply orientation. The 0/ + or - 15 Gr/E tubes absorbed more energy than the aluminum tubes. Gr/E and Gl/E tubes failed in a brittle mode and had negligible post crushing integrity, whereas the K/E tubes failed in an accordian buckling mode similar to the aluminum tubes. The energy absorption and post crushing integrity of hybrid composite tubes were not significantly better than that of the single material tubes.

  2. Aerogel-supported filament

    DOEpatents

    Wuest, C.R.; Tillotson, T.M.; Johnson, C.V. III

    1995-05-16

    The present invention is a thin filament embedded in a low density aerogel for use in radiation detection instruments and incandescent lamps. The aerogel provides a supportive matrix that is thermally and electrically nonconductive, mechanically strong, highly porous, gas-permeable, and transparent to ionizing radiation over short distances. A low density, open-cell aerogel is cast around a fine filament or wire, which allows the wire to be positioned with little or no tension and keeps the wire in place in the event of breakage. The aerogel support reduces the stresses on the wire caused by vibrational, gravitational, electrical, and mechanical forces. 6 Figs.

  3. Aerogel-supported filament

    DOEpatents

    Wuest, Craig R.; Tillotson, Thomas M.; Johnson, III, Coleman V.

    1995-01-01

    The present invention is a thin filament embedded in a low density aerogel for use in radiation detection instruments and incandescent lamps. The aerogel provides a supportive matrix that is thermally and electrically nonconductive, mechanically strong, highly porous, gas-permeable, and transparent to ionizing radiation over short distances. A low density, open-cell aerogel is cast around a fine filament or wire, which allows the wire to be positioned with little or no tension and keeps the wire in place in the event of breakage. The aerogel support reduces the stresses on the wire caused by vibrational, gravitational, electrical, and mechanical forces.

  4. Towards an aerogel-based coating for aerospace applications: reconstituting aerogel particles via spray drying

    NASA Astrophysics Data System (ADS)

    Bheekhun, N.; Abu Talib, A. R.; Mustapha, S.; Ibrahim, R.; Hassan, M. R.

    2016-10-01

    Silica aerogel is an ultralight and highly porous nano-structured ceramic with its thermal conductivity being the lowest than any solids. Although aerogels possess fascinating physical properties, innovative solutions to tackle today's problems were limited due to their relative high manufacturing cost in comparison to conventional materials. Recently, some producers have brought forward quality aerogels at competitive costs, and thereby opening a panoply of applied research in this field. In this paper, the feasibility of spray-drying silica aerogel to tailor its granulometric property is studied for thermal spraying, a novel application of aerogels that is never tried before in the academic arena. Aerogel-based slurries with yttria stabilised zirconia as a secondary ceramic were prepared and spray-dried according to modified T aguchi experimental design in order to appreciate the effect of both the slurry formulation and drying conditions such as the solid content, the ratio of yttria stabilised zirconia:aerogel added, the amount of dispersant and binder, inlet temperature, atomisation pressure and feeding rate on the median particle size of the resulting spray-dried powder. The latter was found to be affected by all the aforementioned independent variables at different degree of significance and inclination. Based on the derived relationships, an optimised condition to achieve maximum median particle size was then predicted.

  5. PEDOT-based composites as electrode materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhao, Zhiheng; Richardson, Georgia F.; Meng, Qingshi; Zhu, Shenmin; Kuan, Hsu-Chiang; Ma, Jun

    2016-01-01

    Poly (3, 4-ethylenedioxythiophene) (denoted PEDOT) already has a brief history of being used as an active material in supercapacitors. It has many advantages such as low-cost, flexibility, and good electrical conductivity and pseudocapacitance. However, the major drawback is low stability, which means an obvious capacitance drop after a certain number of charge-discharge cycles. Another disadvantage is its limited capacitance and this becomes an issue for industrial applications. To solve these problems, there are several approaches including the addition of conducting nanofillers to increase conductivity, and mixing or depositing metal oxide to enhance capacitance. Furthermore, expanding the surface area of PEDOT is one of the main methods to improve its performance in energy storage applications through special processes; for example using a three-dimensional substrate or preparing PEDOT aerogel through freeze drying. This paper reviews recent techniques and outcomes of PEDOT based composites for supercapacitors, as well as detailed calculations about capacitances. Finally, this paper outlines the new direction and recent challenges of PEDOT based composites for supercapacitor applications.

  6. Cytochrome C stabilization and immobilization in aerogels.

    PubMed

    Harper-Leatherman, Amanda S; Wallace, Jean Marie; Rolison, Debra R

    2011-01-01

    Sol-gel-derived aerogels are three-dimensional, nanoscale materials that combine large surface areas and high porosities. These traits make them useful for any rate-critical chemical process, particularly sensing or electrochemical applications, once physical or chemical moieties are incorporated into the gels to add their functionality into the ultraporous scaffold. Incorporating biomolecules into aerogels has been challenging due to the inability of most biomolecules to remain structurally intact within the gels during the necessary supercritical fluid processing. However, the heme protein cytochrome c (cyt. c) forms self-organized superstructures around gold (or silver) nanoparticles in buffer that can be encapsulated within silica and processed to form aerogels in which cyt. c retains its characteristic visible absorption. The gold (or silver) nanoparticle-nucleated superstructures protect the majority of the protein from the harsh physicochemical conditions necessary to form an aerogel. The Au∼cyt. c superstructures exhibit rapid gas-phase recognition of nitric oxide (NO) within the aerogel matrix, as facilitated by the high-quality pore structure of the aerogel, and remain viable for weeks at room temperature.

  7. Multiscale Modeling of Heat Conduction in Carbon Nanotube Aerogels

    NASA Astrophysics Data System (ADS)

    Gong, Feng; Papavassiliou, Dimitrios; Duong, Hai

    Carbon nanotube (CNT) aerogels have attracted a lot of interest due to their ultrahigh strength/weight and surface area/weight ratios. They are promising advanced materials used in energy storage systems, hydrogen storage media and weight-conscious devices such as satellites, because of their ultralight and highly porous quality. CNT aerogels can have excellent electrical conductivity and mechanical strength. However, the thermal conductivity of CNT aerogels are as low as 0.01-0.1 W/mK, which is five orders of magnitude lower than that of CNT (2000-5000 W/mK). To investigate the mechanisms for the low thermal conductivity of CNT aerogels, multiscale models are built in this study. Molecular dynamic (MD) simulations are first carried out to investigate the heat transfer between CNT and different gases (e.g. nitrogen and hydrogen), and the thermal conductance at CNT-CNT interface. The interfacial thermal resistances of CNT-gas and CNT-CNT are estimated from the MD simulations. Mesoscopic modeling of CNT aerogels are then built using an off-lattice Monte Carlo (MC) simulations to replicate the realistic CNT aerogels. The interfacial thermal resistances estimated from MD simulations are used as inputs in the MC models to predict the thermal conductivity of CNT aerogels. The volume fractions and the complex morphologies of CNTs are also quantified to study their effects on the thermal conductivity of CNT aerogels. The quantitative findings may help researchers to obtain the CNT aerogels with expected thermal conductivity.

  8. Asymmetric Dielectric Elastomer Composite Material

    NASA Technical Reports Server (NTRS)

    Stewart, Brian K. (Inventor)

    2014-01-01

    Embodiments of the invention provide a dielectric elastomer composite material comprising a plurality of elastomer-coated electrodes arranged in an assembly. Embodiments of the invention provide improved force output over prior DEs by producing thinner spacing between electrode surfaces. This is accomplished by coating electrodes directly with uncured elastomer in liquid form and then assembling a finished component (which may be termed an actuator) from coated electrode components.

  9. Aerogel-Based Multilayer Insulation with Micrometeoroid Protection

    NASA Technical Reports Server (NTRS)

    Begag, Redouane; White, Shannon

    2013-01-01

    Ultra-low-density, highly hydrophobic, fiber-reinforced aerogel material integrated with MLI (aluminized Mylar reflectors and B4A Dacron separators) offers a highly effective insulation package by providing unsurpassed thermal performance and significant robustness, delivering substantial MMOD protection via the addition of a novel, durable, external aerogel layer. The hydrophobic nature of the aerogel is an important property for maintaining thermal performance if the material is exposed to the environment (i.e. rain, snow, etc.) during ground installations. The hybrid aerogel/MLI/MMOD solution affords an attractive alternative because it will perform thermally in the same range as MLI at all vacuum levels (including high vacuum), and offers significant protection from micrometeoroid damage. During this effort, the required low-density and resilient aerogel materials have been developed that are needed to optimize the thermal performance for space (high vacuum) cryotank applications. The proposed insulation/MMOD package is composed of two sections: a stack of interleaved aerogel layers and MLI intended for cryotank thermal insulation, and a 1.5- to 1-in. (.2.5- to 3.8- cm) thick aerogel layer (on top of the insulation portion) for MMOD protection. Learning that low-density aerogel cannot withstand the hypervelocity impact test conditions, the innovators decided during the course of the program to fabricate a high-density and strong material based on a cross-linked aerogel (X-aerogel; developed elsewhere by the innovators) for MMOD protection. This system has shown a very high compressive strength that is capable of withstanding high-impact tests if a proper configuration of the MMOD aerogel layer is used. It was learned that by stacking two X-aerogel layers [1.5-in. (.3.8-cm) thick] separated by an air gap, the system would be able to hold the threat at a speed of 5 km/s and gpass h the test. The first aerogel panel stopped the projectile from damaging the second

  10. Reinforced plastics and aerogels by nanocrystalline cellulose

    NASA Astrophysics Data System (ADS)

    Leung, Alfred C. W.; Lam, Edmond; Chong, Jonathan; Hrapovic, Sabahudin; Luong, John H. T.

    2013-05-01

    Nanocrystalline cellulose (NCC), a rigid rod-like nanoscale material, can be produced from cellulosic biomass in powder, liquid, or gel forms by acid and chemical hydrolysis. Owing to its unique and exceptional physicochemical properties, the incorporation of a small amount of NCC into plastic enhances the mechanical strength of the latter by several orders of magnitudes. Carbohydrate-based NCC poses no serious environmental concerns, providing further impetus for the development and applications of this green and renewable biomaterial to fabricate lightweight and biodegradable composites and aerogels. Surface functionalization of NCC remains the main focus of NCC research to tailor its properties for dispersion in hydrophilic or hydrophobic media. It is of uttermost importance to develop tools and protocols for imaging of NCC in a complex matrix and quantify its reinforcement effect.

  11. Fluorescent single walled nanotube/silica composite materials

    DOEpatents

    Dattelbaum, Andrew M.; Gupta, Gautam; Duque, Juan G.; Doorn, Stephen K.; Hamilton, Christopher E.; DeFriend Obrey, Kimberly A.

    2013-03-12

    Fluorescent composites of surfactant-wrapped single-walled carbon nanotubes (SWNTs) were prepared by exposing suspensions of surfactant-wrapped carbon nanotubes to tetramethylorthosilicate (TMOS) vapor. Sodium deoxycholate (DOC) and sodium dodecylsulphate (SDS) were the surfactants. No loss in emission intensity was observed when the suspension of DOC-wrapped SWNTs were exposed to the TMOS vapors, but about a 50% decrease in the emission signal was observed from the SDS-wrapped SWNTs nanotubes. The decrease in emission was minimal by buffering the SDS/SWNT suspension prior to forming the composite. Fluorescent xerogels were prepared by adding glycerol to the SWNT suspensions prior to TMOS vapor exposure, followed by drying the gels. Fluorescent aerogels were prepared by replacing water in the gels with methanol and then exposing them to supercritical fluid drying conditions. The aerogels can be used for gas sensing.

  12. Aerogel-clad optical fiber

    DOEpatents

    Sprehn, Gregory A.; Hrubesh, Lawrence W.; Poco, John F.; Sandler, Pamela H.

    1997-01-01

    An optical fiber is surrounded by an aerogel cladding. For a low density aerogel, the index of refraction of the aerogel is close to that of air, which provides a high numerical aperture to the optical fiber. Due to the high numerical aperture, the aerogel clad optical fiber has improved light collection efficiency.

  13. Aerogel-clad optical fiber

    DOEpatents

    Sprehn, G.A.; Hrubesh, L.W.; Poco, J.F.; Sandler, P.H.

    1997-11-04

    An optical fiber is surrounded by an aerogel cladding. For a low density aerogel, the index of refraction of the aerogel is close to that of air, which provides a high numerical aperture to the optical fiber. Due to the high numerical aperture, the aerogel clad optical fiber has improved light collection efficiency. 4 figs.

  14. Melamine-formaldehyde aerogels

    DOEpatents

    Pekala, Richard W.

    1992-01-01

    Organic aerogels that are transparent and essentially colorless are prepa from the aqueous, sol-gel polymerization of melamine with formaldehyde. The melamine-formaldehyde (MF) aerogels have low densities, high surface areas, continuous porsity, ultrafine cell/pore sizes, and optical clarity.

  15. Melamine-formaldehyde aerogels

    DOEpatents

    Pekala, R.W.

    1992-01-14

    Organic aerogels that are transparent and essentially colorless are prepared from the aqueous, sol-gel polymerization of melamine with formaldehyde. The melamine-formaldehyde (MF) aerogels have low densities, high surface areas, continuous porosity, ultrafine cell/pore sizes, and optical clarity. 3 figs.

  16. Chemical and morphological effects on the electrochemical properties of carbon aerogels and ruthenium dioxide/carbon aerogel nanocomposites

    NASA Astrophysics Data System (ADS)

    Miller, John Martin

    The development of high performance electrode materials for electrochemical capacitors has been an active area of research over the past ten years due to the demand for high power portable energy storage devices. One class of material which has shown promising capacitive characteristics in aqueous electrolytes is carbon aerogels. These unique materials exhibit low resistivity, high surface area, and a controllable open microstructure. In this work, the interrelationships between the electrochemical characteristics of the carbon aerogel materials in sulfuric acid electrolytes and the chemical and physical nature of the aerogels have been identified. Specifically, this study examines the influence of surface chemistry and microstructure on the voltammetric response of the carbon aerogel electrodes. Carbon aerogels exhibit a specific capacitance greater than 80 F/g in 1.0 M Hsb2SOsb4. This value is is dependent upon the specific surface area of each sample but is relatively independent of the bulk density of the aerogel. The density of the material does, however, influence the charging time of the electrode due to distributed capacitance effects. The surface of the carbon aerogels can be electrochemically activated to supplement the double-layer charging of the surface with a pseudocapacitive charge storage mechanism at redox-active surface functionalities. A second aspect of this work addresses improving the capacitance of the carbon aerogel materials by chemically modifying the surface of the aerogels. Hydrous ruthenium dioxide, which has shown exceptional pseudocapacitance ({>} 750\\ F/g)sp3, was deposited onto the surface of the carbon aerogel materials by two approaches: chemical vapor impregnation and electrodeposition. Ruthenium metal loadings of greater than 50 wt.% could be achieved using chemical vapor impregnation. Transmission electron microscopy revealed 20A metal particles uniformly distributed on the large interior surface of the aerogels. These

  17. Method for producing hydrophobic aerogels

    DOEpatents

    Hrubesh, Lawrence W.; Poco, John F.; Coronado, Paul R.

    1999-01-01

    A method for treating a dried monolithic aerogel containing non-dispersed particles, with an organometallic surface modifying agent to produce hydrophobic aerogels. The dried, porous hydrophobic aerogels contain a protective layer of alkyl groups, such as methyl groups, on the modified surfaces of the pores of the aerogel. The alkyl groups at the aerogel surface typically contain at least one carbon-metal bond per group.

  18. Aerogel Beads as Cryogenic Thermal Insulation System

    NASA Technical Reports Server (NTRS)

    Fesmire, J. E.; Augustynowicz, S. D.; Rouanet, S.; Thompson, Karen (Technical Monitor)

    2001-01-01

    An investigation of the use of aerogel beads as thermal insulation for cryogenic applications was conducted at the Cryogenics Test Laboratory of NASA Kennedy Space Center. Steady-state liquid nitrogen boiloff methods were used to characterize the thermal performance of aerogel beads in comparison with conventional insulation products such as perlite powder and multilayer insulation (MLI). Aerogel beads produced by Cabot Corporation have a bulk density below 100 kilograms per cubic meter (kg/cubic m) and a mean particle diameter of 1 millimeter (mm). The apparent thermal conductivity values of the bulk material have been determined under steady-state conditions at boundary temperatures of approximately 293 and 77 kelvin (K) and at various cold vacuum pressures (CVP). Vacuum levels ranged from 10(exp -5) torr to 760 torr. All test articles were made in a cylindrical configuration with a typical insulation thickness of 25 mm. Temperature profiles through the thickness of the test specimens were also measured. The results showed the performance of the aerogel beads was significantly better than the conventional materials in both soft-vacuum (1 to 10 torr) and no-vacuum (760 torr) ranges. Opacified aerogel beads performed better than perlite powder under high-vacuum conditions. Further studies for material optimization and system application are in progress.

  19. FIBER-REINFORCED METALLIC COMPOSITE MATERIALS.

    DTIC Science & Technology

    COMPOSITE MATERIALS), (*FIBER METALLURGY, TITANIUM ALLOYS , NICKEL ALLOYS , REINFORCING MATERIALS, TUNGSTEN, WIRE, MOLYBDENUM ALLOYS , COBALT ALLOYS , CHROMIUM ALLOYS , ALUMINUM ALLOYS , MECHANICAL PROPERTIES, POWDER METALLURGY.

  20. Iron-oxide aerogel and xerogel catalyst formulations: characterization by 57Fe Mössbauer and XAFS spectroscopies.

    PubMed

    Huggins, Frank E; Bali, Sumit; Huffman, Gerald P; Eyring, Edward M

    2010-06-01

    Iron in various iron-oxide aerogel and xerogel catalyst formulations (> or =85% Fe(2)O(3); < or =10% K, Co, Cu, or Pd) developed for possible use in Fischer-Tropsch synthesis (FTS) or the water-gas-shift (WGS) reaction has been examined by (57)Fe Mössbauer spectroscopy. The seventeen samples consisted of both as-prepared and calcined aerogels and xerogels and their products after use as catalysts for FTS or the WGS reaction. Complementary XAFS spectra were obtained on the occurrence of the secondary elements in some of the same materials. A broad, slightly asymmetric, two-peak Mössbauer spectrum was obtained from the different as-prepared and calcined catalyst formulations in the majority of cases. Such spectra could only be satisfactorily fit with three quadrupole doublet components, but no systematic trends in the isomer shift and quadrupole splitting parameters and area ratios of the individual components could be discerned that reflected variations in the composition or preparation of the aerogel or xerogel materials. However, significant reductions were noted in the Mössbauer effective thickness (recoilless absorption effect per unit mass of iron) parameter, chi(eff)/g, determined at room temperature, for aerogels and xerogels compared to bulk iron oxides, reflecting the openness and lack of rigidity of the aerogel and xerogel structures. Mössbauer measurements for two aerogels over the range from 15 to 292K confirmed the greatly diminished nature of this parameter at room temperature. Major increases in the effective thickness parameter were observed when the open structure of the aerogel or xerogel collapsed during calcination resulting in the formation of iron oxides (hematite, spinel ferrite). Similar structural changes were indicated by increases in this parameter after use of iron-oxide aerogels as catalysts for FTS or the WGS reaction, during which the iron-oxide aerogel was converted to a mixture of nonstoichiometric magnetite and the Hägg carbide

  1. Volatiles in interplanetary dust particles and aerogels

    NASA Technical Reports Server (NTRS)

    Gibson, E. K., Jr.; Harmetz, C. P.

    1991-01-01

    Volatiles measured in 25 interplanetary dust particles (IDPs) are a mixture of both indigenous materials and contaminants associated with the collection and processing of the ODPs prior to analysis. Most IDPs have been collected in the stratosphere using a silicone oil/freon mixture (20:1 ratio) coated on collector plates. Studies have shown that silicone oil, freon and hexane residues remain with the ODPs, despite attempts to clean the IDPs. Analysis of the IDPs with the LMMS-technique produces spectra with a mixture of indigeneous and contaminants components. The contamination signal can be identified and removed; however, the contamination signal may obscure some of the indigeneous component's signal. Employing spectra stripping techniques, the indigenous volatile constituents associated with the IDPs can be identified. Volatiles are similar to those measured in CI or CM carbonaceous chondrites. Collection of IDPs in low-Earth orbit utilizing a Cosmic Dust Collection Facility attached to Space Station Freedom has been proposed. The low-density material aerogel has been proposed as a collection substrate for IDPs. Our studies have concentrated on identifying volatile contaminants that are associated with aerogel. We have found that solvents used for the preparation of aerogel remain in aerogel and methods must be developed for removing the entrapped solvents before aerogels can be used for an IDP collection substrate.

  2. Composite materials for fusion applications

    SciTech Connect

    Jones, R.H.; Henager, C.H. Jr.; Hollenberg, G.W.

    1991-10-01

    Ceramic matrix composites, CMCs, are being considered for advanced first-wall and blanket structural applications because of their high-temperature properties, low neutron activation, low density and low coefficient of expansion coupled with good thermal conductivity and corrosion behavior. This paper presents a review and analysis of the hermetic, thermal conductivity, corrosion, crack growth and radiation damage properties of CMCs. It was concluded that the leak rates of a gaseous coolant into the plasma chamber or tritium out of the blanket could exceed design criteria if matrix microcracking causes existing porosity to become interconnected. Thermal conductivities of unirradiated SiC/SiC and C/SiC materials are about 1/2 to 2/3 that of Type 316 SS whereas the thermal conductivity for C/C composites is seven times larger. The thermal stress figure-of-merit value for CMCs exceeds that of Type 316 SS for a single thermal cycle. SiC/SiC composites are very resistant to corrosion and are expected to be compatible with He or Li coolants if the O{sub 2} concentrations are maintained at the appropriate levels. CMCs exhibit subcritical crack growth at elevated temperatures and the crack velocity is a function of the corrosion conditions. The radiation stability of CMCs will depend on the stability of the fiber, microcracking of the matrix, and the effects of gaseous transmutation products on properties. 23 refs., 14 figs., 1 tab.

  3. Method of patterning an aerogel

    DOEpatents

    Reed, Scott T [Edgewood, NM

    2012-07-24

    A method for producing a pattern in an aerogel disposed as a coating on a substrate comprises exposing the aerogel coating to the vapors of a hydrophobic silane compound, masking the aerogel coating with a shadow photomask and irradiating the aerogel coating with ultraviolet (UV) irradiation. The exposure to UV through the shadow mask creates a pattern of hydrophobic and hydrophilic regions in the aerogel coating. Etching away the hydrophilic regions of the aerogel coating, preferably with a 1 molar solution of sodium hydroxide, leaves the unwetted and unetched hydrophobic regions of the aerogel layer on the substrate, replicating the pattern of the photomask. The hydrophobic aerogel pattern can be further exposed to UV irradiation if desired, to create a hydrophilic aerogel pattern.

  4. Method for preparing a solid phase microextraction device using aerogel

    DOEpatents

    Miller, Fred S.; Andresen, Brian D.

    2006-10-24

    A sample collection substrate of aerogel and/or xerogel materials bound to a support structure is used as a solid phase microextraction (SPME) device. The xerogels and aerogels may be organic or inorganic and doped with metals or other compounds to target specific chemical analytes. The support structure is typically formed of a glass fiber or a metal wire (stainless steel or kovar). The devices are made by applying gel solution to the support structures and drying the solution to form aerogel or xerogel. Aerogel particles may be attached to the wet layer before drying to increase sample collection surface area. These devices are robust, stable in fields of high radiation, and highly effective at collecting gas and liquid samples while maintaining superior mechanical and thermal stability during routine use. Aerogel SPME devices are advantageous for use in GC/MS analyses due to their lack of interfering background and tolerance of GC thermal cycling.

  5. Space processing of composite materials

    NASA Technical Reports Server (NTRS)

    Steurer, W. H.; Kaye, S.

    1975-01-01

    Materials and processes for the testing of aluminum-base fiber and particle composites, and of metal foams under extended-time low-g conditions were investigated. A wetting and dispersion technique was developed, based on the theory that under the absence of a gas phase all solids are wetted by liquids. The process is characterized by a high vacuum environment and a high temperature cycle. Successful wetting and dispersion experiments were carried out with sapphire fibers, whiskers and particles, and with fibers of silicon carbide, pyrolytic graphite and tungsten. The developed process and facilities permit the preparation of a precomposite which serves as sample material for flight experiments. Low-g processing consists then merely in the uniform redistribution of the reinforcements during a melting cycle. For the preparation of metal foams, gas generation by means of a thermally decomposing compound was found most adaptable to flight experiments. For flight experiments, the use of compacted mixture of the component materials limits low-g processing to a simple melt cycle.

  6. Process for forming transparent aerogel insulating arrays

    DOEpatents

    Tewari, P.H.; Hunt, A.J.

    1985-09-04

    An improved supercritical drying process for forming transparent silica aerogel arrays is described. The process is of the type utilizing the steps of hydrolyzing and condensing aloxides to form alcogels. A subsequent step removes the alcohol to form aerogels. The improvement includes the additional step, after alcogels are formed, of substituting a solvent, such as CO/sub 2/, for the alcohol in the alcogels, the solvent having a critical temperature less than the critical temperature of the alcohol. The resulting gels are dried at a supercritical temperature for the selected solvent, such as CO/sub 2/, to thereby provide a transparent aerogel array within a substantially reduced (days-to-hours) time period. The supercritical drying occurs at about 40/sup 0/C instead of at about 270/sup 0/C. The improved process provides increased yields of large scale, structurally sound arrays. The transparent aerogel array, formed in sheets or slabs, as made in accordance with the improved process, can replace the air gap within a double glazed window, for example, to provide a substantial reduction in heat transfer. The thus formed transparent aerogel arrays may also be utilized, for example, in windows of refrigerators and ovens, or in the walls and doors thereof or as the active material in detectors for analyzing high energy elementary particles or cosmic rays.

  7. Process for forming transparent aerogel insulating arrays

    DOEpatents

    Tewari, Param H.; Hunt, Arlon J.

    1986-01-01

    An improved supercritical drying process for forming transparent silica aerogel arrays is described. The process is of the type utilizing the steps of hydrolyzing and condensing aloxides to form alcogels. A subsequent step removes the alcohol to form aerogels. The improvement includes the additional step, after alcogels are formed, of substituting a solvent, such as CO.sub.2, for the alcohol in the alcogels, the solvent having a critical temperature less than the critical temperature of the alcohol. The resulting gels are dried at a supercritical temperature for the selected solvent, such as CO.sub.2, to thereby provide a transparent aerogel array within a substantially reduced (days-to-hours) time period. The supercritical drying occurs at about 40.degree. C. instead of at about 270.degree. C. The improved process provides increased yields of large scale, structurally sound arrays. The transparent aerogel array, formed in sheets or slabs, as made in accordance with the improved process, can replace the air gap within a double glazed window, for example, to provide a substantial reduction in heat transfer. The thus formed transparent aerogel arrays may also be utilized, for example, in windows of refrigerators and ovens, or in the walls and doors thereof or as the active material in detectors for analyzing high energy elementry particles or cosmic rays.

  8. Mechanics of interfacial composite materials.

    PubMed

    Subramaniam, Anand Bala; Abkarian, Manouk; Mahadevan, L; Stone, Howard A

    2006-11-21

    Recent experiments and simulations have demonstrated that particle-covered fluid/fluid interfaces can exist in stable nonspherical shapes as a result of the steric jamming of the interfacially trapped particles. The jamming confers the interface with solidlike properties. We provide an experimental and theoretical characterization of the mechanical properties of these armored objects, with attention given to the two-dimensional granular state of the interface. Small inhomogeneous stresses produce a plastic response, while homogeneous stresses produce a weak elastic response. Shear-driven particle-scale rearrangements explain the basic threshold needed to obtain the near-perfect plastic deformation that is observed. Furthermore, the inhomogeneous stress state of the interface is exhibited experimentally by using surfactants to destabilize the particles on the surface. Since the interfacially trapped particles retain their individual characteristics, armored interfaces can be recognized as a kind of composite material with distinct chemical, structural, and mechanical properties.

  9. Durability of polymer composite materials

    NASA Astrophysics Data System (ADS)

    Liu, Liu

    The purpose of this research is to examine structural durability of advanced composite materials under critical loading conditions, e.g., combined thermal and mechanical loading and shear fatigue loading. A thermal buckling model of a burnt column, either axially restrained or under an axial applied force was developed. It was predicted that for a column exposed to the high heat flux under simultaneous constant compressive load, the response of the column is the same as that of an imperfection column; the instability of the burnt column happens. Based on the simplified theoretical prediction, the post-fire compressive behavior of fiberglass reinforced vinyl-ester composite columns, which have been exposed to high heat flux for a certain time was investigated experimentally, the post-fire compressive strength, modulus and failure mode were determined. The integrity of the same column under constant compressive mechanical loading combined with heat flux exposure was examined using a specially designed mechanical loading fixture that mounted directly below a cone calorimeter. All specimens in the experiments exhibited compressive instability. The experimental results show a thermal bending moment exists and has a significant influence on the structural behavior, which verified the thermal buckling model. The trend of response between the deflection of the column and exposure time is similar to that predicted by the model. A new apparatus was developed to study the monotonic shear and cyclic-shear behavior of sandwich structures. Proof-of-concept experiments were performed using PVC foam core polymeric sandwich materials. Shear failure occurred by the extension of cracks parallel to the face-sheet/core interface, the shear modulus degraded with the growth of fatigue damage. Finite element analysis was conducted to determine stress distribution in the proposed specimen geometry used in the new technique. Details for a novel apparatus used for the fatigue testing of thin

  10. Delamination growth in composite materials

    NASA Technical Reports Server (NTRS)

    Gillespie, J. W., Jr.; Carlsson, L. A.; Pipes, R. B.; Rothschilds, R.; Trethewey, B.; Smiley, A.

    1986-01-01

    The Double Cantilever Beam (DCB) and the End Notched Flexure (ENF) specimens are employed to characterize MODE I and MODE II interlaminar fracture resistance of graphite/epoxy (CYCOM 982) and graphite/PEEK (APC2) composites. Sizing of test specimen geometries to achieve crack growth in the linear elastic regime is presented. Data reduction schemes based upon beam theory are derived for the ENF specimen and include the effects of shear deformation and friction between crack surfaces on compliance, C, and strain energy release rate, G sub II. Finite element (FE) analyses of the ENF geometry including the contact problem with friction are presented to assess the accuracy of beam theory expressions for C and G sub II. Virtual crack closure techniques verify that the ENF specimen is a pure Mode II test. Beam theory expressions are shown to be conservative by 20 to 40 percent for typical unidirectional test specimen geometries. A FE parametric study investigating the influence of delamination length and depth, span, thickness and material properties on G sub II is presented. Mode I and II interlaminar fracture test results are presented. Important experimental parameters are isolated, such as precracking techniques, rate effects, and nonlinear load-deflection response. It is found that subcritical crack growth and inelastic materials behavior, responsible for the observed nonlinearities, are highly rate-dependent phenomena with high rates generally leading to linear elastic response.

  11. Novel electrochemical dual-aptamer-based sandwich biosensor using molybdenum disulfide/carbon aerogel composites and Au nanoparticles for signal amplification.

    PubMed

    Fang, Lin-Xia; Huang, Ke-Jing; Liu, Yang

    2015-09-15

    A new electrochemical aptamer biosensor for the platelet-derived growth factor BB (PDGF-BB) detection has been developed based on the signal amplification of MoS2/carbon aerogel composites (MoS2/CA) and sandwich assay. A facile hydrothermal route assisted by L-cysteine was applied to synthesize CA incorporated flower-like MoS2 with the large surface active sites and good conductivity. The electrochemical aptasensor was constructed by sandwiching the PDGF-BB between a glassy carbon electrode modified with thiol-terminated PDGF-BB aptamer-1 (Apt1)/gold nanoparticles (AuNPs)/MoS2/CA and the AuNPs with thiol-terminated PDGF-BB aptamer-2 (Apt2) and 6-ferrocenyl hexanethiol (Fc). Fc-AuNPs-Apt2 acted as tracer and AuNPs/MoS2/CA were utilized as the biosensor platform to immobilize a large amount of capture aptamers, owing to their layered structure and high surface-to-volume ratio. Based on the sandwich format, a dual signal amplification strategy had been successfully developed with a wide linear response in the range of 0.001-10nM and a limit of detection of 0.3 pM. The developed assay demonstrated good selectivity and high sensitivity, indicating potential applications in bioanalysis and biomedicine.

  12. Thin film dielectric composite materials

    DOEpatents

    Jia, Quanxi; Gibbons, Brady J.; Findikoglu, Alp T.; Park, Bae Ho

    2002-01-01

    A dielectric composite material comprising at least two crystal phases of different components with TiO.sub.2 as a first component and a material selected from the group consisting of Ba.sub.1-x Sr.sub.x TiO.sub.3 where x is from 0.3 to 0.7, Pb.sub.1-x Ca.sub.x TiO.sub.3 where x is from 0.4 to 0.7, Sr.sub.1-x Pb.sub.x TiO.sub.3 where x is from 0.2 to 0.4, Ba.sub.1-x Cd.sub.x TiO.sub.3 where x is from 0.02 to 0.1, BaTi.sub.1-x Zr.sub.x O.sub.3 where x is from 0.2 to 0.3, BaTi.sub.1-x Sn.sub.x O.sub.3 where x is from 0.15 to 0.3, BaTi.sub.1-x Hf.sub.x O.sub.3 where x is from 0.24 to 0.3, Pb.sub.1-1.3x La.sub.x TiO.sub.3+0.2x where x is from 0.23 to 0.3, (BaTiO.sub.3).sub.x (PbFeo.sub.0.5 Nb.sub.0.5 O.sub.3).sub.1-x where x is from 0.75 to 0.9, (PbTiO.sub.3).sub.- (PbCo.sub.0.5 W.sub.0.5 O.sub.3).sub.1-x where x is from 0.1 to 0.45, (PbTiO.sub.3).sub.x (PbMg.sub.0.5 W.sub.0.5 O.sub.3).sub.1-x where x is from 0.2 to 0.4, and (PbTiO.sub.3).sub.x (PbFe.sub.0.5 Ta.sub.0.5 O.sub.3).sub.1-x where x is from 0 to 0.2, as the second component is described. The dielectric composite material can be formed as a thin film upon suitable substrates.

  13. Method of casting aerogels

    DOEpatents

    Poco, John F.

    1993-01-01

    The invention describes a method for making monolithic castings of transparent silica aerogel with densities in the range from 0.001 g/cm.sup.3 to 0.6 g/cm.sup.3. Various shapes of aerogels are cast in flexible polymer molds which facilitate removal and eliminate irregular surfaces. Mold dimensions are preselected to account for shrinkage of alcogel which occurs during the drying step of supercritical extraction of solvent.

  14. Composite materials for space structures

    NASA Technical Reports Server (NTRS)

    Tenney, D. R.; Sykes, G. F.; Bowles, D. E.

    1985-01-01

    The use of advanced composites for space structures is reviewed. Barriers likely to limit further applications of composites are discussed and highlights of research to improve composites are presented. Developments in composites technology which could impact spacecraft systems are reviewed to identify technology needs and opportunities.

  15. Polyolefin composites containing a phase change material

    DOEpatents

    Salyer, Ival O.

    1991-01-01

    A composite useful in thermal energy storage, said composite being formed of a polyolefin matrix having a phase change material such as a crystalline alkyl hydrocarbon incorporated therein, said polyolefin being thermally form stable; the composite is useful in forming pellets, sheets or fibers having thermal energy storage characteristics; methods for forming the composite are also disclosed.

  16. In Vivo Ultrasonic Detection of Polyurea Crosslinked Silica Aerogel Implants

    PubMed Central

    Sabri, Firouzeh; Sebelik, Merry E.; Meacham, Ryan; Boughter, John D.; Challis, Mitchell J.; Leventis, Nicholas

    2013-01-01

    Background Polyurea crosslinked silica aerogels are highly porous, lightweight, and mechanically strong materials with great potential for in vivo applications. Recent in vivo and in vitro studies have demonstrated the biocompatibility of this type of aerogel. The highly porous nature of aerogels allows for exceptional thermal, electric, and acoustic insulating capabilities that can be taken advantage of for non-invasive external imaging techniques. Sound-based detection of implants is a low cost, non-invasive, portable, and rapid technique that is routinely used and readily available in major clinics and hospitals. Methodology In this study the first in vivo ultrasound response of polyurea crosslinked silica aerogel implants was investigated by means of a GE Medical Systems LogiQe diagnostic ultrasound machine with a linear array probe. Aerogel samples were inserted subcutaneously and sub-muscularly in a) fresh animal model and b) cadaveric human model for analysis. For comparison, samples of polydimethylsiloxane (PDMS) were also imaged under similar conditions as the aerogel samples. Conclusion/significance Polyurea crosslinked silica aerogel (X-Si aerogel) implants were easily identified when inserted in either of the regions in both fresh animal model and cadaveric model. The implant dimensions inferred from the images matched the actual size of the implants and no apparent damage was sustained by the X-Si aerogel implants as a result of the ultrasonic imaging process. The aerogel implants demonstrated hyperechoic behavior and significant posterior shadowing. Results obtained were compared with images acquired from the PDMS implants inserted at the same location. PMID:23799093

  17. Nonlinear Dynamic Properties of Layered Composite Materials

    SciTech Connect

    Andrianov, Igor V.; Topol, Heiko; Weichert, Dieter; Danishevs'kyy, Vladyslav V.

    2010-09-30

    We present an application of the asymptotic homogenization method to study wave propagation in a one-dimensional composite material consisting of a matrix material and coated inclusions. Physical nonlinearity is taken into account by considering the composite's components as a Murnaghan material, structural nonlinearity is caused by the bonding condition between the components.

  18. Polysaccharide-based aerogel microspheres for oral drug delivery.

    PubMed

    García-González, C A; Jin, M; Gerth, J; Alvarez-Lorenzo, C; Smirnova, I

    2015-03-06

    Polysaccharide-based aerogels in the form of microspheres were investigated as carriers of poorly water soluble drugs for oral administration. These bio-based carriers may combine the biocompatibility of polysaccharides and the enhanced drug loading capacity of dry aerogels. Aerogel microspheres from starch, pectin and alginate were loaded with ketoprofen (anti-inflammatory drug) and benzoic acid (used in the management of urea cycle disorders) via supercritical CO2-assisted adsorption. Amount of drug loaded depended on the aerogel matrix structure and composition and reached values up to 1.0×10(-3) and 1.7×10(-3) g/m(2) for ketoprofen and benzoic acid in starch microspheres. After impregnation, drugs were in the amorphous state in the aerogel microspheres. Release behavior was evaluated in different pH media (pH 1.2 and 6.8). Controlled drug release from pectin and alginate aerogel microspheres fitted Gallagher-Corrigan release model (R(2)>0.99 in both cases), with different relative contribution of erosion and diffusion mechanisms depending on the matrix composition. Release from starch aerogel microspheres was driven by dissolution, fitting the first-order kinetics due to the rigid starch aerogel structure, and showed different release rate constant (k1) depending on the drug (0.075 and 0.160 min(-1) for ketoprofen and benzoic acid, respectively). Overall, the results point out the possibilities of tuning drug loading and release by carefully choosing the polysaccharide used to prepare the aerogels.

  19. Manufacturing complex silica aerogel target components

    SciTech Connect

    Defriend Obrey, Kimberly Ann; Day, Robert D; Espinoza, Brent F; Hatch, Doug; Patterson, Brian M; Feng, Shihai

    2008-01-01

    Aerogel is a material used in numerous components in High Energy Density Physics targets. In the past these components were molded into the proper shapes. Artifacts left in the parts from the molding process, such as contour irregularities from shrinkage and density gradients caused by the skin, have caused LANL to pursue machining as a way to make the components.

  20. Durability of Composite Materials and Structures

    DTIC Science & Technology

    2009-11-02

    Michigan State University Composite Materials and Structures Center 2100 Engineering Building , East Lansing, MI 48824-1226 6.1 Objectives The...DATES COVERED (From - To) February 7, 2005 - January 31. 2009 4. TITLE AND SUBTITLE DURABILITY OF COMPOSITE MATERIALS AND STRUCTURES 5a...Manager: Dr. Yapa D.S. Rajapakse Office of Naval Research 875 N. Randolph Street Arlington, VA 22203-1995 DURABILITY OF COMPOSITE MATERIALS AND

  1. Method for machining holes in composite materials

    NASA Technical Reports Server (NTRS)

    Daniels, Julia G. (Inventor); Ledbetter, Frank E., III (Inventor); Clemons, Johnny M. (Inventor); Penn, Benjamin G. (Inventor); White, William T. (Inventor)

    1987-01-01

    A method for boring well defined holes in a composite material such as graphite/epoxy is discussed. A slurry of silicon carbide powder and water is projected onto a work area of the composite material in which a hole is to be bored with a conventional drill bit. The silicon carbide powder and water slurry allow the drill bit, while experiencing only normal wear, to bore smooth, cylindrical holes in the composite material.

  2. Hypervelocity Capture of Meteoritic Particles in Nonsilica Aerogels

    SciTech Connect

    S Jones; G Flynn

    2011-12-31

    The Stardust mission captured particles from the comet 81P/Wild 2 in gradient density silica aerogel and returned the collected samples to earth in 2006. The analyses of these particles have revealed several new insights into the formation of our solar system. However, since the aerogel used as the capture material was silica, the elemental analyses of the silica-rich particles were made more complicated in certain ways due to the mixing of the silicon of the particles and that of the aerogel. By using a nonsilica aerogel, future elemental analyses of silica-rich particles captured in aerogel could be made more straightforward. Resorcinol/formaldehyde (RF), alumina, and zirconia aerogels were impact tested with meteoritic fragments and the captured fragments were mapped with synchrotron-based X-ray microprobe (XRM) and the particles were analyzed with X-ray fluorescence (XRF). The resorcinol/formaldehyde aerogel proved to be the best capture material, in that it could be keystoned and XRF could be used to locate and analyze particles that were less than 10 {micro}m.

  3. Aerogel Insulation Applications for Liquid Hydrogen Launch Vehicle Tanks

    NASA Technical Reports Server (NTRS)

    Fesmire, J. E.; Sass, J.

    2007-01-01

    Aerogel based insulation systems for ambient pressure environments were developed for liquid hydrogen (LH2) tank applications. Solutions to thermal insulation problems were demonstrated for the Space Shuttle External Tank (ET) through extensive testing at the Cryogenics Test Laboratory. Demonstration testing was performed using a 1/10th scale ET LH2 intertank unit and liquid helium as the coolant to provide the 20 K cold boundary temperature. Cryopumping tests in the range of 20K were performed using both constant mass and constant pressure methods. Long-duration tests (up to 10 hours) showed that the nitrogen mass taken up inside the intertank is reduced by a factor of nearly three for the aerogel insulated case as compared to the un-insulated (bare metal flight configuration) case. Test results including thermal stabilization, heat transfer effectiveness, and cryopumping confirm that the aerogel system eliminates free liquid nitrogen within the intertank. Physisorption (or adsorption) of liquid nitrogen within the fine pore structure of aerogel materials was also investigated. Results of a mass uptake method show that the sorption ratio (liquid nitrogen to aerogel beads) is about 62 percent by volume. A novel liquid nitrogen production method of testing the liquid nitrogen physical adsorption capacity of aerogel beads was also performed to more closely approximate the actual launch vehicle cooldown and thermal stabilization effects within the aerogel material. The extraordinary insulating effectiveness of the aerogel material shows that cryopumping is not an open-cell mass transport issue but is strictly driven by thermal communication between warm and cold surfaces. The new aerogel insulation technology is useful to solve heat transfer problem areas and to augment existing thermal protection systems on launch vehicles. Examples are given and potential benefits for producing launch systems that are more reliable, robust, reusable, and efficient are outlined.

  4. Process for producing dispersed particulate composite materials

    DOEpatents

    Henager, Jr., Charles H.; Hirth, John P.

    1995-01-01

    This invention is directed to a process for forming noninterwoven dispersed particulate composite products. In one case a composite multi-layer film product comprises a substantially noninterwoven multi-layer film having a plurality of discrete layers. This noninterwoven film comprises at least one discrete layer of a first material and at least one discrete layer of a second material. In another case the first and second materials are blended together with each other. In either case, the first material comprises a metalloid and the second material a metal compound. At least one component of a first material in one discrete layer undergoes a solid state displacement reaction with at least one component of a second material thereby producing the requisite noninterwoven composite film product. Preferably, the first material comprises silicon, the second material comprises Mo.sub.2 C, the third material comprises SiC and the fourth material comprises MoSi.sub.2.

  5. Composite materials formed with anchored nanostructures

    DOEpatents

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2015-03-10

    A method of forming nano-structure composite materials that have a binder material and a nanostructure fiber material is described. A precursor material may be formed using a mixture of at least one metal powder and anchored nanostructure materials. The metal powder mixture may be (a) Ni powder and (b) NiAl powder. The anchored nanostructure materials may comprise (i) NiAl powder as a support material and (ii) carbon nanotubes attached to nanoparticles adjacent to a surface of the support material. The process of forming nano-structure composite materials typically involves sintering the mixture under vacuum in a die. When Ni and NiAl are used in the metal powder mixture Ni.sub.3Al may form as the binder material after sintering. The mixture is sintered until it consolidates to form the nano-structure composite material.

  6. NASA technology utilization survey on composite materials

    NASA Technical Reports Server (NTRS)

    Leeds, M. A.; Schwartz, S.; Holm, G. J.; Krainess, A. M.; Wykes, D. M.; Delzell, M. T.; Veazie, W. H., Jr.

    1972-01-01

    NASA and NASA-funded contractor contributions to the field of composite materials are surveyed. Existing and potential non-aerospace applications of the newer composite materials are emphasized. Economic factors for selection of a composite for a particular application are weight savings, performance (high strength, high elastic modulus, low coefficient of expansion, heat resistance, corrosion resistance,), longer service life, and reduced maintenance. Applications for composites in agriculture, chemical and petrochemical industries, construction, consumer goods, machinery, power generation and distribution, transportation, biomedicine, and safety are presented. With the continuing trend toward further cost reductions, composites warrant consideration in a wide range of non-aerospace applications. Composite materials discussed include filamentary reinforced materials, laminates, multiphase alloys, solid multiphase lubricants, and multiphase ceramics. New processes developed to aid in fabrication of composites are given.

  7. Composite materials for battery applications

    DOEpatents

    Amine, Khalil; Yang, Junbing; Abouimrane, Ali; Ren, Jianguo

    2017-03-14

    A process for producing nanocomposite materials for use in batteries includes electroactive materials are incorporated within a nanosheet host material. The process may include treatment at high temperatures and doping to obtain desirable properties.

  8. Composite structural materials. [fiber reinforced composites for aircraft structures

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberly, S. E.

    1981-01-01

    Physical properties of fiber reinforced composites; structural concepts and analysis; manufacturing; reliability; and life prediction are subjects of research conducted to determine the long term integrity of composite aircraft structures under conditions pertinent to service use. Progress is reported in (1) characterizing homogeneity in composite materials; (2) developing methods for analyzing composite materials; (3) studying fatigue in composite materials; (4) determining the temperature and moisture effects on the mechanical properties of laminates; (5) numerically analyzing moisture effects; (6) numerically analyzing the micromechanics of composite fracture; (7) constructing the 727 elevator attachment rib; (8) developing the L-1011 engine drag strut (CAPCOMP 2 program); (9) analyzing mechanical joints in composites; (10) developing computer software; and (11) processing science and technology, with emphasis on the sailplane project.

  9. Synthesis and properties of Chitosan-silica hybrid aerogels

    SciTech Connect

    Ayers, Michael R.; Hunt, Arlon J.

    2001-06-01

    Chitosan, a polymer that is soluble in dilute aqueous acid, is derived from chitin, a natural polyglucosamide. Aquagels where the solid phase consists of both chitosan and silica can be easily prepared by using an acidic solution of chitosan to catalyze the hydrolysis and condensation of tetraethylorthosilicate. Gels with chitosan/TEOS mass ratios of 0.1-1.1 have been prepared by this method. Standard drying processes using CO{sub 2} give the corresponding aerogels. The amount of chitosan in the gel plays a role in the shrinkage of the aerogel during drying. Gels with the lowest chitosan/silica ratios show the most linear shrinkage, up to 24%, while those with the highest ratios show only a 7% linear shrinkage. Pyrolysis at 700 C under nitrogen produces a darkened aerogel due to the thermal decomposition of the chitosan, however, the aerogel retains its monolithic form. The pyrolyzed aerogels absorb slightly more infrared radiation in the 2-5 {micro}m region than the original aerogels. B.E.T. surface areas of these aerogels range from 470-750 m{sup 2}/g. Biocompatibility screening of this material shows a very high value for hemolysis, but a low value for cytotoxicity.

  10. Clues for biomimetics from natural composite materials

    PubMed Central

    Lapidot, Shaul; Meirovitch, Sigal; Sharon, Sigal; Heyman, Arnon; Kaplan, David L; Shoseyov, Oded

    2013-01-01

    Bio-inspired material systems are derived from different living organisms such as plants, arthropods, mammals and marine organisms. These biomaterial systems from nature are always present in the form of composites, with molecular-scale interactions optimized to direct functional features. With interest in replacing synthetic materials with natural materials due to biocompatibility, sustainability and green chemistry issues, it is important to understand the molecular structure and chemistry of the raw component materials to also learn from their natural engineering, interfaces and interactions leading to durable and highly functional material architectures. This review will focus on applications of biomaterials in single material forms, as well as biomimetic composites inspired by natural organizational features. Examples of different natural composite systems will be described, followed by implementation of the principles underlying their composite organization into artificial bio-inspired systems for materials with new functional features for future medicine. PMID:22994958

  11. Aerogels Insulate Against Extreme Temperatures

    NASA Technical Reports Server (NTRS)

    2010-01-01

    In 1992, NASA started to pursue the development of aerogel for cryogenic insulation. Kennedy Space Center awarded Small Business Innovation Research (SBIR) contracts to Aspen Systems Inc., of Marlborough, Massachusetts, that resulted in a new manufacturing process and a new flexible, durable, easy-to-use form of aerogel. Aspen Systems formed Aspen Aerogels Inc., in Northborough, Massachusetts, to market the product, and by 2009, the company had become the leading provider of aerogel in the United States, producing nearly 20 million square feet per year. With an array of commercial applications, the NASA-derived aerogel has most recently been applied to protect and insulate people s hands and feet.

  12. Composite, nanostructured, super-hydrophobic material

    DOEpatents

    D'Urso, Brian R.; Simpson, John T.

    2007-08-21

    A hydrophobic disordered composite material having a protrusive surface feature includes a recessive phase and a protrusive phase, the recessive phase having a higher susceptibility to a preselected etchant than the protrusive phase, the composite material having an etched surface wherein the protrusive phase protrudes from the surface to form a protrusive surface feature, the protrusive feature being hydrophobic.

  13. Composite materials and method of making

    DOEpatents

    Simmons, Kevin L [Kennewick, WA; Wood, Geoffrey M [North Saanich, CA

    2011-05-17

    A method for forming improved composite materials using a thermosetting polyester urethane hybrid resin, a closed cavity mold having an internal heat transfer mechanism used in this method, and the composite materials formed by this method having a hybrid of a carbon fiber layer and a fiberglass layer.

  14. Studies of mobile dust in scrape-off layer plasmas using silica aerogel collectors

    NASA Astrophysics Data System (ADS)

    Bergsåker, H.; Ratynskaia, S.; Litnovsky, A.; Ogata, D.; Sahle, W.

    2011-08-01

    Dust capture with ultralow density silica aerogel collectors is a new method, which allows time resolved in situ capture of dust particles in the scrape-off layers of fusion devices, without substantially damaging the particles. Particle composition and morphology, particle flux densities and particle velocity distributions can be determined through appropriate analysis of the aerogel surfaces after exposure. The method has been applied in comparative studies of intrinsic dust in the TEXTOR tokamak and in the Extrap T2R reversed field pinch. The analysis methods have been mainly optical microscopy and SEM. The method is shown to be applicable in both devices and the results are tentatively compared between the two plasma devices, which are very different in terms of edge plasma conditions, time scale, geometry and wall materials.

  15. Aerogel Insulation Systems for Space Launch Applications

    NASA Technical Reports Server (NTRS)

    Fesmire, James E.

    2005-01-01

    New developments in materials science in the areas of solution gelation processes and nanotechnology have led to the recent commercial production of aerogels. Concurrent with these advancements has been the development of new approaches to cryogenic thermal insulation systems. For example, thermal and physical characterizations of aerogel beads under cryogenic-vacuum conditions have been performed at the Cryogenics Test Laboratory of the NASA Kennedy Space Center. Aerogel-based insulation system demonstrations have also been conducted to improve performance for space launch applications. Subscale cryopumping experiments show the thermal insulating ability of these fully breathable nanoporous materials. For a properly executed thermal insulation system, these breathable aerogel systems are shown to not cryopump beyond the initial cooldown and thermal stabilization phase. New applications are being developed to augment the thermal protection systems of space launch vehicles, including the Space Shuttle External Tank. These applications include a cold-boundary temperature of 90 K with an ambient air environment in which both weather and flight aerodynamics are important considerations. Another application is a nitrogen-purged environment with a cold-boundary temperature of 20 K where both initial cooldown and launch ascent profiles must be considered. Experimental results and considerations for these flight system applications are discussed.

  16. Mechanically Robust Polymer-Graphene Aerogels

    NASA Astrophysics Data System (ADS)

    Ha, Heonjoo; Shanmuganathan, Kadhiravan; Ellison, Christopher

    2015-03-01

    Graphene has been intensely studied for the past several years due to its many attractive properties. Graphene oxide (GO) aerogels are particularly interesting due to their light weight and excellent performance in various applications, such as environmental remediation, super-hydrophobic and super-oleophilic materials, energy storage, etc. However, GO aerogels are generally weak and delicate which complicates their handling and potentially limits their application outside the research lab. The focus of this work is to synthesize mechanically stable aerogels that are robust and easy to handle without substantially sacrificing their low density. To overcome this challenge, we found that by intermixing a small amount of readily available and thermally crosslinkable polymer can enhance the mechanical properties without disrupting other characteristic intrinsic properties of the aerogel itself. This method is a simple straight-forward procedure that does not include any tedious chemical reactions or harsh chemicals. Furthermore, we will demonstrate the performance of these materials as a super-absorbent and pressure sensor.

  17. Aerogel insulation systems for space launch applications

    NASA Astrophysics Data System (ADS)

    Fesmire, J. E.

    2006-02-01

    New developments in materials science in the areas of solution gelation processes and nanotechnology have led to the recent commercial production of aerogels. Concurrent with these advancements has been the development of new approaches to cryogenic thermal insulation systems. For example, thermal and physical characterizations of aerogel beads under cryogenic-vacuum conditions have been performed at the Cryogenics Test Laboratory of the NASA Kennedy Space Center. Aerogel-based insulation system demonstrations have also been conducted to improve performance for space launch applications. Subscale cryopumping experiments show the thermal insulating ability of these fully breathable nanoporous materials. For a properly executed thermal insulation system, these breathable aerogel systems are shown to not cryopump beyond the initial cooldown and thermal stabilization phase. New applications are being developed to augment the thermal protection systems of space launch vehicles, including the Space Shuttle External Tank. These applications include a cold-boundary temperature of 90 K with an ambient air environment in which both weather and flight aerodynamics are important considerations. Another application is a nitrogen-purged environment with a cold-boundary temperature of 20 K where both initial cooldown and launch ascent profiles must be considered. Experimental results and considerations for these flight system applications are discussed.

  18. Composite Dielectric Materials for Electrical Switching

    SciTech Connect

    Modine, F.A.

    1999-04-25

    Composites that consist of a dielectric host containing a particulate conductor as a second phase are of interest for electrical switching applications. Such composites are "smart" materials that can function as either voltage or current limiters, and the difference in fimction depends largely upon whether the dielectric is filled to below or above the percolation threshold. It also is possible to combine current and voltage limiting in a single composite to make a "super-smart" material.

  19. Robust superhydrophobic bridged silsesquioxane aerogels with tunable performances and their applications.

    PubMed

    Wang, Zhen; Wang, Dong; Qian, Zhenchao; Guo, Jing; Dong, Haixia; Zhao, Ning; Xu, Jian

    2015-01-28

    Aerogels are a family of highly porous materials whose applications are commonly restricted by poor mechanical properties. Herein, thiol-ene chemistry is employed to synthesize a series of novel bridged silsesquioxane (BSQ) precursors with various alkoxy groups. On the basis of the different hydrolyzing rates of the methoxy and ethoxy groups, robust superhydrophobic BSQ aerogels with tailorable morphology and mechanical performances have been prepared. The flexible thioether bridge contributes to the robustness of the as-formed aerogels, and the property can be tuned on the basis of the distinct combinations of alkoxy groups with the density of the aerogels almost unchanged. To the best of our knowledge, the lowest density among the ambient pressure dried aerogels is obtained. Further, potential application of the aerogels for oil/water separation and acoustic materials has also been presented.

  20. Composites and blends from biobased materials

    SciTech Connect

    Kelley, S.S.

    1995-05-01

    The program is focused on the development of composites and blends from biobased materials to use as membranes, high value plastics, and lightweight composites. Biobased materials include: cellulose derivative microporous materials, cellulose derivative copolymers, and cellulose derivative blends. This year`s research focused on developing an improved understanding of the molecular features that cellulose based materials with improved properties for gas separation applications. Novel cellulose ester membrane composites have been developed and are being evaluated under a collaborative research agreement with Dow Chemicals Company.

  1. Composite materials for biomedical applications: a review.

    PubMed

    Salernitano, E; Migliaresi, C

    2003-01-01

    The word "composite" refers to the combination, on a macroscopic scale, of two or more materials, different for composition, morphology and general physical properties. In many cases, and depending on the constituent properties, composites can be designed with a view to produce materials with properties tailored to fulfill specific chemical, physical or mechanical requirements. Therefore over the past 40 years the use of composites has progressively increased, and today composite materials have many different applications, i.e., aeronautic, automotive, naval, and so on. Consequently many composite biomaterials have recently been studied and tested for medical application. Some of them are currently commercialized for their advantages over traditional materials. Most human tissues such as bones, tendons, skin, ligaments, teeth, etc., are composites, made up of single constituents whose amount, distribution, morphology and properties determine the final behavior of the resulting tissue or organ. Man-made composites can, to some extent, be used to make prostheses able to mimic these biological tissues, to match their mechanical behavior and to restore the mechanical functions of the damaged tissue. Different types of composites that are already in use or are being investigated for various biomedical applications are presented in this paper. Specific advantages and critical issues of using composite biomaterials are also described (Journal of Applied Bio-materials & Biomechanics 2003; 1: 3-18).

  2. Flame-retardant composite materials

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A.

    1991-01-01

    The properties of eight different graphite composite panels fabricated using four different resin matrices and two types of graphite reinforcement are described. The resin matrices included: VPSP/BMI, a blend of vinylpolystyryl pyridine and bismaleimide; BMI, a bismaleimide; and phenolic and PSP, a polystyryl pyridine. The graphite fiber used was AS-4 in the form of either tape or fabric. The properties of these composites were compared with epoxy composites. It was determined that VPSP/BMI with the graphite tape was the optimum design giving the lowest heat release rate.

  3. Polyimide Aerogels with Three-Dimensional Cross-Linked Structure

    NASA Technical Reports Server (NTRS)

    Panek, John

    2010-01-01

    Polyimide aerogels with three-dimensional cross-linked structure are made using linear oligomeric segments of polyimide, and linked with one of the following into a 3D structure: trifunctional aliphatic or aromatic amines, latent reactive end caps such as nadic anhydride or phenylethynylphenyl amine, and silica or silsesquioxane cage structures decorated with amine. Drying the gels supercritically maintains the solid structure of the gel, creating a polyimide aerogel with improved mechanical properties over linear polyimide aerogels. Lightweight, low-density structures are desired for acoustic and thermal insulation for aerospace structures, habitats, astronaut equipment, and aeronautic applications. Aerogels are a unique material for providing such properties because of their extremely low density and small pore sizes. However, plain silica aerogels are brittle. Reinforcing the aerogel structure with a polymer (X-Aerogel) provides vast improvements in strength while maintaining low density and pore structure. However, degradation of polymers used in cross-linking tends to limit use temperatures to below 150 C. Organic aerogels made from linear polyimide have been demonstrated, but gels shrink substantially during supercritical fluid extraction and may have lower use temperature due to lower glass transition temperatures. The purpose of this innovation is to raise the glass transition temperature of all organic polyimide aerogel by use of tri-, tetra-, or poly-functional units in the structure to create a 3D covalently bonded network. Such cross-linked polyimides typically have higher glass transition temperatures in excess of 300 400 C. In addition, the reinforcement provided by a 3D network should improve mechanical stability, and prevent shrinkage on supercritical fluid extraction. The use of tri-functional aromatic or aliphatic amine groups in the polyimide backbone will provide such a 3D structure.

  4. New textile composite materials development, production, application

    NASA Technical Reports Server (NTRS)

    Mikhailov, Petr Y.

    1993-01-01

    New textile composite materials development, production, and application are discussed. Topics covered include: super-high-strength, super-high-modulus fibers, filaments, and materials manufactured on their basis; heat-resistant and nonflammable fibers, filaments, and textile fabrics; fibers and textile fabrics based on fluorocarbon poylmers; antifriction textile fabrics based on polyfen filaments; development of new types of textile combines and composite materials; and carbon filament-based fabrics.

  5. Polymer Matrix Composite Material Oxygen Compatibility

    NASA Technical Reports Server (NTRS)

    Owens, Tom

    2001-01-01

    Carbon fiber/polymer matrix composite materials look promising as a material to construct liquid oxygen (LOX) tanks. Based on mechanical impact tests the risk will be greater than aluminum, however, the risk can probably be managed to an acceptable level. Proper tank design and operation can minimize risk. A risk assessment (hazard analysis) will be used to determine the overall acceptability for using polymer matrix composite materials.

  6. Biocompatibility of surfactant-templated polyurea-nanoencapsulated macroporous silica aerogels with plasma platelets and endothelial cells.

    PubMed

    Yin, Wei; Venkitachalam, Subramaniam M; Jarrett, Ellen; Staggs, Sarah; Leventis, Nicholas; Lu, Hongbing; Rubenstein, David A

    2010-03-15

    The recently synthesized polyurea-nanoencapsulated surfactant-templated aerogels (X-aerogels) are porous materials with significantly improved mechanical strengths. Surface-wise they resemble polyurethane, a common biocompatible material, but their biocompatibility has never been investigated. As lightweight and strong materials, if X-aerogels also have acceptable biocompatibility, they may be used in many implantable devices. The goal of this study was to investigate their biocompatibility toward platelets, blood plasma, and vascular endothelial cells, in terms of cell activation and inflammatory responses. Platelets were incubated with X-aerogel and platelet activation was measured through CD62P and phosphatidylserine expression. Platelet aggregation was also measured. Contact with X-aerogel did not induce platelet activation or impair aggregation. To determine X-aerogel-induced inflammation, plasma anaphylatoxin C3a level was measured after incubation with X-aerogel. Results showed that X-aerogel induced no changes in plasma C3a levels. SEM and SDS-PAGE were used to examine cellular/protein deposition on X-aerogel samples after plasma incubation. No structural change or organic deposition was detected. Furthermore, X-aerogel samples did not induce any significant changes in vascular endothelial cell culture parameters after 5 days of incubation. These observations suggest that X-aerogels have a suitable biocompatibility toward platelets, plasma, and vascular endothelial cells, and they have potential for use in blood implantable devices.

  7. Composite Materials for Low-Temperature Applications

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Composite materials with improved thermal conductivity and good mechanical strength properties should allow for the design and construction of more thermally efficient components (such as pipes and valves) for use in fluid-processing systems. These materials should have wide application in any number of systems, including ground support equipment (GSE), lunar systems, and flight hardware that need reduced heat transfer. Researchers from the Polymer Science and Technology Laboratory and the Cryogenics Laboratory at Kennedy Space Center were able to develop a new series of composite materials that can meet NASA's needs for lightweight materials/composites for use in fluid systems and also expand the plastic-additive markets. With respect to thermal conductivity and physical properties, these materials are excellent alternatives to prior composite materials and can be used in the aerospace, automotive, military, electronics, food-packaging, and textile markets. One specific application of the polymeric composition is for use in tanks, pipes, valves, structural supports, and components for hot or cold fluid-processing systems where heat flow through materials is a problem to be avoided. These materials can also substitute for metals in cryogenic and other low-temperature applications. These organic/inorganic polymeric composite materials were invented with significant reduction in heat transfer properties. Decreases of 20 to 50 percent in thermal conductivity versus that of the unmodified polymer matrix were measured. These novel composite materials also maintain mechanical properties of the unmodified polymer matrix. These composite materials consist of an inorganic additive combined with a thermoplastic polymer material. The intrinsic, low thermal conductivity of the additive is imparted into the thermoplastic, resulting in a significant reduction in heat transfer over that of the base polymer itself, yet maintaining most of the polymer's original properties. Normal

  8. Growth and Stability of Nanocrystalline Metal Domains within Nanoporous Carbon Nanotube Aerogels

    NASA Astrophysics Data System (ADS)

    Jeong, Yeon Joo

    This thesis focuses on how to grow and stabilize nanocrystalline metal domains within nanoporous carbon nanotube aerogels. It describes the growth of isolated metal nanocrystals within carbon nanotube aerogel networks and the growth of nanocrystalline metals within 2D and 3D carbon nanotube aerogel networks. It also discusses electrochemical stability for generating electricity from fuel cells and thermal stability for reinforcing structural materials. (Abstract shortened by UMI.).

  9. Materials research at Stanford University. [composite materials, crystal structure, acoustics

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Research activity related to the science of materials is described. The following areas are included: elastic and thermal properties of composite materials, acoustic waves and devices, amorphous materials, crystal structure, synthesis of metal-metal bonds, interactions of solids with solutions, electrochemistry, fatigue damage, superconductivity and molecular physics and phase transition kinetics.

  10. Effects of Microgravity on the Formation of Aerogels

    NASA Technical Reports Server (NTRS)

    Hunt, A. J.; Ayers, M. R.; Sibille, L.; Cronise, R. J.; Noever, D. A.

    1999-01-01

    This paper describes research to investigate fundamental aspects of the effects of microgravity on the formation of the microstructure of metal oxide alcogels and aerogels. We are studying the role of gravity on pore structure and gel uniformity in collaboration with Marshall Space Flight Center (MSFC) on gelling systems under microgravity conditions. While this project was just initiated in May 1998, related research performed earlier is described along with the plans and rationale for the current microgravity investigation to provide background and describe newly developing techniques that should be useful for the current gellation studies. The role of gravity in materials processing must be investigated through the study of well-mastered systems. Sol-gel processed materials are near-perfect candidates to determine the effect of gravity on the formation and growth of random clusters from hierarchies of aggregated units. The processes of hydrolysis, condensation, aggregation and gellation in the formation of alcogels are affected by gravity and therefore provide a rich system to study under microgravity conditions. Supercritical drying of the otherwise unstable wet alcogel preserves the alcogel structure produced during sol-gel processing as aerogel. Supercritically dried aerogel provides for the study of material microstructures without interference from the effects of surface tension, evaporation, and solvent flow. Aerogels are microstructured, low density open-pore solids. They have many unusual properties including: transparency, excellent thermal resistance, high surface area, very low refractive index, a dielectric constant approaching that of air, and extremely low sound velocity. Aerogels are synthesized using sol-gel processing followed by supercritical solvent extraction that leaves the original gel structure virtually intact. These studies will elucidate the effects of microgravity on the homogeneity of the microstructure and porosity of aerogel. The

  11. Combinatorial synthesis of inorganic or composite materials

    DOEpatents

    Goldwasser, Isy; Ross, Debra A.; Schultz, Peter G.; Xiang, Xiao-Dong; Briceno, Gabriel; Sun, Xian-Dong; Wang, Kai-An

    2010-08-03

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials or, alternatively, allowing the components to interact to form at least two different materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, nonbiological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  12. Composite Materials for Maxillofacial Prostheses.

    DTIC Science & Technology

    1980-08-01

    projected composite systems are elastomeric-shelled, liquid-filled * microcapsules . Experiments continued on the interfacial polymerization process with...filled microcapsules . Experiments continued on the interfacial polymerization process, with spherical, sealed, capsules achieved. Needs identified are...consists of liquid-filled, elastomeric-shelled microcapsules held together to form a deformable mass; this is to simulate the semi-liquid cellular structure

  13. Ceramic composites: Enabling aerospace materials

    NASA Technical Reports Server (NTRS)

    Levine, S. R.

    1992-01-01

    Ceramics and ceramic matrix composites (CMC) have the potential for significant impact on the performance of aerospace propulsion and power systems. In this paper, the potential benefits are discussed in broad qualitative terms and are illustrated by some specific application case studies. The key issues in need of resolution for the potential of ceramics to be realized are discussed.

  14. Recent Advances in Research on the Synthetic Fiber Based Silica Aerogel Nanocomposites

    PubMed Central

    Ślosarczyk, Agnieszka

    2017-01-01

    The presented paper contains a brief review on the synthesis and characterization of silica aerogels and its nanocomposites with nanofibers and fibers based on a literature study over the past twenty years and my own research. Particular attention is focused on carbon fiber-based silica aerogel nanocomposites. Silica aerogel is brittle in nature, therefore, it is necessary to improve this drawback, e.g., by polymer modification or fiber additives. Nevertheless, there are very few articles in the literature devoted to the synthesis of silica aerogel/fiber nanocomposites, especially those focusing on carbon fibers and nanofibers. Carbon fibers are very interesting materials, namely due to their special properties: high conductivity, high mechanical properties in relation to very low bulk densities, high thermal stability, and chemical resistance in the silica aerogel matrix, which can help enhance silica aerogel applications in the future. PMID:28336876

  15. Oxygen Compatibility Testing of Composite Materials

    NASA Technical Reports Server (NTRS)

    Engel, Carl D.; Watkins, Casey N.

    2006-01-01

    Composite materials offer significant weight-saving potential for aerospace applications in propellant and oxidizer tanks. This application for oxygen tanks presents the challenge of being oxygen compatible in addition to complying with the other required material characteristics. This effort reports on the testing procedures and data obtained in examining and selecting potential composite materials for oxygen tank usage. Impact testing of composites has shown that most of these materials initiate a combustion event when impacted at 72 ft-lbf in the presence of liquid oxygen, though testing has also shown substantial variability in reaction sensitivities to impact. Data for screening of 14 potential composites using the Bruceton method is given herein and shows that the 50-percent reaction frequencies range from 17 to 67 ft-lbf. The pressure and temperature rises for several composite materials were recorded to compare the energy releases as functions of the combustion reactions with their respective reaction probabilities. The test data presented are primarily for a test pressure of 300 psia in liquid oxygen. The impact screening process is compared with oxygen index and autogenous ignition test data for both the composite and the basic resin. The usefulness of these supplemental tests in helping select the most oxygen compatible materials is explored. The propensity for mechanical impact ignition of the composite compared with the resin alone is also examined. Since an ignition-free composite material at the peak impact energy of 72 ft-lbf has not been identified, composite reactivity must be characterized over the impact energy level and operating pressure ranges to provide data for hazard analyses in selecting the best potential material for liquid tank usage.

  16. Aerogel Fingerprint Media

    SciTech Connect

    Miller, Fred S.; Andresen, Brian D.

    1999-09-21

    A fingerprint medium which is made of an aerogel having a predetermined density. The fingerprint medium may have a midrange density for forming plates or may be crushed forming a powder. The fingerprint medium may further include at least one of a metal and metal oxide to enhance characteristics desirable in a fingerprint medium.

  17. Slow dynamics of nanocomposite polymer aerogels as revealed by X-ray photocorrelation spectroscopy (XPCS)

    SciTech Connect

    Hernández, Rebeca E-mail: aurora.nogales@csic.es; Mijangos, Carmen; Nogales, Aurora E-mail: aurora.nogales@csic.es; Ezquerra, Tiberio A.; Sprung, Michael

    2014-01-14

    We report on a novel slow dynamics of polymer xerogels, aerogels, and nanocomposite aerogels with iron oxide nanoparticles, as revealed by X-ray photon correlation spectroscopy. The polymer aerogel and its nanocomposite aerogels, which are porous in nature, exhibit hyper-diffusive dynamics at room temperature. In contrast, non-porous polymer xerogels exhibit an absence of this peculiar dynamics. This slow dynamical process has been assigned to a relaxation of the characteristic porous structure of these materials and not to the presence of nanoparticles.

  18. Chemical composition of lunar material.

    PubMed

    Maxwell, J A; Abbey, S; Champ, W H

    1970-01-30

    Chemical and emission spectrographic analyses of three Apollo 11 samples, 10017-29, 10020-30, and 10084-132, are given. Major and minor constituents were determined both by conventional rock analysis methods and by a new composite scheme utilizing a lithium fluoborate method for dissolution of the samples and atomic absorption spectroscopy and colorimetry. Trace constituents were determined by optical emission spectroscopy involving a d-c arc, air-jet controlled.

  19. Highly compressible 3D periodic graphene aerogel microlattices

    DOE PAGES

    Zhu, Cheng; Han, T. Yong-Jin; Duoss, Eric B.; ...

    2015-04-22

    Graphene is a two-dimensional material that offers a unique combination of low density, exceptional mechanical properties, large surface area and excellent electrical conductivity. Recent progress has produced bulk 3D assemblies of graphene, such as graphene aerogels, but they possess purely stochastic porous networks, which limit their performance compared with the potential of an engineered architecture. Here we report the fabrication of periodic graphene aerogel microlattices, possessing an engineered architecture via a 3D printing technique known as direct ink writing. The 3D printed graphene aerogels are lightweight, highly conductive and exhibit supercompressibility (up to 90% compressive strain). Moreover, the Young’s modulimore » of the 3D printed graphene aerogels show an order of magnitude improvement over bulk graphene materials with comparable geometric density and possess large surface areas. Ultimately, adapting the 3D printing technique to graphene aerogels realizes the possibility of fabricating a myriad of complex aerogel architectures for a broad range of applications.« less

  20. Modeling silica aerogel optical performance by determining its radiative properties

    NASA Astrophysics Data System (ADS)

    Zhao, Lin; Yang, Sungwoo; Bhatia, Bikram; Strobach, Elise; Wang, Evelyn N.

    2016-02-01

    Silica aerogel has been known as a promising candidate for high performance transparent insulation material (TIM). Optical transparency is a crucial metric for silica aerogels in many solar related applications. Both scattering and absorption can reduce the amount of light transmitted through an aerogel slab. Due to multiple scattering, the transmittance deviates from the Beer-Lambert law (exponential attenuation). To better understand its optical performance, we decoupled and quantified the extinction contributions of absorption and scattering separately by identifying two sets of radiative properties. The radiative properties are deduced from the measured total transmittance and reflectance spectra (from 250 nm to 2500 nm) of synthesized aerogel samples by solving the inverse problem of the 1-D Radiative Transfer Equation (RTE). The obtained radiative properties are found to be independent of the sample geometry and can be considered intrinsic material properties, which originate from the aerogel's microstructure. This finding allows for these properties to be directly compared between different samples. We also demonstrate that by using the obtained radiative properties, we can model the photon transport in aerogels of arbitrary shapes, where an analytical solution is difficult to obtain.

  1. Iron-Doped Carbon Aerogels: Novel Porous Substrates for Direct Growth of Carbon Nanotubes

    DOE R&D Accomplishments Database

    Steiner, S. A.; Baumann, T. F.; Kong, J.; Satcher, J. H.; Dresselhaus, M. S.

    2007-02-20

    We present the synthesis and characterization of Fe-doped carbon aerogels (CAs) and demonstrate the ability to grow carbon nanotubes directly on monoliths of these materials to afford novel carbon aerogel-carbon nanotube composites. Preparation of the Fe-doped CAs begins with the sol-gel polymerization of the potassium salt of 2,4-dihydroxybenzoic acid with formaldehyde, affording K{sup +}-doped gels that can then be converted to Fe{sup 2+}- or Fe{sup 3+}-doped gels through an ion exchange process, dried with supercritical CO{sub 2} and subsequently carbonized under an inert atmosphere. Analysis of the Fe-doped CAs by TEM, XRD and XPS revealed that the doped iron species are reduced during carbonization to form metallic iron and iron carbide nanoparticles. The sizes and chemical composition of the reduced Fe species were related to pyrolysis temperature as well as the type of iron salt used in the ion exchange process. Raman spectroscopy and XRD analysis further reveal that, despite the presence of the Fe species, the CA framework is not significantly graphitized during pyrolysis. The Fe-doped CAs were subsequently placed in a thermal CVD reactor and exposed to a mixture of CH{sub 4} (1000 sccm), H{sub 2} (500 sccm), and C{sub 2}H{sub 4} (20 sccm) at temperatures ranging from 600 to 800 C for 10 minutes, resulting in direct growth of carbon nanotubes on the aerogel monoliths. Carbon nanotubes grown by this method appear to be multiwalled ({approx}25 nm in diameter and up to 4 mm long) and grow through a tip-growth mechanism that pushes catalytic iron particles out of the aerogel framework. The highest yield of CNTs were grown on Fe-doped CAs pyrolyzed at 800 C treated at CVD temperatures of 700 C.

  2. Iron-Doped Carbon Aerogels: Novel Porous Substrates for Direct Growth of Carbon Nanotubes

    SciTech Connect

    Steiner, S A; Baumann, T F; Kong, J; Satcher, J H; Dresselhaus, M S

    2007-02-15

    We present the synthesis and characterization of Fe-doped carbon aerogels (CAs) and demonstrate the ability to grow carbon nanotubes directly on monoliths of these materials to afford novel carbon aerogel-carbon nanotube composites. Preparation of the Fe-doped CAs begins with the sol-gel polymerization of the potassium salt of 2,4-dihydroxybenzoic acid with formaldehyde, affording K{sup +}-doped gels that can then be converted to Fe{sup 2+}- or Fe{sup 3+}-doped gels through an ion exchange process, dried with supercritical CO{sub 2} and subsequently carbonized under an inert atmosphere. Analysis of the Fe-doped CAs by TEM, XRD and XPS revealed that the doped iron species are reduced during carbonization to form metallic iron and iron carbide nanoparticles. The sizes and chemical composition of the reduced Fe species were related to pyrolysis temperature as well as the type of iron salt used in the ion exchange process. Raman spectroscopy and XRD analysis further reveal that, despite the presence of the Fe species, the CA framework is not significantly graphitized during pyrolysis. The Fe-doped CAs were subsequently placed in a thermal CVD reactor and exposed to a mixture of CH{sub 4} (1000 sccm), H{sub 2} (500 sccm), and C{sub 2}H{sub 4} (20 sccm) at temperatures ranging from 600 to 800 C for 10 minutes, resulting in direct growth of carbon nanotubes on the aerogel monoliths. Carbon nanotubes grown by this method appear to be multiwalled ({approx}25 nm in diameter and up to 4 mm long) and grow through a tip-growth mechanism that pushes catalytic iron particles out of the aerogel framework. The highest yield of CNTs were grown on Fe-doped CAs pyrolyzed at 800 C treated at CVD temperatures of 700 C.

  3. High surface area aerogels for energy storage and efficiency

    NASA Astrophysics Data System (ADS)

    Maloney, Ryan Patrick

    ADAI are demonstrated in a third-generation prototypical thermoelectric generator for automotive waste heat recovery. The second chapter then details two different aerogel-based materials for electrochemical energy storage. It begins with lithium titanate aerogel, which takes advantage of the high surface area of the aerogel morphology to display a batt-cap behavior. This should allow the lithium titanate aerogel to perform at higher rates than would normally be expected for the bulk oxide material. Additionally, the flexibility of the sol-gel process is demonstrated through the incorporation of electrically conductive high-surface area exfoliated graphite nanoplatelets in the oxide. The last section describes the characterization of a LiMn2O 4 spinel coated carbon nanofoam in a non-aqueous electrolyte. The short diffusion path, high surface area and intimately wired architecture of the nanofoam allows the oxide to retain its capacity at significantly higher rates when compared with literature values for the bulk oxide. Additionally, the nanometric length scale improves cycle life, and the high surface area dramatically increases the insertion capacity by providing a higher concentration of surface defects. Taken together, it is clear that aerogels are an extremely attractive class of material for applications pertaining to energy and efficiency, and further research in this area will provide valuable solutions for pressing societal needs. (Abstract shortened by UMI.).

  4. Advanced composite materials for precision segmented reflectors

    NASA Technical Reports Server (NTRS)

    Stein, Bland A.; Bowles, David E.

    1988-01-01

    The objective in the NASA Precision Segmented Reflector (PSR) project is to develop new composite material concepts for highly stable and durable reflectors with precision surfaces. The project focuses on alternate material concepts such as the development of new low coefficient of thermal expansion resins as matrices for graphite fiber reinforced composites, quartz fiber reinforced epoxies, and graphite reinforced glass. Low residual stress fabrication methods will be developed. When coupon specimens of these new material concepts have demonstrated the required surface accuracies and resistance to thermal distortion and microcracking, reflector panels will be fabricated and tested in simulated space environments. An important part of the program is the analytical modeling of environmental stability of these new composite materials concepts through constitutive equation development, modeling of microdamage in the composite matrix, and prediction of long term stability (including viscoelasticity). These analyses include both closed form and finite element solutions at the micro and macro levels.

  5. Composite Material Application to Liquid Rocket Engines

    NASA Technical Reports Server (NTRS)

    Judd, D. C.

    1982-01-01

    The substitution of reinforced plastic composite (RPC) materials for metal was studied. The major objectives were to: (1) determine the extent to which composite materials can be beneficially used in liquid rocket engines; (2) identify additional technology requirements; and (3) determine those areas which have the greatest potential for return. Weight savings, fabrication costs, performance, life, and maintainability factors were considered. Two baseline designs, representative of Earth to orbit and orbit to orbit engine systems, were selected. Weight savings are found to be possible for selected components with the substitution of materials for metal. Various technology needs are identified before RPC material can be used in rocket engine applications.

  6. Cumulative Damage Model for Advanced Composite Materials.

    DTIC Science & Technology

    1982-07-01

    ultimately used an exponential in the present example for added simplicity) and we norma - lize the function so that it becomes the modifier that determines...Testing and Design (Second Conference), ASTM STP 497, ASTM (1972) pp. 170-188. 5. Halpin, J. C., et al., "Characterization of Composites for the...Graphite Epoxy Composites," Proc. Symposium on Composite Materials: Testing and Design, ASTM , (Ma’rch 20, 1978) New Orleans, LA. 18. Hashin, Z. and Rotem

  7. Improved Materials for Composite and Adhesive Joints.

    DTIC Science & Technology

    1984-07-01

    Mechanical Testing 1 b. Composites Fabricated 2 2. RELATIONSHIP BETWEEN NEAT RESIN AND IN SITU COMPOSITE PROPERTIES 5 3. MATERIAL DEVELOPMENT 6 a...inspection revealed large variations in thickness across the width of the tape. This problem is serious in that the resin has a very high melt viscosity...and thus unfor- giving in correcting variations during composite processing. There is little or no resin loss during processing. The PEEK resin in

  8. Calorimetric Aerogel Collectors/Detectors of Hypervelocity Dust Grains

    NASA Astrophysics Data System (ADS)

    Dominguez, G.; Westphal, A. J.; Phillips, M. L. F.; Jones, S. M.

    Distinguishing between lower velocity (<8 km/s) orbital debris impacts and higher velocity extraterrestrial particles collected in aerogels was the primary driver behind our development of calorimetric aerogels. While low-density aerogels have been shown to be superior at maximizing the survival of captured hypervelocity projectiles, reconstructing the impact velocity has not been possible. We have previously demonstrated that the shock heating experienced by Gd:Tb doped alumina aerogels results in the production of permanently fluorescent impact cavities. In addition, we have shown that the amount of induced (with UV illumination) fluorescence correlates with the kinetic energy of the captured projectile. Improvements in our production capabilities have recently allowed us to measure, using a Ti-doped Si/Al aerogel, the intrinsic resolution of using this technique to reconstruct the velocity of captured hypervelocity projectiles. We are currently exploring composition space in order to optimize the sensitivity and mechanical properties of these collector/detectors. We report on the results from our latest round of hypervelocity tests as well as the expected collection statistics of deploying a 3 square meter array of calorimetric aerogels in low-Earth-orbit (LEO).

  9. Synthesis, Processing, and Characterization of Inorganic-Organic Hybrid Cross-Linked Silica, Organic Polyimide, and Inorganic Aluminosilicate Aerogels

    NASA Technical Reports Server (NTRS)

    Nguyen, Baochau N.; Guo, Haiquan N.; McCorkle, Linda S.

    2014-01-01

    As aerospace applications become ever more demanding, novel insulation materials with lower thermal conductivity, lighter weight and higher use temperature are required to fit the aerospace application needs. Having nanopores and high porosity, aerogels are superior thermal insulators, among other things. The use of silica aerogels in general is quite restricted due to their inherent fragility, hygroscopic nature, and poor mechanical properties, especially in extereme aerospace environments. Our research goal is to develop aerogels with better mechanical and environmental stability for a variety of aeronautic and space applications including space suit insulation for planetary surface missions, insulation for inflatable structures for habitats, inflatable aerodynamic decelerators for entry, descent and landing (EDL) operations, and cryotank insulation for advance space propulsion systems. Different type of aerogels including organic-inorganic polymer reinforced (hybrid) silica-based aerogels, polyimide aerogels and inorganic aluminosilicate aerogels have been developed and examined.

  10. Composite materials with improved phyllosilicate dispersion

    DOEpatents

    Chaiko, David J.

    2004-09-14

    The present invention provides phyllosilicates edge modified with anionic surfactants, composite materials made from the edge modified phyllosilicates, and methods for making the same. In various embodiments the phyllosilicates are also surface-modified with hydrophilic lipophilic balance (HLB) modifying agents, polymeric hydrotropes, and antioxidants. The invention also provides blends of edge modified phyllosilicates and semicrystalline waxes. The composite materials are made by dispersing the edge modified phyllosilicates with polymers, particularly polyolefins and elastomers.

  11. Fatigue and fracture research in composite materials

    NASA Technical Reports Server (NTRS)

    Obrien, T. K.

    1982-01-01

    The fatigue, fracture, and impact behavior of composite materials are investigated. Bolted and bonded joints are included. The solutions developed are generic in scope and are useful for a wide variety of structural applications. The analytical tools developed are used to demonstrate the damage tolerance, impact resistance, and useful fatigue life of structural composite components. Standard tests for screening improvements in materials and constituents are developed.

  12. Method to fabricate layered material compositions

    DOEpatents

    Fleming, James G.; Lin, Shawn-Yu

    2004-11-02

    A new class of processes suited to the fabrication of layered material compositions is disclosed. Layered material compositions are typically three-dimensional structures which can be decomposed into a stack of structured layers. The best known examples are the photonic lattices. The present invention combines the characteristic features of photolithography and chemical-mechanical polishing to permit the direct and facile fabrication of, e.g., photonic lattices having photonic bandgaps in the 0.1-20.mu. spectral range.

  13. Method to fabricate layered material compositions

    DOEpatents

    Fleming, James G.; Lin, Shawn-Yu

    2002-01-01

    A new class of processes suited to the fabrication of layered material compositions is disclosed. Layered material compositions are typically three-dimensional structures which can be decomposed into a stack of structured layers. The best known examples are the photonic lattices. The present invention combines the characteristic features of photolithography and chemical-mechanical polishing to permit the direct and facile fabrication of, e.g., photonic lattices having photonic bandgaps in the 0.1-20.mu. spectral range.

  14. Composite, ordered material having sharp surface features

    DOEpatents

    D'Urso, Brian R.; Simpson, John T.

    2006-12-19

    A composite material having sharp surface features includes a recessive phase and a protrusive phase, the recessive phase having a higher susceptibility to a preselected etchant than the protrusive phase, the composite material having an etched surface wherein the protrusive phase protrudes from the surface to form a sharp surface feature. The sharp surface features can be coated to make the surface super-hydrophobic.

  15. Method of making a composite refractory material

    DOEpatents

    Morrow, M.S.; Holcombe, C.E.

    1995-09-26

    A composite refractory material is prepared by combining boron carbide with furan resin to form a mixture containing about 8 wt. % furan resin. The mixture is formed into a pellet which is placed into a grit pack comprising an oxide of an element such as yttrium to form a sinterable body. The sinterable body is sintered under vacuum with microwave energy at a temperature no greater than 2000 C to form a composite refractory material.

  16. Acoustic emission monitoring of polymer composite materials

    NASA Technical Reports Server (NTRS)

    Bardenheier, R.

    1981-01-01

    The techniques of acoustic emission monitoring of polymer composite materials is described. It is highly sensitive, quasi-nondestructive testing method that indicates the origin and behavior of flaws in such materials when submitted to different load exposures. With the use of sophisticated signal analysis methods it is possible the distinguish between different types of failure mechanisms, such as fiber fracture delamination or fiber pull-out. Imperfections can be detected while monitoring complex composite structures by acoustic emission measurements.

  17. Method of making a composite refractory material

    DOEpatents

    Morrow, Marvin S.; Holcombe, Cressie E.

    1995-01-01

    A composite refractory material is prepared by combining boron carbide with furan resin to form a mixture containing about 8 wt. % furan resin. The mixture is formed into a pellet which is placed into a grit pack comprising an oxide of an element such as yttrium to form a sinterable body. The sinterable body is sintered under vacuum with microwave energy at a temperature no greater than 2000.degree. C. to form a composite refractory material.

  18. Graphene-based Composite Materials

    NASA Astrophysics Data System (ADS)

    Rafiee, Mohammad Ali

    We investigated the mechanical properties, such as fracture toughness (KIc), fracture energy (GIc), ultimate tensile strength (UTS), Young¡¦s modulus (E), and fatigue crack propagation rate (FCPR) of epoxy-matrix composites with different weight fractions of carbon-based fillers, including graphene platelets (GPL), graphene nanoribbons (GNR), single-walled carbon nanotubes (SWNT), multi-walled carbon nanotubes (MWNT), and fullerenes (C60). Only ˜0.125 wt.% GPL was found to increase the KIc of the pure epoxy by ˜65% and the GIc by ˜115%. To get similar improvement, CNT and nanoparticle epoxy composites required one to two orders of magnitude greater weight fraction of nanofillers. Moreover, ˜0.125% wt.% GPL also decreased the fatigue crack propagation rate in the epoxy by ˜30-fold. The E value of 0.1 wt.% GPL/epoxy nanocomposite was ˜31% larger than the pure epoxy while there was only an increase of ˜3% for the SWNT composites. The UTS of the pristine epoxy was improved by ˜40% with GPLs in comparison with ˜14% enhancement for the MWNTs. The KIc of the GPL nanocomposite enhanced by ˜53% over the pristine epoxy compared to a ˜20% increase for the MWNT-reinforced composites. The results of the FCPR tests for the GPL nanocomposites showed a different trend. While the CNT nanocomposites were not effective enough to suppress the crack growth at high values of the stress intensity factor (DeltaK), the reverse behavior is observed for the GPL nanocomposites. The advantage of the GPLs over CNTs in terms of mechanical properties enhancement is due to their enormous specific surface area, enhanced adhesion at filler/epoxy interface (because of the wrinkled surfaces of GPLs), as well as the planar structure of the GPLs. We also show that unzipping of MWNTs into graphene nanoribbons (GNRs) enhances the load transfer effectiveness in epoxy nanocomposites. For instance, at ˜0.3 wt.% of fillers, the Young's modulus (E) of the epoxy nanocomposite with GNRs increased

  19. Effective Behavior of Composite Materials.

    DTIC Science & Technology

    2014-09-26

    7AD-A158 941 EFFECTIVE BEHAVIOR OF COMPOSITE MTERIRLS(A) NEW YORK i/i UNIV MY COURANT INST OF ATHEMATICAL SCIENCES 6CPAPANICOLAOU 23 APR 85 5274192... Courant ilfapphcabt e Instit.te of Math. Sciences AF0SR/NM 6c. ADDRESS Cit). State and ZIP Code, 7b. ADDRESS (City. State and ZIP Code) 251 Mercer St Bldg...Papanicolaou Courant Institute 251 Mercer Street New York, N.Y. 10012 i~istr~utlo2 During this period two thesis ipja b&have completed ’their work and have

  20. X-Aerogels for Structural Components and High Temperature Applications

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Future NASA missions and space explorations rely on the use of materials that are strong ultra lightweight and able to withstand extreme temperatures. Aerogels are low density (0.01-0.5 g/cu cm) high porosity materials that contain a glass like structure formed through standard sol-gel chemistry. As a result of these structural properties, aerogels are excellent thermal insulators and are able to withstand temperatures in excess of l,000 C. The open structure of aerogels, however, renders these materials extremely fragile (fracturing at stress forces less than 0.5 N/sq cm). The goal of NASA Glenn Research Center is to increase the strength of these materials by templating polymers and metals onto the surface of an aerogel network facilitating the use of this material for practical applications such as structural components of space vehicles used in exploration. The work this past year focused on two areas; (1) the research and development of new templated aerogels materials and (2) process development for future manufacturing of structural components. Research and development occurred on the production and characterization of new templating materials onto the standard silica aerogel. Materials examined included polymers such as polyimides, fluorinated isocyanates and epoxies, and, metals such as silver, gold and platinum. The final properties indicated that the density of the material formed using an isocyanate is around 0.50 g/cc with a strength greater than that of steel and has low thermal conductivity. The process used to construct these materials is extremely time consuming and labor intensive. One aspect of the project involved investigating the feasibility of shortening the process time by preparing the aerogels in the templating solvent. Traditionally the polymerization used THF as the solvent and after several washes to remove any residual monomers and water, the solvent around the aerogels was changed to acetonitrile for the templating step. This process

  1. Intrinsically Survivable Structural Composite Materials

    DTIC Science & Technology

    2001-02-01

    Coefficient 14 2.2.2 Low-Temperature Precure Treatment (LTPT) 16 2.2.3 Investigation of Several Commercially Available Organoclays 18 2.2.4 High-Shear...of material. Additional commercially available organoclay samples all flocculated to a greater extent than the original S30A. Other attempts to...nanocomposites. A series of epoxy-organosilicate nanocomposites have been successfully prepared with the nanosheets of the nano- organoclay uniformly and

  2. Center for Cement Composite Materials

    DTIC Science & Technology

    1990-01-31

    pastes have shown that the matrix is microporous; mesopores are absent unless the material is allowed to dry out. This results in water adsorption at low...only to water. When subsequently dried a portion of3 the porosity is converted to larger mesopores . • Only about one third of the cement reacts in a...Frictional sliding, in this case was characterized by a decreasing slope in the loading curve followed by hysteresis in the unload/reloading curves

  3. 3-D textile reinforcements in composite materials

    SciTech Connect

    Miravete, A.

    1999-11-01

    Laminated composite materials have been used in structural applications since the 1960s. However, their high cost and inability to accommodate fibers in the laminate`s thickness direction greatly reduce their damage tolerance and impact resistance. The second generation of materials--3-D textile reinforced composites--offers significant cost reduction, and by incorporating reinforcement in the thickness direction, dramatically increases damage tolerance and impact resistance. However, methods for predicting mechanical properties of 3-D textile reinforced composite materials tend to be more complex. These materials also have disadvantages--particularly in regard to crimps in the yarns--that require more research. Textile preforms, micro- and macromechanical modeling, manufacturing processes, and characterization all need further development. As researchers overcome these problems, this new generation of composites will emerge as a highly competitive family of materials. This book provides a state-of-the-art account of this promising technology. In it, top experts describe the manufacturing processes, highlight the advantages, identify the main applications, analyze methods for predicting mechanical properties, and detail various reinforcement strategies, including grid structure, knitted fabric composites, and the braiding technique. Armed with the information in this book, readers will be prepared to better exploit the advantages of 3-D textile reinforced composites, overcome its disadvantages, and contribute to the further development of the technology.

  4. Oxygen Compatibility Testing of Composite Materials

    NASA Technical Reports Server (NTRS)

    Graf, Neil A.; Hudgins, Richard J.; McBain, Michael

    2000-01-01

    The development of polymer composite liquid oxygen LO2 tanks is a critical step in creating the next generation of launch vehicles. Future launch vehicles need to minimize the gross liftoff weight (GLOW), which is possible due to the 25%-40% reduction in weight that composite materials could provide over current aluminum technology. Although a composite LO2 tank makes these weight savings feasible, composite materials have not historically been viewed as "LO2 compatible." To be considered LO2 compatible, materials must be selected that will resist any type of detrimental, combustible reaction when exposed to usage environments. This is traditionally evaluated using a standard set of tests. However, materials that do not pass the standard tests can be shown to be safe for a particular application. This paper documents the approach and results of a joint NASA/Lockheed Martin program to select and verify LO2 compatible composite materials for liquid oxygen fuel tanks. The test approach developed included tests such as mechanical impact, particle impact, puncture, electrostatic discharge, friction, and pyrotechnic shock. These tests showed that composite liquid oxygen tanks are indeed feasible for future launch vehicles.

  5. Automotive applications for advanced composite materials

    NASA Technical Reports Server (NTRS)

    Deutsch, G. C.

    1978-01-01

    A description is presented of nonaerospace applications for advanced composite materials with special emphasis on the automotive applications. The automotive industry has to satisfy exacting requirements to reduce the average fuel consumption of cars. A feasible approach to accomplish this involves the development of composites cars with a total weight of 2400 pounds and a fuel consumption of 33 miles per gallon. In connection with this possibility, the automotive companies have started to look seriously at composite materials. The aerospace industry has over the past decade accumulated a considerable data base on composite materials and this is being made available to the nonaerospace sector. However, the automotive companies will place prime emphasis on low cost resins which lend themselves to rapid fabrication techniques.

  6. Ultrasonic stress wave characterization of composite materials

    NASA Technical Reports Server (NTRS)

    Duke, J. C., Jr.; Henneke, E. G., II; Stinchcomb, W. W.

    1986-01-01

    The work reported covers three simultaneous projects. The first project was concerned with: (1) establishing the sensitivity of the acousto-ultrasonic method for evaluating subtle forms of damage development in cyclically loaded composite materials, (2) establishing the ability of the acousto-ultrasonic method for detecting initial material imperfections that lead to localized damage growth and final specimen failure, and (3) characteristics of the NBS/Proctor sensor/receiver for acousto-ultrasonic evaluation of laminated composite materials. The second project was concerned with examining the nature of the wave propagation that occurs during acoustic-ultrasonic evaluation of composite laminates and demonstrating the role of Lamb or plate wave modes and their utilization for characterizing composite laminates. The third project was concerned with the replacement of contact-type receiving piezotransducers with noncontacting laser-optical sensors for acousto-ultrasonic signal acquisition.

  7. Thermographic stress analysis of composite materials

    SciTech Connect

    Zhang, D.; Sandor, B.I.; Enke, N.F. Department of Defence, Aeronautical Research Laboratories, Melbourne )

    1990-03-01

    Several critical aspects of stress measurements in composite materials by thermographic stress analysis (TSA; also SPATE method) have been investigated. The emphasis is on the observed effects of thermal-expansion coefficients with positive and negative signs, thickness of surface coating, and absolute temperature increases in the material due to cyclic loading. Heat transfer and mean stress effects are also discussed. 23 refs.

  8. Minimum thermal conductivity considerations in aerogel thin films

    NASA Astrophysics Data System (ADS)

    Hopkins, Patrick E.; Kaehr, Bryan; Piekos, Edward S.; Dunphy, Darren; Jeffrey Brinker, C.

    2012-06-01

    We demonstrate the use time domain thermoreflectance (TDTR) to measure the thermal conductivity of the solid silica network of aerogel thin-films. TDTR presents a unique experimental capability for measuring the thermal conductivity of porous media due to the nanosecond time domain aspect of the measurement. In short, TDTR is capable of explicitly measuring the change in temperature with time of the solid portion of porous media independently from the pores or effective media. This makes TDTR ideal for determining the thermal transport through the solid network of the aerogel film. We measure the thermal conductivity of the solid silica networks of an aerogel film that is 10% solid, and the thermal conductivity of the same type of film that has been calcined to remove the terminating methyl groups. We find that for similar densities, the thermal conductivity through the silica in the aerogel thin films is similar to that of bulk aerogels. We theoretically describe the thermal transport in the aerogel films with a modified minimum limit to thermal conductivity that accounts for porosity through a reduction in phonon velocity. Our porous minimum limit agrees well with a wide range of experimental data in addition to sound agreement with differential effective medium theory. This porous minimum limit therefore demonstrates an approach to predict the thermal conductivity of porous disordered materials with no a priori knowledge of the corresponding bulk phase, unlike differential effective medium theory.

  9. Comparative study of aerogels obtained from differently prepared nanocellulose fibers.

    PubMed

    Chen, Wenshuai; Li, Qing; Wang, Youcheng; Yi, Xin; Zeng, Jie; Yu, Haipeng; Liu, Yixing; Li, Jian

    2014-01-01

    This article describes the fabrication of nanocellulose fibers (NCFs) with different morphologies and surface properties from biomass resources as well as their self-aggregation into lightweight aerogels. By carefully modulating the nanofibrillation process, four types of NCFs could be readily fabricated, including long aggregated nanofiber bundles, long individualized nanofibers with surface C6 -carboxylate groups, short aggregated nanofibers, and short individualized nanofibers with surface sulfate groups. Free-standing lightweight aerogels were obtained from the corresponding aqueous NCF suspensions through freeze-drying. The structure of the aerogels could be controlled by manipulating the type of NCFs and the concentration of their suspensions. A possible mechanism for the self-aggregation of NCFs into two- or three-dimensional aerogel nanostructures was further proposed. Owing to web-like structure, high porosity, and high surface reactivity, the NCF aerogels exhibited high mechanical flexibility and ductility, and excellent properties for water uptake, removal of dye pollutants, and the use as thermal insulation materials. The aerogels also displayed sound-adsorption capability at high frequencies.

  10. Magnetic porous composite material: Synthesis and properties

    NASA Astrophysics Data System (ADS)

    Peretyat'ko, P. I.; Kulikov, L. A.; Melikhov, I. V.; Perfil'ev, Yu. D.; Pal', A. F.; Timofeev, M. A.; Gudoshnikov, S. A.; Usov, N. A.

    2015-10-01

    A new method of obtaining magnetic porous composite materials is described, which is based on the self-propagating high-temperature synthesis (SHS) in the form of solid-phase combustion. The SHS process involves transformation of the nonmagnetic α-Fe2O3 particles (contained in the initial mixture) into magnetic Fe3O4 particles. The synthesized material comprises a porous carbonaceous matrix with immobilized Fe3O4 particles. The obtained composite has been characterized by electron microscopy, X-ray diffraction, Mössbauer spectroscopy, and magnetic measurements. The sorption capacity of the porous material has been studied.

  11. Chemical, Physical, and Mechanical Characterization of Isocyanate Cross-linked Amine-Modified Silica Aerogels

    NASA Technical Reports Server (NTRS)

    Katti, Atul; Shimpi, Nilesh; Roy, Samit; Lu, Hongbing; Fabrizio, Eve F.; Dass, Amala; Capadona, Lynn A.; Leventis, Nicholas

    2006-01-01

    We describe a new mechanically strong lightweight porous composite material obtained by encapsulating the skeletal framework of amine-modified silica aerogels with polyurea. The conformal polymer coating preserves the mesoporous structure of the underlying silica framework and the thermal conductivity remains low at 0.041 plus or minus 0.001 W m(sup -1 K(sup -1). The potential of the new cross-linked silica aerogels for load-carrying applications was determined through characterization of their mechanical behavior under compression, three-point bending, and dynamic mechanical analysis (DMA). A primary glass transition temperature of 130 C was identified through DMA. At room temperature, results indicate a hyperfoam behavior where in compression cross-linked aerogels are linearly elastic under small strains (less than 4%) and then exhibit yield behavior (until 40% strain), followed by densification and inelastic hardening. At room temperature the compressive Young's modulus and the Poisson's ratio were determined to be 129 plus or minus 8 MPa and 0.18, respectively, while the strain at ultimate failure is 77% and the average specific compressive stress at ultimate failure is 3.89 x 10(exp 5) N m kg(sup -1). The specific flexural strength is 2.16 x 10(exp 4) N m kg(sup -1). Effects on the compressive behavior of strain rate and low temperature were also evaluated.

  12. Electron Beam Analysis of Micrometeoroids Captured in Aerogel as Stardust Analogues

    NASA Technical Reports Server (NTRS)

    Graham, G. A.; Sheffield-Parker, J.; Bradley, P.; Kearsley, A. T.; Dai, Z. R.; Mayo, S. C.; Teslich, N.; Snead, C.; Westphal, A. J.; Ishii, H.

    2005-01-01

    In January 2004, NASA s Stardust spacecraft passed through the tail of Comet 81P/Wild-2. The on-board dust flux monitor instrument indicated that numerous micro- and nano-meter sized cometary dust particles were captured by the dedicated silica aerogel capture cell. The collected cometary particles will be returned to Earth in January 2006. Current Stardust analogues are: (i) Light-gas-gun accelerated individual mineral grains and carbonaceous meteoritic material in aerogels at the Stardust encounter velocity ca.approximately 6 kilometers per second. (ii) Aerogels exposed in low-Earth orbit (LEO) containing preserved cosmic dust grains. Studies of these impacts offer insight into the potential state of the captured cometary dust by Stardust and the suitability of various analytical techniques. A number of papers have discussed the application of sophisticated synchrotron analytical techniques to analyze Stardust particles. Yet much of the understanding gained on the composition and mineralogy of interplanetary dust particles (IDPs) has come from electron microscopy studies. Here we discuss the application of scanning electron microscopy (SEM) for Stardust during the preliminary phase of post-return investigations.

  13. Structural properties and adsorption capacity of holocellulose aerogels synthesized from an alkali hydroxide-urea solution

    NASA Astrophysics Data System (ADS)

    Kwon, Gu-Joong; Kim, Dae-Young; Hwang, Jae-Hyun; Kang, Joo-Hyon

    2014-05-01

    A tulip tree was used to synthesize a holocellulose aerogel from an aqueous alkali hydroxide-urea solution with the substitution of an organic solvent followed by freeze-drying. For comparison, the synthesized holocellulose aerogels were divided into two groups according to the source of the hydrogel, an upper suspended layer and a bottom concentrated layer of the centrifuged solution of cellulose and NaOH/urea solvents. We investigated the effects of the temperature of the pre-cooled NaOH/urea solution ( i.e., dissolution temperature) on the pore structure and the adsorption capacity of the holocellulose aerogel. A nano-fibrillar network structure of the holocellulose aerogel was observed, with little morphological difference in pore structure for different dissolution temperatures. Both micropores and mesopores were observed in the holocellulose aerogel. The specific surface area of the holocellulose aerogel was generally greater at lower dissolution temperatures. In a series of adsorption tests using methylene blue, the holocellulose aerogel showed the greatest adsorption capacity at the lowest dissolution temperature tested (-2°C). However, the dissolution temperature generally had little effect on the adsorption capacity. The holocellulose aerogel produced from the upper suspended layer of the centrifuged hydrogel solution showed a greater porosity and adsorption capacity than the one produced from the bottom concentrated layer. Overall, the aerogel made by utilizing a delignified tulip tree display a high surface area and a high adsorption property, indicating its possible application in eco-friendly adsorption materials.

  14. Materials analysis by ultrasonics: Metals, ceramics, composites

    NASA Technical Reports Server (NTRS)

    Vary, Alex (Editor)

    1987-01-01

    Research results in analytical ultrasonics for characterizing structural materials from metals and ceramics to composites are presented. General topics covered by the conference included: status and advances in analytical ultrasonics for characterizing material microstructures and mechanical properties; status and prospects for ultrasonic measurements of microdamage, degradation, and underlying morphological factors; status and problems in precision measurements of frequency-dependent velocity and attenuation for materials analysis; procedures and requirements for automated, digital signal acquisition, processing, analysis, and interpretation; incentives for analytical ultrasonics in materials research and materials processing, testing, and inspection; and examples of progress in ultrasonics for interrelating microstructure, mechanical properties, and dynamic response.

  15. Preparation, characterization, and activity of a peptide-cellulosic aerogel protease sensor from cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nanocellulosic aerogels (NA) provide a lightweight biocompatible material with structural properties of both high porosity and specific surface area for biosensor design. We report here the preparation, characterization, and activity of a peptide-nanocellulose aerogel (PA) made from unprocessed cot...

  16. Advanced composite materials for optomechanical systems

    NASA Astrophysics Data System (ADS)

    Zweben, Carl

    2013-09-01

    Polymer matrix composites (PMCs) have been well established in optomechanical systems for several decades. The other three classes of composites; metal matrix composites (MMCs), ceramic matrix composites (CMCs), and carbon matrix composites (CAMCs) are making significant inroads. The latter include carbon/carbon (C/C) composites (CCCs). The success of composites has resulted in increasing use in consumer, industrial, scientific, and aerospace/defense optomechanical applications. Composites offer significant advantages over traditional materials, including high stiffnesses and strengths, near-zero and tailorable coefficients of thermal expansion (CTEs), tailorable thermal conductivities (from very low to over twice that of copper), and low densities. In addition, they lack beryllium's toxicity problems. Some manufacturing processes allow parts consolidation, reducing machining and joining operations. At present, PMCs are the most widely used composites. Optomechanical applications date from the 1970s. The second High Energy Astrophysical Observatory spacecraft, placed in orbit in 1978, had an ultrahigh-modulus carbon fiber-reinforced epoxy (carbon/epoxy) optical bench metering structure. Since then, fibers and matrix materials have advanced significantly, and use of carbon fiber-reinforced polymers (CFRPs) has increased steadily. Space system examples include the Hubble Space Telescope metering truss and instrument benches, Upper Atmosphere Research Satellite (UARS), James Webb Space Telescope and many others. Use has spread to airborne applications, such as SOFIA. Perhaps the most impressive CFRP applications are the fifty-four 12m and twelve 7m moveable ground-based ALMA antennas. The other three classes of composites have a number of significant advantages over PMCs, including no moisture absorption or outgassing of organic compounds. CCC and CMC components have flown on a variety of spacecraft. MMCs have been used in space, aircraft, military and industrial

  17. Organic aerogel microspheres

    DOEpatents

    Mayer, Steven T.; Kong, Fung-Ming; Pekala, Richard W.; Kaschmitter, James L.

    1999-01-01

    Organic aerogel microspheres which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonsticky gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.

  18. Organic aerogel microspheres

    DOEpatents

    Mayer, S.T.; Kong, F.M.; Pekala, R.W.; Kaschmitter, J.L.

    1999-06-01

    Organic aerogel microspheres are disclosed which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonstick gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.

  19. Titania-alumina aerogel materials for degradation of rhodamine B dye: Impact of particle size of titania

    NASA Astrophysics Data System (ADS)

    Shrestha, Sunav

    Disposal of pollutants, mainly organic dyes from textile industries are the primary sources of water pollution in developing countries, and often leading to scarcity of clean water. These dyes can undergo further oxidation and form several toxic compounds, which possess threat to the water ecosystem. It is therefore necessary to remove these organics from effluents for a clean environment. Among the various methods, Advanced Oxidation Processes (AOPs) called heterogeneous photocatalysis is considered as an effective method for the removal of organics from water sources. In this regard, a set of titania-alumina (TiO2-Al2O3) mixed oxide materials were prepared by supercritical drying method and investigated towards the degradation of a model pollutant, rhodamine B (RhB). The physico-chemical properties of the synthesized materials were studied in detail using several techniques that include powder X-ray diffraction, nitrogen physisorption, diffuse reflectance spectroscopy, and X-ray photoelectron spectroscopy (XPS). The Electrospray ionization-Mass spectroscopic (ESI-MS) studies were also carried out to confirm the degradation of the RhB by identifying its intermediate products. The results indicate that the particle size of the photoactive species, titania, was the key factor for effective photocatalytic degradation of the RhB dye over the titania-alumina mixed oxide materials.

  20. Processes for fabricating composite reinforced material

    DOEpatents

    Seals, Roland D.; Ripley, Edward B.; Ludtka, Gerard M.

    2015-11-24

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  1. Tensile failure criteria for fiber composite materials

    NASA Technical Reports Server (NTRS)

    Rosen, B. W.; Zweben, C. H.

    1972-01-01

    The analysis provides insight into the failure mechanics of these materials and defines criteria which serve as tools for preliminary design material selection and for material reliability assessment. The model incorporates both dispersed and propagation type failures and includes the influence of material heterogeneity. The important effects of localized matrix damage and post-failure matrix shear stress transfer are included in the treatment. The model is used to evaluate the influence of key parameters on the failure of several commonly used fiber-matrix systems. Analyses of three possible failure modes were developed. These modes are the fiber break propagation mode, the cumulative group fracture mode, and the weakest link mode. Application of the new model to composite material systems has indicated several results which require attention in the development of reliable structural composites. Prominent among these are the size effect and the influence of fiber strength variability.

  2. Properties of five toughened matrix composite materials

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J.; Dow, Marvin B.

    1992-01-01

    The use of toughened matrix composite materials offers an attractive solution to the problem of poor damage tolerance associated with advanced composite materials. In this study, the unidirectional laminate strengths and moduli, notched (open-hole) and unnotched tension and compression properties of quasi-isotropic laminates, and compression-after-impact strengths of five carbon fiber/toughened matrix composites, IM7/E7T1-2, IM7/X1845, G40-800X/5255-3, IM7/5255-3, and IM7/5260 have been evaluated. The compression-after-impact (CAI) strengths were determined primarily by impacting quasi-isotropic laminates with the NASA Langley air gun. A few CAI tests were also made with a drop-weight impactor. For a given impact energy, compression after impact strengths were determined to be dependent on impactor velocity. Properties and strengths for the five materials tested are compared with NASA data on other toughened matrix materials (IM7/8551-7, IM6/1808I, IM7/F655, and T800/F3900). This investigation found that all five materials were stronger and more impact damage tolerant than more brittle carbon/epoxy composite materials currently used in aircraft structures.

  3. Impact testing of textile composite materials

    NASA Technical Reports Server (NTRS)

    Portanova, Marc

    1995-01-01

    The objectives of this report were to evaluate the impact damage resistance and damage tolerance of a variety of textile composite materials. Static indentation and impact tests were performed on the stitched and unstitched uniweave composites constructed from AS4/3501-6 Carbon/Epoxy with a fiberglass yarn woven in to hold the fibers together while being stitched. Compression and tension were measured after the tests to determine the damage resistance, residual strength and the damage tolerance of the specimens.

  4. New composite materials for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Iovu, M. S.; Buzurniuc, S. A.; Verlan, V. I.; Culeac, I. P.; Nistor, Yu. H.

    2009-01-01

    The problem of obtaining low cost but efficient luminescent materials is still actually. Data concerning fabrication and luminescent properties of new composite materials on the base of thenoyltrifluoroacetone (TTA) of Europium(III) (Eu(TTA)3) and chalcogenide glasses doped with rare earth ions and polymers are presented. The visible emission spectra of the composites on the base of Eu(TTA)3 structured with phenantroline (Eu(TTA)3Phen) and copolymer from styrene and butylmethacrylate (1:1)(SBMA) under the excitation with N2-laser (λ=337 nm) contain sharp emission bands located at 354, 415, 580, 587, 590, 596, 611.4, 616.5, 621, 652, 690, 700, 713 nm. The nature of the observed emission bands and the possible mechanisms of the radiative electron transition in the investigated composite materials are discussed.

  5. Efficiently dense hierarchical graphene based aerogel electrode for supercapacitors

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Lu, Chengxing; Peng, Huifen; Zhang, Xin; Wang, Zhenkun; Wang, Gongkai

    2016-08-01

    Boosting gravimetric and volumetric capacitances simultaneously at a high rate is still a discrepancy in development of graphene based supercapacitors. We report the preparation of dense hierarchical graphene/activated carbon composite aerogels via a reduction induced self-assembly process coupled with a drying post treatment. The compact and porous structures of composite aerogels could be maintained. The drying post treatment has significant effects on increasing the packing density of aerogels. The introduced activated carbons play the key roles of spacers and bridges, mitigating the restacking of adjacent graphene nanosheets and connecting lateral and vertical graphene nanosheets, respectively. The optimized aerogel with a packing density of 0.67 g cm-3 could deliver maximum gravimetric and volumetric capacitances of 128.2 F g-1 and 85.9 F cm-3, respectively, at a current density of 1 A g-1 in aqueous electrolyte, showing no apparent degradation to the specific capacitance at a current density of 10 A g-1 after 20000 cycles. The corresponding gravimetric and volumetric capacitances of 116.6 F g-1 and 78.1 cm-3 with an acceptable cyclic stability are also achieved in ionic liquid electrolyte. The results show a feasible strategy of designing dense hierarchical graphene based aerogels for supercapacitors.

  6. Production of hollow aerogel microspheres

    SciTech Connect

    Upadhye, R.S.; Henning, S.A.

    1990-12-31

    A method is described for making hollow aerogel microspheres of 800--1200{mu} diameter and 100--300{mu} wall thickness by forming hollow alcogel microspheres during the sol/gel process in a catalytic atmosphere and capturing them on a foam surface containing catalyst. Supercritical drying of the formed hollow alcogel microspheres yields hollow aerogel microspheres which are suitable for ICF targets.

  7. Production of hollow aerogel microspheres

    DOEpatents

    Upadhye, Ravindra S.; Henning, Sten A.

    1993-01-01

    A method is described for making hollow aerogel microspheres of 800-1200 .mu. diameter and 100-300 .mu. wall thickness by forming hollow alcogel microspheres during the sol/gel process in a catalytic atmosphere and capturing them on a foam surface containing catalyst. Supercritical drying of the formed hollow alcogel microspheres yields hollow aerogel microspheres which are suitable for ICF targets.

  8. Computational modeling of composite material fires.

    SciTech Connect

    Brown, Alexander L.; Erickson, Kenneth L.; Hubbard, Joshua Allen; Dodd, Amanda B.

    2010-10-01

    Composite materials behave differently from conventional fuel sources and have the potential to smolder and burn for extended time periods. As the amount of composite materials on modern aircraft continues to increase, understanding the response of composites in fire environments becomes increasingly important. An effort is ongoing to enhance the capability to simulate composite material response in fires including the decomposition of the composite and the interaction with a fire. To adequately model composite material in a fire, two physical model development tasks are necessary; first, the decomposition model for the composite material and second, the interaction with a fire. A porous media approach for the decomposition model including a time dependent formulation with the effects of heat, mass, species, and momentum transfer of the porous solid and gas phase is being implemented in an engineering code, ARIA. ARIA is a Sandia National Laboratories multiphysics code including a range of capabilities such as incompressible Navier-Stokes equations, energy transport equations, species transport equations, non-Newtonian fluid rheology, linear elastic solid mechanics, and electro-statics. To simulate the fire, FUEGO, also a Sandia National Laboratories code, is coupled to ARIA. FUEGO represents the turbulent, buoyantly driven incompressible flow, heat transfer, mass transfer, and combustion. FUEGO and ARIA are uniquely able to solve this problem because they were designed using a common architecture (SIERRA) that enhances multiphysics coupling and both codes are capable of massively parallel calculations, enhancing performance. The decomposition reaction model is developed from small scale experimental data including thermogravimetric analysis (TGA) and Differential Scanning Calorimetry (DSC) in both nitrogen and air for a range of heating rates and from available data in the literature. The response of the composite material subject to a radiant heat flux boundary

  9. Health monitoring method for composite materials

    DOEpatents

    Watkins, Jr., Kenneth S.; Morris, Shelby J.

    2011-04-12

    An in-situ method for monitoring the health of a composite component utilizes a condition sensor made of electrically conductive particles dispersed in a polymeric matrix. The sensor is bonded or otherwise formed on the matrix surface of the composite material. Age-related shrinkage of the sensor matrix results in a decrease in the resistivity of the condition sensor. Correlation of measured sensor resistivity with data from aged specimens allows indirect determination of mechanical damage and remaining age of the composite component.

  10. Thermal expansion properties of composite materials

    NASA Technical Reports Server (NTRS)

    Johnson, R. R.; Kural, M. H.; Mackey, G. B.

    1981-01-01

    Thermal expansion data for several composite materials, including generic epoxy resins, various graphite, boron, and glass fibers, and unidirectional and woven fabric composites in an epoxy matrix, were compiled. A discussion of the design, material, environmental, and fabrication properties affecting thermal expansion behavior is presented. Test methods and their accuracy are discussed. Analytical approaches to predict laminate coefficients of thermal expansion (CTE) based on lamination theory and micromechanics are also included. A discussion is included of methods of tuning a laminate to obtain a near-zero CTE for space applications.

  11. Composite materials and method of making

    DOEpatents

    Uribe, Francisco A.; Wilson, Mahlon S.; Garzon, Fernando H.

    2009-09-15

    A method of depositing noble metals on a metal hexaboride support. The hexaboride support is sufficiently electropositive to allow noble metals to deposit spontaneously from solutions containing ionic species of such metals onto the support. The method permits the deposition of metallic films of controlled thickness and particle size at room temperature without using separate reducing agents. Composite materials comprising noble metal films deposited on such metal hexaborides are also described. Such composite materials may be used as catalysts, thermionic emitters, electrical contacts, electrodes, adhesion layers, and optical coatings.

  12. High resolution patterning of silica aerogels

    SciTech Connect

    Bertino, M.F.; Hund, J.F.; Sosa, J.; Zhang, G.; Sotiriou-Leventis, C.; Leventis, N.; Tokuhiro, A.T.; Terry, J.

    2008-10-30

    Three-dimensional metallic structures are fabricated with high spatial resolution in silica aerogels. In our method, silica hydrogels are prepared with a standard base-catalyzed route, and exchanged with an aqueous solution typically containing Ag{sup +} ions (1 M) and 2-propanol (0.2 M). The metal ions are reduced photolytically with a table-top ultraviolet lamp, or radiolytically, with a focused X-ray beam. We fabricated dots and lines as small as 30 x 70 {micro}m, protruding for several mm into the bulk of the materials. The hydrogels are eventually supercritically dried to yield aerogels, without any measurable change in the shape and spatial resolution of the lithographed structures. Transmission electron microscopy shows that illuminated regions are composed by Ag clusters with a size of several {micro}m, separated by thin layers of silica.

  13. Transparent monolithic metal ion containing nanophase aerogels

    SciTech Connect

    Risen, W. M., Jr.; Hu, X.; Ji, S.; Littrell, K.

    1999-12-01

    The formation of monolithic and transparent transition metal containing aerogels has been achieved through cooperative interactions of high molecular weight functionalized carbohydrates and silica precursors, which strongly influence the kinetics of gelation. After initial gelation, subsequent modification of the ligating character of the system, coordination of the group VIII metal ions, and supercritical extraction afford the aerogels. The structures at the nanophase level have been probed by photon and electron transmission and neutron scattering techniques to help elucidate the basis for structural integrity together with the small entity sizes that permit transparency in the visible range. They also help with understanding the chemical reactivities of the metal-containing sites in these very high surface area materials. These results are discussed in connection with new reaction studies.

  14. Carbon nanotube spaced graphene aerogels with enhanced capacitance in aqueous and ionic liquid electrolytes

    NASA Astrophysics Data System (ADS)

    Shao, Qingguo; Tang, Jie; Lin, Yuexian; Li, Jing; Qin, Faxiang; Yuan, Jinshi; Qin, Lu-Chang

    2015-03-01

    Carbon nanotube spaced graphene aerogels have been prepared by a hydrothermal method and used for supercapacitor applications. The specific surface area and specific capacitance can be controlled by tuning the amount of added carbon nanotubes. The as-prepared composite aerogels retain the advantage of aerogel structure in providing macropores to ensure electrodes fast wetted by the electrolyte ions and also possess additional mesopores created by the carbon nanotube spacers for more ion adsorption. Benefited from that, the composite aerogels exhibit significantly enhanced supercapacitor properties in both aqueous and ionic liquid electrolyte. Compared with graphene aerogels, the composite aerogels show a 37% larger specific capacitance of 245.5 F g-1 at a current density of 2.5 A g-1 and high rate capability of 197.0 F g-1 at a high current density of 80 A g-1 in aqueous electrolyte. Moreover, the composite aerogels deliver a 33% larger specific capacitance of 183.3 F g-1 at 0.5 A g-1 and a high energy density of 80 Wh kg-1 when using an ionic liquid (EMIMBF4) as the electrolyte.

  15. Computer modeling of organic aerogels: Final report of 93-SR-062

    SciTech Connect

    Chandler, E.A.; Calef, D.; Ladd, A.J.C.

    1994-06-10

    Goal of the work was to develop computer models of organic aerogel structures, and to study transport process within these materials. During the course of the research understanding of the structure of all aerogels including acid and neutral-catalyzed silica aerogel was developed. The modeling of transport focused on fluid flow in aerogels. We successfully modified a novel state-of-the-art lattice Boltzmann code to simulate flow at low Knudsen number, and developed a simple molecular dynamics code for gas flow at extremely high Knudsen number (low density). These flow-modeling techniques can be used to study aerogel applications for technology transfer; in addition, these techniques can be used to study flow through other porous materials.

  16. Ground exposure of composite materials for helicopters

    NASA Technical Reports Server (NTRS)

    Baker, D. J.

    1984-01-01

    Residual strength results are presented on four composite material systems that were exposed for three years at locations on the North American Continent. The exposure locations are near the areas where Bell Model 206L Helicopters, that are in a NSA/U.S. Army sponsored flight service program, are flying in daily commercial service. The composite systems are: (1) Kevlar-49 fabric/F-185 epoxy; (2) Kevlar-49 fabric/LRF-277 epoxy; (3) Kevlar-49 fabric/CE-306 epoxy; and (4) T-300 Graphite/E-788 epoxy. All material systems exhibited good strength retention in compression and short beam shear. The Kevlar-49/LRF-277 epoxy retained 88 to 93 percent of the baseline strength while the other material systems exceeded 95 percent of baseline strength. Residual tensile strength of all materials did not show a significant reduction. The available moisture absorption data is also presented.

  17. Frictional Ignition Testing of Composite Materials

    NASA Technical Reports Server (NTRS)

    Peralta, Steve; Rosales, Keisa; Robinson, Michael J.; Stoltzfus, Joel

    2006-01-01

    The space flight community has been investigating lightweight composite materials for use in propellant tanks for both liquid and gaseous oxygen for space flight vehicles. The use of these materials presents some risks pertaining to ignition and burning hazards in the presence of oxygen. Through hazard analysis process, some ignition mechanisms have been identified as being potentially credible. One of the ignition mechanisms was reciprocal friction; however, test data do not exist that could be used to clear or fail these types of materials as "oxygen compatible" for the reciprocal friction ignition mechanism. Therefore, testing was performed at White Sands Test Facility (WSTF) to provide data to evaluate this ignition mechanism. This paper presents the test system, approach, data results, and findings of the reciprocal friction testing performed on composite sample materials being considered for propellant tanks.

  18. Cutting Silica Aerogel for Particle Extraction

    NASA Technical Reports Server (NTRS)

    Tsou, P.; Brownlee, D. E.; Glesias, R.; Grigoropoulos, C. P.; Weschler, M.

    2005-01-01

    The detailed laboratory analyses of extraterrestrial particles have revolutionized our knowledge of planetary bodies in the last three decades. This knowledge of chemical composition, morphology, mineralogy, and isotopics of particles cannot be provided by remote sensing. In order to acquire these detail information in the laboratories, the samples need be intact, unmelted. Such intact capture of hypervelocity particles has been developed in 1996. Subsequently silica aerogel was introduced as the preferred medium for intact capturing of hypervelocity particles and later showed it to be particularly suitable for the space environment. STARDUST, the 4th NASA Discovery mission to capture samples from 81P/Wild 2 and contemporary interstellar dust, is the culmination of these new technologies. In early laboratory experiments of launching hypervelocity projectiles into aerogel, there was the need to cut aerogel to isolate or extract captured particles/tracks. This is especially challenging for space captures, since there will be many particles/tracks of wide ranging scales closely located, even collocated. It is critical to isolate and extract one particle without compromising its neighbors since the full significance of a particle is not known until it is extracted and analyzed. To date, three basic techniques have been explored: mechanical cutting, lasers cutting and ion beam milling. We report the current findings.

  19. Method of making carbon nanotube composite materials

    DOEpatents

    O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2014-05-20

    The present invention is a method of making a composite polymeric material by dissolving a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes and optionally additives in a solvent to make a solution and removing at least a portion of the solvent after casting onto a substrate to make thin films. The material has enhanced conductivity properties due to the blending of the un-functionalized and hydroxylated carbon nanotubes.

  20. Modeling of laser interactions with composite materials

    DOE PAGES

    Rubenchik, Alexander M.; Boley, Charles D.

    2013-05-07

    In this study, we develop models of laser interactions with composite materials consisting of fibers embedded within a matrix. A ray-trace model is shown to determine the absorptivity, absorption depth, and optical power enhancement within the material, as well as the angular distribution of the reflected light. We also develop a macroscopic model, which provides physical insight and overall results. We show that the parameters in this model can be determined from the ray trace model.

  1. Tailoring of Boehmite-Derived Aluminosilicate Aerogel Structure and Properties: Influence of Ti Addition

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.; Guo, Haiquan; Sheets, Erik J.; Miller, Derek R.; Newlin, Katy N.

    2010-01-01

    Aluminosilicate aerogels offer potential for extremely low thermal conductivities at temperatures greater than 900 C, beyond where silica aerogels reach their upper temperature limits. Aerogels have been synthesized at various Al:Si ratios, including mullite compositions, using Boehmite (AlOOH) as the Al source, and tetraethoxy orthosilicate as the Si precursor. The Boehmite-derived aerogels are found to form by a self-assembly process of AlOOH crystallites, with Si-O groups on the surface of an alumina skeleton. Morphology, surface area and pore size varies with the crystallite size of the starting Boehmite powder, as well as with synthesis parameters. Ternary systems, including Al-Si-Ti aerogels incorporating a soluble Ti precursor, are possible with careful control of pH. The addition of Ti influences sol viscosity, gelation time pore structure and pore size distribution, as well as phase formation on heat treatment.

  2. Nanoencapsulated aerogels produced by monomer vapor deposition and polymerization

    NASA Technical Reports Server (NTRS)

    Sullivan, Thomas A. (Inventor)

    2011-01-01

    Polymer coated aerogel comprising aerogel substrate comprising a substantially uniform polymer coating. In an embodiment, the polymer coated aerogel is comprised of a porosity and has a compressive modulus greater than the compressive modulus of the aerogel substrate.

  3. Optofluidic waveguides written in hydrophobic silica aerogels with a femtosecond laser

    NASA Astrophysics Data System (ADS)

    Yalizay, B.; Morova, Y.; Ozbakir, Y.; Jonas, A.; Erkey, C.; Kiraz, A.; Akturk, S.

    2015-02-01

    We present a new method to form liquid-core optofluidic waveguides inside hydrophobic silica aerogels. Due to their unique material properties, aerogels are very attractive for a wide variety of applications; however, it is very challenging to process them with traditional methods such as milling, drilling, or cutting because of their fragile structure. Therefore, there is a need to develop alternative processes for formation of complex structures within the aerogels without damaging the material. In our study, we used focused femtosecond laser pulses for high-precision ablation of hydrophobic silica aerogels. During the ablation, we directed the laser beam with a galvo-mirror system and, subsequently, focused the beam through a scanning lens on the surface of bulk aerogel which was placed on a three-axis translation stage. We succeeded in obtaining high-quality linear microchannels inside aerogel monoliths by synchronizing the motion of the galvo-mirror scanner and the translation stage. Upon ablation, we created multimode liquid-core optical waveguides by filling the empty channels inside low-refractive index aerogel blocks with highrefractive index ethylene glycol. In order to demonstrate light guiding and measure optical attenuation of these waveguides, we coupled light into the waveguides with an optical fiber and measured the intensity of transmitted light as a function of the propagation distance inside the channel. The measured propagation losses of 9.9 dB/cm demonstrate the potential of aerogel-based waveguides for efficient routing of light in optofluidic lightwave circuits.

  4. Multiaxial analysis of dental composite materials.

    PubMed

    Kotche, Miiri; Drummond, James L; Sun, Kang; Vural, Murat; DeCarlo, Francesco

    2009-02-01

    Dental composites are subjected to extreme chemical and mechanical conditions in the oral environment, contributing to the degradation and ultimate failure of the material in vivo. The objective of this study is to validate an alternative method of mechanically loading dental composite materials. Confined compression testing more closely represents the complex loading that dental restorations experience in the oral cavity. Dental composites, a nanofilled and a hybrid microfilled, were prepared as cylindrical specimens, light-cured in ring molds of 6061 aluminum, with the ends polished to ensure parallel surfaces. The samples were subjected to confined compression loading to 3, 6, 9, 12, and 15% axial strain. Upon loading, the ring constrains radial expansion of the specimen, generating confinement stresses. A strain gage placed on the outer wall of the aluminum confining ring records hoop strain. Assuming plane stress conditions, the confining stress (sigma(c)) can be calculated at the sample/ring interface. Following mechanical loading, tomographic data was generated using a high-resolution microtomography system developed at beamline 2-BM of the Advanced Photon Source at Argonne National Laboratory. Extraction of the crack and void surfaces present in the material bulk is numerically represented as crack edge/volume (CE/V), and calculated as a fraction of total specimen volume. Initial results indicate that as the strain level increases the CE/V increases. Analysis of the composite specimens under different mechanical loads suggests that microtomography is a useful tool for three-dimensional evaluation of dental composite fracture surfaces.

  5. Composite materials for the extravehicular mobility unit

    NASA Technical Reports Server (NTRS)

    Barrera, Enrique V.; Tello, Hector M.

    1992-01-01

    The extravehicular mobility unit (EMU), commonly known as the astronaut space suit assembly (SSA) and primary life support system (PLSS), has evolved through the years to incorporate new and innovative materials in order to meet the demands of the space environment. The space shuttle program which is seeing an increasing level of extravehicular activity (EVA), also called space walks, along with interest in an EMU for Lunar-Mars missions means even more demanding conditions are being placed on the suit and PLSS. The project for this NASA-ASEE Summer Program was to investigate new materials for these applications. The focus was to emphasize the use of composite materials for every component of the EMU to enhance the properties while reducing the total weight of the EMU. To accomplish this, development of new materials called fullerene reinforced materials (FRM's) was initiated. Fullerenes are carbon molecules which when added to a material significantly reduce the weight of that material. The Faculty Fellow worked directly on the development of the fullerene reinforced materials. A chamber for fullerene production was designed and assembled and first generation samples were processed. He also supervised with the JSC Colleague, a study of composite materials for the EMU conducted by the student participant in the NASA-ASEE Program, Hector Tello a Rice University graduate student, and by a NASA Aerospace Technologist (Materials Engineer) Evelyne Orndoff, in the Systems Engineering Analysis Office (EC7), also a Rice University graduate student. Hector Tello conducted a study on beryllium and Be alloys and initiated a study of carbon and glass reinforced composites for space applications. Evelyne Orndoff compiled an inventory of the materials on the SSA. Ms. Orndoff also reviewed SSA material requirements and cited aspects of the SSA design where composite materials might be further considered. Hector Tello spent part of his time investigating the solar radiation

  6. Composite materials for rail transit systems

    NASA Technical Reports Server (NTRS)

    Griffin, O. Hayden, Jr.; Guerdal, Zafer; Herakovich, Carl T.

    1987-01-01

    The potential is explored for using composite materials in urban mass transit systems. The emphasis was to identify specific advantages of composite materials in order to determine their actual and potential usage for carbody and guideway structure applications. The literature was reviewed, contacts were made with major domestic system operators, designers, and builders, and an analysis was made of potential composite application to railcar construction. Composites were found to be in use throughout the transit industry, usually in secondary or auxiliary applications such as car interior and nonstructural exterior panels. More recently, considerable activity has been initiated in the area of using composites in the load bearing elements of civil engineering structures such as highway bridges. It is believed that new and improved manufacturing refinements in pultrusion and filament winding will permit the production of beam sections which can be used in guideway structures. The inherent corrosion resistance and low maintenance characteristics of composites should result in lowered maintenance costs over a prolonged life of the structure.

  7. Synthesis of reduced graphene oxide/thorn-like titanium dioxide nanofiber aerogels with enhanced electrochemical performance for supercapacitor.

    PubMed

    Kim, Tae-Woong; Park, Soo-Jin

    2017-01-15

    Reduced graphene oxide (rGO)/thorn-like TiO2 nanofiber (TTF) aerogels, or GTTF aerogels, with different TTF weight ratios were successfully prepared by electrospinning, silica etching and hydrothermal combination method. During the hydrothermal reaction, the rGO nanosheets and TTF self-assembled into three-dimensional (3D) interconnected networks, in which the TTF is loaded onto the rGO nanosheets. The electrochemical performance of the GTTF aerogels was assessed using cyclic voltammetry and galvanostatic charge-discharge measurements in a 1M aqueous Na2SO4 electrolyte. The TTF-to-rGO ratio of the aerogel material significantly affected the electrochemical performance of the aerogel electrodes, and the GTTF aerogels prepared with 20wt% TTF (denoted GTTF-20) exhibited excellent electrochemical performance. The maximum specific capacitance of this aerogel electrode was 178F/g at a current density of 1A/g. The GTTF-20 aerogel also exhibited good electrochemical stability with a capacitance degradation of less than 10% after 3000cycles. We can deduce that the electrochemical performance of the as-prepared aerogels may be enhanced by increasing the chemical interactions between rGO and TiO2. The results indicate that the GTTF aerogels show enormous potential for application in energy storage devices.

  8. Slow crack propagation in composite restorative materials.

    PubMed

    Montes-G, G M; Draughn, R A

    1987-05-01

    The double-torsion test technique was used to study slow crack propagation in a set of dental composite resins including two glass-filled and two microfilled materials. The microstructure within each pair was the same but one of the resins was selfcured and the other photocured. The fracture behavior was dependent on the filler concentration and the presence of absorbed water. Wet materials fractured by slow crack growth in the range of crack velocity studied (10(-7) to 10(-3) m/s), and the microfilled composites, which contain a lower concentration of inorganic filler, had lower stress intensity factors (K1c) than the glass-filled composites tested. Dry specimens of the microfilled materials and the selfcured, glass-filled composite also showed unstable, stick-slip fracture behavior indicative of a crack blunting mechanism which leads to an elevation of the stress intensity factor for crack initiation over K1c for stable crack growth. The plasticizing effect of water increased the viscoelastic response of the materials measured by the slope of curves of slow crack growth. Analysis of fracture surfaces showed that cracks propagated at low velocities (10(-7) to 10(-5) m/s) by the apparent failure of the filler/matrix interfacial bond, and absorbed water affected the strength or fracture resistance of the interface. At high crack velocities the properties of the composite depend on the properties of the polymeric matrix, the filler, and the filler volume fraction, but at low velocities the interface is the controlling factor in the durability of these composites exposed to an aqueous environment.

  9. Silicon Oxycarbide Aerogels for High-Temperature Thermal Insulation

    NASA Technical Reports Server (NTRS)

    Evans, Owen; Rhine, Wendell; Coutinho, Decio

    2010-01-01

    This work has shown that the use of SOC-A35 leads to aerogel materials containing a significant concentration of carbidic species and limited amorphous free carbon. Substitution of the divalent oxide species in silica with tetravalent carbidic carbon has directly led to materials that exhibit increased network viscosity, reduced sintering, and limited densification. The SiOC aerogels produced in this work have the highest carbide content of any dense or porous SiOC glass reported in the literature at that time, and exhibit tremendous long-term thermal stability.

  10. Accelerated Aging of Polymer Composite Bridge Materials

    SciTech Connect

    Carlson, Nancy Margaret; Blackwood, Larry Gene; Torres, Lucinda Laine; Rodriguez, Julio Gallardo; Yoder, Timothy Scott

    1999-03-01

    Accelerated aging research on samples of composite material and candidate ultraviolet (UV) protective coatings is determining the effects of six environmental factors on material durability. Candidate fastener materials are being evaluated to determine corrosion rates and crevice corrosion effects at load-bearing joints. This work supports field testing of a 30-ft long, 18-ft wide polymer matrix composite (PMC) bridge at the Idaho National Engineering and Environmental Laboratory (INEEL). Durability results and sensor data from tests with live loads provide information required for determining the cost/benefit measures to use in life-cycle planning, determining a maintenance strategy, establishing applicable inspection techniques, and establishing guidelines, standards, and acceptance criteria for PMC bridges for use in the transportation infrastructure.

  11. Computer Simulation of Fracture in Aerogels

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2006-01-01

    Aerogels are of interest to the aerospace community primarily for their thermal properties, notably their low thermal conductivities. While the gels are typically fragile, recent advances in the application of conformal polymer layers to these gels has made them potentially useful as lightweight structural materials as well. In this work, we investigate the strength and fracture behavior of silica aerogels using a molecular statics-based computer simulation technique. The gels' structure is simulated via a Diffusion Limited Cluster Aggregation (DLCA) algorithm, which produces fractal structures representing experimentally observed aggregates of so-called secondary particles, themselves composed of amorphous silica primary particles an order of magnitude smaller. We have performed multi-length-scale simulations of fracture in silica aerogels, in which the interaction b e e n two secondary particles is assumed to be described by a Morse pair potential parameterized such that the potential range is much smaller than the secondary particle size. These Morse parameters are obtained by atomistic simulation of models of the experimentally-observed amorphous silica "bridges," with the fracture behavior of these bridges modeled via molecular statics using a Morse/Coulomb potential for silica. We consider the energetics of the fracture, and compare qualitative features of low-and high-density gel fracture.

  12. Carbon Nanotube Composites: Strongest Engineering Material Ever?

    NASA Technical Reports Server (NTRS)

    Mayeaux, Brian; Nikolaev, Pavel; Proft, William; Nicholson, Leonard S. (Technical Monitor)

    1999-01-01

    The primary goal of the carbon nanotube project at Johnson Space Center (JSC) is to fabricate structural materials with a much higher strength-to-weight ratio than any engineered material today, Single-wall nanotubes present extraordinary mechanical properties along with new challenges for materials processing. Our project includes nanotube production, characterization, purification, and incorporation into applications studies. Now is the time to move from studying individual nanotubes to applications work. Current research at JSC focuses on structural polymeric materials to attempt to lower the weight of spacecraft necessary for interplanetary missions. These nanoscale fibers present unique new challenges to composites engineers. Preliminary studies show good nanotube dispersion and wetting by the epoxy materials. Results of tensile strength tests will also be reported. Other applications of nanotubes are also of interest for energy storage, gas storage, nanoelectronics, field emission, and biomedical uses.

  13. Composite materials for precision space reflector panels

    NASA Technical Reports Server (NTRS)

    Tompkins, Stephen S.; Funk, Joan G.; Bowles, David E.; Towell, Timothy W.; Connell, John W.

    1992-01-01

    One of the critical technology needs of large precision reflectors for future astrophysical and optical communications satellites lies in the area of structural materials. Results from a materials research and development program at NASA Langley Research Center to provide materials for these reflector applications are discussed. Advanced materials that meet the reflector panel requirements are identified, and thermal, mechanical and durability properties of candidate materials after exposure to simulated space environments are compared. A parabolic, graphite-phenolic honeycomb composite panel having a surface accuracy of 70.8 microinches rms and an areal weight of 1.17 lbm/sq ft was fabricated with T50/ERL1962 facesheets, a PAEI thermoplastic surface film, and Al and SiO(x) coatings.

  14. Strong, Thermally Superinsulating Biopolymer-Silica Aerogel Hybrids by Cogelation of Silicic Acid with Pectin.

    PubMed

    Zhao, Shanyu; Malfait, Wim J; Demilecamps, Arnaud; Zhang, Yucheng; Brunner, Samuel; Huber, Lukas; Tingaut, Philippe; Rigacci, Arnaud; Budtova, Tatiana; Koebel, Matthias M

    2015-11-23

    Silica aerogels are excellent thermal insulators, but their brittle nature has prevented widespread application. To overcome these mechanical limitations, silica-biopolymer hybrids are a promising alternative. A one-pot process to monolithic, superinsulating pectin-silica hybrid aerogels is presented. Their structural and physical properties can be tuned by adjusting the gelation pH and pectin concentration. Hybrid aerogels made at pH 1.5 exhibit minimal dust release and vastly improved mechanical properties while remaining excellent thermal insulators. The change in the mechanical properties is directly linked to the observed "neck-free" nanoscale network structure with thicker struts. Such a design is superior to "neck-limited", classical inorganic aerogels. This new class of materials opens up new perspectives for novel silica-biopolymer nanocomposite aerogels.

  15. Improvements of reinforced silica aerogel nanocomposites thermal properties for architecture applications.

    PubMed

    Saboktakin, Amin; Saboktakin, Mohammad Reza

    2015-01-01

    An 1,4-cis polybutadiene rubber/carboxymethyl starch (CMS)-based silica aerogel nanocomposites as a insulation material was developed that will provide superior thermal insulation properties, flexibility, toughness, durability of the parent polymer, yet with the low density and superior insulation properties associated with the aerogels. In this study, reinforced 1,4-cis polybutadiene-CMS-silica aerogel nanocomposites were prepared from a silica aerogel with a surface area 710 m(2) g(-1), a pore size of 25.3 nm and a pore volume of 4.7 cm(3) g(-1). The tensile properties and dynamic mechanical properties of 1,4-cis polybutadiene/CMS nanocomposites were systematically enhanced at low silica loading. Similar improvements in tensile modulus and strength have been observed for 1,4-cis polybutadiene/CMS mesoporous silica aerogel nanocomposites.

  16. Carbon Nanofiber Incorporated Silica Based Aerogels with Di-Isocyanate Cross-Linking

    NASA Technical Reports Server (NTRS)

    Vivod, Stephanie L.; Meador, Mary Ann B.; Capadona, Lynn A.; Sullivan, Roy M.; Ghosn, Louis J.; Clark, Nicholas; McCorkle, Linda

    2008-01-01

    Lightweight materials with excellent thermal insulating properties are highly sought after for a variety of aerospace and aeronautic applications. (1) Silica based aerogels with their high surface area and low relative densities are ideal for applications in extreme environments such as insulators for the Mars Rover battery. (2) However, the fragile nature of aerogel monoliths prevents their widespread use in more down to earth applications. We have shown that the fragile aerogel network can be cross-linked with a di-isocyanate via amine decorated surfaces to form a conformal coating. (3) This coating reinforces the neck regions between secondary silica particles and significantly strengthens the aerogels with only a small effect on density or porosity. Scheme 1 depicts the cross-linking reaction with the di-isocyanate and exhibits the stages that result in polymer cross-linked aerogel monoliths.

  17. Method for net-shaping using aerogels

    DOEpatents

    Brinker, C. Jeffrey; Ashey, Carol S.; Reed, Scott T.; Sriram, Chunangad S.; Harris, Thomas M.

    2001-01-01

    A method of net-shaping using aerogel materials is provided by first forming a sol, aging the sol to form a gel, with the gel having a fluid component and having been formed into a medium selected from the group consisting of a powder, bulk material, or granular aerobeads, derivatizing the surface of the gel to render the surface unreactive toward further condensation, removing a portion of the fluid component of the final shaped gel to form a partially dried medium, placing the medium into a cavity, wherein the volume of said medium is less that the volume of the cavity, and removing a portion of the fluid component of the medium. The removal, such as by heating at a temperature of approximately less than 50.degree. C., applying a vacuum, or both, causes the volume of the medium to increase and to form a solid aerogel. The material can be easily removed by exposing the material to a solvent, thereby reducing the volume of the material. In another embodiment, the gel is derivatized and then formed into a shaped medium, where subsequent drying reduces the volume of the shaped medium, forming a net-shaping material. Upon further drying, the material increases in volume to fill a cavity. The present invention is both a method of net-shaping and the material produced by the method.

  18. Compression Testing of Textile Composite Materials

    NASA Technical Reports Server (NTRS)

    Masters, John E.

    1996-01-01

    The applicability of existing test methods, which were developed primarily for laminates made of unidirectional prepreg tape, to textile composites is an area of concern. The issue is whether the values measured for the 2-D and 3-D braided, woven, stitched, and knit materials are accurate representations of the true material response. This report provides a review of efforts to establish a compression test method for textile reinforced composite materials. Experimental data have been gathered from several sources and evaluated to assess the effectiveness of a variety of test methods. The effectiveness of the individual test methods to measure the material's modulus and strength is determined. Data are presented for 2-D triaxial braided, 3-D woven, and stitched graphite/epoxy material. However, the determination of a recommended test method and specimen dimensions is based, primarily, on experimental results obtained by the Boeing Defense and Space Group for 2-D triaxially braided materials. They evaluated seven test methods: NASA Short Block, Modified IITRI, Boeing Open Hole Compression, Zabora Compression, Boeing Compression after Impact, NASA ST-4, and a Sandwich Column Test.

  19. Whey protein aerogel as blended with cellulose crystalline particles or loaded with fish oil.

    PubMed

    Ahmadi, Maede; Madadlou, Ashkan; Saboury, Ali Akbar

    2016-04-01

    Whey protein hydrogels blended with nanocrystalline and microcrystalline cellulose particles (NCC and MCC, respectively) were prepared, followed by freeze-drying, to produce aerogels. NCC blending increased the Young's modulus, and elastic character, of the protein aerogel. Aerogels were microporous and mesoporous materials, as characterized by the pores sizing 1.2 nm and 12.2 nm, respectively. Blending with NCC decreased the count of both microporous and mesoporous-classified pores at the sub-100 nm pore size range investigated. In contrast, MCC blending augmented the specific surface area and pores volume of the aerogel. It also increased moisture sorption affinity of aerogel. The feasibility of conveying hydrophobic nutraceuticals by aerogels was evaluated through loading fish oil into the non-blended aerogel. Oil loading altered its microstructure, corresponding to a peak displacement in Fourier-transform infra-red spectra, which was ascribed to increased hydrophobic interactions. Surface coating of aerogel with zein decreased the oxidation susceptibility of the loaded oil during subsequent storage.

  20. Meso-scale imaging of composite materials

    SciTech Connect

    Grandin, R.; Gray, J.

    2015-03-31

    The performance of composite materials is controlled by the interaction between the individual components as well as the mechanical characteristics of the components themselves. Geometric structure on the meso-scale, where the length-scales are of the same order as the material granularity, plays a key role in controlling material performance and having a quantitative means of characterizing this structure is crucial in developing our understanding of NDE technique signatures of early damage states. High-resolution computed tomography (HRCT) provides an imaging capability which can resolve these structures for many composite materials. Coupling HRCT with three-dimensional physics-based image processing enables quantitative characterization of the meso-scale structure. Taking sequences of these damage states provides a means to structurally observe the damages evolution. We will discuss the limits of present 3DCT capability and challenges for improving this means to rapidly generate structural information of a composite and of the damage. In this presentation we will demonstrate the imaging capability of HRCT.

  1. Monolithic co-aerogels of carbon/titanium dioxide as three dimensional nanostructured electrodes for energy storage

    NASA Astrophysics Data System (ADS)

    Yang, Sungwoo; Cai, Yue; Cheng, Yingwen; Varanasi, C. V.; Liu, Jie

    2012-11-01

    Conductive fillers, such as amorphous carbon, carbon nanotube and graphene etc., are generally mixed with nanostructured metal oxide materials to improve the performance of electrode materials in energy storage devices. However, the conductive framework that provides path for electric conduction does not normally form a well-connected and robust 3-D network to ensure optimized ions transport. Here, we report a convenient, inexpensive and scalable method for synthesizing hybrid carbon and titanium dioxide co-gels and co-aerogels to improve the electrochemical capacity by combining both the lithium insertion and the surface storage mechanisms in Li ion batteries (LIBs) anodes. A monolithic piece of a hybrid C/TiO2 co-aerogel can be directly used as an active electrode without the addition of binders, such as polyvinylidene fluoride (PVDF). As a result, the performance of LIB anodes using the hybrid co-aerogel is significantly improved over current LIBs based on carbon/titanium oxide composites. The reversible discharge capacity was stabilized at ˜400 mAh g-1 at a 168 mA g-1 scan rate and an operating voltage between 3.0 and 0.05 V vs. Li+/Li with excellent cyclic capacity retention. This approach, however, is not limited to only C/TiO2 system but can be extended to other metal oxides to form co-gels with carbon to improve their potential use in numerous electrochemical, photocatalytic, and photoelectronic devices.

  2. Behavior of silica aerogel networks as highly porous solid solvent media for lipases in a model transesterification reaction.

    PubMed

    El Rassy, H; Perrard, A; Pierre, A C

    2003-03-03

    Highly porous silica aerogels with differing balances of hydrophobic and hydrophilic functionalities were studied as a new immobilization medium for enzymes. Two types of lipases from Candida rugosa and Burkholderia cepacia were homogeneously dispersed in wet gel precursors before gelation. The materials obtained were compared in a simple model reaction: transesterification of vinyl laurate by 1-octanol. To allow a better comparison of the hydrophobic/hydrophilic action of the solid, very open aerogel networks with traditional organic hydrophobic/hydrophilic liquid solvents, this reaction was studied in mixtures containing different proportions of 2-methyl-2-butanol, isooctane, and water. The results are discussed in relation to the porous and hydrophobic nature of aerogels, characterized by nitrogen adsorption. It was found that silica aerogels can be considered as "solid" solvents for the enzymes, able to provide hydrophobic/hydrophilic characteristics different from those prevailing in the liquid surrounding the aerogels. A simple mechanism of action for these aerogel networks is proposed.

  3. Monolayer coated aerogels and method of making

    DOEpatents

    Zemanian, Thomas Samuel; Fryxell, Glen; Ustyugov, Oleksiy A.

    2006-03-28

    Aerogels having a monolayer coating are described. The aerogel and a monolayer forming precursor are provided in a supercritical fluid, whereupon the aerogel and the monolayer forming precursor are reacted in said supercritical fluid to form a covalent bond between the aerogel and the monolayer forming precursor. Suitable aerogels are ceramic oxides such as silica, alumina, aluminosilicate, and combinations thereof. Suitable monolayer forming precursors include alkyl silanes, chlorosilanes, boranes, chloroboranes, germanes, and combinations thereof. The method may also include providing a surface preparation agent such as water, or hydroetching an aerogel to enhance the coating of the monolayer.

  4. Stratospheric experiments on curing of composite materials

    NASA Astrophysics Data System (ADS)

    Chudinov, Viacheslav; Kondyurin, Alexey; Svistkov, Alexander L.; Efremov, Denis; Demin, Anton; Terpugov, Viktor; Rusakov, Sergey

    2016-07-01

    Future space exploration requires a large light-weight structure for habitats, greenhouses, space bases, space factories and other constructions. A new approach enabling large-size constructions in space relies on the use of the technology of polymerization of fiber-filled composites with a curable polymer matrix applied in the free space environment on Erath orbit. In orbit, the material is exposed to high vacuum, dramatic temperature changes, plasma of free space due to cosmic rays, sun irradiation and atomic oxygen (in low Earth orbit), micrometeorite fluence, electric charging and microgravitation. The development of appropriate polymer matrix composites requires an understanding of the chemical processes of polymer matrix curing under the specific free space conditions to be encountered. The goal of the stratospheric flight experiment is an investigation of the effect of the stratospheric conditions on the uncured polymer matrix of the composite material. The unique combination of low residual pressure, high intensity UV radiation including short-wave UV component, cosmic rays and other aspects associated with solar irradiation strongly influences the chemical processes in polymeric materials. We have done the stratospheric flight experiments with uncured composites (prepreg). A balloon with payload equipped with heater, temperature/pressure/irradiation sensors, microprocessor, carrying the samples of uncured prepreg has been launched to stratosphere of 25-30 km altitude. After the flight, the samples have been tested with FTIR, gel-fraction, tensile test and DMA. The effect of cosmic radiation has been observed. The composite was successfully cured during the stratospheric flight. The study was supported by RFBR grants 12-08-00970 and 14-08-96011.

  5. Synthesis and Properties of Cross-Linked Polyamide Aerogels

    NASA Technical Reports Server (NTRS)

    Williams, Jarrod; Meador, Mary Ann; McCorkle, Linda

    2014-01-01

    We report our ongoing research on polyamide aerogels made by step growth polymerization using a combination of terephthaloyl chloride, isophthaloyl chloride and m-phenylenediamine. Crosslinking of the amine capped polymer chains with 1,3,5-benzenetricarbonyl trichloride causes gelation in as little as two to five minutes. Removing the reaction solvent is accomplished through solvent exchange, followed by drying using supercritical CO2 extraction to give colorless aerogels with densities ranging from 0.07 to 0.33 grams per cubic centimeter and surface areas as high as 440 square meters per gram. Statistical experimental design methodology has been utilized to investigate dependence of properties of these aerogels, such as density, compressive modulus, and surface area, on changes in fabrication parameters including formulated number of amide oligomer repeat units (n-value), acid chloride (meta, para or combination), and solids concentration of solution used for gelation. For example, the density of these materials was found to be dependent on the acid chloride type and the solids concentration, but n was not a significant variable. However, surface area was significantly influenced by all three parameters. The polyamide aerogels represent a potential cost savings over previously reported polyimide aerogels, since monomers are all inexpensive and commercially available. Surface area and density were both highest when 100 terephthaloyl chloride was used but a combination of 5 solid concentration, 100 terephthaloyl chloride and n of 20 gave the best combination of properties.

  6. Neutron Shielding Effectiveness of Multifunctional Composite Materials

    DTIC Science & Technology

    2013-03-01

    given that the material is made of only one isotope , is: 1 ln i fn En Eξ   =      . (0.6) For the elements with natural isotopic ratios in...material, Knoll states the relation shown in Equation 2.7 [5]. 0 tottI e I −Σ= (0.7) Equation 2.7 calculates the fraction of the neutron beam...Equation 2.7. # 1 Isotopes tot i i ii t N tσ = Σ =∑ (0.8) 8 In Equation 2.8 ∑tott is equal to the summation of the composite

  7. Metal Matrix Composite Materials for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Jones, C. S. (Technical Monitor)

    2001-01-01

    Metal matrix composites (MMC) are attractive materials for aerospace applications because of their high specific strength, high specific stiffness, and lower thermal expansion coefficient. They are affordable since complex parts can be produced by low cost casting process. As a result there are many commercial and Department of Defense applications of MMCs today. This seminar will give an overview of MMCs and their state-of-the-art technology assessment. Topics to be covered are types of MMCs, fabrication methods, product forms, applications, and material selection issues for design and manufacture. Some examples of current and future aerospace applications will also be presented and discussed.

  8. Advanced Technology Composite Fuselage - Materials and Processes

    NASA Technical Reports Server (NTRS)

    Scholz, D. B.; Dost, E. F.; Flynn, B. W.; Ilcewicz, L. B.; Nelson, K. M.; Sawicki, A. J.; Walker, T. H.; Lakes, R. S.

    1997-01-01

    The goal of Boeing's Advanced Technology Composite Aircraft Structures (ATCAS) program was to develop the technology required for cost and weight efficient use of composite materials in transport fuselage structure. This contractor report describes results of material and process selection, development, and characterization activities. Carbon fiber reinforced epoxy was chosen for fuselage skins and stiffening elements and for passenger and cargo floor structures. The automated fiber placement (AFP) process was selected for fabrication of monolithic and sandwich skin panels. Circumferential frames and window frames were braided and resin transfer molded (RTM'd). Pultrusion was selected for fabrication of floor beams and constant section stiffening elements. Drape forming was chosen for stringers and other stiffening elements. Significant development efforts were expended on the AFP, braiding, and RTM processes. Sandwich core materials and core edge close-out design concepts were evaluated. Autoclave cure processes were developed for stiffened skin and sandwich structures. The stiffness, strength, notch sensitivity, and bearing/bypass properties of fiber-placed skin materials and braided/RTM'd circumferential frame materials were characterized. The strength and durability of cocured and cobonded joints were evaluated. Impact damage resistance of stiffened skin and sandwich structures typical of fuselage panels was investigated. Fluid penetration and migration mechanisms for sandwich panels were studied.

  9. Using Composite Materials in a Cryogenic Pump

    NASA Technical Reports Server (NTRS)

    Batton, William D.; Dillard, James E.; Rottmund, Matthew E.; Tupper, Michael L.; Mallick, Kaushik; Francis, William H.

    2008-01-01

    Several modifications have been made to the design and operation of an extended-shaft cryogenic pump to increase the efficiency of pumping. In general, the efficiency of pumping a cryogenic fluid is limited by thermal losses which is itself caused by pump inefficiency and leakage of heat through the pump structure. A typical cryogenic pump includes a drive shaft and two main concentric static components (an outer pressure containment tube and an intermediate static support tube) made from stainless steel. The modifications made include replacement of the stainless-steel drive shaft and the concentric static stainless-steel components with components made of a glass/epoxy composite. The leakage of heat is thus reduced because the thermal conductivity of the composite is an order of magnitude below that of stainless steel. Taking advantage of the margin afforded by the decrease in thermal conductivity, the drive shaft could be shortened to increase its effective stiffness, thereby increasing the rotordynamic critical speeds, thereby further making it possible to operate the pump at a higher speed to increase pumping efficiency. During the modification effort, an analysis revealed that substitution of the shorter glass/epoxy shaft for the longer stainless-steel shaft was not, by itself, sufficient to satisfy the rotordynamic requirements at the desired increased speed. Hence, it became necessary to increase the stiffness of the composite shaft. This stiffening was accomplished by means of a carbon-fiber-composite overwrap along most of the length of the shaft. Concomitantly with the modifications described thus far, it was necessary to provide for joining the composite-material components with metallic components required by different aspects of the pump design. An adhesive material formulated specially to bond the composite and metal components was chosen as a means to satisfy these requirements.

  10. Alkali metal protective garment and composite material

    DOEpatents

    Ballif, III, John L.; Yuan, Wei W.

    1980-01-01

    A protective garment and composite material providing satisfactory heat resistance and physical protection for articles and personnel exposed to hot molten alkali metals, such as sodium. Physical protection is provided by a continuous layer of nickel foil. Heat resistance is provided by an underlying backing layer of thermal insulation. Overlying outer layers of fireproof woven ceramic fibers are used to protect the foil during storage and handling.

  11. Failure Analysis of Composite Structure Materials.

    DTIC Science & Technology

    1986-05-01

    listed in order of preference, based on applicability, reliability, cost , and sample requirements. Figure 5-4. Failure Analysis Technique...development of a methodology in which optical analysis is used to increase the time and cost effectiveness of analyzing failed composite material struc...regarding the integrity of the bond. Accurate bondline defect information was achieved in such structures utilizing a transportable californium -252 (2 5 2

  12. Fatigue Prediction for Composite Materials and Structures

    DTIC Science & Technology

    2005-10-01

    Eugenio OÑATE CIMNE (International Center for Numerical Methods in Engineering) Building C-1, Campus Nord UPC -C/ Gran Capitán s/n 08034 Barcelona...SPAIN * salomon@cimne.upc.edu ABSTRACT The objective of this paper is to present a new computational methodology for predicting the durability of... methodology is validated using experimental data from tests on CFRR composite material samples. 1.0 INTRODUCTION Fatigue is defined as "the process

  13. Life Prediction Methodologies for Composite Materials

    DTIC Science & Technology

    1992-01-31

    prediction methodology for composite materials is not a mathematical model (although it may include such models ), but can be purely empirical, as is the...understanding of realistic failure mechanisms and modeling procedures that translate such understanding into practical design tools, it also...comprehensive experimental procedures, were reviewed and considered in the development of an outline of the type of model deemed desirable by the committee. The

  14. Multifunctional Hybrid Composites for Thermal Materials

    DTIC Science & Technology

    2012-08-03

    Morphology 9 Simulation Approach: models of soft and hard carbon structures in metal matrix Metals CNTs Fullerenes M ET A L D EB YE F R EQ U EN C...Y Al Cu In Au •No (or narrow) overlap in fullerene / metal vibrational spectra 10 Conductance for Different Carbon -Metal Interfaces in NEMD...Hierarchical carbon fiber morphology for tailored thermal properties in heterogeneous materials systems – Fiber reinforced composites – Sensors, Heat sink

  15. Mechanics Methodology for Textile Preform Composite Materials

    NASA Technical Reports Server (NTRS)

    Poe, Clarence C., Jr.

    1996-01-01

    NASA and its contractors have completed a program to develop a basic mechanics underpinning for textile composites. Three major deliverables were produced by the program: 1. A set of test methods for measuring material properties and design allowables; 2. Mechanics models to predict the effects of the fiber preform architecture and constituent properties on engineering moduli, strength, damage resistance, and fatigue life; and 3. An electronic data base of coupon type test data. This report describes these three deliverables.

  16. Impact of solids on composite materials

    NASA Technical Reports Server (NTRS)

    Bronson, Arturo; Maldonado, Jerry; Chern, Tzong; Martinez, Francisco; Mccord-Medrano, Johnnie; Roschke, Paul N.

    1987-01-01

    The failure modes of composite materials as a result of low velocity impact were investigated by simulating the impact with a finite element analysis. An important facet of the project is the modeling of the impact of a solid onto cylindrical shells composed of composite materials. The model under development will simulate the delamination sustained when a composite material encounters impact from another rigid body. The computer equipment was installed, the computer network tested, and a finite element method model was developed to compare results with known experimental data. The model simulated the impact of a steel rod onto a rotating shaft. Pre-processing programs (GMESH and TANVEL) were developed to generate node and element data for the input into the three dimensional, dynamic finite element analysis code (DYNA3D). The finite element mesh was configured with a fine mesh near the impact zone and a coarser mesh for the impacting rod and the regions surrounding the impacting zone. For the computer simulation, five impacting loads were used to determine the time history of the stresses, the scribed surface areas, and the amount of ridging. The processing time of the computer codes amounted from 1 to 4 days. The calculated surface area were within 6-12 percent, relative error when compated to the actual scratch area.

  17. Chlorhexidine-releasing methacrylate dental composite materials.

    PubMed

    Leung, Danny; Spratt, David A; Pratten, Jonathan; Gulabivala, Kishor; Mordan, Nicola J; Young, Anne M

    2005-12-01

    Light curable antibacterial, dental composite restoration materials, consisting of 80 wt% of a strontium fluoroaluminosilicate glass dispersed in methacrylate monomers have been produced. The monomers contained 40-100 wt% of a 10 wt% chlorhexidine diacetate (CHXA) in hydroxyethylmethacrylate (HEMA) solution and 60-0 wt% of a 50/50 mix of urethane dimethacrylate (UDMA) and triethyleneglycol dimethacrylate (TEGDMA). On raising HEMA content, light cure polymerisation rates decreased. Conversely, water sorption induced swelling and rates of diffusion controlled CHXA release from the set materials increased. Experimental composites with 50 and 90 wt% of the CHXA in HEMA solution in the monomer were shown, within a constant depth film fermentor (CDFF), to have slower rates of biofilm growth on their surfaces between 1 and 7 days than the commercial dental composite Z250 or fluoride-releasing dental cements, Fuji II LC and Fuji IX. When an excavated bovine dentine cylinder re-filled with Z250 was placed for 10 weeks in the CDFF, both bacteria and polymers from the artificial saliva penetrated between the material and dentine. With the 50 wt% experimental HEMA/CHXA formulation, this bacterial microleakage was substantially reduced. Polymer leakage, however, still occurred. Both polymer and bacterial microleakage were prevented with a 90 wt% HEMA/CHXA restoration in the bovine dentine due to swelling compensation for polymerisation shrinkage in combination with antibacterial release.

  18. Fiber Reinforced Composite Materials Used for Tankage

    NASA Technical Reports Server (NTRS)

    Cunningham, Christy

    2005-01-01

    The Nonmetallic Materials and Processes Group is presently working on several projects to optimize cost while providing effect materials for the space program. One factor that must be considered is that these materials must meet certain weight requirements. Composites contribute greatly to this effort. Through the use of composites the cost of launching payloads into orbit will be reduced to one-tenth of the current cost. This research project involved composites used for aluminum pressure vessels. These tanks are used to store cryogenic liquids during flight. The tanks need some type of reinforcement. Steel was considered, but added too much weight. As a result, fiber was chosen. Presently, only carbon fibers with epoxy resin are wrapped around the vessels as a primary source of reinforcement. Carbon fibers are lightweight, yet high strength. The carbon fibers are wet wound onto the pressure vessels. This was done using the ENTEC Filament Winding Machine. It was thought that an additional layer of fiber would aid in reinforcement as well as containment and impact reduction. Kevlar was selected because it is light weight, but five times stronger that steel. This is the same fiber that is used to make bullet-proof vests trampolines, and tennis rackets.

  19. Characterization of self-healing composite materials

    NASA Astrophysics Data System (ADS)

    Ford, Kevin John

    Damage occurs in almost every composite material in the form of microcracks that develop in the epoxy matrix that binds the fibers together. Researchers at the University of Illinois Urbana Champaign have recently developed a method to reverse the effects of, or heal, damage in the epoxy matrix. Their in-situ self-healing system uses embedded microcapsules and a catalyst that trigger a romp reaction in an effort to rebond the microcracks. Several models have been developed in an effort to predict how a composite laminate damages. One model in particular, the Continuous Damage Mechanics model, CDM that has been developed at West Virginia University uses material properties that are easily obtained from standard ASTM and ISO testing methods. The CDM model has been extended at West Virginia University to incorporate the effects of a self-healing system to develop a Continuous Damage and Healing Mechanics model, CDHM. In this work, a testing procedure to characterize the autonomic healing of polymer matrix composites is outlined, as well as the regenerative effects of the self-healing system. The capability of the CDHM model to predict the material properties of the self-healing system is also addressed. The CDHM model is validated with experimental results for various laminates fabricated out of E-glass/epoxy.

  20. Flexible Composite-Material Pressure Vessel

    NASA Technical Reports Server (NTRS)

    Brown, Glen; Haggard, Roy; Harris, Paul A.

    2003-01-01

    A proposed lightweight pressure vessel would be made of a composite of high-tenacity continuous fibers and a flexible matrix material. The flexibility of this pressure vessel would render it (1) compactly stowable for transport and (2) more able to withstand impacts, relative to lightweight pressure vessels made of rigid composite materials. The vessel would be designed as a structural shell wherein the fibers would be predominantly bias-oriented, the orientations being optimized to make the fibers bear the tensile loads in the structure. Such efficient use of tension-bearing fibers would minimize or eliminate the need for stitching and fill (weft) fibers for strength. The vessel could be fabricated by techniques adapted from filament winding of prior composite-material vessels, perhaps in conjunction with the use of dry film adhesives. In addition to the high-bias main-body substructure described above, the vessel would include a low-bias end substructure to complete coverage and react peak loads. Axial elements would be overlaid to contain damage and to control fiber orientation around side openings. Fiber ring structures would be used as interfaces for connection to ancillary hardware.

  1. ACEE Composite Structures Technology: Review of selected NASA research on composite materials and structures

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The NASA Aircraft Energy Efficiency (ACEE) Composite Primary Aircraft Structures Program was designed to develop technology for advanced composites in commercial aircraft. Research on composite materials, aircraft structures, and aircraft design is presented herein. The following parameters of composite materials were addressed: residual strength, damage tolerance, toughness, tensile strength, impact resistance, buckling, and noise transmission within composite materials structures.

  2. Composite carbon foam electrode

    DOEpatents

    Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

    1997-05-06

    Carbon aerogels used as a binder for granulated materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

  3. Composite carbon foam electrode

    DOEpatents

    Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.

    1997-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivty and power to system energy.

  4. Aerogel-Based Insulation for Industrial Steam Distribution Systems

    SciTech Connect

    John Williams

    2011-03-30

    Thermal losses in industrial steam distribution systems account for 977 trillion Btu/year in the US, more than 1% of total domestic energy consumption. Aspen Aerogels worked with Department of Energy’s Industrial Technologies Program to specify, develop, scale-up, demonstrate, and deliver Pyrogel XT®, an aerogel-based pipe insulation, to market to reduce energy losses in industrial steam systems. The product developed has become Aspen’s best selling flexible aerogel blanket insulation and has led to over 60 new jobs. Additionally, this product has delivered more than ~0.7 TBTU of domestic energy savings to date, and could produce annual energy savings of 149 TBTU by 2030. Pyrogel XT’s commercial success has been driven by it’s 2-4X better thermal performance, improved durability, greater resistance to corrosion under insulation (CUI), and faster installation times than incumbent insulation materials.

  5. Nanogel Aerogel as Load Bearing Insulation for Cryogenic Systems

    NASA Astrophysics Data System (ADS)

    Koravos, J. J.; Miller, T. M.; Fesmire, J. E.; Coffman, B. E.

    2010-04-01

    Load support structures in cryogenic storage, transport and processing systems are large contributors to the total heat leak of the system. Conventional insulation systems require the use of these support members in order to stabilize the process fluid enclosure and prevent degradation of insulation performance due to compression. Removal of these support structures would substantially improve system efficiency. Nanogel aerogel insulation performance is tested at vacuum pressures ranging from high vacuum to atmospheric pressure and under loads from loosely packed to greater than 10,000 Pa. Insulation performance is determined using boil-off calorimetry with liquid nitrogen as the latent heat recipient. Two properties of the aerogel insulation material suit it to act as a load bearing "structure" in a process vessel: (1) Ability to maintain thermal performance under load; (2) Elasticity when subjected to load. Results of testing provide positive preliminary indication that these properties allow Nanogel aerogel to effectively be used as a load bearing insulation in cryogenic systems.

  6. Highly Porous, Rigid-Rod Polyamide Aerogels with Superior Mechanical Properties and Unusually High Thermal Conductivity.

    PubMed

    Williams, Jarrod C; Nguyen, Baochau N; McCorkle, Linda; Scheiman, Daniel; Griffin, Justin S; Steiner, Stephen A; Meador, Mary Ann B

    2017-01-18

    We report here the fabrication of polyamide aerogels composed of poly-p-phenylene-terephthalamide, the same backbone chemistry as DuPont's Kevlar. The all-para-substituted polymers gel without the use of cross-linker and maintain their shape during processing-an improvement over the meta-substituted cross-linked polyamide aerogels reported previously. Solutions containing calcium chloride (CaCl2) and para-phenylenediamine (pPDA) in N-methylpyrrolidinone (NMP) at low temperature are reacted with terephthaloyl chloride (TPC). Polymerization proceeds over the course of 5 min resulting in gelation. Removal of the reaction solvent via solvent exchange followed by extraction with supercritical carbon dioxide provides aerogels with densities ranging from 0.1 to 0.3 g/cm(3), depending on the concentration of calcium chloride, the formulated number of repeat units, n, and the concentration of polymer in the reaction mixture. These variables were assessed in a statistical experimental study to understand their effects on the properties of the aerogels. Aerogels made using at least 30 wt % CaCl2 had the best strength when compared to aerogels of similar density. Furthermore, aerogels made using 30 wt % CaCl2 exhibited the lowest shrinkage when aged at elevated temperatures. Notably, whereas most aerogel materials are highly insulating (thermal conductivities of 10-30 mW/m K), the polyamide aerogels produced here exhibit remarkably high thermal conductivities (50-80 mW/(m K)) at the same densities as other inorganic and polymer aerogels. These high thermal conductivities are attributed to efficient phonon transport by the rigid-rod polymer backbone. In conjunction with their low cost, ease of fabrication with respect to other polymer aerogels, low densities, and high mass-normalized strength and stiffness properties, these aerogels are uniquely valuable for applications such as lightweighting in consumer electronics, automobiles, and aerospace where weight reduction is

  7. Removal of carbonaceous contaminants from silica aerogel

    NASA Technical Reports Server (NTRS)

    Huang, Hui-Ping; Gilmour, I.; Pillinger, C. T.; Zolensky, M. E.

    1993-01-01

    Capture of micrometeorite material from low Earth orbit or dust grains around active comets for return to terrestrial laboratories, capable of practicing the most up to date techniques of chemical isotopic and mineralogical analysis, will greatly enhance our knowledge of primitive material in the solar system. The next generation of space launched cosmic dust collectors will undoubtedly include extremely low density target materials such as silica aerogel as the decelerating and arresting medium. This material has been found to be clean from the point of view of inorganic elements and is thus acceptable for the purpose of harvesting grains to be studied by, for example PIXE, INAA, or SXRF. However, the process used in making aerogel leaves substantial carbon and hydrogen containing residues which would negate their suitability for collection and subsequent investigation of the very important CHON particles. Attempts to precondition aerogel by solvent extraction or heating at 500 C and 750 C in air for 24 hours or under a vacuum of 2(7)(exp -7) torr at 260 C were largely ineffective except that pyrolysis did reduce volatile species. In this investigation we have examined the use of supercritical fluids for the purpose of extracting organic residues. The logic of the new approach is that beyond the supercritical point a substance has the solvating properties of a liquid but the viscosity characteristics of a gas. For example carbon dioxide becomes supercritical at a pressure of 73 atmospheres and a temperature of 31 C; in consequence it can transform to a very powerful and ultraclean solvent. It can dissolve organic matter from low molecular weight up to molecules containing 90 carbon atoms. On release of pressure the fluid reverts to a gas which can easily be pumped away and removed from the substrate being extracted.

  8. Synthesizing Smart Polymeric and Composite Materials

    NASA Astrophysics Data System (ADS)

    Gong, Chaokun

    Smart materials have been widely investigated to explore new functionalities unavailable to traditional materials or to mimic the multifunctionality of biological systems. Synthetic polymers are particularly attractive as they already possess some of the attributes required for smart materials, and there are vast room to further enhance the existing properties or impart new properties by polymer synthesis or composite formulation. In this work, three types of smart polymer and composites have been investigated with important new applications: (1) healable polymer composites for structural application and healable composite conductor for electronic device application; (2) conducting polymer polypyrrole actuator for implantable medical device application; and (3) ferroelectric polymer and ceramic nanoparticles composites for electrocaloric effect based solid state refrigeration application. These application entail highly challenging materials innovation, and my work has led to significant progress in all three areas. For the healable polymer composites, well known intrinsically healable polymer 2MEP4F (a Diels-Alder crosslinked polymer formed from a monomer with four furan groups and another monomer with two maleimide groups) was first chosen as the matrix reinforced with fiber. Glass fibers were successfully functionalized with maleimide functional groups on their surface. Composites from functionalized glass fibers and 2MEP4F healable polymer were made to compare with composites made from commercial carbon fibers and 2MEP4F polymer. Dramatically improved short beam shear strength was obtained from composite of functionalized glass fibers and 2MEP4F polymer. The high cost of 2MEP4F polymer can potentially limit the large-scale application of the developed healable composite, we further developed a new healable polymer with much lower cost. This new polymer was formed through the Diels-Alder crosslinking of poly(furfuryl alcohol) (PFA) and 1,1'-(Methylenedi-4

  9. Nondestructive evaluation of advanced ceramic composite materials

    SciTech Connect

    Lott, L.A.; Kunerth, D.C.; Walter, J.B.

    1991-09-01

    Nondestructive evaluation techniques were developed to characterize performance degrading conditions in continuous fiber-reinforced silicon carbide/silicon carbide composites. Porosity, fiber-matrix interface bond strength, and physical damage were among the conditions studied. The material studied is formed by chemical vapor infiltration (CVI) of the matrix material into a preform of woven reinforcing fibers. Acoustic, ultrasonic, and vibration response techniques were studied. Porosity was investigated because of its inherent presence in the CVI process and of the resultant degradation of material strength. Correlations between porosity and ultrasonic attenuation and velocity were clearly demonstrated. The ability of ultrasonic transmission scanning techniques to map variations in porosity in a single sample was also demonstrated. The fiber-matrix interface bond was studied because of its importance in determining the fracture toughness of the material. Correlations between interface bonding and acoustic and ultrasonic properties were observed. These results are presented along with those obtained form acoustic and vibration response measurements on material samples subjected to mechanical impact damage. This is the final report on research sponsored by the US Department of Energy, Fossil Energy Advanced Research and Technology Development Materials Program. 10 refs., 24 figs., 2 tabs.

  10. Composite materials for thermal energy storage

    DOEpatents

    Benson, David K.; Burrows, Richard W.; Shinton, Yvonne D.

    1986-01-01

    The present invention discloses composite material for thermal energy storage based upon polyhydric alcohols, such as pentaerythritol, trimethylol ethane (also known as pentaglycerine), neopentyl glycol and related compounds including trimethylol propane, monoaminopentaerythritol, diamino-pentaerythritol and tris(hydroxymethyl)acetic acid, separately or in combinations, which provide reversible heat storage through crystalline phase transformations. These phase change materials do not become liquid during use and are in contact with at least one material selected from the group consisting of metals, carbon siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, porous rock, and mixtures thereof. Particulate additions, such as aluminum or graphite powders, as well as metal and carbon fibers can also be incorporated therein. Particulate and/or fibrous additions can be introduced into molten phase change materials which can then be cast into various shapes. After the phase change materials have solidified, the additions will remain dispersed throughout the matrix of the cast solid. The polyol is in contact with at least one material selected from the group consisting of metals, carbon siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, and mixtures thereof.

  11. Superior mechanical performance of highly porous, anisotropic nanocellulose-montmorillonite aerogels prepared by freeze casting.

    PubMed

    Donius, Amalie E; Liu, Andong; Berglund, Lars A; Wegst, Ulrike G K

    2014-09-01

    Directionally solidified nanofibrillated cellulose (NFC)-sodium-montmorillonite (MMT) composite aerogels with a honeycomb-like pore structure were compared with non-directionally frozen aerogels with equiaxed pore structure and identical composition and found to have superior functionalities. To explore structure-property correlations, three different aerogel compositions of 3wt% MMT, and 0.4wt%, 0.8wt%, and 1.2wt% NFC, respectively, were tested. Young׳s modulus, compressive strength and toughness were found to increase with increasing NFC content for both architectures. The modulus increased from 25.8kPa to 386kPa for the isotropic and from 2.13MPa to 3.86MPa for the anisotropic aerogels, the compressive yield strength increased from 3.3kPa to 18.0kPa for the isotropic and from 32.3kPa to 52.5kPa for the anisotropic aerogels, and the toughness increased from 6.3kJ/m(3) to 24.1kJ/m(3) for the isotropic and from 22.9kJ/m(3) to 46.2kJ/m(3) for the anisotropic aerogels. The great range of properties, which can be achieved through compositional as well as architectural variations, makes these aerogels highly attractive for a large range of applications, for which either a specific composition, or a particular pore morphology, or both are required. Finally, because NFC is flammable, gasification experiments were performed, which revealed that the inclusion of MMT increased the heat endurance and shape retention functions of the aerogels dramatically up to 800°C while the mechanical properties were retained up to 300°C.

  12. Polymer-composite materials for radiation protection.

    PubMed

    Nambiar, Shruti; Yeow, John T W

    2012-11-01

    Unwanted exposures to high-energy or ionizing radiation can be hazardous to health. Prolonged or accumulated radiation dosage from either particle-emissions such as alpha/beta, proton, electron, neutron emissions, or high-energy electromagnetic waves such as X-rays/γ rays, may result in carcinogenesis, cell mutations, organ failure, etc. To avoid occupational hazards from these kinds of exposures, researchers have traditionally used heavy metals or their composites to attenuate the radiation. However, protective gear made of heavy metals are not only cumbersome but also are capable of producing more penetrative secondary radiations which requires additional shielding, increasing the cost and the weight factor. Consequently, significant research efforts have been focused toward designing efficient, lightweight, cost-effective, and flexible shielding materials for protection against radiation encountered in various industries (aerospace, hospitals, and nuclear reactors). In this regard, polymer composites have become attractive candidates for developing materials that can be designed to effectively attenuate photon or particle radiation. In this paper, we review the state-of-the-art of polymer composites reinforced with micro/nanomaterials, for their use as radiation shields.

  13. Industry to Education Technical Transfer Program & Composite Materials. Composite Materials Course. Fabrication I Course. Fabrication II Course. Composite Materials Testing Course. Final Report.

    ERIC Educational Resources Information Center

    Massuda, Rachel

    These four reports provide details of projects to design and implement courses to be offered as requirements for the associate degree program in composites and reinforced plastics technology. The reports describe project activities that led to development of curricula for four courses: composite materials, composite materials fabrication I,…

  14. Combustion synthesis of advanced composite materials

    NASA Technical Reports Server (NTRS)

    Moore, John J.

    1993-01-01

    Self-propagating high temperature (combustion) synthesis (SHS), has been investigated as a means of producing both dense and expanded (foamed) ceramic and ceramic-metal composites, ceramic powders and whiskers. Several model exothermic combustion synthesis reactions were used to establish the importance of certain reaction parameters, e.g., stoichiometry, green density, combustion mode, particle size, etc. on the control of the synthesis reaction, product morphology and properties. The use of an in situ liquid infiltration technique and the effect of varying the reactants and their stoichiometry to provide a range of reactant and product species i.e., solids, liquids and gases, with varying physical properties e.g., volatility and thermal conductivity, on the microstructure and morphology of synthesized composite materials is discussed. Conducting the combustion synthesis reaction in a reactive gas environment to take advantage of the synergistic effects of combustion synthesis and vapor phase transport is also examined.

  15. Glasses, ceramics, and composites from lunar materials

    NASA Technical Reports Server (NTRS)

    Beall, George H.

    1992-01-01

    A variety of useful silicate materials can be synthesized from lunar rocks and soils. The simplest to manufacture are glasses and glass-ceramics. Glass fibers can be drawn from a variety of basaltic glasses. Glass articles formed from titania-rich basalts are capable of fine-grained internal crystallization, with resulting strength and abrasion resistance allowing their wide application in construction. Specialty glass-ceramics and fiber-reinforced composites would rely on chemical separation of magnesium silicates and aluminosilicates as well as oxides titania and alumina. Polycrystalline enstatite with induced lamellar twinning has high fracture toughness, while cordierite glass-ceramics combine excellent thermal shock resistance with high flexural strengths. If sapphire or rutile whiskers can be made, composites of even better mechanical properties are envisioned.

  16. Slotted Polyimide-Aerogel-Filled-Waveguide Arrays

    NASA Technical Reports Server (NTRS)

    Rodriguez-Solis, Rafael A.; Pacheco, Hector L.; Miranda, Felix A.; Meador, Mary Ann B.

    2013-01-01

    This presentation discussed the potential advantages of developing Slotted Waveguide Arrays using polyimide aerogels. Polyimide (PI) aerogels offer great promise as an enabling technology for lightweight aerospace antenna systems. PI aerogels are highly porous solids possessing low density and low dielectric permittivity combined with good mechanical properties. For slotted waveguide array applications, there are significant advantages in mass that more than compensate for the slightly higher loss of the aerogel filled waveguide when compared to state of practice commercial waveguide.

  17. Improvements to the Synthesis of Polyimide Aerogels

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Nguyen, Baochau N.; Guo, Haiquan; Vivod, Stephanie; He, Zuhui; Malow, Ericka; Silva, Rebecca

    2011-01-01

    Cross-linked polyimide aerogels are viable approach to higher temperature, flexible insulation for inflatable decelerators. Results indicate that the all-polyimide aerogels are as strong or stronger than polymer reinforced silica aerogels at the same density. Currently, examining use of carbon nanofiber and clay nanoparticles to improve performance. Flexible, polyimide aerogels have potential utility in other applications such as space suits, habitats, shelter applications, etc. where low dusting is desired

  18. Deformation Studies and Elasticity Measurements of Hydrophobic Silica Aerogels using Double Exposure Holographic Interferometry

    NASA Astrophysics Data System (ADS)

    Chikode, Prashant; Sabale, Sandip; Chavan, Sugam

    2017-01-01

    Holographic interferometry is mainly used for the non-destructive testing of various materials and metals in industry, engineering and technological fields. This technique may used to study the elastic properties of materials. We have used the double exposure holographic interferometry (DEHI) to study the surface deformation and elastic constant such as Young's modulus of mechanically stressed aerogel samples. Efforts have been made in the past to use non-destructive techniques like sound velocity measurements through aerogels. Hydrophobic Silica aerogels were prepared by the sol-gel process followed by supercritical methanol drying. The molar ratio of tetramethoxysilane: methyltrimethoxysilane: H2O constant at 1.2:0.8:6 while the methanol / tetramethoxysilane molar ratio (M) was varied systematically from 14 to 20 to obtain hydrophobic silica aerogels. After applying the weights on the sample in grams, double exposure holograms of aerogel samples have been successfully recorded. Double exposure causes localization of interference fringes on the aerogel surface and these fringes are used to determine the surface deformation and elastic modulus of the aerogels and they are in good agreement with the experiments performed by using four point bending. University Grants Commission for Minor Research Project and Department of Science and Technology for FIST Program.

  19. Composite materials for thermal energy storage

    DOEpatents

    Benson, D.K.; Burrows, R.W.; Shinton, Y.D.

    1985-01-04

    A composite material for thermal energy storage based upon polyhydric alcohols, such as pentaerythritol, trimethylol ethane (also known as pentaglycerine), neopentyl glycol and related compounds including trimethylol propane, monoaminopentaerythritol, diamino-pentaerythritol and tris(hydroxymethyl)acetic acid, separately or in combinations, which provide reversible heat storage through crystalline phase transformations. These PCM's do not become liquid during use and are in contact with at least one material selected from the group consisting of metals, carbon, siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, porous rock, and mixtures thereof. Particulate additions such as aluminum or graphite powders, as well as metal and carbon fibers can also be incorporated therein. Particulate and/or fibrous additions can be introduced into molten phase change materials which can then be cast into various shapes. After the phase change materials have solidified, the additions will remain dispersed throughout the matrix of the cast solid. The polyol is in contact with at least one material selected from the group consisting of metals, carbon, siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, and mixtures thereof.

  20. Sinusoidal response of composite-material plates with material damping.

    NASA Technical Reports Server (NTRS)

    Siu, C. C.; Bert, C. W.

    1973-01-01

    A general forced-vibration analysis is presented for laminated anisotropic rectangular plates including material damping. The theory used is the laminated version of the Mindlin plate theory and includes thickness-shear flexibility and rotatory and coupling inertia. A solution is obtained by the Rayleigh-Ritz method, extended to include the energy dissipated and the work done by the excitation. The analysis is applied to prediction of the resonant frequencies and associated nodal patterns and damping ratios of the first five modes for a series of rectangular plates with free edges. The plates considered consist of unidirectional boron-fiber/epoxy composite material with respective fiber orientations of 0, 10, 30, 45, 60, and 90 deg.

  1. Ceramic Matrix Composite (CMC) Materials Development

    NASA Technical Reports Server (NTRS)

    DiCarlo, James

    2001-01-01

    Under the former NASA EPM Program, much initial progress was made in identifying constituent materials and processes for SiC/SiC ceramic composite hot-section components. This presentation discusses the performance benefits of these approaches and elaborates on further constituent and property improvements made under NASA UEET. These include specific treatments at NASA that significantly improve the creep and environmental resistance of the Sylramic(TM) Sic fiber as well as the thermal conductivity and creep resistance of the CVI Sic matrix. Also discussed are recent findings concerning the beneficial effects of certain 2D-fabric architectures and carbon between the BN interphase coating and Sic matrix.

  2. Ceramic Matrix Composite (CMC) Materials Characterization

    NASA Technical Reports Server (NTRS)

    Calomino, Anthony

    2001-01-01

    Under the former NASA EPM Program, much initial progress was made in identifying constituent materials and processes for SiC/SiC ceramic composite hot-section components. This presentation discusses the performance benefits of these approaches and elaborates on further constituent and property improvements made under NASA UEET. These include specific treatments at NASA that significantly improve the creep and environmental resistance of the Sylramic(TM) SiC fiber as well as the thermal conductivity and creep resistance of the CVI Sic matrix. Also discussed are recent findings concerning the beneficial effects of certain 2D-fabric architectures and carbon between the BN interphase coating and Sic matrix.

  3. Versatile fabrication of magnetic carbon fiber aerogel applied for bidirectional oil-water separation

    NASA Astrophysics Data System (ADS)

    Li, Yong; Zhu, Xiaotao; Ge, Bo; Men, Xuehu; Li, Peilong; Zhang, Zhaozhu

    2015-09-01

    Fabricating functional materials that can solve environmental problems resulting from oil or organic solvent pollution is highly desired. However, expensive materials or complicated procedures and unidirectional oil-water separation hamper their applications. Herein, a magnetic superhydrophobic carbon fiber aerogel with high absorption capacity was developed by one-step pyrolysis of Fe(NO3)3-coated cotton in an argon atmosphere. The obtained aerogel can selectively collect oils from oil-polluted region by a magnet bar owing to its magnetic properties and achieves fast oil-water separation for its superhydrophobicity and superoleophilicity. Furthermore, the aerogel performs recyclable oil absorption capacity even after ten cycles of oil-water separation and bears organic solvent immersion. Importantly, the obtained aerogel turns to superhydrophilic and underwater superoleophobic after thermal treatment, allowing it as a promising and efficient material for bidirectional oil-water separation and organic contaminants removal.

  4. Filler Materials for Polyphenylenesulphide Composite Coatings: Preprint

    SciTech Connect

    Sugama, T.; Gawlik, K.

    2001-07-17

    Researchers at Brookhaven National Laboratory and the National Renewable Energy Laboratory have tested polymer-based coating systems to reduce the capital equipment and maintenance costs of heat exchangers in corrosive and fouling geothermal environments. These coating systems act as barriers to corrosion to protect low-cost carbon steel tubing; they are formulated to resist wear from hydroblasting and to have high thermal conductivity. Recently, new filler materials have been developed for coating systems that use polyphenylenesulphide as a matrix. These materials include boehmite crystals (orthorhombic aluminum hydroxide, which is grown in situ as a product of reaction with the geothermal fluid), which enhance wear and corrosion resistance, and carbon fibers, which improve mechanical, thermal, and corrosion-resistance properties of the composite.

  5. Thin Aerogel as a Spacer in Multilayer Insulation

    NASA Technical Reports Server (NTRS)

    Moroz, Nancy

    2015-01-01

    Cryogenic fluid management is a critical technical area that is needed for future space exploration. A key challenge is the storability of liquid hydrogen (LH2), liquid methane (LCH4), and liquid oxygen (LOX) propellants for long-duration missions. The storage tanks must be well-insulated to prevent over-pressurization and venting, which can lead to unacceptable propellant losses for long-duration missions to Mars and beyond. Aspen Aerogels had validated the key process step to enable the fabrication of thin, low-density aerogel materials. The multilayer aerogel insulation (MLAI) system prototypes were prepared using sheets of aerogel materials with superior thermal performance exceeding current state-of-the-art insulation for space applications. The exceptional properties of this system include a new breakthrough in high-vacuum cryogenic thermal insulation, providing a durable material with excellent thermal performance at a reduced cost when compared to longstanding state-of-the-art multilayer insulation systems. During the Phase II project, further refinement and qualification/system-level testing of the MLAI system will be performed for use in cryogenic storage applications. Aspen has been in discussions with United Launch Alliance, LLC; NASA's Kennedy Space Center; and Yetispace, Inc., to test the MLAI system on rea-lworld tanks such as Vibro-Acoustic Test Article (VATA) or the Cryogenic Orbital Testbed (CRYOTE).

  6. Thin Aerogel as a Spacer in Multilayer Insulation

    NASA Technical Reports Server (NTRS)

    Moroz, Nancy

    2015-01-01

    Cryogenic fluid management is a critical technical area that is needed for future space exploration. A key challenge is the storability of liquid hydrogen (LH2), liquid methane (LCH4), and liquid oxygen (LOX) propellants for long-duration missions. The storage tanks must be well-insulated to prevent over-pressurization and venting, which can lead to unacceptable propellant losses for long-duration missions to Mars and beyond. Aspen Aerogels had validated the key process step to enable the fabrication of thin, low-density aerogel materials. The multilayer aerogel insulation (MLAI) system prototypes were prepared using sheets of aerogel materials with superior thermal performance exceeding current state-of-the-art insulation for space applications. The exceptional properties of this system include a new breakthrough in high-vacuum cryogenic thermal insulation, providing a durable material with excellent thermal performance at a reduced cost when compared to longstanding state-of-the-art multilayer insulation systems. During the Phase II project, further refinement and qualification/system-level testing of the MLAI system will be performed for use in cryogenic storage applications. Aspen has been in discussions with United Launch Alliance, LLC; NASA's Kennedy Space Center; and Yetispace, Inc., to test the MLAI system on real-world tanks such as Vibro-Acoustic Test Article (VATA) or the Cryogenic Orbital Testbed (CRYOTE).

  7. Polyvinyl alcohol-cellulose nanofibrils-graphene oxide hybrid organic aerogels.

    PubMed

    Javadi, Alireza; Zheng, Qifeng; Payen, Francois; Javadi, Abdolreza; Altin, Yasin; Cai, Zhiyong; Sabo, Ronald; Gong, Shaoqin

    2013-07-10

    Hybrid organic aerogels consisting of polyvinyl alcohol (PVA), cellulose nanofibrils (CNFs), and graphene oxide nanosheets (GONSs) were prepared using an environmentally friendly freeze-drying process. The material properties of these fabricated aerogels were measured and analyzed using various characterization techniques including compression testing, scanning electron microscopy, thermogravimetric (TGA) analysis, Brunauer-Emmet-Teller (BET) surface area analysis, and contact angle measurements. These environmentally friendly, biobased hybrid organic aerogels exhibited a series of desirable properties including a high specific compressive strength and compressive failure strain, ultralow density and thermal conductivity, good thermal stability, and moisture resistance, making them potentially useful for a broad range of applications including thermal insulation.

  8. Aerogels from unaltered bacterial cellulose: application of scCO2 drying for the preparation of shaped, ultra-lightweight cellulosic aerogels.

    PubMed

    Liebner, Falk; Haimer, Emmerich; Wendland, Martin; Neouze, Marie-Alexandra; Schlufter, Kerstin; Miethe, Peter; Heinze, Thomas; Potthast, Antje; Rosenau, Thomas

    2010-04-08

    Bacterial cellulose produced by the gram-negative bacterium Gluconacetobacter xylinum was found to be an excellent native starting material for preparing shaped ultra-lightweight cellulose aerogels. The procedure comprises thorough washing and sterilization of the aquogel, quantitative solvent exchange and subsequent drying with supercritical carbon dioxide at 40 degrees C and 100 bar. The average density of the obtained dry cellulose aerogels is only about 8 mg x cm(-3) which is comparable to the most lightweight silica aerogels and distinctly lower than all values for cellulosic aerogels obtained from plant cellulose so far. SEM, ESEM and nitrogen adsorption experiments at 77 K reveal an open-porous network structure that consists of a comparatively high percentage of large mesopores and smaller macropores.

  9. Composite materials flown on the Long Duration Exposure Facility

    NASA Technical Reports Server (NTRS)

    George, Pete E.; Dursch, Harry W.; Pippin, H. Gary

    1995-01-01

    Organic composite test specimens were flown on several LDEF experiments. Both bare and coated composites were flown. Atomic oxygen eroded bare composite material, with the resins being recessed at a greater rate than the fibers. Selected coating techniques protected the composite substrate in each case. Tensile and optical properties are reported for numerous specimens. Fiberglass and metal matrix composites were also flown.

  10. Piezoelectric Nanoparticle-Polymer Composite Materials

    NASA Astrophysics Data System (ADS)

    McCall, William Ray

    Herein we demonstrate that efficient piezoelectric nanoparticle-polymer composite materials can be synthesized and fabricated into complex microstructures using sugar-templating methods or optical printing techniques. Stretchable foams with excellent tunable piezoelectric properties are created by incorporating sugar grains directly into polydimethylsiloxane (PDMS) mixtures containing barium titanate (BaTiO3 -- BTO) nanoparticles and carbon nanotubes (CNTs), followed by removal of the sugar after polymer curing. Porosities and elasticity are tuned by simply adjusting the sugar/polymer mass ratio and the electrical performance of the foams showed a direct relationship between porosity and the piezoelectric outputs. User defined 2D and 3D optically printed piezoelectric microstructures are also fabricated by incorporating BTO nanoparticles into photoliable polymer solutions such as polyethylene glycol diacrylate (PEGDA) and exposing to digital optical masks that can be dynamically altered. Mechanical-to-electrical conversion efficiency of the optically printed composite is enhanced by chemically altering the surface of the BTO nanoparticles with acrylate groups which form direct covalent linkages with the polymer matrix under light exposure. Both of these novel materials should find exciting uses in a variety of applications including energy scavenging platforms, nano- and microelectromechanical systems (NEMS/MEMS), sensors, and acoustic actuators.

  11. Shock resistance of composite material pipes

    SciTech Connect

    Pays, M.F.; Garcin, P.

    1995-11-01

    Composite materials have found a wide range of applications for EDF nuclear plants. Applications include fire pipework, demineralized water, service water, and emergency-supplied service water piping. Some of those pipework is classified nuclear safety, their integrity (resistance to water aging and earthquakes or accidental excess pressure (water hammer)) must be safeguarded. As composite materials generally suffer damage for low energy impacts (under 10 J), the pipes planned for the Civaux power plant have been studied for their resistance to a low speed shock (0 to 50 m/s) and of a 0 to 110 J energy level. For three representative diameters (20, 150, 600 mm), the minimum impact energy that leads to a leak has been determined to be respectively 18, 20 and 48 J. Then the leak rate versus impact energy was plotted; until roughly 90 J, the leak rate remains stable at less than 25 cm{sup 3}/h and raises to higher values (300 cm{sup 3}/h) afterwards. The level of leakage in the range of impact energy tested always stays within the limits set by the Safety Authorities for metallic pipes. These results have been linked to destructive examinations, to clarify the damage mechanisms. Other tests are still ongoing to follow the evolution of the damage and of the leak rate while the pipe is maintained under service pressure during one year.

  12. Method for preparing dielectric composite materials

    DOEpatents

    Lauf, Robert J.; Anderson, Kimberly K.; Montgomery, Frederick C.; Collins, Jack L.; Felten, John J.

    2004-11-23

    The invention allows the fabrication of small, dense beads of dielectric materials with selected compositions, which are incorporated into a polymeric matrix for use in capacitors, filters, and the like. A porous, generally spherical bead of hydrous metal oxide containing titanium or zirconium is made by a sol-gel process to form a substantially rigid bead having a generally fine crystallite size and correspondingly finely distributed internal porosity. The resulting gel bead may be washed and hydrothermally reacted with a soluble alkaline earth salt (typically Ba or Sr) at elevated temperature and pressure to convert the bead into a mixed hydrous titanium- or zirconium-alkaline earth oxide while retaining the generally spherical shape. Alternatively, the gel bead may be made by coprecipitation. This mixed oxide bead is then washed, dried and calcined to produce the desired (BaTiO.sub.3, PbTiO.sub.3, SrZrO.sub.3) structure. The sintered beads are incorporated into a selected polymer matrix. The resulting dielectric composite material may be electrically "poled" if desired.

  13. Dielectric composite materials and method for preparing

    DOEpatents

    Lauf, Robert J.; Anderson, Kimberly K.; Montgomery, Frederick C.; Collins, Jack L.; Felten, John J.

    2003-07-29

    The invention allows the fabrication of small, dense beads of dielectric materials with selected compositions, which are incorporated into a polymeric matrix for use in capacitors, filters, and the like. A porous, generally spherical bead of hydrous metal oxide containing titanium or zirconium is made by a sol-gel process to form a substantially rigid bead having a generally fine crystallite size and correspondingly finely distributed internal porosity. The resulting gel bead may be washed and hydrothermally reacted with a soluble alkaline earth salt (typically Ba or Sr) at elevated temperature and pressure to convert the bead into a mixed hydrous titanium- or zirconium-alkaline earth oxide while retaining the generally spherical shape. Alternatively, the gel bead may be made by coprecipitation. This mixed oxide bead is then washed, dried and calcined to produce the desired (BaTiO.sub.3, PbTiO.sub.3, SrZrO.sub.3) structure. The sintered beads are incorporated into a selected polymer matrix. The resulting dielectric composite material may be electrically "poled" if desired.

  14. Transparent Ethylene-Bridged Polymethylsiloxane Aerogels and Xerogels with Improved Bending Flexibility.

    PubMed

    Shimizu, Taiyo; Kanamori, Kazuyoshi; Maeno, Ayaka; Kaji, Hironori; Nakanishi, Kazuki

    2016-12-20

    Transparent, monolithic aerogels with nanosized colloidal skeletons have been obtained from a single precursor of 1,2-bis(methyldiethoxysilyl)ethane (BMDEE) by adopting a liquid surfactant and a two-step process involving strong-acid, followed by strong-base, sol-gel reactions. This precursor BMDEE forms the ethylene-bridged polymethylsiloxane (EBPMS, O2/2(CH3)Si-CH2CH2-Si(CH3)O2/2) network, in which each silicon has one methyl, two bridging oxygens, and one bridging ethylene, exhibiting an analogous structure to that of the previously reported polymethylsilsesquioxane (PMSQ, CH3SiO3/2) aerogels having one methyl and three bridging oxygen atoms. Obtained aerogels consist of fine colloidal skeletons and show high visible-light transparency and a flexible deformation behavior against compression without collapse. Similar to the PMSQ aerogels, a careful tuning of synthetic conditions can produce low-density (0.19 g cm(-3)) and highly transparent (76% at 550 nm, corresponding to 10 mm thick samples) xerogels via ambient pressure drying by solvent evaporation due to their high strength and resilience against compression. Moreover, EBPMS aerogels exhibit higher bending strength and bending strain at break against the three-point bending mode compared to PMSQ aerogels. This improved bendability is presumably derived from the introduced ethylene-bridging parts, suggesting the potential for realizing transparent and bendable aerogels in such polysiloxane materials with organic linking units.

  15. Effect of Bulky Substituents in the Polymer Backbone on the Properties of Polyimide Aerogels.

    PubMed

    Viggiano, Rocco P; Williams, Jarrod C; Schiraldi, David A; Meador, Mary Ann B

    2017-03-08

    With unique advantages over inorganic aerogels including higher strengths and compressive moduli, greater toughness, and the ability to be fabricated as a flexible thin film, polymer aerogels have the potential to supplant inorganic aerogels in numerous applications. Among polymer aerogels, polyimide aerogels possess a high degree of high thermal stability as well as outstanding mechanical properties. However, while the onset of thermal decomposition for these materials is typically very high (greater than 500 °C), the polyimide aerogels undergo dramatic thermally induced shrinkage at temperatures well below their glass transition (Tg) or decomposition temperature, which limits their use. In this study, we show that shrinkage is reduced when a bulky moiety is incorporated in the polymer backbone. Twenty different formulations of polyimide aerogels were synthesized from 3,3,'4,4'-biphenyltetracarboxylic dianhydride (BPDA) and 4,4'-oxidianiline (ODA) or a combination of ODA and 9,9'-bis(4-aminophenyl)fluorene (BAPF) and cross-linked with 1,3,5-benzenetricarbonyl trichloride (BTC) in a statistically designed study. The polymer concentration, n-value, and molar concentration of ODA and BAPF were varied to demonstrate the effect of these variables on certain properties. Samples containing BAPF showed a reduction in shrinkage by as much as 50% after aging at elevated temperatures for 500 h compared to those made with ODA alone.

  16. Inorganic hollow nanotube aerogels by atomic layer deposition onto native nanocellulose templates.

    PubMed

    Korhonen, Juuso T; Hiekkataipale, Panu; Malm, Jari; Karppinen, Maarit; Ikkala, Olli; Ras, Robin H A

    2011-03-22

    Hollow nano-objects have raised interest in applications such as sensing, encapsulation, and drug-release. Here we report on a new class of porous materials, namely inorganic nanotube aerogels that, unlike other aerogels, have a framework consisting of inorganic hollow nanotubes. First we show a preparation method for titanium dioxide, zinc oxide, and aluminum oxide nanotube aerogels based on atomic layer deposition (ALD) on biological nanofibrillar aerogel templates, that is, nanofibrillated cellulose (NFC), also called microfibrillated cellulose (MFC) or nanocellulose. The aerogel templates are prepared from nanocellulose hydrogels either by freeze-drying in liquid nitrogen or liquid propane or by supercritical drying, and they consist of a highly porous percolating network of cellulose nanofibrils. They can be prepared as films on substrates or as freestanding objects. We show that, in contrast to freeze-drying, supercritical drying produces nanocellulose aerogels without major interfibrillar aggregation even in thick films. Uniform oxide layers are readily deposited by ALD onto the fibrils leading to organic-inorganic core-shell nanofibers. We further demonstrate that calcination at 450 °C removes the organic core leading to purely inorganic self-supporting aerogels consisting of hollow nanotubular networks. They can also be dispersed by grinding, for example, in ethanol to create a slurry of inorganic hollow nanotubes, which in turn can be deposited to form a porous film. Finally we demonstrate the use of a titanium dioxide nanotube network as a resistive humidity sensor with a fast response.

  17. Copper Nanowire Based Aerogel with Tunable Pore Structure and Its Application as Flexible Pressure Sensor.

    PubMed

    Xu, Xiaojuan; Wang, Ranran; Nie, Pu; Cheng, Yin; Lu, Xiaoyu; Shi, Liangjing; Sun, Jing

    2017-04-11

    Aerogel is a kind of material with high porosity and low density. However, the research on metal-based aerogel with good conductivity is quite limited, which hinders its usage in electronic devices, such as flexible pressure sensors. In this work, we successfully fabricate copper nanowire (CuNW) based aerogel through a one-pot method, and the dynamics for the assembly of CuNWs into hydrogel is intensively investigated. The "bubble controlled assembly" mechanism is put forward for the first time, according to which tunable pore structures and densities (4.3 mg cm-3~7.5 mg cm-3) of the nanowire aerogel is achieved. Subsequently, ultralight flexible pressure sensors with tunable sensitivities (0.02 kPa-1 to 0.7 kPa-1) are fabricated from the Cu NWs aerogels, and the negative correlation behavior of the sensitivity to the density of the aerogel sensors is disclosed systematically. This work provides a versatile strategy for the fabrication of nanowire based aerogels, which greatly broadens their application potential.

  18. SYNTHESIS AND CHARACTERIZATION OF CARBON AEROGEL NANOCOMPOSITES CONTAINING DOUBLE-WALLED CARBON NANOTUBES

    SciTech Connect

    Worsley, M A; Satcher, J H; Baumann, T F

    2008-03-11

    Carbon aerogels (CAs) are novel mesoporous materials with applications such as electrode materials for super capacitors and rechargeable batteries, adsorbents and advanced catalyst supports. To expand the potential application for these unique materials, recent efforts have focused on the design of CA composites with the goal of modifying the structure, conductivity or catalytic activity of the aerogel. Carbon nanotubes (CNTs) possess a number of intrinsic properties that make them promising materials in the design of composite materials. In addition, the large aspect ratios (100-1000) of CNTs means that small additions (less than 1 vol%) of CNTs can produce a composite with novel properties. Therefore, the homogeneous incorporation of CNTs into a CA matrix provides a viable route to new carbon-based composites with enhanced thermal, electrical and mechanical properties. One of the main challenges in preparing CNT composites is achieving a good uniform dispersion of nanotubes throughout the matrix. CAs are typically prepared through the sol-gel polymerization of resorcinol with formaldehyde in aqueous solution to produce organic gels that are supercritically dried and subsequently pyrolyzed in an inert atmosphere. Therefore, a significant issue in fabricating CA-CNT composites is dispersing the CNTs in the aqueous reaction media. Previous work in the design of CACNT composites have addressed this issue by using organic solvents in the sol-gel reaction to facilitate dispersion of the CNTs. To our knowledge, no data has been published involving the preparation of CA composites containing CNTs dispersed in aqueous media. In this report, we describe a new method for the synthesis of monolithic CA-CNT composites that involves the sol-gel polymerization of resorcinol and formaldehyde in an aqueous solution containing a surfactant-stabilized dispersion of double-walled carbon nanotubes (DWNT). One of the advantages of this approach is that it allows one to uniformly

  19. Material Composite Behavior Under High-Pressure

    NASA Astrophysics Data System (ADS)

    Conil, N.; Kavner, A.

    2004-12-01

    ; fibers and matrix pressures are almost the same (not more than 0.6 GPa in difference in our experiments). In addition, we present finite element modeling of behavior of composite materials in the diamond cell sample chamber that are in excellent agreement with experiments results. With this study we show that the geometry of samples in the diamond cell must be understood in order to properly interpret measurements. Our ultimate goal is to use this information to design samples that are optimized for better measurements of rheological behavior of Earth interior materials.

  20. Transparent conducting aerogels of antimony-doped tin oxide.

    PubMed

    Correa Baena, Juan Pablo; Agrios, Alexander G

    2014-11-12

    Bulk antimony-doped tin oxide aerogels are prepared by epoxide-initiated sol-gel processing. Tin and antimony precursors are dissolved in ethanol and water, respectively, and propylene oxide is added to cause rapid gelation of the sol, which is then dried supercritically. The Sb:Sn precursor mole ratio is varied from 0 to 30% to optimize the material conductivity and absorbance. The materials are characterized by electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy (XPS), nitrogen physisorption analysis, a four-point probe resistivity measurement, and UV-vis diffuse reflectance spectroscopy. The samples possess morphology typical of aerogels without significant change with the amount of doping. Calcination at 450 °C produces a cassiterite crystal structure in all aerogel samples. Introduction of Sb at 15% in the precursor (7.6% Sb by XPS) yields a resistivity more than 3 orders of magnitude lower than an undoped SnO2 aerogel. Calcination at 800 °C reduces the resistivity by an additional 2 orders of magnitude to 30 Ω·cm, but results in a significant decrease in surface area and pore volume.

  1. Synthesis, characterization, and modeling of hydrogen storage in carbon aerogels

    SciTech Connect

    Pekala, R.W.; Coronado, P.R.; Calef, D.F.

    1995-04-01

    Carbon aerogels are a special class of open-cell foams with an ultrafine cell/pore size (<50 nm), high surface area (600-800 m{sup 2}/g), and a solid matrix composed of interconnected colloidal-like particles or fibers with characteristic diameters of 10 nm. These materials are usually synthesized from the sol-gel polymerization of resorcinol-formaldehyde or phenolic-furfural, followed by supercritical extraction of the solvent and pyrolysis in an inert atmosphere. The resultant aerogel has a nanocrystalline structure with micropores (<2 nm diameter) located within the solid matrix. Carbon aerogel monoliths can be prepared at densities ranging from 0.05-1.0 g/cm{sup 3}, leading to volumetric surface areas (> 500 m{sup 2}/cm{sup 3}) that are much larger than commercially available materials. This research program is directed at optimization of the aerogel structure for maximum hydrogen adsorption over a wide range of temperatures and pressures. Computer modeling of hydrogen adsorption at carbon surfaces was also examined.

  2. Composition of estuarine colloidal material: organic components

    USGS Publications Warehouse

    Sigleo, A.C.; Hoering, T.C.; Helz, G.R.

    1982-01-01

    Colloidal material in the size range 1.2 nm to 0.4 ??m was isolated by ultrafiltration from Chesapeake Bay and Patuxent River waters (U.S.A.). Temperature controlled, stepwise pyrolysis of the freeze-dried material, followed by gas chromatographic-mass spectrometric analyses of the volatile products indicates that the primary organic components of this polymer are carbohydrates and peptides. The major pyrolysis products at the 450??C step are acetic acid, furaldehydes, furoic acid, furanmethanol, diones and lactones characteristic of carbohydrate thermal decomposition. Pyrroles, pyridines, amides and indole (protein derivatives) become more prevalent and dominate the product yield at the 600??C pyrolysis step. Olefins and saturated hydrocarbons, originating from fatty acids, are present only in minor amounts. These results are consistent with the composition of Chesapeake phytoplankton (approximately 50% protein, 30% carbohydrate, 10% lipid and 10% nucleotides by dry weight). The pyrolysis of a cultured phytoplankton and natural particulate samples produced similar oxygen and nitrogencontaining compounds, although the proportions of some components differ relative to the colloidal fraction. There were no lignin derivatives indicative of terrestrial plant detritus in any of these samples. The data suggest that aquatic microorganisms, rather than terrestrial plants, are the dominant source of colloidal organic material in these river and estuarine surface waters. ?? 1982.

  3. Nitridation under ammonia of high surface area vanadium aerogels

    SciTech Connect

    Merdrignac-Conanec, Odile . E-mail: odile.merdrignac@univ-rennes1.fr; El Badraoui, Khadija; L'Haridon, Paul

    2005-01-15

    Vanadium pentoxide gels have been obtained from decavanadic acid prepared by ion exchange on a resin from ammonium metavanadate solution. The progressive removal of water by solvent exchange in supercritical conditions led to the formation of high surface area V{sub 2}O{sub 5}, 1.6H{sub 2}O aerogels. Heat treatment under ammonia has been performed on these aerogels in the 450-900 deg. C temperature range. The oxide precursors and oxynitrides have been characterized by XRD, SEM, TGA, BET. Nitridation leads to divided oxynitride powders in which the fibrous structure of the aerogel is maintained. The use of both very low heating rates and high surface area aerogel precursors allows a higher rate and a lower threshold of nitridation than those reported in previous works. By adjusting the nitridation temperature, it has been possible to prepare oxynitrides with various nitrogen enrichment and vanadium valency states. Whatever the V(O,N) composition, the oxidation of the oxynitrides in air starts between 250 and 300 deg. C. This determines their potential use as chemical gas sensors at a maximum working temperature of 250 deg. C.

  4. Method of preparing corrosion resistant composite materials

    DOEpatents

    Kaun, Thomas D.

    1993-01-01

    Method of manufacture of ceramic materials which require stability in severely-corrosive environment having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These surfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  5. Soft Materials Approaches to Carbon Nanotubes: from Gels to Composites

    NASA Astrophysics Data System (ADS)

    Islam, Mohammad

    2013-03-01

    Carbon nanotubes combine low density with exceptional mechanical, electrical and optical properties. Unfortunately, these nanoscale properties have not been retained in bulk structures. I will describe surface modification assisted self-assembly of single wall carbon nanotube into macroscopic nanotube networks - hydrogels and aerogels. The nanotube networks are ultra-lightweight, electrically conducting and thermally insulating. The shapes and sizes of these nanotube networks are readily tunable and is a tremendous strength of our fabrication method. The interesting properties and structure of these nanotube networks make them suitable for diverse applications. For example, we have used these networks as scaffolds to enhance elastic modulus of polymers by 36,000%. The porous nanotube networks also show high capacitance, and can be impregnated with catalysts nanoparticles at high loading, which can then be simultaneously used as electrodes and catalysts supports in electrochemical cells. A weakness of the nanotube networks is their fragility - but we have recently developed a method to transform these inelastic networks into superelastic materials by coating them with between one and five layers of graphene nanoplates. This work has been supported by the NSF (DMR-0645596, DMR-0619424 and CBET-0933510), Sloan Foundation, ACS-PRF, the Korea Institute of Energy Research, DARPA, and Bayer Materials.

  6. Monolithic Nickel (II) Oxide Aerogels Using an Organic Epoxide: The Importance of the Counter Ion

    SciTech Connect

    Gash, A E; Satcher, J H; Simpson, R L

    2004-01-13

    The synthesis and characterization of nickel (II) oxide aerogel materials prepared using the epoxide addition method is described. The addition of the organic epoxide propylene oxide to an ethanolic solution of NiCl{sub 2} 6H{sub 2}O resulted in the formation of an opaque light green monolithic gel and subsequent drying with supercritical CO{sub 2} gave a monolithic aerogel material of the same color. This material has been characterized using powder X-ray diffraction, electron microscopy, elemental analysis, and nitrogen adsorption/desorption analysis. The results indicate that the nickel (II) oxide aerogel has very low bulk density (98 kg/m{sup 3} ({approx}98 %porous)), high surface area (413 m{sup 2}/g), and has a particulate-type aerogel microstructure made up of very fine spherical particles with an open porous network. By comparison, a precipitate of Ni{sub 3}(NO{sub 3}){sub 2}(OH){sub 4} is obtained when the same preparation is attempted with the common Ni(NO{sub 3}){sub 2} 6H{sub 2}O salt as the precursor. The implications of the difference of reactivity of the two different precursors are discussed in the context of the mechanism of gel formation via the epoxide addition method. The synthesis of nickel (II) oxide aerogel, using the epoxide addition method, is especially unique in our experience. It is our first example of the successful preparation of a metal oxide aerogel using a metal divalent metal ion and may have implications for the application of this method to the preparation of aerogels or nanoparticles of other divalent metal oxides. To our knowledge this is the first report of a monolithic pure nickel (II) oxide aerogel materials.

  7. Fabricating porous materials using interpenetrating inorganic-organic composite gels

    DOEpatents

    Seo, Dong-Kyun; Volosin, Alex

    2016-06-14

    Porous materials are fabricated using interpenetrating inorganic-organic composite gels. A mixture or precursor solution including an inorganic gel precursor, an organic polymer gel precursor, and a solvent is treated to form an inorganic wet gel including the organic polymer gel precursor and the solvent. The inorganic wet gel is then treated to form a composite wet gel including an organic polymer network in the body of the inorganic wet gel, producing an interpenetrating inorganic-organic composite gel. The composite wet gel is dried to form a composite material including the organic polymer network and an inorganic network component. The composite material can be treated further to form a porous composite material, a porous polymer or polymer composite, a porous metal oxide, and other porous materials.

  8. NDE Elastic Properties of Fiber-Reinforced Composite Materials

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.

    1995-01-01

    Fiber-reinforced composites are increasingly replacing metallic alloys as structural materials for primary components of fracture-critical structures. This trend is a result of the growing understanding of material behavior and recognition of the desirable properties of composites. A research program was conducted on NDE methods for determining the elastic properties of composites.

  9. Composite materials: Tomorrow for the day after tomorrow

    NASA Technical Reports Server (NTRS)

    Condom, P.

    1982-01-01

    A description is given of the history of the use of composite materials in the aerospace industry. Research programs underway to obtain exact data on the behavior of composite materials over time are discussed. It is concluded that metal composites have not yet replaced metals, but that that this may be a future possibility.

  10. Composition and method for removing photoresist materials from electronic components

    DOEpatents

    Davenhall, Leisa B.; Rubin, James B.; Taylor, Craig M. V.

    2008-06-03

    Composition and method for removing photoresist materials from electronic components. The composition is a mixture of at least one dense phase fluid and at least one dense phase fluid modifier. The method includes exposing a substrate to at least one pulse of the composition in a supercritical state to remove photoresist materials from the substrate.

  11. Composition and method for removing photoresist materials from electronic components

    DOEpatents

    Davenhall, Leisa B.; Rubin, James B.; Taylor, Craig M.

    2005-01-25

    Composition and method for removing photoresist materials from electronic components. The composition is a mixture of at least one dense phase fluid and at least one dense phase fluid modifier. The method includes exposing a substrate to at least one pulse of the composition in a supercritical state to remove photoresist materials from the substrate.

  12. Selenium encapsulated into 3D interconnected hierarchical porous carbon aerogels for lithium-selenium batteries with high rate performance and cycling stability

    NASA Astrophysics Data System (ADS)

    Jiang, Shaofeng; Zhang, Zhian; Lai, Yanqing; Qu, Yaohui; Wang, XiWen; Li, Jie

    2014-12-01

    Selenium encapsulated into 3D interconnected hierarchical porous carbon aerogels (HPCA) as a carbon/selenium composite material is prepared for lithium-selenium batteries. Scanning electron microscope (SEM) and transmission electron microscope (TEM) observations show the hierarchical porous structures of the carbon aerogels and the homogeneous distribution of selenium in the composite. The performance of the HPCA/Se cathode is evaluated in lithium-selenium batteries using cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy. It is found that the HPCA/Se cathode shows high rate performance, coulombic efficiency and cycling stability. The HPCA/Se cathode has a highest coulombic efficiency which is kept above 98% after 50th cycle in ionic liquid N-methyl-(n-butyl) pyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR14TFSI) modified electrolyte and retains 309 mAh g-1 after 100 discharge/charge cycles at a high rate of 0.5 C (337.5 mAh g-1) in LiNO3 modified electrolyte, respectively. Even at the current density of 5 C (3375 mAh g-1), it can still maintain at a reversible capacity of 301 mAh g-1. The excellent electrochemical properties benefit from the high electron conductivity and 3D interconnected hierarchical porous structures of the carbon aerogels, which contribute to disperse selenium and absorb polyselenides, and suppress the formation of residual Li2Se layer.

  13. On the machinability of composite materials

    SciTech Connect

    Caprino, G.; De Iorio, I.; Santo, L.; Nele, L.

    1996-12-31

    Orthogonal cutting tests were carried out on a unidirectional Carbon Fibre Reinforced Plastic (CFRP), a unidirectional Glass Fibre Reinforced Plastic (GFRP), and a Sheet Moulding Compound (SMC) R50, using high speed steel tools. The force data were interpreted in the light of the usual force scheme adopted in metal cutting, disregarding the forces developing at the tool flank. It was found that, similarly to metals, the unit cutting force depends on the depth of cut t, decreasing with increasing the latter (size effect). The same trend was followed by the coefficient of friction. A new force scheme, previously proposed for composites, together with a different definition of {open_quotes}specific energy{close_quotes}, was then applied. Irrespective of the material considered, the new model results in a coefficient of friction independent of the cutting parameters, and in a specific energy X unaffected by the depth of cut. Nevertheless, X strongly decreases with increasing the rake angle, following different trends for CFRP and GFRP. Amongst the materials tested, the poorest machinability pertains to SMC.

  14. Development of Improved Aerogels for Spacecraft Hypervelocity Capture

    NASA Astrophysics Data System (ADS)

    Lisse, C. M.; Cheng, A. F.; Chabot, N. L.; Dello Russo, N.; Satcher, J. H.; Zolensky, M. E.; Cintala, M. J.; Glavin, D. P.; Sandford, S. A.

    2008-03-01

    We report on progress to date of an aerogel technology development and test program, to develop improved aerogel capture media for spacecraft capture of dust particles, utilizing silica, tantala, and alumina based aerogels with lower densities and organic impurity levels.

  15. Method for preparing polyolefin composites containing a phase change material

    DOEpatents

    Salyer, Ival O.

    1990-01-01

    A composite useful in thermal energy storage, said composite being formed of a polyolefin matrix having a phase change material such as a crystalline alkyl hydrocarbon incorporated therein. The composite is useful in forming pellets, sheets or fibers having thermal energy storage characteristics; methods for forming the composite are also disclosed.

  16. Aerogel-Based Insulation for High-Temperature Industrial Processes

    SciTech Connect

    Dr. Owen Evans

    2011-10-13

    Under this program, Aspen Aerogels has developed an industrial insulation called Pyrogel HT, which is 4-5 times more thermally efficient than current non-aerogel technology. Derived from nanoporous silica aerogels, Pyrogel HT was specifically developed to address a high temperature capability gap not currently met with Aspen Aerogels{trademark} flagship product, Pyrogel XT. Pyrogel XT, which was originally developed on a separate DOE contract (DE-FG36-06GO16056), was primarily optimized for use in industrial steam processing systems, where application temperatures typically do not exceed 400 C. At the time, further improvements in thermal performance above 400 C could not be reasonably achieved for Pyrogel XT without significantly affecting other key material properties using the current technology. Cumulative sales of Pyrogel HT into domestic power plants should reach $125MM through 2030, eventually reaching about 10% of the total insulation market share in that space. Global energy savings would be expected to scale similarly. Over the same period, these sales would reduce domestic energy consumption by more than 65 TBtu. Upon branching out into all industrial processes in the 400 C-650 C regime, Pyrogel HT would reach annual sales levels of $150MM, with two-thirds of that being exported.

  17. Aging and iodine loading of silver-functionalized aerogels

    SciTech Connect

    Bruffey, S.H.; Jubin, R.T.; Anderson, K.K.; Walker, J.F.

    2013-07-01

    Engineered silver-functionalized silica aerogels are being investigated for their potential application in off-gas treatment at a used nuclear fuel reprocessing facility. Reprocessing will release several key volatile radionuclides, including iodine-129. To achieve regulatory compliance, iodine-129 must be removed from any off-gas stream prior to environmental discharge. Ag{sup 0}-functionalized aerogels have been demonstrated to have high iodine-capture capacity, high porosity, and potential for conversion into a waste form. Capture materials used in off-gas treatment may be exposed to a heated, high-humidity, acidic gas stream for months. Extended exposure to this stream could affect sorbent performance. It was the aim of this study to evaluate what impacts might be observed when Ag{sup 0}-functionalized aerogels prepared at Pacific Northwest National Laboratory were contacted with a dry air stream for up to 6 months and then used to adsorb iodine from a synthetic off-gas stream. Results demonstrate that there is some loss of iodine-capture capacity caused by aging, but that this loss is not as marked as for aging of more traditional iodine sorbents, such as silver-impregnated mordenite. Specifically, aging silver-functionalized aerogel under a dry air stream for up to 6 months can decrease its iodine capacity from 41 wt% to 32 wt%. (authors)

  18. AGING AND IODINE LOADING OF SILVER-FUNCTIONALIZED AEROGELS

    SciTech Connect

    Bruffey, Stephanie H; Jubin, Robert Thomas; Anderson, Kaara K; Walker Jr, Joseph Franklin

    2013-01-01

    Engineered silver-functionalized silica aerogels are being investigated for their application in off-gas treatment at a used nuclear fuel reprocessing facility. Reprocessing will release several key volatile radionuclides, including iodine-129. To achieve regulatory compliance, iodine-129 must be removed from any off-gas stream prior to environmental discharge. Silver-functionalized aerogels have been demonstrated to have high iodine capture capacity, high porosity and potential for conversion into a waste form. Capture materials used in off-gas treatment may be exposed to a heated, high humidity, acidic gas stream for months. Extended exposure to this stream could affect sorbent performance. It was the aim of this study to evaluate what impacts might be observed when Ag0-functionalized aerogels prepared at Pacific Northwest National Laboratory were contacted with a dry air stream for up to 6 months and then used to adsorb iodine from a synthetic off-gas stream. Results demonstrate that there is some loss of iodine capture capacity caused by aging, but that this loss is not as marked as for aging of more traditional iodine sorbents, such as silver-impregnated mordenite. Specifically, aging silver-functionalized aerogel under a dry air stream for up to 6 months can decrease its iodine capacity from 41wt% to 32wt%.

  19. Synthesis and Properties of Cross-Linked Polyamide Aerogels

    NASA Technical Reports Server (NTRS)

    Williams, Jarrod C.; Meador, Mary Ann; McCorkle, Linda

    2015-01-01

    We report the first synthesis of cross-linked polyamide aerogels through step growth polymerization using a combination of diamines, diacid chloride and triacid chloride. Polyamide oligomers endcapped with amines are prepared as stable solutions in N-methylpyrrolidinone from several different diamine precursors and 1,3-benzenedicarbonyl dichloride. Addition of 1,3,5-benzenetricarbonyl trichloride yields gels which form in under five minutes according to the scheme shown. Solvent exchange of the gels into ethanol, followed by drying using supercritical CO2 extraction gives colorless aerogels with densities around 0.1 to 0.2 gcm3. Thicker monolithes of the polyamide aerogels are stiff and strong, while thin films of certain formulations are highly flexible, durable, and even translucent. These materials may have use as insulation for deployable space structures, rovers, habitats or extravehicular activity suits as well as in many terrestrial applications. Strucure property relationships of the aerogels, including surface area, mechanical properties, and thermal conductivity will be discussed.

  20. Macroscopic Subdivision of Silica Aerogel Collectors for Sample Return Missions

    SciTech Connect

    Ishii, H A; Bradley, J P

    2005-09-14

    Silica aerogel collector tiles have been employed for the collection of particles in low Earth orbit and, more recently, for the capture of cometary particles by NASA's Stardust mission. Reliable, reproducible methods for cutting these and future collector tiles from sample return missions are necessary to maximize the science output from the extremely valuable embedded particles. We present a means of macroscopic subdivision of collector tiles by generating large-scale cuts over several centimeters in silica aerogel with almost no material loss. The cut surfaces are smooth and optically clear allowing visual location of particles for analysis and extraction. This capability is complementary to the smaller-scale cutting capabilities previously described [Westphal (2004), Ishii (2005a, 2005b)] for removing individual impacts and particulate debris in tiny aerogel extractions. Macroscopic cuts enable division and storage or distribution of portions of aerogel tiles for immediate analysis of samples by certain techniques in situ or further extraction of samples suited for other methods of analysis.

  1. New organic aerogels based upon a phenolic-furfural reaction

    SciTech Connect

    Hrubesh, L.W.

    1994-09-01

    The aqueous polycondensation of (1) resorcinol with formaldehyde and (2) melamine with formaldehyde are two proven synthetic routes for the formation of organic aerogels. Recently, we have discovered a new type of organic aerogel based upon a phenolic-furfural (PF) reaction. This sol-gel polymerization has a major advantage over past approaches since it can be conducted in alcohol (e.g., 1-propanol), thereby eliminating the need for a solvent exchange step prior to supercritical drying from carbon dioxide. The resultant aerogels are dark brown in color and can be converted to a carbonized version upon pyrolysis in an inert atmosphere. BET surface areas of 350--600 m{sup 2}/g have been measured, and transmission electron microscopy reveals an interconnected structure of irregularly-shaped particles or platelets with {approximately}10 nm dimensions. Thermal conductivities as low as 0.015 W/m-K have been recorded for PF aerogels under ambient conditions. This paper describes the chemistry-structure-property relationships of these new materials in detail.

  2. Mechanism of drug release from silica-gelatin aerogel-Relationship between matrix structure and release kinetics.

    PubMed

    Veres, Péter; Kéri, Mónika; Bányai, István; Lázár, István; Fábián, István; Domingo, Concepción; Kalmár, József

    2017-04-01

    Specific features of a silica-gelatin aerogel (3 wt.% gelatin content) in relation to drug delivery has been studied. It was confirmed that the release of both ibuprofen (IBU) and ketoprofen (KET) is about tenfold faster from loaded silica-gelatin aerogel than from pure silica aerogel, although the two matrices are structurally very similar. The main goal of the study was to understand the mechanistic background of the striking difference between the delivery properties of these closely related porous materials. Hydrated and dispersed silica-gelatin aerogel has been characterized by NMR cryoporometry, diffusiometry and relaxometry. The pore structure of the silica aerogel remains intact when it disintegrates in water. In contrast, dispersed silica-gelatin aerogel develops a strong hydration sphere, which reshapes the pore walls and deforms the pore structure. The drug release kinetics was studied on a few minutes time scale with 1s time resolution. Simultaneous evaluation of all relevant kinetic and structural information confirmed that strong hydration of the silica-gelatin skeleton facilitates the rapid desorption and dissolution of the drugs from the loaded aerogel. Such a driving force is not operative in pure silica aerogels.

  3. Organic carbon aerogels from the sol-gel polymerization of phenolic-furfural mixtures

    DOEpatents

    Pekala, Richard W.

    1998-04-28

    The sol-gel polymerization of a phenolic-furfural mixture in dilute solution leads to a highly cross-linked network that can be supercritically dried to form a high surface area foam. These porous materials have cell/pore sizes .ltoreq.1000 .ANG., and although they are dark brown in color, they can be classified as a new type of aerogel. The phenolic-furfural aerogel can be pyrolyzed in an inert atmosphere at 1050.degree. C. to produce carbon aerogels. This new aerogel may be used for thermal insulation, chromatographic packing, water filtration, ion-exchange, and carbon electrodes for energy storage devices, such as batteries and double-layer capacitors.

  4. Organic aerogels from the sol-gel polymerization of phenolic-furfural mixtures

    DOEpatents

    Pekala, R.W.

    1995-12-19

    The sol-gel polymerization of a phenolic-furfural mixture in dilute solution leads to a highly cross-linked network that can be supercritically dried to form a high surface area foam. These porous materials have cell/pore sizes{<=}1000{angstrom}, and although they are dark brown in color, they can be classified as a new type of aerogel. The phenolic-furfural aerogel can be pyrolyzed in an inert atmosphere at 1050 C to produce carbon aerogels. This new aerogel may be used for thermal insulation, chromatographic packing, water filtration, ion-exchange, and carbon electrodes for energy storage devices, such as batteries and double-layer capacitors. 8 figs.

  5. Organic aerogels from the sol-gel polymerization of phenolic-furfural mixtures

    DOEpatents

    Pekala, R.W.

    1996-09-17

    The sol-gel polymerization of a phenolic-furfural mixture in dilute solution leads to a highly cross-linked network that can be supercritically dried to form a high surface area foam. These porous materials have cell/pore sizes {<=}1,000{angstrom}, and although they are dark brown in color, they can be classified as a new type of aerogel. The phenolic-furfural aerogel can be pyrolyzed in an inert atmosphere at 1,050 C to produce carbon aerogels. This new aerogel may be used for thermal insulation, chromatographic packing, water filtration, ion-exchange, and carbon electrodes for energy storage devices, such as batteries and double-layer capacitors. 8 figs.

  6. Organic carbon aerogels from the sol-gel polymerization of phenolic-furfural mixtures

    DOEpatents

    Pekala, R.W.

    1998-04-28

    The sol-gel polymerization of a phenolic-furfural mixture in dilute solution leads to a highly cross-linked network that can be supercritically dried to form a high surface area foam. These porous materials have cell/pore sizes {<=}1000 {angstrom}, and although they are dark brown in color, they can be classified as a new type of aerogel. The phenolic-furfural aerogel can be pyrolyzed in an inert atmosphere at 1050 C to produce carbon aerogels. This new aerogel may be used for thermal insulation, chromatographic packing, water filtration, ion-exchange, and carbon electrodes for energy storage devices, such as batteries and double-layer capacitors. 8 figs.

  7. Organic aerogels from the sol-gel polymerization of phenolic-furfural mixtures

    DOEpatents

    Pekala, Richard W.

    1995-01-01

    The sol-gel polymerization of a phenolic-furfural mixture in dilute solution leads to a highly cross-linked network that can be supercritically dried to form a high surface area foam. These porous materials have cell/pore sizes.ltoreq.1000.ANG., and although they are dark brown in color, they can be classified as a new type of aerogel. The phenolic-furfural aerogel can be pyrolyzed in an inert atmosphere at 1050.degree. C. to produce carbon aerogels. This new aerogel may be used for thermal insulation, chromatographic packing, water filtration, ion-exchange, and carbon electrodes for energy storage devices, such as batteries and double-layer capacitors.

  8. Organic aerogels from the sol-gel polymerization of phenolic-furfural mixtures

    DOEpatents

    Pekala, Richard W.

    1996-01-01

    The sol-gel polymerization of a phenolic-furfural mixture in dilute solution leads to a highly cross-linked network that can be supercritically dried to form a high surface area foam. These porous materials have cell/pore sizes .ltoreq.1000.ANG., and although they are dark brown in color, they can be classified as a new type of aerogel. The phenolic-furfural aerogel can be pyrolyzed in an inert atmosphere at 1050.degree. C. to produce carbon aerogels. This new aerogel may be used for thermal insulation, chromatographic packing, water filtration, ion-exchange, and carbon electrodes for energy storage devices, such as batteries and double-layer capacitors.

  9. Locating Stardust-like Particles in Aerogel Using X-Ray Techniques

    NASA Technical Reports Server (NTRS)

    Jurewicz, A. J. G.; Jones, S. M.; Tsapin, A.; Mih, D. T.; Connolly, H. C., Jr.; Graham, G. A.

    2003-01-01

    Silica aerogel is the material that the spacecraft STARDUST is using to collect interstellar and cometary silicates. Anticipating the return of the samples to earth in January of 2006, MANY individual investigators and, especially, the investigators in NASA's SRLIDAP program are studying means of both in situ analysis of particles, as well as particle extraction. To help individual PI's with extraction of particles from aerogel in their own laboratories, we are exploring the use of standard laboratory x-ray equipment and commercial techniques for precisely locating specific particles in aerogel. We approached the evaluation of commercial x-ray techniques as follows. First, we determined the most appropriate detector for use with aerogel and particulates. Then, we compared and contrasted techniques useful for university laboratories.

  10. Laminated thermoplastic composite material from recycled high density polyethylene

    NASA Technical Reports Server (NTRS)

    Liu, Ping; Waskom, Tommy L.

    1994-01-01

    The design of a materials-science, educational experiment is presented. The student should understand the fundamentals of polymer processing and mechanical property testing of materials. The ability to use American Society for Testing and Materials (ASTM) standards is also necessary for designing material test specimens and testing procedures. The objectives of the experiment are (1) to understand the concept of laminated composite materials, processing, testing, and quality assurance of thermoplastic composites and (2) to observe an application example of recycled plastics.

  11. Temperature measurements of shocked silica aerogel foam

    DOE PAGES

    Falk, K.; McCoy, C. A.; Fryer, C. L.; ...

    2014-09-12

    We present recent results of equation-of-state (EOS) measurements of shocked silica (SiO2) aerogel foam at the OMEGA laser facility. Silica aerogel is an important low-density pressure standard used in many high energy density experiments, including the novel technique of shock and release. Due to its many applications, it has been a heavily studied material and has a well-known Hugoniot curve. This work then complements the velocity and pressure measurements with additional temperature data providing the full EOS information within the warm dense matter regime for the temperature interval of 1–15 eV and shock velocities between 10 and 40 km/s correspondingmore » to shock pressures of 0.3–2 Mbar. The experimental results were compared with hydrodynamic simulations and EOS models. We found that the measured temperature was systematically lower than suggested by theoretical calculations. As a result, simulations provide a possible explanation that the emission measured by optical pyrometry comes from a radiative precursor rather than from the shock front, which could have important implications for such measurements.« less

  12. Temperature measurements of shocked silica aerogel foam

    SciTech Connect

    Falk, K.; McCoy, C. A.; Fryer, C. L.; Greeff, C. W.; Hungerford, A. L.; Montgomery, D. S.; Schmidt, D. W.; Sheppard, D. G.; Williams, J. R.; Boehly, T. R.; Benage, J. F.

    2014-09-12

    We present recent results of equation-of-state (EOS) measurements of shocked silica (SiO2) aerogel foam at the OMEGA laser facility. Silica aerogel is an important low-density pressure standard used in many high energy density experiments, including the novel technique of shock and release. Due to its many applications, it has been a heavily studied material and has a well-known Hugoniot curve. This work then complements the velocity and pressure measurements with additional temperature data providing the full EOS information within the warm dense matter regime for the temperature interval of 1–15 eV and shock velocities between 10 and 40 km/s corresponding to shock pressures of 0.3–2 Mbar. The experimental results were compared with hydrodynamic simulations and EOS models. We found that the measured temperature was systematically lower than suggested by theoretical calculations. As a result, simulations provide a possible explanation that the emission measured by optical pyrometry comes from a radiative precursor rather than from the shock front, which could have important implications for such measurements.

  13. Multiscale Computer Simulation of Failure in Aerogels

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2008-01-01

    Aerogels have been of interest to the aerospace community primarily for their thermal properties, notably their low thermal conductivities. While such gels are typically fragile, recent advances in the application of conformal polymer layers to these gels has made them potentially useful as lightweight structural materials as well. We have previously performed computer simulations of aerogel thermal conductivity and tensile and compressive failure, with results that are in qualitative, and sometimes quantitative, agreement with experiment. However, recent experiments in our laboratory suggest that gels having similar densities may exhibit substantially different properties. In this work, we extend our original diffusion limited cluster aggregation (DLCA) model for gel structure to incorporate additional variation in DLCA simulation parameters, with the aim of producing DLCA clusters of similar densities that nevertheless have different fractal dimension and secondary particle coordination. We perform particle statics simulations of gel strain on these clusters, and consider the effects of differing DLCA simulation conditions, and the resultant differences in fractal dimension and coordination, on gel strain properties.

  14. Temperature measurements of shocked silica aerogel foam.

    PubMed

    Falk, K; McCoy, C A; Fryer, C L; Greeff, C W; Hungerford, A L; Montgomery, D S; Schmidt, D W; Sheppard, D G; Williams, J R; Boehly, T R; Benage, J F

    2014-09-01

    We present recent results of equation-of-state (EOS) measurements of shocked silica (SiO_{2}) aerogel foam at the OMEGA laser facility. Silica aerogel is an important low-density pressure standard used in many high energy density experiments, including the novel technique of shock and release. Due to its many applications, it has been a heavily studied material and has a well-known Hugoniot curve. This work then complements the velocity and pressure measurements with additional temperature data providing the full EOS information within the warm dense matter regime for the temperature interval of 1-15 eV and shock velocities between 10 and 40 km/s corresponding to shock pressures of 0.3-2 Mbar. The experimental results were compared with hydrodynamic simulations and EOS models. We found that the measured temperature was systematically lower than suggested by theoretical calculations. Simulations provide a possible explanation that the emission measured by optical pyrometry comes from a radiative precursor rather than from the shock front, which could have important implications for such measurements.

  15. ISOTOPIC COMPOSITIONS OF URANIUM REFERENCE MATERIALS

    SciTech Connect

    Jacobsen, B; Borg, L; Williams, R; Brennecka, G; Hutcheon, I

    2009-09-03

    Uranium isotopic compositions of a variety of U standard materials were measured at Lawrence Livermore National Laboratory and are reported here. Both thermal ionization mass spectrometry (TIMS) and multi-collector inductively couple plasma mass spectrometry (MC-ICPMS) were used to determine ratios of the naturally occurring isotopes of U. Establishing an internally coherent set of isotopic values for a range of U standards is essential for inter-laboratory comparison of small differences in {sup 238}U/{sup 235}U, as well as the minor isotopes of U. Differences of {approx} 1.3{per_thousand} are now being observed in {sup 238}U/{sup 235}U in natural samples, and may play an important role in understanding U geochemistry where tracing the origin of U is aided by U isotopic compositions. The {sup 238}U/{sup 235}U ratios were measured with a TRITON TIMS using a mixed {sup 233}U-{sup 236}U isotopic tracer to correct for instrument fractionation. this tracer was extremely pure and resulted in only very minor corrections on the measured {sup 238}U/{sup 235}U ratios of {approx} 0.03. The values obtained for {sup 238}U/{sup 235}U are: IRMM184 = 137.698 {+-} 0.020 (n = 15), SRM950a = 137.870 {+-} 0.018 (n = 8), and CRM112a = 137.866 {+-} 0.030 (n = 16). Uncertainties represent 2 s.d. of the population. The measured value for IRMM184 is in near-perfect agreement with the certified value of 137.697 {+-} 0.042. However, the U isotopic compositions of SRM950a and CRM112a are not certified. Minor isotopes of U were determined with a Nu Plasma HR MC-ICPMS and mass bias was corrected by sample/standard bracketing to IRMM184, using its certified {sup 238}U/{sup 235}U ratio. Thus, the isotopic compositions determined using both instruments are compatible. The values obtained for {sup 234}U/{sup 235}U are: SRM950a = (7.437 {+-} 0.043) x 10{sup -3} (n = 18), and CRM112a = (7.281 {+-} 0.050) x 10{sup -3} (n = 16), both of which are in good agreement with published values. The value for

  16. Test Methods for Measuring Material Properties of Composite Materials in all Three Material Axes

    DTIC Science & Technology

    2012-01-24

    materials. Hara et al. [4] studied the out-of-plane tensile strength of CFRP laminates using the direct tensile method with specimens of various size...Composite Structures (35) (1996): 5-20. 3. Nielsen, A., Ibsen, J., & Thomsen, O. “Through-Thickness Tensile and Compressive Properties of Stitched CFRP ...Strength of Aligned CFRP Determined by Direct Tensile Method”. Composites Part A: Applied Science and Manufacturing (41) (10) (2010): 1425-1433. 6

  17. Prediction of Mechanical Properties of Aerogels using a Multifractal Multidimensional Multiscaling Approach

    NASA Astrophysics Data System (ADS)

    Campo Schickler, Fritz Andres

    Aerogels, produced by sol-gel technologies, have several applications in sensors, high energy particle physics, catalysis, heat insulation, supercapacitors, heat storage devices, high efficiency windows, among others. These applications take advantage of the outstanding properties these materials present as a result of their structure. However, the low mechanical properties that these materials present as result of the process, limits their commercial applications. In this dissertation, it is investigated the relationship between the processing conditions and mechanical properties of these materials computationally. The prediction of the effective properties for these materials is a daunting task because of their complex structure. Aerogels's structure is not homogeneous nor periodic, but rather amorphous, nanostructured, and highly porous, making the traditional techniques used to study other materials inapplicable. This dissertation presents the prediction of mechanical properties of aerogels calculated by a novel Multifractal Multidimensional Multiscaling Approach (MMMA) developed here. MMMA consists on recursively calculating the effective properties of the material along several scales. Since aerogels and structures produced by sol-gel technologies present a multifractal character, it is shown that MMMA is applicable to predict the effective properties of these materials. The implementation of MMMA requires a fractal characterization of the structure. For this, computational scattering experiments were performed on structures resembling aerogels. The structures resembling aerogels were produced computationally incorporating the chemistry and the physical phenomena involved in the formation process. MMMA was used to predict the mechanical properties of silica aerogels for different processing conditions. Thus, mechanical properties, scattering experiments, and processing conditions were investigated and correlated in this work.

  18. Desalination with carbon aerogel electrodes

    SciTech Connect

    Farmer, J.C.; Richardson, J.H.; Fix, D.V.

    1996-10-21

    An electrically regenerated electrosorption process known as carbon aerogel CDI was developed for continuously removing ionic impurities from aqueous streams. A salt solution flows in a channel formed by pairs of parallel carbon aerogel electrodes. Each electrode has a very high BET surface area and very low resistivity. After polarization, anions and cations are removed from electrolyte by the electric field and electrosorbed onto the carbon aerogel. The solution is thus separated into two streams, brine and water. Based on this, carbon aerogel CDI appears to be an energy-efficient alternative to evaporation, electrodialysis, and reverse osmosis. The energy required by this process is about QV/2, plus losses. Estimated energy requirement for sea water desalination is 18-27 Wh gal{sup -1}, depending on cell voltage and flow rate. The requirement for brackish water desalination is less, 1.2-2.5 Wh gal{sup -1} at 1600 ppM. This is assuming that stored electrical energy is reclaimed during regeneration.

  19. Flexible Polyimide Aerogel Cross-linked by Poly(maleic Anhydride-alt-alkylene)

    NASA Technical Reports Server (NTRS)

    Guo, Haiquan; Meador, Mary Ann B.; Wilkewitz, Brittany Marie

    2014-01-01

    Aerogels are potential materials for aerospace applications due to their lower thermal conductivity, lighter weight, and low dielectric constant. However, silica aerogels are restricted due to their inherent fragility, hygroscopic nature, and poor mechanical properties, especially in extreme aerospace environments. In order to fit the needs of aerospace applications, developing new thermal insulation materials that are flexible, and moisture resistant is needed. To this end, we fabricated a series of polyimide aerogels crosslinked with different poly(maleic anhydride-alt-alkylene)s as seen in Scheme 1. The polyimide oligomers were made with 3,3,4,4-biphenyltetracarboxylic dianhydride (BPDA), and different diamines or diamine combinations. The resulting aerogels have low density (0.06 gcm3 to 0.16 gcm3) and high surface area (240-440 m2g). The effect of the different backbone structures on density, shrinkage, porosity, surface area, mechanical properties, moisture resistance and thermal properties will be discussed. These novel polyalkylene-imide aerogels may be potential candidates for applications such as space suit insulation for planetary surface missions, insulation for inflatable structures for habitats, inflatable aerodynamic decelerators for entry, descent and landing (EDL) operations, and cryotank insulation for advance space propulsion systems. Scheme 1. Network of polyimide aerogels crosslinked with deifferent poly(maleic anhydride).

  20. Mechanics of Composite Materials for Spacecraft

    DTIC Science & Technology

    1992-07-01

    Temperature Fibrous Composite Systems," Damage and Oxidation Protection in High Temperature Composites, G.K. Haritos and 0.0. Ochoa, Editors, AD-Vol. 25...Strain-Localization and Size Effect Due to Cracking and Damage , "Fatigue Damage Mechanics of Metal Matrix Composite Laminates," (with E.C.J. Wung...synthesis, characterization and properties, International Center for Applied Sciences, " Damage Mechanics of Metal Matrix Composite Laminates," Gradisca