Science.gov

Sample records for aeromagnetic anomaly map

  1. High resolution aeromagnetic anomaly map of Mount Etna volcano, Southern Italy

    NASA Astrophysics Data System (ADS)

    D'Ajello Caracciolo, F.; Nicolosi, I.; Carluccio, R.; Chiappini, S.; De Ritis, R.; Giuntini, A.; Materni, V.; Messina, A.; Chiappini, M.

    2014-05-01

    A high resolution aeromagnetic survey of Mount Etna Volcano was carried out by the Airborne Geophysics Science Team of Istituto Nazionale di Geofisica e Vulcanologia (INGV), aimed at producing the most detailed magnetic anomaly map existing so far for this area. Two datasets of the total intensity of the Earth's Magnetic Field were collected at different altitudes to take into account the huge topographic variations of Etna volcano, that reaches elevations above 3300 m asl. One level was flown at the altitude of 2200 m whereas a second one over the central part, at about 3500 m of altitude. Since the region is characterized by a large presence of strongly magnetized volcanic products, the survey was carried out acquiring profile lines only, in order to optimize the resources. From the residual magnetic anomaly analysis we inferred two main trending lineaments (- 35°N and 0°N) that are related to regional tectonic stress field and we interpret the main magnetic anomaly as the effect of thickness variation of magnetized volcanic products due to the complex pre-volcanic basement morphology of Etna.

  2. Aeromagnetic anomalies over faulted strata

    USGS Publications Warehouse

    Grauch, V.J.S.; Hudson, Mark R.

    2011-01-01

    High-resolution aeromagnetic surveys are now an industry standard and they commonly detect anomalies that are attributed to faults within sedimentary basins. However, detailed studies identifying geologic sources of magnetic anomalies in sedimentary environments are rare in the literature. Opportunities to study these sources have come from well-exposed sedimentary basins of the Rio Grande rift in New Mexico and Colorado. High-resolution aeromagnetic data from these areas reveal numerous, curvilinear, low-amplitude (2–15 nT at 100-m terrain clearance) anomalies that consistently correspond to intrasedimentary normal faults (Figure 1). Detailed geophysical and rock-property studies provide evidence for the magnetic sources at several exposures of these faults in the central Rio Grande rift (summarized in Grauch and Hudson, 2007, and Hudson et al., 2008). A key result is that the aeromagnetic anomalies arise from the juxtaposition of magnetically differing strata at the faults as opposed to chemical processes acting at the fault zone. The studies also provide (1) guidelines for understanding and estimating the geophysical parameters controlling aeromagnetic anomalies at faulted strata (Grauch and Hudson), and (2) observations on key geologic factors that are favorable for developing similar sedimentary sources of aeromagnetic anomalies elsewhere (Hudson et al.).

  3. Location, structure, and seismicity of the Seattle fault zone, Washington: Evidence from aeromagnetic anomalies, geologic mapping, and seismic-reflection data

    USGS Publications Warehouse

    Blakely, R.J.; Wells, R.E.; Weaver, C.S.; Johnson, S.Y.

    2002-01-01

    A high-resolution aeromagnetic survey of the Puget Lowland shows details of the Seattle fault zone, an active but largely concealed east-trending zone of reverse faulting at the southern margin of the Seattle basin. Three elongate, east-trending magnetic anomalies are associated with north-dipping Tertiary strata exposed in the hanging wall; the magnetic anomalies indicate where these strata continue beneath glacial deposits. The northernmost anomaly, a narrow, elongate magnetic high, precisely correlates with magnetic Miocene volcanic conglomerate. The middle anomaly, a broad magnetic low, correlates with thick, nonmagnetic Eocene and Oligocene marine and fluvial strata. The southern anomaly, a broad, complex magnetic high, correlates with Eocene volcanic and sedimentary rocks. This tripartite package of anomalies is especially clear over Bainbridge Island west of Seattle and over the region east of Lake Washington. Although attenuated in the intervening region, the pattern can be correlated with the mapped strike of beds following a northwest-striking anticline beneath Seattle. The aeromagnetic and geologic data define three main strands of the Seattle fault zone identified in marine seismic-reflection profiles to be subparallel to mapped bedrock trends over a distance of >50 km. The locus of faulting coincides with a diffuse zone of shallow crustal seismicity and the region of uplift produced by the M 7 Seattle earthquake of A.D. 900-930.

  4. Aeromagnetic survey map of Sacramento Valley, California

    USGS Publications Warehouse

    Langenheim, Victoria E.

    2015-01-01

    Three aeromagnetic surveys were flown to improve understanding of the geology and structure in the Sacramento Valley. The resulting data serve as a basis for geophysical interpretations, and support geological mapping, water and mineral resource investigations, and other topical studies. Local spatial variations in the Earth's magnetic field (evident as anomalies on aeromagnetic maps) reflect the distribution of magnetic minerals, primarily magnetite, in the underlying rocks. In many cases the volume content of magnetic minerals can be related to rock type, and abrupt spatial changes in the amount of magnetic minerals commonly mark lithologic or structural boundaries. Bodies of serpentinite and other mafic and ultramafic rocks tend to produce the most intense positive magnetic anomalies (for example, in the northwest part of the map). These rock types are the inferred sources, concealed beneath weakly magnetic, valley-fill deposits, of the most prominent magnetic features in the map area, the magnetic highs that extend along the valley axis. Cenozoic volcanic rocks are also an important source of magnetic anomalies and coincide with short-wavelength anomalies that can be either positive (strong central positive anomaly flanked by lower-amplitude negative anomalies) or negative (strong central negative anomaly flanked by lower-amplitude positive anomalies), reflecting the contribution of remanent magnetization. Rocks with more felsic compositions or even some sedimentary units also can cause measurable magnetic anomalies. For example, the long, linear, narrow north-trending anomalies (with amplitudes of <50 nanoteslas [nT]) along the western margin of the valley coincide with exposures of the Mesozoic Great Valley sequence. Note that isolated, short-wavelength anomalies, such as those in the city of Sacramento and along some of the major roads, are caused by manmade features.

  5. US Aeromagnetic and Satellite Magnetic Anomaly Comparisons

    NASA Technical Reports Server (NTRS)

    Vonfrese, R. R. B.; Hinze, W. J.; Braile, L. W. (Principal Investigator); Sexton, J. L.

    1984-01-01

    Scalar aeromagnetic data obtained by the U.S. Naval Oceanographic Office (NOO) Vector Magnetic Survey of the conterminous U.S. were screened for periods of intense diurnal magnetic activity and reduced to anomaly form, filtered, and continued upward. A number of correlations between the NOO, POGO and preliminary MAGSAT data are evident at satellite elevations, including a prominent transcontinental magnetic high which extends from the Anadarko Basin to the Cincinnati Arch. The transcontinental magnetic high is breached by negative anomalies located over the Rio Grande Rift and Mississippi River Aulacogen. Differentially reduced-to-pole NOO and POGO magnetic anomaly data show that the transcontinental magnetic high corresponds to a well-defined regional trend of negative free-air gravity and enhanced crustal thickness anomalies.

  6. A Review of Aeromagnetic Anomalies in the Sawatch Range, Central Colorado

    USGS Publications Warehouse

    Bankey, Viki

    2010-01-01

    This report contains digital data and image files of aeromagnetic anomalies in the Sawatch Range of central Colorado. The primary product is a data layer of polygons with linked data records that summarize previous interpretations of aeromagnetic anomalies in this region. None of these data files and images are new; rather, they are presented in updated formats that are intended to be used as input to geographic information systems, standard graphics software, or map-plotting packages.

  7. Aeromagnetic and aeromagnetic-based geologic maps of the Coastal Belt, Franciscan Complex, northern California

    USGS Publications Warehouse

    Langenheim, V.E.; Jachens, R.C.; McLaughlin, R.J.

    2011-01-01

    The Coastal belt of the Franciscan Complex represents a Late Cretaceous to Miocene accretionary prism and overlying slope deposits. Its equivalents may extend from the offshore outer borderland of southern California to north of the Mendocino Triple Junction under the Eel River Basin and in the offshore of Cascadia. The Coastal belt is exposed on land in northern California, yet its structure and stratigraphy are incompletely known because of discontinuous exposure, structural disruption, and lithologically non-distinctive clastic rocks. The intent of this report is to make available, in map form, aeromagnetic data covering the Coastal belt that provide a new dataset to aid in mapping, understanding, and interpreting the incompletely understood geology and structure in northern California. The newly merged aeromagnetic data over the Coastal belt of the Franciscan Complex reveal long, linear anomalies that indicate remarkably coherent structure within a terrane where mapping at the surface indicates complex deformation and that has been described as "broken formation" and, even locally as "melange". The anomalies in the Coastal belt are primarily sourced by volcanic-rich graywackes and exotic blocks of basalt. Some anomalies along the contact of the Coastal belt with the Central belt are likely caused by local interleaving of components of the Coast Ranges ophiolite. These data can be used to map additional exotic blocks within the Coastal belt and to distinguish lithologically indistinct graywackes within the Coastal terrane. Using anomaly asymmetry allows projection of these "layers" into the subsurface. This analysis indicates predominant northeast dips consistent with tectonic interleaving of blocks within a subduction zone.

  8. Digital Aeromagnetic Map of the Nevada Test Site and Vicinity, Nye, Lincoln, and Clark Counties, Nevada, and Inyo County, California

    USGS Publications Warehouse

    Ponce, David A.

    2000-01-01

    An aeromagnetic map of the Nevada Test Site area was prepared from publicly available aeromagnetic data described by McCafferty and Grauch (1997). Magnetic surveys were processed using standard techniques. Southwest Nevada is characterized by magnetic anomalies that reflect the distribution of thick sequences of volcanic rocks, magnetic sedimentary rocks, and the occurrence of granitic rocks. In addition, aeromagnetic data reveal the presence of linear features that reflect faulting at both regional and local scales.

  9. Aeromagnetic survey map of the central California Coast Ranges

    USGS Publications Warehouse

    Langenheim, V.E.; Jachens, R.C.; Moussaoui, K.

    2009-01-01

    This aeromagnetic survey was flown as part of a Cooperative Research and Development Agreement (CRADA) with the Pacific Gas and Electric Company and is intended to promote further understanding of the geology and structure in the central California Coast Ranges by serving as a basis for geophysical interpretations and by supporting geological mapping, mineral and water resource investigations, and other topical studies. Local spatial variations in the Earth's magnetic field (evident as anomalies on aeromagnetic maps) reflect the distribution of magnetic minerals, primarily magnetite, in the underlying rocks. In many cases the volume content of magnetic minerals can be related to rock type, and abrupt spatial changes in the amount of magnetic minerals can commonly mark lithologic or structural boundaries. Bodies of serpentinite and other mafic and ultramafic rocks tend to produce the most intense magnetic anomalies, but such generalizations must be applied with caution because rocks with more felsic compositions, such as the porphyritic granodiorite-granite of the La Panza Range, and even some sedimentary units, also can cause measurable magnetic anomalies.

  10. Recent Aeromagnetic Anomaly views of the Antarctic continent

    NASA Astrophysics Data System (ADS)

    Ferraccioli, F.

    2012-04-01

    Antarctica is a keystone within the Gondwana and Rodinia supercontinents. However, despite intense geological research along the coastal fringes of Antarctica, the interior of the continent remains one of the most poorly understood regions on Earth. Aeromagnetic investigations are a useful tool to help disclose the structure and the evolution of continents from the Precambrian to the Cenozoic and Antarctica is no exception. Here I review a variety of aeromagnetic studies in East and West Antarctica performed since the completion of the first generation ADMAP -Antarctic Digital Magnetic Anomaly Project- in 2001. In western Dronning Maud, in East Antarctica, aeromagnetic data help delineate the extent of the Jurassic Jutulstraumen subglacial rift that is flanked by remnants of a Grenvillian-age (ca 1.1. Ga) igneous province and magmatic arc. Different magnetic signatures appear to characterize the Coats Land block but reconnaissance surveys are insufficient to fully delineate the extent and significance of the Coats Land block, a possible tectonic tracer of Laurentia within Rodinia (Loewy et al., 2011). Further in the interior of East Antarctica, a mosaic of distinct and hitherto largely unknown Precambrian provinces has recently been revealed by combining aeromagnetic and satellite magnetic data with models of crustal thickness constrained by gravity modeling and seismology (Ferraccioli et al., 2011, Nature). A major collisional suture may lie between the Archean Ruker Province and an inferred Proterozoic Gamburtsev Province but the age of final assembly of central East Antarctica remains uncertain and controversial. I favour a Grenville-age collisional event (linked to Rodinia assembly) or possibly older Paleoproteroic collision, followed by intraplate reactivation, as opposed to Neoproterozoic or Early Cambrian collision linked to East-West Gondwana assembly (Boger, 2011). New aerogeophysical surveys over Prince Elizabeth and Queen Mary Land could test this

  11. Detection of aeromagnetic anomaly change associated with volcanic activity: An application of the generalized mis-tie control method

    NASA Astrophysics Data System (ADS)

    Nakatsuka, Tadashi; Utsugi, Mitsuru; Okuma, Shigeo; Tanaka, Yoshikazu; Hashimoto, Takeshi

    2009-12-01

    Repeat aeromagnetic surveys may assist in mapping and monitoring long-term changes associated with volcanic activity. However, when dealing with repeat aeromagnetic survey data, the problem of how to extract the real change of magnetic anomalies from a limited set of observations arises, i.e. the problem of spatial aliasing. Recent development of the generalized mis-tie control method for aeromagnetic surveys flown at variable elevations enables us to statistically extract the errors from ambiguous noise sources. This technique can be applied to overcome the spatial alias effect when detecting magnetic anomaly changes between aeromagnetic surveys flown at different times. We successfully apply this technique to Asama Volcano, one of the active volcanoes in Japan, which erupted in 2004. Following the volcanic activity in 2005, we conducted a helicopter-borne aeromagnetic survey, which we compare here to the result from a previous survey flown in 1992. To discuss small changes in magnetic anomalies induced by volcanic activity, it is essential to estimate the accuracy of the reference and the repeat aeromagnetic measurements and the probable errors induced by data processing. In our case, the positioning inaccuracy of the 1992 reference survey was the most serious factor affecting the estimation of the magnetic anomaly change because GPS was still in an early stage at that time. However, our analysis revealed that the magnetic anomaly change over the Asama Volcano area from 1992 to 2005 exceeded the estimated error at three locations, one of which is interpreted as a loss of magnetization induced by volcanic activity. In this study, we suffered from the problem of positioning inaccuracy in the 1992 survey data, and it was important to evaluate its effect when deriving the magnetic anomaly change.

  12. Aeromagnetic map of the Fossil Springs Roadless Area, Yavapai, Gila, and Coconino counties, Arizona

    USGS Publications Warehouse

    Davis, W.E.; Weir, G.W.

    1984-01-01

    The magnetic anomalies and patterns on the aeromagnetic map reflect variations of magnetization in the underlying rocks. Basaltic rocks contain moderate amounts of magnetic minerals, mainly magnetite, and possess strong intensities of magnetization. The more silicic volcanic rocks have much lower magnetization intensities. Sedimentary rocks contain little or no magnetite and are virtually nonmagnetic.

  13. Aeromagnetic Map with Geology of the Los Angeles 30 x 60 Minute Quadrangle, Southern California

    USGS Publications Warehouse

    Langenheim, V.E.; Hildenbrand, T.G.; Jachens, R.C.; Campbell, R.H.; Yerkes, R.F.

    2006-01-01

    Introduction: An important objective of geologic mapping is to project surficial structures and stratigraphy into the subsurface. Geophysical data and analysis are useful tools for achieving this objective. This aeromagnetic anomaly map provides a three-dimensional perspective to the geologic mapping of the Los Angeles 30 by 60 minute quadrangle. Aeromagnetic maps show the distribution of magnetic rocks, primarily those containing magnetite (Blakely, 1995). In the Los Angeles quadrangle, the magnetic sources are Tertiary and Mesozoic igneous rocks and Precambrian crystalline rocks. Aeromagnetic anomalies mark abrupt spatial contrasts in magnetization that can be attributed to lithologic boundaries, perhaps caused by faulting of these rocks or by intrusive contacts. This aeromagnetic map overlain on geology, with information from wells and other geophysical data, provides constraints on the subsurface geology by allowing us to trace faults beneath surficial cover and estimate fault dip and offset. This map supersedes Langenheim and Jachens (1997) because of its digital form and the added value of overlaying the magnetic data on a geologic base. The geologic base for this map is from Yerkes and Campbell (2005); some of their subunits have been merged into one on this map.

  14. Aeromagnetic, gravity anomaly, and derivative maps of the Craig and Dixon Entrance 1-degree by 3-degree quadrangles of southeastern Alaska

    USGS Publications Warehouse

    Wynn, Jeffrey C.; Kucks, R.P.; Grybeck, D.J.

    1999-01-01

    This CD-ROM contains aeromagnetic, gravity, geology, and topographic data as well as several derivative products, for the Craig and Dixon Entrance 1? ? 3? quadrangles of Southeastern Alaska. The data were collected by the U.S. Geological Survey directly and by means of several contract airborne surveys, through August 1991.

  15. Aeromagnetic map of Korea; Magnetic patterns and structural features

    NASA Astrophysics Data System (ADS)

    Park, Yeong-Sue; Rim, Hyoungrea; Lim, Mutaek; Shin, Young Hong

    2014-05-01

    characterized as diverse trend with strong amplitude in NE part and weak amplitude in SW part. In Gyeongsang basin, strong positive anomalies due to Cretaceous granites and volcanic rocks are distributed in the broad and weak field by Jurassic sedimentary rocks. Magnetic lineaments of NNE trend are disrupted by intense volcanic activities in Cretaceous period. Magnetic lineaments were plotted by using skeletonization algorithm. Skeletonization is a syntactic pattern recognition method that is applied to gridded data to produce an automatic line drawing. The algorithms were tailored for seismic reflection profiles at first. Eaton and Vasudevan (2004) modified the technique to render it more suitable for other types of gridded data, with particular emphasis on aeromagnetic maps. Magnetic first vertical derivative data calculated from pole-reduced aeromagnetic map were used as input of skeletonization algorithm. The event map was plotted by skeletonization process, and the orientation of the magnetic pattern was quantitatively analyzed by rose diagrams. They showed the distinguishing characteristics of magnetic pattern of tectonic provinces, which reflected their geological characteristics and structural features.

  16. Aeromagnetic anomaly patterns reveal buried faults along the eastern margin of the Wilkes Subglacial Basin (East Antarctica)

    USGS Publications Warehouse

    Armadillo, E.; Ferraccioli, F.; Zunino, A.; Bozzo, E.

    2007-01-01

    The Wilkes Subglacial Basin (WSB) is the major morphological feature recognized in the hinterland of the Transantarctic Mountains. The origin of this basin remains contentious and relatively poorly understood due to the lack of extensive geophysical exploration. We present a new aeromagnetic anomaly map over the transition between the Transantarctic Mountains and the WSB for an area adjacent to northern Victoria Land. The aeromagnetic map reveals the existence of subglacial faults along the eastern margin of the WSB. These inferred faults connect previously proposed fault zones over Oates Land with those mapped along the Ross Sea Coast. Specifically, we suggest a link between the Matusevich Frature Zone and the Priestley Fault during the Cenozoic. The new evidence for structural control on the eastern margin of the WSB implies that a purely flexural origin for the basin is unlikely.

  17. Aeromagnetic maps of the Uinta and Piceance Basins and vicinity, Utah and Colorado

    USGS Publications Warehouse

    Grauch, V.J.S.; Plesha, Joseph L.

    1989-01-01

    In order to understand the evolution of sedimentary basins, it is important to understand their tectonic setting. In a U.S. Geological Survey (USGS) study of the Uinta and Piceance basins in Utah and Colorado, this understanding is approached through characterization of subsurface structure and lithology of a large region encompassing the basins. An important tool for interpreting these subsurface features is aeromagnetic data. Aeromagnetic anomalies represent variations in the strength and direction of the Earth's magnetic field that are produced by rocks containing a significant number of magnetic minerals (commonly magnetite). The shape and magnitude of an anomaly produced by one body of rock are complexly related to the amount of magnetic minerals present, the magnetic properties of those minerals (determined by a number of factors, including the history of the rock), and the shape of the rock body. In the study area, only crystalline basement rocks and volcanic rocks are likely to contain enough magnetic minerals to produce anomalies; sedimentary rocks and metasediments are generally so poor in magnetic minerals that their magnetic effects cannot be detected by the types of surveys presented in this report. Patterns of anomalies on aeromagnetic maps can reveal not only lithologic differences related to magnetite content, but structural features as well, such as faults that have juxtaposed crystalline rocks against sedimentary rocks, and upwarps of crystalline basement underlying sedimentary sequences. Tectonic features of regional extent may not become apparent until a number of aeromagnetic surveys have been compiled and plotted at the same scale. Commonly the compilation involves piecing together data from surveys that were flown at different times and have widely disparate flight specifications and data reduction procedures. The data may be compiled into a composite map, where all the pieces are plotted onto one map without regard to the differences in

  18. Mapping the Extent of the Lovejoy Basalt Beneath the Sacramento Valley, CA, Using Aeromagnetic Data

    NASA Astrophysics Data System (ADS)

    Langenheim, V. E.; Sweetkind, D. S.; Springhorn, S.

    2014-12-01

    The Lovejoy Basalt is a distinctive Miocene (~16 Ma) unit that erupted from Thompson Peak in the northeast Sierra Nevada, flowed southwest across the Sierra Nevada into the Sacramento Valley. It crops out in a few places in Sacramento Valley: (1) near Chico and Oroville on the east side of the valley, (2) Orland Buttes on the west side, and (3) Putnam Peak, some 250 km southwest of Thompson Peak. The basalt is also encountered in drill holes, but its extent is not entirely known. The Lovejoy Basalt is strongly magnetic and, in general, reversely magnetized, making it an excellent target for aeromagnetic mapping. Recently acquired aeromagnetic data (flight line spacing 800 m at an altitude of 240 m) indicate a characteristic, sinuous, short-wavelength magnetic pattern associated with outcrops and known subcrops of Lovejoy Basalt. Filtering of these data to enhance negative, short-wavelength anomalies defines two large bands of negative anomalies that trend southwest of Chico and Oroville and appear to coalesce about 25 km north of Sutter Buttes. Another band of negative anomalies extends north of the junction roughly along the Sacramento River 40 km to Deer Creek. The anomalies become more subdued to the north, suggesting that the Lovejoy thins to the north. Aeromagnetic data also indicate a large subcrop of Lovejoy Basalt that extends 25 km north-northeast from exposures at Orland Buttes. Driller logs from gas and water wells confirm our mapping of Lovejoy within these areas. The sinuous magnetic lows are not continuous south of Sutter Buttes, but form isolated patches that are aligned in a north-south direction south of the concealed Colusa Dome to Putnam Peak and an east-west, 20-km-long band about 15 km south of Sutter Buttes. Other reversed anomalies in the Sacramento Valley coincide with volcanic necks in the Sutter Buttes and Colusa Dome; these produce semicircular anomalies that are distinct from those caused by the Lovejoy Basalt.

  19. High-resolution aeromagnetic mapping of volcanic terrain, Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Finn, Carol A.; Morgan, Lisa A.

    2002-06-01

    High-resolution aeromagnetic data acquired over Yellowstone National Park (YNP) show contrasting patterns reflecting differences in rock composition, types and degree of alteration, and crustal structures that mirror the variable geology of the Yellowstone Plateau. The older, Eocene, Absaroka Volcanic Supergroup, a series of mostly altered, andesitic volcanic and volcaniclastic rocks partially exposed in mountains on the eastern margin of YNP, produces high-amplitude, positive magnetic anomalies, strongly contrasting with the less magnetic, younger, latest Cenozoic, Yellowstone Plateau Group, primarily a series of fresh and variably altered rhyolitic rocks covering most of YNP. The Yellowstone caldera is the centerpiece of the Yellowstone Plateau; part of its boundary can be identified on the aeromagnetic map as a series of discontinuous, negative magnetic anomalies that reflect faults or zones along which extensive hydrothermal alteration is localized. The large-volume rhyolitic ignimbrite deposits of the 0.63-Ma Lava Creek Tuff and the 2.1-Ma Huckleberry Ridge Tuff, which are prominent lithologies peripheral to the Yellowstone caldera, produce insignificant magnetic signatures. A zone of moderate amplitude positive anomalies coincides with the mapped extent of several post-caldera rhyolitic lavas. Linear magnetic anomalies reflect the rectilinear fault systems characteristic of resurgent domes in the center of the caldera. Peripheral to the caldera, the high-resolution aeromagnetic map clearly delineates flow unit boundaries of pre- and post-caldera basalt flows, which occur stratigraphically below the post-caldera rhyolitic lavas and are not exposed extensively at the surface. All of the hot spring and geyser basins, such as Norris, Upper and Lower Geyser Basins, West Thumb, and Gibbon, are associated with negative magnetic anomalies, reflecting hydrothermal alteration that has destroyed the magnetic susceptibility of minerals in the volcanic rocks. Within

  20. High-resolution aeromagnetic mapping of volcanic terrain, Yellowstone National Park

    USGS Publications Warehouse

    Finn, C.A.; Morgan, L.A.

    2002-01-01

    High-resolution aeromagnetic data acquired over Yellowstone National Park (YNP) show contrasting patterns reflecting differences in rock composition, types and degree of alteration, and crustal structures that mirror the variable geology of the Yellowstone Plateau. The older, Eocene, Absaroka Volcanic Supergroup, a series of mostly altered, andesitic volcanic and volcaniclastic rocks partially exposed in mountains on the eastern margin of YNP, produces high-amplitude, positive magnetic anomalies, strongly contrasting with the less magnetic, younger, latest Cenozoic, Yellowstone Plateau Group, primarily a series of fresh and variably altered rhyolitic rocks covering most of YNP. The Yellowstone caldera is the centerpiece of the Yellowstone Plateau; part of its boundary can be identified on the aeromagnetic map as a series of discontinuous, negative magnetic anomalies that reflect faults or zones along which extensive hydrothermal alteration is localized. The large-volume rhyolitic ignimbrite deposits of the 0.63-Ma Lava Creek Tuff and the 2.1-Ma Huckleberry Ridge Tuff, which are prominent lithologies peripheral to the Yellowstone caldera, produce insignificant magnetic signatures. A zone of moderate amplitude positive anomalies coincides with the mapped extent of several post-caldera rhyolitic lavas. Linear magnetic anomalies reflect the rectilinear fault systems characteristic of resurgent domes in the center of the caldera. Peripheral to the caldera, the high-resolution aeromagnetic map clearly delineates flow unit boundaries of pre- and post-caldera basalt flows, which occur stratigraphically below the post-caldera rhyolitic lavas and are not exposed extensively at the surface. All of the hot spring and geyser basins, such as Norris, Upper and Lower Geyser Basins, West Thumb, and Gibbon, are associated with negative magnetic anomalies, reflecting hydrothermal alteration that has destroyed the magnetic susceptibility of minerals in the volcanic rocks. Within

  1. Magnetic Properties of Quaternary Deposits, Kenai Peninsula, Alaska -- Implications for Aeromagnetic Anomalies of Upper Cook Inlet

    USGS Publications Warehouse

    Saltus, R.W.; Haeussler, P.J.

    2004-01-01

    We measured magnetic susceptibilities of exposed Quaternary deposits on several beach cliffs and river banks on the Kenai Peninsula near Soldotna, Alaska. Data, descriptions, and photos from nine sites are included in this report. The mean susceptibility for Quaternary materials in this region is approximately 2.5 x 10-3 SI units. This is sufficiently magnetic to produce subtle aeromagnetic anomalies such as those observed to correlate with topographic features in the region of the measurements. The highest susceptibilities measured (greater than 20 x 10-3 SI units) may help, at least in part, to explain moderate amplitude aeromagnetic anomalies observed elsewhere in Cook Inlet, particularly those relating to structures showing Quaternary movement. Comparison of measured beach cliff susceptibility and susceptibility predicted from idealized formulas and two-dimensional cliff models suggests that measured susceptibilies underestimate true bulk susceptibility by 20 percent to 50 percent in this region.

  2. Aeromagnetic data and geological structure of continental China: A review

    NASA Astrophysics Data System (ADS)

    Xiong, Sheng-Qing; Tong, Jing; Ding, Yan-Yun; Li, Zhan-Kui

    2016-06-01

    We review the latest aeromagnetic geological data of continental China. We discuss the latest achievements in geological mapping and the newly detected features based on aeromagnetic data. Using aeromagnetic data collected for more than 50 years, a series of 1:5000000 and 1:1000000 aeromagnetic maps of continental China were compiled using state-of-the-art digital technology, and data processing and transformation. Guided by plate tectonics and continental dynamics, rock physical properties, and magnetic anomalies, we compiled maps of the depth of the magnetic basement of continental China and the major geotectonic units, and presented newly detected geological structures based on the aeromagnetic data.

  3. Aeromagnetic maps with geologic interpretations for the Tularosa Valley, south-central New Mexico

    USGS Publications Warehouse

    Bath, G.D.

    1977-01-01

    An aeromagnetic survey of the Tularosa Valley in south-central New Mexico has provided information on the igneous rocks that are buried beneath alluvium and colluvium. The data, compiled as residual magnetic anomalies, are shown on twelve maps at a scale of 1:62,500. Measurements of magnetic properties of samples collected in the valley and adjacent highlands give a basis for identifying the anomaly-producing rocks. Precambrian rocks of the crystalline basement have weakly induced magnetizations and produce anomalies having low magnetic intensities and low magnetic gradients. Late Cretaceous and Cenozoic intrusive rocks have moderately to strongly induced magnetizations. Precambrian rocks produce prominent magnetic anomalies having higher amplitudes and higher gradients. The Quaternary basalt has a strong remanent magnetization of normal polarity and produces narrow anomalies having high-magnetic gradients. Interpretations include an increase in elevation to the top of buried Precambrian rock in the northern part of the valley, a large Late Cretaceous and Cenozoic intrusive near Alamogordo, and a southern extension of the intrusive rock exposed in the Jarilla Mountains. Evidence for the southern extension comes from a quantitative analysis of the magnetic anomalies..

  4. Analysis and modelling of the aeromagnetic anomalies of Gran Canaria (Canary Islands)

    NASA Astrophysics Data System (ADS)

    Blanco-Montenegro, I.; Torta, J. M.; Garcia, A.; Arana, V.

    2003-04-01

    In this work we present a crustal magnetic model of the volcanic island of Gran Canaria based on aeromagnetic data. This magnetic study has made it possible to constrain the location and geometry of: 1) the mafic core of Gran Canaria, built as the result of the crystallization of magmas which rose from the mantle during the submarine and shield basaltic stages of its evolution. The most intense magnetic high, displayed over the NW part of the island likely shows the main feeding system of the shield volcano; 2) the residual syenitic shallow magma chamber which fed the salic volcanic activity in the center of the island, linked to the formation of the Tejeda caldera and to the intrusion of felsic rocks which made up a cone sheet; 3) a reversely-magnetized linear intrusion located in the marine area to the NW of the island, which could be related to the magmatic source of the submarine volcanism between Gran Canaria and Tenerife. Most of these magnetic sources show a linear pattern with trends that are in close agreement with the orientations of previously identified fractures. The magmatic intrusion to the NW of the island could be related with a WSW-ENE active fault between Gran Canaria and Tenerife, while the main trend and location of the mafic core agree with a NW-SE fault suggested by geological studies. This means that these magnetic sources are the result of the ascent and intrusion of magma along regional fractures. Therefore, this study provides fresh data which demonstrate the influence of regional tectonics on the growth of Gran Canaria during its entire evolution. Finally, the spectral analysis of the magnetic anomaly map suggests that it is possible that rocks located at mantle-like depths (from the Moho to about 23 km) behave as magnetic sources, a fact that can be related with the magmatic underplating detected by other geophysical techniques.

  5. Analysis and modelling of the aeromagnetic anomalies of Gran Canaria (Canary Islands)

    NASA Astrophysics Data System (ADS)

    Blanco-Montenegro, Isabel; Torta, J. Miquel; García, Alicia; Araña, Vicente

    2003-02-01

    In this paper we present a crustal magnetic model of the volcanic island of Gran Canaria based on aeromagnetic data. This magnetic study has made it possible to constrain the location and geometry of: (1) the mafic core of Gran Canaria, built as the result of the crystallization of magmas which rose from the mantle during the submarine and shield basaltic stages of its evolution. The most intense magnetic high, displayed over the NW part of the island likely shows the main feeding system of the shield volcano; (2) the residual syenitic shallow magma chamber which fed the salic volcanic activity in the center of the island, linked to the formation of the Tejeda caldera and to the intrusion of felsic rocks which made up a cone sheet; (3) a reversely magnetized linear intrusion located in the marine area to the NW of the island, which could be related to the magmatic source of the submarine volcanism between Gran Canaria and Tenerife. Most of these magnetic sources show a linear pattern with trends that are in close agreement with the orientations of previously identified fractures. The magmatic intrusion to the NW of the island could be related with a WSW-ENE active fault between Gran Canaria and Tenerife, while the main trend and location of the mafic core agree with a NW-SE fault suggested by geological studies. This means that these magnetic sources are the result of the ascent and intrusion of magma along regional fractures. Therefore, this study provides fresh data which demonstrate the influence of regional tectonics on the growth of Gran Canaria during its entire evolution. Finally, the spectral analysis of the magnetic anomaly map suggests that it is possible that rocks located at mantle-like depths (from the Moho to about 23 km) behave as magnetic sources, a fact that can be related with the magmatic underplating detected by other geophysical techniques.

  6. The resolution of a magnetic anomaly map expected from GRM data

    NASA Technical Reports Server (NTRS)

    Strangway, D. W.; Arkani-Hamed, J.; Teskey, D. J.; Hood, P. J.

    1985-01-01

    Data from the MAGSAT mission were used to derive a global scalar magnetic anomaly map at an average altitude of about 400 km. It was possible to work with 2 data sets corresponding to dawn and dusk. The anomalies which were repeatable at dawn and at dusk was identified and the error limits of these anomalies were estimated. The repeatable anomalies were downward continued to about 10 km altitude. The anomalies over Canada were correlated quantitatively with bandpass filtered magnetic anomalies derived from aeromagnetic surveys. The close correlation indicates that the repeatable anomalies detected from orbit are due to geological causes. This correlation supports the geological significance of the global anomaly map.

  7. Geophysical investigations on the gravity and aeromagnetic anomalies of the region between Sapanca and Duzce, along the North Anatolian Fault, Turkey

    NASA Astrophysics Data System (ADS)

    Tigli, Cigdem Sendur; Ates, Abdullah; Aydemir, Attila

    2012-12-01

    In this paper, it is aimed to model subsurface structures to the east of the Gulf of Izmit through Duzce by using the gravity and aeromagnetic anomaly data. 1/500.000 scaled gravity anomaly map of the area was taken from the General Directorate of Mineral Research and Exploration (MTA) and it was digitized. The aeromagnetic anomaly data were obtained in the digital form. 3D and 2D models were constructed to reveal the subsurface structure in two different inset regions in the study area including most important negative and positive gravity anomalies. Seismic velocities obtained from the deep seismic recordings were converted to densities. In addition, density information from a previous research was also taken. These densities were used for construction of 3D and 2D gravity models where it was shown that there are narrow and long sedimentary basins and depressions with 0.5-3 km depths. These sedimentary basins with the shape of negative flower structures indicating pull-apart basins are controlled by the active fault segments of the North Anatolian Fault (NAF). Earthquake epicenter data were also correlated with the constructed models from the gravity anomalies. Positive gravity anomalies are also caused by very shallow (about 2 km) masses that are accepted as the crustal origin intrusions into the fractures of the NAF and, ophiolites and gabbro outcropping on the surface of the studied regions. These intrusives and remnants of the Tethys Ocean are located between the fault segments where the fault bifurcates and they also constitute barriers for straight extension of the NAF. Analytic signal method was applied to the aeromagnetic anomaly data to determine the locations and boundaries of the causative bodies. Those bodies are observed around Duzce, and to the E-SE of it, to the NW of Golyaka and a large mass between Adapazari and Sapanca. Shallow settlement of these magmatics was confirmed by the second vertical derivative of the aeromagnetic data. An anti

  8. Arkansas and Louisiana Aeromagnetic and Gravity Maps and Data - A Website for Distribution of Data

    USGS Publications Warehouse

    Bankey, Viki; Daniels, David L.

    2008-01-01

    This report contains digital data, image files, and text files describing data formats for aeromagnetic and gravity data used to compile the State aeromagnetic and gravity maps of Arkansas and Louisiana. The digital files include grids, images, ArcInfo, and Geosoft compatible files. In some of the data folders, ASCII files with the extension 'txt' describe the format and contents of the data files. Read the 'txt' files before using the data files.

  9. Regional compilation and analysis of aeromagnetic anomalies for the Transantarctic Mountains Ross Sea sector of the Antarctic

    NASA Astrophysics Data System (ADS)

    Chiappini, M.; Ferraccioli, F.; Bozzo, E.; Damaske, D.

    2002-03-01

    Magnetic observations over the area of the Transantarctic Mountains (TAM) and the Ross Sea have been compiled into a digital database that furnishes a new regional scale view of the magnetic anomaly crustal field in this key sector of the Antarctic continent. This compilation is a component of the ongoing IAGA/SCAR Antarctic Digital Magnetic Anomaly Project (ADMAP). The aeromagnetic surveys total 115 000 line km, and are distributed across the Victoria Land sector of the TAM, the Ross Sea, and Marie Byrd Land. The magnetic campaigns were performed within the framework of the national and international Italian-German-US Antarctic research programs and conducted with differing specifications during nine field seasons from 1971 until 1997. Generally flight line spacing was less than 5 km while survey altitude varied from about 610 to 4000 m above sea level for barometric surveys and was equal to 305 m above topography for the single draped survey. Reprocessing included digitizing the old contour data, improved levelling by means of microlevelling in the frequency domain, and re-reduction to a common reference field based on the DGRF90 model. A multi-frequency grid procedure was then applied to obtain a coherent and merged total intensity magnetic anomaly map. The shaded relief map covers an area of approximately 380 000 km 2. This new compilation provides a regional image of the location and spatial extent of the Cenozoic alkaline magmatism related to the TAM-Ross Sea rift, Jurassic tholeiites, and crustal segments of the Early Palaeozoic magmatic arc. A linear, approximately 100-km wide and 600-km long Jurassic rift-like structure is newly identified. Magnetic fabric in the Ross Sea rift often matches seismically imaged Cenozoic fault arrays. Major buried onshore pre-rift fault zones, likely inherited from the Ross Orogen, are also delineated. These faults may have been reactivated as strike-slip belts that segmented the TAM into various crustal blocks.

  10. Aeromagnetic anomaly modeling of the central sector of the Chicxulub impact structure

    NASA Astrophysics Data System (ADS)

    Rebolledo-Vieyra, M.; Urrutia-Fucugauchi, J.; Lopez-Loera, H.; Delgado-Rodriguez, O.

    2003-04-01

    We propose an updated model of the Chicxulub impact structure based on modeling of the aeromagnetic anomaly data, which incorporates electromagnetic sounding models and UNAM and CSDP borehole information. Modeling takes into account the relative contributions of the induced and remanent components. Studies of the magnetic susceptibility variation in the UNAM and Yaxcopoil boreholes along the lithologic column in the crater area reveal that the suevite-like breccias have a stronger magnetic signature than that of the impact-melt. The crystalline component estimated from clasts analyses in the suevite-like breccias has a higher magnetic susceptibility (up to 1200x10-5 SI) than that of the impact melt (~500x10-5 SI) and the crystalline basement (400x10-5 SI). Reduction to the pole and downward continuations document a fragmented character of the anomaly. The second-derivative of the magnetic anomaly depicts five concentric rings within the anomaly, the last ring correlates with the cenote ring, supporting the its relation with the buried structure. The analytical signal and the radially averaged spectrum yield an estimate of the depth to the magnetic sources, ranging from 1000 to 6000 m. Using this data, new 2-D magnetic models were developed, which suggest that the fragmented character of the northern portion of the crater might be controlled by system of near vertical faults. The main central anomaly is produced by a central uplift that is ~2500 m deep, from ground level, in the central area of the crater. Geophysical models are developed and compared with borehole information for the area of the Yaxcopoil-1 well, drilled recently as part of the Chicxulub Scientific Drilling Project and the International Continental Scientific Drilling Program.

  11. Aeromagnetic map of the Mokelumne Wilderness and contiguous Rare II further planning areas, central Sierra Nevada, California

    USGS Publications Warehouse

    Plouff, Donald; McKee, Edwin H.

    1981-01-01

    The aeromagnetic map consists of parts of two surveys flown at an altitude of 300 m above the average ground surface. One survey (west park of the map_ centered over the Mokelumne Wilderness was flowing in a northeast-southwest direction along slight lines spaced at a horizontal interval of about 800 m (U>S> Geological Survey, 1979b). The survey to the east is part of a regional survey flown in an east-west direction along flight lines spaced at an interval of about 1,600 m (U.S. Geological Survey, 1979a). The join of the aeromagnetic contours along the border between the two surveys is generally conformable. The contour datum of the eastern regional survey, however, is about 650 nT (nanotesla) lower than the Mokelumne Wilderness survey because of difference in data reduction. The aeromagnetic pattern reflects variations of magnetization within the underlying rocks, but the pattern is complicated by strong topographic effects. That is, magnetic anomaly maxima tend to occur over ridges and hilltops and minima over canyons and depressions. The topographic effect exists mostly because a constant ground clearance could not be maintained at normal aircraft speeds in this area of rugged topographic relief. The recorded flight altitude varied from 30 m to nearly 1,500 m above the ground with local changes that approard 1,000 m in distances of less than 5,000 m. Four magnetic anomalies that can be related to geologic features are discusses., Magnetic highs or lows cause by topography are not discussed.

  12. Aeromagnetic maps of the Colorado River region including the Kingman, Needles, Salton Sea, and El Centro 1 degree by 2 degrees quadrangles, California, Arizona, and Nevada

    USGS Publications Warehouse

    Mariano, John; Grauch, V.J.

    1988-01-01

    Aeromagnetic anomalies are produced by variations in the strength and direction of the magnetic field of rocks that include magnetic minerals, commonly magnetite. Patterns of anomalies on aeromagnetic maps can reveal structures - for example, faults which have juxtaposed magnetic rocks against non-magnetic rocks, or areas of alteration where magnetic minerals have been destroyed by hydrothermal activity. Tectonic features of regional extent may not become apparent until a number of aeromagnetic surveys have been compiled and plotted at the same scale. Commonly the compilation involves piecing together data from surveys that were flown at different times with widely disparate flight specifications and data reduction procedures. The data may be compiled into a composite map, where all the pieces are plotted onto one map without regard to the difference in flight elevation and datum, or they may be compiled into a merged map, where all survey data are analytically reduced to a common flight elevation and datum, and then digitally merged at the survey boundaries. The composite map retains the original resolution of all the survey data, but computer methods to enhance regional features crossing the survey boundaries may not be applied. On the other hand, computer methods can be applied to the merged data, but the accuracy of the data may be slightly diminished.

  13. Quantitative analysis of scale of aeromagnetic data raises questions about geologic-map scale

    USGS Publications Warehouse

    Nykanen, V.; Raines, G.L.

    2006-01-01

    A recently published study has shown that small-scale geologic map data can reproduce mineral assessments made with considerably larger scale data. This result contradicts conventional wisdom about the importance of scale in mineral exploration, at least for regional studies. In order to formally investigate aspects of scale, a weights-of-evidence analysis using known gold occurrences and deposits in the Central Lapland Greenstone Belt of Finland as training sites provided a test of the predictive power of the aeromagnetic data. These orogenic-mesothermal-type gold occurrences and deposits have strong lithologic and structural controls associated with long (up to several kilometers), narrow (up to hundreds of meters) hydrothermal alteration zones with associated magnetic lows. The aeromagnetic data were processed using conventional geophysical methods of successive upward continuation simulating terrane clearance or 'flight height' from the original 30 m to an artificial 2000 m. The analyses show, as expected, that the predictive power of aeromagnetic data, as measured by the weights-of-evidence contrast, decreases with increasing flight height. Interestingly, the Moran autocorrelation of aeromagnetic data representing differing flight height, that is spatial scales, decreases with decreasing resolution of source data. The Moran autocorrelation coefficient scems to be another measure of the quality of the aeromagnetic data for predicting exploration targets. ?? Springer Science+Business Media, LLC 2007.

  14. Using High Resolution Aeromagnetic Data to Map Pervasive Folding in the Lithologically Indistinct Franciscan Coastal Belt

    NASA Astrophysics Data System (ADS)

    Phelps, G. A.; McLaughlin, R. J.; Jachens, R. C.; Wentworth, C. M.

    2008-12-01

    We use high-resolution aeromagnetic data to map magnetic bodies of graywacke of limited exposure that are either interbedded or structurally emplaced within broader areas of non-magnetic graywacke within the Franciscan Complex Coastal belt in northern California, which is bounded by the San Andreas Fault on the west and the Franciscan Complex Central belt on the south and east. Previous work has not extensively subdivided the Coastal belt because of the poor exposure and the fact that the exposed lithology is primarily graywacke indistinguishable in outcrop and hand sample and is thus difficult to map in the field. A hand-held magnetic susceptibility meter, however, in combination with thin-section analysis, reveals that some Coastal belt graywackes are magnetic. The thin-section analysis shows that the magnetic samples have a significant component of andesitic grains, whereas the non-magnetic samples do not. Further, the locations of these magnetic rocks correspond to elongate regions of high magnetic intensity (magnetic anomalies) kilometers to tens of kilometers in length. Previous 2D modeling showed that the bodies of magnetic graywacke can be modeled as a folded sheet, with antiformal limbs near or exposed at the surface and synformal limbs reaching a depth of about 1 km. Locations of edges of magnetic source bodies can be extracted from their magnetic anomalies. Near surface, steeply dipping edges lie beneath local maxima in the horizontal gradient of the magnetic potential surface. The edges are demarcated by locating discrete points along the local maxima. We connected these points, using an algorithm with a specific set of parameters, to delineate the edges of the magnetic graywacke bodies. Together with the previous 2D modeling, the anomalies and their edges show that the Coastal belt contains antiformal structures 5 to 20 km in length and 1.5 km in width, with a wavelength approximately 1.5 km. The modal direction of elongation is oriented approximately

  15. Geologic and aeromagnetic maps of the Fossil Ridge area and vicinity, Gunnison County, Colorado

    USGS Publications Warehouse

    DeWitt, Ed; Zech, R.S.; Chase, C.G.; Zartman, R.E.; Kucks, R.P.; Bartelson, Bruce; Rosenlund, G.C.; Earley, Drummond, III

    2002-01-01

    This data set includes a GIS geologic map database of an Early Proterozoic metavolcanic and metasedimentary terrane extensively intruded by Early and Middle Proterozoic granitic plutons. Laramide to Tertiary deformation and intrusion of felsic plutons have created numerous small mineral deposits that are described in the tables and are shown on the figures in the accompanying text pamphlet. Also included in the pamphlet are numerous chemical analyses of igneous and meta-igneous bodies of all ages in tables and in summary geochemical diagrams. The text pamphlet also contains a detailed description of map units and discussions of the aeromagnetic survey, igneous and metmorphic rocks, and mineral deposits. The printed map sheet and browse graphic pdf file include the aeromagnetic map of the study area, as well as figures and photographs. Purpose: This GIS geologic map database is provided to facilitate the presentation and analysis of earth-science data for this region of Colorado. This digital map database may be displayed at any scale or projection. However, the geologic data in this coverage are not intended for use at a scale other than 1:30,000. Supplemental useful data accompanying the database are extensive geochemical and mineral deposits data, as well as an aeromagnetic map.

  16. Aeromagnetic map compilation: Procedures for merging and an example from Washington

    USGS Publications Warehouse

    Finn, C.

    1999-01-01

    Rocks in Antarctica and offshore have widely diverse magnetic properties. Consequently, aeromagnetic data collected there can improve knowledge of the geologic, tectonic and geothermal characteristics of the region. Aeromagnetic data can map concealed structures such as faults, folds and dikes, ascertain basin thickness and locate buried volcanic, as well as some intrusive and metamorphic rocks. Gridded, composite data sets allow a view of continental-scale trends that individual data sets do not provide and link widely-separated areas of outcrop and disparate geologic studies. Individual magnetic surveys must be processed so that they match adjacent surveys prior to merging. A consistent representation of the Earth's magnetic field (International Geomagnetic Reference Field (IGRF)) must be removed from each data set. All data sets need to be analytically continued to the same flight elevation with their datums shifted to match adjacent data. I advocate minimal processing to best represent the individual surveys in the merged compilation. An example of a compilation of aeromagnetic surveys from Washington illustrates the utility of aeromagnetic maps for providing synoptic views of regional tectonic features.

  17. Aeromagnetic map of Yucca Mountain and surrounding regions, southwest Nevada

    USGS Publications Warehouse

    Kane, Martin Francis; Bracken, Robert E.

    1983-01-01

    Magnetic anomalies over Yucca Mountain and surrounding areas are largely caused by variations in magnetic properties and shapes, including structural offsets, of the extensive volcanic units that underlie the region. In a few places the anomalies are caused by intrusions. Correlation between magnetic properties measured from rock samples and those derived from rock unit-magnetic anomaly associations is excellent. Anomaly characteristics, extensive magnetic gradients, and marked changes in the regional magnetic field can be coupled with the magnetic properties of the rock units to delineate structural boundaries. Three major boundaries are indicated by contrasts in regional magnetic expressions. Less extensive but more clearly indicated boundaries in the immediate vicinity of Yucca Mountain are interpreted from a distinctive pairing of northerly-trending linear positive and negative anomalies which are caused by vertical displacement in generally gently dipping volcanic beds. The displacement between beds is located approximately along the border line between the linear anomaly pairs. One series of pairs of more northeasterly trend lies over the general location of a change from moderately thick to very thick volcanic units that was interpreted from gravity data. Several low amplitude but distinctively shaped anomalies in areas underlain primarily by sedimentary strata indicate the presence of intrusions and faults.

  18. Maps showing aeromagnetic survey and geologic interpretation of the Chignik and Sutwik Island quadrangles, Alaska

    USGS Publications Warehouse

    Case, J.E.; Cox, D.P.; Detra, D.E.; Detterman, R.L.; Wilson, F.H.

    1981-01-01

    An aeromagnetic survey over part of the Chignik and Sutwik Island quadrangles, on the southern Alaska Peninsula, was flown in 1977 as part of the Alaska mineral resource assessment program (AMRAP). Maps at scales 1:250,000 and 1:63,360 have been released on open-file (U.s. Geological Survey, 1978a, 1978b). This report includes the aeromagnetic map superimposed on the topographic base (sheet 1) and an interpretation map superimposed on the topographic and simplified geologic base (sheet 2). This discussion provides an interpretation of the aeromagnetic data with respect to regional geology, occurrence of ore deposits and prospects, and potential oil and gas resources. The survey was flown along northwest-southeast lines, spaced about 1.6 km apart, at a nominal elevation of about 300 m above the land surface. A proton-precession magnetometer was used for the survey, and the resulting digital data were computer contoured at intervals of 10 and 50 gammas (sheet 1). The International Geomagnetic Reference Field (IGRF) of 1965, updated to 1977, was removed from the total field data.

  19. MAGSAT anomaly map and continental drift

    NASA Technical Reports Server (NTRS)

    Lemouel, J. L. (Principal Investigator); Galdeano, A.; Ducruix, J.

    1981-01-01

    Anomaly maps of high quality are needed to display unambiguously the so called long wave length anomalies. The anomalies were analyzed in terms of continental drift and the nature of their sources is discussed. The map presented confirms the thinness of the oceanic magnetized layer. Continental magnetic anomalies are characterized by elongated structures generally of east-west trend. Paleomagnetic reconstruction shows that the anomalies found in India, Australia, and Antarctic exhibit a fair consistency with the African anomalies. It is also shown that anomalies are locked under the continents and have a fixed geometry.

  20. Application of high resolution aeromagnetic data for basement topography mapping of Siluko and environs, southwestern Nigeria

    NASA Astrophysics Data System (ADS)

    Osinowo, Olawale O.; Akanji, Adesoji O.; Olayinka, Abel I.

    2014-11-01

    The discovery of hydrocarbon in commercial quantity in the Niger Delta, southern Nigeria, has since the early fifties shifted the attention of exploration/active geological studies from the Dahomey basin and the adjacent basement terrain in south-western Nigeria towards the south and this has left some gaps in information required for the discovery and exploitation of the economic potential of the region. This study mapped the Siluko transition zone in south-western Nigeria in terms of structures, geometry and basement topography with the object of providing requisite geological information that will engender interest in the exploration and exploitation of the numerous economic potentials of south-western part of Nigeria. Acquired high resolution aeromagnetic data were filtered, processed and enhanced, the resultant data were subjected to qualitative and quantitative magnetic interpretation, depth weighting analyses and modelling to generate the subsurface basement topography across the study area. The obtained results indicate regions of high and low magnetic anomalies with residual magnetic intensity values ranging from -100.8 nT to 100.9 nT. Euler Deconvolution indicates generally undulating basement topography with depth range of 125-1812 m. The basement relief is generally gentle and flat lying within the basement terrain with depth ranging from 125 to 500 m. However the sedimentary terrain is undulating and generally steeps south, down the basin with depth range of 300-1812 m. A basement topography model of the magnetic data constrained by Euler solutions correlate positively with the geology of the study area and indicates a generally increasing sedimentary deposits' thickness southward toward the western part of Dahomey basin. The revealed basement topography and structures as well as the delineated direction of continuous increase in thickness of sedimentary deposit provide insight to the controlling factor responsible for tar sand deposit and bitumen

  1. Aeromagnetic map of the Death Valley ground-water model area, Nevada and California

    SciTech Connect

    Ponce, D.A.; Blakely, R.J.

    2002-03-12

    This aeromagnetic map of the Death Valley ground-water model area was prepared from numerous separate aeromagnetic surveys that were gridded, merged, and described by Hildenbrand and Kucks (1988) and by McCafferty and Grauch (1997). These data are available in grid format from the EROS Data Center, U.S. Geological Survey, Sioux Falls, South Dakota, 57198, and from the National Geophysical Data Center, 325 Broadway, E/GC4, Boulder, Colo., 80303. Magnetic investigations of the Death Valley ground-water basin are part of an interagency effort by the U.S. Geological Survey (USGS) and the U.S. Department of Energy (Interagency Agreement DE-AI08-96NV11967) to help characterize the geology and hydrology of southwest Nevada and adjacent parts of California (Blakely and others, 2000b). The Death Valley ground-water model is located between lat 35 degrees 00' and 38 degrees 15' N., and long 115 degrees and 118 degrees W.

  2. Initial scalar magnetic anomaly map from Magsat

    NASA Technical Reports Server (NTRS)

    Langel, R. A.; Phillips, J. D.; Horner, R. J.

    1982-01-01

    Magsat data acquired during the November 1979-June 1980 mission was used to derive a scalar magnetic anomaly map covering +50 to -50 deg geographic latitude, and the separation of anomaly fields from core and external fields was accomplished by techniques developed for POGO satellite data. Except in the Atlantic and Pacific at latitudes south of -15 deg, comparison of the Magsat map with its POGO data-derived counterpart shows basic anomaly patterns to be reproducible, and higher resolution due to Magsat's lower measurement altitude. Color-coded scalar anomaly maps are presented for both satellites.

  3. Aeromagnetic interpretation and mineral investigations in the Bolu, Canakkale-Karabiga, Demirkoy, Ezine, and Orhaneli areas of northwestern Turkey in 1968

    USGS Publications Warehouse

    Jacobson, Herbert Samuel; Tumer, Ural; Karahacioglu, Hamit

    1972-01-01

    This report reviews progress made during 1968 in the continuing Joint Haden Tetkik ve Arama Enstitusu (MSA)-U. S. Geological Survey (USGS) Mineral Exploration and Training Project, Subproject 2. Subproject 2 is concerned with aeromagnetic interpretation of MTA's aeromagnetic surveys, and ground investigations of selected aeromagnetic anomalies. This report includes new aeromagnetic maps for the Bolu, Canakkale-Karabiga, Demirkoy, and Orhaneli areas and reviews ground investigations in five areas. Activities for each area are sunmarized below: 1. Bolu area: The aeromagnetic map shows two belts of anomalies related to regional magnetite-bearing formations and a group of discrete anomalies, some of which may reflect significant concentrations of magnetite. To date three of these anomalies have been checked on the ground and at one a metamorphic rock containing 14 percent magnetite was observed. 2. Canakkale-Karabiga area: Ground checks were made of six aeromagnetic anomalies. At one locality (Cakirly-Koyu) 6 km south of Nazmara Sea a small magnetite deposit was found. The magnetic anomaly over the area is 150 meters long, and about 3 meters deep in the center of the anomaly exposed massive magnetite boulders. 3. Demirkoy area: The aeromagnetic map shows only one significant anomaly which was checked on the ground and found to be caused by minor magnetite at an intrusive contact. 4. Ezine area: A ground survey of 4.5 sq km area was made where magnetite boulders are locally present on the surface. No significant magnetic anomaly or iron mineralization were found. 5. Orhaneli area: The aeromagnetic map o# the area showed regional magnetic anomaly patterns related to magnetite in mafic intrusives, ultramafic rocks, and mafic flow rocks. In addition 16 localized anomalies were identified. Most of these anomalies were checked on the ground but no significant iron deposits were found. The largest deposit found was a one-meter wide magnetite vein. During the 1969 field season

  4. World Digital Magnetic Anomaly Map version 2 (WDMAM v.2) - released for research and education

    NASA Astrophysics Data System (ADS)

    CHOI-Dyment, Y.; Lesur, V.; Dyment, J.; Hamoudi, M.; Thebault, E.; Catalan, M.

    2015-12-01

    The World Digital Magnetic Anomaly Map is an international initiative carried out under the auspices of the International Association of Geomagnetism and Aeronomy (IAGA) and the Commission for the Geological Map of the World (CGMW). A first version of the map has been published and distributed eight years ago (WDMAM v1; Korhonen et al., 2007). We have produced a candidate which has been accepted as the second version of this map (WDMAM v2) at the International Union of Geophysics and Geodesy in Prag, in June 2015. On land, we adopted an alternative approach avoiding any unnecessary processing on existing aeromagnetic compilations. When available, we used the original aeromagnetic data. As a result the final compilation remains an acceptable representation of the national and international data grids. Over oceanic areas the marine data have been extended. In areas of insufficient data coverage, a model has been computed based on a modified digital grid of the oceanic lithosphere age, considering plate motions in the determination of magnetization vector directions. This model has been further adjusted to the available data, resulting in a better representation of the anomalies. The final grid will be periodically upgraded. Version 2.0 has been released and is available at wdmam.org to support both research and education projects. Colleagues willing to contribute data for future releases (and become a co-author of the map) should contact any of the authors or Jerome Dyment (chair of the WDMAM Task Force) at jdy@ipgp.fr .

  5. Main structural lineaments of north-eastern Morocco derived from gravity and aeromagnetic data

    NASA Astrophysics Data System (ADS)

    El Gout, Radia; Khattach, Driss; Houari, Mohammed-Rachid; Kaufmann, Olivier; Aqil, Hicham

    2010-09-01

    Many years ago, geophysical surveys (gravity and aeromagnetic) were initiated for economic investigation and recently the analysis of gravity and magnetic anomalies are used as a powerful tool for the geological mapping. The present study is based on various filtered maps of gravity and aeromagnetic anomalies of north-eastern Morocco (NEM) in order to highlight its main structural features. Filtering techniques such as horizontal gradient, upward continuation and Euler deconvolution were used to map structural lineaments in NEM. The obtained structural map is consistent with many faults already recognized or supposed by traditional structural studies, and highlights new major accidents by specifying their layout and dips.

  6. Using high-resolution aeromagnetic data to recognise and map intra-sedimentary volcanic rocks and geological structures across the Cretaceous middle Benue Trough, Nigeria

    NASA Astrophysics Data System (ADS)

    Anudu, Goodluck K.; Stephenson, Randell A.; Macdonald, David I. M.

    2014-11-01

    Recently acquired high-resolution aeromagnetic data over the Cretaceous middle Benue Trough of Nigeria have been analysed employing various edge-enhancement (magnetic derivative) methods: vertical derivatives, total horizontal derivative, analytic signal, and total horizontal derivative of tilt derivative. The study was aimed at mapping intra-sedimentary volcanic rocks and their areal extents/distribution as well as delineating geological structures, their structural trends and tectonic implications. The magnetic derivative anomaly maps produced in this project greatly enhanced the high amplitude, short-wavelength (high wavenumber) anomalies associated with the surface/near-surface intra-sedimentary volcanic rocks and associated geological structures. The maps show that volcanic rocks of Late Cretaceous to Palaeocene age are much more widespread than implied by surface geological mapping, with an areal extent of greater than 12,000 km2 in the relatively shallow subsurface. The results also highlight some known and several previously unknown geological lineaments. Rose (azimuth-frequency) plots of orientations of geological structures show trends being predominantly NE-SW, NW-SE and ESE-WNW with minor ENE-WSW and N-S trends. These main groups of structural trends are associated with the Brasiliano/Pan-African orogeny (600 ± 200 Ma) and likely predate rifting of the Gondwana supercontinent. They may have been enhanced during continental break-up in Late Jurassic to Early Cretaceous.

  7. Satellite elevation magnetic anomaly maps

    NASA Technical Reports Server (NTRS)

    Braile, L. W.; Hinze, W. J. (Principal Investigator)

    1982-01-01

    The problem of inverting 2 deg average MAGSAT scalar anomalies for the region 80 W, 60 E longitude and 40 S, 70 N latitude was attempted on the LARS computer; however, the effort was aborted due to insufficient allocation of CPU-time. This problem is currently being resubmitted and should be implemented shortly for quantitative comparison with free-air gravity anomaly, geothermal, and tectonic data.

  8. Modeling of shallow structures in the Cappadocia region using gravity and aeromagnetic anomalies

    NASA Astrophysics Data System (ADS)

    Kosaroglu, Sinan; Buyuksarac, Aydin; Aydemir, Attila

    2016-07-01

    In this study, shallow structures and bodies creating gravity and magnetic anomalies in the Cappadocia Volcanic Complex region in central Anatolia were investigated in order to determine the tectonic origin and structural setting of young volcanic units. The shallow geological structures in the region are depressions filled with mainly low-density, loose volcano-clastics and ignimbrite sheets associated with the continental Neogene deposits. These units together with other volcanic products are originated from the large Neogene and Quaternary volcanoes of the central Anatolia, particularly in the Cappadocia region. At first, spectral analysis to obtain the cut-off frequencies for the high-pass filter was performed in this investigation. Then, gravity and magnetic data were high-pass filtered to remove the deep and regional effects on anomalies and to unveil only shallow structures' effects. Subsequently, upward and downward continuations were carried out to determine how these shallow structures influence the total anomalies and their contribution in the confining total potential field. In addition, three and two dimensional gravity models (3D and 2D) of the study area were also constructed to obtain the bottom depth of shallow bodies. According to spectral analysis results, shallow structures could be separated into two groups from the power spectrums and bottom depth of deeper structure was commonly determined about 2 km in gravity and magnetic spectrum, both. More shallow structure is at the depth around 0.317 km according to the gravity power spectrum. Obviously, 3D and 2D models are consistent with the spectral analysis results for the deeper unit depth. A circular, large depression (70 × 50 km2) surrounds Mount Melendiz with a 1-2.7 km depth range (2 km in average). Because the depressions around the central volcanoes of Mount Melendiz and Mount Hasan cover very large areas in the basin scale, the shallow and low-density volcanic units can hardly be claimed

  9. New magnetic anomaly map of East Antarctica and surrounding regions

    USGS Publications Warehouse

    Golynsky, A.; Blankenship, D.; Chiappini, M.; Damaske, D.; Ferraccioli, F.; Finn, C.; Golynsky, D.; Goncharov, A.; Ishihara, T.; Ivanov, S.; Jokat, W.; Kim, H.R.; König, M.; Masolov, V.; Nogi, Y.; Sand, M.; Studing, M.; ADMAP Working Group

    2007-01-01

    community over East Antarctica and surrounding regions, significantly upgrade the Antarctic Digital Magnetic Anomaly Project (ADMAP) compilation and lead to substantial improvements in magnetic anomaly pattern recognition. New data have been matched in one inverse operation by minimizing the data differences for the areas of overlap. The aeromagnetic data show many previously unknown magnetic patterns, lineaments and trends, defining the spatial extent of Ferrar volcanics and plutonic Granite Harbour Intrusives in the Transantarctic Mountains and previously unknown tectonic trends of the East Antarctic craton. Regional aeromagnetic investigations have successfully delineated Early Paleozoic inherited crustal features along the flanks of the West Antarctic Rift System and the southern boundary of the Archean Ruker Terrane in the Prince Charles Mountains. Magnetic records along the East Antarctic continental margin provide new constraints on the breakup of Gondwana.

  10. Sources of aeromagnetic anomalies over Cement oil field (Oklahoma), Simpson oil field (Alaska), and the Wyoming-Idaho-Utah thrust belt

    USGS Publications Warehouse

    Reynolds, R.L.; Fishman, N.S.; Hudson, M.R.

    1991-01-01

    Geochemical and rock magnetic studies, undertaken to determine the causes of magnetic anomalies have revealed different magnetic sources developed under different sedimentologic, geochemical, and structural settings. Results show that abiologic and biologic mechanisms can generate different magnetic sulfide minerals in zones of sulfide hydrocarbon seepage. More commonly, sulfidic seepage could either diminish magnetization by replacement of detrital magnetic minerals with nonmagnetic sulfide minerals, or it would have no effect on magnetization if such detrital minerals were originally absent. An important negative result is the absence of abundant secondary (diagenetic) magnetite in the seepage environments. Although secondary magnetite occurs in some biodegraded crude oils, concentrations of such magnetite capable of producing aeromagnetic anomalies have not been documented. -from Authors

  11. Method of Mapping Anomalies in Homogenous Material

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor)

    2016-01-01

    An electrical conductor and antenna are positioned in a fixed relationship to one another. Relative lateral movement is generated between the electrical conductor and a homogenous material while maintaining the electrical conductor at a fixed distance from the homogenous material. The antenna supplies a time-varying magnetic field that causes the electrical conductor to resonate and generate harmonic electric and magnetic field responses. Disruptions in at least one of the electric and magnetic field responses during this lateral movement are indicative of a lateral location of a subsurface anomaly. Next, relative out-of-plane movement is generated between the electrical conductor and the homogenous material in the vicinity of the anomaly's lateral location. Disruptions in at least one of the electric and magnetic field responses during this out-of-plane movement are indicative of a depth location of the subsurface anomaly. A recording of the disruptions provides a mapping of the anomaly.

  12. Initial vector magnetic anomaly map from Magsat

    NASA Technical Reports Server (NTRS)

    Langel, R. A.; Schnetzler, C. C.; Phillips, J. D.; Horner, R. J.

    1982-01-01

    Global magnetic component anomaly field maps have been derived from the Magsat vector magnetometer data obtained from November 1979 through May 1980. The amplitude of variations of the components over the maps are between 10 and 15 nT, well above the noise in the data. Averaged data, in 2-by-2 deg blocks, exhibit standard errors of the mean of about 1 nT over most of the X and Z maps, and about 2 nT over most of the Y maps. Errors rise to about twice these amounts near the auroral belts. Most of the anomalies in the component data are consistent with a crustal magnetization model which incorporates dipoles aligned only in the direction of the main field. However, there appear to be some regions which require dipoles aligned in some other direction i.e., remanent magnetization.

  13. Aeromagnetic mapping of the structure of Pine Canyon caldera and Chisos Mountains intrusion, Big Bend National Park, Texas

    USGS Publications Warehouse

    Drenth, B.J.; Finn, C.A.

    2007-01-01

    Analysis of aeromagnetic and gravity data reveals new details of the structure, igneous geology, and temporal evolution of the prominent, enigmatic ca.32 Ma Pine Canyon caldera and the Chisos Mountains (Big Bend National Park, Texas). The main caldera-filling Pine Canyon Rhyolite, the oldest member of the South Rim Formation, is reversely magnetized, allowing it to be used as a key marker bed for determining caldera fill thickness. Modeling of gravity and magnetic anomalies indicates that the Pine Canyon Rhyolite is probably thicker in the northeastern part of the caldera. Lineaments in the magnetic data suggest the presence of buried faults beneath the caldera that may have led to increased downdrop in the northeast versus the southwest, allowing a thicker section of caldera fill to accumulate there. The Pine Canyon caldera has been interpreted as a downsag caldera because it lacks surficial faulting, so these inferred faults are the first mapped features there that could be responsible for caldera collapse. The caldera boundary correlates well with the margins of a gravity low. General features of the caldera match well with basic models of downsag calderas, meaning that the Pine Canyon caldera may be a classic example of downsagging, of which few well-described examples exist, in terms of a geophysical signature. The source of a long-wavelength magnetic high over the Chisos Mountains is interpreted as a previously unknown broad intrusion, the long axis of which trends parallel to a major crustal boundary related to the Ouachita orogeny or an even earlier Precambrian margin. This feature represents the largest intrusion (28-34 km diameter, 1-4 km thick, 700-3000 km3 in volume) in an area where relatively small laccoliths are ubiquitous. The intrusion most likely represents a long-lived (>1 m.y.) reservoir replenished by small batches of magma of varying composition, as reflected in the variation of eruptive products from the Pine Canyon and Sierra Quemada

  14. MAGSAT scalar anomaly map of South America

    NASA Technical Reports Server (NTRS)

    Ridgway, J. R.; Hinze, W. J.; Braile, L. W.

    1985-01-01

    A scalar magnetic anomaly map was prepared for South America and adjacent marine areas directly from original MAGSAT orbits. The preparation of the map poses special problems, notably in the separation of external field and crustal anomalies, and in the reduction of data to a common altitude. External fields are manifested in a long-wavelength ring current effect, a medium-wavelength equatorial electrojet, and short-wavelength noise. The noise is reduced by selecting profiles from quiet periods, and since the electrojet is confined primarily to dusk profiles, its effect is minimized by drawing the data set from dawn profiles only. The ring current is corrected through the use of the standard ring current equation, augmented by further filtering with a Butterworth bandpass filter. Under the assumption that the time-variant ring current is best removed when a replication of redundant profiles is achieved, a test set of 25 groups of 3 nearly coincident orbits per group is set up for filtering with a range of long-wavelength cutoffs to determine which cutoff best replicates the residual profiles. Altitude differences are then normalized by an inversion of the profile data onto a grid of equivalent point dipoles, and recalculated at an altitude of 350 km. The resulting map, when compared to the 2 deg averaged map, shows more coherent anomalies, with notable differences in the region affected by the electrojet.

  15. Detailed petrophysical characterization enhances geological mapping of a buried substratum using aeromagnetic and gravity data; application to the southwestern Paris basin

    NASA Astrophysics Data System (ADS)

    Baptiste, Julien; Martelet, Guillaume; Faure, Michel; Beccaletto, Laurent; Chen, Yan; Reninger, Pierre-Alexandre

    2016-04-01

    Mapping the geometries (structure and lithology) of a buried basement is a key for targeting resources and for improving the regional geological knowledge. The Paris basin is a Mesozoic to Cenozoic intraplate basin set up on a Variscan substratum, which crops out in the surrounding massifs. We focus our study on the southwestern part of the Paris basin at its junction with the Aquitaine basin. This Mezo-Cenozoic cover separates the Armorican Massif and the Massif Central which compose of several litho-tectonic units bounded by crustal-scale shear zones. In spite of several lithological and structural correlations between various domains of the two massifs, their geological connection, hidden below the Paris basin sedimentary cover, is still largely debated. Potential field geophysics have proven effective for mapping buried basin/basement interfaces. In order to enhance the cartographic interpretation of these data, we have set up a detailed petrophysical library (field magnetic susceptibility data and density measurements on rock samples) of the Paleozoic rocks outcropping in the Variscan massifs. The combination of aeromagnetic and gravity data supported by the petrophysical signatures and field/borehole geological information, is carried out to propose a new map of the architecture of the Variscan substratum. The new synthetic map of geophysical signature of the Paris basin basement combines: i) the magnetic anomaly reduced to the pole, ii) the vertical gradient of the Bouguer anomaly and iii) the tilt derivative of the magnetic anomaly reduced to the pole. Based on this information, the Eastern extension of the major shear zones below the sedimentary cover is assessed. The petrophysical signatures were classified in three classes of magnetic susceptibility and density: low, intermediate and high. Basic rocks have high magnetization and density values whereas granite, migmatite and orthogneiss show low magnetization and density values, Proterozoic and Paleozoic

  16. Aeromagnetic and Gravity Maps of the Central Marysvale Volcanic Field, Southwestern Utah

    USGS Publications Warehouse

    Campbell, David L.; Steven, Thomas A.; Cunningham, Charles G.; Rowley, Peter D.

    1999-01-01

    Gravity and aeromagnetic features in the Marysvale volcanic field result from the composite effects of many factors, including rock composition, style of magmatic emplacement, type and intensity of rock alteration, and effects of structural evolution. Densities and magnetic properties measured on a suite of rock samples from the Marysvale volcanic field differ in systematic ways. Generally, the measured densities, magnetic susceptibilities, and natural remanent magnetizations all increase with mafic index, but decrease with degree of alteration, and for tuffs, with degree of welding. Koenigsberger Q indices show no such systematic trends. The study area is divided into three geophysical domains. The northern domain is dominated by aeromagnetic lows that probably reflect reversed-polarity volcanic flows. There are no intermediate-sized magnetic highs in the northern domain that might reflect plutons. The northern domain has a decreasing-to-the-south gravity gradient that reflects the Pavant Range homocline. The central domain has gravity lows that reflect altered rocks in calderas and low-density plutons of the Marysvale volcanic field. Its aeromagnetic signatures consist of rounded highs that reflect plutons and birdseye patterns that reflect volcanic flows. In many places the birdseyes are attenuated, indicating that the flows there have been hydrothermally altered. We interpret the central domain to reflect an east-trending locus of plutons in the Marysvale volcanic field. The southern domain has intermediate gravity fields, indicating somewhat denser rocks there than in the central domain, and high-amplitude aeromagnetic birdseyes that reflect unaltered volcanic units. The southern domain contains no magnetic signatures that we interpret to reflect plutons. Basin-and-range tectonism has overprinted additional gravity features on the three domains. A deep gravity low follows the Sevier and Marysvale Valleys, reflecting grabens there. The gravity gradient in the

  17. Detailed gravity and aeromagnetic surveys in the Black Rock Desert Area, Utah. Topical report

    SciTech Connect

    Serpa, L.F.; Cook, K.L.

    1980-01-01

    Aeromagnetic and gravity surveys were conducted during 1978 in the Black Rock Desert, Utah over an area of about 2400 km/sup 2/ between the north-trending Pavant and Cricket Mountains. The surveys assisted in evaluating the geothermal resources in the Meadow-Hatton Known Geothermal Resource Area (KGRA) and vicinity by delineating geophysical characteristics of the subsurface. The gravity measurements from approximately 700 new stations were reduced to complete Bouguer gravity anomaly values with the aid of a computerized terrain-correction program and contoured at an interval of 1 milligal. The aeromagnetic survey was drape flown at an altitude of 305 m (1000 ft) and a total intensity residual aeromagnetic map with a contour interval of 20 gammas was produced. Two gravity and aeromagnetic east-west profiles and one north-south profile were modeled using a simultaneous 2 1/2-dimensional modeling technique to provide a single model satisfying both types of geophysical data.

  18. Aeromagnetic Study of Tke Huichapan Caldera; Central Volcanic Belt

    NASA Astrophysics Data System (ADS)

    Gonzalez, T.; Martin, A.; Alfaro, G.; Oyarzabal, E.

    2013-12-01

    Analysis of the aeromagnetic anomalies over the central sector of the Mexican Volcanic Belt sheds new light on the structure of the Huichapan Caldera. This volcanic center located 100 Km to the north- northwest of Mexico City is approximately 10 km in diameter and related to an ignimbrite sequence. Milan et al, (1993) and. Aguirre-Diaz and Lopez-Martinez (2009) mapped Huichapan area and described the geology and petrology of the erupted products in the region. Aguirre-Diaz and Lopez-Martinez (2009) suggest the idea of two overlapping calderas related to an ignimbrite sequence. The analyzed region is a rectangular area, approximately from 20.25 N to 20.42 N and between 99.42 W and 99.6 W. The total field aeromagnetic data was obtained with a Geometrics G-803 proton magnetometer at a flight altitude of 300 m above ground level. For the analysis of the anomalies, the data was further smoothed to construct a 1 km regularly spaced grid. The anomaly map was compared with the surface geology and larger anomalies were correlated with major volcanic features. Since our main interest was in mapping the subsurface intrusive and volcanic bodies, the total field magnetic anomalies were reduced to the pole by using the double integral Fourier method. The reduced to the pole anomaly map results in a simplified pattern of isolated positive and negative anomalies, which show an improved correlation with all major volcanic structures. For the analysis and interpretation of the anomalies, the reduced to the pole anomalies were continued upward at various reference levels. These operations result in smoothing of the anomaly field by the filtering of high frequency anomalies that may be related to shallow sources. Two profiles were selected that cross the major anomalies on the Huichapan Caldera. The Talwani algorithm for 2-D polygonal bodies has been used for calculating the theoretical anomalies.

  19. Terrane Definition From Textural Measures of Aeromagnetic Data

    NASA Astrophysics Data System (ADS)

    Gettings, M.

    2007-12-01

    The vertical and horizontal magnetization in the Earth's crust is an anisotropic multifractal distribution, and this results in a horizontal multifractal distribution of magnetic anomalies at and above the Earth's surface. Discreet lithologic terranes are frequently observed to exhibit a characteristic pattern or "texture" of anomalies in aeromagnetic maps. Multifractal measures provide some tools useful in quantifying different textures and the scaling properties of aeromagnetic anomalies in map view can be used to define boundaries between terranes of different magnetic textures. If the source depths are not too large, the magnetic textural measures of lithologic units can be used to map their extent beneath cover. Although magnetic anomaly textures are generally visible to the eye on aeromagnetic anomaly images, the actual boundary between two textures is frequently difficult to determine with certainty. The use of quantitative textural measures provides a more objective framework for the boundary definition problem. A high resolution aeromagnetic survey over an area of highly variable geology has been used as a test area for these studies. Two robust measures that have proven useful for textural analysis are: the number of extrema per unit area; and the surface area per unit area in a window moving over the gridded aeromagnetic data. The former measures the "noisiness" of the data, and the latter depends on anomaly amplitudes and discriminates between large and small magnetizations. Window sizes for texture analysis are typically a few km square because geologic terranes of interest are generally of the order of tens of km in characteristic dimension. Other measures investigated are based on the scaling properties of the field within the window computed from the structure function for various exponents. The minima of the structure function define the characteristic sizes of anomalies, analogous to the power spectrum for a periodic function, and the maxima

  20. An aeromagnetic survey in the Valley of Ten Thousand Smokes, Alaska. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Anma, K.

    1971-01-01

    Geologic and magnetic studies of the Katmai area have further demonstrated the close relationship between the Katmai Caldera, Novarupta plug, and the pyroclastic flows in the Valley of Ten Thousand Smokes. The magnetic fields observed appear to be associated with the thickness of the pyroclastic flow and the different rock units within it for lower flight levels, and also the contrast between the valley fill and the rock units at the Valley margins. Consistent magnetic anomalies are associated with the larger fumarole lines, which were presumably sites of large scale activity, while the smaller fumaroles are not usually seen in the aeromagnetic map. A possible correlation between low positive anomalies and nuee ardente deposits was revealed by the aeromagnetic survey, but was not strong. A ground survey was also carried out in several parts of the Valley with a view to detailed delineation of the magnetic signatures of the pyroclastic flow, as an aid to interpreting the aeromagnetic date.

  1. Aeromagnetic Study of Buenavista de Cuellar, Mining Region, Guerrero, Mexico

    NASA Astrophysics Data System (ADS)

    Gonzalez, T.; Marin, J. C., Sr.

    2014-12-01

    Analysis of the aeromagnetic anomalies south of the central sector of the Mexican Volcanic Belt sheds new light on the knowledge of the mining region of Buenavista de Cuellar, in the state of Guerrero, southeast Mexico. The area is located in the northern part of the Mixteco Terrain characterized by a Paleozoic metamorphic basement and overlain by a sedimentary platform (Guerrero-Morelos Platform). The iron deposits located north of the state, between the cities of Taxco and Iguala have motivated studies in the region. The analyzed region covers a rectangular area of 660 km2 approximately from 440000, 2025000 to 462000, 2055000 UTM. The total field aeromagnetic data was obtained with a Geometrics G-803 proton magnetometer at a flight altitude of 300 m above ground level. For the analysis of the anomalies, the data was further smoothed to construct a 2 km regularly spaced grid. The anomaly map was compared with the surface geology and larger anomalies were correlated with major geologic features. Our main interest was in mapping the subsurface intrusive and plutonic bodies. The total field magnetic anomalies were reduced to the pole by using the double integral Fourier method. The analysis and interpretation of these anomalies allows us to infer the presence of four plutonic bodies of evolved composition that would be associated with metallic mineralized bodies in two new prospective areas.

  2. Mapping of a buried basement combining aeromagnetic, gravity and petrophysical data: The substratum of southwest Paris Basin, France

    NASA Astrophysics Data System (ADS)

    Baptiste, Julien; Martelet, Guillaume; Faure, Michel; Beccaletto, Laurent; Reninger, Pierre-Alexandre; Perrin, José; Chen, Yan

    2016-06-01

    Aeromagnetic and gravity data have proven to be among the most effective methods for mapping deeply buried basin/basement interfaces. However, the data interpretation generally suffers from ambiguities, due to the non-uniqueness of the gravity and magnetic signatures. Here, we tie the gravity and magnetic signatures with a petrophysical characterization of the lithologies outcropping around the French Paris Basin. Our methodology investigates the lithology and structure of its hidden Variscan substratum at the junction between the Armorican Massif and Massif Central. Our approach is based on the combination of potential field data, magnetic susceptibilities measured in the field, density values of sample rocks and information documented in boreholes, in order to propose a new interpretative geological map of the buried substratum of the Paris Basin. The petrophysical description is combined with geophysical patterns of the substratum, mapped through statistical unsupervised classification of suitably selected magnetic and gravity maps. The first step of interpretation consists in extending the outcropping major structures below the Meso-Cenozoic sedimentary cover of the Paris Basin. The litho-structural units, in between these major structures, are then interpreted separately. The second step consists in assigning lithologies within each unit, with respect to its magnetization and density (as derived from the petrophysical compilation), and mapping its extension under cover, integrating punctual borehole information. Overall, with a special emphasis on relating geophysical signatures and petrophysical characteristics of litho-structural units, this methodology permits a precise structural and lithological cartography of a segment of the buried Variscan substratum. In the southwestern part of the Paris Basin, this approach reveals: i) the limited eastward extension of Central Brittany, ii) the eastward extension of the major Cholet fault, iii) the emphasis on N150E

  3. A global magnetic anomaly map. [obtained from POGO satellite data

    NASA Technical Reports Server (NTRS)

    Regan, R. D.; Davis, W. M.; Cain, J. C.

    1974-01-01

    A subset of POGO satellite magnetometer data has been formed that is suitable for analysis of crustal magnetic anomalies. Using a thirteenth order field model, fit to these data, magnetic residuals have been calculated over the world to latitude limits of plus 50 deg. These residuals averaged over one degree latitude-longitude blocks represent a detailed global magnetic anomaly map derived solely from satellite data. Preliminary analysis of the map indicates that the anomalies are real and of geological origin.

  4. Aeromagnetic map of the Holy Cross Wilderness Area, Eagle, Lake, and Pitkin counties, Colorado

    USGS Publications Warehouse

    Campbell, D.L.; Wallace, A.R.

    1986-01-01

    Map B is a generalized bedrock geologic map of the wilderness area, showing locations of faults, shear zones, and geologic units referred to in this report. Many smaller outcrops are not shown on Map B, however. For precise locations, descriptions of geologic units, and a more complete discussion of the geology of the wilderness area, see the companion map by Wallace and others (1986).

  5. Preliminary grid data and maps for an aeromagnetic survey of the Taylor mountains quadrangle and a portion of the Bethel quadrangle, Alaska

    USGS Publications Warehouse

    Saltus, R.W.; Milicevic, B.

    2004-01-01

    A preliminary data grid and maps are presented for an aeromagnetic survey of the Taylor Mountains and a portion of the Bethel quadrangles, Alaska. The aeromagnetic survey was flown by McPhar Geosurveys Ltd. for the U.S. Geological Survey (USGS). A flight-line spacing of 1,600 meters (1 mile) and nominal flight height of 305 meters (1,000 feet) above topography (draped) was used for the survey. The preliminary data grid has a grid cell size of 350 meters (1150 feet). Final data processing and quality control have not been applied to these data. The purpose of this preliminary data release is to allow prompt public access to these data, which are of interest for active mineral exploration in the region. A more complete data release and description will be published later once the final data processing is complete.

  6. Flat slabs seen from above: aeromagnetic data in Central Mexico

    NASA Astrophysics Data System (ADS)

    Manea, M.; Manea, V. C.

    2006-12-01

    The aeromagnetic map of Mexico shows a magnetic "quiet zone" in Guerrero and Oaxaca (Central Mexico), characterized by a general lack of short-wavelength magnetic anomalies. In order to investigate the magnetic quiet zone in relation with the thermal sources, spectral analysis has been applied to the aeromagnetic data. The results show the existence of deep magnetic sources (30-40 km) which we consider to be the Currie depth (corresponding to a temperature of 575-600°). Above the Curie temperature spontaneous magnetization vanishes and the minerals exhibit only a small paramagnetic susceptibility. Our estimates of magnetic basal depth are consistent with the heat flow measurements in the area (20-30 mW/m2). In order to explain such deep magnetic source and small heat flow estimates, we infer the thermal structure associated with the subduction of the Cocos plate beneath Central Mexico, using a finite element approach. The modeling results show that the 575-600°C isotherm is subhorisontal due to the flat slab regime in the area. Also, the heat flow estimates from thermal models and spectral analysis of aeromagnetic anomalies are in good agreement. We conclude that the magnetic quiet zone is associated with a flat slab subduction regime in Central Mexico, and proved to be an important constraint for the thermal structure associated with subduction zones.

  7. Dextral Shear on the Olympic-Wallowa Lineament, Washington--Evidence from High-Resolution Aeromagnetic Anomalies and Implications for Cascadia Seismic Hazards

    NASA Astrophysics Data System (ADS)

    Blakely, R. J.; Sherrod, B. L.; Weaver, C. S.; Wells, R. E.

    2013-12-01

    The Olympic-Wallowa physiographic lineament (OWL) extends northwestward ~500 km from northeastern Oregon to Vancouver Island, British Columbia. The tectonic relevance of the OWL, particularly the degree to which horizontal shear has contributed to its evolution, is an important element in assessing kinematic connections between the Cascadia backarc and forearc, and the consequent seismic hazard it poses to the region. Past workers have come to rather different conclusions, some suggesting sinistral, others suggesting dextral, and still others suggesting no horizontal displacement on the OWL. North-northwest-striking dikes of the 8.5 Ma Ice Harbor Member of the Columbia River Basalt Group are offset and disrupted by the Wallula fault zone (WFZ), a 45-km-long segment of the OWL southeast of Kennewick. Although mostly concealed by young deposits, Ice Harbor dikes are clearly delineated in high-resolution aeromagnetic anomalies as near-vertical intrusions, affording an opportunity to estimate the sense and amount of offset along this part of the OWL. Aided by various derivative products calculated from magnetic anomalies, we interpret five piercing points from single-dike anomalies intersecting the Wallula fault (the northernmost strand of the WFZ), together indicating an average of 1.72 km of right-lateral offset on this single strand. Right-lateral offset across the entire WFZ is 6.9 km, an average rate of 0.8 mm/y since 8.5 Ma. We cannot rule out the possibility that tectonic offsets are only apparent because the injection process itself was offset during emplacement. However, consistent right-lateral offsets are observed in stream drainages along the OWL, supporting our magnetic anomaly interpretations. Aerial photography and airborne LiDAR surveys show seven offset streams along a fault scarp on the northeastern slope of Rattlesnake Mountain, located along the OWL about 70 km northwest of the WFZ. Incised in Pleistocene deposits, these stream offsets average about

  8. Aeromagnetic expression of faults that offset basin fill, Albuquerque basin, New Mexico

    USGS Publications Warehouse

    Grauch, V.J.S.; Hudson, M.R.; Minor, S.A.

    2001-01-01

    High-resolution aeromagnetic data acquired over the Albuquerque basin show widespread expression of faults that offset basin fill and demonstrate that the aeromagnetic method can be an important hydrogeologic and surficial mapping tool in sediment-filled basins. Aeromagnetic expression of faults is recognized by the common correspondence of linear anomalies to surficial evidence of faulting across the area. In map view, linear anomalies show patterns typical of extensional faulting, such as anastomosing and en echelon segments. Depths to the tops of faulted magnetic layers showing the most prominent aeromagnetic expression range from 0 to 100 m. Sources related to subtler fault expressions range in depths from 200 to 500 m. We estimate that sources of the magnetic expressions of the near-surface faults likely reside within the upper 500-600 m of the subsurface. The linear anomalies in profile form show a range of shapes, but all of them can be explained by the juxta-position of layers having different magnetic properties. One typical anomaly differs from the expected symmetric fault anomaly by exhibiting an apparent low over the fault zone and more than one inflection point. Although the apparent low could easily be misinterpreted as representing multiple faults or an anomalous fault zone, geophysical analysis, magnetic-property measurements, and geologic considerations lead instead to a "thin-thick model" in which magnetic layers of different thickness are juxtaposed. The general geometry of this model is a thin magnetic layer on the upthrown block and a thick magnetic layer on the downthrown block. The thin-thick model can be represented geologically by growth faulting and syntectonic sedimentation, where relatively coarse-grained sediment (which is more magnetic than fine-grained material) has accumulated in the hanging wall. This implies that the aeromagnetic data have potential for mapping growth faults and locating concentrations of coarse-grained material

  9. Unique Aeromagnetic-radar Ice-sounding Survey over the West Antarctic Ice Sheet Allows Three Dimensional Definition of Sources of Magnetic Anomalies Caused by Subglacial Volcanic Sources at the Bed of the Ice

    NASA Astrophysics Data System (ADS)

    Behrendt, J. C.; Casertz; Soar Teams

    2011-12-01

    The West Antarctic Ice Sheet (WAIS) flows through the volcanically active West Antarctic Rift System (WARS). The aeromagnetic method has proven the most useful geophysical tool for studying subglacial volcanic rocks beneath the WAIS since early surveys in the 1950s. The Central West Antarctica (CWA) aerogeophysical survey covering ~354,000 km2 (about the area of Nevada and California combined) over the WAIS, consisting of a 5-km line-spaced, orthogonal set of aeromagnetic, radar ice-sounding and aerogravity measurements, is a unique Antarctic data set. This 1990-97 survey (CASERTZ and SOAR), still provides invaluable information on subglacial volcanic rocks, particularly when combined with widely spaced older aeromagnetic flight lines over a much greater area. These combined survey data indicate numerous high-amplitude (100->1000 nT), 5-50 km width, shallow-source, magnetic anomalies over a very extensive area (>1.2 x 106 km2) mostly resulting from subglacial volcanic eruptions. I interpreted the anomalies sampled in the CWA survey as defining ~1000 "volcanic centers" requiring high remanent normal magnetizations in the present field direction. About 400 of these anomaly sources (conservatively selected) are correlated with bed topography. The tops of >80% of these anomaly sources have <200 m relief at the bed of the WAIS. They appear modified by moving ice, requiring a younger age than the WAIS (~25 Ma). The 5 km by 5 km orthogonal flight line survey obviated aliasing of the magnetic and radar ice sounding data, because it is approximately equivalent to the flight elevation above the ice (1 km) surface plus the ice thickness (2-3 km); it reveals the magnetic anomalies and the tops of volcanic sources at its bed in three dimensions. Models (2 1/2 D) fit to a number of the magnetic anomalies, whose sources are at the bed of the ice sheet are constrained by topography measured by the radar ice sounding. Volcanoes in the WARS are <34 Ma, but at least four are active

  10. Aeromagnetic data, processing, and maps of Fort Irwin and vicinity, California: Chapter I in Geology and geophysics applied to groundwater hydrology at Fort Irwin, California

    USGS Publications Warehouse

    Langenheim, V.E.; Jachens, Robert C.

    2014-01-01

    Aeromagnetic data help provide the underpinnings of a hydrogeologic framework for Fort Irwin by locating inferred structural features or grain that influence groundwater flow. Magnetization boundaries defined by horizontal-gradient analyses coincide locally with Cenozoic faults and can be used to extend these faults beneath cover. These boundaries also highlight the structural grain within the crystalline rocks and may serve as a proxy for fracturing, an important source of permeability within the generally impermeable basement rocks, thus mapping potential groundwater pathways through and along the mountain ranges in the study area.

  11. Crustal structure of the Churchill-Superior boundary zone between 80 and 98 deg W longitude from Magsat anomaly maps and stacked passes

    NASA Technical Reports Server (NTRS)

    Hall, D. H.; Millar, T. W.; Noble, I. A.

    1985-01-01

    A modeling technique using spherical shell elements and equivalent dipole sources has been applied to Magsat signatures at the Churchill-Superior boundary in Manitoba, Ontario, and Ungava. A large satellite magnetic anomaly (12 nT amplitude) on POGO and Magsat maps near the Churchill-Superior boundary was found to be related to the Richmond Gulf aulacogen. The averaged crustal magnetization in the source region is 5.2 A/m. Stacking of the magnetic traces from Magsat passes reveals a magnetic signature (10 nT amplitude) at the Churchill-Superior boundary in an area studied between 80 deg W and 98 deg W. Modeling suggests a steplike thickening of the crust on the Churchill side of the boundary in a layer with a magnetization of 5 A/m. Signatures on aeromagnetic maps are also found in the source areas for both of these satellite anomalies.

  12. The application aeromagnetic data for dyke swarm mapping (an example the Ladoga region, Russia)

    NASA Astrophysics Data System (ADS)

    Vasilieva, T.; Frank-Kamenetsky, D.

    2003-04-01

    Vasilieva T.I., Frank-Kamenetsky D.A., Zayonchek A.V. The main factor of the Fennoscandian evolution in Late Proterozoic was inter- and intracratonic rifting. However, products of magmatic activity were removed by erosion. Thus, only plutonic bodies and dyke swarms allow us to reconstruct the Fennoscandian shield tectono-magmatic evolution in Late Proterozoic. The rifting processes in southeastern Fennoscandia took place in Riphean. The earlier are several massifs of rapakivi-granite accompanied by mafic dyke swarms with age about 1.64 to 1.51 Ga were formed. The Middle Riphean is characterized by rift structure forming. They are known in Russia (White Sea rift system, northern Kola, Ladoga Lake, probably, Onega Lake), Finland (Muhos, Satakunta) and central Sweden. The age of mafic magmatic complexes, corresponding with these rift systems, is 1.24 Ga (Suominen, 1991). There are at least two stages of Riphean evolution and magmatic complexes in Ladoga Lake region. They are the Salminski and Vyborg rapakivi-granites at first, Salminski volcano-sedimentary suite, Valaam sill, Hopunvaara intrusion and several dolerites dykes at second. Our detailed studies based on magnetic geophysical data. A combination of geophysical methods and GIS provided effective mapping of dyke swarms in NW Ladoga. It has shown that the Fe-enriched olivine dolerite dykes, it was described on the NW coast of Ladoga Lake, are very locally developed forming narrow zone, which runs through Sortavala town and several islands. The dykes were clearly observed, because of their extremely high magnetic susceptibility. The dykes strike toward NW corresponding to the longest axis of the graben. Chemical identity of the dykes and Salminski lavas allows considering the age of this rifting about 1.35 Ga. The other dyke complexes were being described in North-West Ladoga region. It is dykes of fresh clinopyroxene dolerites. Probably, the dykes are accompanying by rapakivi-granites. Unfortunately, very

  13. Regional interpretation of Kansas aeromagnetic data

    SciTech Connect

    Yarger, H.L.

    1982-01-01

    The aeromagnetic mapping techniques used in a regional aeromagnetic survey of the state are documented and a qualitative regional interpretation of the magnetic basement is presented. Geothermal gradients measured and data from oil well records indicate that geothermal resources in Kansas are of a low-grade nature. However, considerable variation in the gradient is noted statewide within the upper 500 meters of the sedimentary section; this suggests the feasibility of using groundwater for space heating by means of heat pumps.

  14. Mapping Extensional Structures in the Makgadikgadi Pans, Botswana with remote sensing and aeromagnetic data: Implication for the continuation of the East African Rift System in southern Africa

    NASA Astrophysics Data System (ADS)

    Fetkovich, E. J.; Atekwana, E. A.; Abdelsalam, M. G.; Atekwana, E. A.; Katumwehe, A. B.

    2015-12-01

    We used Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) and aeromagnetic data to map extensional structures in the Makgadikgadi Pans in northeastern Botswana. These pans are a major morphological feature in Southern Africa characterized by the presence of low lying and flat topography with the highest elevation of 945 m. This topography was a result of multiple filling and desiccation of paleo-lakes that accompanied alternation of wetter and dryer climate during the Late Quaternary period. The objective of our study was to map the extent and distribution of normal faults using their morphological expression and magnetic signature, and examine their relationship with paleo-shorelines of the pans. We: (1) Created a hill shade relief map from the SRTM DEM; (2) Extracted regional NW-SE trending topographic profiles across the pans; (3) Constructed displacement profiles for major normal faults; and (4) Created tilt derivative images from the aeromagnetic data. We found that: (1) The northeastern part of the pan is dissected by three morphologically-defined NE-trending normal faults. The along strike continuity of these faults is in the range of 75 and 170 km and they are spaced at ~30 km apart from each other. (2) The topographic profiles suggest that the exposed minimum vertical displacement (EMVD), defined by poorly developed escarpments, is in the range of 0 m and 49 m. (3) The displacement profiles of the faults is characterized by maximum EMVD in the middle of the faults and that it decays towards the fault tips. These faults are also apparent in the aeromagnetic maps where they seem to displace E-W trending Karoo-age dikes. (4) At least the outer paleo-shoreline of the pans is modified by the NE-trending faults. This suggests that the faults are younger than the paleo-shorelines, which is suggested to have been developed between 500 and 100 ka. Traditionally, the southwestern extension of the East African Rift System has been assigned to the

  15. Using high-resolution aeromagnetic survey to map tectonic elements of plate boundaries: An example from the Dead Sea Fault

    NASA Astrophysics Data System (ADS)

    Al-Zoubi, A. S.; ten Brink, U. S.; Rybakov, M.; Rotstein, Y.

    2004-12-01

    The Dead Sea Fault (DSF) is a transform plate boundary between the African and the Arabian plates. The 200-km-long DSF segment between the Gulf of Aqaba/Elat and the Dead Sea, which has the morphology of a rift valley, shows little seismic activity, and its surface trace is only intermittently visible. High-resolution magnetic data were collected in October 2003 aboard a Jordanian military helicopter flying at an altitude of 100 m over the southern 120-km-long section of this fault segment. The survey was part of a US-AID Middle Eastern Regional Cooperation project between Jordanian, Israeli, Palestinian, and American scientists. Data were collected along rift-perpendicular lines spaced 300 m apart, requiring frequent crossings between Israeli and Jordanian air spaces. The data were gridded at 75 m interval following resolution tests, reduced to pole, and incorporated into a GIS together with elevation, geology, and gravity maps to facilitate interpretation. The main findings of the magnetic survey are the absence of magnetic anomalies crossing the rift valley, and the presence of a rift-parallel regional lineament corresponding to the active trace of the DSF. The lineament extends NNE as an almost continuous trace from Elat, Israel, to the eastern side of the valley 5 km north of Rahmeh. Jordan. Another fault trace located 2-3 km to the west may overlap and continue NNE through Gebel A-Risha, and into the central Arava/Araba valley, where it is visible on the surface. Alternatively, the two traces may be connected. If an offset between the two traces exists, it may be small enough to allow an earthquake rupture to propagate across the offset, and generate an earthquake with a moment magnitude of up to 7.5. Traces of buried faults in the central Arava/Araba valley that were previously active in the DSF system, are visible as abrupt terminations of an area of short wavelength magnetic anomalies. These anomalies probably represent shallow subsurface magmatic

  16. Aeromagnetic search for Cenozoic magmatism over the Admiralty Mountains Block (East Antarctica)

    USGS Publications Warehouse

    Armadillo; E.; Ferraccioli, F.; Zunino, A.; Bozzo, E.; Rocchi, S.; Armienti, P.

    2007-01-01

    Cenozoic magmatic rocks of the Transantarctic Mountains provide an important window on the tectonic and magmatic processes of the West Antarctic Rift System. Previous aeromagnetic investigations in northern Victoria Land have delineated Cenozoic volcanic and intrusive complexes assigned to the McMurdo Volcanic Group and Meander Intrusives over the Transantarctic Mountains. We present a new aeromagnetic anomaly map for the region north of the Mariner Glacier to study the extent and spatial distribution of these Cenozoic rocks over the previously unexplored Admiralty Mountains. The new map shows that the Meander Intrusives are restricted to the coastal region between the Malta Plateau and the Daniell Peninsula. However, the McMurdo Volcanic Group rocks extend further inland, and may delineate a hitherto unrecognised volcano-tectonic rift zone, extending as far north as the Trafalgar Glacier.

  17. The next generation Antarctic digital magnetic anomaly map

    USGS Publications Warehouse

    von Frese, R.R.B; Golynsky, A.V.; Kim, H.R.; Gaya-Piqué, L.; Thébault, E.; Chiappinii, M.; Ghidella, M.; Grunow, A.; ADMAP Working Group

    2007-01-01

    S (Golynsky et al., 2001). This map synthesized over 7.1 million line-kms of survey data available up through 1999 from marine, airborne and Magsat satellite observations. Since the production of the initial map, a large number of new marine and airborne surveys and improved magnetic observations from the Ørsted and CHAMP satellite missions have become available. In addition, an improved core field model for the Antarctic has been developed to better isolate crustal anomalies in these data. The next generation compilation also will likely represent the magnetic survey observations of the region in terms of a high-resolution spherical cap harmonic model. In this paper, we review the progress and problems of developing an improved magnetic anomaly map to facilitate studies of the Antarctic crustal magnetic field

  18. Geochemical, aeromagnetic, and generalized geologic maps showing distribution and abundance of molybdenum and zinc, Golconda and Iron Point quadrangles, Humboldt County, Nevada

    USGS Publications Warehouse

    Erickson, R.L.; Marsh, S.P.

    1972-01-01

    This series of maps shows the distribution and abundance of mercury, arsenic, antimony, tungsten, gold, copper, lead, and silver related to a geologic and aeromagnetic base in the Golconda and Iron Point 7½-minute quadrangles. All samples are rock samples; most are from shear or fault zones, fractures, jasperoid, breccia reefs, and altered rocks. All the samples were prepared and analyzed in truck-mounted laboratories at Winnemucca, Nevada. Arsenic, tungsten, copper, lead, and silver were determined by semiquantitative spectrographic methods by D.F. Siems and E.F. Cooley. Mercury and gold were determined by atomic absorption methods and antimony was determined by wet chemical methods by R.M. O'Leary, M.S. Erickson, and others.

  19. Delineation of the subsurface geological structures of Omu-Aran area, south-western Nigeria, using aeromagnetic data

    NASA Astrophysics Data System (ADS)

    Kayode, J. S.; Nawawi, M. N. M.; Baioumy, H. M.; Khalil, A. E.; Khiruddin, B. A.

    2015-04-01

    Omu-Aran area is characterized by mining activities to exploit the valuable mineralization there. These facts motivated the present work to evaluate the factors controlling the mineralization in the study area using aeromagnetic data obtained from the Nigerian Geological survey Agency. The data was processed and interpreted with the mean of delineating subsurface geological structures around Omu-Aran in Kwara State, South-western Nigeria. Data enhancement methods was performed on the aeromagnetic map using Regional Residual Separation of the total field anomalies map; horizontal gradient enhanced and International Geomagnetic Reference Field (IGRS) removed; reduced to the pole magnetic shaded relief image was carried out; Magnetic vertical gradient calculated, Magnetic horizontal gradient measured and Analytical signal map was constructed using some computer aided packages. The interpreted map enabled delineation of various subsurface geological structures such as the rock contacts, fractured and faulted areas.

  20. Complete Bouguer gravity anomaly map of the state of Colorado

    USGS Publications Warehouse

    Abrams, Gerda A.

    1993-01-01

    The Bouguer gravity anomaly map is part of a folio of maps of Colorado cosponsored by the National Mineral Resources Assessment Program (NAMRAP) and the National Geologic Mapping Program (COGEOMAP) and was produced to assist in studies of the mineral resource potential and tectonic setting of the State. Previous compilations of about 12,000 gravity stations by Behrendt and Bajwa (1974a,b) are updated by this map. The data was reduced at a 2.67 g/cm3 and the grid contoured at 3 mGal intervals. This map will aid in the mineral resource assessment by indicating buried intrusive complexes, volcanic fields, major faults and shear zones, and sedimentary basins; helping to identify concealed geologic units; and identifying localities that might be hydrothermically altered or mineralized.

  1. Aeromagnetic anomalies and discordant lineations beneath the Niger Delta - Implications for new fracture zones and multiple sea-floor spreading directions in the 'meso-Atlantic' Gulf of Guinea cul-de-sac

    NASA Astrophysics Data System (ADS)

    Babalola, Olufemi O.; Gipson, Mack, Jr.

    1991-06-01

    An aeromagnetic map eliminating data gaps in the Nigerian continental margin is presented, and the implications of the mapped fracture zone structure and the interpretation of two triple junctions beneath the Niger Delta Basin for its early tectonic history are discussed. Sea-floor spreading was found to occur in two different directions, and not only the well-documented NE-SW spreading in the 'meso-Atlantic' ocean. The existence of two triple junctions located where the Niger Delta Basin abuts the southern ends of the Abakaliki and Anambra troughs is shown. The two newly interpreted triple junctions beneath the Niger Delta demonstrate the previously recognized structural complexity of the region, necessitating a review of models for its early tectonic history.

  2. High-resolution aeromagnetic survey of the Mono Basin-Long Valley Caldera region, California

    NASA Astrophysics Data System (ADS)

    Ponce, D. A.; Mangan, M.; McPhee, D.

    2013-12-01

    A new high-resolution aeromagnetic survey of the Mono Basin-Long Valley Caldera region greatly enhances previous magnetic interpretations that were based on older, low-resolution, and regional aeromagnetic data sets and provides new insights into volcano-tectonic processes. The surveyed area covers a 8,750 km2 NNW-trending swath situated between the Sierra Nevada to the west and the Basin and Range Province to the east. The surveyed area includes the volcanic centers of Mono Lake, Mono-Inyo Craters, Mammoth Mountain, Devils Postpile, and Long Valley Caldera. The NW-trending eastern Sierra frontal fault zone crosses through the study area, including the active Mono Lake, Silver Lake, Hartley Springs, Laurel Creek, and Hilton Creek faults. Over 6,000 line-kilometers of aeromagnetic data were collected at a constant terrain clearance of 150 m, a flight-line spacing of 400 m, and a tie-line spacing of 4 km. Data were collected via helicopter with an attached stinger housing a magnetic sensor using a Scintrex CS-3 cesium magnetometer. In the northern part of the survey area, data improve the magnetic resolution of the individual domes and coulees along Mono Craters and a circular shaped magnetic anomaly that coincides with a poorly defined ring fracture mapped by Kistler (1966). Here, aeromagnetic data combined with other geophysical data suggests that Mono Craters may have preferentially followed a pre-existing plutonic basement feature that may have controlled the sickle shape of the volcanic chain. In the northeastern part of the survey, aeromagnetic data reveal a linear magnetic anomaly that correlates with and extends a mapped fault. In the southern part of the survey, in the Sierra Nevada block just south of Long Valley Caldera, aeromagnetic anomalies correlate with NNW-trending Sierran frontal faults rather than to linear NNE-trends observed in recent seismicity over the last 30 years. These data provide an important framework for the further analysis of the

  3. The Cottage Lake Aeromagnetic Lineament: A Possible Onshore Extension of the Southern Whidbey Island Fault, Washington

    USGS Publications Warehouse

    Blakely, Richard J.; Sherrod, Brian L.; Wells, Ray E.; Weaver, Craig S.; McCormack, David H.; Troost, Kathy G.; Haugerud, Ralph A.

    2004-01-01

    The northwest-striking southern Whidbey Island fault zone (SWIF) was mapped previously using borehole data and potential-field anomalies on Whidbey Island and marine seismic surveys beneath surrounding waterways. Abrupt subsidence at a coastal marsh on south-central Whidbey Island suggests that the SWIF experienced a MW 6.5 to 7.0 earthquake about 3000 years ago. Southeast of Whidbey Island, a hypothesized southeastward projection of the SWIF would make landfall between the cities of Seattle and Everett. As part of systematic, ongoing studies by the U.S. Geological Survey, University of Washington, and other earth science organizations to evaluate potentially active faults and other earth hazards throughout the Puget Lowland, we test this hypothesis using aeromagnetic, lidar, and borehole data. Linear, northwest-striking magnetic anomalies traversing the mainland region project southeastward toward the communities of Woodinville and Maltby, Washington. All of these magnetic anomalies are low in amplitude and best illuminated in residual magnetic fields. The most prominent of the residual magnetic anomalies extends at least 16 km, lies approximately on strike with the SWIF on Whidbey Island, and passes near Crystal and Cottage Lakes, about 27 km southeast of downtown Everett. In places, this magnetic anomaly is associated with topographic lineaments, but spectral analysis indicates that the source of the anomaly extends to depths greater than 2 km and cannot be explained entirely by topographic effects. The Alderwood #1 oil exploration well located on strike with the Cottage Lake aeromagnetic lineament shows evidence of deformation over a total depth range of 3000 m; some beds within this interval exhibit intense fracturing and shearing, although deformation within the well can only be constrained as post-early Oligocene and pre-Pleistocene. Boreholes acquired as part of a wastewater tunnel project show evidence of soil disturbance at locations where some

  4. Worldwide complete spherical Bouguer and isostatic anomaly maps

    NASA Astrophysics Data System (ADS)

    Bonvalot, S.; Balmino, G.; Briais, A.; Peyrefitte, A.; Vales, N.; Biancale, R.; Gabalda, G.; Reinquin, F.

    2011-12-01

    We present here a set of digital maps of the Earth's gravity anomalies (surface "free air", Bouguer and isostatic), computed at Bureau Gravimetric International (BGI) as a contribution to the Global Geodetic Observing Systems (GGOS) and to the global geophysical maps published by the Commission for the Geological Map of the World (CGMW). The free air and Bouguer anomaly concept is extensively used in geophysical interpretation to investigate the density distributions in the Earth's interior. Complete Bouguer anomalies (including terrain effects) are usually computed at regional scales by integrating the gravity attraction of topography elements over and beyond a given area (under planar or spherical approximations). Here, we developed and applied a worldwide spherical approach aimed to provide a set of homogeneous and high resolution gravity anomaly maps and grids computed at the Earth's surface, taking into account a realistic Earth model and reconciling geophysical and geodetic definitions of gravity anomalies. This first version (1.0) has been computed by spherical harmonics analysis / synthesis of the Earth's topography-bathymetry up to degree 10800. The detailed theory of the spherical harmonics approach is given in Balmino et al., (Journal of Geodesy, submitted). The Bouguer and terrain corrections have thus been computed in spherical geometry at 1'x1' resolution using the ETOPO1 topography/bathymetry, ice surface and bedrock models from the NOAA (National Oceanic and Atmospheric Administration) and taking into account precise characteristics (boundaries and densities) of major lakes, inner seas, polar caps and of land areas below sea level. Isostatic corrections have been computed according to the Airy Heiskanen model in spherical geometry for a constant depth of compensation of 30km. The gravity information given here is provided by the Earth Geopotential Model (EGM2008), developed at degree 2160 by the National Geospatial Intelligence Agency (NGA) (Pavlis

  5. Comparison between the recent U.S. composite magnetic anomaly map and Magsat anomaly data

    NASA Technical Reports Server (NTRS)

    Schnetzler, C. C.; Taylor, P. T.; Langel, R. A.; Hinze, W. J.; Phillips, J. D.

    1985-01-01

    The present investigation is concerned with a comparison of Magsat data with a Composite Magnetic Anomaly Map (CMAM) of the conterminous U.S. reported by Zietz (1982). The investigation was initiated to test the validity of the satellite measurements, and to provide insights into error or problems in either data set. It is found that upward continuation of the digital CMAM data is not in qualitative agreement with the Magsat map. However, if a least squares fit polynomial surface is taken out prior to upward continuation, there is improved quantitative agreement between a residual CMAM and Magsat. Causes for the remaining differences between the residual, upward continued CMAM and the Magsat map are also considered.

  6. Detailed gravity and aeromagnetic surveys of the Cove Fort-Sulphurdale KGRA and vicinity, Millard and Beaver Counties, Utah. Topical report

    SciTech Connect

    Cook, K.L.; Serpa, L.F.; Pe, W.

    1980-01-01

    A detailed gravity survey (comprising 231 stations over about 900 km/sup 2/) was made in the Cove Fort-Sulphurdale Known Geothermal Resource area (KGRA) and vicinity, Millard and Beaver counties, Utah to assist in the appraisal of the potential of this area as a geothermal resource. The survey reinforced the results and information obtained in the previous regional gravity surveys comprising 522 stations. The gravity data from about 700 stations were reduced and compiled as a terrain-corrected (out to 20 km) Bouguer gravity anomaly map with 1-mgal contour interval. In August 1975, an aeromagnetic survey was flown over part of the survey area at a constant barometric elevation of 12,000 ft (3660 m). These aeromagnetic data are used to supplement the interpretation of the gravity data. The aeromagnetic field intensity residual anomaly map and the second-order polynomial residual aeromagnetic map (obtained by removing a second-order polynomial surface) are presented with a 20-gamma contour interval. Two north-south profiles and one east-west profile were selected for magnetic interpretative modeling. The two north-south profiles were also stacked and averaged over 6-km-wide strips and modeled. The occurrences of hydrothermal alteration, hot spring deposits, and flowing hot springs coincide with inferred fault zones. No evidence of extensive alteration can be interpreted from the magnetic data.

  7. An aeromagnetic interpretation of eleven map sheets, scale 1:250,000, in the southern Najd and part of the southern Tuwayq quadrangles, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Griscom, Andrew

    1983-01-01

    Eleven magnetic interpretation maps (scale 1:250,000) have been prepared for the area .of. exposed crystalline rocks in the Southern Najd and part of the Southern Tuwayq quadrangles (scale 1:500,000) from available published data. Boundaries of a variety of rock units that produce distinctive magnetic anomalies .or anomaly patterns are delineated. In some cases these magnetic boundaries correspond with previously mapped geologic contacts, and in other cases they indicate the possibility of additional, as yet unmapped, geologic contacts. The magnetic boundaries also allow the extrapolation of geologic contacts across areas covered by Quaternary deposits. Many boundaries are identified as part of the Najd fault system, and offset magnetic anomalies may be correlated across certain fault zones. Approximate dips were calculated for a few boundaries that represent igneous contacts, faults, or unconformities. Some characteristic anomalies appear to be associated in a general way with areas of gold mineralization and thus provide a guide for further prospecting.

  8. Aeromagnetic map and selected aeroradiometric data for the Ellicott Rock Wilderness and additions, South Carolina, North Carolina, and Georgia

    USGS Publications Warehouse

    Luce, Robert W.; Daniels, David L.

    1985-01-01

    The aeromagnetic and aeroradiometric data presented herin for the Ellicott Rock Wilderness and additions are taken from an airborne survey that covered a larger area in Georgia, North Carolina and South Carolina, and that was flown in December 1980 and January 1981 under contract to the U.S. Geological Survey. The flight lines were oriented northwest-southeast, approximately perpendicular to the general strike of the geology, at 0.5-mi (0.8-km) separation and at a nominal altitude of 500 ft (150 m) above mean terrain. A small amount of areomagnetic data from previous survey (Riggle and others, 1980) along the southeast edge of the study area is based on east-west flight lines spaced 1 mi (1.6 km) apart. Because of the rugged topography in the region, holding the airplane at a constant elevation abive the terrain was not possible. Actual ground clearance over short distances ranged between about 200 and 1200 ft. The International Geomagnetic Reference Field (IGRF) has been removed from the magnetic data (Barraclough and Fabiano, 1975) and 5000 gammas were added to make all values positive. 

  9. Aeromagnetic and gravity data over the Central Transantarctic Mountains (CTAM), Antarctica: a website for the distribution of data and maps

    USGS Publications Warehouse

    Anderson, E.D.; Finn, C.A.; Damaske, D.; Abraham, J.D.; Goldmann, F.; Goodge, J.W.; Braddock, P.

    2006-01-01

    Near complete coverage of the East Antarctic Shield by ice hampers geological study of crustal architecture important for understanding global tectonic and climate history. Limited exposures in the central Transantarctic Mountains (CTAM), however, show that Archean and Proterozoic rocks of the shield as well as Neoproterozoic-lower Paleozoic sedimentary successions were involved in oblique convergence associated with Gondwana amalgamation. Subsequently, the area was overprinted by Jurassic magmatism and Cenozoic uplift. To extend the known geology of the region to ice-covered areas, we conducted an aeromagnetic survey flown in draped mode by helicopters over the Central Transantarctic Mountains and by fixed-wing aircraft over the adjacent polar plateau. We flew more than 32,000 line km covering an area of nearly 60,000 km2 at an average altitude of 600 m, with average line spacing 2.5 km over most areas and 1.25 km over basement rocks exposed in the Miller and Geologists ranges. Additional lines flown to the north, south, and west extended preliminary coverage and tied with existing surveys. Gravity data was collected on the ground along a central transect of the helicopter survey area.

  10. Energetic Proton Maps for the South Atlantic Anomaly

    NASA Astrophysics Data System (ADS)

    Ginet, G. P.; Thompson, T.; Madden, D.; Easley, S. M.

    2006-12-01

    Despite efforts to design space systems to survive the space radiation environment, modern spacecraft can still experience high rates of anomalies due to single event effects (SEEs) arising from cosmic rays and high- energy radiation belt protons. SEEs may range from nuisance effects requiring operator intervention to debilitating effects which lead to functional or total spacecraft loss. In many cases SEEs create high background counts which sensors unusable during passage through the South Atlantic Anomaly (SAA). Operators who control affected space vehicles need to know how best to minimize the risk of anomalies which in many cases simply means knowing, with a high degree of accuracy, when and where to turn systems on and off. Until recently the most readily accessible and useable means to do this was by using proton intensity maps derived from the NASA AP-8 radiation belt climatology model. However, it is well known both from the data and geomagnetic theory that as a result of the variations in the Earth's internal magnetic field the location of the energetic proton belts has changed significantly since the model was made in 1970. The predominantly westward drift of the SAA is approximately 0.3 degrees/year and can lead to large inaccuracies in the prediction of dose rates for LEO satellites if models are not updated. An improved set of maps were constructed in 1998 from data taken by the Air Force's APEX and CRRES satellites during the epoch 1990- 1996. We present here a new set of maps for the epoch 2000-2006 based on data from the Compact Environment Anomaly Sensor (CEASE) onboard the Tri-Service Experiment-5 (TSX-5) satellite in a 400 km x 1600 km, 69 degree inclination orbit. Maps for > 10 Mev, > 25 MeV, > 40 MeV and > 70 MeV protons will be shown and compared to those for earlier epochs. Estimates of the energy spectra as a function of altitude from 400km to 1650 km, an interval spanning the range where the controlling factor in the dynamics changes from

  11. Survey Parameters and Availability of Low-level Aeromagnetic Data for Geomagnetic Field Modelling

    NASA Technical Reports Server (NTRS)

    Hood, Peter

    1992-01-01

    Since aeromagnetic surveying started immediately after World War II, a considerable area of the earth's surface both onshore (in excess of 25 million sq. km) has been magnetically surveyed. For about the first 15 years or so, fluxgate magnetometers were employed in aeromagnetic surveys, but the introduction of proton free-precession magnetometers resulted in absolute readings being recorded. Proton precession magnetometers have now been replaced to a large extent by the more sensitive optical absorption magnetometers. Some care has to be taken to calibrate aeromagnetic survey systems and this is best done using a calibration range tied to a magnetic observatory so that accuracies of 10nT or better are achieved for the total field values recorded. Survey navigation has always posed a problem for aeromagnetic surveys, especially offshore. Over land, vertically pointed 35 mm cameras were initially used to recover the aircraft track using a combination of aerial photos and topographic maps. Over featureless areas, it was necessary to utilize existing electronic positioning systems such as Loran C or set up special navigation systems. The advent of the satellite-based Global Positioning Systems (GPS) has to a larger extent solved the navigational problem because there is now almost continuous worldwide coverage to 10 m accuracy in the differential mode. The resultant aeromagnetic data is normally compiled into contour maps in which the diurnal variation and aircraft heading effects are removed. The resultant digital data are normally made publicly available both in gridded and profile form along with the published contour maps. Most aeromagnetic coverage has been obtained in the developed western countries, but elsewhere a considerable amount of surveying has been carried out; as an example, some 80 percent of Africa has been surveyed mostly as a result of aid programs. The data is usually held by the national geological survey or equivalent organizations, but in a

  12. MAGSAT satellite magnetic anomaly map over South America

    NASA Technical Reports Server (NTRS)

    Ridgway, J. R.

    1985-01-01

    A scalar magnetic anomaly map was prepared for South America and adjacent marine areas directly from original MAGSAT orbits. Special problems associated with the separation of external field and crustal anomalies, and the reduction of data to a common altitude are addressed. External fields are manifested in a long-wavelength ring current effect, a medium-wavelength equatorial electrojet, and short-wavelength noise. The noise is reduced by selecting profiles from quiet periods (Kp or = 3), and the effect of the electrojet is minimized by drawing the data set from dawn profiles only. The ring current is corrected through the use of a standard equation, augmented by further digital band-pass filtering. Profiles thus filtered differ primarily in amplitude due solely to satellite altitude differences. These differences are normalized by an inversion of the profile data onto a grid of equivalent point dipoles, and recalculated at an altitude of 350 km. The low altitudes in the study area cause instability in the inversion, necessitating separate inversions of several sub-areas which are subsequently merged. Crustal anomalies reduced-to-the-pole exhibit marked correlations to known tectonic features.

  13. Distribution of narrow-width magnetic anomalies in Antarctica

    USGS Publications Warehouse

    Behrendt, John C.

    1964-01-01

    Data for aeromagnetic profiles obtained in Antarctica during the 1963-64 austral summer were used together with earlier results to construct a map showing the areal distribution of narrow-width magnetic anomalies. Numerous anomalies are associated with known volcanic mountains in western Antarctica. A large area of few anomalies is probably a result of an extension of the thick metasedimentary section observed in the Ellsworth Mountains. Portions of the Trans-Antarctic Mountains have associated anomalies which are probably caused by late Cenozoic volcanic rocks.

  14. Modeled Aeromagnetic Anomalies, Controlled By Radar Ice Sounding, As Evidence for Subglacial Volcanic Activity in the West Antarctic Rift System (WR) Beneath the Area of the Divide of the West Antarctic Ice Sheet (WAIS)

    NASA Astrophysics Data System (ADS)

    Behrendt, J. C.

    2014-12-01

    The Thwaites and Pine Island ice shelves, buttressing the WAIS, have passed the turning point as they are eaten away by warmer ocean waters (Joghin et al., 2014; Rignot et al., 2014). There is an increasing evidence (aeromagnetic, radar ice-sounding, high heat flow, subglacial volcanic seismicity, and several exposed and subglacial active volcanoes), for volcanic activity in the WR beneath the WAIS, which flows through it. The 5-km, orthogonally line spaced, central West Antarctica (CWA) aerogeophysical survey defined >400 high amplitude volcanic magnetic anomalies correlated with glacial bed topography. Modeled anomalies defined magnetic properties; interpreted volcanic edifices were mostly removed by the moving ice into which they were erupted. Very high apparent susceptibility contrasts (.001->.3 SI) are typical of measured properties from volcanic exposures in the WAIS area. About 90% of the magnetic sources have normal magnetization in the present field direction. Two explanations as to why the anomalies are not approximately 50% negative: (1) Volcanic activity resulting in these anomalies occurred in a predominantly normal field (unlikely). (2) Sources are a combination of induced and remanent magnetization resulting in anomalies of low amplitude (induced cancels remanent) and are not recognized because they are <100 nT (most probable). About 18 high relief, (~600-2000 m) "volcanic centers" beneath the WAIS surface, probably were erupted subaerially when the WAIS was absent; nine of these are in the general area beneath the divide of the WAIS. A 70-km wide, ring of interpreted subglacial volcanic rocks may define a volcanic caldera underlying thedivide (Behrendt et al., 1998). A 2 km-high subaerially erupted volcano (subglacial Mt Thiel, ~78o30'S, 111oW) ~ 100 km north of the WAISCORE, could be the source an ash layer observed in the core. Models by Tulaczyk and Hossainzadeh (2011) indicate >4mm/yr basal melting beneath the WAIS, supportive of high heat flow

  15. Russian aeromagnetic surveys of the Prince Charles Mountains and adjacent regions into the 21st century

    NASA Astrophysics Data System (ADS)

    Golynsky, Alexander; Golynsky, Dmitry; Kiselev, Alexander; Masolov, Valery

    2014-05-01

    Russian aeromagnetic investigations in the Prince Charles Mountains (PCM) and surrounding areas, seek to contribute data on the tectonics of Precambrian igneous belts and cratonic fragments, the crustal structure of the Lambert Rift system and other major aspects of Antarctic geology, critical to understanding continental growth processes (Golynsky et al., 2006). Over the past decade, the Polar Marine Geoscience Expedition projects acquired approximately 77,400 line-km of aeromagnetic data over the largely ice-covered regions of MacRobertson Land and Princess Elizabeth Land. The airborne surveys were performed with a standard profile spacing of 5 km and tie-line interval of 15-25 km. The total amount of the Russian aeromagnetic data collected in this region exceeded more than 165,000 line-km. Together with the PCMEGA and AGAP surveys (Damaske and McLean, 2005; Ferraccioli et al., 2011) the PMGE dataset forms the longest transect ever mapped in East Antarctica exceeding 1950 km in length. Several distinct crustal subdivisions are clearly differentiated in the magnetic data. The high-amplitude positive anomalies that extend around the Vestfold Hills and Rauer Islands are likely be attributed to the southern boundary of high-grade metamorphic Late Archean craton. The northern PCM that are composed by ~1 Ga orthogneiss and charnockite display a predominantly northeasterly trending magnetic fabric that continues to the eastern shoulder of the Lambert Rift. The aeromagnetic data from the Southern PCM reveal the spatial boundary of the Archaean Ruker Terrane that is characterized by a short-wavelength anomalies and the prominent Ruker Anomaly that is associated with a banded iron formation. The prominent alternating system of linear NE-SW positive and negative anomalies over the eastern shoulder of the Lambert Rift may reflect the western boundary of the Princess Elizabeth Land cratonic(?) block, although its relationships and tectonic origin remained largely ambiguous

  16. Distribution of Igneous Rocks in Medina and Uvalde Counties, Texas, as Inferred from Aeromagnetic Data

    USGS Publications Warehouse

    Smith, David V.; McDougal, Robert R.; Smith, Bruce D.; Blome, Charles D.

    2008-01-01

    A high-resolution aeromagnetic survey was flown in 2001 over Medina and Uvalde Counties, Texas, as part of a multi-disciplinary investigation of the geohydrologic framework of the Edwards aquifer in south-central Texas. The objective of the survey was to assist in mapping structural features that influence aquifer recharge and ground-water flow. The survey revealed hundreds of magnetic anomalies associated with igneous rocks that had previously been unmapped. This report presents an interpretation of the outcrops and subcrops of igneous rocks, based upon procedures of matched-filtering and potential field modeling.

  17. Aeromagnetic mapping and reconnaissance geochemistry of the Early Cretaceous Henties Bay-Outjo dike swarm, Etendeka Igneous Province, Namibia

    NASA Astrophysics Data System (ADS)

    Trumbull, R. B.; Vietor, T.; Hahne, K.; Wackerle, R.; Ledru, P.

    2004-09-01

    An interpretation of high-resolution aeromagnetic data, backed up by Landsat ETM+ images and field observations, reveals a major NE-trending regional dike swarm in west-central Namibia which we name the Henties Bay-Outjo dike swarm (HOD). The HOD is some 100 km wide and extends at least 500 km from the continental margin, thus ranking among the regionally important dike swarms on the South Atlantic margins. Field relations and radiometric dates indicate Early Cretaceous emplacement ages for the dikes, contemporary with Etendeka Group flood basalts and with the Damaraland intrusive complexes that occur in the same area. The orientation and distribution of dikes within the HOD suggest a strong influence by Damara Belt structures within the first 100 km from the coast. Farther inland, the dikes are more discordant to the Damara Belt and finally the swarm leaves the Damara Belt entirely and crosses into the Angola craton, where dikes fan out to the north and extend for at least another 200 km. Geochemical analysis of about 100 dikes distributed throughout the HOD reveals a compositional spectrum ranging from basalt to rhyolite, with the dominant composition being tholeiitic, low-Ti basalt. The basaltic dikes show some compositional diversity, but most can be assigned to known compositional subtypes of the Etendeka Group and are thus likely to represent feeder dikes to now-eroded lava fields. The silicic dikes have compositional variations (metaluminous to peraluminous, 64-76 wt% SiO 2) matching the range found in the Early Cretaceous Damaraland intrusive complexes, and they only marginally overlap with felsic volcanic units of the Etendeka. These dikes are probably related to the silicic magma systems of the Damaraland complexes. We interpret the HOD as the failed arm of a triple junction centered at the shelf edge off Walvis Bay. Late Cretaceous magmatism in Namibia is plume-related, but we believe the triple junction did not result from domal uplift above a plume

  18. New magnetic anomaly map of the East Antarctic continental margin

    NASA Astrophysics Data System (ADS)

    Golynsky, Alexander; Ivanov, Sergey; Kazankov, Andrey

    2010-05-01

    Marine magnetic survey coverage of the southern part of Indian Ocean is to a certain extent limited for defining the magnetic pattern of the continental margin of East Antarctica. The USA research vessels collected the bulk of the marine magnetic data in the beginning of 1960's. During the succeeding years Australian, German, Japanese, Russian and other international scientific programs made major contributions to the network of marine magnetic data. Since the beginning of new century only two nations (Russian and Australian) have acquired the marine magnetic data in the southern part of Indian Ocean. The marine surveys in the Cosmonaut Sea, the western part of the Cooperation Sea in the Davis and Mawson Seas were accomplished by the PMGRE in 2000-2009 field seasons. The marine magnetic data collected during two seasons (2001-2002) within the AASOPP Project which was established in early 2000 to define the outer limits of the continental shelf offshore of the Australian Antarctic Territory (AAT) covered the full length of the AAT from 40OE to 160OE. The new magnetic anomaly map of the East Antarctic continental margin incorporates all available data acquired by the international community since the IGY 1957-58 through to 2009. Results of the compilation do not radically alter recent models describing first-order motions between the Antarctic, Australian and Indian plates, but they help to resolve uncertainties in early break-up history of opening between these plates. The timing and direction of early seafloor spreading in the area off the Antarctic margin, once conjugate to part of the Southern Greater Indian margin and to Australian margin, along the largely unknown region of the Enderby Basin, Davis Sea and Mawson Sea has been analyzed by many authors using different data sets. It is highly likely that spreading in the Enderby Basin occurred around the same time as the well documented M-sequence (anomalies M10 to M0) off the Perth Basin, Western Australia

  19. Improvements of sea level anomaly maps in the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Cheng, Yongcun; Baltazar Andersen, Ole; Knudsen, Per

    2013-04-01

    Obtaining satellite data at high latitude regions is generally very problematic. In the Arctic Ocean (For this investigation defined as 65°N-82°N), the ERS and ENVISAT sun-synchronous satellite altimetry measurements are nearly always affected by the presence of sea ice. Consequently, it is difficult to get accurate altimetric data for oceanography and climatology and this affect i.e., determination of the linear sea level trend over the regions. The objective of our study is to develop a new 3 days sea level anomaly maps in the Arctic Ocean. Multi-satellite (i.e., ERS-1, ERS-2 and ENVISAT) along track sea level anomaly data is extracted by applying adjusted editing criteria. Initially, the removal of orbit errors in sun-synchronous satellite altimetry is performed. A joint crossover with simultaneous TOPEX/Jason satellite altimetry, are used to adjust the long wavelength bias and tilt of the ERS-1, ERS-2 and ENVISAT. Subsequently, the adjusted sea level anomalies are gridded to a normal 0.5°×0.5°grid using collocation with a second-order Markov covariance function using spatial temporal interpolation which takes into account data from nearby periods in case of missing data. The data is then combined with tide gauge data and model outputs, the new data is used to study the sea level variability in Arctic Ocean. The contributors (for example, thermosteric, ice sheets and water mass) to the sea level change in the region are investigated. Moreover, significant decadal signal in sea level variation is found from tide gauge data and its comparison with AO index. The presentation is a contribution to the EU 7th FW supported projects MONARCH-A.

  20. Aeromagnetic and complete Bouguer gravity anomaly maps of the Hunter-Fryingpan Wilderness area, Pitkin County, Colorado

    USGS Publications Warehouse

    Campbell, D.L.

    1981-01-01

    Behrendt and others (1968) pointed out the close correlation between a belt of extreme gravity lows (Behrendt and Bajwa, 1974) and a zone of precious and base mineral deposits (Tweto and Simms, 1963, fig. 1).  Tweto and Case (1972) showed that this belt of gravity lows probably reflects a series of Laramide and post-Laramide intrusions of relatively low density which may have influenced the hydrothermal systems responsible for much of the mineralization in the Colorado Mineral Belt.

  1. Scalar magnetic anomaly maps of Earth derived from POGO and Magsat data

    NASA Technical Reports Server (NTRS)

    Arkani-Hamed, Jafar; Langel, Robert A.; Purucker, Mike

    1994-01-01

    A new Polar Orbit Geophysical Observatory (POGO) scalar magnetic anomaly map at 400 km altitude is presented which consists of spherical harmonics of degree 15-60. On the basis of the common features of this map with two new Magsat anomaly maps, dawn and dusk, two scalar magnetic anomaly maps of the Earth are presented using two selection criteria with different levels of stringency. These selection criteria suppress the noncrustal components of the original maps by different amounts. The more stringent selection criteria seek to eliminate as much contamination as possible, at the expense of suppressing some anomaly signal. This map is represented by spherical harmonics of degree 15-60. The less stringent selection criteria seek to retain as much crustal signal as possible, at the expense of also retaining some contaminating fields. This map is represented by spherical harmonics of degree 15-65. The resulting two maps are highly correlated with degree correlation coefficients greater than 0.8.

  2. High-resolution aeromagnetics as an exploration tool in the Timor Sea, northwestern Australia

    SciTech Connect

    O'Brien, G.W.; Wellman, P. )

    1991-03-01

    The Mesozoic Vulcan Graben in the Timor Sea, northwestern Australia, is one of Australia's most active oil exploration areas, with a number of discoveries made within the last five years. To further assist in understanding the structural setting of the region, the Australian Bureau of Mineral Resources (BMR) carried out a regional high-resolution aeromagnetic survey over the Vulcan Graben in late 1989. Three to twelve km wavelength, 0.2-2.0 nT amplitude magnetic anomalies have northeast strikes and correlate well with the position and orientation of the rift faults, as defined by seismic reflection data. Significantly, the magnetic trends closely match the fault trends at the prospective Valanginian unconformity horizon, where all of the major producing reservoirs are located. Numerous northwest-trending (strike-slip ) faults have also been mapped as zones of low anomaly, some of which correspond with offsets in the major northeast-trending anomalies. These faults, which are probably due to the reactivation of either Mesozoic transfer faults or Paleozoic normal faults, may have a major role in the entrapment of hydrocarbons in the Timor Sea, as most producing fields are located close to a northwest-trending fault or its extension. The northwest-trending faults have not previously been defined using seismic data. This survey shows that even in an area with extensive seismic coverage such as the Timor Sea, high-resolution aeromagnetics can provide important information that both complements and supplements the seismic data.

  3. Anomalies.

    ERIC Educational Resources Information Center

    Online-Offline, 1999

    1999-01-01

    This theme issue on anomalies includes Web sites, CD-ROMs and software, videos, books, and additional resources for elementary and junior high school students. Pertinent activities are suggested, and sidebars discuss UFOs, animal anomalies, and anomalies from nature; and resources covering unexplained phenonmenas like crop circles, Easter Island,…

  4. Geologic and aeromagnetic map of a part of the Mescalero Apache Indian Reservation, Otero County, New Mexico

    SciTech Connect

    Moore, S.L.; Foord, E.E.; Meyer, G.A.

    1988-01-01

    This map covers approximately 600 square miles of the 750 square miles of the Mescalero Apache Indian Reservation in south-central New Mexico. Rocks exposed in the map area are chiefly gently dipping and gently folded Mesozoic and Paleozoic strata that are displaced by high-angle tensional faults into grabens, horsts, and tilted fault blocks. The Paleozoic strata were deposited unconformably on an eroded mountainous terrain of Precambrian syenite, melasyenite, quartz syenite, alkali granite, and alkali-granite pegmatite; the alkalic igneous rocks are dated at 1,150 /plus minus/ 40 m.y. by K/Ar methods.

  5. Regional Geothermal Characterisation of East Anatolia from Aeromagnetic, Heat Flow and Gravity Data

    NASA Astrophysics Data System (ADS)

    Bektaş, Özcan; Ravat, Dhananjay; Büyüksaraç, Aydin; Bilim, Funda; Ateş, Abdullah

    2007-05-01

    East Anatolia is a region of high topography made up of a 2-km high plateau and Neogene and Quaternary volcanics overlying the subduction-accretion complex formed by the process of collision. The aeromagnetic and gravity data surveyed by the Mineral Research and Exploration (MTA) of Turkey have been used to interpret qualitatively the characteristics of the near-surface geology of the region. The residual aeromagnetic data were low-pass filtered and analyzed to produce the estimates of magnetic bottom using the centroid method and by forward modelling of spectra to evaluate the uncertainties in such estimates. The magnetic bottom estimates can be indicative of temperatures in the crust because magnetic minerals lose their spontaneous magnetization at the Curie temperature of the dominant magnetic minerals in the rocks and, thus, also are called Curie point depths (CPDs). The Curie point depths over the region of Eastern Anatolia vary from 12.9 to 22.6 km. Depths computed from forward modelling of spectra with 200 600 km window sizes suggest that the bottom depths from East Anatolia from the magnetic data may have errors exceeding 5 km; however, most of the obtained depths appear to lie in the above range and indicate that the lower crust is either demagnetized or non-magnetic. In the interpretation of the magnetic map, we also used reduction-to-pole (RTP) and amplitude of total gradient of high-pass filtered anomalies, which reduced dipolar orientation effects of induced aeromagnetic anomalies. However, the features of the RTP and the total gradient of the high-pass filtered aeromagnetic anomalies are not highly correlated to the hot spring water locations. On the other hand, many high-amplitude features seen on the total gradient map can be correlated with the ophiolitic rocks observed on the surface. This interpretation is supported by Bouguer gravity data. In this paper, we recommend that the sources of the widespread thermal activity seen in East Anatolia must

  6. World Gravity Map: a set of global complete spherical Bouguer and isostatic anomaly maps and grids

    NASA Astrophysics Data System (ADS)

    Bonvalot, S.; Balmino, G.; Briais, A.; Kuhn, M.; Peyrefitte, A.; Vales, N.; Biancale, R.; Gabalda, G.; Reinquin, F.

    2012-04-01

    We present here a set of digital maps of the Earth's gravity anomalies (surface free air, Bouguer and isostatic), computed at Bureau Gravimetric International (BGI) as a contribution to the Global Geodetic Observing Systems (GGOS) and to the global geophysical maps published by the Commission for the Geological Map of the World (CGMW) with support of UNESCO and other institutions. The Bouguer anomaly concept is extensively used in geophysical interpretation to investigate the density distributions in the Earth's interior. Complete Bouguer anomalies (including terrain effects) are usually computed at regional scales by integrating the gravity attraction of topography elements over and beyond a given area (under planar or spherical approximations). Here, we developed and applied a worldwide spherical approach aimed to provide a set of homogeneous and high resolution gravity anomaly maps and grids computed at the Earth's surface, taking into account a realistic Earth model and reconciling geophysical and geodetic definitions of gravity anomalies. This first version (1.0) has been computed by spherical harmonics analysis / synthesis of the Earth's topography-bathymetry up to degree 10800. The detailed theory of the spherical harmonics approach is given in Balmino et al., (Journal of Geodesy, 2011). The Bouguer and terrain corrections have thus been computed in spherical geometry at 1'x1' resolution using the ETOPO1 topography/bathymetry, ice surface and bedrock models from the NOAA (National Oceanic and Atmospheric Administration) and taking into account precise characteristics (boundaries and densities) of major lakes, inner seas, polar caps and of land areas below sea level. Isostatic corrections have been computed according to the Airy-Heiskanen model in spherical geometry for a constant depth of compensation of 30km. The gravity information given here is provided by the Earth Geopotential Model (EGM2008), developed at degree 2160 by the National Geospatial

  7. Small unmanned aerial vehicles for aeromagnetic surveys and their flights in the South Shetland Islands, Antarctica

    NASA Astrophysics Data System (ADS)

    Funaki, Minoru; Higashino, Shin-Ichiro; Sakanaka, Shinya; Iwata, Naoyoshi; Nakamura, Norihiro; Hirasawa, Naohiko; Obara, Noriaki; Kuwabara, Mikio

    2014-12-01

    We developed small computer-controlled unmanned aerial vehicles (UAVs, Ant-Plane) using parts and technology designed for model airplanes. These UAVs have a maximum flight range of 300-500 km. We planned aeromagnetic and aerial photographic surveys using the UAVs around Bransfield Basin, Antarctica, beginning from King George Island. However, we were unable to complete these flights due to unsuitable weather conditions and flight restrictions. Successful flights were subsequently conducted from Livingston Island to Deception Island in December 2011. This flight covered 302.4 km in 3:07:08, providing aeromagnetic and aerial photographic data from an altitude of 780 m over an area of 9 × 18 km around the northern region of Deception Island. The resulting magnetic anomaly map of Deception Island displayed higher resolution than the marine anomaly maps published already. The flight to South Bay in Livingston Island successfully captured aerial photographs that could be used for assessment of glacial and sea-ice conditions. It is unclear whether the cost-effectiveness of the airborne survey by UAV is superior to that of manned flight. Nonetheless, Ant-Plane 6-3 proved to be highly cost-effective for the Deception Island flight, considering the long downtime of the airplane in the Antarctic storm zone.

  8. Interpretation of high resolution aeromagnetic data for lineaments study and occurrence of Banded Iron Formation in Ogbomoso area, Southwestern Nigeria

    NASA Astrophysics Data System (ADS)

    Oladunjoye, Michael Adeyinka; Olayinka, Abel Idowu; Alaba, Mustapha; Adabanija, Moruffdeen Adedapo

    2016-02-01

    The quest for solid mineral resource as an alternative for oil income in Nigeria presents opportunity to diversify the resource base of the country. To fill some information gap on the long abandoned Ajase and Gbede Banded Iron Formations (BIF) in Ogbomoso area, Southwestern Nigeria, high resolution aeromagnetic data of Ogbomoso - Sheet 222 was interpreted; to provide a better understanding of the mode of occurrence of the iron ore and associated structural features and geologic model. These were accomplished by subjecting reduced-to-pole (RTP) residual aeromagnetic intensity map to various data filtering and processing involving total horizontal derivative, vertical derivative, Upward Continuation (UC), Downward Continuation (DC), Euler Deconvolution at different Spectral Indices (SI), and Analytical signal using Geosoft Oasis Montaj 6.4.2 (HJ) data processing and analysis software. The resultants maps were overlain, compared and or plotted on RTP residual aeromagnetic intensity map and or geological map and interpreted in relation to the surface geological map. Positive magnetic anomalies observed on the RTP residual aeromagnetic intensity map ranged from 2.1 to 94.0 nT and associated with contrasting basement rocks, Ajase and Gbede BIF; while negative magnetic anomalies varied between -54.7 nT and -2.8 nT and are associated with intrusive bodies. Interpreted lineaments obtained from total horizontal derivative map were separated into two categories namely ductile and brittle based on their character vis-à-vis magnetic anomalies on RTP intensity map. Whilst the brittle lineaments were interpreted as fracture or faults; the ductile lineaments were interpreted as folds or representing the internal fabric of the rock units. In addition prominent magnetic faults mainly due to offset of similar magnetic domain/gradient were also interpreted. The iron ore mineralization is distributed within the eastern portion of the study area with Ajase BIF at relatively greater

  9. Subduction-zone magnetic anomalies and implications for hydrated forearc mantle

    USGS Publications Warehouse

    Blakely, R.J.; Brocher, T.M.; Wells, R.E.

    2005-01-01

    Continental mantle in subduction zones is hydrated by release of water from the underlying oceanic plate. Magnetite is a significant byproduct of mantle hydration, and forearc mantle, cooled by subduction, should contribute to long-wavelength magnetic anomalies above subduction zones. We test this hypothesis with a quantitative model of the Cascadia convergent margin, based on gravity and aeromagnetic anomalies and constrained by seismic velocities, and find that hydrated mantle explains an important disparity in potential-field anomalies of Cascadia. A comparison with aeromagnetic data, thermal models, and earthquakes of Cascadia, Japan, and southern Alaska suggests that magnetic mantle may be common in forearc settings and thus magnetic anomalies may be useful in mapping hydrated mantle in convergent margins worldwide. ?? 2005 Geological Society of America.

  10. An investigation of the active tectonics in central-eastern mainland Greece with imaging and decomposition of topographic and aeromagnetic data

    NASA Astrophysics Data System (ADS)

    Tzanis, Andreas; Kranis, Haralambos; Chailas, Stylianos

    2010-03-01

    We report the results of a joint analysis of aeromagnetic, topographic and tectonic data in central-eastern mainland Greece. The emphasis of the analysis is placed on the detection of coherent lineations (discontinuities), collocated and correlated with faulting structures detected by geological field observation. To this effect, edge detection and image enhancement were applied to digital aeromagnetic anomaly maps and digital elevation models, comprising bidirectional differentiation, wavelet transformation (imaging) and spatial decomposition/reconstruction in the wavenumber domain. The analysis facilitated the detection of significant topographic lineaments with NNE-SSW, ENE-WSW and ESE-WNW orientations. Respectively, the aeromagnetic data exhibit two families of significant NE-SW, and one family of ESE-WNW lineaments. The major aeromagnetic and topographic lineaments coincide and have comparable width scales of the order of 2-3 km, indicating that they are produced by significant discontinuities in the upper crust. The kinematics of the NE-SW faults varies between oblique-slip and strike-slip. These faults affect Neogene to Late Quaternary deposits and have been responsible for the formation of transverse depressions and horsts. This is also corroborated by focal plane solutions from small earthquakes recorded by local networks. The nature of these structures is not yet clear. However, they have been detected by diverse methodologies, they have considerable extent and are apparently active. These attributes suggest that they may possibly be related to the propagation and diffusion of the North Anatolian and North Aegean fault systems into the Greek mainland.

  11. Aeromagnetic Survey of the Amargosa Desert, Nevada and California: A Tool for Understanding Near-Surface Geology and Hydrology

    USGS Publications Warehouse

    Blakely, Richard J.; Langenheim, V.E.; Ponce, David A.; Dixon, Gary L.

    2000-01-01

    A high-resolution aeromagnetic survey of the Amargosa Desert and surrounding areas provides insights into the buried geology of this structurally complex region. The survey covers an area of approximately 7,700 km2 (2,970 mi2), extending from Beatty, Nevada, to south of Shoshone, California, and includes parts of the Nevada Test Site and Death Valley National Park. Aeromagnetic flight lines were oriented east-west, spaced 400 m (0.25 mi) apart, and flown at an altitude of 150 m (500 ft) above terrain, or as low as permitted by safety considerations. Characteristic magnetic anomalies occur over volcanic terranes, such as Yucca Mountain and the Greenwater Range, and over Proterozoic basement rocks, such as Bare Mountain and the Black Mountains. Linear magnetic anomalies caused by offsets of volcanic rocks permit detailed mapping of shallow faults in volcanic terranes. Of particular interest are subtle anomalies that overlie alluvial deposits at Devils Hole and Pahrump Valley. Alignments of springs along magnetic anomalies at these locales suggest that these anomalies are caused by faults that cut the alluvium, displace magnetic rocks at depth, and eventually influence ground-water flow. Linear magnetic anomalies over the Funeral Mountains appear to coincide with a prominent set of north-northeast-striking faults that cut the Precambrian Stirling Quartzite, rocks that are typically nonmagnetic. The position and orientation of these anomalies with respect to springs north of Furnace Creek suggest that the faults may act as conduits for the flow of water from the north into Death Valley, but the mineralogical cause of the anomalies is unknown.

  12. Chapter 3: Circum-Arctic mapping project: New magnetic and gravity anomaly maps of the Arctic

    USGS Publications Warehouse

    Gaina, C.; Werner, S.C.; Saltus, R.; Maus, S.; Aaro, S.; Damaske, D.; Forsberg, R.; Glebovsky, V.; Johnson, K.; Jonberger, J.; Koren, T.; Korhonen, J.; Litvinova, T.; Oakey, G.; Olesen, O.; Petrov, O.; Pilkington, M.; Rasmussen, T.; Schreckenberger, B.; Smelror, M.

    2011-01-01

    New Circum-Arctic maps of magnetic and gravity anomalies have been produced by merging regional gridded data. Satellite magnetic and gravity data were used for quality control of the long wavelengths of the new compilations. The new Circum-Arctic digital compilations of magnetic, gravity and some of their derivatives have been analyzed together with other freely available regional and global data and models in order to provide a consistent view of the tectonically complex Arctic basins and surrounding continents. Sharp, linear contrasts between deeply buried basement blocks with different magnetic properties and densities that can be identified on these maps can be used, together with other geological and geophysical information, to refine the tectonic boundaries of the Arctic domain. ?? 2011 The Geological Society of London.

  13. Regional Mapping of the Lunar Crustal Magnetic Field: Correlation of Strong Anomalies with Curvilinear Albedo Markings

    NASA Technical Reports Server (NTRS)

    Hood, L. L.; Yingst, A.; Zakharian, A.; Lin, R. P.; Mitchell, D. L.; Halekas, J.; Acuna, M. H.; Binder, A. B.

    2000-01-01

    Using high-resolution regional Lunar Prospector magnetometer magnetic field maps, we report here a close correlation of the strongest individual crustal anomalies with unusual curvilinear albedo markings of the Reiner Gamma class.

  14. An interpretation of the 1996 aeromagnetic data for the Santa Cruz basin, Tumacacori Mountains, Santa Rita Mountains, and Patagonia Mountains, south-central Arizona

    USGS Publications Warehouse

    Gettings, Mark E.

    2002-01-01

    High resolution aeromagnetic survey data flown at 250 m above the terrain and 250 m line spacing over the Santa Cruz Valley and the surrounding Tumacacori, Patagonia, and Santa Rita Mountains has been interpreted by correlation of the magnetic anomaly field and various derivative maps with geologic maps. Measurements of in-situ magnetic properties of several of the map units determined whether or not mapped lithologies were responsible for observed anomalies. Correlation of the magnetic anomaly field with mapped geology shows that numerous map units of volcanic and intrusive rocks from Jurassic Middle Tertiary in age are reversely polarized, some of which have not been previously reported. Trends derived from the magnetic anomaly data correlate closely with structures from major tectonic events in the geologic history of the area including Triassic-Jurassic crustal accretion and magmatism, Laramide magmatism and tectonism, northeast-southwest Mid-Tertiary extension, and east-west Basin and Range extension. Application of two textural measures to the magnetic anomaly data, number of peaks and troughs per km (a measure of roughness) and Euclidean length per km (a measure of amplitude), delineated areas of consistent magnetic anomaly texture. These measures were successful at the delineation of areas of consistent magnetic lithology both on the surface and in the subsurface beneath basin fill. Several areas of basement prospective for mineral resources beneath basin fill were identified.

  15. World Digital Magnetic Anomaly Map, development towards the Second Edition. (Invited)

    NASA Astrophysics Data System (ADS)

    Korhonen, J. V.

    2009-12-01

    Magnetic anomalies are small deviations in the Earth’s main magnetic field, caused by variation of magnetization in the uppermost lithosphere. Magnetic anomalies provide spatial key information for understanding the structure and evolution of the Earths crust. In practice these anomalies are used e.g. for assessment and prospecting of geological natural resources and planning of land use. A common way to calculate a magnetic anomaly value has been to subtract International Geomagnetic Reference Field (IGRF) from a total field measurement that is cleaned from short term variation of the Earth's magnetic field. World Digital Magnetic Anomaly Map (WDMAM) is a collaborative project between member organizations of International Association of Geomagnetism and Aeronomy (IAGA) and the Commission for Geological Map of the World (CGMW). The First Edition of the map was published in 2007. It consisted of a paper map 1:50 Million and a 3 minutes global grid of total field anomalies at an altitude of 5 km above the geoid. The First Edition was aimed to compile as much as possible available land and sea magnetic data, and homogenize it by comparing anomalies with a satellite magnetic lithospheric field model. This first version was prepared in a tight schedule, to show the usefulness of the map to the community and to form a basis for later development and future editions of the map. Hence, much was left to be improved for the second edition, including sparse coverage in two continents and all southern seas. The satellite models were understood to gain more detail in near future when the CHAMP-satellite would reach lower orbits, and hence higher resolution. The SWARM-satellite constellation was seen to produce even more suitable data in a few years thereafter. Ocean magnetic data sets required careful processing and leveling. The method of homogenization of anomalies included replacing long wavelength information by satellite model spectral data, and hence rejecting

  16. Surface vector mapping of magnetic anomalies over the Moon using Kaguya and Lunar Prospector observations

    NASA Astrophysics Data System (ADS)

    Tsunakawa, Hideo; Takahashi, Futoshi; Shimizu, Hisayoshi; Shibuya, Hidetoshi; Matsushima, Masaki

    2015-06-01

    We have provided preliminary global maps of three components of the lunar magnetic anomaly on the surface applying the surface vector mapping (SVM) method. The data used in the present study consist of about 5 million observations of the lunar magnetic field at 10-45 km altitudes by Kaguya and Lunar Prospector. The lunar magnetic anomalies were mapped at 0.2° equi-distance points on the surface by the SVM method, showing the highest intensity of 718 nT in the Crisium antipodal region. Overall features on the SVM maps indicate that elongating magnetic anomalies are likely to be dominant on the Moon except for the young large basins with the impact demagnetization. Remarkable demagnetization features suggested by previous studies are also recognized at Hertzsprung and Kolorev craters on the farside. These features indicate that demagnetized areas extend to about 1-2 radii of the basins/craters. There are well-isolated central magnetic anomalies at four craters: Leibnitz, Aitken, Jules Verne, and Grimaldi craters. Their magnetic poles through the dipole source approximation suggest occurrence of the polar wander prior to 3.3-3.5 Ga. When compared with high-albedo markings at several magnetic anomalies such as the Reiner Gamma anomalies, three-dimensional structures of the magnetic field on/near the surface are well correlated with high-albedo areas. These results indicate that the global SVM maps are useful for the study of the lunar magnetic anomalies in comparison with various geological and geophysical data.

  17. Aeromagnetic and Gravity Surveys in Afghanistan: A Web Site for Distribution of Data

    USGS Publications Warehouse

    Sweeney, Ronald E.; Kucks, Robert P.; Hill, Patricia L.; Finn, Carol A.

    2006-01-01

    Aeromagnetic data were digitized from aeromagnetic maps created from aeromagnetic surveys flown in southeastern and southern Afghanistan in 1966 by PRAKLA, Gesellschaft fur praktische Lagerstattenforschung GmbH, Hannover, Germany, on behalf of the 'Bundesanstalt fur Bodenforschung', Hannover, Germany. The digitization was done along contour lines, followed by interpolation of the data along the original survey flight-lines. Survey and map specifications can be found in two project reports, 'prakla_report_1967.pdf' and 'bgr_report_1968.pdf', made available in this open-file report.

  18. Global Map of Magnetic Anomalies (MAG/ER)

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The radial magnetic field measured is color coded on a global map that slows the larger craters and volcanoes (dark green), spacecraft tracks below 200 km (light green), and the dichotomy boundary (solid line).

  19. De Wijk gas field: Reservoir mapping with amplitude anomalies

    SciTech Connect

    Bruijn, B. )

    1993-09-01

    De Wijk field, discovered in 1949, is located in the northeastern part of Netherlands. The main gas accumulation is contained in cretaceous and Triassic sandstone reservoirs trapped in a broad salt-induced structure of around 80 km[sup 2] areal extent. The field contains gas in the tertiary, Chalk, Zechstein 2 Carbonate, and Carboniferous reservoirs as well. De Wijk field is unique in the Netherlands as most gas-producing reservoirs in the Cretaceous/Triassic are of no commercial interest. Post-depositional leaching has positively affected the reservoir properties of the Triassic formations subcropping below the Cretaceous unconformity. Optimum, interpretation of 3-D seismic data acquired in 1989 resulted in spectacular displays highlighting the uniqueness of the field. Most gas-bearing reservoirs are expressed on seismic by amplitude anomalies. Various attribute-measurement techniques show the effect of gas fill, leaching, and sand distribution in the various reservoirs.

  20. World Digital Magnetic Anomaly Map; specifications for 2011 Edition

    NASA Astrophysics Data System (ADS)

    Korhonen, Juha V.

    2010-05-01

    WDMAM2007 will be updated to WDMAM2011, upon submission and evaluation of candidate grids. Specifications of the grid: - Quantity: Magnetic total component anomaly in limited bandwidth - Altitude: 2.5 km above the geoid - Resolution 2.5 km - Grid to be produced: the same c. 5km resolution grid knots as for WDMAM 2007 plus refinement to 2.5 km resolution - Source data: WDMAM2007 data, plus new data sets, especially in the southern hemisphere - Reduction: CM4 or CM5 (most up to date), where possible - Reference: MF6 or most up to date version of MF Schedule: - Candidate Team registration and data submission deadline: EGU 2010. - Candidate grid submission deadline: October 1 2010. - Evaluation: ready at Fall AGU 2010 - Manuscript submission to CGMW: EGU 2011 - Final manuscript and grid ready for distribution: IUGG 2011. More information at WDMAM website: http://projects.gtk.fi/WDMAM/ Contacts: WDMAM executives, addresses given on the website above.

  1. Mapping phase velocity anomaly in Japan using Hi-net tiltmeters

    NASA Astrophysics Data System (ADS)

    Nishida, K.; Kawakatsu, H.; Obara, K.

    2005-12-01

    From 0.05 to 0.2 Hz random excited surface waves, known as microseisms, are dominant, and they mask seismic signals of earthquakes as noise. The microseisms are excited by oceanic disturbances at random. Recently using their random excitation properties, researchers (e.g. Shapiro et al., 2005) measured group velocity anomaly, which is shown by cross-correlation function between pairs of stations. Here we developed a new method to measure phase velocity anomaly, and mapped phase velocity anomaly of Rayleigh and Love waves using very dense network of Hi-net tiltmeters in Japan. We first divided the whole record in a time period from June 2004 to December 2004 into 1024 sec segments with an overlap of 512 sec, and calculated radial and transverse components of the cross-spectra of microseisms for every pair of 679 stations from 0.05 to 0.2 Hz. Next for each station we selected cross-spectra between pairs of stations within a 100 km circle of the station. For each station we calculated dispersion curve with the assumption that lateral heterogeneity is not so large within the circle. We measured phase velocity anomaly of every cross-spectra from the reference dispersion curve for each circle. Using these measurements we mapped phase velocity anomaly of Rayleigh and Love waves with 0.1 degree grids in three frequency bands(0.05-0.1 Hz, 0.1-0.15 Hz, 0.15-0.2Hz). Resultant phase velocity maps show that similar pattern: high velocity anomaly in mountain ranges and low velocity one in flat region. In particular resultant maps in Hokkaido show clear low phase velocity anomaly, which correspond to the Hidaka Collision Zone. In further study we also try to infer anisotropy.

  2. CASERTZ aeromagnetic data reveal late Cenozoic flood basalts (?) in the West Antarctic rift system

    USGS Publications Warehouse

    Behrendt, John C.

    1994-01-01

    The late Cenozoic volcanic and tectonic activity of the enigmatic West Antarctic rift system, the least understood of the great active continental rifts, has been suggested to be plume driven. In 1991-1992, as part of the CASERTZ (Corridor Aerogeophysics of the Southeast Ross Transect Zone) program, an ~25 000 km aeromagnetic survey over the ice-covered Byrd subglacial basin shows magnetic "texture' critical to interpretations of the underlying extended volcanic terrane. The aeromagnetic data reveal numerous semicircular anomalies ~100-1100 nT in amplitude, interpreted as having volcanic sources at the base of the ice sheet; they are concentrated along north-trending magnetic lineations interpreted as rift fabric. The CASERTZ aeromagnetic results, combined with >100 000 km of widely spaced aeromagnetic profiles, indicate at least 106 km3 of probable late Cenozoic volcanic rock (flood basalt?) in the West Antarctic rift beneath the ice sheet and Ross Ice Shelf. -from Authors

  3. Initial Mapping of Mercury's Crustal Magnetic Anomalies: Relationship to the Caloris Impact Basin

    NASA Astrophysics Data System (ADS)

    Hood, L. L.

    2015-12-01

    78 low-altitude orbit passes of MESSENGER calibrated magnetometer data from August and September of 2014 have been applied to produce approximate maps of the crustal magnetic field covering latitudes of 50-80N and longitudes of 160-320E. Only anomalies with wavelengths < 215 km were mapped and amplitudes were adjusted for differences in spacecraft altitude using an equivalent source dipole technique. Maps of the radial field component show that the strongest large-scale anomalies are located in the western part of the mapped region just north and northeast of the 1550-km diameter Caloris impact basin centered at 164E, 30N. When adjusted to a common altitude of ~ 40 km, the strongest single anomaly (~170E, 60N; > 6 nT) lies over a smooth plains unit that extends north-northeastward from Caloris. A second anomaly (185E, 53N, > 5 nT) lies on the Odin Formation, interpreted as Caloris ejecta (e.g., Guest and Greeley, USGS, 1983). As previously reported by Johnson et al. (Science, 2015), a third anomaly (~ 212E, 61N, > 5 nT) also lies over a smooth plains unit, Suisse Planitia. Most smooth plains units on Mercury may have a volcanic origin (Denevi et al., JGR, 2013). However, as discussed by the latter authors, a subset of the smooth plains occur in an annulus around Caloris and could have an impact-related origin, involving fluidized basin ejecta deposition (Wilhelms, Icarus, 1976). A similar origin is widely accepted for the lunar Cayley smooth plains, which dominate the geology near the Apollo 16 landing site where the strongest surface magnetic fields were measured and which correlate best with orbital anomalies on the lunar near side (Halekas et al., JGR, 2001). Two of the remaining three anomalies (220E, 68N, > 4 nT; 234E, 77N, > 5 nT) lie over an older intermediate plains unit with an uncertain interpretation, possibly consisting of impact basin and crater ejecta as well as volcanic materials (Grolier and Boyce, USGS, 1984). In view of the proximity of the

  4. Aeromagnetic Expression of Buried Basaltic Volcanoes Near Yucca Mountain, Nevada

    USGS Publications Warehouse

    O'Leary, D. W.; Mankinen, E.A.; Blakely, R.J.; Langenheim, V.E.; Ponce, D.A.

    2002-01-01

    A high-resolution aeromagnetic survey has defined a number of small dipolar anomalies indicating the presence of magnetic bodies buried beneath the surface of Crater Flat and the Amargosa Desert. Results of potential-field modeling indicate that isolated, small-volume, highly magnetic bodies embedded within the alluvial deposits of both areas produce the anomalies. Their physical characteristics and the fact that they tend to be aligned along major structural trends provide strong support for the hypothesis that the anomalies reflect buried basaltic volcanic centers. Other, similar anomalies are identified as possible targets for further investigation. High-resolution gravity and ground-magnetic surveys, perhaps along with drilling sources of selected anomalies and radiometric age determinations, can provide valuable constraints in estimating potential volcanic hazard to the potential nuclear waste repository at Yucca Mountain.

  5. Using airborne magnetic data to map folding and faulting in sedimentary layers: implications for seismic hazard (Invited)

    NASA Astrophysics Data System (ADS)

    Langenheim, V. E.; Jachens, R. C.; Phelps, G. A.; Simpson, R. W.

    2010-12-01

    Aeromagnetic surveys are increasingly used to map structure within sedimentary rocks important for seismic assessment as better magnetometers, positioning, and techniques are developed. We present three examples in which aeromagnetic data are used to map folding and faulting within Cenozoic sedimentary rocks and deposits. In the Salton Trough, detailed aeromagnetic data collected in 1990 suffered from leveling problems that obscured low-amplitude (less than 2-3 nT) magnetic anomalies arising from Tertiary sedimentary rocks. Decorrugation and subtraction of a regional field (upward continuation of 100 m) isolated and enhanced these low-amplitude anomalies, some of which extend the length of the Clark fault, a major strand of the San Jacinto fault zone in southern California, another 20-25 km southwest of its termination point. Other anomalies point to distributed deformation confirmed by detailed surficial mapping by geologists. Detailed aeromagnetic data in the San Ramon Valley, California area show curvilinear anomalies that arise from folding and faulting of the Neroly sandstone, a Miocene unit whose magnetization is due to andesitic detritus. Detailed geologic maps and drillholes locally constrain the geometry of the Neroly Formation at the surface and subsurface, but constrained inversion of aeromagnetic data identified folds not earlier seen. In northern California (e.g. Ukiah), similar long (up to 50 km), curvilinear magnetic anomalies also occur, but in an area where drillholes are absent and geologic mapping is limited by dense vegetation, steep slopes, abundant landsliding, and thick soils. Magnetic susceptibility measurements from sparse outcrops show that the anomalies arise from lithic, volcanic-rich graywacke and metabasalt within the Franciscan Complex. The similarity in anomaly characteristics between the San Ramon and Ukiah areas suggests that the graywackes are folded, coherent bodies within an assemblage that at the surface is termed

  6. Oblique Fault Systems Crossing the Seattle Basin: Seismic and Aeromagnetic Evidence for Additional Shallow Fault Systems in the Central Puget Lowland

    NASA Astrophysics Data System (ADS)

    Keranen, K. M.; Mace, C.

    2011-12-01

    Upper-plate seismicity in the Puget Lowland is more broadly distributed than mapped fault systems and presents a conundrum for understanding the active tectonics of the region. Although many previous studies have mapped faulting in the Puget Lowland from subsurface geophysical data, many of these efforts have focused specifically on mapping the structure of the Seattle Fault Zone and the South Whidbey Island Fault. The thick glacial sediments and extensive water bodies may conceal additional active faults away from these major structures. To extend the results of the previous work, we mapped fault networks and patterns of sediment deposition in Quaternary sediments broadly throughout the central Puget Lowland using a combination of existing multi-channel seismic reflection datasets with widely distributed profiles and aeromagnetic data. We identify a NE-SW zone of high-angle faulting and shallow sediment deformation crossing the Seattle Uplift and the Seattle Basin that segments the Seattle Fault Zone (SFZ), offsetting aeromagnetic anomalies along the SFZ by 1.2 km in a dextral sense. Aeromagnetic lineations trace the NE-SW trend of deformation across the Seattle Uplift and connect deformation within the Puget Sound and the Hood Canal. Two additional zones of faulting trend NW-SE and cut through the Seattle Basin and the Kingston Arch, respectively. We also interpreted five regional seismic horizons, representing erosional unconformities, throughout our dataset, and created sediment thickness maps for each time interval. The thickness maps reveal changing patterns of sediment deposition through time, possibly controlled by changes in the regional pattern of deformation. Holocene sediment deposition shows strong control by the oblique fault systems. These oblique fault structures may be partially responsible for the wide distribution of seismicity within the central Puget Lowland.

  7. A batch sliding window method for local singularity mapping and its application for geochemical anomaly identification

    NASA Astrophysics Data System (ADS)

    Xiao, Fan; Chen, Zhijun; Chen, Jianguo; Zhou, Yongzhang

    2016-05-01

    In this study, a novel batch sliding window (BSW) based singularity mapping approach was proposed. Compared to the traditional sliding window (SW) technique with disadvantages of the empirical predetermination of a fixed maximum window size and outliers sensitivity of least-squares (LS) linear regression method, the BSW based singularity mapping approach can automatically determine the optimal size of the largest window for each estimated position, and utilizes robust linear regression (RLR) which is insensitive to outlier values. In the case study, tin geochemical data in Gejiu, Yunnan, have been processed by BSW based singularity mapping approach. The results show that the BSW approach can improve the accuracy of the calculation of singularity exponent values due to the determination of the optimal maximum window size. The utilization of RLR method in the BSW approach can smoothen the distribution of singularity index values with few or even without much high fluctuate values looking like noise points that usually make a singularity map much roughly and discontinuously. Furthermore, the student's t-statistic diagram indicates a strong spatial correlation between high geochemical anomaly and known tin polymetallic deposits. The target areas within high tin geochemical anomaly could probably have much higher potential for the exploration of new tin polymetallic deposits than other areas, particularly for the areas that show strong tin geochemical anomalies whereas no tin polymetallic deposits have been found in them.

  8. Preparation of magnetic anomaly profile and contour maps from DOE-NURE aerial survey data. Volume I. Processing procedures

    SciTech Connect

    Tinnel, E.P.; Hinze, W.J.

    1981-09-01

    Total intensity magnetic anomaly data acquired as a supplement to radiometric data in the DOE National Uranium Resource Evaluation (NURE) Program are useful in preparing regional profile and contour maps. Survey-contractor-supplied magnetic anomaly data are subjected to a multiprocess, computer-based procedure which prepares these data for presentation. This procedure is used to produce the following machine plotted maps of National Topographic Map Series quadrangle units at a 1:250,000 scale: (1) profile map of contractor-supplied magnetic anomaly data, (2) profile map of high-cut filtered data with contour levels of each profile marked and annotated on the associated flight track, (3) profile map of critical-point data with contour levels indicated, and (4) contour map of filtered and selected data. These quadrangle maps are supplemented with a range of statistical measures of the data which are useful in quality evaluation.

  9. Thermal structure of the crust in Inner East Anatolia from aeromagnetic and gravity data

    NASA Astrophysics Data System (ADS)

    Bektaş, Özcan

    2013-08-01

    Inner East Anatolia has many hot spring outcomes. In this study, the relationship between the thermal structure and hot spring outcomes is investigated. The residual aeromagnetic and gravity anomalies of the Inner East Anatolia, surveyed by the Mineral Research and Exploration (MTA) of Turkey, show complexities. The magnetic data were analyzed to produce Curie point depth estimates. The depth of magnetic dipole was calculated by azimuthally averaged power spectrum method for the whole area. The Curie point depth (CPD) map covering the Inner East Anatolia has been produced. The Curie point depths of the region between Sivas and Malatya vary from 16.5 to 18.7 km. Values of heat flow were calculated according to continental geotherm from the model. The heat flow values vary between 89 and 99 mW m-2. Heat flow values are incorporated with surface heat flow values. Gravity anomalies were modeled by means of a three-dimensional method. The deepest part of the basin (12-14 km), determined from the 3D model, are located below the settlement of Hafik and to the south of Zara towns. Two-dimensional cross sections produced from the basin depths, Curie values and MOHO depths. Based on the analysis of magnetic, gravity anomalies, thermal structures and geology, it seems likely that the hot springs are not related to rising asthenosphere, in the regions of shallow CPDs (∼16.5 km), and mostly hot springs are related to faulting systems in Inner East Anatolia.

  10. Magnetic anomalies concentrated near and within Mercury's impact basins: Early mapping and interpretation

    NASA Astrophysics Data System (ADS)

    Hood, L. L.

    2016-06-01

    Ninety-five low-altitude passes of MErcury Surface, Space ENvironment, GEochemistry, and Ranging magnetometer data from February, March, and April of 2015 have been applied to produce an approximate map of the crustal magnetic field at a constant altitude of 40 km covering latitudes of 35°-75°N and longitudes of 90°-270°E. Anomalies are concentrated near and within the Caloris impact basin. A smaller concentration occurs over and around Sobkou Planitia and an associated older large impact basin. The strongest anomalies are found within Caloris and are distributed in a semicircular arc that is roughly concentric with the basin rim. They imply the existence of a core dynamo at the time when Caloris formed (˜3.9 Gyr ago). Anomalies over high-reflectance volcanic plains are relatively weak while anomalies over low-reflectance material that has been reworked by impact processes are relatively strong. The latter characteristics are qualitatively consistent with the ejecta deposit model for anomaly sources.

  11. Magnetic anomaly map of North America south of 50 degrees north from Pogo data

    NASA Technical Reports Server (NTRS)

    Mayhew, M. A.

    1976-01-01

    A magnetic anomaly map produced from Pogo data for North America and adjacent ocean areas is presented. At satellite elevations anomalies have wavelengths measured in hundreds of kilometers, and reflect regional structures on a large scale. Prominent features of the map are: (1) a large east-west high through the mid-continent, breached at the Mississippi Embayment; (2) a broad low over the Gulf of Mexico; (3) a strong gradient separating these features, which follows the Southern Appalachian-Ouachita curvature; and (4) a high over the Antilles-Bahamas Platform which extends to northern Florida. A possible relationship between the high of the mid-continent and the 38th parallel lineament is noted.

  12. Zonal temperature-anomaly maps of Indian ocean surface waters: modern and ice-age patterns.

    PubMed

    Prell, W L; Hutson, W H

    1979-10-26

    Maps of sea surface temperature anomalies in the Indian Ocean in modern and ice-age times reveal striking changes in its surface circulation. During the last glacial maximum (18,000 years before the present), the Indian Ocean had colder average zonal surface temperatures, a cooler and less extensive Agulhas Current, a distinct eastern boundary current, and decreased upwelling and a weaker southwest monsoon in its northwestern region. PMID:17809371

  13. An updated Bouguer anomaly map of south-central West Africa

    USGS Publications Warehouse

    Hastings, David A.

    1983-01-01

    A new Bouguer gravity anomaly map compiled for western Africa adds data for Ghana, Guinea, and Liberia.The new data add detail to a key part of the Eburnean shield and assist in the development of a model of rifting at the time of the Eburnean orogeny, 2000 million years ago. This model includes a framework for the deposition of the region's mineral deposits. The model and existing field data can be used to guide future minerals exploration in the region.

  14. New aeromagnetic data reveal large strike-slip (?) faults inthe Northern Willamette Valley, Oregon

    USGS Publications Warehouse

    Blakely, R.J.; Wells, R.E.; Tolan, T.L.; Beeson, M.H.; Trehu, A.M.; Liberty, L.M.

    2000-01-01

    High-resolution aeromagnetic data from the northern Willamette Valley, Oregon, reveal large, northwest-striking faults buried beneath Quaternary basin sediments. Several faults known from geologic mapping are well defined by the data and appear to extend far beyond their mapped surface traces. The Mount Angel fault, the likely source of the Richter magnitude (M1) 5.6 earthquake in 1993, is at least 55 km long and may be connected in the subsurface with the Gales Creek fault 25 km farther northwest. Northeast of the Mount Angel fault, a 60-km-long, northwest-striking anomaly may represent a previously unrecognized dextral-slip fault beneath the towns of Canby and Molalla. Vertical offsets along the Mount Angel fault increase with depth, indicating a long history of movement for the fault. Dominantly northwest- trending, relatively straight faults, consistent stepover geometries, offset magnetic anomalies and earthquake focal mechanisms suggest that these faults collectively accommodate significant dextral slip. The 1993 earthquake may have occured on a left-stepping restraining bend along the Mount Angel-Gales Creek fault zone.

  15. Equivalent magnetization over the World's Ocean and the World Digital Magnetic Anomaly Map

    NASA Astrophysics Data System (ADS)

    Dyment, Jerome; Choi, Yujin; Hamoudi, Mohamed; Thébault, Erwan; Quesnel, Yoann; Roest, Walter; Lesur, Vincent

    2014-05-01

    As a by-product of our recent work to build a candidate model over the oceans for the second version of the World Digital Magnetic Anomaly Map (WDMAM), we derived global distributions of the equivalent magnetization in oceanic domains. In a first step, we use classic point source forward modeling on a spherical Earth to build a forward model of the marine magnetic anomalies at sea-surface. We estimate magnetization vectors using the age map of the ocean floor, the relative plate motions, the apparent polar wander path for Africa, and a geomagnetic reversal time scale. We assume two possible magnetized source geometry, involving both a 1 km-thick layer bearing a 10 A/m magnetization either on a regular spherical shell with a constant, 5 km-deep, bathymetry (simple geometry) or following the topography of the oceanic basement as defined by the bathymetry and sedimentary thickness (realistic geometry). Adding a present-day geomagnetic field model allows the computation of our initial magnetic anomaly model. In a second step, we adjust this model to the existing marine magnetic anomaly data, in order to make it consistent with these data. To do so, we extract synthetic magnetic along the ship tracks for which real data are available and we compare quantitatively the measured and computed anomalies on 100, 200 or 400 km-long sliding windows (depending the spreading rate). Among the possible comparison criteria, we discard the maximal range - too dependent on local values - and the correlation and coherency - the geographical adjustment between model and data being not accurate enough - to favor the standard deviation around the mean value. The ratio between the standard deviations of data and model on each sliding window represent an estimate of the magnetization ratio causing the anomalies, which we interpolate to adjust the initial magnetic anomaly model to the data and therefore compute a final model to be included in our WDMAM candidate over the oceanic regions

  16. Tularosa Basin Play Fairway Analysis: Weights of Evidence; Mineralogy, and Temperature Anomaly Maps

    SciTech Connect

    Adam Brandt

    2015-11-15

    This submission has two shapefiles and a tiff image. The weights of evidence analysis was applied to data representing heat of the earth and fracture permeability using training sites around the Southwest; this is shown in the tiff image. A shapefile of surface temperature anomalies was derived from the statistical analysis of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) thermal infrared data which had been converted to surface temperatures; these anomalies have not been field checked. The second shapefile shows outcrop mineralogy which originally mapped by the New Mexico Bureau of Geology and Mineral Resources, and supplemented with mineralogic information related to rock fracability risk for EGS. Further metadata can be found within each file.

  17. An attempt to obtain a detailed declination chart from the United States magnetic anomaly map

    USGS Publications Warehouse

    Alldredge, L.R.

    1989-01-01

    Modern declination charts of the United States show almost no details. It was hoped that declination details could be derived from the information contained in the existing magnetic anomaly map of the United States. This could be realized only if all of the survey data were corrected to a common epoch, at which time a main-field vector model was known, before the anomaly values were computed. Because this was not done, accurate declination values cannot be determined. In spite of this conclusion, declination values were computed using a common main-field model for the entire United States to see how well they compared with observed values. The computed detailed declination values were found to compare less favourably with observed values of declination than declination values computed from the IGRF 1985 model itself. -from Author

  18. A simple Bouguer gravity anomaly map of southwestern Saudi Arabia and an initial interpretation

    USGS Publications Warehouse

    Gettings, M.E.

    1983-01-01

    Approximately 2,200 gravity stations on a 10-km2 grid were used to construct a simple Bouguer gravity anomaly map at 1:2,000,000 scale along a 150-km-wide by 850-km-long strip of the Arabian Peninsula from Sanam, southwest of Ar Riyad, through the Farasan Islands and including offshore islands, the coastal plain, and the Hijaz-Asir escarpment from Jiddah to the Yemen border. On the Precambrian Arabian Shield, local positive gravity anomalies are associated with greenstone belts, gneiss domes, and the Najd fault zones. Local negative gravity anomalies correlate with granitic plutonic rocks. A steep gravity gradient of as much as 4 mgal-km-1 marks the continental margin on the coastal plain near the southwestern end of the strip. Bouguer gravity anomaly values range from -10 to +40 mgal southwest of this gradient and from -170 to -100 mgal in a 300-km-wide gravity minimum northeast of the gradient. Farther northeast, the minimum is terminated by a regional gradient of about 0.1 mgal-km-1 that increases toward the Arabian Gulf. The regional gravity anomaly pattern has been modeled by using seismic refraction and Raleigh wave studies, heat-flow measurements, and isostatic considerations as constraints. The model is consistent with the hypothesis of upwelling of hot mantle material beneath the Red Sea and lateral mantle flow beneath the Arabian plate. The model yields best-fitting average crustal densities of 2.80 g-cm-3 (0-20 km depth) and 3.00 g-cm-3 (20-40 km depth) southwest of the Nabitah suture zone and 2.74 g-cm-3 (0-20 km depth) and 2.94 g-cm-3 (20-40 km depth) northeast of the suture zone. The gravity model requires that the crust be about 20 km thick at the continental margin and that the lower crust between the margin and Bishah (lat 20? N., long 42.5? E.) be somewhat denser than the lower crust to the northeast. Detailed correlations between 1:250,000- and 1:500,000-scale geologic maps and the gravity anomaly map suggest that the greenstone belts associated

  19. Attempt of volcanomagnetic change detection by repeated aeromagnetic survey aeromagnetic survey on Aso and Kuju volcano, central Kyushu Japan -

    NASA Astrophysics Data System (ADS)

    Utsugi, M.; Tanaka, Y.; Kagiyama, T.; Okubo, A.

    2006-12-01

    Recently, geomagnetic field observation is successfully applied to many active volcanos to detect the volcano- magnetic changes. These observations are usually based on the continuous or repeated observation stations setting on the ground near the active area. From these observations, we can obtain high accurate information about the temporal geomagnetic field changes. But we can obtain only limited information about the special distribution of field changes. To interpret the geomagnetic field changes to underground heat transfer, we have to know the special distribution of the geomagnetic changes. To obtain the detailed information about the spatial distribution, aeromagnetic survey is usually used. In our study, we tried to use this method to detect the volcanomagnetic change. The main problem of aeromagnetic repeated observation is the difficulty of the observation point control. In the two flights, it is impossible that quite the same place flies. So that, it is very difficult to separate a change according to the volcanic activity and a spatial change. But, if we know detailed 3-D distribution of geomagnetic field and we can estimate the field intensity on the arbitrary point, we can correct the spatial variation of the repeated aeromagnetic survey data caused by the difference of flight position, and it may be possible to detect the field changes associated with the volcanic activities. For this purpose, we made very high density and low altitude helicopter-borne aeromagnetic survey on Aso and Kuju volcano in July 2002 and Dec. 2004. Each observation was done by a different approach. On Aso volcano, an extremely high density aeromagnetic observation was carried out. The survey area was selected as NS1200 x EW1200 x 300m region above the Nakadake crater which is the most active area on Aso volcano. The flight was made in 8 heights. The total numbers of measurements were about 8200. Based on the equivalent anomaly method, which is usually used to calculate the

  20. Origin of the Eastern Galicia Magnetic Anomaly (NW Spain). Implications for the Origin of Magnetic Anomalies in the Central Iberian Arc

    NASA Astrophysics Data System (ADS)

    Ayarza, P.; Martinez-Catalan, J. R.; Villalain, J. J.; Alvarez Lobato, F.; Martin Paramio, M.; Rodriguez Gómez, S.; Sanz López, M.

    2015-12-01

    The aeromagnetic map of Iberia features outstanding anomalies that have been key to define the Central Iberian Arc, a late-orogenic orocline in the western part of the Variscan belt. The most studied of them is the EGMA (Eastern Galicia Magnetic Anomaly), which follows the Lugo-Sanabria extensional dome and is probably associated with it. Among the existing models of this anomaly, those relating it with magnetite-rich inhomogeneous granites and migmatites formed during late-Variscan extension seem to be more plausible ones. However, this and other interpretations involving deep-seated mafic/ultramafic bodies lack resolution as they are based on the aeromagnetic dataset. New ground magnetic data have been acquired in the northern part of the Xistral Tectonic Window, at the core of the Lugo dome where its deepest rocks crop out. The resulting maps show that the anomaly ranges ~1000 nT (vs. 190 nT on the aeromagnetic map) and that the most important maxima lie on top of extensional detachments located on high-grade metasediments or inhomogeneous granites. 2D forward modeling indicates that the magnetization is carried by upper Neoproterozoic and early Cambrian metasediments, partially melted during late-Variscan high-T and low-P metamorphic event linked to the extensional collapse. Furthermore, the anomaly maxima are spatially related with detachments, where the metasediments were strongly sheared. Therefore, the P-T, redox and fluid pressure conditions necessary for the formation of magnetite seem related with the extensional process and the dynamics of its structures. Many magnetic anomalies of the Central Iberian Arc lie on top of Variscan extensional domes and accordingly may have a similar origin. Special attention is paid to the Gredos Magnetic Anomaly, coincident with the batholith of the same name. Preliminary magnetic mapping and modeling indicate that the anomaly is previous to the intrusion of the Jurassic Alentejo-Plasencia dyke and to the tardi

  1. Curie point depth beneath the Barramiya-Red Sea coast area estimated from spectral analysis of aeromagnetic data

    NASA Astrophysics Data System (ADS)

    Abd El Nabi, Sami Hamed

    2012-01-01

    The geothermal regime beneath the Barramiya-Red Sea coast area of the Central Eastern Desert of Egypt has been determined by using the Curie point depth, which is temperature dependent. This study is based on the analysis of aeromagnetic data. The depth to the tops and centroid of the magnetic anomalies are calculated by power spectrum method for the whole area. The result of this investigation indicates, two new maps of the Curie point depth (CPD) and the surface heat flow ( q) maps of the study area. The coastal regions are characterized by high heat flow (83.6 mW/m 2), due to the geothermic nature of the region, and shallow Curie depth (22.5 km), where (CPD) depends on the tectonic regime and morphology in the eastern part of the area. The western portion of the studied area has a lower heat flow (<50 mW/m 2) and deeper Curie depth (˜40 km), due to the existence of a large areal extent of negative Bouguer anomaly in the NE-SW direction. In addition to its bordering to the Red Sea margin, such high heat flow anomaly is associated with the increased earthquake swarms activity in the Abu Dabbab area.

  2. Aeromagnetic constraints on the subsurface structure of Stromboli Volcano, Aeolian Islands, Italy

    NASA Astrophysics Data System (ADS)

    Okuma, Shigeo; Stotter, Christian; Supper, Robert; Nakatsuka, Tadashi; Furukawa, Ryuta; Motschka, Klaus

    2009-12-01

    Two helicopter-borne magnetic surveys were conducted over Stromboli Volcano and its surrounding areas on the Aeolian Islands, southern Italy in 2002 and 2004 to better understand the subsurface structure of the area. Observed data from those surveys were merged and aeromagnetic anomalies for Stromboli Island and its vicinity were reduced onto a smoothed surface, assuming equivalent anomalies below the observed surface. The magnetic terrain effects were calculated for the magnetic anomalies of the study area, assuming the magnetic structure comprised of an ensemble of prisms extending from the ground surface to a depth of 3000 m below sea level: the average magnetization intensity was calculated to be 2.2 A/m for the edifice of Stromboli shallower than 1200 m below sea level by comparing the observed and synthetic data. Next, apparent magnetization intensity mapping was applied to the observed anomalies using a uniform magnetization of 2.2 A/m as the initial value. The apparent magnetization intensity map indicates magnetic heterogeneities among volcanic rocks which constitute the edifice of the volcano. The most remarkable feature of the magnetization intensity map is a magnetization low which occupies the center of the island where the summit craters reside, suggesting demagnetization caused by the heat of conduits and/or hydrothermal activity in addition to the thick accumulation of less magnetic pyroclastic rocks. By comparing topographic and geologic maps, it can be seen that magnetization highs are distributed on the exposures of basaltic-andesite to andesite lavas (Paleostromboli I), shoshonitic lavas with an eccentric vent and a shield volcano (Neostromboli), on the south, north and west coasts of the volcano, respectively. These magnetization highs further extend offshore, implying the seaward continuation of these volcanic rocks. 3-D magnetic imaging was preliminarily applied to the same magnetic anomalies as well as for the magnetization intensity mapping

  3. Crustal structure interpreted from magnetic anomalies

    NASA Technical Reports Server (NTRS)

    Phillips, Jeffrey D.; Reynolds, Richard L.; Frey, Herbert

    1991-01-01

    This review, discusses publications during the last quadrennium (1987-1990) that used aeromagnetic data, marine magnetic data, satellite magnetic data, and rock magnetic and petrologic data to provide information on the sources of magnetic anomalies. The publications reviewed reflect increased integration of rock magnetic property and petrologic studies with magnetic anomaly interpretation studies, particularly in deep crustal magnetization, exploration for hydrocarbons, and inversion of marine magnetic anomalies. Interpretations of aeromagnetic data featuring image display techniques and using the horizontal gradient method for locating magnetization boundaries became standard.

  4. Curie isotherm map of Scotia Arc from near surface magnetic anomaly data

    NASA Astrophysics Data System (ADS)

    Catalán, Manuel

    2016-04-01

    The opening of the Drake Passage, situated between South America and Antarctica, represents the final stage of the fragmentation of Gondwana supercontinent. It led to the Scotia Arc formation, bordering the Scotia Sea, which is surrounded by fragments of the former continental connection. It is currently composed of Scotia and Sandwich Plates. Shackleton Fracture Zone constitutes its sinistral transpressive western boundary and it is a key structure that accommodates former Phoenix and Scotia Plates' differential movement. The formation of the Drake Passage and the Scotia Sea is considered of great importance to ocean circulation, as it allows the establishment of the Antarctic Circumpolar Current that isolated the Antarctic continent, with strong implications for climate and global changes. Thermal structure of the Earth's crust is one of the main parameters controlling geodynamic processes. There is few information regarding heat flow values on Scotia arc. These values are mainly located in its westernmost, southern and easternmost part, which are not enough to extract conclusions regarding lithospheric thickness variations and asthenospheric flow. Taking advantage of the World Digital Magnetic Anomaly Map Project's compilation we have extracted magnetic anomaly data which fall inside the Scotia Arc and surrounding areas. This magnetic anomaly picture provides the best representation of magnetic properties to date. We propose to use spectral methods on this regional magnetic compilation to obtain depth to the bottom of magnetic sources as a proxy to infer Curie depth and heat flow distribution in the Scotia Sea.

  5. Interaction between Solar Wind and Lunar Magnetic Anomalies observed by Kaguya MAP-PACE

    NASA Astrophysics Data System (ADS)

    Saito, Yoshifumi; Yokota, Shoichiro; Tanaka, Takaaki; Asamura, Kazushi; Nishino, Masaki; Yamamoto, Tadateru; Uemura, Kota; Tsunakawa, Hideo

    2010-05-01

    It is known that Moon has neither global intrinsic magnetic field nor thick atmosphere. Different from the Earth's case where the intrinsic global magnetic field prevents the solar wind from penetrating into the magnetosphere, solar wind directly impacts the lunar surface. Since the discovery of the lunar crustal magnetic field in 1960s, several papers have been published concerning the interaction between the solar wind and the lunar magnetic anomalies. MAG/ER on Lunar Prospector found heating of the solar wind electrons presumably due to the interaction between the solar wind and the lunar magnetic anomalies and the existence of the mini-magnetosphere was suggested. However, the detailed mechanism of the interaction has been unclear mainly due to the lack of the in-situ observed data of low energy ions. MAgnetic field and Plasma experiment - Plasma energy Angle and Composition Experiment (MAP-PACE) on Kaguya (SELENE) completed its ˜1.5-year observation of the low energy charged particles around the Moon on 10 June, 2009. Kaguya was launched on 14 September 2007 by H2A launch vehicle from Tanegashima Space Center in Japan. Kaguya was inserted into a circular lunar polar orbit of 100km altitude and continued observation for nearly 1.5 years till it impacted the Moon on 10 June 2009. During the last 5 months, the orbit was lowered to ˜50km-altitude between January 2009 and April 2009, and some orbits had further lower perilune altitude of ˜10km after April 2009. MAP-PACE consisted of 4 sensors: ESA (Electron Spectrum Analyzer)-S1, ESA-S2, IMA (Ion Mass Analyzer), and IEA (Ion Energy Analyzer). All the sensors performed quite well as expected from the laboratory experiment carried out before launch. Since each sensor had hemispherical field of view, two electron sensors and two ion sensors that were installed on the spacecraft panels opposite to each other could cover full 3-dimensional phase space of low energy electrons and ions. One of the ion sensors IMA was

  6. Detection, identification and mapping of iron anomalies in brain tissue using X-ray absorption spectroscopy

    SciTech Connect

    Mikhaylova, A.; Davidson, M.; Toastmann, H.; Channell, J.E.T.; Guyodo, Y.; Batich, C.; Dobson, J.

    2008-06-16

    This work describes a novel method for the detection, identification and mapping of anomalous iron compounds in mammalian brain tissue using X-ray absorption spectroscopy. We have located and identified individual iron anomalies in an avian tissue model associated with ferritin, biogenic magnetite and haemoglobin with a pixel resolution of less than 5 {micro}m. This technique represents a breakthrough in the study of both intra- and extra-cellular iron compounds in brain tissue. The potential for high-resolution iron mapping using microfocused X-ray beams has direct application to investigations of the location and structural form of iron compounds associated with human neurodegenerative disorders - a problem which has vexed researchers for 50 years.

  7. Detection, identification and mapping of iron anomalies in brain tissue using X-ray absorption spectroscopy

    PubMed Central

    Mikhaylova, A; Davidson, M; Toastmann, H; Channell, J.E.T; Guyodo, Y; Batich, C; Dobson, J

    2005-01-01

    This work describes a novel method for the detection, identification and mapping of anomalous iron compounds in mammalian brain tissue using X-ray absorption spectroscopy. We have located and identified individual iron anomalies in an avian tissue model associated with ferritin, biogenic magnetite and haemoglobin with a pixel resolution of less than 5 μm. This technique represents a breakthrough in the study of both intra- and extra-cellular iron compounds in brain tissue. The potential for high-resolution iron mapping using microfocused X-ray beams has direct application to investigations of the location and structural form of iron compounds associated with human neurodegenerative disorders—a problem which has vexed researchers for 50 years. PMID:16849161

  8. Analyzing the Broken Ridge area of the Indian Ocean using magnetic and gravity anomaly maps and geoid undulation and bathymetry data

    NASA Technical Reports Server (NTRS)

    Lazarewicz, A. R.; Sailor, R. V. (Principal Investigator)

    1982-01-01

    A higher resolution anomaly map of the Broken Ridge area (2 degree dipole spacing) was produced and reduced to the pole using quiet time data for this area. The map was compared with equally scaled maps of gravity anomaly, geoid undulation, and bathymetry. The ESMAP results were compared with a NASA MAGSAT map derived by averaging data in two-degree bins. A survey simulation was developed to model the accuracy of MAGSAT anomaly maps as a function of satellite altitude, instrument noise level, external noise model, and crustal anomaly field model. A preliminary analysis of the geophysical structure of Broken Ridge is presented and unresolved questions are listed.

  9. Joint Interpretation of Bathymetric and Gravity Anomaly Maps Using Cross and Dot-Products.

    NASA Astrophysics Data System (ADS)

    Jilinski, Pavel; Fontes, Sergio Luiz

    2010-05-01

    0.1 Summary We present the results of joint map interpretation technique based on cross and dot-products applied to bathymetric and gravity anomaly gradients maps. According to the theory (Gallardo, Meju, 2004) joint interpretation of different gradient characteristics help to localize and empathize patterns unseen on one image interpretation and gives information about the correlation of different spatial data. Values of angles between gradients and their cross and dot-product were used. This technique helps to map unseen relations between bathymetric and gravity anomaly maps if they are analyzed separately. According to the method applied for the southern segment of Eastern-Brazilian coast bathymetrical and gravity anomaly gradients indicates a strong source-effect relation between them. The details of the method and the obtained results are discussed. 0.2 Introduction We applied this method to investigate the correlation between bathymetric and gravity anomalies at the southern segment of the Eastern-Brazilian coast. Gridded satellite global marine gravity data and bathymetrical data were used. The studied area is located at the Eastern- Brazilian coast between the 20° W and 30° W meridians and 15° S and 25° S parallels. The volcanic events responsible for the uncommon width of the continental shelf at the Abrolhos bank also were responsible for the formation of the Abrolhos islands and seamounts including the major Vitoria-Trindade chain. According to the literature this volcanic structures are expected to have a corresponding gravity anomaly (McKenzie, 1976, Zembruscki, S.G. 1979). The main objective of this study is to develop and test joint image interpretation method to compare spatial data and analyze its relations. 0.3 Theory and Method 0.3.1 Data sources The bathymetrical satellite data were derived bathymetry 2-minute grid of the ETOPO2v2 obtained from NOAA's National Geophysical Data Center (http://www.ngdc.noaa.gov). The satellite marine gravity 1

  10. Lithologic mapping test for gravity and magnetic anomalies. A case study of gravity-magnetic anomaly profile in the eastern segment of the China-Mongolia border

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Meng, Xiaohong; Chen, Zhaoxi; Liu, Guofeng; Zheng, Yuanman; Wang, Jun; Zhang, Sheng; Zhang, Xingdong; Zheng, Wanqiu

    2015-06-01

    An inversion calculation is usually needed to map lithologies with gravity-magnetic anomalies. A lithological-physical property correspondence can be established by combining data of regional rock density and magnetic susceptibility to build topological equations. In this study, topological calculations were performed using inversion data and combined with physical property data to interpret and map lithologies. Gravity-magnetic profiles from the eastern segment of the China-Mongolia border were used (Jining-Bainaimiao-Ha'ernaode geological-composite geophysical profile) in this paper. Based on gravity-magnetic anomaly inversion, the rock density and magnetic susceptibility data of Bainaimiao and Jining were adopted for lithological inversion. Distribution characteristics of four major types of magmatic rocks within 50 km of the lower half space were obtained, and results of lithologic mapping and tectonic framework were analyzed. The position of convergence between the North China Plate and Siberian Plate was confirmed. Two tectonic stages were identified, namely, interplate squeezing and intraplate deformation. Regional gravity-magnetic field properties were analyzed to discuss the orientation and date of andesites and diorites in the northern part of the survey line. We believe that they have a northeast-southwest orientation similar to gravity-magnetic anomalies of Erenhot-Xilinhot. They resemble the igneous rock near Erenhot because they both indicate magmatic intrusion during the early Carboniferous.

  11. Integration of high-resolution seismic and aeromagnetic data for earthquake hazards evaluations: An example from the Willamette Valley, Oregon

    USGS Publications Warehouse

    Liberty, L.M.; Trehu, A.M.; Blakely, R.J.; Dougherty, M.E.

    1999-01-01

    Aeromagnetic and high-resolution seismic reflection data were integrated to place constraints on the history of seismic activity and to determine the continuity of the possibly active, yet largely concealed Mount Angel fault in the Willamette Valley, Oregon. Recent seismic activity possibly related to the 20-km-long fault includes a swarm of small earthquakes near Woodburn in 1990 and the magnitude 5.6 Scotts Mills earthquake in 1993. Newly acquired aeromagnetic data show several large northwest-trending anomalies, including one associated with the Mount Angel fault. The magnetic signature indicates that the fault may actually extend 70 km across the Willamette Valley to join the Newberg and Gales Creek faults in the Oregon Coast Range. We collected 24-fold high-resolution seismic reflection data along two transects near Woodburn, Oregon, to image the offset of the Miocene-age Columbia River Basalts (CRB) and overlying sediments at and northwest of the known mapped extent of the Mount Angel fault. The seismic data show a 100-200-m offset in the CRB reflector at depths from 300 to 700 m. Folded or offset sediments appear above the CRB with decreasing amplitude to depths as shallow as were imaged (approximately 40 m). Modeling experiments based on the magnetic data indicate, however, that the anomaly associated with the Mount Angel fault is not caused solely by an offset of the CRB and overlying sediments. Underlying magnetic sources, which we presume to be volcanic rocks of the Siletz terrane, must have vertical offsets of at least 500 m to fit the observed data. We conclude that the Mount Angel fault appears to have been active since Eocene age and that the Gales Creek, Newberg, and Mount Angel faults should be considered a single potentially active fault system. This fault, as well as other parallel northwest-trending faults in the Willamette Valley, should be considered as risks for future potentially damaging earthquakes.

  12. Crystalline basement map of Mauritania derived from filtered aeromagnetic data (deliverable 54_1), Aeromagnetic and geological structure map of Mauritania (phase V, deliverable 54_2), Maximum depth to basement map of Mauritania derived from Euler analysis of Aeromagnetic data (phase V, deliverable 54_3), and color composite image of radioelement data (added value): Chapter B1 in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    USGS Publications Warehouse

    Finn, Carol A.; Horton, John D.

    2015-01-01

    This report contains the USGS results of the PRISM-II Mauritania Minerals Project and is presented in cooperation with the Ministry of Petroleum, Energy, and Mines of the Islamic Republic of Mauritania. The Report is composed of separate chapters consisting of multidisciplinary interpretive reports with accompanying plates on the geology, structure, geochronology, geophysics, hydrogeology, geochemistry, remote sensing (Landsat TM and ASTER), and SRTM and ASTER digital elevation models of Mauritania. The syntheses of these multidisciplinary data formed the basis for additional chapters containing interpretive reports on 12 different commodities and deposit types known to occur in Mauritania, accompanied by countrywide mineral resource potential maps of each commodity/deposit type. The commodities and deposit types represented include: (1) Ni, Cu, PGE, and Cr deposits hosted in ultramafic rocks; (2) orogenic, Carlin-like, and epithermal gold deposits; (3) polymetallic Pb-Zn-Cu vein deposits; (4) sediment-hosted Pb-Zn-Ag deposits of the SEDEX and Mississippi Valley-type; (5) sediment-hosted copper deposits; ( 6) volcanogenic massive sulfide deposits; (7) iron oxide copper-gold deposits; (8) uranium deposits; (9) Algoma-, Superior-, and oolitic-type iron deposits; (10) shoreline Ti-Zr placer deposits; (11) incompatible element deposits hosted in pegmatites, alkaline rocks, and carbonatites, and; (12) industrial mineral deposits. Additional chapters include the Mauritanian National Mineral Deposits Database are accompanied by an explanatory text and the Mauritania Minerals Project GIS that contains all of the interpretive layers created by USGS scientists. Raw data not in the public domain may be obtained from the Ministry of Petroleum, Energy, and Mines in Nouakchott, Mauritania.

  13. Geochemical, aeromagnetic, and generalized geologic maps showing distribution and abundance of antimony and tungsten, Golconda and Iron Point quadrangles, Humboldt County, Nevada

    USGS Publications Warehouse

    Erickson, R.L.; Marsh, S.P.

    1971-01-01

    Detailed geologic and geochemical studies of the four 7 1/2-minute quadrangles that make up the Edna Mountain 15-minute quadrangle in Humboldt County, Nevada, were begun during the 1969 summer field season. The objectives of the project are to map the geology of this structurally complex area at 1:24,000 scale and to determine the regional distribution and abundance of metals in rocks of the area and the factors that control the distribution and abundance of those metals. Tungsten-bearing hot-spring tufa, metalliferous black shale in Ordovician rocks , base-metal and barite deposits in Paleozoic sedimentary rocks, and copper molydbenum in granodiorite plutons of Cretaceous age occur in the Edna Mountain area. None of these deposits have been of much economic significance, although tungsten was mined from the hot-spring deposits during World War II. 

  14. Geochemical, aeromagnetic, and generalized geologic maps showing distribution and abundance of gold and copper, Golconda and Iron Point quadrangles, Humboldt County, Nevada

    USGS Publications Warehouse

    Erickson, R.L.; Marsh, S.P.

    1971-01-01

    Detailed geologic and geochemical studies of the four 7 1/2-minute quadrangles that make up the Edna Mountain 15-minute quadrangle in Humboldt County, Nevada, were begun during the 1969 summer field season.  The objectives of the project are to map the geology of this structurally complex area at 1:24,000 scale and to determine the regional distribution and abundance of metals in rocks of the area and the factors that control the distribution and abundance of those metals.  Tungsten-bearing hot-spring tufa, metalliferous black shale in Ordovician rocks, base-metal and barite deposits in Paleozoic sedimentary rocks, and copper-molybdenum in granodiorite plutons of Cretaceous age occur in the Edna Mountain area.  None of these deposits have been of much economic signigicance, although tungsten was mined from the hot-spring deposits during World War II.

  15. Geochemical, aeromagnetic, and generalized geologic maps showing distribution and abundance of mercury and arsenic, Golconda and Iron Point quadrangles, Humboldt County, Nevada

    USGS Publications Warehouse

    Erickson, R.L.; Marsh, S.P.

    1971-01-01

    Detailed geologic and geochemical studies of the four 7 1/2-minute wuadrangles that make up the Edna Mountain 15-minute quadrangle in Humboldt County, Nevada, were begun druring the 1969 summer field season. The objectives of the project are to map the geology of this structurally complex area at 1:24,000 scale and to determine the regional distribution and abundance of metals in rocks of the area and the factors that control the distribution and abundance of those metals. Tungsten-bearing hot-spring tufa, metalliferous black shale in Ordovician rocks, base-metal and barite deposits in Paleozoic sedimentary rocks, and copper-molybdenum in granodiorite plutons of Creataceous age occur in the Edna Mountain dare. None of these deposits have been of much economic significance, although tungsten was mined from the hot-spring deposits during World War II. 

  16. Aeromagnetic study of the Hengshan-Wutai-Fuping region: Unraveling a crustal profile of the Paleoproterozoic Trans-North China Orogen

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Zhao, Guochun; Shen, Wenlue; Li, Sanzhong; Sun, Min

    2015-11-01

    An integrated crustal profile of the intervening Trans-North China Orogen (TNCO) is one of the key issues to understanding the tectonic evolution of the North China Craton. However, the existing geological studies focus only on the surface-mapping based petrological, geochemical and structural analysis, but lack subsurface geophysical evidence and thus make the crustal profile interpretations ambiguous. In contrast, the current geophysical data covers a very large-scale lithospheric mantle and fails to image the detailed structural pattern of the orogenic crust. To achieve this goal, we present high-resolution aeromagnetic data for the Hengshan-Wutai-Fuping region, the largest exposure of the central TNCO. The reduced-to-pole magnetic anomaly map firstly verifies the regional tectonic subdivision that the high-grade metamorphic terranes (i.e. Hengshan and Fuping Complexes) are consistent with high-magnetic responses and long-wavelength anomalies, intervened by a low-grade terrane (Wutai Complex) characterized by low-magnetic responses and short-wavelength anomalies. 3D Euler deconvolution reveals that the tendencies of the clustered solutions show large consistence with the major structural pattern of the region which is characterized by a fan-shaped doubly-vergent orogenic wedge. Upward continuation further shows that the northwest part of the orogen yields a thicker crust and is most likely located closer to the paleosubduction zone. The new aeromagnetic data, combined with structural, petrological and metamorphic data indicate that an eastward-dipping subduction zone was most possibly active before the collision of the Western and Eastern Blocks, leading to the formation of the TNCO and the final amalgamation of the North China Craton.

  17. Interaction between solar wind and lunar magnetic anomalies observed by MAP-PACE on Kaguya

    NASA Astrophysics Data System (ADS)

    Saito, Yoshifumi; Yokota, Shoichiro; Tanaka, Takaaki; Asamura, Kazushi; Nishino, Masaki N.; Yamamoto, Tadateru I.; Tsunakawa, Hideo

    It is well known that the Moon has neither global intrinsic magnetic field nor thick atmosphere. Different from the Earth's case where the intrinsic global magnetic field prevents the solar wind from penetrating into the magnetosphere, solar wind directly impacts the lunar surface. MAgnetic field and Plasma experiment -Plasma energy Angle and Composition Experiment (MAP-PACE) on Kaguya (SELENE) completed its 1.5-year observation of the low energy charged particles around the Moon on 10 June 2009. Kaguya was launched on 14 September 2007 by H2A launch vehicle from Tanegashima Space Center in Japan. Kaguya was inserted into a circular lunar polar orbit of 100km altitude and continued observation for nearly 1.5 years till it impacted the Moon on 10 June 2009. During the last 5 months, the orbit was lowered to 50km-altitude between January 2009 and April 2009, and some orbits had further lower perilune altitude of 10km after April 2009. MAP-PACE consisted of 4 sensors: ESA (Electron Spectrum Analyzer)-S1, ESA-S2, IMA (Ion Mass Analyzer), and IEA (Ion Energy Analyzer). Since each sensor had hemispherical field of view, two electron sensors and two ion sensors that were installed on the spacecraft panels opposite to each other could cover full 3-dimensional phase space of low energy electrons and ions. One of the ion sensors IMA was an energy mass spectrometer. IMA measured mass identified ion energy spectra that had never been obtained at 100km altitude polar orbit around the Moon. When Kaguya flew over South Pole Aitken region, where strong magnetic anomalies exist, solar wind ions reflected by magnetic anomalies were observed. These ions had much higher flux than the solar wind protons scattered at the lunar surface. The magnetically reflected ions had nearly the same energy as the incident solar wind ions while the solar wind protons scattered at the lunar surface had slightly lower energy than the incident solar wind ions. At 100km altitude, when the reflected ions

  18. Building the second version of the World Digital Magnetic Anomaly Map (WDMAM)

    NASA Astrophysics Data System (ADS)

    Lesur, Vincent; Hamoudi, Mohamed; Choi, Yujin; Dyment, Jérôme; Thébault, Erwan

    2016-02-01

    The World Digital Anomaly Map (WDMAM) is a worldwide compilation of near-surface magnetic data. We present here a candidate for the second version of the WDMAM and its characteristics. This candidate has been evaluated by a group of independent reviewers and has been adopted as the official second version of the WDMAM during the 26th general assembly of the International Union of Geodesy and Geomagnetism (IUGG). The way this compilation has been built is described with some details. A global magnetic field model of the lithosphere contribution, parameterised by spherical harmonics, has been derived up to degree and order 800. The model information content has been evaluated by computing local spectra. Further, the compatibility of the anomaly field displayed by the WDMAM with a pure induced magnetisation is tested by comparison with the main field strength. These studies allowed an analysis of the compilation in terms of strength and wavelength content. They confirm the extremely smooth and weak contribution of the magnetic field generated in the lithosphere over Western Europe. This apparent weakness possibly extends to the Northern African continent. However, a global analysis remains difficult to achieve given the sparseness of good quality data over very large area of oceans and continents. The WDMAM and related information can be downloaded at http://www.wdmam.org/.

  19. Identification of mineral resources in Afghanistan-Detecting and mapping resource anomalies in prioritized areas using geophysical and remote sensing (ASTER and HyMap) data

    USGS Publications Warehouse

    : King, Trude V. V., (Edited By); Johnson, Michaela R.; Hubbard, Bernard E.; Drenth, Benjamin J.

    2011-01-01

    During the independent analysis of the geophysical, ASTER, and imaging spectrometer (HyMap) data by USGS scientists, previously unrecognized targets of potential mineralization were identified using evaluation criteria most suitable to the individual dataset. These anomalous zones offer targets of opportunity that warrant additional field verification. This report describes the standards used to define the anomalies, summarizes the results of the evaluations for each type of data, and discusses the importance and implications of regions of anomaly overlap between two or three of the datasets.

  20. Application of the Geo-Anomaly Unit Concept in Quantitative Delineation and Assessment of Gold Ore Targets in Western Shandong Uplift Terrain, Eastern China

    SciTech Connect

    Chen Yongqing Zhao Pengda; Chen Jianguo; Liu Jiping

    2001-03-15

    A number of large and giant ore deposits have been discovered within the relatively small areas of lithospheric structure anomalies, including various boundary zones of tectonic plates. The regions have become the well-known intercontinental ore-forming belts, such as the circum-Pacific gold-copper, copper-molybdenum, and tungsten-tin metallogenic belts. These belts are typical geological anomalous areas. An investigation into the hydrothermal ore deposits in different regions in the former Soviet Union illustrated that the geologic structures of ore fields of almost all major commercial deposits have distinct features compared with the neighboring areas. These areas with distinct features are defined as geo-anomalies. A geo-anomaly refers to such a geologic body or a combination of bodies that their composition, texture-structure, and genesis are significantly different from those of their surroundings. A geo-anomaly unit (GU) is an area containing distinct features that can be delineated with integrated ore-forming information using computer techniques on the basis of the geo-anomaly concept. Herein, the GU concept is illustrated by a case study of delineating the gold ore targets in the western Shandong uplift terrain, eastern China. It includes: (1) analyses of gold ore-forming factors; (2) compilation of normalized regional geochemical map and extraction of geochemical anomalies; (3) compilation of gravitational and aeromagnetic tectonic skeleton map and extraction of gravitational and aeromagnetic anomalies; (4) extraction of circular and linear anomalies from remote-sensing Landsat TM images; (5) establishment of a geo-anomaly conceptual model associated with known gold mineralization; (6) establishment of gold ore-forming favorability by computing techniques; and (7) delineation and assessment of ore-forming units. The units with high favorability are suggested as ore targets.

  1. Holocene Fault Scarps and Shallow Magnetic Anomalies Along the Southern Whidbey Island Fault Zone Near Woodinville, Washington

    NASA Astrophysics Data System (ADS)

    Sherrod, B.; Blakely, R. J.; Weaver, C.; Kelsey, H. M.; Barnett, E.; Wells, R.

    2005-12-01

    The southern Whidbey Island fault zone (SWIFZ), mapped previously using borehole data, potential-field anomalies, and marine seismic-reflection surveys, consists of four sub-parallel, northwest-trending fault strands, extending ~100 km from near Vancouver Island to the Washington mainland. The SWIFZ has been hypothesized to extend southeastward beneath the mainland, making landfall between the cities of Seattle and Everett. Linear, low-amplitude aeromagnetic anomalies in this mainland region are on strike with the mapped portion of the SWIFZ and may indicate that the fault continues southeast. The Cottage Lake aeromagnetic lineament, is most prominent, extends at least 16 km and is approximately on strike with the SWIFZ on Whidbey Island. Glacial deposits are slightly magnetic in this region, as indicated by magnetic susceptibility measurements and a ground-magnetic survey, and, in places, the Cottage Lake aeromagnetic lineament is associated with topographic lineaments. Spectral analysis and modeling experiments indicate that the source of the Cottage Lake aeromagnetic lineament extends to depths greater than 2 km and probably into Eocene sedimentary strata. Coastal marsh stratigraphy, lidar mapping, and fault scarp excavations help define recent activity along the SWIFZ. Abrupt uplift at a coastal marsh on south-central Whidbey Island suggests that the SWIFZ experienced a MW 6.5 - 7.0 earthquake between 3200 and 2800 years B.P. Subtle scarps on Pleistocene surfaces are delineated by high-resolution lidar topography at a number of locations in the mainland region, often closely associated with aeromagnetic lineaments. In the field, scarps exhibit northeast-side-up vertical relief of 1 to 5 m. Four excavations across two lidar scarps show evidence for multiple folding and faulting events since deglaciation, most likely above buried reverse/oblique faults. One trench exposed a normal fault, although it was not possible to determine whether glacial or tectonism

  2. Constraints on the Anadarko Basin-Wichita uplift boundary interpreted from aeromagnetic data

    USGS Publications Warehouse

    Jones-Cecil, Meridee; Crone, Anthony J.

    1989-01-01

    Modeling and interpretation of aeromagnetic data across the transition between the Anadarko basin and the Wichita uplift in the vicinity of the scarp on the Meers fault (Fig. 1) constrains structural relationships and lithologic contrasts at this boundary. We digitized aeromagnetic data from the map based on a detailed survey flown in 1954 (U.S. Geological Survey, 1975). The flight lines for this survey were oriented east-west, spaced 0.25 mi apart, and flown 500 ft above the ground. The digitized data were gridded using a minimum-curvature gridding program (MINC; Webring, 1981) and plotted as a color-shaded relief map using an unpublished program written by M. W. Webring. The color-shaded relief map was shown in the Anadarko Basin Workshop poster session. Figure 2 is a generalized contour map made from the digitized data, using the unpublished program CONTOURS, written by R. H. Bracken, R. H. Godson, and M. W. Webring.

  3. Preparation of magnetic anomaly profile and contour maps from DOE-NURE aerial survey data. Volume I: processing procedures. [National Uranium Resource Evaluation

    SciTech Connect

    Tinnel, E.P.; Hinze, W.J.

    1981-09-01

    Total intensity magnetic anomaly data acquired as a supplement to radiometric data in the DOE National Uranium Resource Evaluation (NURE) Program are useful in preparing regional profile and contour maps. Survey-contractor-supplied magnetic anomaly data are subjected to a multiprocess, computer-based procedure which prepares these data for presentation. This procedure is used to produce the following machine plotted maps of National Topographic Map Series quadrangle units at a 1:250,000 scale: (1) profile map of contractor-supplied magnetic anomaly data, (2) profile map of high-cut filtered data with contour levels of each profile marked and annotated on the associated flight track, (3) profile map of critical-point data with contour levels indicated, and (4) contour map of filtered and selected data. These quadrangle maps are supplemented with a range of statistical measures of the data which are useful in quality evaluation.

  4. Magsat equivalent source anomalies over the southeastern United States - Implications for crustal magnetization

    NASA Technical Reports Server (NTRS)

    Ruder, M. E.; Alexander, S. S.

    1986-01-01

    The Magsat crustal anomaly field depicts a previously-unidentified long-wavelength negative anomaly centered over southeastern Georgia. Examination of Magsat ascending and descending passes clearly identifies the anomalous region, despite the high-frequency noise present in the data. Using ancillary seismic, electrical conductivity, Bouguer gravity, and aeromagnetic data, a preliminary model of crustal magnetization for the southern Appalachian region is presented. A lower crust characterized by a pervasive negative magnetization contrast extends from the New York-Alabama lineament southeast to the Fall Line. In southern Georgia and eastern Alabama (coincident with the Brunswick Terrane), the model calls for lower crustal magnetization contrast of -2.4 A/m; northern Georgia and the Carolinas are modeled with contrasts of -1.5 A/m. Large-scale blocks in the upper crust which correspond to the Blue Ridge, Charlotte belt, and Carolina Slate belt, are modeled with magnetization contrasts of -1.2 A/m, 1.2 A/m, and 1.2 A/m respectively. The model accurately reproduces the amplitude of the observed low in the equivalent source Magsat anomaly field calculated at 325 km altitude and is spatially consistent with the 400 km lowpass-filtered aeromagnetic map of the region.

  5. Connecting Crustal Faults and Tectonics from Puget Sound across the Cascade Range to the Yakima Fold and Thrust Belt, Washington: Evidence from New High-Resolution Aeromagnetic Data

    NASA Astrophysics Data System (ADS)

    Blakely, R. J.; Sherrod, B. L.; Weaver, C. S.; Wells, R. E.

    2009-05-01

    through the entire Tertiary CRBG section and into underlying pre-Tertiary rocks, suggesting that thick-skinned tectonism is dominant here. Magnetic anomalies over Umtanum Ridge extend northwestward well beyond exposures of CRBG, thus allowing us to map this zone of deformation over large distances. Using the new aeromagnetic survey and older gravity and magnetic data, we speculate on possible tectonic connections between the Yakima fold belt in eastern Washington and active faults of the Puget Lowland. We suggest that the southern Whidbey Island fault truncates the Seattle fault about 35 km east of Seattle, then continues through the Cascade Range where it transfers strain southeastward to the Umtanum Ridge fault zone. The Tacoma fault may connect in the subsurface with the White River-Naches River fault zone in the Cascade Range and then may merge with the Umtanum Ridge fault zone farther east. In this view, active Puget Lowland faults converge near Snoqualmie Pass in the Cascade Range before connecting with the Yakima fold and thrust belt farther to the southeast. The distribution of earthquakes (MW ≤ 5.3) occurring during the past 35 years suggests that this confluence of faults 35 km east of Seattle may be seismically active.

  6. Aeromagnetic interpretation and mineral investigations in the Ezine, Canakkale-Karabiga, Marmara, and Kapidag areas of northwestern Turkey

    USGS Publications Warehouse

    Jacobson, Herbert Samuel; Ozelci, F.; Yazgan, Durmaz; Hatay, N.; Karahacioglu, Hamit

    1972-01-01

    Aeromagnetic surveys and mineral investigations are planned or in progress in ten areas of northwestern Turkey (fig. 1). This report reviews results obtained from August 1967 to January 1, 1968, through aeromagnetic interpretation and field investigations in four of the areas (Areas 2, 3,4, and 5). Aeromagnetic interpretation identified 27 prominent anomalies, 17 of which were checked in the field. The majority of these anomalies were found to be caused by minor amounts of magnetite in igneous rocks, including granite stocks, mafic flows, and mafic dikes. Other anomalies are caused by magnetite in metamorphic rocks or by topographic effects. However, massive magnetite boulders were observed in three adjoining localities (Anomalies E2, E3, and E4, fig. 2) in area 2, and magnetite partly replacing a limestone boulder was found in area 3 (Anomaly CK3, fig. 3). Further study of these magnetite exposures is planned. In addition, two iron prospects and one lead prospect were briefly examined. All the prospects were considered small and not worthy of further study at this time.

  7. Bouguer gravity anomaly and isostatic residual gravity maps of the Tonopah 1 degree by 2 degrees Quadrangle, central Nevada

    USGS Publications Warehouse

    Plouff, Donald

    1992-01-01

    A residual isostatic gravity map (sheet 2) was prepared so that the regional effect of isostatic compensation present on the Bouguer gravity anomaly map (sheet 1) would be minimized. Isostatic corrections based on the Airy-Heiskanen system (Heiskanen and Vening Meinesz, 1958, p. 135-137) were estimated by using 3-minute topographic digitization and applying the method of Jachens and Roberts (1981). Parameters selected for the isostatic model were 25 km for the normal crustal thickness at sea level, 2.67 g/cm3 for the density of the crust, and 0.4 g/cm3 for the contrast in density between the crust and the upper mantle. These parameters were selected so that the isostatic residual gravity map would be consistent with isostatic residual gravity maps of the adjacent Walker Lake quadrangle (Plouff, 1987) and the state of Nevada (Saltus, 1988c).

  8. Bangui Anomaly

    NASA Technical Reports Server (NTRS)

    Taylor, Patrick T.

    2004-01-01

    Bangui anomaly is the name given to one of the Earth s largest crustal magnetic anomalies and the largest over the African continent. It covers two-thirds of the Central African Republic and therefore the name derives from the capitol city-Bangui that is also near the center of this feature. From surface magnetic survey data Godivier and Le Donche (1962) were the first to describe this anomaly. Subsequently high-altitude world magnetic surveying by the U.S. Naval Oceanographic Office (Project Magnet) recorded a greater than 1000 nT dipolar, peak-to-trough anomaly with the major portion being negative (figure 1). Satellite observations (Cosmos 49) were first reported in 1964, these revealed a 40nT anomaly at 350 km altitude. Subsequently the higher altitude (417-499km) POGO (Polar Orbiting Geomagnetic Observatory) satellite data recorded peak-to-trough anomalies of 20 nT these data were added to Cosmos 49 measurements by Regan et al. (1975) for a regional satellite altitude map. In October 1979, with the launch of Magsat, a satellite designed to measure crustal magnetic anomalies, a more uniform satellite altitude magnetic map was obtained. These data, computed at 375 km altitude recorded a -22 nT anomaly (figure 2). This elliptically shaped anomaly is approximately 760 by 1000 km and is centered at 6%, 18%. The Bangui anomaly is composed of three segments; there are two positive anomalies lobes north and south of a large central negative field. This displays the classic pattern of a magnetic anomalous body being magnetized by induction in a zero inclination field. This is not surprising since the magnetic equator passes near the center of this body.

  9. Indian Wells Valley FORGE Aeromagnetic Data

    DOE Data Explorer

    Doug Blankenship

    1994-11-01

    Aeromagnetic data was collected over the Indian Wells Valley, CA in November 1994. It consisted of 9,033 line-kilometers covering ~4,150 square kilometers, flown at a 250 meter drape with principal line spacing of 0.54 kilometers and 10% cross-lines. The principal orientation is N65E.

  10. Mapping mantle-melting anomalies in Baja California: a combined helium-seismology approach

    NASA Astrophysics Data System (ADS)

    Negrete-Aranda, R.; Spelz, R. M.; Hilton, D. R.; Tellez, M.; González-Yahimovich, O.

    2015-12-01

    In active tectonic settings, the presence of helium in aqueous fluids with 3He/4He ratios greater than in-situ production values (~0.05 RA where RA = air He or 1.4 x 10-6) indicates the contribution of mantle-derived volatiles to the total volatile inventory. This is an indicative of the presence of mantle-derived melts, which act to transfer volatiles from the solid Earth towards the surface. Thus, He has the potential to map regions of the underlying mantle which are undergoing partial melting - a phenomenon which should also be evident in the seismic record. Reports of high 3He/4He in hot springs in Baja California (BC) has prompted us to initiate a survey of the region to assess relationship(s) between He isotopes and geophysical images of the underlying mantle. Previous studies report 3He/4He ratios of 0.54 RA for submarine hot springs (Punta Banda 108oC; Vidal, 1982) and 1.3 RA for spring waters (81oC) at Bahia Concepcion (Forrest et al.,2005). Our new survey of hot springs in northern BC has revealed that all 6 localities sampled to date, show the presence of mantle He with the highest ratio being 1.74RA (21% mantle-derived) at Puertecitos on the Gulf coast. He ratios are generally lower on the Pacific coast with the minimum mantle He contribution being 5% at Sierra Juárez (0.11RA). Thus, preliminary trends are of a west-to-east increase in the mantle He signal across the peninsula. He results presented in this study correlate well with high resolution Rayleigh wave tomography images by Forsythe et al. (2007). Shear velocity variations in the BC crust and upper mantle have been interpreted as low velocity anomalies associated with dynamic upwelling and active melt production. More extensive sampling throughout BC coupled with analysis of other geochemical indicators of mantle degassing (e.g. CO2) will allow more detailed characterization of the extent and distribution of mantle melts in the region, facilitating assessment of the region's geothermal

  11. MODELING THE ANOMALY OF SURFACE NUMBER DENSITIES OF GALAXIES ON THE GALACTIC EXTINCTION MAP DUE TO THEIR FIR EMISSION CONTAMINATION

    SciTech Connect

    Kashiwagi, Toshiya; Suto, Yasushi; Taruya, Atsushi; Yahata, Kazuhiro; Kayo, Issha; Nishimichi, Takahiro

    2015-02-01

    The most widely used Galactic extinction map is constructed assuming that the observed far-infrared (FIR) fluxes come entirely from Galactic dust. According to the earlier suggestion by Yahata et al., we consider how FIR emission of galaxies affects the SFD map. We first compute the surface number density of Sloan Digital Sky Survey (SDSS) DR7 galaxies as a function of the r-band extinction, A {sub r,} {sub SFD}. We confirm that the surface densities of those galaxies positively correlate with A {sub r,} {sub SFD} for A {sub r,} {sub SFD} < 0.1, as first discovered by Yahata et al. for SDSS DR4 galaxies. Next we construct an analytical model to compute the surface density of galaxies, taking into account the contamination of their FIR emission. We adopt a log-normal probability distribution for the ratio of 100 μm and r-band luminosities of each galaxy, y ≡ (νL){sub 100} {sub μm}/(νL) {sub r}. Then we search for the mean and rms values of y that fit the observed anomaly, using the analytical model. The required values to reproduce the anomaly are roughly consistent with those measured from the stacking analysis of SDSS galaxies. Due to the limitation of our statistical modeling, we are not yet able to remove the FIR contamination of galaxies from the extinction map. Nevertheless, the agreement with the model prediction suggests that the FIR emission of galaxies is mainly responsible for the observed anomaly. Whereas the corresponding systematic error in the Galactic extinction map is 0.1-1 mmag, it is directly correlated with galaxy clustering and thus needs to be carefully examined in precision cosmology.

  12. Simulation study on slant-to-vertical deviation in two dimensional TEC mapping over the ionosphere equatorial anomaly

    NASA Astrophysics Data System (ADS)

    Yu, Tao; Mao, Tian; Wang, Yungang; Zeng, Zhongcao; Xia, Chunliang; Wu, Fenglei; Wang, Le

    2014-08-01

    With the rapid increase of GPS/GNSS receivers being deployed and operated in China, real-time GPS data from nearly a thousand sites are available at the National Center for Space Weather, China Meteorology Administration. However, it is challenging to generate a high-quality regional total electron content (TEC) map with the traditional two-dimensional (2-D) retrieval scheme because a large horizontal gradient has been reported over east-south Asia due to the northern equatorial ionization anomaly. We developed an Ionosphere Data Assimilation Analysis System (IDAAS), which is described in this study, using an International Reference Ionosphere (IRI) model as the background and applying a Kalman filter for updated observations. The IDAAS can reconstruct a three-dimensional ionosphere with the GPS slant TEC. The inverse slant TEC correlates well with observations both for GPS sites involved in the reconstruction and sites that are not involved. Based on the IDAAS, simulations were performed to investigate the deviation relative to the slant-to-vertical conversion (STV). The results indicate that the relative deviation induced by slant-to-vertical conversion may be significant in certain instances, and the deviation varies from 0% to 40% when the elevation decreases from 90° to 15°, while the relative IDAAS deviation is much smaller and varies from -5% to 15% without an elevation dependence. Compared with ‘true TEC’ map derived from the model, there is large difference in STV TEC map but no obvious discrepancy in IDAAS map. Generally, the IDAAS TEC map is much closer to the “true TEC” than is STV TEC map is. It is suggested that three-dimensional inversion technique is necessary for GPS observations of low elevation at an equatorial anomaly region, wherein the high horizontal electron density gradient may produce significant slant-to-vertical deviations using the two-dimensional STV inversion method.

  13. Principal facts and a discussion of terrain correction methods for the complete Bouguer gravity anomaly map of the Cascade Mountains, Washington

    SciTech Connect

    Danes, Z.F.; Phillips, W.M.

    1983-02-01

    Since 1974, the Division of Geology and Earth Resources, in conjunction with the US Department of Energy, has supported gravity studies in the Cascade Mountains of Washington State. Results of the Cascade gravity project are summarized graphically as a complete Bouguer gravity anomaly map of the Cascade Mountains, Washington (Danes and Phillips, 1983). This report provides supplementary data and documentation for the complete Bouguer gravity anomaly map. Presented are principal gravity facts, simple Bouguer and Free-air gravity anomalies, computational methods, error analysis and a discussion of terrain corrections.

  14. Aeromagnetic Survey in Western Afghanistan: A Web Site for Distribution of Data

    USGS Publications Warehouse

    Sweeney, Ronald E.; Kucks, Robert P.; Hill, Patricia L.; Finn, Carol A.

    2006-01-01

    Aeromagnetic and related data were digitized from 1976 magnetic field and survey route location maps of western Afghanistan. The magnetic field data were digitized along contour lines from 33 maps in a series entitled 'Map of Magnetic Field of Afghanistan (Western Area) Delta-Ta Isolines,' compiled by V. A. Cnjagev and A. F. Bukhmastov. The survey route location data were digitized along flight-lines located on 33 maps in a series entitled 'Survey Routes Location and Contours of Flight Equal Altitudes. Western Area of Afghanistan,' compiled by Z. A. Alpatova, V. G. Kurnosov, and F. A. Grebneva.

  15. Unveiling subglacial geology and crustal architecture in the Recovery frontier of East Antarctica with recent aeromagnetic and airborne gravity imaging

    NASA Astrophysics Data System (ADS)

    Ferraccioli, F.; Forsberg, R.; Jordan, T. A.; Matsuoka, K.; Olsen, A.; King, O.; Ghidella, M.

    2014-12-01

    East Antarctica is the least known continent, despite being a keystone in the Gondwana, Rodinia and Columbia supercontinents. Significant progress has been made in recent years in exploring East Antarctica using aeromagnetic and airborne gravity together with radar. Major aerogeophysical campaigns over the Wilkes Subglacial Basin (Ferraccioli et al., 2009 Tectonophysics), the Aurora Subglacial Basin (Aitken et al., 2014 GRL) and the Gamburtsev Subglacial Mountains (Ferraccioli et al., 2011, Nature) provide new glimpses into the crustal architecture of East Antarctica. However, a major sector of the continent that includes key piercing points for reconstructing linkages between East Antarctica and Laurentia within Rodinia, and also the inferred remnants of a major suture zone active during Gondwana amalgamation in Pan-African times (ca 500 Ma), has remained largely terra incognita. Here we present the results of a major aerogeophysical survey flown over this sector of East Antarctica, named the Recovery Frontier, from the major ice stream flowing in the region. The survey was flown during the IceGRAV 2012-13 field season, as part of a Danish-Norwegian-UK and Argentine collaboration and led to the collection of 29,000 line km of radar, laser altimetry, gravity and magnetic data. We present the new aeromagnetic anomaly, Bouguer and residual and enhanced anomaly maps for the region. Using these images we trace the extent of major subglacial faults and interpret these to delineate the tectonic boundaries separating the Coast block, the Shackleton Range and the Dronning Maud Land crustal provinces. Forward magnetic and gravity modelling enables us to examine the inferred Pan-African age suture zone in the Shackleton Range and address its tectonic relationships with older terranes of the Mawson Craton and Grenvillian-age terranes of Dronning Maud Land and interior East Antarctica. Finally, we present new models to test our hypothesis that Paleozoic to Mesozoic rift basins

  16. Aeromagnetic data provide new insights on the volcanism and tectonics of Vulcano Island and offshore areas (southern Tyrrhenian Sea, Italy)

    NASA Astrophysics Data System (ADS)

    De Ritis, Riccardo; Blanco-Montenegro, Isabel; Ventura, Guido; Chiappini, Massimo

    2005-08-01

    The active Vulcano Island (Southern Tyrrhenian Sea) represents the southernmost portion of a NW-SE elongated volcanic ridge that includes also Lipari and Salina islands. The ridge is affected by a regional, NW-SE to N-S striking fault system. The elaboration and analysis of data from three high-resolution aeromagnetic surveys carried out between 1999 and 2004 on Vulcano and offshore allow us to recognize high intensity magnetic anomalies related to volcanic centers/conduits or shallow intrusions. Previously unreported offshore submarine vents have been also recognized. Some of them may correspond with source areas of outcropping exotic pyroclastics on Vulcano. The spatial analysis of the recognized magnetic anomalies and volcanic structures shows that they are preferably aligned along the strikes of the main regional faults that affect the volcanic ridge. Submarine volcanic conduits revealed by the aeromagnetic survey might represent potential sources for future submarine, effusive or explosive activity.

  17. Structure of the basement beneath the Illizi Basin: insights from the reinterpretation of an aeromagnetic survey

    NASA Astrophysics Data System (ADS)

    Brahimi, Sonia; Bourmatte, Amar; Ghienne, Jean-François; Munschy, Marc

    2016-04-01

    The Illizi Basin is an intracontinental basin occupying the southeastern part of the Algerian Sahara platform at the northeastern junction of the Hoggar terranes with the East Saharan Metacraton. Aeromagnetic data covering an area of about 2000 km2, including the Illizi Basin, Tassilis and northeastern part of the Hoggar, are compiled to obtain a magnetic map with a special resolution of 600 m and interpreted in the light of that of the adjacent Hoggar Shield, the structural geology of which is well documented. Interpretation of the magnetic map uses potential field transformations like reduction to the pole, fractional vertical derivatives, analytic signal and tilt-depth. These transforms allow to identify beneath the cover of the Illizi Basin two main structural boundaries: 1) The N-S 'Raghane Mega-shear zone' (RSZ) at 8°30 E, manifested by a weak magnetic signal. It corresponds to the most important Panafrican suture, which separates the East Saharan Metacraton from the LATEA terrane assemblage (Metacraton of Central Hoggar). 2) A N-S mega-shear zone at 4°50 E (MSZ4) marked by a strong amplitude anomaly. It separates the Central (LATEA) from the Western Hoggar. Both mega-shear zones change their direction northward: to the NNE for the RSZ and to the NW for the MSZ4. To the west of the RSZ, inside the LATEA, another linear structure is identified by a weak amplitude magnetic lineation, which corresponds to the 7°30 E shear zone (SZ7) marking the western boundary of the Tazat-Assodé-Issalane terranes (TAI). Along SZ7is identified the strongest amplitude magnetic anomaly, which is in excess of 2000 nT and correlated spatially to the northern part of the Ounane pluton. Two other magnetic anomalies further north probably relate to similar bodies. Also a distinct area with strong amplitude magnetic anomalies is identified and extends 300 km toward the north below the sedimentary cover. It is associated to the northern extension of the TAI. In addition, N

  18. Preliminary results for an aeromagnetic survey flown over Italy using the HALO (High Altitude and LOng range) research aircraft

    NASA Astrophysics Data System (ADS)

    Lesur, V.; Schachtschneider, R.; Gebler, A.

    2013-12-01

    In June 2012 the GEOHALO mission was flown over Italy using the high altitude and long-range German research aircraft HALO (Gulfstream jet - G550). One goal of the mission was to demonstrate the feasibility of using geodetic and geophysical instrumentation on such fast flying aircraft. The magnetic data were collected through two independent acquisition chains placed inside under-wing containers. Each chain included a total intensity cesium magnetometer, a three-component fluxgate magnetometer, several temperature censors and a digitizer. Seven parallel profiles, each around 1000 km long, were flown over the Apennine peninsula from north-west to south-east. The flight altitude was about 3500 m and the survey line spacing around 40 km. These long profiles were complemented by four crossing profiles, and a repeated flight line at a higher altitude (approx. 10500 m). The measured magnetic data appear to be consistent with the expected signal. Here we present preliminary results of the data processing. From the calibration maneuvers we have been able to correct the data for most of the plane generated signal. High frequency noise, probably associated with the plane engines, has been filtered out. Along profile data are compared with the Italian aeromagnetic grid as provided by the last version of the WDMAM (World Digital Magnetic Anomaly Map).

  19. Gravity and aeromagnetic constraints on the extent of Cenozoic volcanic rocks within the Nefza Tabarka region, northwestern Tunisia

    NASA Astrophysics Data System (ADS)

    Jallouli, Chokri; Mickus, Kevin; Turki, Mohamed Moncef; Rihane, Chedly

    2003-03-01

    Bouguer gravity and aeromagnetic data are analyzed to determine the extent of Miocene magmatism in the Nefza and Tabarka regions of northwestern Tunisia. Construction of magnetic intensity and enhanced analytic signal (EAS) maps indicated the existence of at least two regions containing probable subsurface igneous bodies that correlate to the small scattered igneous outcrops in the Nefza and Tabarka regions. Because of the lack of lateral resolution of the EAS techniques, 3-D magnetic and 2.5-D gravity models were constructed over the anomalies at Nefza and Tabarka. The final models indicate that the maximum depths of the igneous bodies are between 2.5 and 2.7 km with maximum widths between 15 and 22 km. The final models also indicate that the bodies are tabular with a combination of laccolithic and lopolithic shapes and were probably emplaced in the shallow levels of the crust (at least 3 km). These widths greatly expand the region of known Miocene magmatism in northwestern Tunisia. Combined with geochemical and petrological data of the surface volcanic rocks, the gravity and magnetic models imply a wider range of Miocene volcanic activity in northern Tunisia, probably related to a subduction zone.

  20. Satellite-Altitude Geopotential Study of the Kursk Magnetic Anomaly (KMA)

    NASA Technical Reports Server (NTRS)

    Taylor, Patrick T.; Kim, Hyung Rae; vonFrese, Ralph R. B.; Potts, Laramie V.; Frawley, James J.

    2003-01-01

    With the successful launch of the Orsted, SAC-C and CHAMP satellites we are able to make both magnetic and gravity anomaly maps of the Earth's crust; magnetic from all three missions and gravity with CHAMP. We have used these data to study the KMA area of Russia. This is an important region for several reasons: (1) we have already made satellite magnetic anomaly maps of this region and they can be integrated with the gravity data from CHAMP for a comprehensive interpretation; (2) KMA contains the largest know reserves of iron-ore in the world; and (3) there are significant ground truth data available for this region from aeromagnetic, balloon surveys and geophysical mapping, including extensive rock magnetic/paleo-magnetic and geologic studies. Utilizing the gravity observations, collocated with the magnetic data enabled us to make a joint interpretation. While there is a high amplitude magnetic anomaly recorded over the KMA the gravity anomaly at satellite altitude revealed by CHAMP is only around 3-6 mGal but is not centered on the magnetic high. This would indicate that despite the fact that in the region of the KMA the rocks have a higher percentage of iron than in the surrounding formations the entire area is Archean-Proterozoic in age and therefore very dense.

  1. Aeromagnetic interpretation in the south-central Zimbabwe Craton: (reappraisal of) crustal structure and tectonic implications

    NASA Astrophysics Data System (ADS)

    Ranganai, Rubeni T.; Whaler, Kathryn A.; Ebinger, Cynthia J.

    2015-12-01

    Regional aeromagnetic data from the south-central Zimbabwe Craton have been digitally processed and enhanced for geological and structural mapping and tectonic interpretation integrated with gravity data, to constrain previous interpretations based on tentative geologic maps and provide new information to link these structural features to known tectonic events. The derived maps show excellent correlation between magnetic anomalies and the known geology, and extend lithological and structural mapping to the shallow/near subsurface. In particular, they reveal the presence of discrete crustal domains and several previously unrecognised dykes, faults, and ultramafic intrusions, as well as extensions to others. Five regional structural directions (ENE, NNE, NNW, NW, and WNW) are identified and associated with trends of geological units and cross-cutting structures. The magnetic lineament patterns cut across the >2.7 Ga greenstone belts, which are shown by gravity data to be restricted to the uppermost 10 km of the crust. Therefore, the greenstone belts were an integral part of the lithosphere before much of the upper crustal (brittle) deformation occurred. Significantly, the observed magnetic trends have representatives craton-wide, implying that our interpretation and inferences can be applied to the rest of the craton with confidence. Geological-tectonic correlation suggests that the interpreted regional trends are mainly 2.5 Ga (Great Dyke age) and younger, and relate to tectonic events including the reactivation of the Limpopo Belt at 2.0 Ga and the major regional igneous/dyking events at 1.8-2.0 Ga (Mashonaland), 1.1 Ga (Umkondo), and 180 Ma (Karoo). Thus, their origin is here inferred to be inter- and intra-cratonic collisions and block movements involving the Zimbabwe and Kaapvaal Cratons and the Limpopo Belt, and later lithospheric heating and extension associated with the break-up of Gondwana. The movements produced structures, or reactivated older fractures

  2. Peeking below Columbia River flood basalts with high-resolution aeromagnetic data: implications for central Washington earthquake hazards

    NASA Astrophysics Data System (ADS)

    Blakely, R. J.; Sherrod, B. L.; Wells, R. E.; Weaver, C. S.

    2012-12-01

    The largest crustal earthquake in Washington's recorded history (M 6.8) occurred in 1872 in the vicinity of Lake Chelan. Numerous smaller earthquakes (>1000 earthquakes since 1971 with 1.0 ≤ MW ≤ 4.3) continue to occur 20 km south of Lake Chelan near the town of Entiat, yet little is known about active structures responsible for this ongoing deformation. A 2011 aeromagnetic survey may provide insights. The survey was flown with a fixed-wing aircraft along flight lines spaced 400 m apart and at an altitude 250 m above terrain or as low as safely possible. The survey illuminates two distinct magnetic patterns. Northwest of Entiat, broad, subdued magnetic anomalies are caused by weakly magnetic, pre-Tertiary basement rocks striking generally NW. Magnetic lineaments are associated, for example, with the NW-striking Entiat fault, the structural margin of the Chiwaukum graben, which is well represented by gravity anomalies. Southeast of Entiat, high-amplitude, short-wavelength magnetic anomalies are caused by strongly magnetic rocks of the Miocene Columbia River Basalt Group (CRBG) exposed throughout this region. Northwest-striking basement anomalies, so clear NW of Entiat, are not obvious SE of Entiat, yet there is no reason to believe basement structures do not extend beneath CRBG. We used matched filtering methods to illuminate the crustal framework of the Entiat earthquakes beneath CRBG. We selected two sub regions, one over pre-Tertiary basement NW of Entiat (sub region 1), the other over CRBG SE of Entiat (sub region 2). We modeled each sub region by fitting layer parameters to power spectra determined from magnetic anomalies (Phillips, 2007). A strongly magnetic layer was determined 470 m below the aircraft in sub region 2, which we interpret as the average top of CRBG. This interpretation is supported by the absence of a similar magnetic layer in sub region 1, where CRBG is in fact absent. Using this determination, we designed a matched filter to subdue

  3. Three-dimensional distribution of igneous rocks near the Pebble porphyry Cu-Au-Mo deposit in southwestern Alaska: constraints from regional-scale aeromagnetic data

    USGS Publications Warehouse

    Anderson, Eric D.; Zhou, Wei; Li, Yaoguo; Hitzman, Murray W.; Monecke, Thomas; Lang, James R.; Kelley, Karen D.

    2014-01-01

    Aeromagnetic data helped us to understand the 3D distribution of plutonic rocks near the Pebble porphyry copper deposit in southwestern Alaska, USA. Magnetic susceptibility measurements showed that rocks in the Pebble district are more magnetic than rocks of comparable compositions in the Pike Creek–Stuyahok Hills volcano-plutonic complex. The reduced-to-pole transformation of the aeromagnetic data demonstrated that the older rocks in the Pebble district produce strong magnetic anomaly highs. The tilt derivative transformation highlighted northeast-trending lineaments attributed to Tertiary volcanic rocks. Multiscale edge detection delineated near-surface magnetic sources that are mostly outward dipping and coalesce at depth in the Pebble district. The total horizontal gradient of the 10-km upward-continued magnetic data showed an oval, deep magnetic contact along which porphyry deposits occur. Forward and inverse magnetic modeling showed that the magnetic rocks in the Pebble district extend to depths greater than 9 km. Magnetic inversion was constrained by a near-surface, 3D geologic model that is attributed with measured magnetic susceptibilities from various rock types in the region. The inversion results indicated that several near-surface magnetic sources with moderate susceptibilities converge with depth into magnetic bodies with higher susceptibilities. This deep magnetic source appeared to rise toward the surface in several areas. An isosurface value of 0.02 SI was used to depict the magnetic contact between outcropping granodiorite and nonmagnetic sedimentary host rocks. The contact was shown to be outward dipping. At depths around 5 km, nearly the entire model exceeded the isosurface value indicating the limits of nonmagnetic host material. The inversion results showed the presence of a relatively deep, northeast-trending magnetic low that parallels lineaments mapped by the tilt derivative. This deep low represents a strand of the Lake Clark fault.

  4. Thermal anomaly mapping from night MODIS imagery of USA, a tool for environmental assessment.

    PubMed

    Miliaresis, George Ch

    2013-02-01

    A method is presented for elevation, latitude and longitude decorrelation stretch of multi-temporal MODIS MYD11C3 imagery (monthly average night land surface temperature (LST) across USA and Mexico). Multiple linear regression analysis of principal components images (PCAs) quantifies the variance explained by elevation (H), latitude (LAT), and longitude (LON). The multi-temporal LST imagery is reconstructed from the residual images and selected PCAs by taking into account the portion of variance that is not related to H, LAT, LON. The reconstructed imagery presents the magnitude the standardized LST value per pixel deviates from the H, LAT, LON predicted. LST anomaly is defined as a region that presents either positive or negative reconstructed LST value. The environmental assessment of USA indicated that only for the 25 % of the study area (Mississippi drainage basin), the LST is predicted by the H, LAT, LON. Regions with milled climatic pattern were identified in the West Coast while the coldest climatic pattern is observed for Mid USA. Positive season invariant LST anomalies are identified in SW (Arizona, Sierra Nevada, etc.) and NE USA. PMID:22565599

  5. Aeromagnetic Survey by Small Unmanned Aerial Vehicle with Magneto-Resistant Magnetometer at the northern Kalgoorlie area, Western Australia

    NASA Astrophysics Data System (ADS)

    Funaki, M.; Group, A.; Milligan, P.

    2006-12-01

    We have developed the technology of small drones (unmanned aerial vehicles (UAV)) and an onboard magnetometer focussed on the aeromagnetic surveys under the Ant-Plane project. We succeeded long distant flight to 500km with agnetometer by Ant-Plene4 drone collaborated with Geoscience, Australia, in March 2006. The survey was carried out in the area 10kmx10km around Mt. Vetters Station, Kalgoorlie, West Australian. The magnetic data are obtained from 41 courses (250m in interval) of EW dierction. The altitude of the flight was 900m from sea level and 500m from the runway. The Ant-Plane #4 consists of 2.6m span and 2.0m length with 2-cycles and 2-cylinder 85cc gasoline engine, GPS navigation system by microcomputer and radio telemeter system. The total weight is 25kg including 12.4 litter fuels and the coursing speed is 130. The magnetometer system consists of a 3-component magneto- resistant magnetometer (MR) sensor (Honeywell HMR2300), GPS and data logger. Three components of magnetic field, latitude, longitude, altitude, the number of satellite and time can be recorded in every second during 6 hours. The sensitivity of the magnetometer is 7 nT and we use a total magnetic field intensity for magnetic analysis due to unknown direction of heading of the plane. MR-magnetometer sensor was installed at the tip of a FRP pipe of 1m length, and the pipe was fixed to the head of the plane in order to reduce the plane magnetization. After 4 hours 14 minutes from the takeoff, the 500km flight was accomplished and the magnetic data were obtained from the data logger. The straight flight course was almost consistent with the way point course, but the course was drastically disturbed when the plane was turning. The magnetic noise level during the flight increased to 30nT, when the plane was flight in the tail wind. However, it is much higher when the plane flew in the head wind. The anomaly pattern obtained from Ant-Plane 4 was compared with the magnetic anomaly map published by

  6. Familial glaucoma iridogoniodysplasia maps to a 6p25 region implicated in primary congenital glaucoma and iridogoniodysgenesis anomaly.

    PubMed Central

    Jordan, T; Ebenezer, N; Manners, R; McGill, J; Bhattacharya, S

    1997-01-01

    Familial glaucoma iridogoniodysplasia (FGI) is a form of open-angle glaucoma in which developmental anomalies of the iris and irido-corneal angle are associated with a juvenile-onset glaucoma transmitted as an autosomal dominant trait. A single large family with this disorder was examined for genetic linkage to microsatellite markers. A peak LOD score of 11.63 at a recombination fraction of 0 was obtained with marker D6S967 mapping to chromosome 6p25. Haplotype analysis places the disease gene in a 6.4-cM interval between the markers D6S1713 and D6S1600. Two novel clinical appearances extend the phenotypic range and provide evidence of variable expressivity. The chromosome 6p25 region is now implicated in FGI, primary congenital glaucoma, and iridogoniodysgenesis anomaly. This may indicate the presence of a common causative gene or, alternatively, a cluster of genes involved in eye development/function. Images Figure 2 PMID:9382099

  7. Insights into the structure of Socorro island, Mexico, from high-resolution aeromagnetic data

    NASA Astrophysics Data System (ADS)

    Paoletti, Valeria; Supper, Robert; Varley, Nick; Gruber, Stephanie; D'Antonio, Massimo; Motschka, Klaus

    2015-04-01

    The Island of Socorro is located 700 km off the western coastline of Mexico on the northern Mathematicians Ridge, an abandoned mid-ocean ridge spreading centre. Together with three other islands and numerous seamounts, the Revillagigedo archipelago represents the product of post-abandonment alkaline magmatism. The last volcanic event in the area of Socorro took place in 1993 AD, when a submarine basaltic eruption occurred off the SW coast. Up to now, due to the remote location of the island, little knowledge has been available concerning the subsurface structure of the volcanic edifice. Thus, a high-resolution airborne survey was conducted by the Geological Survey of Austria in February 2009. The survey included magnetic, electromagnetic and gamma-ray measurements, in order to have an overall view of the main structural/lithological features of the island. The survey covered an area of 200 square kilometres, with E-W flight lines, an average line spacing of 100 m and an average clearance from rough terrain of the island of about 100 m. The aeromagnetic map of Socorro is characterized by a dipolar anomaly of about 2000 nT amplitude whose maximum-minimum orientation is non-aligned with the direction of the local current Earth's magnetic field (inclination 44° and declination 9°). In order to locate the position of the magnetic sources of the anomalies of the island, we computed pole-reduced data by accounting for the presence of sources with a component of remanent magnetization (inclination 40° and declination 357°). The so-obtained pole-reduced map shows a large negative anomaly in the central part of the island. This may be connected to: a high temperature region (above the Curie temperature) in the deeper part of the volcano due to magma ascent, and/or low total remanent magnetization of pyroclastic caldera-filling sediments due to non-aligned sedimentation, and/or the influence of hydrothermal alteration. The computation of the horizontal gradient (hg) of

  8. Detailed interpretation of aeromagnetic data from the Patagonia Mountains area, southeastern Arizona

    USGS Publications Warehouse

    Bultman, Mark W.

    2015-01-01

    Euler deconvolution depth estimates derived from aeromagnetic data with a structural index of 0 show that mapped faults on the northern margin of the Patagonia Mountains generally agree with the depth estimates in the new geologic model. The deconvolution depth estimates also show that the concealed Patagonia Fault southwest of the Patagonia Mountains is more complex than recent geologic mapping represents. Additionally, Euler deconvolution depth estimates with a structural index of 2 locate many potential intrusive bodies that might be associated with known and unknown mineralization.

  9. Aeromagnetic study of the midcontinent gravity high of central United States

    USGS Publications Warehouse

    King, Elizabeth R.; Zietz, Isidore

    1971-01-01

    A composite map of detailed aeromagnetic surveys over the midcontinent gravity high provides coverage of the 600-mi-long buried belt of mafic rocks of the Keweenawan Series from their outcrop localities in Minnesota and Wisconsin through Iowa and Nebraska. A map of the subsurface extent of the mafic rocks, based on the intricate magnetic patterns, shows that the rocks form a long, semicontinuous block, averaging 40 mi wide and consisting mainly of a sequence of layered flows. This sequence is probably fault-bounded and has been tilted up along the margins, where the linearity of the anomalies indicates steeper dips. The associated clastic rocks, indicated by a smoother magnetic pattern, occur in basins along both sides of the mafic belt and in grabens and a series of axial basins on the upper surface of the block. The well-defined outliers of flows marginal to the main block and the truncation of some of the outermost flow units along a diagonal boundary striking at an angle to them suggest that the present boundaries of the block are postdepositional structural features. The basins and the edges of the block appear to have controlled later, largely vertical movement in the overlying Paleozoic and younger sedimentary cover. Calculated models based on coincident magnetic and detailed gravity profiles along typical cross sections of the midcontinent gravity high show that the block of mafic rocks is steep-sided and as much as several miles thick. The free-air gravity anomaly, which consists of a large positive maximum flanked by minima, averages very close to zero, indicating that this major crustal feature is regionally compensated, although locally each of its components shows a large departure from equilibrium. Remanent magnetization is a primary factor in the interpretation of the magnetic data. Magnetic property studies of Keweenawan mafic rocks in the Lake Superior region show that remanent magnetization may be five times the magnetization induced by the

  10. High Resolution, Low Altitude Aeromagnetic and Electromagnetic Survey of Mt Rainier

    USGS Publications Warehouse

    Rystrom, V.L.; Finn, C.; Deszcz-Pan, Maryla

    2000-01-01

    In October 1996, the USGS conducted a high resolution airborne magnetic and electromagnetic survey in order to discern through-going sections of exposed altered rocks and those obscured beneath snow, vegetation and surficial unaltered rocks. Hydrothermally altered rocks weaken volcanic edifices, creating the potential for catastrophic sector collapses and ensuing formation of destructive volcanic debris flows. This data once compiled and interpreted, will be used to examine the geophysical properties of the Mt. Rainier volcano, and help assist the USGS in its Volcanic Hazards Program and at its Cascades Volcano Observatory. Aeromagnetic and electromagnetic data provide a means for seeing through surficial layers and have been tools for delineating structures within volcanoes. However, previously acquired geophysical data were not useful for small-scale geologic mapping. In this report, we present the new aeromagnetic and electromagnetic data, compare results from previously obtained, low-resolution aeromagnetic data with new data collected at a low-altitude and closely spaced flightlines, and provide information on potential problems with using high-resolution data.

  11. Mapping temperature and radiant geothermal heat flux anomalies in the Yellowstone geothermal system using ASTER thermal infrared data

    USGS Publications Warehouse

    Vaughan, R. Greg; Lowenstern, Jacob B.; Keszthelyi, Laszlo P.; Jaworowski, Cheryl; Heasler, Henry

    2012-01-01

    The purpose of this work was to use satellite-based thermal infrared (TIR) remote sensing data to measure, map, and monitor geothermal activity within the Yellowstone geothermal area to help meet the missions of both the U.S. Geological Survey Yellowstone Volcano Observatory and the Yellowstone National Park Geology Program. Specifically, the goals were to: 1) address the challenges of remotely characterizing the spatially and temporally dynamic thermal features in Yellowstone by using nighttime TIR data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and 2) estimate the temperature, geothermal radiant emittance, and radiant geothermal heat flux (GHF) for Yellowstone’s thermal areas (both Park wide and for individual thermal areas). ASTER TIR data (90-m pixels) acquired at night during January and February, 2010, were used to estimate surface temperature, radiant emittance, and radiant GHF from all of Yellowstone’s thermal features, produce thermal anomaly maps, and update field-based maps of thermal areas. A background subtraction technique was used to isolate the geothermal component of TIR radiance from thermal radiance due to insolation. A lower limit for the Yellowstone’s total radiant GHF was established at ~2.0 GW, which is ~30-45% of the heat flux estimated through geochemical (Cl-flux) methods. Additionally, about 5 km2 was added to the geodatabase of mapped thermal areas. This work provides a framework for future satellite-based thermal monitoring at Yellowstone as well as exploration of other volcanic / geothermal systems on a global scale.

  12. Lightweight aerial vehicles for monitoring, assessment and mapping of radiation anomalies.

    PubMed

    MacFarlane, J W; Payton, O D; Keatley, A C; Scott, G P T; Pullin, H; Crane, R A; Smilion, M; Popescu, I; Curlea, V; Scott, T B

    2014-10-01

    The Fukushima Daiichi nuclear power plant (FDNPP) incident released a significant mass of radioactive material into the atmosphere. An estimated 22% of this material fell out over land following the incident. Immediately following the disaster, there was a severe lack of information not only pertaining to the identity of the radioactive material released, but also its distribution as fallout in the surrounding regions. Indeed, emergency aid groups including the UN did not have sufficient location specific radiation data to accurately assign exclusion and evacuation zones surrounding the plant in the days and weeks following the incident. A newly developed instrument to provide rapid and high spatial resolution assessment of radionuclide contamination in the environment is presented. The device consists of a low cost, lightweight, unmanned aerial platform with a microcontroller and integrated gamma spectrometer, GPS and LIDAR. We demonstrate that with this instrument it is possible to rapidly and remotely detect ground-based radiation anomalies with a high spatial resolution (<1 m). Critically, as the device is remotely operated, the user is removed from any unnecessary or unforeseen exposure to elevated levels of radiation. PMID:24949582

  13. Reinterpretation of Paleoproterozoic accretionary boundaries of the north-central United States based on a new aeromagnetic-geologic compilation

    USGS Publications Warehouse

    Holm, D.K.; Anderson, R.; Boerboom, Terrence; Cannon, W.F.; Chandler, V.; Jirsa, M.; Miller, J.; Schneider, D.A.; Schulz, K.J.; Van Schmus, W. R.

    2007-01-01

    The Paleoproterozoic crust in the north-central U.S. represents intact juvenile terranes accreted to the rifted Archean Superior craton. A new tectonic province map, based on the interpretation of a new aeromagnetic compilation, published geologic maps, and recent geochronologic data, shows progressive accretion of juvenile arc terranes from ca. 1900-1600 Ma. Contrary to earlier models, geon 18 Penokean-interval crust is primarily confined to a ???2100 Ma tectonic embayment of the rifted Superior craton. The newly defined Spirit Lake tectonic zone, characterized by a sharp magnetic discontinuity that marks the southern limit of Archean and Penokean-interval rocks, is here interpreted to represent an eastern analog of the Cheyenne belt suture zone in southern Wyoming. South of this boundary, geon 17 Yavapai-interval rocks form the basement upon which 1750 Ma rhyolite and succeeding quartzite sequences were deposited. Substantial portions of the Penokean and Yavapai terranes were subsequently deformed during the 1650-1630 Ma Mazatzal orogeny. The northern boundary of the Mazatzal terrane is obscured by abundant 1470-1430 Ma "anorogenic" plutons that stitched the suture with the older Yavapai terrane rocks. These data reveal a progressive tectonic younging to the south as the Laurentian craton grew southward and stabilized during the Proterozoic. Late Mesoproterozoic rift magmatism produced pronounced geophysical anomalies, indicating strong, but localized crustal modification. In comparison to the western U.S., little tectonism has occurred here in the last 1 billion years, providing a uniquely preserved record of the Precambrian evolution of the continental U.S. lithosphere. ?? 2007 Elsevier B.V. All rights reserved.

  14. Geothermal Energy Potential of Turkey: Inferred from the Aeromagnetic data

    NASA Astrophysics Data System (ADS)

    Ates, Abdullah; Bilim, Funda; Buyuksarac, Aydin; Bektas, Ozcan

    2010-05-01

    Geothermal energy potential of Turkey is well known. There are lots of hot springs with over 30° C water temperatures. However, the significance of these geothermal energy potential of Turkey is not adequately understood. We believe that the main reason for this; is the lack of exploration methods and tools in a wide area as large as Turkey. We exploited a well known physical property of rocks to estimate the geothermal energy potential. Physically, substances lose their magnetization above a temperature known as the Curie that is the 580° C for magnetite. Properties of the Curie temperature have been exploited to observe the bottom depth of the magnetization. That is the depth where the heat reaches to 580° C. In another word, there is no magnetization below this depth. In normal crust this depth is about 22-24 km. Thus, investigation of the bottom depth of magnetization by using aeromagnetic anomalies can lead to information that if there are any anomalous regions well above the normal crust. The aeromagnetic anomalies of whole of Turkey were surveyed by the Mineral Research and Exploration (MTA) of Turkey. The survey was completed during late 1980's. Five kilometers grid data were available and used for regional exploration purposes. Exploration of the geothermal energy potential of Turkey was done from west to east in the similar way to search for shallow high temperature regions. These are from west to east; i.) Western Turkey: Two major shallow depth regions were determined at the west of Kutahya and the north-east of Denizli. The Curie Point Depths (CPDs) were calculated as about 7 km and about 9 km in Kutahya and Denizli, respectively. Also, high heat flow values and crustal thinning (about 32 km from gravity anomalies of western Turkey) were calculated for western Turkey. ii.) Central Turkey: A CPD depth of 8 km was calculated. This gives us a temperature gradient of 0.073° C/m. Geothermal energy potential was studied using water chemistry and isotopic

  15. Bouguer gravity anomaly map of the Twentynine Palms Marine Corps Base and vicinity, California

    USGS Publications Warehouse

    Moyle, W.R., Jr.

    1984-01-01

    A gravity study of the Twentynine Palms Marine Corps Base and vicinity, California, based on 495 gravity measurements, has been completed. The resulting contour map of the area shows that the ground-water basin ranges in depth from less than a foot at the edges of the basin to about 10,500 feet at the center of a gravity low near Deadman Lake. This study will aid in later studies to determine quantities of water in storage beneath the Marine Corps Base. (USGS)

  16. Preliminary isostatic residual gravity anomaly map of Paso Robles 30 x 60 minute quadrangle, California

    USGS Publications Warehouse

    McPhee, D.K.; Langenheim, V.E.; Watt, J.T.

    2011-01-01

    This isostatic residual gravity map is part of an effort to map the three-dimensional distribution of rocks in the central California Coast Ranges and will serve as a basis for modeling the shape of basins and for determining the location and geometry of faults within the Paso Robles quadrangle. Local spatial variations in the Earth\\'s gravity field, after accounting for variations caused by elevation, terrain, and deep crustal structure reflect the distribution of densities in the mid- to upper crust. Densities often can be related to rock type, and abrupt spatial changes in density commonly mark lithological or structural boundaries. High-density rocks exposed within the central Coast Ranges include Mesozoic granitic rocks (exposed northwest of Paso Robles), Jurassic to Cretaceous marine strata of the Great Valley Sequence (exposed primarily northeast of the San Andreas fault), and Mesozoic sedimentary and volcanic rocks of the Franciscan Complex [exposed in the Santa Lucia Range and northeast of the San Andreas fault (SAF) near Parkfield, California]. Alluvial sediments and Tertiary sedimentary rocks are characterized by low densities; however, with increasing depth of burial and age, the densities of these rocks may become indistinguishable from those of older basement rocks.

  17. Aeromagnetics, Geology and the Geoscience Database for Africa

    NASA Astrophysics Data System (ADS)

    Reeves, Colin

    2010-05-01

    The process of systematic geological mapping of Africa, as established in the first half of the twentieth century, involved heroic periods of field mapping by individuals on single map sheets, supported eventually by interpretation of aerial photography, with the publication of colour maps and reports on paper as the ultimate aim. Despite the advent of satellite imagery in the 1970s, this activity trailed off in the final decades of the century. This was partly due to political changes in Africa but also due to the growing realization that the amount of outcrop available for examination is little to none over great swathes of the continent. Estimates indicate that less than half the sheets that cover the continent had been mapped by about the year 2000, and only half of those mapped had actually reached publication stage. Even then, ‘publication' often meant only that paper copies could be purchased from the sales office of a national geological survey, of which there are more than 50. The second half of the century saw the growing realization that aeromagnetic surveys (that effectively ‘saw through' weathering and widespread sedimentary veneers) could accelerate the geological mapping process and provide useful geological reconnaissance of large areas - typically whole African countries - in years rather than decades. With, in some cases, the support of international aid agencies, airborne geophysical programmes have been launched across Africa and, in some countries, re-launched with greater detail as airborne survey technology continuously improved with time. The advent of gamma-ray spectrometry of high resolution delivered a powerful additional tool after about 1990. It is certain that several hundred million dollars have now been invested in programmes of this type across Africa. It is argued that much of the value of this work has still to be realized. The extraction of geological information from airborne geophysical surveys involves the application of

  18. Large scale directional anomalies in the WMAP 5yr ILC map

    SciTech Connect

    Gruppuso, Alessandro

    2010-03-01

    We study the alignments of the low multipoles of CMB anisotropies with specific directions in the sky (i.e. the dipole, the north Ecliptic pole, the north Galactic pole and the north Super Galactic pole). Performing 10{sup 5} random extractions we have found that: 1) separately quadrupole and octupole are mildly orthogonal to the dipole but when they are considered together, in analogy to Copi2006, we find an unlikely orthogonality at the level of 0.8% C.L.; 2) the multipole vectors associated to l = 4 are unlikely aligned with the dipole at 99.1% C.L.; 3) the multipole vectors associated to l = 5 are mildly orthogonal to the dipole but when we consider only maps that show exactly the same correlation among the multipoles as in the observed WMAP 5yr ILC, these multipole vectors are unlikely orthogonal to the dipole at 99.7% C.L.

  19. Data reduction and tying in regional gravity surveys—results from a new gravity base station network and the Bouguer gravity anomaly map for northeastern Mexico

    NASA Astrophysics Data System (ADS)

    Hurtado-Cardador, Manuel; Urrutia-Fucugauchi, Jaime

    2006-12-01

    Since 1947 Petroleos Mexicanos (Pemex) has conducted oil exploration projects using potential field methods. Geophysical exploration companies under contracts with Pemex carried out gravity anomaly surveys that were referred to different floating data. Each survey comprises observations of gravity stations along highways, roads and trails at intervals of about 500 m. At present, 265 separate gravimeter surveys that cover 60% of the Mexican territory (mainly in the oil producing regions of Mexico) are available. This gravity database represents the largest, highest spatial resolution information, and consequently has been used in the geophysical data compilations for the Mexico and North America gravity anomaly maps. Regional integration of gravimeter surveys generates gradients and spurious anomalies in the Bouguer anomaly maps at the boundaries of the connected surveys due to the different gravity base stations utilized. The main objective of this study is to refer all gravimeter surveys from Pemex to a single new first-order gravity base station network, in order to eliminate problems of gradients and spurious anomalies. A second objective is to establish a network of permanent gravity base stations (BGP), referred to a single base from the World Gravity System. Four regional loops of BGP covering eight States of Mexico were established to support the tie of local gravity base stations from each of the gravimeter surveys located in the vicinity of these loops. The third objective is to add the gravity constants, measured and calculated, for each of the 265 gravimeter surveys to their corresponding files in the Pemex and Instituto Mexicano del Petroleo database. The gravity base used as the common datum is the station SILAG 9135-49 (Latin American System of Gravity) located in the National Observatory of Tacubaya in Mexico City. We present the results of the installation of a new gravity base network in northeastern Mexico, reference of the 43 gravimeter surveys

  20. Investigating the Influence of Pre-Existing Basement Structures on the Propagation of the Malawi Rift using SRTM, RADARSAT, and Aeromagnetic Data

    NASA Astrophysics Data System (ADS)

    Robertson, K.; Atekwana, E. A.; Abdelsalam, M. G.; Laó-Dávila, D. A.

    2015-12-01

    The Malawi rift is a Neogene, amagmatic rift located where the Western Branch of the East Africa Rift System (EARS) terminates. In more mature rifts, magmatism is frequently recognized as a driving factor in rift propagation; however, the amagmatic nature of the Malawi rift permits investigation into the relationship between pre-existing structures and current rift propagation, without the influence of magmatism. To map surface structures, we used Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) and RADARSAT imagery over southern Malawi. To process the SRTM data, we applied edge enhancing filters and derivatives, and extracted topographic profiles to examine scarp height and minimum vertical exposed displacement. We mapped morphologically-defined structures by filtering the RADARSAT imagery using an enhanced lee filter to reduce noise and a Laplacian filter for edge enhancement. To examine Precambrian basement structures, we filtered aeromagnetic data using vertical and horizontal derivatives, tilt derivative, and analytic signal to create magnetic anomaly maps. Surface mapping indicated three primary trends in the southern Malawi rift: NW-SE (dominant), NE-SW, both of which are most likely the remnants of Mesozoic Karoo rifting, and a NNE-SSW trend seen in Neogene rifting. The Precambrian basement structural mapping also reveals three primary trends: WNW-ESE, NE-SW, and NW-SE. Ductile deformation causes the dominant basement fabric to change, switching polarity as the rift propagated southward from NE-SW orientation to NW-SE and WNW-ESE orientations, and back to a NE-SW orientation. In general, the surficial structures follow this trend. In some areas, however, the more recent rifting cut across pre-existing basement structures, possibly due to rheological heterogeneities or selective strain partitioning. Nonetheless, pre-existing basement structures played a critical role in strain localization and fault propagation in Malawi. However

  1. Regional and residual anomaly separation in microgravity maps for cave detection: The case study of Gruta de las Maravillas (SW Spain)

    NASA Astrophysics Data System (ADS)

    Martínez-Moreno, F. J.; Galindo-Zaldívar, J.; Pedrera, A.; Teixidó, T.; Peña, J. A.; González-Castillo, L.

    2015-03-01

    Gravity can be considered an optimal geophysical method for cave detection, given the high density contrast between an empty cavity and the surrounding materials. A number of methods can be used for regional and residual gravity anomaly separation, although they have not been tested in natural scenarios. With the purpose of comparing the different methods, we calculate the residual anomalies associated with the karst system of Gruta de las Maravillas whose cave morphology and dimensions are well-known. A total of 1857 field measurements, mostly distributed in a regular grid of 10 × 10 m, cover the studied area. The microgravity data were acquired using a Scintrex CG5 gravimeter and topography control was carried out with a differential GPS. Regional anomaly maps were calculated by means of several algorithms to generate the corresponding residual gravimetric maps: polynomial first-order fitting, fast Fourier transformation with an upward continuation filter, moving average, minimum curvature and kriging methods. Results are analysed and discussed in terms of resolution, implying the capacity to detect shallow voids. We propose that polynomial fitting is the best technique when microgravity data are used to obtain the residual anomaly maps for cave detection.

  2. New insights into the structure of Norwegian continental margins from modern aeromagnetic compilations

    NASA Astrophysics Data System (ADS)

    Ebbing, J.; Olesen, O.; Gernigon, L.; Skilbrei, J. R.

    2007-12-01

    We present the aeromagnetic compilation of the Norwegian mainland and its shelf area and its importance for geological models and tectonic studies. The combined data-set reveal that the bedrock structures are continuous from the Baltic Shield under the Caledonian orogen into the continental shelf and that the late-Caledonian collapse of the Caledonian orogene has influenced the style of extension on the Norwegian shelf. On the margin, modern high-resolution aeromagnetic surveys with small line-spacing, more accurate navigation and sensitive magnetometers have revealed the existence of significant magnetic anomalies arising from sedimentary layers. Sub-cropping Late Paleozoic to Tertiary sedimentary units along the Trøndelag-Nordland coast produce a very distinct anomaly pattern. The asymmetry of the anomalies, with a steep gradient and a negative anomaly to the east and a more gentle gradient to the west, relate the anomalies to a strata gently dipping westward. Susceptibility measurements on core samples, hand specimens and in situ on bedrock exposures are essential for the interpretation of these anomalies. Remapping of the oceanic crust has also improved our under-standing of the Tertiary opening of the North Atlantic as previously interpreted oceanic fracture zones zones do not exist; these were artefacts of poor navigation and wide line spacing of the vintage datasets. Tectonic reconstruction has shown that the opening of the Norwegian-Greenland Sea between the Jan Mayen and Senja fracture zones occurred along a stable axis without offsets of the oceanic spreading anomalies and without jumps in spreading axis. Transfer zones have previously been associated with oceanic fracture zones along the Mid-Norwegian and East-Greenland margins. Transfer zones are important entry points for sedimentary drainage systems, a relationship that has also been suggested for the transport of Cretaceous sands to the mid-Norwegian margin. Our new interpretation has consequently

  3. Digital Data From the Taos West Aeromagnetic Survey in Taos County, New Mexico

    USGS Publications Warehouse

    Bankey, Viki; Grauch, V.J.S.; Drenth, B.J.; EDCON-PRJ Inc.

    2007-01-01

    This report contains digital data, image files, and text files describing data formats and survey procedures for aeromagnetic data collected during a survey covering the southwestern portion of Taos County west of the Town of Taos, New Mexico, in October, 2006. Several derivative products from these data are also presented as grids and images, including reduced-to-pole data and data continued to a reference surface. Images are presented in various formats and are intended to be used as input to geographic information systems, standard graphics software, or map plotting packages.

  4. An integration of aeromagnetic and electrical resistivity methods in dam site investigation

    SciTech Connect

    Aina, A.; Olorunfemi, M.O.; Ojo, J.S.

    1996-03-01

    Aeromagnetic map and electrical resistivity sounding data obtained along eight traverses were examined at two sites across the Katsina-Ala River. The principal goals of this exercise were to define depths to the bedrock, bedrock relief, geologic structures, define the nature of the superficial deposit, and select probable minor and major axes for hydroelectric power dams. The aeromagnetic map shows that the basement rocks trend roughly northeast-southwest, which correlates with the strike of foliation measurements made on rock outcrops along the river channel. A network of cross cutting lineaments, suspected to be faults/fractures that trend approximately northeast/southwest and northwest/southeast, was also delineated from the magnetic map. The depths to the bedrock estimated from resistivity depth sounding data at site 1 generally vary from 1--53.1 m. Depths to the bedrock estimated at site 2 range from 1.9--19.5 m. The superficial deposit varies from clay to sandy clay, to clayey sand (with boulders in places), and to sand and laterite. The bedrock relief is relatively flat and gently undulates along most of the traverses, with an overall dip towards the river channel. Traverses E-F or I-J at site 1 and K-L at site 2 are probable dame axes. These traverses are characterized by relatively thin overburden thicknesses and rock heads dipping toward the river channel, thereby reducing the likelihood of water seepages from the flanks of the proposed dam axes.

  5. Geological analysis of aeromagnetic data from southwestern Alaska: implications for exploration in the area of the Pebble porphyry Cu-Au-Mo deposit

    USGS Publications Warehouse

    Anderson, Eric D.; Hitzman, Murray W.; Monecke, Thomas; Bedrosian, Paul A.; Shah, Anjana K.; Kelley, Karen D.

    2013-01-01

    Aeromagnetic data are used to better understand the geology and mineral resources near the Late Cretaceous Pebble porphyry Cu-Au-Mo deposit in southwestern Alaska. The reduced-to-pole (RTP) transformation of regional-scale aeromagnetic data shows that the Pebble deposit is within a cluster of magnetic anomaly highs. Similar to Pebble, the Iliamna, Kijik, and Neacola porphyry copper occurrences are in magnetic highs that trend northeast along the crustal-scale Lake Clark fault. A high-amplitude, short- to moderate-wavelength anomaly is centered over the Kemuk occurrence, an Alaska-type ultramafic complex. Similar anomalies are found west and north of Kemuk. A moderate-amplitude, moderate-wavelength magnetic low surrounded by a moderate-amplitude, short-wavelength magnetic high is associated with the gold-bearing Shotgun intrusive complex. The RTP transformation of the district-scale aeromagnetic data acquired over Pebble permits differentiation of a variety of Jurassic to Tertiary magmatic rock suites. Jurassic-Cretaceous basalt and gabbro units and Late Cretaceous biotite pyroxenite and granodiorite rocks produce magnetic highs. Tertiary basalt units also produce magnetic highs, but appear to be volumetrically minor. Eocene monzonite units have associated magnetic lows. The RTP data do not suggest a magnetite-rich hydrothermal system at the Pebble deposit. The 10-km upward continuation transformation of the regional-scale data shows a linear northeast trend of magnetic anomaly highs. These anomalies are spatially correlated with Late Cretaceous igneous rocks and in the Pebble district are centered over the granodiorite rocks genetically related to porphyry copper systems. The spacing of these anomalies is similar to patterns shown by the numerous porphyry copper deposits in northern Chile. These anomalies are interpreted to reflect a Late Cretaceous magmatic arc that is favorable for additional discoveries of Late Cretaceous porphyry copper systems in southwestern

  6. A new branch of the Philippine fault system as observed from aeromagnetic and seismic data

    NASA Astrophysics Data System (ADS)

    Bischke, Richard E.; Suppe, John; del Pilar, Rafael

    1990-11-01

    The Philippine fault is one of the major strike-slip faults of the world, extending over 1200 km from the Lingayen-La Union region of northwestern Luzon to the Davao Gulf south of Mindanao. Nevertheless, its total slip, history of displacement, and its exact location have been uncertain and even controversial. Significant new insight has been provided by aeromagnetic and seismic surveys made as part of a basin evaluation project of the Philippines Bureau of Energy Development, funded by the World Bank. This paper outlines evidence from these surveys for a previously unrecognized major branch of the Philippine fault system and tentatively discusses its paleogeographic implications. We have interpreted aeromagnetic data covering most of the length of the fault and seismic profiles crossing it at various locations. The Philippine fault is well displayed in the aeromagnetic data. Surprisingly, the data also show a major, previously unrecognized, branch of the Philippine fault, here named the Sibuyan Sea branch. This branch is almost entirely offshore or is covered by Quaternary or Recent volcanic rocks. It leaves the known Philippine fault northeast of Masbate Island, passes along the northeast edge of the Sibuyan Sea southwest of the Bondoc Peninsula, passes northeast of Marinduque Island, apparently passes through the Taal Volcano, and then offshore west of the Batangas Peninsula. The Sibuyan Sea branch is 350 km long and is presently active. It is more obvious on seismic and aeromagnetic data than the northern part of the known Philippine fault and thus may have accommodated more motion. We have made a preliminary evaluation of the total slip on the Sibuyan Sea branch by attempting to restore long-wavelength geophysical and geologic features, including forearc basins, ophiolite belts, volcanic belts, and regional Bouguer, free-air and magnetic anomalies, which suggests the possibility of 200-300 km of slip since about the early or middle Miocene. In this

  7. Principal Facts and a Discussion of Terrain Correction Methods for the Complete Bouguer Gravity Anomaly Map of the Cascade Mountains, Washington

    SciTech Connect

    Danes, Z.F.; Phillips, William M.

    1983-02-01

    Since 1974, the Division of Geology and Earth Resources, in conjunction with the US Department of Energy, has supported gravity studies in the Cascade Mountains of Washington State (Danes, 1975, 1979, 1981; Korosec and others, 1981). The purpose of the work has been to gather baseline gravity data for eventual contribution to geothermal resource evaluation. However, it is expected that the Cascade gravity data will prove useful in a number of future endeavors such as fossil fuel and mineral exploration, as the gravity method is a basic tool of the exploration geophysicist. Results of the Cascade gravity project are summarized graphically as a complete Bouguer gravity anomaly map of the Cascade Mountains, Washington. This report provides supplementary data and documentation for the complete Bouguer gravity anomaly map. Presented are principal gravity facts, simple Bouguer and Free-air gravity anomalies, computational methods, error analysis and a discussion of terrain corrections. It is hoped that release of this report will encourage analysis of Cascade gravity data beyond the standard treatment (complete Bouguer gravity anomaly at a reduction density of 2.67 g/cm{sup 2}) presented in Danes and Phillips, (1983).

  8. A magnetic anomaly of possible economic significance in southeastern Minnesota

    USGS Publications Warehouse

    Zietz, Isidore

    1964-01-01

    An aeromagnetic survey in southeastern Minnesota by the U. S. Geological Survey in cooperation with the State of Minnesota has revealed a high-amplitude, linear, and narrow magnetic feature that suggests a possible source of Precambrian iron-formation of economic value. For the past few years the U. S. Geological Survey has been conducting detailed geophysical studies of the midcontinent gravity anomaly--a broad, high-amplitude feature that extends from Lake Superior through the States of Minnesota, Iowa, Nebraska, and part of Kansas. As part of this study an aeromagnetic survey of the southern part of the State was made in cooperation with the State of Minnesota during the summer of 1963, in which a linear high-amplitude anomaly of the order of 4,000 gammas was discovered. Because of the high amplitude, the linearity, and the narrowness of the magnetic feature, it is believed the source may be Precambrian iron-formation of possible economic value. The anomalous area is in Fillmore County, approximately between the towns of Lanesboro and Peterson in the extreme southeastern part of the State. (See figures 1 and 2.) At the site of the anomaly, Cambrian sedimentary rocks occur in the valley of the Root River, and Ordovician rocks (nearly flat lying) mantle the upland areas. The uplands are largely covered by glacial deposits, which are relatively thin (Paul K. Sims, written communication, 1964). Depths to the Precambrian are estimated to range from 500 feet to 1,000 feet below the surface. The aeromagnetic map shown in figure 2 was compiled from continuous magnetic profiles made along east-west flight lines 1,000 feet above ground, and spaced approximately 1 mile apart. Contour intervals of 20, 100, and 500 gammas were used depending on the intensity. The instrument for the survey was a flux-gate type magnetometer (AN/ASQ-3A) which measures total-field variations. The contour map displays variations in magnetic pattern which are typical of shallow Precambrian rocks

  9. Advancements in understanding the aeromagnetic expressions of basin-margin faults—An example from San Luis Basin, Colorado

    USGS Publications Warehouse

    Grauch, V. J.; Bedrosian, Paul A.; Drenth, Benjamin J.

    2013-01-01

    Herein, we summarize and expand on an investigation of the sources of aeromagnetic anomalies related to faults along the eastern margin of the San Luis Basin, northern Rio Grande Rift, Colorado (Grauch et al., 2010). Similar to the faults examined in the central Rio Grande Rift, magnetic sources can be completely explained by tectonic juxtaposition and produce multiple, vertically stacked magnetic contrasts at individual faults. However, the geologic sources are different. They arise from both the sedimentary cover and the underlying bedrock rather than from stratified sediments. In addition, geologic evidence for secondary growth or destruc

  10. Aeromagnetic evidence for a volcanic caldera(?) complex beneath the divide of the West Antarctic Ice Sheet

    USGS Publications Warehouse

    Behrendt, John C.; Finn, C.A.; Blankenship, D.; Bell, R.E.

    1998-01-01

    A 1995-96 aeromagnetic survey over part of the Sinuous Ridge (SR) beneath the West Antarctic Ice Sheet (WAIS) divide shows a 70-km diameter circular pattern of 400-1200-nT anomalies suggesting one of the largest volcanic caldera(?) complexes on earth. Radar-ice-sounding (RIS) shows the northern part of this pattern overlies the SR, and extends south over the Bentley Subglacial Trench (BST). Modeled sources of all but one the caldera(?) anomalies are at the base of <1-2-km thick ice and their volcanic edifices have been glacially removed. The exception is a 700-m high, 15-km wide 'volcano' producing an 800-nT anomaly over the BST. 'Intrusion' of this 'volcano' beneath 3 km of ice probably resulted in pillow basalt rather than easily removed hyaloclastite erupted beneath thinner ice. The background area (-300 to -500-nT) surrounding the caldera(?) is possibly caused by a shallow Curie isotherm. We suggest uplift of the SR forced the advance of the WAIS.A 1995-96 aeromagnetic survey over part of the Sinuous Ridge (SR) beneath the West Antarctic Ice Sheet (WAIS) divide shows a 70-km diameter circular pattern of 400-1200-nT anomalies suggesting one of the largest volcanic caldera(?) complexes on earth. Radar-ice-sounding (RIS) shows the northern part of this pattern overlies the SR, and extends south over the Bentley Subglacial Trench (BST). Modeled sources of all but one the caldera(?) anomalies are at the base of < 1-2-km thick ice and their volcanic edifices have been glacially removed. The exception is a 700-m high, 15-km wide 'volcano' producing an 800-nT anomaly over the BST. 'Intrusion' of this 'volcano' beneath 3 km of ice probably resulted in pillow basalt rather than easily removed hyaloclastite erupted beneath thinner ice. The background area (-300 to -500-nT) surrounding the caldera(?) is possibly caused by a shallow Curie isotherm. We suggest uplift of the SR forced the advance of the WAIS.

  11. Identifying buried segments of active faults in the northern Rio Grande Rift using aeromagnetic, LiDAR,and gravity data, south-central Colorado, USA

    USGS Publications Warehouse

    Ruleman, Cal; Grauch, V. J.

    2013-01-01

    Combined interpretation of aeromagnetic and LiDAR data builds on the strength of the aeromagnetic method to locate normal faults with significant offset under cover and the strength of LiDAR interpretation to identify the age and sense of motion of faults. Each data set helps resolve ambiguities in interpreting the other. In addition, gravity data can be used to infer the sense of motion for totally buried faults inferred solely from aeromagnetic data. Combined interpretation to identify active faults at the northern end of the San Luis Basin of the northern Rio Grande rift has confirmed general aspects of previous geologic mapping but has also provided significant improvements. The interpretation revises and extends mapped fault traces, confirms tectonic versus fluvial origins of steep stream banks, and gains additional information on the nature of active and potentially active partially and totally buried faults. Detailed morphology of surfaces mapped from the LiDAR data helps constrain ages of the faults that displace the deposits. The aeromagnetic data provide additional information about their extents in between discontinuous scarps and suggest that several totally buried, potentially active faults are present on both sides of the valley.

  12. Background information to accompany folio of geologic, mineral resource, geochemical, aeromagnetic, and gravity maps of the Hillsboro and San Lorenzo quadrangles, Sierra and Grant Counties, New Mexico; with sections on geochemistry and geophysics

    USGS Publications Warehouse

    Hedlund, David Carl; Watts, K.C.; Alminas, Henry V.; Wynn, Jeffrey C.

    1979-01-01

    The Hillsboro and San Lorenzo 15-minute quadrangles of southwestern New Mexico have been mapped at a 1:48,000 scale and selected mineralized areas within these quadrangles have been mapped in greater detail. This area of about 550 mi2 (1,424 km2) is within the southern part of the Black Range and includes much of the Mimbres Mountains and parts of the adjoining Black Range Primitive area. The region is highly mineralized with Laramide (75.1 ? 2.5 m.y.) and middle Tertiary (about 32 to 35 m.y.) intrusions providing the source for much of the base- and precious-metal mineralization. The porphyry copper deposit at Copper Flat is a subvolcanic Laramide quartz monzonite stock that was intruded into a thick section (>2,700 ft or >823 m) of Upper Cretaceous andesite. Numerous gold-bearing veins radiate from the central quartz monzonite stock, and locally offset a radial system of quartz latite dikes. Gold-bearing veins, chiefly along the south and east periphery of the stock, have provided the source for both gold lode and placer deposits. The middle Tertiary rhyolitic plugs, stocks, and dikes have intruded a dominantly carbonate section of Paleozoic sediments and bedding replacement deposits of zinc, lead, and copper are closely associated with tactite in the Carpenter (Swartz) mining district. The rich oxidized silver deposits of the Kingston district are largely fault controlled and a metallizing pluton is not present at the surface outcrop. Some of the silver-bearing base-metal veins in the Kingston district contain rhodochrosite, rhodonite, and alabandite and the highly oxidized parts of these veins have been mined for manganese ore. Very minor amounts of tungsten, as scheelite, occur in thin tactite zones along Tank Canyon, at the Silver Queen claims near Kingston, and at the Silver Tail group of mines along Pierce Canyon.

  13. Comparison of Magnetic Anomalies of Lithospheric Origin Measured by Satellite and Airborne Magnetometers over Western Canada

    NASA Technical Reports Server (NTRS)

    Langel, R. A.; Coles, R. L.; Mayhew, M. A.

    1979-01-01

    Crustal magnetic anomaly data from the OGO 2, 4 and 6 (Pogo) satellites are compared with upward-continued aeromagnetic data between 50 deg -85 deg N latitude and 220 deg - 260 deg E longitude. Agreement is good both in anomaly location and in amplitude, giving confidence that it is possible to proceed with the derivation and interpretation of satellite anomaly maps in all parts of the globe. The data contain a magnetic high over the Alpha ridge suggesting continental composition and a magnetic low over the southern Canada basin and northern Canadian Arctic islands (Sverdrup basin). The low in the Sverdrup basin corresponds to a region of high heat flow, suggesting a shallow Curie isotherm. A ridge of high field, with two distinct peaks in amplitude, is found over the northern portion of the platform deposits and a relative high is located in the central portion of the Churchill province. No features are present to indicate a magnetic boundary between Slave and Bear provinces, but a trend change is evident between Slave and Churchill provinces. South of 60 deg latitude a broad magnetic low is located over very thick (40-50 km) crust, interpreted to be a region of low magnetization.

  14. Three-dimensional inverse modelling of magnetic anomaly sources based on a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Montesinos, Fuensanta G.; Blanco-Montenegro, Isabel; Arnoso, José

    2016-04-01

    We present a modelling method to estimate the 3-D geometry and location of homogeneously magnetized sources from magnetic anomaly data. As input information, the procedure needs the parameters defining the magnetization vector (intensity, inclination and declination) and the Earth's magnetic field direction. When these two vectors are expected to be different in direction, we propose to estimate the magnetization direction from the magnetic map. Then, using this information, we apply an inversion approach based on a genetic algorithm which finds the geometry of the sources by seeking the optimum solution from an initial population of models in successive iterations through an evolutionary process. The evolution consists of three genetic operators (selection, crossover and mutation), which act on each generation, and a smoothing operator, which looks for the best fit to the observed data and a solution consisting of plausible compact sources. The method allows the use of non-gridded, non-planar and inaccurate anomaly data and non-regular subsurface partitions. In addition, neither constraints for the depth to the top of the sources nor an initial model are necessary, although previous models can be incorporated into the process. We show the results of a test using two complex synthetic anomalies to demonstrate the efficiency of our inversion method. The application to real data is illustrated with aeromagnetic data of the volcanic island of Gran Canaria (Canary Islands).

  15. Testing the use of aeromagnetic data for the determination of Curie depth in California

    USGS Publications Warehouse

    Ross, H.E.; Blakely, R.J.; Zoback, M.D.

    2006-01-01

    Using California as a test region, we have examined the feasibility of using Curie-isotherm depths, estimated from magnetic anomalies, as a proxy for lithospheric thermal structure. Our method follows previous studies by dividing a regional aeromagnetic database into overlapping subregions and analyzing the power-density spectrum of each subregion, but we have improved on previous studies in two important ways: We increase subregion dimensions in a stepwise manner until long-wavelength anomalies are appropriately sampled, and each subregion spectrum determined from the magnetic anomalies is manually fit with a theoretical expression that directly yields the depth to the bottom of the magnetic layer. Using this method, we have obtained Curie-isotherm depths for California that show a general inverse correlation with measured heat flow, as expected. The Coast Ranges of California are characterized by high heat flow (80-85 mW/m2) and shallow Curie depths (20-30 km), whereas the Great Valley has low heat flow (less than 50 mW/m2) and deeper Curie depths (30-45 km). ?? 2006 Society of Exploration Geophysicists.

  16. Tectonic setting of the Portland-Vancouver area, Oregon and Washington: constraints from low-altitude aeromagnetic data

    USGS Publications Warehouse

    Blakely, R.J.; Wells, R.E.; Yelin, T.S.; Madin, I.P.; Beeson, M.H.

    1995-01-01

    Seismic activity in the Portland-Vancouver metropolitan area may be associated with various mapped faults that locally offset volcanic basement of Eocene age and younger. This volcanic basement is concealed in most places by young deposits, vegetation, and urban development. The US Geological Survey conducted an aeromagnetic survey in September 1992 to investigate the extent of these mapped faults and possibly to help identify other seismic and volcanic hazards in the area. The survey was flown approximately 240 m above terrain, along flight lines spaced 460 m apart, and over an area about 50 ?? 50 km. -from Authors

  17. Digital Data from the Great Sand Dunes and Poncha Springs Aeromagnetic Surveys, South-Central Colorado

    USGS Publications Warehouse

    Drenth, B.J.; Grauch, V.J.S.; Bankey, Viki; New Sense Geophysics, Ltd.

    2009-01-01

    This report contains digital data, image files, and text files describing data formats and survey procedures for two high-resolution aeromagnetic surveys in south-central Colorado: one in the eastern San Luis Valley, Alamosa and Saguache Counties, and the other in the southern Upper Arkansas Valley, Chaffee County. In the San Luis Valley, the Great Sand Dunes survey covers a large part of Great Sand Dunes National Park and Preserve and extends south along the mountain front to the foot of Mount Blanca. In the Upper Arkansas Valley, the Poncha Springs survey covers the town of Poncha Springs and vicinity. The digital files include grids, images, and flight-line data. Several derivative products from these data are also presented as grids and images, including two grids of reduced-to-pole aeromagnetic data and data continued to a reference surface. Images are presented in various formats and are intended to be used as input to geographic information systems, standard graphics software, or map plotting packages.

  18. Aeromagnetic measurements in the Cascade Range and Modoc Plateau of northern California. Report on work done from June 1, 1980-November 30, 1980

    SciTech Connect

    Couch, R.; Gemperle, M.

    1982-01-01

    Aeromagnetic measurements made along flightlines oriented east-west and spaced at 1.6-km intervals and along lines oriented north-south and spaced at 8-km intervals, over approximately 30,000 square km of northern California, exhibit crossing errors of less than 5 nanoTeslas. The measurements show short-wavelength magnetic anomalies associated with near-surface volcanics over and east of Lassen Peak and over and north of Mt. Shasta and the Medicine Lake Highlands, longer wavelength anomalies over the Modoc Plateau, and very long wavelength anomalies over the northernmost part of the Great Valley and the easternmost metamorphic rocks of the Klamath Mountains. Anomaly patterns exhibit northwest-southeast trends over the Modoc Plateau and a marked change in character at the juncture of the plateau and the Klamath Mountain and Great Valley complexes.

  19. Aeromagnetic measurements in the Cascade Range and Modoc Plateau of northern California; report on work done from June 1, 1980, to November 30, 1980

    USGS Publications Warehouse

    Couch, Richard; Gemperle, Michael

    1982-01-01

    Aeromagnetic measurements made along flightlines oriented east- west and spaced at 1.6-km intervals and along lines oriented north- south and spaced at 8-km intervals, over approximately 30,000 square km of northern California, exhibit crossing errors of less than 5 nanoTeslas. The measurements show short-wavelength magnetic anomalies associated with near-surface volcanics over and east of Lassen Peak and over .and north of Mt. Shasta and the Medicine Lake Highlands, longer wavelength anomalies over the Modoc Plateau, and very long wavelength anomalies over the northernmost part of the Great Valley and the easternmost metamorphic rocks of the Klamath Mountains. Anomaly patterns, exhibit northwest-southeast trends, over the Modoc Plateau and a marked change in character at the juncture of the plateau and the Klamath Mountain and Great Valley complexes.

  20. Crustal structure and tectonic development of Gulf of Guinea Cul-deSac from integrated interpretation of new aeromagnetic and existing geophysical data

    SciTech Connect

    Babalola, O.O.

    1985-02-01

    Data-acquisition difficulties and propriety restrictions on industry data have necessitated liberal extrapolations and generalizations in previous tectono-structural studies of the Gulf of Guinea cul-de-sac. This region is the locus of a postulated Late Cretaceous triple junction whose arms were the transform-dominated Equatorial Atlantic, the northward-propagating South Atlantic, and the Benue Trough aulacogen. Oceanic crust has been inferred to underlie most of the thick sedimentary wedge of the oil-prolific Niger Delta basin. Integrated interpretation of new aeromagnetic data of the Geological Survey of Nigeria and existing geophysical data corroborates previous work on the general structure of the marginal basins. New aeromagnetic data, however, reveal a detail structure more complex than previously known. Low-frequency magnetic anomalies over the Niger delta indicate that oceanic crust extends northward to about Onitsha. From Onitsha, the edge of oceanic crust extends northward to about Onitsha. From Onitsha, the edge of oceanic crust trends southwestward along the Benin hinge line (an apparent continental continuation of either the Chain fracture zone or a new Okitipupa fracture zone) and also wiggles southeastward (adjoined by a wide margin of transitional crust) toward the shelf break off Cameroon. Linear magnetic anomalies trending northeast indicate about 7 fracture zones beneath the Niger Delta basin. The region of high-frequency magnetic anomalies west of the Niger delta represent the Okitipupa basement ridge complex, which separates the Niger Delta basin from the Dahomey embayment. In this embayment, 2 wide bands of intervening high- and low-frequency aeromagnetic anomalies are interpreted to represent a basement high or ridge and a fault-bonded trough, respectively.

  1. Application Of Continuous Wavelet Transform On Aeromagnetic Data To Identify Volcanic Rocks

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Li, Y.; Liu, T.

    2008-12-01

    This paper focuses on the application of continuous wavelet transform on aeromagnetic data, to locate and characterize volcanic rocks. The studied structure is sited in the north centre of the Huanghua depression in the Bohaiwan basin of east China. As channels of magmatism activities, the faults have caused multi-stage magma outpouring and intrusion, forming igneous rocks of different series of strata. As a traditional frequency decomposition method, the discrete wavelet transform is unable to localize frequency variations over time. To handle this problem, the short time Fourier transform method is widely used for the decomposition of non-stationary signals. One problem with this approach is that the fixed width `window function' results in limited resolution. Therefore, the continuous wavelet transform decomposition was used as an alternative approach to overcome this resolution problem. In the continuous wavelet transform, the signal is multiplied with a function similar to a `window function' but the width of the window is not fixed. The time window width is allowed to vary depending upon the frequency that is being considered. As for the magnetic anomalies of igneous rocks, they have different frequencies due to their depths; by analyzing the complex wavelet-based time-frequency characteristics of certain frequencies, we can identify the residual anomalies caused by volcanic rocks in different depths. The theoretical results show that local high frequency spectrum anomalies are the reflection of magnetic sources, and different scales (or different center frequencies) reflect different source depths, with larger scales for deeper sources. Therefore, by analyzing the complex wavelet-based frequency spectrum under different centre frequencies, we can analyze the distribution of magnetic field sources. Then the continuous wavelet transform was applied on the RTP aeromagnetic data of our study area. The data processing results present a detailed description of the

  2. US west coast revisited: An aeromagnetic perspective

    SciTech Connect

    Zietz, I.; Johnson, P.R. ); Bond, K.R. )

    1990-04-01

    A new compilation of magnetic data for the western conterminous United States and offshore areas provides significant information about crustal units and structures in the region. Features shown on the compilation include a magnetic quiet zone along the coast and two lineaments inland. The magnetic quiet zone correlates with the accretionary prism at the western edge of the North American plate and overlies subducted ocean crust; abrupt termination of ocean-floor magnetic anomalies at, or a short distance east of, the toe of the accretionary prism is an inferred effect subduction-induced low-temperature metamorphism of the ocean crust. The Puget Lowlands-San Joaquin lineament is an alignment of high-intensity magnetic anomalies that in the south, and possibly also in the north, are cause by bodies of mafic-ultramafic rocks accreted to North America during the Mesozoic and Tertiary. The lineup of the highs and the inferred lineup of the causative bodies may reflect fundamental structures that control Mesozoic and Tertiary evolution of the continental margin. The Mojave Desert lineament, a distinctive chain of short-wavelength magnetic anomalies in southern California, coincides partly with a zone of Mesozoic intrusions and the Cenozoic San Andreas fault system, but is likely to be older than both in origin and may reflect a Mesozoic or older crustal discontinuity.

  3. Draped aeromagnetic survey in Transantarctic Mountains over the area of the Butcher Ridge igneous complex showing extent of underlying mafic intrusion

    USGS Publications Warehouse

    Behrendt, John C.; Damaske, D.; Finn, C.A.; Kyle, P.; Wilson, T.J.

    2002-01-01

    A draped aeromagnetic survey over the area surrounding the Butcher Ridge igneous complex (BRIC), Transantarctic Mountains, was acquired in 1997-1998 as part of a larger Transantarctic Mountains Aerogeophysical Research Activity survey. The BRIC is a sill-like hypoabyssal intrusion ranging in composition from tholeiitic basalt to rhyolite. An 40Ar/39 Ar age of 174 Ma and the chemical character of the basaltic rocks show the BRIC to be part of the widespread Jurassic Ferrar suite of continental tholeiitic rocks, that extends for 3500 km across Antarctica. The aeromagnetic survey shows a horseshoe-shaped pattern of anomalies reaching amplitudes as great as 1900 nT generally associated with the bedrock topography where it is exposed. It is apparent that the high-amplitude anomaly pattern is more extensive than the 10-km-long exposed outcrop, first crossed by a single 1990 aeromagnetic profile. The highest-amplitude anomalies appear south of the profile acquired in 1990 and extend out of the survey area. The new aeromagnetic data allow determination of the extent of the interpreted Butcher mafic(?) intrusion beneath exposures of Beacon sedimentary rock and ice in the area covered, as well as beneath the small BRIC exposure. The magnetic anomalies show a minimum area of 3000 km2, a much greater extent than previously inferred. Magnetic models indicate a minimum thickness of ???1-2 km for a horizontal intrusion. However, nonunique models with magnetic layers decreasing in apparent susceptibility with depth are consistent with of a 4- to 8-km-thick layered intrusion. These magnetic models indicate progressively deeper erosion of the interpreted mafic-layered body from the south to north. The erosion has removed more magnetic upper layers that mask the magnetic effects of the lower less magnetic layers. The probable minimum volume of the intrusion in the area of the survey is ???6000 km3. An alternate, but less likely, interpretation of a series of dikes can also fit the

  4. Do Satellite Magnetic Anomaly Data Accurately Portray the Crustal Component?

    NASA Technical Reports Server (NTRS)

    Vonfrese, R. R. B.; Hinze, W. J. (Principal Investigator)

    1984-01-01

    Scalar aeromagnetic data obtained during the U.S. Naval Oceanographic Office (NOO)-Vector Magnetic Survey of the conterminous United States were upward continued by equivalent point source inversion and compared with POGO satellite magnetic anomaly and preliminary scalar MAGSAT data. Initial comparisons indicate that the upward continued NOO data is dominated by long wavelength (approximately equal to 1000 to 3000 km) anomalies which are not present in the satellite anomaly data. Thus, the comparison of the data sets is poor. Several possible sources for these differences are present in the data analysis chain. However, upon removal of these long wavelengths from the upward continued NOO data, a close comparison observed between the anomalies verifies that satellite magnetic anomaly data do portray the crustal component within a range of wavelengths from roughly 1000 km down to the resolution limit of the observations.

  5. Aeromagnetic investigation of southern Calabria and the Messina Straits (Italy): Tracking seismogenic sources of 1783 and 1908 earthquakes

    NASA Astrophysics Data System (ADS)

    Minelli, Liliana; Vecchio, Antonio; Speranza, Fabio; Nicolosi, Iacopo; D'Ajello Caracciolo, Francesca; Chiappini, Stefano; Carluccio, Roberto; Chiappini, Massimo

    2016-03-01

    Southern Calabria and the NE corner of Sicily (Italy) were struck in 1783 and 1908 A.D. by two of the most catastrophic earthquakes ever in European history. Although it is generally acknowledged that the seisms were yielded by normal faults rupturing the upper crust of the Calabria-Peloritani terrane, no consensus exists on seismogenic source location and orientation. Here we report on a high-resolution low-altitude aeromagnetic survey of southern Calabria and Messina Straits. In southern Calabria we document a broad weakly positive (5-10 nT) anomaly zone interrupted by three en echelon SW-NE null to negative magnetic anomaly corridors. Euler deconvolution and magnetic modeling show that the anomaly pattern is produced by a 1-1.5 km thick crustal "layer" located within 3 km depth. This layer is offset by a 25 km long NE trending fault that corresponds to the Armo normal fault, recently inferred to be the source for the 1908 earthquake. Few kilometers to the south, we also document a subparallel and previously unrecognized fault, entering the Messina Straits and likely joining the Armo fault at depth. Further east, we model a 40 km long normal fault, probably extending northeastward for additional 40 km, running along the south Calabria axis from Aspromonte to the Serre mountains and partly following the 18 km long surface rupture witnessed by Déodat de Dolomieu after the 1783 earthquake. Thus, aeromagnetic data suggest that the sources of the 1783 and 1908 earthquakes are en echelon faults belonging to the same NW dipping normal fault system straddling the whole southern Calabria.

  6. Using a three dimensional Ionospheric Data Assimilation and Analysis System (IDAAS) to study the slant-to-vertical deviation in two dimensional TEC mapping over ionosphere equatorial anomaly

    NASA Astrophysics Data System (ADS)

    Yu, T.

    2013-12-01

    By using International Reference Ionosphere (IRI) model as a background ionosphere and applying the Kalman filter to update the state with observations, we develop an Ionosphere Data Assimilation Analysis System (IDAAS) to reconstruct a 3-dimensional ionosphere with the GPS slant TEC and ionosonde data in China. The preliminary results with GPS data collected over east-south Asia on June 30 2005 show that inversed slant TEC has very good correlation with the observations both for the GPS sites being and not being involved in reconstruction. The inversed NmF2 and vertical TEC both demonstrate great improvement of agreement with those observed from ionosondes and TOPEX satellite independently. Based on IDAAS, simulations are carried out to investigate the deviation relative to slant-to-vertical conversion (STV) TEC by using the slant TEC derived from Nequick model as a replacement of measurement data. It is shown that the relative deviation induced by slant-to-vertical conversion may be significant in some cases, and it varies from 0% to 40% when elevation decreasing from 90° to 15°, while relative deviation of IDAAS is much smaller and varies from -5% to 15% without elevation dependence. Comparing with the ';true TEC' map derived from the empirical model, there are big differences in STV TEC map, but no obvious discrepancy in IDAAS map. Generally, IDAAS TEC map is much closer to the 'true TEC' map than the 2-D TEC map does. It is suggested that 3-dimensional inversion techniques are necessary when using GPS observation with low elevation rays at equatorial anomaly region, where the high horizontal gradient of electron density could lead to a significant slant-to-vertical deviation by 2-dimensional inversion method.

  7. Magnetic Anomalies and Rock Magnetic Properties Related to Deep Crustal Rocks of the Athabasca Granulite Terrane, Northern Canada

    NASA Astrophysics Data System (ADS)

    Brown, L. L.; Williams, M. L.

    2010-12-01

    The Athabasca granulite terrane in northernmost Saskatchewan, Canada is an exceptional exposure of lower crustal rocks having experienced several high temperature events (ca 800C) during a prolonged period of deep-crustal residence (ca 1.0 GPa) followed by uplift and exhumation. With little alteration since 1.8 Ga these rocks allow us to study ancient lower crustal lithologies. Aeromagnetic anomalies over this region are distinct and complex, and along with other geophysical measurements, define the Snowbird Tectonic zone, stretching NE-SW across northwestern Canada, separating the Churchill province into the Hearne (mid-crustal rocks, amphibolite facies) from the Rae (lower crust rocks, granulite facies). Distinct magnetic highs and lows appear to relate roughly to specific rock units, and are cut by mapped shear zones. Over fifty samples from this region, collected from the major rock types, mafic granulites, felsic granulites, granites, and dike swarms, as well as from regions of both high and low magnetic anomalies, are being used to investigate magnetic properties. The intention is to investigate what is magnetic in the lower crust and how it produces the anomalies observed from satellite measurements. The samples studied reveal a wide range of magnetic properties with natural remanent magnetization ranging from an isolated high of 38 A/m to lows of 1 mA/m. Susceptibilities also range over several orders of magnitude, from 1 to 1 x10-4 SI. Magnetite is identified in nearly all samples using both low and high temperature measurements, but concentrations are generally very low. Hysteresis properties on 41 samples reveal nearly equal numbers of samples represented by PSD and MD grains, with a few samples (N=6) plotting in or close to the SD region. Low temperature measurements indicate that most samples contain magnetite, showing a marked Verway transition around 120K. Also identified in nearly half of the samples is pyrrhotite, noted by low temperature

  8. Geothermal reconnaissance of the area between Marsa Alam and Ras Banas, northern Red Sea, Egypt, using aeromagnetic data

    NASA Astrophysics Data System (ADS)

    Saada, Saada A.

    2016-06-01

    Aeromagnetic data of the area between Marsa Alam and Ras Banas were interpreted to estimate the Curie point isotherm, investigate the geothermal gradient and to determine its surface heat flow. Appling spectral analysis and 2-D inverse modeling techniques to aeromagnetic anomalies has provided equitable promising geological results, useful to further geothermal exploration. Spectral analysis indicates that, the area is underlined by an average Curie-point depth of about 10.58 km. This implies an average thermal heat flow (137 mW/m2) greater than the average heat flow of the Red Sea margins (116 mW/m2). The investigated area was divided into three subregions and the average depth to centroid was estimated for each subregion. 2-D inverse modeling technique indicated that the magnetic sources can be interpreted by a set of dykes dipping to the NE and SW. The integration of radially power spectrum and 2-D inverse modeling was used to estimating the depths to the bottom of these magnetic bodies (equivalent to the Curie-point depth). It indicated a general decrease from 24 to 10 km from west to east toward the Red Sea rifting zone. The calculated surface heat flow increases from 55 mW/m2 to >150 mW/m2 in the same direction. Consequently, the offshore area between Ras Banas and Marsa Alam is a promising area for further exploration of geothermal resources.

  9. Accuracy of the determination of mean anomalies and mean geoid undulations from a satellite gravity field mapping mission

    NASA Technical Reports Server (NTRS)

    Jekeli, C.; Rapp, R. H.

    1980-01-01

    Improved knowledge of the Earth's gravity field was obtained from new and improved satellite measurements such as satellite to satellite tracking and gradiometry. This improvement was examined by estimating the accuracy of the determination of mean anomalies and mean undulations in various size blocks based on an assumed mission. In this report the accuracy is considered through a commission error due to measurement noise propagation and a truncation error due to unobservable higher degree terms in the geopotential. To do this the spectrum of the measurement was related to the spectrum of the disturbing potential of the Earth's gravity field. Equations were derived for a low-low (radial or horizontal separation) mission and a gradiometer mission. For a low-low mission of six month's duration, at an altitude of 160 km, with a data noise of plus or minus 1 micrometers sec for a four second integration time, we would expect to determine 1 deg x 1 deg mean anomalies to an accuracy of plus or minus 2.3 mgals and 1 deg x 1 deg mean geoid undulations to plus or minus 4.3 cm. A very fast Fortran program is available to study various mission configurations and block sizes.

  10. The aeromagnetic method as a tool to identify Cenozoic magmatism in the West Antarctic Rift System beneath the West Antarctic Ice Sheet: a review; Thiel subglacial volcano as possible source of the ash layer in the WAISCOR

    USGS Publications Warehouse

    Behrendt, John C.

    2013-01-01

    The West Antarctic Ice Sheet (WAIS) flows through the volcanically active West Antarctic Rift System (WARS). The aeromagnetic method has been the most useful geophysical tool for identification of subglacial volcanic rocks, since 1959–64 surveys, particularly combined with 1978 radar ice-sounding. The unique 1991–97 Central West Antarctica (CWA) aerogeophysical survey covering 354,000 km2 over the WAIS, (5-km line-spaced, orthogonal lines of aeromagnetic, radar ice-sounding, and aerogravity measurements), still provides invaluable information on subglacial volcanic rocks, particularly combined with the older aeromagnetic profiles. These data indicate numerous 100–>1000 nT, 5–50-km width, shallow-source, magnetic anomalies over an area greater than 1.2 × 106 km2, mostly from subglacial volcanic sources. I interpreted the CWA anomalies as defining about 1000 “volcanic centers” requiring high remanent normal magnetizations in the present field direction. About 400 anomaly sources correlate with bed topography. At least 80% of these sources have less than 200 m relief at the WAIS bed. They appear modified by moving ice, requiring a younger age than the WAIS (about 25 Ma). Exposed volcanoes in the WARS are The present rapid changes resulting from global warming, could be accelerated by subglacial volcanism.

  11. Origin of strong lunar magnetic anomalies: Further mapping and examinations of LROC imagery in regions antipodal to young large impact basins

    NASA Astrophysics Data System (ADS)

    Hood, Lon L.; Richmond, Nicola C.; Spudis, Paul D.

    2013-06-01

    The existence of magnetization signatures and landform modification antipodal to young lunar impact basins is investigated further by (a) producing more detailed regional crustal magnetic field maps at low altitudes using Lunar Prospector magnetometer data; and (b) examining Lunar Reconnaissance Orbiter Wide Angle Camera imagery. Of the eight youngest lunar basins, five are found to have concentrations of relatively strong magnetic anomalies centered within 10° of their antipodes. This includes the polar Schrödinger basin, which is one of the three youngest basins and has not previously been investigated in this context. Unusual terrain is also extensively present near the antipodes of the two largest basins (Orientale and Imbrium) while less pronounced manifestations of this terrain may be present near the antipodes of Serenitatis and Schrödinger. The area near the Imbrium antipode is characterized by enhanced surface thorium abundances, which may be a consequence of antipodal deposition of ejecta from Imbrium. The remaining three basins either have antipodal regions that have been heavily modified by later events (Hertzsprung and Bailly) or are not clearly recognized to be a true basin (Sikorsky-Rittenhouse). The most probable source of the Descartes anomaly, which is the strongest isolated magnetic anomaly, is the hilly and furrowed Descartes terrain near the Apollo 16 landing site, which has been inferred to consist of basin ejecta, probably from Imbrium according to one recent sample study. A model for the origin of both the modified landforms and the magnetization signatures near lunar basin antipodes involving shock effects of converging ejecta impacts is discussed.

  12. Aeromagnetic survey by a model helicopter at the ruin of ironwork refinement

    NASA Astrophysics Data System (ADS)

    Funaki, M.; Nishioka, T.

    2007-12-01

     It is difficult to detect the magnetic anomaly resulting from the small scale of magnetic sources as archeological or historical ruins by a helicopter due to the restraint of the low altitude flights in the narrow area. Although a relatively small unmanned helicopters has been commercialized for agriculture use etc., it is too expensive for aeromagnetic surveys. We have developed a small autonomous unmanned helicopter which modified a model helicopter for aeromagnetic survey. A model helicopter (Hirobo Co.; SF40) with a 40cc gasoline engine, length of 143cm from the nose to the tail and dry weight of 15 kg is selected in this study. The irradiated magnetic field from the bottom-center of skid of SF40 was the total magnetic field (R)=3511 nT, inclination (I)=12 degrees and declination (D)=138 degrees. It was reduced to about 1 nT at 3 m downward from the skid during the hovering. When SF40 was covered with a magnetic shield film (Amolic sheet), the distance to measure 1nT diminished to 2 m. As shielding whole body with the film is not effective for reliable and safety flights, the only servomotors having the strong magnetization were shielded by the film. The autonomous flights based on GPS data succeeded. As the control system was too large and heavy for SF40, we are developing more simple and small navigation system for this project. Magnetometer system consists of a 3-axis fluxgate magnetometer, data logger, GPS and battery, recording every second of x, y and z magnetic fields, latitude, longitude, altitude and satellite number during 3 hours. The total weight of the system is 400g. The system was hanged to 2m lower from the skid by a rope (Bird magnetometer) or 2m front form the nose by a carbon fiber pipe (Stinger magnetometer) in order to avoid the magnetic field of SF40. However, the bird magnetometer was not suitable due to the strong noise resulting from the swing of the sensor. An archeological ruin of the ironwork refinement aged 15th century in

  13. Aeromagnetic constraints on the subsurface structure of Usu Volcano, Hokkaido, Japan

    NASA Astrophysics Data System (ADS)

    Okuma, Shigeo; Nakatsuka, Tadashi; Ishizuka, Yoshihiro

    2014-11-01

    Usu Volcano, Hokkaido, Japan consists mainly of dacitic volcanic rocks underlain by basaltic somma lava and Pliocene-Pleistocene andesitic volcanic rocks, and erupts every 20-30 years. The most recent eruption, in 2000, was the first since 1978. We conducted a helicopter-borne high-resolution aeromagnetic survey almost three months after the start of this eruption. We calculated magnetic anomalies on a smoothed observation surface using a reduction method, assuming equivalent anomalies below the actual observation surface. We conducted three-dimensional (3D) imaging of magnetic anomalies to constrain the subsurface structure. Our model indicates that there are magnetisation highs in the main edifice of Usu Volcano, which may reflect the subsurface distribution of the Usu somma lava. Meanwhile, magnetisation lows lie north-west of the Nishi-Yama Craters Area and on Higashi-Maruyama Cryptodome, where nearby Pliocene and Pleistocene volcanic rocks, respectively, are found. The reverse magnetisation observed at outcrops close to these sites could explain the magnetisation lows. Although the survey improved our understanding of the surface and subsurface distribution of volcanic rocks in the edifice and basement of Usu Volcano, some limitations remain. No information about the magmas intruded during the recent eruptions in 1977-1978 and 2000 was obtained by the survey, though some of these intrusions were revealed by other geophysical data. The small magnetic contrast between the intruded magmas and their host rocks is the most probable reason. Perhaps the intruded magmas (in particular, those of the most recent eruption) had not cooled enough to become strongly magnetised by the time the survey was conducted.

  14. Inversion of Chelyabinsk Meteorite Micromagnetic Maps - Implication for Inversions of Mars Magnetic Maps

    NASA Astrophysics Data System (ADS)

    Mazanec, M.; Kletetschka, G.

    2014-12-01

    The largest fragment of Chelyabinsk meteorite fell into the Russian lake Chebarkul on February 15, 2013. We used magnetic scanner constructed by Youngwood Science and Engineering (YSE, see Kletetschka et al 2013) to obtain micromagnetic maps of one of the Chelyabinsk's meteorite fragment. Our instrument has a Hall effect magnetic sensor and maps vertical component of the magnetic field approximately 0.3 mm above the planar surface of meteorite sample. Advantage of this instrument is a constant background field due to static position of the sensor. We applied fast Fourier transform inversion technique developed by Lima et al (2013). This technique is tailored for scanning magnetic microscopy (SMM), but may be also modified for aeromagnetic or satellite survey. It retrieves planar unidirectional magnetization distribution from micromagnetic field map. With this technique we achieved verifiable information about the source of the magnetic anomalies in our meteorite sample. Specific areas of detected magnetization were used for compositional analyses by scanning electron microscopy (SEM). This way we obtain the ground truth for the source of magnetic anomalies of our meteorite thin section. Measurement of chemical composition of magnetic grains can be directly linked to the amount of magnetization for the specific magnetic mineralogy. The inversion technique was extended for interpretation of real magnetic anomalies on Mars. Lima, E. A., B. P. Weiss, L. Baratchart,D. P.Hardin, and E. B. Saff (2013), Fast inversion ofmagnetic field maps of unidirectional planar geological magnetization, J. Geophys. Res. Solid Earth, 118, 2723-2752, doi:10.1002/jgrb.50229.Kletetschka, G., Schnabl, P., Sifnerova, K., Tasaryova, Z., Manda, S., and Pruner, P., 2013, Magnetic scanning and interpretation of paleomagnetic data from Prague Synform's volcanics: Studia Geophysica Et Geodaetica, v. 57, no. 1, p. 103-117.

  15. Breed relationships facilitate fine-mapping studies: A 7.8-kb deletion cosegregates with Collie eye anomaly across multiple dog breeds

    PubMed Central

    Parker, Heidi G.; Kukekova, Anna V.; Akey, Dayna T.; Goldstein, Orly; Kirkness, Ewen F.; Baysac, Kathleen C.; Mosher, Dana S.; Aguirre, Gustavo D.; Acland, Gregory M.; Ostrander, Elaine A.

    2007-01-01

    The features of modern dog breeds that increase the ease of mapping common diseases, such as reduced heterogeneity and extensive linkage disequilibrium, may also increase the difficulty associated with fine mapping and identifying causative mutations. One way to address this problem is by combining data from multiple breeds segregating the same trait after initial linkage has been determined. The multibreed approach increases the number of potentially informative recombination events and reduces the size of the critical haplotype by taking advantage of shortened linkage disequilibrium distances found across breeds. In order to identify breeds that likely share a trait inherited from the same ancestral source, we have used cluster analysis to divide 132 breeds of dog into five primary breed groups. We then use the multibreed approach to fine-map Collie eye anomaly (cea), a complex disorder of ocular development that was initially mapped to a 3.9-cM region on canine chromosome 37. Combined genotypes from affected individuals from four breeds of a single breed group significantly narrowed the candidate gene region to a 103-kb interval spanning only four genes. Sequence analysis revealed that all affected dogs share a homozygous deletion of 7.8 kb in the NHEJ1 gene. This intronic deletion spans a highly conserved binding domain to which several developmentally important proteins bind. This work both establishes that the primary cea mutation arose as a single disease allele in a common ancestor of herding breeds as well as highlights the value of comparative population analysis for refining regions of linkage. PMID:17916641

  16. Holonomy anomalies

    SciTech Connect

    Bagger, J.; Nemeschansky, D.; Yankielowicz, S.

    1985-05-01

    A new type of anomaly is discussed that afflicts certain non-linear sigma models with fermions. This anomaly is similar to the ordinary gauge and gravitational anomalies since it reflects a topological obstruction to the reparametrization invariance of the quantum effective action. Nonlinear sigma models are constructed based on homogeneous spaces G/H. Anomalies arising when the fermions are chiral are shown to be cancelled sometimes by Chern-Simons terms. Nonlinear sigma models are considered based on general Riemannian manifolds. 9 refs. (LEW)

  17. Aeromagnetic survey using an unmanned autonomous helicopter over Tarumae Volcano, northern Japan

    NASA Astrophysics Data System (ADS)

    Hashimoto, Takeshi; Koyama, Takao; Kaneko, Takayuki; Ohminato, Takao; Yanagisawa, Takatoshi; Yoshimoto, Mitsuhiro; Suzuki, Eiichi

    2014-09-01

    Unmanned aerial vehicles (UAVs) have recently received attention in various research fields for their ability to perform measurements, surveillance, and operations in hazardous areas. Our application is volcano surveillance, in which we used an unmanned autonomous helicopter to conduct a dense low-altitude aeromagnetic survey over Tarumae Volcano, northern Japan. In autonomous flight, we demonstrated positioning control with an accuracy of ~10 m, which would be difficult for an ordinary crewed vehicle. In contrast to ground-based magnetic measurement, which is highly susceptible to local anomalies, the field gradient in the air with a terrain clearance of 100 to 300 m was fairly small at 1 nT/m. This result suggests that detection of temporal changes of an order of 10 nT may be feasible through a direct comparison of magnetic data between separate surveys by means of such a system, rather than that obtained by upward continuation to a common reduction surface. We assessed the temporal magnetic changes in the air, assuming the same remagnetising source within the volcano that was recently determined through ground surveys. We conclude that these expected temporal changes would reach a detection level in several years through a future survey in the air with the same autonomous vehicle.

  18. Curie temperature isotherm analysis and tectonic implications of aeromagnetic data from Nevada

    USGS Publications Warehouse

    Blakely, R.J.

    1988-01-01

    Estimates of the depth to the Curie temperature isotherm in Nevada are in accordance with other regional geologic and geophysical information and together can be explained in the context of presentday tectonism. A method to estimate the depth extent of magnetic sources from the statistical properties of magnetic anomalies was applied to a statewide compilation of aeromagnetic data from Nevada. Basal depths of magnetic sources show no apparent correlation with the so-called magnetic quiet zone, which trends northerly through the eastern part of the state, or with basin-and-range topography. However, certain correlations with published heat flow measurements are apparent and suggest that undulations in basal depth of magnetic sources are related in part to undulations in the Curie temperature isotherm. For example, an area of shallow basal depth (<10 km) near Battle Mountain corresponds to an area of exceptionally high conductive heat flow and indicates a shallow depth to the Curie temperature isotherm in this region. A narrow zone of shallow basal depth extends south from the Battle Mountain area along the 118??W meridian to at least latitude 38??N, which also is a zone of historic surface offsets and high-magnitude earthquakes. The correspondence along the 118?? meridian of shallow basal depth, high heat flow, high lower crustal seismic velocities, attenuated P and S wave arrivals, historic faulting and, large earthquakes suggests that they each are related to an active north trending spreading zone in this part of the Basin and Range province. -Author

  19. Structural study of Wamba and Environs, north-central Nigeria using aeromagnetic data and NigeriaSat-X image

    NASA Astrophysics Data System (ADS)

    Ogunmola, J. K.; Gajere, E. N.; Ayolabi, E. A.; Olobaniyi, S. B.; Jeb, D. N.; Agene, I. J.

    2015-11-01

    Wamba 1:100,000 sheet 210 covers Wamba and Nassarawa Eggon area of North-Central Nigeria and consists of basement rocks, biotite granites and Older Granites in most parts of the northern part and by sedimentary rocks of the Cretaceous Middle Benue Trough in the southern part. High resolution aeromagnetic data was interpreted and the results integrated in a GIS environment with data from NigeriaSat-X image to map out the major structural trends within the area. Reduction-to-the-equator (RTE) operation was carried out on the aeromagnetic data after which several data transforms/derivatives such as horizontal derivative, analytical signal, and tilt derivative were calculated to highlight subsurface boundaries and the major structures within the area. Several digital image enhancement techniques such as general contrast stretching and edge enhancement were applied to the NigeraSat-X image in ERDAS IMAGINE 9.2 after which structures from the interpreted magnetic data and the image were mapped out on-screen using ArcMap 10. The results show that the RTE produced a reasonable geological picture of the area. Also the basement configuration consists of several NE-SW and NW-SE structures that range from 1 km to about 17 km in length with the NE-SW structures being the major trend within the area. The lineaments are mainly within the basement and the Older granites and may be related to the Pan-African Orogeny. This study was also able to map out more accurately the contact between the basement and the sediments hence a modified geological map of the area was produced.

  20. Aeromagnetic and radio echo ice-sounding measurements show much greater area of the Dufek intrusion, Antarctica

    USGS Publications Warehouse

    Behrendt, John C.; Drewry, D.J.; Jankowski, E.; Grim, M.S.

    1980-01-01

    A combined aeromagnetic and radio echo ice-sounding survey made in 1978 in Antarctica over the Dufek layered mafic intrusion suggests a minimum area of the intrusion of about 50,000 square kilometers, making it comparable in size with the Bushveld Complex of Africa. Comparisons of the magnetic and subglacial topographic profiles illustrate the usefulness of this combination of methods in studying bedrock geology beneath ice-covered areas. Magnetic anomalies range in peak-to-trough amplitude from about 50 nanoteslas over the lowermost exposed portion of the section in the Dufek Massif to about 3600 nanoteslas over the uppermost part of the section in the Forrestal Range. Theoretical magnetic anomalies, computed from a model based on the subice topography fitted to the highest amplitude observed magnetic anomalies, required normal and reversed magnetizations ranging from 10-3 to 10-2 electromagnetic units per cubic centimeter. This result is interpreted as indicating that the Dufek intrusion cooled through the Curie isotherm during one or more reversals of the earth's magnetic field. Copyright ?? 1980 AAAS.

  1. A Possibility of the Aeromagnetic Survey by a Small Unmanned Aerial Vehicles, Ant-Plane

    NASA Astrophysics Data System (ADS)

    Funaki, M.

    2004-12-01

    Magnetic surveys by helicopters and airplanes are a useful technique to estimate the geological structure under the ice sheets in Antarctica. However, it is not easy to employ this due to the transportation of the planes, logistic supports, security, and financial problems. Members of Ant-Plane Project have investigated the unmanned aerial vehicles (UAV, Ant-Plane) for the solution of the problems. Recently the aeromagnetic survey is verified by a model airplane navigated by GPS and a magneto-resistant (MR) magnetometer. The airplane (Ant-Plane) consists of 2m wing length, 2-cycles and 2-cylinder 85cc gasoline engine, GPS navigation system by microcomputer and radio telemeter system. The total weight is 15kg including 2 litter fuels, the MR magnetometer, a video camera and an emergency parachute. The speed is 130 km/h and maximum height is 2000m. The magnetometer system consists of a 3- component MR magnetometer, GPS and data logger. Three components of magnetic field, latitude, longitude, altitude, number of satellite and time are recorded in every second during 3 hours. The sensitivity of the magnetometer is 7 nT and we use a total magnetic field intensity for magnetic analysis due to unknown heading of the plane. November 2003 we succeeded the magnetic survey by the Ant-Plane at the slope of Sakurajima Volcano, Kyushu, Japan. The plane rotated 9 times along the programmed route of about 4x1 km, total flight distance of 80 km, keeping the altitude of 700 m. Consequently we obtained almost similar field variation on the route. The maximum deviation of each course was less than 100 m. Therefore, we concluded that the aeromagnetic survey in the relatively large anomaly areas can be performed by Ant-Plane with the MR magnetometer system. Finally the plane flew up 1400m with a video camera to take the photo of active volcano Sakurajima (1117m). It succeeded to take photos of craters through steam from the volcano.

  2. Interpretation of gravity and magnetic anomalies at Lake Rotomahana: Geological and hydrothermal implications

    NASA Astrophysics Data System (ADS)

    Caratori Tontini, F.; de Ronde, C. E. J.; Scott, B. J.; Soengkono, S.; Stagpoole, V.; Timm, C.; Tivey, M.

    2016-03-01

    We investigate the geological and hydrothermal setting at Lake Rotomahana, using recently collected potential-field data, integrated with pre-existing regional gravity and aeromagnetic compilations. The lake is located on the southwest margin of the Okataina Volcanic Center (Haroharo caldera) and had well-known, pre-1886 Tarawera eruption hydrothermal manifestations (the famous Pink and White Terraces). Its present physiography was set by the caldera collapse during the 1886 eruption, together with the appearance of surface activities at the Waimangu Valley. Gravity models suggest that subsidence associated with the Haroharo caldera is wider than the previously mapped extent of the caldera margins. Magnetic anomalies closely correlate with heat-flux data and surface hydrothermal manifestations and indicate that the west and northwestern shore of Lake Rotomahana are characterized by a large, well-developed hydrothermal field. The field extends beyond the lake area with deep connections to the Waimangu area to the south. On the south, the contact between hydrothermally demagnetized and magnetized rocks strikes along a structural lineament with high heat-flux and bubble plumes which suggest hydrothermal activity occurring west of Patiti Island. The absence of a well-defined demagnetization anomaly at this location suggests a very young age for the underlying geothermal system which was likely generated by the 1886 Tarawera eruption. Locally confined intense magnetic anomalies on the north shore of Lake Rotomahana are interpreted as basalt dikes with high magnetization. Some appear to have been emplaced before the 1886 Tarawera eruption. A dike located in proximity of the southwest lake shore may be related to the structural lineament controlling the development of the Patiti geothermal system, and could have been originated from the 1886 Tarawera eruption.

  3. Maps showing distribution of anomalies based on the use of scoresum plots for selected groupings of elements in samples of nonmagnetic heavy-mineral concentrate, Walker Lake 1 degree by 2 degrees Quadrangle, California and Nevada

    USGS Publications Warehouse

    Chaffee, M.A.

    1988-01-01

    This report is part of a folio of maps of the Walker Lake 1o x 2o quadrangle, California and Nevada, prepared under the Conterminous United States Mineral Assessment Program. The folio includes geological, geochemical, and geophysical maps, as well as mineral resource assessment maps which identify selected known or possible mineral-deposit environments in the quadrangle. The geochemical maps show the distributioins of selected individual elements (Chaffee and others 1988a, b, c, d) and the distributions of selected groups of elements (Chaffee, 1988a, b). Discussions accompanying the individual element maps are restricted to possible mineral residences of the individual elements as well as to what types of mineral deposits and environments may be represented by anomalies of a particular element. Discussions accompanying the multielement maps describe the types of mineral deposits that may be related to each element group and indicate the most favorable localities for these deposits. 

  4. Maps showing distribution of anomalies based on the use of scoresum plots for selected groupings of elements in samples of minus-60-mesh (0.25-MM) stream sediment, Walker Lake 1 degree by 2 degrees Quadrangle, California and Nevada

    USGS Publications Warehouse

    Chaffee, M.A.

    1988-01-01

    This report is part of a folio of maps of the Walker Lake 1o x 2o quadrangle, California and Nevada, prepared under the Conterminous United States Mineral Assessment Program. The folio includes geological, geochemical, and geophysical maps, as well as mineral resources assessment maps, which identify selected known or possible mineral-deposit environments in the quadrangle. The geochemical maps show the distributions of selected individual elements (Chaffee and others, 1988 a, b, c) and the distributions of selected groups of elements (Chaffee, 1988a, b, c). Discussions accompanying the individual element maps are restricted to mineral residences of the individual elements as well as to what types of mineral deposits and environments may be represented by anomalies of a particular element. Discussions accompanying the multielemental maps describe the types of mineral deposits that may be related to each element group and indicate the most favorable localities for these deposits. 

  5. Manifestation of the petrogeneration zones of Northern and the Bering seas in ground magnetic anomalies and anomalies of satellite Champ

    NASA Astrophysics Data System (ADS)

    Litvinova, Tamara; Krasinsky, Egor; Petrova, Alevtina; Demina, Irina

    2010-05-01

    The purpose of this paper are showed results of studying of specificity of a deep structure of zones of petrogeneration Northern and the Bering seas on aeromagnetic and satellite magnetometric datas. Research lateral and vertical heterogeneitys an earth's crust of Northern sea is carried out on the basis of the analysis of measurements of satellite Champ at height of 100 km and the digital database created on materials of sea shooting of a geomagnetic field, executed on non-magnetic schooner "Zarya". On sea measurements in Northern sea through large oil fields and gas ( Frigg, Ekofisk, Forties trough, Leman, etc.). Geomagnetic sections for an interval of depths from 1 up to 30 km are constructed. It has allowed to study character of distribution of magnetization of breeds of a cover, horizontal lamination intracore layers of an earth's crust and to allocate in zones petrogeneration synvertical fluidoconduct zones the channels described by alternation of not magnetic and low-magnetic layers. They were showed on geomagnetic sections as permeable zones quasi- laminated structures with the lowered magnetic properties in an interval of depths from 8 up to 28 km. Comparison to a map of the magnetic anomalies measured at height of 100 km by satellite Champ, has shown, that areas of the greatest petrocongestions North Sea рифта at height of 100 km are dated for a zone of gradients and a minimum of northeast displacement of regional anomalies of western and east blocks of Northern sea. It corresponds to representations about an orientation of a fissuring zone and the increased size of a geothermal gradient North Sea rift and is corresponded position allocated on hydromagnetic structures deep fluidoconduct channels. Thus, distribution to water areas of deposits of deposits is emphasized not only low-magnetic areas in a thickness of a sedimentary cover where they are directly located, but also by not magnetic lenses in breeds of the base spreading it in intervals of

  6. Update of the South-Atlantic Anomaly corrective model for JASON-1 DORIS data using the maps of energetic particles from the CARMEN dosimeter onboard JASON-2

    NASA Astrophysics Data System (ADS)

    Capdeville, Hugues; Lemoine, Jean-Michel

    2015-04-01

    The sensitivity of the ultra stable oscillator (USO) of DORIS/Jason-1 to the high energy protons trapped in the Van Allen belts is now well known. This sensitivity causes a fluctuation of the frequency when the satellite crosses the area of the South-Atlantic Anomaly (SAA). The principal consequence is the impossibility of using the measurements of the DORIS beacons located in the SAA area for cm-precision positioning since the real frequency of the on-board oscillator is varying rapidly in that area. Moreover, these DORIS measurements do not contribute (or little) to the determination of the orbit of Jason-1 because they are eliminated during the pre-processing on residuals criteria. To correct for this sensitivity to the effects of solar radiation, a model of the frequency evolution of the USO was designed and validated by Lemoine and Capdeville in 2006. This model allows a significant improvement in the orbit adjustment. It takes into account the geographical characteristics of the SAA region (1x1 degree SAA grid) as well as the parameters of the USO's response to this external stimulation: an amplitude, a relaxation time-constant and a memory effect of the SAA disturbance. In the framework of the IDS contribution to the new realization of ITRF, the Jason-1 DORIS data from the end of TOPEX' life (November 2004) to the launch of Jason-2 (July 2008) have been used, corrected by this model. The corrected DORIS data have been provided to the data center for the use of the IDS Analysis Centers. The Jason-2 satellite carries a dosimeter instrument (CARMEN). The purpose here is to take the advantage of this instrument to improve our SAA corrective model by using the maps of energetic particles provided by CARMEN. First, a correlation study between the SAA DORIS grid and the CARMEN maps has been done to determine the dosimeter map which has the best agreement. Then, this map is used to calculate the others parameters of the model. The new model will be used to correct

  7. Using data of gradient magnetic surveys at altitudes of 20-40 km for the analysis of map errors and models of the geomagnetic field

    NASA Astrophysics Data System (ADS)

    Brekhov, Oleg; Tsvetkov, Yury

    2016-07-01

    Gradient geomagnetic survey at altitudes of 20-40 km from the board of stratospheric balloon have a high degree of accuracy. The data of the geomagnetic field (GMF), obtained with the help of high-precision proton magnetometer and GPS navigation receivers, are considered as a benchmark for the analysis of geomagnetic data. Gradient magnetic data is obtained by us on the balloon, allowed us to estimate the quality of the analytical models of International Geomagnetic Referent Field (IGRF) and to identify the causes of anomalous GMF map errors. Research data of magnetic anomalies map for the study area on the route length of 900 km showed that their spectrum has no harmonics with a wavelength more 130 km. This is a significant defect in a ground map. Defects of magnetic anomalies map are explained by the poor quality of the main GMF and low altitude aeromagnetic survey, as well as the presence of intense local magnetic anomalies, which does not allow reliable identifying the background of weak magnetic fields of deep sources. Using a balloon and satellite magnetic data allows creating an adequate model of the geomagnetic field up to 720.

  8. Solving geologic problems resolving relevant anomalies

    NASA Astrophysics Data System (ADS)

    Chiappini, M.

    2012-12-01

    Remotely sensed data such as high resolution aeromagnetics can shed new light on the setting of tectonic and volcanic areas. This technique is, in fact, particularly suitable to study these areas due to the potential magnetic contrasts linked to volcanic structures. Furthermore, surveying poorly accessible sites with airborne geophysics can be expeditious and effective. The addition of new sensors on airborne platforms improves the efficiency of surveys and provides multi-source imaging. Also it is an aid to better resolving geophysical anomalies and/or surface features relevant to an effective geologic interpretation. The INGV Airborne Geophysics Science Team has investigated a large variety of active volcanoes and tectonic areas in different types of environment. One investigation revealed an unknown buried volcano in the Mediterranean Sea, developed along seismically active faults. Airborne magnetic data collected over Tenerife, Canary Islands, provided new evidence about the structure and growth of ocean island volcanoes. Other data sets delineate hidden tectonic and volcanic structures in Southern Tyrrhenian Sea, Italy. These examples and other newly acquired aeromagnetic data, integrated with additional airborne observations will be presented and discussed.

  9. Quaternary layer anomalies around the Carlsberg Fault zone mapped with high-resolution shear-wave seismics south of Copenhagen

    NASA Astrophysics Data System (ADS)

    Kammann, Janina; Hübscher, Christian; Nielsen, Lars; Boldreel, Lars Ole

    2015-04-01

    The Carlsberg Fault zone is located in the N-S striking Höllviken Graben and traverses the city of Copenhagen. The fault zone is a NNW-SSE striking structure in direct vicinity to the transition zone of the Danish Basin and the Baltic Shield. Recent small earthquakes indicate activity in the area, although none of the mapped earthquakes appear to have occurred on the Carlsberg Fault. We examined the fault evolution by a combination of very high resolution onshore shear-wave seismic data, one conventional onshore seismic profile and marine reflection seismic profiles. The chalk stratigraphy and the localization of the fault zone at depth was inferred from previous studies by other authors. We extrapolated the Jurassic and Triassic stratigraphy from the Pomeranian Bay to the area of investigation. The fault zone shows a flower structure in the Triassic as well as in Cretaceous sediments. The faulting geometry indicates strong influence of Triassic processes when subsidence and rifting prevailed in the Central European Basin System. Growth strata within the surrounding Höllviken Graben reveal syntectonic sedimentation in the lower Triassic, indicating the opening to be a result of Triassic rifting. In the Upper Cretaceous growth faulting documents continued rifting. This finding contrasts the Late Cretaceous to Paleogene inversion tectonics in neighbouring structures, as the Tornquist Zone. The high-resolution shear-wave seismic method was used to image structures in Quaternary layers in the Carlsberg Fault zone. The portable compact vibrator source ElViS III S8 was used to acquire a 1150 m long seismic section on the island Amager, south of Copenhagen. The shallow subsurface in the investigation area is dominated by Quaternary glacial till deposits in the upper 5-11 m and Danian limestone below. In the shear-wave profile, we imaged the 30 m of the upward continuation of the Carlsberg Fault zone. In our area of investigation, the fault zone appears to comprise

  10. Magnetic anomalies northeast of Cape Adare, northern Victoria Land (Antarctica), and their relation to onshore structures

    USGS Publications Warehouse

    Damaske, D.; Läufer, A.L.; Goldmann, F.; Möller, H.-D.; Lisker, F.

    2007-01-01

    An aeromagnetic survey was flown over the offshore region northeast of Cape Adare and the magnetic anomalies compared to onshore structures between Pennell Coast and Tucker Glacier. The magnetic anomalies show two nearly orthogonal major trends. NNW-SSE trending anomalies northeast of Cape Adare represent seafloor spreading within the Adare Trough. A connection of these anomalies to the Northern Basin of the Ross Sea is not clear. Onshore faults are closely aligned to offshore anomalies. Main trends are NW-SE to NNW-SSE and NE-SW to NNESSW. NNW-SSE oriented dextral-transtensional to extensional faults parallel the Adare Peninsula and Adare Trough anomalies. NE-SW trending normal faults appear to segment the main Hallett volcanic bodies.

  11. Texture-Based Automated Lithological Classification Using Aeromagenetic Anomaly Images

    USGS Publications Warehouse

    Shankar, Vivek

    2009-01-01

    This report consists of a thesis submitted to the faculty of the Department of Electrical and Computer Engineering, in partial fulfillment of the requirements for the degree of Master of Science, Graduate College, The University of Arizona, 2004 Aeromagnetic anomaly images are geophysical prospecting tools frequently used in the exploration of metalliferous minerals and hydrocarbons. The amplitude and texture content of these images provide a wealth of information to geophysicists who attempt to delineate the nature of the Earth's upper crust. These images prove to be extremely useful in remote areas and locations where the minerals of interest are concealed by basin fill. Typically, geophysicists compile a suite of aeromagnetic anomaly images, derived from amplitude and texture measurement operations, in order to obtain a qualitative interpretation of the lithological (rock) structure. Texture measures have proven to be especially capable of capturing the magnetic anomaly signature of unique lithological units. We performed a quantitative study to explore the possibility of using texture measures as input to a machine vision system in order to achieve automated classification of lithological units. This work demonstrated a significant improvement in classification accuracy over random guessing based on a priori probabilities. Additionally, a quantitative comparison between the performances of five classes of texture measures in their ability to discriminate lithological units was achieved.

  12. Impact of human activities on the geomagnetic field of Antarctica: a high resolution aeromagnetic survey over Mario Zucchelli Station.

    PubMed

    Armadillo, E; Bozzo, E; Gambetta, M; Rizzello, D

    2012-10-15

    Environmental protection of Antarctica is a fundamental principle of the Antarctic Treaty. Impact assessment and significance evaluation are due for every human activity on the remote continent. While chemical and biological contaminations are widely studied, very little is known about the electromagnetic pollution levels. In this frame, we have evaluated the significance of the impact of Mario Zucchelli Antarctic Station (Northern Victoria Land) on the local geomagnetic field. We have flown a high resolution aeromagnetic survey in drape mode at 320m over the Station, covering an area of 2km(2). The regional and the local field have been separated by a third order polynomial fitting. After the identification of the anthropic magnetic anomaly due to the Station, we have estimated the magnetic field at the ground level by downward continuation with an original inversion scheme regularized by a minimum gradient support functional to avoid high frequency noise effects. The resulting anthropic static magnetic field at ground extends up to 650m far from the Station and reaches a maximum peak to peak value of about 2800nT. This anthropic magnetic anomaly may interact with biological systems, raising the necessity to evaluate the significance of the static magnetic impact of human installations in order to protect the electromagnetic environment and the biota of Antarctica. PMID:22706521

  13. Spectral analysis of the 1976 aeromagnetic survey of Harrat Rahat, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Blank, H. Richard; Sadek, Hamdy S.

    1983-01-01

    Harrat Rahat, an extensive plateau of Cenozoic mafic lava on the Precambrian shield of western Saudi Arabia, has been studied for its water resource and geothermal potential. In support of these investigations, the thickness of the lava sequence at more than 300 points was estimated by spectral analysis of low-level aeromagnetic profiles utilizing the integral Fourier transform of field intensity along overlapping profile segments. The optimum length of segment for analysis was determined to be about 40 km or 600 field samples. Contributions from two discrete magnetic source ensembles could be resolved on almost all spectra computed. The depths to these ensembles correspond closely to the flight height (300 m), and, presumably, to the mean depth to basement near the center of each profile segment. The latter association was confirmed in all three cases where spectral estimates could be directly compared with basement depths measured in drill holes. The maximum thickness estimated for the lava section is 380 m and the mean about 150 m. Data from an isopach map prepared from these results suggest that thickness variations are strongly influenced by pre-harrat, north-northwest-trending topography probably consequent on Cenozoic faulting. The thickest zones show a rough correlation with three axially-disposed volcanic shields.

  14. Calculating depths to shallow magnetic sources using aeromagnetic data from the Tucson Basin

    USGS Publications Warehouse

    Casto, Daniel W.

    2001-01-01

    Using gridded high-resolution aeromagnetic data, the performance of several automated 3-D depth-to-source methods was evaluated over shallow control sources based on how close their depth estimates came to the actual depths to the tops of the sources. For all three control sources, only the simple analytic signal method, the local wavenumber method applied to the vertical integral of the magnetic field, and the horizontal gradient method applied to the pseudo-gravity field provided median depth estimates that were close (-11% to +14% error) to the actual depths. Careful attention to data processing was required in order to calculate a sufficient number of depth estimates and to reduce the occurrence of false depth estimates. For example, to eliminate sampling bias, high-frequency noise and interference from deeper sources, it was necessary to filter the data before calculating derivative grids and subsequent depth estimates. To obtain smooth spatial derivative grids using finite differences, the data had to be gridded at intervals less than one percent of the anomaly wavelength. Before finding peak values in the derived signal grids, it was necessary to remove calculation noise by applying a low-pass filter in the grid-line directions and to re-grid at an interval that enabled the search window to encompass only the peaks of interest. Using the methods that worked best over the control sources, depth estimates over geologic sites of interest suggested the possible occurrence of volcanics nearly 170 meters beneath a city landfill. Also, a throw of around 2 kilometers was determined for a detachment fault that has a displacement of roughly 6 kilometers.

  15. DOWN'S ANOMALY.

    ERIC Educational Resources Information Center

    PENROSE, L.S.; SMITH, G.F.

    BOTH CLINICAL AND PATHOLOGICAL ASPECTS AND MATHEMATICAL ELABORATIONS OF DOWN'S ANOMALY, KNOWN ALSO AS MONGOLISM, ARE PRESENTED IN THIS REFERENCE MANUAL FOR PROFESSIONAL PERSONNEL. INFORMATION PROVIDED CONCERNS (1) HISTORICAL STUDIES, (2) PHYSICAL SIGNS, (3) BONES AND MUSCLES, (4) MENTAL DEVELOPMENT, (5) DERMATOGLYPHS, (6) HEMATOLOGY, (7)…

  16. The aeromagnetic method as a tool to identify Cenozoic magmatism in the West Antarctic Rift System beneath the West Antarctic Ice Sheet — A review; Thiel subglacial volcano as possible source of the ash layer in the WAISCORE

    NASA Astrophysics Data System (ADS)

    Behrendt, John C.

    2013-02-01

    The West Antarctic Ice Sheet (WAIS) flows through the volcanically active West Antarctic Rift System (WARS). The aeromagnetic method has been the most useful geophysical tool for identification of subglacial volcanic rocks, since 1959-64 surveys, particularly combined with 1978 radar ice-sounding. The unique 1991-97 Central West Antarctica (CWA) aerogeophysical survey covering 354,000 km2 over the WAIS, (5-km line-spaced, orthogonal lines of aeromagnetic, radar ice-sounding, and aerogravity measurements), still provides invaluable information on subglacial volcanic rocks, particularly combined with the older aeromagnetic profiles. These data indicate numerous 100->1000 nT, 5-50-km width, shallow-source, magnetic anomalies over an area greater than 1.2 × 106 km2, mostly from subglacial volcanic sources. I interpreted the CWA anomalies as defining about 1000 "volcanic centers" requiring high remanent normal magnetizations in the present field direction. About 400 anomaly sources correlate with bed topography. At least 80% of these sources have less than 200 m relief at the WAIS bed. They appear modified by moving ice, requiring a younger age than the WAIS (about 25 Ma). Exposed volcanoes in the WARS are < 34 Ma, but at least four are active. If a few buried volcanic centers are active, subglacial volcanism may well affect the WAIS regime. Aerogeophysical data (Blankenship et al., 1993, Mt. Casertz; Corr and Vaughan, 2008, near Hudson Mts.) indicated active subglacial volcanism. Magnetic data indicate a caldera and a surrounding "low" in the WAISCORE vicinity possibly the result of a shallow Curie isotherm. High heat flow reported from temperature logging in the WAISCORE (Conway et al., 2011; Clow, personal commun.) and a volcanic ash layer (Dunbar, 2012) are consistent with this interpretation. A subaerially erupted subglacial volcano, (Mt Thiel), about 100 km distant, may be the ash source. The present rapid changes resulting from global warming, could be

  17. Magnetic character of a large continental transform: an aeromagnetic survey of the Dead Sea Fault

    USGS Publications Warehouse

    ten Brink, Uri S.; Rybakov, Michael; Al-Zoubi, Abdallah S.; Rotstein, Yair

    2007-01-01

    New high-resolution airborne magnetic (HRAM) data along a 120-km-long section of the Dead Sea Transform in southern Jordan and Israel shed light on the shallow structure of the fault zone and on the kinematics of the plate boundary. Despite infrequent seismic activity and only intermittent surface exposure, the fault is delineated clearly on a map of the first vertical derivative of the magnetic intensity, indicating that the source of the magnetic anomaly is shallow. The fault is manifested by a 10–20 nT negative anomaly in areas where the fault cuts through magnetic basement and by a

  18. Correlation between the Palaeozoic structures from West Iberian and Grand Banks margins using inversion of magnetic anomalies

    NASA Astrophysics Data System (ADS)

    Silva, Elsa A.; Miranda, J. M.; Luis, J. F.; Galdeano, A.

    2000-05-01

    The Ibero-Armorican Arc (IAA) is a huge geological structure of Pre-Cambrian origin, tightened during hercynian times and deeply affected by the opening of the Atlantic Ocean and the Bay of Biscay. Its remnants now lie in Iberia, north-western France and the Canadian Grand Banks margins. The qualitative correlation between these three blocks has been attempted by several authors (e.g. Lefort, J.P., 1980. Un 'Fit' structural de l'Atlantique Nord: arguments geologiques pour correler les marqueurs geophysiques reconnus sur les deux marges. Mar. Geol. 37, 355-369; Lefort, J.P., 1983. A new geophysical criterion to correlate the Acadian and Hercynian orogenies of Western Europe and Eastern America. Mem. Geol. Soc. Am. 158, 3-18; Galdeano, A., Miranda, J.M., Matte, P., Mouge, P., Rossignol, C., 1990. Aeromagnetic data: A tool for studying the Variscan arc of Western Europe and its correlation with transatlantic structures. Tectonophysics 177, 293-305) using magnetic anomalies, mainly because they seem to preserve the hercynian zonation, in spite of the strong thermal and mechanical processes that took place during rifting and ocean spreading. In this paper, we present a new contribution to the study of the IAA structure based on the processing of a compilation of magnetic data from Iberia and Grand Banks margins. To interpret the magnetic signature, a Fourier-domain-based inversion technique was applied, considering a layer with a constant thickness of 10 km, and taking into account only the induced field. The digital terrain model was derived from ETOPO5 (ETOPO5, 1986. Relief map of the earth's surface. EOS 67, 121) and TerrainBase (TerrainBase, 1995. In: Row III, L.W., Hastings, D.A., Dunbar, P.K. (Eds.), Worldwide Digital Terrain Data, Documentation Manual, CD-ROM Release 1.0. GEODAS-NGDC Key to Geophysical Records. Documentation N. 30, April) databases. The pseudo-susceptibility distribution obtained was repositioned for the 156.5 Ma epoch, using the Srivastava and

  19. The tectonic evolution of the Transbrasiliano Lineament in northern Paraná Basin, Brazil, as inferred from aeromagnetic data

    NASA Astrophysics Data System (ADS)

    Curto, Julia B.; Vidotti, Roberta M.; Fuck, Reinhardt A.; Blakely, Richard J.; Alvarenga, Carlos J. S.; Dantas, Elton L.

    2014-03-01

    Data from six airborne magnetic surveys were compiled and analyzed to develop a structural interpretation for the Transbrasiliano Lineament in northern Paraná Basin, Brazil. Magnetic lineaments, interpreted to reflect geologic contacts and structures at different depths, were illuminated using the matched-filter technique applied to aeromagnetic anomalies. Field-based structural measurements generally support our magnetic analysis. We estimated three primary magnetic zones: (i) a zone of deep magnetic sources at 20 km depth, (ii) an intermediate basement zone at 6 km depth, and (iii) a shallow zone of near-surface geological features at 1.5 km depth. The deepest zone exhibits three major NE trending crustal discontinuities related to the Transbrasiliano Lineament, dividing the region into four geotectonic blocks. Anomalies associated with the intermediate zone indicate directional divergence of subsidiary structures away from the main Transbrasiliano Fault, which strikes N30°E. The shallow magnetic zone includes near-surface post-Brasiliano orogenic granites. Our analysis identified NE trending sigmoidal lineaments around these intrusions, indicating intense zones of deformation associated with probable shear structures. At the shallow depth zone, magnetic anomalies caused by Cretaceous alkaline intrusive bodies and basalts of the Serra Geral Formation are enhanced by the matched-filter method. These igneous bodies are related to extensional NW striking lineaments and seismicity aligned along these lineaments suggests that they currently are reactivated. Prior to flexural subsidence of the Paraná Basin, reactivation processes along transcurrent elements of the Transbrasiliano Lineament promoted extensional processes and formed initial Paraná Basin depocenters. Cretaceous and more recent sedimentation also correlate with reactivations of NE striking structures.

  20. A predictive penetrative fracture mapping method from regional potential field and geologic datasets, southwest Colorado Plateau, U.S.A

    USGS Publications Warehouse

    Gettings, M.E.; Bultman, M.W.

    2005-01-01

    Some aquifers of the southwest Colorado Plateau, U.S.A., are deeply buried and overlain by several impermeable units, and thus recharge to the aquifer is probably mainly by seepage down penetrative fracture systems. This purpose of this study was to develop a method to map the location of candidate deep penetrative fractures over a 120,000 km2 area using gravity and aeromagnetic anomaly data together with surficial fracture data. The resulting database constitutes a spatially registered estimate of recharge location. Candidate deep fractures were obtained by spatial correlation of horizontal gradient and analytic signal maxima of gravity and magnetic anomalies vertically with major surficial lineaments obtained from geologic, topographic, side-looking airborne radar, and satellite imagery. The maps define a sub-set of possible penetrative fractures because of limitations of data coverage and the analysis technique. The data and techniques employed do not yield any indication as to whether fractures are open or closed. Correlations were carried out using image processing software in such a way that every pixel on the resulting grids was coded to uniquely identify which datasets correlated. The technique correctly identified known deep fracture systems and many new ones. Maps of the correlations also define in detail the tectonic fabrics of the Southwestern Colorado Plateau. Copyright ?? The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences; TERRAPUB.

  1. Developing a fixed-wing UAV aeromagnetic system

    NASA Astrophysics Data System (ADS)

    Ziqi, G.

    2013-12-01

    This invention relates to a fixed-wing unmanned aerial vehicle (UAV) aeromagnetic system which is suitable for geophysical prospecting using earth magnetic fields and to develop a low cost, easy operation, reliable performance of aerial magnetic detection system. This system depends mainly upon the measurement of the magnetic properties of the underlying ground. This big project contained unmanned aerial vehicle system, battery system for power source, navigation and flight control system, magnetometer, the magnetic compensation and data processing system and compare with the ground demonstration area. Each of them is a complex engineer system. We made two kind of fixed-wing UAV which designed for different magnetometers such as Helium airborne optical pumping magnetometer and SQUID magnetometer. The battery designed to endure large range temperature varied from -30 to 60 Celsius degree with a dual-redundancy system. A primary object of the invention to provide a fixed-wing UAV for deep exploration using natural magneto-telluric fields as an energy source and operating in a frequency of 20Hz, the System integrated precision of 2nT ranged from 19000 nT to 74000 nT, Meeting the demand of global resources exploration. Another object is it can operate at much higher terrain to 5000km. Yet another object of the invention is providing a system that can explore for mineral deposits with mountain and some other terrain. This paper Sponsored by the project of Chinese deep explorations (SinoProbe09-03)

  2. Aeromagnetic surveys in the seas around Japan in 1980

    NASA Astrophysics Data System (ADS)

    Utashiro, S.; Oshima, S.; Kaneko, T.

    1984-07-01

    Aeromagnetic surveys in the seas around Japan were carried out in 1979 to 1980 by a YS-11 aircraft of the Maritime Safety Agency of Japan using a new type of airborne magnetometer system. The new type of airborne magnetometer system consists of a ring-core type three-component fluxgate magnetometer, an inertial sensing system, a fish-eye camera to measure the true north, an 8-bit microcomputer and a proton magnetometer. The VLF/OMEGA system is used to fix the position of the aircraft. Tracks extended to about 600 nautical miles off the coast of the Japanese islands in the Sea of Japan and the North-West Pacific Ocean. Average spacing between tracks was about 80 miles. The flights were carried out at an altitude of 9500 feet. From the survey results, magnetic charts of the seven geomagnetic elements for 1980 over the sea around Japan were compiled by the method of least squares using a polynomial. Also, the contour charts of secular variation in 1980 were compiled.

  3. Mapping.

    ERIC Educational Resources Information Center

    Kinney, Douglas M.; McIntosh, Willard L.

    1979-01-01

    The area of geological mapping in the United States in 1978 increased greatly over that reported in 1977; state geological maps were added for California, Idaho, Nevada, and Alaska last year. (Author/BB)

  4. Nature and Geometry of tectonic elements associated with Bhuj Earthquake from High resolution Aeromagnetic data

    NASA Astrophysics Data System (ADS)

    Rajaram, M.; S. Prasanna, A.

    2010-12-01

    The Kutch Rift basin is an important tectonic unit of Indian sub-continent where the disastrous Bhuj earthquake of Mw 7.8 occurred on 26 January 2001 (republic day of India) killing more than 20,000 people and leaving over 6,00,000 people homeless. The Bhuj earthquake was considered as one of the largest intraplate earthquake. Although liquefaction phenomenon and mud volcanoes were reported, no surface rupture was reported; generally an earthquake of this magnitude is associated with surface ruptures. Following the earthquake several Geophysical studies like Magnetotelluric, gravity, geomagnetic depth sounding, long period magnetotelluric, GPS and others were undertaken to understand the cause of this massive intra-plate earthquake. Despite these efforts several enigmatic questions related to the earthquake and the tectonic setting of the Kutch region still remain unanswered one of them being the location of the fault plane associated with the Mainshock of the Bhuj earthquake: is it the Kutch Mainland fault (KMF) or the south dipping North Wagad fault 25 km north of the KMF. Much of the earthquake affected region was covered by inaccessible salt plains due to which the existing geophysical data coverage is very poor. A semi detailed high-resolution airborne magnetic survey, with line spacing of 1km,was conducted during the period January 23, 2008 to May 16, 2008 covering an area of 56593 Sq.Km over the Kutch basin and surrounding areas. The objective of the survey was to acquire high resolution magnetic data to map the anomalous magnetic field distribution pattern in order to understand the lithology and sub surface structural settings in aid of geological interpretation for various purposes. From an analysis of the generated aeromagnetic map we were able to bring out signatures of several hitherto unknown faults and intrusives. We find that the epicenter of the main shock of Bhuj earthquake lies on the intersection point of three faults, a kind of triple point

  5. GEOTEAM{reg_sign}/aeromagnetic definition of hydrocarbon alteration plumes in Nevada

    SciTech Connect

    Rowe, J.D.; Smith, R.S.; Warren, R.K.

    1994-12-31

    An airborne electromagnetic and magnetic survey was flown over a number of oil fields in Nevada to map alteration plumes. In some of the areas, there is an anomalous magnetic response and an excellent correlation between an enhanced conductivity anomaly and the oil fields. The approach indicates that alteration plumes may be detected and defined with greater confidence employing a multi-sensor survey than with only a single sensor system (e.g., magnetics only).

  6. Aeromagnetic interpretation of southwestern continental shelf of Korea

    SciTech Connect

    Baag, Czango ); Baag, C.E. )

    1996-01-01

    Analysis of the [open quotes]project magnet[close quotes] aeromagnetic data acquired by the US Navy in 1969 permits us to predict a new sedimentary basin, Heugsan Basin, south of the known Gunsan Basin in Block II. The basin appears to consist of three sub-basins trending NNW-SSE. The results of our analysis provide not only an independent assessment of the Gunsan Basin, but also new important information on the tectonic origin and mechanism for the two basins as well as for the entire region. The basin forming tectonic style is interpreted as rhombochasm associated with double overstepped left-lateral wrench faults. From magnetic evidence, a few NE-SW trending major onshore faults are extended to the study area. We also interpreted the nature of the faults to be left-lateral wrenches. This new gross structural style is consistent with the results of recent Yeongdong Basin analysis by Lee. The senses of fault movement are also supported by the paleomagnetic evidence that the Philippine Sea had experienced an 80-degree clockwise rotation since the Eocene. Based on a 2[1/2] - D model study the probable maximum thickness of the sediments in the Gunsan Basin is approximately 7500 meters. We believe that the new Heugsan Basin was left unidentified because a high velocity layer may be overlying the basin. Because the overall structural configuration of the Heugsan Basin appears to be favorable for hydrocarbon accumulation, a detailed airborne magnetic survey is recommended in the area in order to verify the magnetic expressions of both this thick basin and the tectonic style.

  7. Aeromagnetic interpretation of southwestern continental shelf of Korea

    SciTech Connect

    Baag, Czango; Baag, C.E.

    1996-12-31

    Analysis of the {open_quotes}project magnet{close_quotes} aeromagnetic data acquired by the US Navy in 1969 permits us to predict a new sedimentary basin, Heugsan Basin, south of the known Gunsan Basin in Block II. The basin appears to consist of three sub-basins trending NNW-SSE. The results of our analysis provide not only an independent assessment of the Gunsan Basin, but also new important information on the tectonic origin and mechanism for the two basins as well as for the entire region. The basin forming tectonic style is interpreted as rhombochasm associated with double overstepped left-lateral wrench faults. From magnetic evidence, a few NE-SW trending major onshore faults are extended to the study area. We also interpreted the nature of the faults to be left-lateral wrenches. This new gross structural style is consistent with the results of recent Yeongdong Basin analysis by Lee. The senses of fault movement are also supported by the paleomagnetic evidence that the Philippine Sea had experienced an 80-degree clockwise rotation since the Eocene. Based on a 2{1/2} - D model study the probable maximum thickness of the sediments in the Gunsan Basin is approximately 7500 meters. We believe that the new Heugsan Basin was left unidentified because a high velocity layer may be overlying the basin. Because the overall structural configuration of the Heugsan Basin appears to be favorable for hydrocarbon accumulation, a detailed airborne magnetic survey is recommended in the area in order to verify the magnetic expressions of both this thick basin and the tectonic style.

  8. Airborne gamma-ray and magnetic anomaly signatures of serpentinite in relation to soil geochemistry, northern California

    USGS Publications Warehouse

    McCafferty, A.E.; Van Gosen, B. S.

    2009-01-01

    Serpentinized ultramafic rocks and associated soils in northern California are characterized by high concentrations of Cr and Ni, low levels of radioelements (K, Th, and U) and high amounts of ferrimagnetic minerals (primarily magnetite). Geophysical attributes over ultramafic rocks, which include airborne gamma-ray and magnetic anomaly data, are quantified and provide indirect measurements on the relative abundance of radioelements and magnetic minerals, respectively. Attributes are defined through a statistical modeling approach and the results are portrayed as probabilities in chart and map form. Two predictive models are presented, including one derived from the aeromagnetic anomaly data and one from a combination of the airborne K, Th and U gamma-ray data. Both models distinguish preferential values within the aerogeophysical data that coincide with mapped and potentially unmapped ultramafic rocks. The magnetic predictive model shows positive probabilities associated with magnetic anomaly highs and, to a lesser degree, anomaly lows, which accurately locate many known ultramafic outcrops, but more interestingly, locate potentially unmapped ultramafic rocks, possible extensions of ultramafic bodies that dip into the shallow subsurface, as well as prospective buried ultramafic rocks. The airborne radiometric model shows positive probabilities in association with anomalously low gamma radiation measurements over ultramafic rock, which is similar to that produced by gabbro, metavolcanic rock, and water bodies. All of these features share the characteristic of being depleted in K, Th and U. Gabbro is the only rock type in the study area that shares similar magnetic properties with the ultramafic rock. The aerogeophysical model results are compared to the distribution of ultramafic outcrops and to Cr, Ni, K, Th and U concentrations and magnetic susceptibility measurements from soil samples. Analysis of the soil data indicates high positive correlation between

  9. Regional gravity and magnetic anomalies related to a Proterozoic carbonatite terrane in the eastern Mojave Desert, California

    NASA Astrophysics Data System (ADS)

    Denton, K. M.; Ponce, D. A.; Miller, D. M.; Jernigan, C. T.

    2014-12-01

    One of the world's largest rare earth element carbonatite deposits is located at Mountain Pass in the eastern Mojave Desert, California. The 1.4 Ga carbonatite deposit is hosted by and intruded into 1.7 Ga gneiss and schist that occurs in a narrow north-northwest trending belt along the eastern parts of Clark Mountain Range, Mescal Range, and Ivanpah Mountains. The carbonatite is associated with an ultrapotassic intrusive suite that ranges from shonkinite through syenite and granite. Regional geophysical data reveal that the eastern Mojave carbonatite terrane occurs along the northeast edge of a prominent magnetic high and the western margin of a gravity high along the eastern Clark Mountain Range. To improve our understanding of the geophysical and structural framework of the eastern Mojave carbonatite terrane, we collected over 1900 gravity stations and over 600 physical rock property samples to augment existing geophysical data. Carbonatite intrusions typically have distinct gravity, magnetic, and radiometric signatures because these deposits are relatively dense, contain magnetite, and are enriched in thorium or uranium. However, our results show that the carbonatite is essentially nonmagnetic with an average susceptibility of 0.18 x 10-3 SI (n=31) and the associated ultrapotassic intrusive suite is very weakly magnetic with an average susceptibility of 2.0 x 10-3 SI (n=36). Although the carbonatite body is nonmagnetic, it occurs along a steep gradient of a prominent aeromagnetic anomaly. This anomaly may reflect moderately magnetic mafic intrusive rocks at depth. East of the ultrapotassic intrusive rocks, a prominent north trending magnetic anomaly occurs in the central part of Ivanpah Valley. Based on geologic mapping in the Ivanpah Mountains, this magnetic anomaly may reflect Paleoproterozoic mafic intrusive rocks related to the 1.7 Ga Ivanpah Orogeny. Physical property measurements indicate that exposed amphibolite along the eastern Ivanpah Mountains are

  10. Mapping Curie temperature depth in the western United States with a fractal model for crustal magnetization

    USGS Publications Warehouse

    Bouligand, C.; Glen, J.M.G.; Blakely, R.J.

    2009-01-01

    We have revisited the problem of mapping depth to the Curie temperature isotherm from magnetic anomalies in an attempt to provide a measure of crustal temperatures in the western United States. Such methods are based on the estimation of the depth to the bottom of magnetic sources, which is assumed to correspond to the temperature at which rocks lose their spontaneous magnetization. In this study, we test and apply a method based on the spectral analysis of magnetic anomalies. Early spectral analysis methods assumed that crustal magnetization is a completely uncorrelated function of position. Our method incorporates a more realistic representation where magnetization has a fractal distribution defined by three independent parameters: the depths to the top and bottom of magnetic sources and a fractal parameter related to the geology. The predictions of this model are compatible with radial power spectra obtained from aeromagnetic data in the western United States. Model parameters are mapped by estimating their value within a sliding window swept over the study area. The method works well on synthetic data sets when one of the three parameters is specified in advance. The application of this method to western United States magnetic compilations, assuming a constant fractal parameter, allowed us to detect robust long-wavelength variations in the depth to the bottom of magnetic sources. Depending on the geologic and geophysical context, these features may result from variations in depth to the Curie temperature isotherm, depth to the mantle, depth to the base of volcanic rocks, or geologic settings that affect the value of the fractal parameter. Depth to the bottom of magnetic sources shows several features correlated with prominent heat flow anomalies. It also shows some features absent in the map of heat flow. Independent geophysical and geologic data sets are examined to determine their origin, thereby providing new insights on the thermal and geologic crustal

  11. Gauge anomalies, gravitational anomalies, and superstrings

    SciTech Connect

    Bardeen, W.A.

    1985-08-01

    The structure of gauge and gravitational anomalies will be reviewed. The impact of these anomalies on the construction, consistency, and application of the new superstring theories will be discussed. 25 refs.

  12. ANOMALY STRUCTURE OF SUPERGRAVITY AND ANOMALY CANCELLATION

    SciTech Connect

    Butter, Daniel; Gaillard, Mary K.

    2009-06-10

    We display the full anomaly structure of supergravity, including new D-term contributions to the conformal anomaly. This expression has the super-Weyl and chiral U(1){sub K} transformation properties that are required for implementation of the Green-Schwarz mechanism for anomaly cancellation. We outline the procedure for full anomaly cancellation. Our results have implications for effective supergravity theories from the weakly coupled heterotic string theory.

  13. The elliptic anomaly

    NASA Technical Reports Server (NTRS)

    Janin, G.; Bond, V. R.

    1980-01-01

    An independent variable different from the time for elliptic orbit integration is used. Such a time transformation provides an analytical step-size regulation along the orbit. An intermediate anomaly (an anomaly intermediate between the eccentric and the true anomaly) is suggested for optimum performances. A particular case of an intermediate anomaly (the elliptic anomaly) is defined, and its relation with the other anomalies is developed.

  14. High-Resolution Ground-Based Magnetic Survey of a Buried Volcano: Anomaly B, Amargosa Desert, NV

    NASA Astrophysics Data System (ADS)

    McIlrath, J.; George, O.; Farrell, A. K.; Gallant, E.; Tavarez, S.; Downs, C. M.; Njoroge, M. W.; Wilson, J. A.; Connor, C.; Connor, L.; Kruse, S.

    2015-12-01

    Aeromagnetic surveys over the Amargosa Desert, Nevada, have revealed the presence of several magnetic anomalies that have been interpreted to be caused by buried volcanoes; many of these anomalies have been confirmed by drilling. We present data collected from a high-resolution, ground-based magnetic survey over Anomaly B, the largest of these anomalies, that reveal details about a buried crater and its associated lava flow, not previously observed in the aeromagnetic surveys. These details provide insight into the nature of the eruption and the volume of this buried volcano. Results from non-linear inversion demarcate a crater with a diameter of approximately 700 m and a base approximately 150 m below the ground surface. Coupled with well log data, the inversion results suggest a total volume for the Anomaly B crater area and associated lava flows of approximately 1.0 ± 0.4 km3, based on an estimated lava flow field area of 24 km2 and a lava thickness of 42 ± 15 m.

  15. Aeromagnetic evidence for a major strike-slip fault zone along the boundary between the Weddell Sea Rift and East Antarctica

    NASA Astrophysics Data System (ADS)

    Jordan, T. A.; Ferraccioli, F.; Ross, N.; Siegert, M. J.; Corr, H.; Leat, P. T.; Bingham, R. G.; Rippin, D. M.; le Brocq, A.

    2012-04-01

    The >500 km wide Weddell Sea Rift was a major focus for Jurassic extension and magmatism during the early stages of Gondwana break-up, and underlies the Weddell Sea Embayment, which separates East Antarctica from a collage of crustal blocks in West Antarctica. Here we present new aeromagnetic data combined with airborne radar and gravity data collected during the 2010-11 field season over the Institute and Moeller ice stream in West Antarctica. Our interpretations identify the major tectonic boundaries between the Weddell Sea Rift, the Ellsworth-Whitmore Mountains block and East Antarctica. Digitally enhanced aeromagnetic data and gravity anomalies indicate the extent of Proterozoic basement, Middle Cambrian rift-related volcanic rocks, Jurassic granites, and post Jurassic sedimentary infill. Two new joint magnetic and gravity models were constructed, constrained by 2D and 3D magnetic depth-to-source estimates to assess the extent of Proterozoic basement and the thickness of major Jurassic intrusions and post-Jurassic sedimentary infill. The Jurassic granites are modelled as 5-8 km thick and emplaced at the transition between the thicker crust of the Ellsworth-Whitmore Mountains block and the thinner crust of the Weddell Sea Rift, and within the Pagano Fault Zone, a newly identified ~75 km wide left-lateral strike-slip fault system that we interpret as a major tectonic boundary between East and West Antarctica. We also suggest a possible analogy between the Pagano Fault Zone and the Dead Sea transform. In this scenario the Jurassic Pagano Fault Zone is the kinematic link between extension in the Weddell Sea Rift and convergence across the Pacific margin of West Antarctica, as the Dead Sea transform links Red Sea extension to compression within the Zagros Mountains.

  16. Mapping localised freshwater anomalies in the brackish paleo-lake sediments of the Machile-Zambezi Basin with transient electromagnetic sounding, geoelectrical imaging and induced polarisation

    NASA Astrophysics Data System (ADS)

    Chongo, Mkhuzo; Christiansen, Anders Vest; Fiandaca, Gianluca; Nyambe, Imasiku A.; Larsen, Flemming; Bauer-Gottwein, Peter

    2015-12-01

    A recent airborne TEM survey in the Machile-Zambezi Basin of south western Zambia revealed high electrical resistivity anomalies (around 100 Ωm) in a low electrical resistivity (below 13 Ωm) background. The near surface (0-40 m depth range) electrical resistivity distribution of these anomalies appeared to be coincident with superficial features related to surface water such as alluvial fans and flood plains. This paper describes the application of transient electromagnetic soundings (TEM) and continuous vertical electrical sounding (CVES) using geo-electrics and time domain induced polarisation to evaluate a freshwater lens across a flood plain on the northern bank of the Zambezi River at Kasaya in south western Zambia. Coincident TEM and CVES measurements were conducted across the Simalaha Plain from the edge of the Zambezi River up to 6.6 km inland. The resulting TEM, direct current and induced polarisation data sets were inverted using a new mutually and laterally constrained joint inversion scheme. The resulting inverse model sections depict a freshwater lens sitting on top of a regional saline aquifer. The fresh water lens is about 60 m thick at the boundary with the Zambezi River and gradually thins out and deteriorates in water quality further inland. It is postulated that the freshwater lens originated as a result of interaction between the Zambezi River and the salty aquifer in a setting in which evapotranspiration is the net climatic stress. Similar high electrical resistivity bodies were also associated with other surface water features located in the airborne surveyed area.

  17. Mapping Precambrian Basement Fabric with Magnetic Data in the Karonga Basin Area and its Control on the Development of the Malawi Rift.

    NASA Astrophysics Data System (ADS)

    Johnson, T.; Abdelsalam, M. G.; Atekwana, E. A.; Chindandali, P. R. N.; Clappe, B.; Laó-Dávila, D. A.; Dawson, S.; Hull, C. D.; Nyalugwe, V.; Salima, J.

    2015-12-01

    The Malawi Rift forms the southern termination of the western branch of the East African Rift System. It is suggested that it propagates from the Rungwe Volcanic Province in the north for ~700 km into Mozambique in the south. The northern portion of the Malawi Rift is dominated by the Mesoproterozoic basement rocks of the Ubendian-Usagaran belts to the north and west and the Irumide Belt in the south. The Mugese shear zone (MSZ) forms the boundary between the Ubendian-Usagaran and Irumide Belts. We used magnetic data to determine the relationship between the geology of the nascent Malawi Rift and the strong magnetic fabric observed in the Mugese shear zone from aeromagnetic maps. We integrated the aeromagnetic data with ground magnetic data acquired along two W-E transects using a cesium vapor magnetometer at a nominal station spacing of 500 m. We also acquired kinematic data (strike and dip) on exposed basement geology and Karoo sediments. Both transects extend from the uplifted basement areas cutting across the MSZ into the rift floor sediments. Our results show that the MSZ is characterized by a prominent WNW-ESE magnetic anomaly that is parallel to the basement fabric north of the town of Karonga but changes orientation to NNW-SSE south of Karonga. This shear zone is composed of gneisses in amphibolite to granulite facies that are steeply dipping (50-80°) to the west. The strong magnetization and magnetic lineation of the MSZ results from alternating light and dark colored gneissic bands. This magnetization is strongest in unweathered basement rocks and lowest in weathered basement rocks and Karoo sediments. The orientation of the strong magnetic fabric of the Mugese shear zone may play an important role on the accommodation of strain within the rift basin. Detailed mapping of the magnetic fabric can improve our understanding of the formation of faults in the nascent Malawi Rift.

  18. Aeromagnetic measurements in the Cascade Range and Modoc Plateau of northern California. Report on work done from December 1, 1980-May 31, 1981

    SciTech Connect

    Couch, R.; Gemperle, M.

    1982-01-01

    Spectral analysis of aeromagnetic data collected over north-central California during the summer of 1980 aided in determining magnetic-source bottom depths beneath the survey area. Five regions of shallow magnetic source bottom depths were detected: (1) Secret Spring Mountain and National Lava Beds Monument area; (2) the Mount Shasta area; (3) the Eddys Mountain area; (4) the Big Valley Mountains area; and (5) an area northeast of Lassen Peak. Except for the Eddys Mountain area, all regions exhibiting shallow depths are suggested to be due to elevated Curie-point isotherms. Deeper magnetic source bottom depths were mapped throughout the remainder of the study area, with depths greater than 9 km BSL indicated beneath Lassen Peak and greater than 11 km BSL indicated beneath the Western Cascades, Eastern Klamath Mountains, and Great Valley.

  19. Aeromagnetic survey over US to advance geomagnetic research

    USGS Publications Warehouse

    Hildenbrand, T.G.; Blakely, R.J.; Hinze, W. J.; Keller, Gordon R.; Langel, R.A.; Nabighian, M.; Roest, W.

    1996-01-01

    A proposed high-altitude survey of the US offers an exciting and cost effective opportunity to collect magnetic-anomaly data. Lockheed Martin Missile and Space Company is considering funding a reimbursable ER-2 aircraft mission to collect synthetic aperture radar (SAR) imagery at an altitude of about 21 km over the conterminous US and Alaska. The collection of total and vector magnetic field data would be a second objective of the flight. These data would provide insight on fundamental tectonic and thermal processes and give a new view of the structural and lithologic framework of the crust and upper mantle.

  20. Gene of a new X-linked syndrome with multiple congenital anomalies and severe mental retardation maps in Xp22-pter

    SciTech Connect

    Wittwer, B.; Kircheisen, R.; Leutelt, J.

    1994-09-01

    We report on a family with 3 males presenting with a not yet described new X-chromosomal syndrome of multiple congenital anomalies and severe mental retardation. Two sisters have (with 3 different partners) 3 severely handicapped sons. In each case, oligohydramnios and intrauterine growth retardation were observed. Delivery was in the 34th, 31st, and 38th gestational week, respectively. Two of the patients had microcephaly (head circumference of the third case at birth is unknown). On physical examination, high and broad forehead, frontal bossing, downslanting palpebral fissures, long philtrum, thin upper lip, high arched palate, and deeply set anteverted ears were seen. One of the boys has microphthalmos and sclerocornea, while his cousin shows atrophy of the optic nerve. All three patients show a severe statomotor and mental retardation, they are most likely deaf and blind, have pathologic EEG, and seizures. Important additional findings are hydronephrosis, renal duplication, vesicorenal reflux, and agenesis of corpus callosum. The karyotype is normal (46,XY). We performed a segregation analysis in the family using more than 20 DNA polymorphisms distributed over the X chromosome. Linkage without recombination was found to KAL, DXS278, and DXS16 in Xp22. Analysis of multiple informative meioses suggested a location of the disease locus distal to DXS207. Recombinants were identified with all other marker loci from Xp22-Xpter.

  1. A New Seafloor Spreading Model of the Red Sea: Magnetic Anomalies and Plate Kinematics

    NASA Astrophysics Data System (ADS)

    Dyment, J.; Tapponnier, P.; Afifi, A. M.; Zinger, M. A.; Franken, D.; Muzaiyen, E.

    2013-12-01

    A high resolution aeromagnetic survey over the Saudi Arabian side of the Red Sea confirms the existence of consistent magnetic anomaly patterns, continuous from 16 to 24°N, and episodic up to 28°N, typical of slow to ultraslow spreading centers. The older Saudi-Sudanese aeromagnetic survey shows that these anomalies are symmetrical between 18 and 23°N. The strong, short-wavelength anomalies over the central trough south of 24°N have long been identified as Chrons 1 to 3 (0-5 Ma). By contrast, the weaker, longer-wavelength anomalies over adjacent sediment-covered areas do not fit standard magnetic anomaly models. The abrupt basement deepening from ~ 1.5 km in the central trough to ~ 5 km beneath the sediments partly accounts for the lower amplitude but not for the lack of short wavelengths. Other spreading centers also lack short-wavelength, high-amplitude magnetic anomalies where covered by thick sediments (Andaman Basin, Juan de Fuca Ridge). We interpret this to reflect the absence of a well-defined layer of pillow lavas, whose emplacement is hampered by rapid, abundant sedimentation. The formation of dykes and sills instead of extrusive lavas results in weaker, less coherent magnetization, generating longer-wavelength anomalies. We test this inference by removing the extrusive basalt contribution from a slow spreading center crustal magnetization model. The computed magnetic anomalies fit well with the shape and amplitude of the anomalies observed in the Red Sea. Two major long-wavelength anomalies are dated at 10-11 Ma (Chron 5) and 14-15 Ma (Chron 5B), implying seafloor spreading back to at least 15 Ma and constraining plate-kinematic reconstructions. Beyond being a key to the geological evolution of the Red Sea, these results emphasize that oceanic crust may exist without clear, short wavelength magnetic anomalies, particularly at the onset of seafloor spreading, when abundant sedimentation may preclude the formation of pillow lavas. The location of many

  2. Aeromagnetic legacy of early Paleozoic subduction along the Pacific margin of Gondwana

    USGS Publications Warehouse

    Finn, C.; Moore, D.; Damaske, D.; Mackey, T.

    1999-01-01

    Comparison of the aeromagnetic signatures and geology of southeastern Australia and northern Victoria Land, Antarctica, with similar data from ancient subduction zones in California and Japan, provides a framework for reinterpretation of the plate tectonic setting of the Pacific margin of early Paleozoic Gondwana. In our model, the plutons in the Glenelg (south-eastern Australia) and Wilson (northern Victoria Land) zones formed the roots of continental-margin magmatic arcs. Eastward shifting of arc magmatism resulted in the Stavely (south-eastern Australia) and Bowers (northern Victoria Land) volcanic eruptions onto oceanic forearc crust. The turbidites in the Stawell (southeastern Australia) and Robertson Bay (northern Victoria Land zones) shed from the Glenelg and Wilson zones, respectively, were deposited along the trench and onto the subducting oceanic plate. The margin was subsequently truncated by thrust faults and uplifted during the Delamerian and Ross orogenies, leading to the present-day aeromagnetic signatures.

  3. Magnetic Anomaly Amplitudes on the Gakkel Ridge: Indicators of Ridge Variability

    NASA Astrophysics Data System (ADS)

    Childers, V. A.; Lawver, L. A.; Brozena, J. M.

    2002-12-01

    For most of its length, the Gakkel Ridge in the Arctic Ocean's Eurasia Basin is characterized by a discontinuous magnetic signature with regions of missing or low-amplitude central anomalies punctuated by short, high-amplitude segments. The ridge segment in between the Morris Jesup Rise and the Yermak Plateau has an unusually large amplitude central magnetic anomaly that is more than four times the amplitude of the flanking anomalies. This ridge segment is straight, without large offsets, for about 150 km. The difference in character between the central anomaly in this segment and the rest of Gakkel Ridge is striking. The western half of the Gakkel Ridge and the Eurasia Basin were surveyed in 1998-99 by a Naval Research Laboratory aerogeophysical campaign that measured magnetics, gravity, and sea-surface topography. The new magnetic data densify the historical US Navy aeromagnetic data and improve the resolution of the magnetic anomaly field in this region. This new field highlights the variability of the Gakkel Ridge over time, showing regions of strong anomalies that are continuous along strike and anomalies that fade away or become discontinuous. In particular, anomalies 15y to 21o show regions of high amplitudes on both sides of the ridge for varying distances along strike. We suggest that these high-amplitude segments were formed at times when the Gakkel Ridge at this location had a high-amplitude central magnetic anomaly like the present day high-amplitude segment or the shorter ones distributed along the ridge. The higher central anomaly amplitudes may be associated with variations in geochemistry and/or melt delivery along the ridge. Recent dredging of zero-aged crust along the Gakkel Ridge showed a good but not perfect correlation of high-amplitude central anomalies and basalt recovery (P. Michael, personal communication). This magnetic data set in conjunction with future dredging provides an opportunity to constrain past ridge variability.

  4. Magnetic and gravity anomalies in the Americas

    NASA Technical Reports Server (NTRS)

    Braile, L. W.; Hinze, W. J.; Vonfrese, R. R. B. (Principal Investigator)

    1981-01-01

    The cleaning and magnetic tape storage of spherical Earth processing programs are reported. These programs include: NVERTSM which inverts total or vector magnetic anomaly data on a distribution of point dipoles in spherical coordinates; SMFLD which utilizes output from NVERTSM to compute total or vector magnetic anomaly fields for a distribution of point dipoles in spherical coordinates; NVERTG; and GFLD. Abstracts are presented for papers dealing with the mapping and modeling of magnetic and gravity anomalies, and with the verification of crustal components in satellite data.

  5. Estimation of lower crust magnetization form satellite derived anomaly field

    NASA Technical Reports Server (NTRS)

    Schnetzler, C. C.; Allenby, R. J.

    1983-01-01

    Various lines of evidence point to the lower crust as the source of the long-wavelength magnetic anomaly field measured by the POGO and Magsat satellites. Using seismically determined lower crust thicknesses and equivalent source inversion of the satellite anomaly data, magnetization for the lower crust for much of the United States has been calculated. The average magnetization for two hundred sixty-six 150 x 150 km areas is 3.5 A/m with a standard deviation of 1.1 A/m. These values are consistent with laboratory measurements of mafic-ultramafic rocks expected in the lower crust, and in agreement with previous estimates of lower crust magnetization based on long-wavelength aeromagnetic data. Average lower crust thickness for the same areas is 18.2 km (sigma = 6.4). Thus, over large regions, it appears that variation in magnetization and variation in magnetic layer thickness contribute almost equally in causing the anomaly field variation at satellite altitude.

  6. Aeromagnetic and gravity imaging of subglacial geology beneath major ice streams flowing in the Weddell Sea Embayment

    NASA Astrophysics Data System (ADS)

    Ferraccioli, Fausto; King, Owen; Jordan, Tom; Ross, Neil; Bingham, Rob; Rippin, David; LeBrocq, Anne; Siegert, Martin; Smith, Andy; Hindmarsh, Richard

    2014-05-01

    Extensive airborne geophysical research has helped unveil subglacial geology beneath the West Antarctic Ice Sheet (WAIS) in particular over the Ross Sea Embayment. Three key geological controls on the onset and maintenance of fast glacial flow for the WAIS have emerged including the presence of widespread subglacial sediments deposited within deep rift basins, thinner drapes of marine sediments within the low lying topography of the West Antarctic Rift System (WARS) and high geothermal heat flux associated with Cenozoic rift-related magmatism. Here, we compile a suite of new and vintage aerogeophysical observations over the catchments of several major ice streams flowing into the Weddell Sea Embayment to examine their large-scale geological setting and assess the role of regional geological controls on subglacial topography and WAIS flow regimes. Specifically, we examine the subglacial geology beneath the catchments of the Institute and Moeller ice streams, the Rutford ice stream and the Evans ice stream using a combination of airborne radar, aeromagnetic and airborne gravity imaging. We show that the Moeller ice stream is underlain by the largest strike-slip fault system recognised so far along the tectonic boundary between East and West Antarctica. This fault system controls the location of a set of en-echelon subglacial basins that steer enhanced flow inland. We find no evidence, however, for deep sedimentary basins along this fault system, suggesting that subglacial sediments are not necessarily a geological template for the onset of fast flow. However, the newly identified Robin Subglacial Basin that underlies the fast flowing coastal region of the Institute ice stream contains 1-3 km of sedimentary infill and remarkably smooth bedrock topography. Enhanced flow in the tributaries of the Institute ice stream that cut through the Ellsworth Mountains are controlled by major basement faults likely active in Cambrian and Permian times and perhaps reactivated during

  7. Lymphatic Anomalies Registry

    ClinicalTrials.gov

    2016-07-26

    Lymphatic Malformation; Generalized Lymphatic Anomaly (GLA); Central Conducting Lymphatic Anomaly; CLOVES Syndrome; Gorham-Stout Disease ("Disappearing Bone Disease"); Blue Rubber Bleb Nevus Syndrome; Kaposiform Lymphangiomatosis; Kaposiform Hemangioendothelioma/Tufted Angioma; Klippel-Trenaunay Syndrome; Lymphangiomatosis

  8. The mineralogy of global magnetic anomalies

    NASA Technical Reports Server (NTRS)

    Haggerty, S. E. (Principal Investigator)

    1984-01-01

    Experimental and analytical data on magnetic mineralogy was provided as an aid to the interpretation of magnetic anomaly maps. An integrated program, ranging from the chemistry of materials from 100 or more km depth within the Earth, to an examination of the MAGSAT anomaly maps at about 400 km above the Earth's surface, was undertaken. Within this framework, a detailed picture of the pertinent mineralogical and magnetic relationships for the region of West Africa was provided. Efforts were directed toward: (1) examining the geochemistry, mineralogy, magnetic properties, and phases relations of magnetic oxides and metal alloys in rocks demonstrated to have originated in the lower crust of upper mantle, (2) examining the assumption that these rocks portray the nature of their source regions; and (3) examining the regional geology, tectonics, gravity field and the MAGSAT anomaly maps for West Africa.

  9. Magnetic anomalies in Bahia Esperanza: A window of magmatic arc intrusions and glacier erosion over the northeastern Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Galindo-Zaldívar, Jesús; Ruiz-Constán, Ana; Pedrera, Antonio; Ghidella, Marta; Montes, Manuel; Nozal, Francisco; Rodríguez-Fernandez, Luis Roberto

    2013-02-01

    Bahia Esperanza, constituting the NE tip of the Antarctic Peninsula, is made up of Paleozoic clastic sedimentary rocks overlain by a Jurassic volcano-sedimentary series and intruded by Cretaceous gabbros and diorites. The area is located along the southern part of the Pacific Margin magnetic anomaly belt. Field magnetic researches during February 2010 contribute to determining the deep geometry of the intermediate and basic intrusive rocks. Moreover, the new field data help constrain the regional Pacific Margin Anomaly, characterized up to now only by aeromagnetic and marine data. Field magnetic susceptibility measurements of intrusive intermediate and basic rocks, responsible for magnetic anomalies, ranges from 0.5 × 10- 3 SI in diorites to values between 0.75 × 10- 3 SI and 1.3 × 10- 3 SI in gabbros. In addition, a significant remanent magnetism should also have contributed to the anomalies. The regional magnetic anomaly is characterized by a westward increase from 100 nT up to 750 nT, associated with large intrusive diorite bodies. They probably underlie most of the western slopes of Mount Flora. Gabbros in the Nobby Nunatak determine local residual rough anomalies that extend northwards and westwards, pointing to the irregular geometry of the top of the basic rocks bodies below the Pirámide Peak Glacier. However, the southern and eastern boundaries with the Buenos Aires Glacier are sharp related to deep glacier incision. As a result of the glacier dynamics, magnetic anomalies are also detected north of the Nobby Nunatak due to the extension of the anomalous body and the presence of gabbro blocks in the moraines. The Bahia Esperanza region is a key area where onshore field geological and magnetic research allows us to constrain the shape of the crustal igneous intrusions and the basement glacier geometry, providing accurate data that complete regional aeromagnetic research.

  10. Rock magnetic characterization of faulted sediments with associated magnetic anomalies in the Albuquerque Basin, Rio Grande rift, New Mexico

    USGS Publications Warehouse

    Hudson, M.R.; Grauch, V.J.S.; Minor, S.A.

    2008-01-01

    Variations in rock magnetic properties are responsible for the many linear, short-wavelength, low-amplitude magnetic anomalies that are spatially associated with faults that cut Neogene basin sediments in the Rio Grande rift, including the San Ysidro normal fault, which is well exposed in the northern part of the Albuquerque Basin. Magnetic-susceptibility measurements from 310 sites distributed through a 1200-m-thick composite section of rift-filling sediments of the Santa Fe Group and prerift Eocene and Cretaceous sedimentary rocks document large variations of magnetic properties juxtaposed by the San Ysidro fault. Mean volume magnetic susceptibilities generally increase upsection through eight map units: from 1.7 to 2.2E-4 in the prerift Eocene and Cretaceous rocks to 9.9E-4-1.2E-3 in three members of the Miocene Zia Formation of the Santa Fe Group to 1.5E-3-3.5E-3 in three members of the Miocene-Pleistocene Arroyo Ojito Formation of the Santa Fe Group. Rock magnetic measurements and petrography indicate that the amount of detrital magnetite and its variable oxidation to maghemite and hematite within the Santa Fe Group sediments are the predominant controls of their magnetic property variations. Magnetic susceptibility increases progressively with sediment grain size within the members of the Arroyo Ojito Formation (deposited in fluvial environments) but within members of the Zia Formation (deposited in mostly eolian environments) reaches highest values in fine to medium sands. Partial oxidation of detrital magnetite is spatially associated with calcite cementation in the Santa Fe Group. Both oxidation and cementation probably reflect past flow of groundwater through permeable zones. Magnetic models for geologic cross sections that incorporate mean magnetic susceptibilities for the different stratigraphic units mimic the aeromagnetic profiles across the San Ysidro fault and demonstrate that the stratigraphic level of dominant magnetic contrast changes with

  11. The Wallula fault and tectonic framework of south-central Washington, as interpreted from magnetic and gravity anomalies

    NASA Astrophysics Data System (ADS)

    Blakely, Richard J.; Sherrod, Brian L.; Weaver, Craig S.; Wells, Ray E.; Rohay, Alan C.

    2014-06-01

    The Yakima fold and thrust belt (YFTB) in central Washington has accommodated regional, mostly north-directed, deformation of the Cascadia backarc since prior to emplacement of Miocene flood basalt of the Columbia River Basalt Group (CRBG). The YFTB consists of two structural domains. Northern folds of the YFTB strike eastward and terminate at the western margin of a 20-mGal negative gravity anomaly, the Pasco gravity low, straddling the North American continental margin. Southern folds of the YFTB strike southeastward, form part of the Olympic-Wallowa lineament (OWL), and pass south of the Pasco gravity low as the Wallula fault zone. An upper crustal model based on gravity and magnetic anomalies suggests that the Pasco gravity low is caused in part by an 8-km-deep Tertiary basin, the Pasco sub-basin, abutting the continental margin and concealed beneath CRBG. The Pasco sub-basin is crossed by north-northwest-striking magnetic anomalies caused by dikes of the 8.5 Ma Ice Harbor Member of the CRBG. At their northern end, dikes connect with the eastern terminus of the Saddle Mountains thrust of the YFTB. At their southern end, dikes are disrupted by the Wallula fault zone. The episode of NE-SW extension that promoted Ice Harbor dike injection apparently involved strike-slip displacement on the Saddle Mountains and Wallula faults. The amount of lateral shear on the OWL impacts the level of seismic hazard in the Cascadia region. Ice Harbor dikes, as mapped with aeromagnetic data, are dextrally offset by the Wallula fault zone a total of 6.9 km. Assuming that dike offsets are tectonic in origin, the Wallula fault zone has experienced an average dextral shear of 0.8 mm/y since dike emplacement 8.5 Ma, consistent with right-lateral stream offsets observed at other locations along the OWL. Southeastward, the Wallula fault transfers strain to the north-striking Hite fault, the possible location of the M 5.7 Milton-Freewater earthquake in 1936.

  12. Paleo-Pole Positions from Martian Magnetic Anomaly Data

    NASA Technical Reports Server (NTRS)

    Frawley, James J.; Taylor, Patrick T.

    2004-01-01

    Magnetic component anomaly maps were made from five mapping cycles of the Mars Global Surveyor's magnetometer data. Our goal was to find and isolate positive and negative anomaly pairs which would indicate magnetization of a single source body. From these anomalies we could compute the direction of the magnetizing vector and subsequently the location of the magnetic pole existing at the time of magnetization. We found nine suitable anomaly pairs and from these we computed paleo-poles that were nearly equally divided between north, south and mid-latitudes. These results suggest that during the existence of the martian main magnetic field it experienced several reversals and excursions.

  13. Paleo-Pole Positions from Martian Magnetic Anomaly Data

    NASA Technical Reports Server (NTRS)

    Taylor, Patrick T.; Frawley, James J.

    2003-01-01

    Magnetic component anomaly maps were made from five mapping cycles of the Mars Global Surveyor s magnetometer data. Our goal was to find and isolate positive and negative anomaly pairs which would indicate magnetization of a single source body. From these anomalies we could compute the direction of the magnetizing vector and subsequently the location of the magnetic pole existing at the time of magnetization. We found nine suitable anomaly pairs and from these we computed four North and 3 South poles with two at approximately 60 degrees north latitude. These results suggest that during the existence of the Martian main magnetic field it experienced several reversals.

  14. Magnetization models for the source of the 'Kentucky anomaly' observed by Magsat

    NASA Technical Reports Server (NTRS)

    Mayhew, M. A.; Estes, R. H.; Myers, D. M.

    1985-01-01

    Both the aeromagnetic data and magnetic anomaly data obtained by Magsat indicate the presence of a very magnetic source region within the crust beneath Kentucky and Tennessee. A source model was previously developed to fit surface gravity and long-wavelength aeromagnetic data, using limited seismic constraint. For the present study the model was further developed, and it is demonstrated that the source region for the satellite anomaly is considerably more extensive than the Kentucky body sensu stricto. The extended source region is modeled using both prismatic model sources and dipole array sources. Magnetization directions for the source region found by inversion of various combinations of scalar and vector data are found to be close to the main field direction, implying the lack of a strong remanent component. It is shown by simulation that in a case (such as this) where the geometry of the source is known, if a strong remanent component is present its direction is determinable, but by scalar data as readily as vector data. Magnetization magnitude for the extended source region is about 3 A/m if the vertical extent of the source includes the whole of the crust.

  15. Analysis of spacecraft anomalies

    NASA Technical Reports Server (NTRS)

    Bloomquist, C. E.; Graham, W. C.

    1976-01-01

    The anomalies from 316 spacecraft covering the entire U.S. space program were analyzed to determine if there were any experimental or technological programs which could be implemented to remove the anomalies from future space activity. Thirty specific categories of anomalies were found to cover nearly 85 percent of all observed anomalies. Thirteen experiments were defined to deal with 17 of these categories; nine additional experiments were identified to deal with other classes of observed and anticipated anomalies. Preliminary analyses indicate that all 22 experimental programs are both technically feasible and economically viable.

  16. The strength and hemispheric asymmetry of Equatorial Ionization Anomaly during two geomagnetic storms in 2013 from Global Ionosphere Map and SAMI2

    NASA Astrophysics Data System (ADS)

    Luo, Weihua; Zhu, Zhengping; Lan, Jiaping

    2016-08-01

    The variations of the strength and the hemispheric asymmetry of EIA were studied by Global Ionosphere Map (GIM) and SAMI2 during two geomagnetic storm periods in March and June 2013. Compared with the 30-days median TEC, the TEC at the two crests of EIA had small variations while the TEC at the trough had a more remarkable variation for the two storms after the SSC. The TEC difference between the two EIA peaks had an increase or decrease several hours after the SSC, the asymmetry between the two crests of EIA represented by the defined asymmetry index has no obvious variations except several hours after the SSC, and EIA strength represented by the Crest-to-Trough Ratio (CTR) had a remarkable increase one day after the SSC day for March storm and decrease several hours after the SSC for June storm. The variations last several hours, with more than 40% variations compared with the value during the quiet period. The EIA peaks were also found to move toward the equator after the SSC during the two storms. The simulation from SAMI2 and HWM07 also shows that EIA crests would move toward the equator during storm time and EIA strength would decrease, which suggests that the disturbed neutral wind and disturbed electric field may be important factors affecting the EIA during the storm periods.

  17. A Novel Locus for Ectodermal Dysplasia of Hair, Nail and Skin Pigmentation Anomalies Maps to Chromosome 18p11.32-p11.31

    PubMed Central

    Habib, Rabia; Ansar, Muhammad; Mattheisen, Manuel; Shahid, Muhammad; Ali, Ghazanfar; Ahmad, Wasim; Betz, Regina C.

    2015-01-01

    Ectodermal dysplasias (EDs) are a large heterogeneous group of inherited disorders exhibiting abnormalities in ectodermally derived appendages such as hair, nails, teeth and sweat glands. EDs associated with reticulated pigmentation phenotype are rare entities for which the genetic basis and pathophysiology are not well characterized. The present study describes a five generation consanguineous Pakistani family segregating an autosomal recessive form of a novel type of ectodermal dysplasia. The affected members present with sparse and woolly hair, severe nail dystrophy and reticulate skin pigmentation. After exclusion of known gene loci related with other skin disorders, genome-wide linkage analysis was performed using Illumina HumanOmniExpress beadchip SNP arrays. We linked this form of ED to human chromosome 18p11.32-p11.31 flanked by the SNPs rs9284390 (0.113Mb) and rs4797100 (3.14 Mb). A maximum two-point LOD score of 3.3 was obtained with several markers along the disease interval. The linkage interval of 3.03 Mb encompassed seventeen functional genes. However, sequence analysis of all these genes did not discover any potentially disease causing-variants. The identification of this novel locus provides additional information regarding the mapping of a rare form of ED. Further research, such as the use of whole-genome sequencing, would be expected to reveal any pathogenic mutation within the disease locus. PMID:26115030

  18. Rock magnetic characteristics of faulted sediments with magnetic anomalies: A case study from the Albuquerque Basin, Rio Grande Rift, New Mexico (Invited)

    NASA Astrophysics Data System (ADS)

    Hudson, M. R.; Grauch, V. J.

    2009-12-01

    High-resolution airborne surveys in the Rio Grande rift have documented abundant short-wavelength, low-amplitude magnetic anomalies generated at faults within basin sediments. We present a rock magnetic study bearing on the source of a10-20-nT linear anomaly over the San Ysidro normal fault, which is well exposed in outcrop in the northern part of the Albuquerque Basin. Magnetic susceptibility (MS) values (SI vol) from 310 sites distributed through a 1200-m-thick composite section of rift-filling sediments of Santa Fe Group and pre-rift sedimentary rocks juxtaposed by the San Ysidro fault have lognormal distributions with well-defined means. These averages generally increase up section through eight map units: from 1.7E-4 to 2.2E-4 in the pre-rift Cretaceous and Eocene rocks, from 9.9E-4 to 1.2E-3 in three units of the Miocene Zia and Cerro Conejo Formations of the Santa Fe Group, and from 1.5E-3 to 3.5E-3 in three units of the Miocene-Pliocene Arroyo Ojito and Ceja Formations of the Santa Fe Group. Remanent magnetization is not important; Koenigsberger ratios are less than 0.3 for Santa Fe Group samples. Rock magnetic parameters (e.g., ARM/MS and S ratios) and petrography indicate that detrital magnetite content and its variable oxidation to maghemite and hematite are the predominant controls of magnetic property variations within the Santa Fe Group sediments. Magnetite is present in rounded detrital grains (including both homogeneous and subdivided types) and as fine inclusions in volcanic rock fragments. Santa Fe Group sediments with highest magnetic susceptibility have greatest magnetic-grain size as indicated by lowest ARM/MS ratios. Magnetic susceptibility increases progressively with sediment grain size to pebbly sand within the fluvial Arroyo Ojito Formation. In contrast, MS reaches highest values in fine to medium sands in eolian Zia Formation. Partial oxidation of detrital magnetite and resultant lower MS is spatially associated with calcite cementation

  19. Complete Bouguer gravity and aeromagnetic maps of the Rattlesnake Roadless Area, Missoula County, Montana

    USGS Publications Warehouse

    Kulik, Dolores M.

    1986-01-01

    The rocks in the study area consist mainly of the Helena Formation and the Missoula Group of the Belt Supergroup (Proterozoic Y).  Rock units of less importance are diabase sills and dikes of probable Proterozoic Z age, Middle Cambrian rocks, and glacial deposits.  Structurally, the study area consists of the Rattlesnake thrust system in the south part and a parautochthonous area broken by vertical faults in the north part.

  20. Aeromagnetic map of the Glacier Peak Wilderness and adjacent areas, Chelan, Skagit, and Snohomish counties, Washington

    USGS Publications Warehouse

    Flanigan, V.J.; Sherrard, Mark

    1985-01-01

    The Glacier Peak Wilderness encompasses 464,741 acres, including 483 acres of patented mining and millsite claims. Also included in the present study are nine areas adjoining the wilderness (see fig. 1), totaling 90,034 acres of recommended wilderness additions. All these lands are here collectively called the “study area.” Access to the study area is provided by generally well maintained trails from gravel or dirt roads along major valleys above Darrington, Marblemount, Stehekin, Holden, Trinity, and Lake Wnatchee. Other than the main access trails across a few passes (Cloudy Pass, Buck Creek Pass, White Pass, and Indian Pass), trails are rough, infrequently maintained, or nonexistent.

  1. Aeromagnetic map of the West Clear Creek roadless area, Coconino and Yavapai Counties, Arizona

    USGS Publications Warehouse

    Davis, Willard E.; Ulrich, George E.

    1983-01-01

    The greater part of the surface is underlain by late Tertiary volcanic rocks, mainly alkali olivine basalts. These overlie Lower Per i an sedimentary rocks consisting mostly of dolomite, limestone, and sandstone strata that dip gently westward. Late Tertiary and Quaternary sedimentary rocks and deposits mantle several ridges (terrace gravels) and cover basalt flows in Verde Valley at the west end of the area (Verde Formation). Quaternary alluvial deposits occur in the main West Clear Creek drainage and its larger tributaries at the west end of the area.

  2. Aeromagnetic map of the Wet Beaver Roadless Area, Yavapai and Coconino counties, Arizona

    USGS Publications Warehouse

    Martin, R.A.

    1986-01-01

    The western boundary of the roadless area and the mouth of Wet Beaver Creek canyon are accessible by Forest Service roads from either Camp Verde or the Sedona interchange on Interstate Highway 17. Various points along the canyon rim and the area boundary can be reached by unimproved roads, jeep trails, and pack trails. The canyon floor is accessible only on foot; in several places, deep pools require a swim or steep climb and descent for traverse of the canyon.

  3. Aeromagnetic map of the Rattlesnake Roadless Area, Coconino and Yavapai counties, Arizona

    USGS Publications Warehouse

    Martin, R.A.

    1986-01-01

    Canyon rims in the roadless area are accessible by several four-wheel-drive trails across the plateau surface from points along Schnebly Hill Road and Highway I-17. Access to Jacks Canyon is by road and four-wheel-drive trail to Jacks Canyon Tank, about 4 mi up the canyon from Highway 179. Access to the head of Jacks Canyon is by foot or horse along a well-maintained trail. Access to the bottom of Woods Canyon is by four-wheel-drive vehicle for about 2 mi from Highway 179 and then by pack trail for about 5 mi more.

  4. Aeromagnetic map of the Arnold Mesa Roadless Area, Yavapai County, Arizona

    USGS Publications Warehouse

    Davis, Willard E.; Wolfe, Edward W.

    1983-01-01

    The Arnold Mesa Roadless Area is within the transition zone between the Colorado Plateaus to the northeast and the Basin and Range province to the southwest. The transition zone is a belt about 701 miles (120 km) wide that extends diagonally from northwest to south east across central Arizona and parallels the topographic margin of the plateaus. The study area is underlain by Precambrian rocks and gently dipping Paleozoic strata that are largely covered by basaltic lavas and pyroclastic deposits of Miocene age ( McKee and Anderson, 1971). Dacite breccia and tuff are locally interbedded with the basaltic rocks. Sedimentary deposits of late Cenozoic age are dominant in the Verde Valley from about Chasm Creek north; they accumulated in a depositional basin bounded on the west by the Verde fault.

  5. Geologic, aeromagnetic and mineral resource potential maps of the Whisker Lake Wilderness, Florence County, Wisconsin

    USGS Publications Warehouse

    Schulz, Klaus J.

    1983-01-01

    The mineral resource potential of the Whisker Lake Wilderness in the Nicolet National Forest, Florence County, northeastern Wisconsin, was evaluated in 1982. The bedrock consists of recrystallized and deformed volcanic and sedimentary rocks of Early Proterozoic age. Sand and gravel are the only identified resources in the Whisker Lake Wilderness. However, the area is somewhat isolated from current markets and both commodities are abundant regionally. The wilderness also has low potential for peat in swampy lowlands. The southwestern part of the wilderness has a low to moderate mineral resource potential for stratabound massive-sulfide (copper-zinc-lead) deposits.

  6. Aeromagnetic map and interpretation of geophysical data from the Condrey Mountain Roadless Area, Siskiyou County, California

    USGS Publications Warehouse

    Jachens, R.C.; Elder, W.P.

    1983-01-01

    The western Paleozoic and Triassic belt that nearly surrounds the Condrey Mountain Schist is a melange of sedimentary, volcanic, and ultramafic rocks metamorphosed to amphibolite facies (Coleman and others, 1983). Only two samples of the metamorphic melange were collected near the Condrcy Mountain Road less Area, but extensive sampling of this unit southwest of the roadless area yielded an average sample density of 2.86±0.15 g/cm3 (112 samples) (Jachens and others, 1983).

  7. Aeromagnetic maps of the Mazatzal Wilderness and contiguous roadless areas, Gila, Maricopa, and Yavapai counties, Arizona

    USGS Publications Warehouse

    Moss, C.K.; Abrams, G.A.

    1985-01-01

    Studies of the geology, geochemistry (Marsh and others, 1983a, b, Erickson, 1984), mines and prospects (Ellis, 1982), and mineral resource potential (Wrucke and others, 1983) of the Mazatzal Wilderness and contiguous roadless areas have been published elsewhere.

  8. Aeromagnetic map of the Hells Gate Roadless Area, Gila County, Arizona

    USGS Publications Warehouse

    Martin, R.A.

    1987-01-01

    Paleozoic strata have been stripped by subsequent erosion. Early Proterozoic rocks constitute about ninety percent of the exposed rocks in the roadless area and are composed of granite, granophyre, and intrusive and extrusive rhyolite (Conway, 1983).

  9. Integrated analysis of high resolution aeromagnetic and satellite imagery data for hydrocarbon exploration in frontier and mature basins

    SciTech Connect

    Berger, Z.; Nash, C.; Ellis, C.; Witham, B.

    1996-08-01

    Recent improvement in the collection and processing of high resolution aeromagnetic data provides, for the first time, information on the spatial distribution of geological structures in the sedimentary section. The magnetic data, which is presented with a series of color images, can be easily merged and correlated with satellite imagery data, air and space home radar and conventional aerial photography. The integration of these two different reconnaissance tools provides excellent means for structural mapping and early evaluation of hydrocarbon plays in both frontier and mature areas. A series of examples supported by both surface and subsurface controls are used to illustrate the exploration application of these two different data sets. In the frontier fold and thrust belts regions of the North Slope Alaska, the Andes of South America, and the Canadian Foothills, high resolution magnetic images and side-looking air and space borne radar data are effectively used to improve the interpretation of geological structures above the detachment levels. This data was also used to identify the presence of basement involved reactivated structures and related migration pathways. In less deformed and more mature areas, such as the Central Basin Platform of West Texas and the Peace River Arch of the Western Canada Basin, the integration of high resolution magnetic images and Landsat TM data leads to the recognition of new faults and fracture systems and related hydrocarbon plays. The availability of high resolution magnetic surveys and new space borne radar systems such as ERS-1, JERS-1 and RADARSAT should play a significant role in exploration of the heavily vegetated fold belt regions of the tropics as well as the vast plains and plateaus of the South American continent.

  10. Reduction of satellite magnetic anomaly data

    NASA Technical Reports Server (NTRS)

    Slud, E. V.; Smith, P. J.; Langel, R. A.

    1984-01-01

    Analysis of global magnetic anomaly maps derived from satellite data is facilitated by inversion to the equivalent magnetization in a constant thickness magnetic crust or, equivalently, by reduction to the pole. Previous inversions have proven unstable near the geomagnetic equator. The instability results from magnetic moment distributions which are admissible in the inversion solution but which make only small contribution to the computed values of anomaly field. Their admissibility in the solution could result from noisy or incomplete data or from small poorly resolved anomalies. The resulting magnetic moments are unrealistically large and oscillatory. Application of the method of principal components (e.g. eigenvalue decomposition and selective elimination of less significant eigenvectors) is proposed as a way of overcoming the instability and the method is demonstrated by applying it to the region around the Bangui anomaly in Central Africa.

  11. Volcanic rocks and subglacial volcanism beneath the West Antarctic Ice Sheet in the West Antarctic Rift System, (WAIS) from aeromagnetic and radar ice sounding - Thiel Subglacial Volcano as possible source of the ash layer in the WAISCORE

    NASA Astrophysics Data System (ADS)

    Behrendt, J. C.

    2012-12-01

    Radar ice sounding and aeromagnetic surveys reported over the West Antarctic Ice Sheet (WAIS) have been interpreted as evidence of subglacial volcanic eruptions over a very extensive area (>500,000 km2 ) of the volcanically active West Antarctic rift system interpreted as caused by subglacial volcanic rocks. Several active volcanoes have shown evidence of eruption through the WAIS and several other active volcanoes are present beneath the WAIS reported from radar and aeromagnetic data. Five-kilometer spaced coincident aeromagnetic and radar ice sounding surveys since 1990 provide three dimensional characterization of the magnetic field and bed topography beneath the ice sheet. These 5-50-km-width, semicircular magnetic anomalies range from 100->1000 nT as observed ~1 km over the 2-3 km thick ice have been interpreted as evidence of subglacial eruptions. Comparison of a carefully selected subset of ~400 of the >1000 high-amplitude anomalies in the CWA survey having topographic expression at the glacier bed, showed >80% had less than 200-m relief. About 18 high-amplitude subglacial magnetic sources also have high topography and bed relief (>600 m) interpreted as subaerially erupted volcanic peaks when the WAIS was absent, whose competent lava flows protected their edifices from erosion. All of these would have high elevation above sea-level, were the ice removed and glacial rebound to have occurred. Nine of these subaerially erupted volcanoes are concentrated in the WAIS divide area. Behrendt et al., 1998 interpreted a circular ring of positive magnetic anomalies overlying the WAIS divide as caused by a volcanic caldera. The area is characterized by high elevation bed topography. The negative regional magnetic anomaly surrounding the caldera anomalies was interpreted as the result of a shallow Curie isotherm. High heat flow inferred from temperature logging in the WAISCORE (G. Clow 2012, personal communication; Conway, 2011) and a prominent volcanic ash layer in the

  12. [Kimmerle's anomaly and stroke].

    PubMed

    Barsukov, S F; Antonov, G I

    1992-10-01

    The anomaly of cranio-vertebral area can frequently be the reason of acute cerebrovascular disorders in vertebro-basilar field. The frequent C1 pathology in the Kimmerle's anomaly. The anatomic studies has shown that 30% of people had this type of anomaly. This pathology can lead to severe vascular diseases of cerebrum because of the squeezing effect upon vertebral arteries in the zone of osteal ponticulus of the rear arch of atlas. PMID:1481402

  13. Improving the geological interpretation of magnetic and gravity satellite anomalies

    NASA Technical Reports Server (NTRS)

    Hinze, W. J.; Braile, L. W. (Principal Investigator); Vonfrese, R. R. B.

    1985-01-01

    Current limitations in the quantitative interpretation of satellite-elevation geopotential field data and magnetic anomaly data were investigated along with techniques to overcome them. A major result was the preparation of an improved scalar magnetic anomaly map of South America and adjacent marine areas directly from the original MAGSAT data. In addition, comparisons of South American and Euro-African data show a strong correlation of anomalies along the Atlantic rifted margins of the continents.

  14. Taussig-Bing Anomaly

    PubMed Central

    Konstantinov, Igor E.

    2009-01-01

    Taussig-Bing anomaly is a rare congenital heart malformation that was first described in 1949 by Helen B. Taussig (1898–1986) and Richard J. Bing (1909–). Although substantial improvement has since been achieved in surgical results of the repair of the anomaly, management of the Taussig-Bing anomaly remains challenging. A history of the original description of the anomaly, the life stories of the individuals who first described it, and the current outcomes of its surgical management are reviewed herein. PMID:20069085

  15. Geophysical interpretation of the magnetic anomalies of the Earth derived from MAGSAT data

    NASA Technical Reports Server (NTRS)

    Arkani-Hamed, J.; Strangway, D. W.

    1985-01-01

    The ambiguities about geophysical implications based on the correlation of scalar magnetic anomalies and geological features were investigated. A method was developed to convert scalar magnetic anomalies into a map of the lateral variations of magnetic susceptibility of the lithosphere. This map is directly correlated with the causative sources. The method is based on spherical harmonic analysis of lateral variations seen on the scalar magnetic anomaly map and those of the lithospheric magnetic susceptibility. The harmonic coefficients are related through the fundamental causality relationship governing a magnetized body and its associated scalar magnetic anomaly. The main features of the resulting magnetic susceptibility anomalies are outlined.

  16. Matched filtering method for separating magnetic anomaly using fractal model

    NASA Astrophysics Data System (ADS)

    Chen, Guoxiong; Cheng, Qiuming; Zhang, Henglei

    2016-05-01

    Fractal/scaling distribution of magnetization in the crust has found with growing body of evidences from spectral analysis of borehole susceptibility logs and magnetic field data, and fractal properties of magnetic sources have already been considered in processing magnetic data such as the Spector and Grant method for depth determination. In this study, the fractal-based matched filtering method is presented for separating magnetic anomalies caused by fractal sources. We argue the benefits of considering fractal natures of source distribution for data processing in magnetic exploration: the first is that the depth determination can be improved by using multiscaling model to interpret the magnetic data power spectrum; the second is that the matched filtering can be reconstructed by employing the difference in scaling exponent together with the corrected depth and amplitude estimates. In the application of synthetic data obtained from fractal modeling and real aeromagnetic data from the Qikou district of China, the proposed fractal-based matched filtering method obtains more reliable depth estimations as well as improved separation between local anomalies (caused by volcanic rocks) and regional field (crystalline basement) in comparison with the conventional matched filtering method.

  17. Competing Orders and Anomalies.

    PubMed

    Moon, Eun-Gook

    2016-01-01

    A conservation law is one of the most fundamental properties in nature, but a certain class of conservation "laws" could be spoiled by intrinsic quantum mechanical effects, so-called quantum anomalies. Profound properties of the anomalies have deepened our understanding in quantum many body systems. Here, we investigate quantum anomaly effects in quantum phase transitions between competing orders and striking consequences of their presence. We explicitly calculate topological nature of anomalies of non-linear sigma models (NLSMs) with the Wess-Zumino-Witten (WZW) terms. The non-perturbative nature is directly related with the 't Hooft anomaly matching condition: anomalies are conserved in renormalization group flow. By applying the matching condition, we show massless excitations are enforced by the anomalies in a whole phase diagram in sharp contrast to the case of the Landau-Ginzburg-Wilson theory which only has massive excitations in symmetric phases. Furthermore, we find non-perturbative criteria to characterize quantum phase transitions between competing orders. For example, in 4D, we show the two competing order parameter theories, CP(1) and the NLSM with WZW, describe different universality class. Physical realizations and experimental implication of the anomalies are also discussed. PMID:27499184

  18. Competing Orders and Anomalies

    NASA Astrophysics Data System (ADS)

    Moon, Eun-Gook

    2016-08-01

    A conservation law is one of the most fundamental properties in nature, but a certain class of conservation “laws” could be spoiled by intrinsic quantum mechanical effects, so-called quantum anomalies. Profound properties of the anomalies have deepened our understanding in quantum many body systems. Here, we investigate quantum anomaly effects in quantum phase transitions between competing orders and striking consequences of their presence. We explicitly calculate topological nature of anomalies of non-linear sigma models (NLSMs) with the Wess-Zumino-Witten (WZW) terms. The non-perturbative nature is directly related with the ’t Hooft anomaly matching condition: anomalies are conserved in renormalization group flow. By applying the matching condition, we show massless excitations are enforced by the anomalies in a whole phase diagram in sharp contrast to the case of the Landau-Ginzburg-Wilson theory which only has massive excitations in symmetric phases. Furthermore, we find non-perturbative criteria to characterize quantum phase transitions between competing orders. For example, in 4D, we show the two competing order parameter theories, CP(1) and the NLSM with WZW, describe different universality class. Physical realizations and experimental implication of the anomalies are also discussed.

  19. Competing Orders and Anomalies

    PubMed Central

    Moon, Eun-Gook

    2016-01-01

    A conservation law is one of the most fundamental properties in nature, but a certain class of conservation “laws” could be spoiled by intrinsic quantum mechanical effects, so-called quantum anomalies. Profound properties of the anomalies have deepened our understanding in quantum many body systems. Here, we investigate quantum anomaly effects in quantum phase transitions between competing orders and striking consequences of their presence. We explicitly calculate topological nature of anomalies of non-linear sigma models (NLSMs) with the Wess-Zumino-Witten (WZW) terms. The non-perturbative nature is directly related with the ’t Hooft anomaly matching condition: anomalies are conserved in renormalization group flow. By applying the matching condition, we show massless excitations are enforced by the anomalies in a whole phase diagram in sharp contrast to the case of the Landau-Ginzburg-Wilson theory which only has massive excitations in symmetric phases. Furthermore, we find non-perturbative criteria to characterize quantum phase transitions between competing orders. For example, in 4D, we show the two competing order parameter theories, CP(1) and the NLSM with WZW, describe different universality class. Physical realizations and experimental implication of the anomalies are also discussed. PMID:27499184

  20. Summer Temperature Anomalies for the Northern Hemisphere, 1955-2011

    NASA Video Gallery

    This visualization shows a flat map of the Earth with summertime temperature anomalies for the Northern Hemisphere. This analysis compares observed seasonal mean temperatures (June-July-August) to ...

  1. Investigating tectonic and bathymetric features of the Indian Ocean using MAGSAT magnetic anomaly data

    NASA Technical Reports Server (NTRS)

    Sailor, R. V.; Lazarewicz, A. R. (Principal Investigator)

    1982-01-01

    An equivalent source anomaly map and a map of the relative magnetization for the investigation region were produced. Gravimetry, bathymetry, and MAGSAT anomaly maps were contoured in pseudocolor displays. Finally, an autoregressive spectrum estimation technique was verified with synthetic data and shown to be capable of resolving exponential power spectra using small samples of data. Interpretations were made regarding the relationship between MAGSAT data spectra and crustal anomaly spectra.

  2. The first aeromagnetic survey in the Arctic: results of the Graf Zeppelin airship flight of 1931

    NASA Astrophysics Data System (ADS)

    Raspopov, O. M.; Sokolov, S. N.; Demina, I. M.; Pellinen, R.; Petrova, A. A.

    2013-03-01

    In July of 1931, on the eve of International Polar Year II, an Arctic flight of the Graf Zeppelin rigid airship was organized. This flight was a realization of the idea of F. Nansen, who advocated the use of airships for the scientific exploration of the Arctic territories, which were poorly studied and hardly accessible at that time. The route of the airship flight was Berlin - Leningrad - Arkhangelsk - Franz Josef Land - Severnaya Zemlya - the Taimyr Peninsula - Novaya Zemlya - Arkhangelsk - Berlin. One of scientific goals of the expedition was to measure the H and D geomagnetic field components. Actually, the first aeromagnetic survey was carried out in the Arctic during the flight. After the expedition, only preliminary results of the geomagnetic measurements, in which an anomalous behavior of magnetic declination in the high-latitude part of the route was noted, were published. Our paper is concerned with the first aeromagnetic measurements in the Arctic and their analysis based on archival and modern data on the magnetic field in the Barents and Kara sea regions. It is shown that the magnetic field along the flight route had a complicated structure, which was not reflected in the magnetic charts of those times. The flight was very important for future development of aero- and ground-based magnetic surveys in the Arctic, showing new methods in such surveys.

  3. Müllerian anomalies.

    PubMed

    Gell, Jennifer S

    2003-11-01

    The reproductive organs in both males and females consist of gonads, internal ductal structures, and external genitalia. Normal sexual differentiation is dependent on the genetic sex determined by the presence or absence of the Y chromosome at fertilization. Testes develop under the influence of the Y chromosome and ovaries develop when no Y chromosome is present. In the absence of testes and their normal hormonal products, sexual differentiation proceeds along the female pathway, resulting in a normal female phenotype. Anatomic gynecologic anomalies occur when there is failure of normal embryologic ductal development. These anomalies include congenital absence of the vagina as well as defects in lateral and vertical fusion of the Müllerian ducts. Treatment of müllerian anomalies begins with the correct identification of the anomaly and an understanding of the embryologic origin. This includes evaluation for other associated anomalies such as renal or skeletal abnormalities. After correct identification, treatment options include nonsurgical as well as surgical intervention. This chapter serves to review the embryology and development of the reproductive system and to describe common genital tract anomalies. Details of surgical or nonsurgical correction of these anomalies are presented. PMID:14724770

  4. Gravity and magnetic anomaly data analysis

    NASA Technical Reports Server (NTRS)

    Braile, L. W.; Hinze, W. J.; Vonfrese, R. R. B. (Principal Investigator)

    1982-01-01

    Progress on the analysis MAGSAT data is reported. The MAGSAT data from 40 deg S to 70 deg N latitude and 30 deg W to 60 E longitude was reduced to radial polarization. In addition, gravity anomaly data from this area were processed and a variety of filtered maps were prepared for combined interpretation of the gravity and magnetic data in conjunction with structural and tectonic maps of the area. The VERSATEC listings and cross-reference maps of variable and array names for the spherical Earth analysis programs NVERTSM, SMFLD, NVERTG, and GFLD were also prepared.

  5. Behavioral economics without anomalies.

    PubMed Central

    Rachlin, H

    1995-01-01

    Behavioral economics is often conceived as the study of anomalies superimposed on a rational system. As research has progressed, anomalies have multiplied until little is left of rationality. Another conception of behavioral economics is based on the axiom that value is always maximized. It incorporates so-called anomalies either as conflicts between temporal patterns of behavior and the individual acts comprising those patterns or as outcomes of nonexponential time discounting. This second conception of behavioral economics is both empirically based and internally consistent. PMID:8551195

  6. High resolution magnetic field mapping of complex magmatic rock suites and associated tectonic structures in the Southern Andes

    NASA Astrophysics Data System (ADS)

    Díaz-Michelena, Marina; Kilian, Rolf

    2013-04-01

    distinct cooling histories and related grain size distribution of magnetites in these dyke, but most of them have been demagnetized by hydrothermal alteration. However, many dykes include thin zones (a few centimetres) with hydrothermal mineralization (e.g. pyrrhotite) which have been formed at the interfaces between mafic dykes and granites. This hydro-thermal re-magnetization along the dykes and sometimes within the granites are characterised by significant and sharp defined positive magnetic anomalies. The regional mapping of these anomalies shows the orientation of the hydrothermal pathways which follow typical neotectonic crustal lineaments. Our results should improve interpretation of aeromagnetic mapping of crystalline basement rocks and hydrothermal pathways, also on other planets. 1 - Hervé, F., Pankhurst, R.J., Fanning, C.M., Calderón, M., Yaxley, G.M. (2007). The South Patagonian batholith: 150 my of granite magmatism on a plate margin. Lithos 97, 373-394. 2 - Alva-Valdivia L. M. and López-Loera, H. (2011). A review of iron oxide transformations, rock magnetism and interpretation of magnetic anomalies: El Morro Mine (Brazil), a case study. Geofísica International 50-3: 341-362.

  7. Continental and oceanic magnetic anomalies: Enhancement through GRM

    NASA Technical Reports Server (NTRS)

    Vonfrese, R. R. B.; Hinze, W. J.

    1985-01-01

    In contrast to the POGO and MAGSAT satellites, the Geopotential Research Mission (GRM) satellite system will orbit at a minimum elevation to provide significantly better resolved lithospheric magnetic anomalies for more detailed and improved geologic analysis. In addition, GRM will measure corresponding gravity anomalies to enhance our understanding of the gravity field for vast regions of the Earth which are largely inaccessible to more conventional surface mapping. Crustal studies will greatly benefit from the dual data sets as modeling has shown that lithospheric sources of long wavelength magnetic anomalies frequently involve density variations which may produce detectable gravity anomalies at satellite elevations. Furthermore, GRM will provide an important replication of lithospheric magnetic anomalies as an aid to identifying and extracting these anomalies from satellite magnetic measurements. The potential benefits to the study of the origin and characterization of the continents and oceans, that may result from the increased GRM resolution are examined.

  8. Aeromagnetic and gravity investigations of the Coastal Area and Continental Shelf of Liberia, West Africa, and their relation to continental drift

    USGS Publications Warehouse

    Behrendt, John C.; Wotorson, Cletus S.

    1970-01-01

    An aeromagnetic survey has shown the existence of several basins in which magnetic basement depths are greater than 5 km on the continental shelf off Liberia. Magnetic diabase of 176 to 192 m.y. (Jurassic) in age intruding the Paleozoic (?) rocks and overlain by younger rocks onshore requires the distinction between “magnetic basement” and “basement.” Several lines of evidence suggest that the Paleozoic(?) rocks are less than 1 km thick; this implies that the diabase does not introduce a large error in depth-to-basement estimates. The dikes or their extrusive equivalents are traceable, on the basis of the magnetic data, beneath the younger sedimentary rock in the basins to the edge of the continental slope. The magnetic data also delineate a second zone of diabase dikes 90 km inland, parallel to the coast, which cross the entire country. The intrusion of the younger dikes probably coincides with rifting at the beginning of the separation of Africa and South America, and the associated magnetic anomaly zones appear to be parallel with and continuous into the anomaly bands in the Atlantic. A major northeast-trending break in the magnetic fabric intersects the coast near 9° W. and is associated with Eburnean age rocks (about 2000 m.y.) to the southeast as contrasted with Liberian-age rocks (about 2700 m.y.) to the northwest. Change in magnetic fabric direction inland from northeast to northwest in the coastal area allows recognition of a boundary between the Liberian-age rocks inland and Pan-African-age (about 550 m.y.) rocks in the coastal area northwest of about 9° 20'W. Sets of north-northwest-and west-northwest—trending faults of 1 to 2 km vertical displacement cut the Cretaceous sedimentary rocks onshore and can be traced into the offshore basins. Vertical displacements of several kilometers in the magnetic basement underlying the continental shelf suggest a pattern of block faulting all along the coast and continental shelf. Negative Bouguer

  9. Dual diaphragmatic anomalies.

    PubMed

    Padmanabhan, Arjun; Thomas, Abin Varghese

    2016-01-01

    Although diaphragmatic anomalies such as an eventration and hiatus hernia are commonly encountered in incidental chest X-ray imaging, the presence of concomitant multiple anomalies is extremely rare. This is all the more true in adults. Herein, we present the case of a 75-year-old female, while undergoing a routine chest X-ray imaging, was found to have eventration of right hemidiaphragm along with a hiatus hernia as well. PMID:27625457

  10. Dual diaphragmatic anomalies

    PubMed Central

    Padmanabhan, Arjun; Thomas, Abin Varghese

    2016-01-01

    Although diaphragmatic anomalies such as an eventration and hiatus hernia are commonly encountered in incidental chest X-ray imaging, the presence of concomitant multiple anomalies is extremely rare. This is all the more true in adults. Herein, we present the case of a 75-year-old female, while undergoing a routine chest X-ray imaging, was found to have eventration of right hemidiaphragm along with a hiatus hernia as well.

  11. Anomalies and entanglement entropy

    NASA Astrophysics Data System (ADS)

    Nishioka, Tatsuma; Yarom, Amos

    2016-03-01

    We initiate a systematic study of entanglement and Rényi entropies in the presence of gauge and gravitational anomalies in even-dimensional quantum field theories. We argue that the mixed and gravitational anomalies are sensitive to boosts and obtain a closed form expression for their behavior under such transformations. Explicit constructions exhibiting the dependence of entanglement entropy on boosts is provided for theories on spacetimes with non-trivial magnetic fluxes and (or) non-vanishing Pontryagin classes.

  12. Regional methods for mapping major faults in areas of uniform low relief, as used in the London Basin, UK

    NASA Astrophysics Data System (ADS)

    Haslam, Richard; Aldiss, Donald

    2013-04-01

    Most of the London Basin, south-eastern UK, is underlain by the Palaeogene London Clay Formation, comprising a succession of rather uniform marine clay deposits up to 150 m thick, with widespread cover of Quaternary deposits and urban development. Therefore, in this area faults are difficult to delineate (or to detect) by conventional geological surveying methods in the field, and few are shown on the geological maps of the area. However, boreholes and excavations, especially those for civil engineering works, indicate that faults are probably widespread and numerous in the London area. A representative map of fault distribution and patterns of displacement is a pre-requisite for understanding the tectonic development of a region. Moreover, faulting is an important influence on the design and execution of civil engineering works, and on the hydrogeological characteristics of the ground. This paper reviews methods currently being used to map faults in the London Basin area. These are: the interpretation of persistent scatterer interferometry (PSI) data from time-series satellite-borne radar measurements; the interpretation of regional geophysical fields (Bouguer gravity anomaly and aeromagnetic), especially in combination with a digital elevation model; and the construction and interpretation of 3D geological models. Although these methods are generally not as accurate as large-scale geological field surveys, due to the availability of appropriate data in the London Basin they provide the means to recognise and delineate more faults, and with more confidence, than was possible using traditional geological mapping techniques. Together they reveal regional structures arising during Palaeogene crustal extension and subsidence in the North Sea, followed by inversion of a Mesozoic sedimentary basin in the south of the region, probably modified by strike-slip fault motion associated with the relative northward movement of the African Plate and the Alpine orogeny. This

  13. On isostatic geoid anomalies

    NASA Technical Reports Server (NTRS)

    Haxby, W. F.; Turcotte, D. L.

    1978-01-01

    In regions of slowly varying lateral density changes, the gravity and geoid anomalies may be expressed as power series expansions in topography. Geoid anomalies in isostatically compensated regions can be directly related to the local dipole moment of the density-depth distribution. This relationship is used to obtain theoretical geoid anomalies for different models of isostatic compensation. The classical Pratt and Airy models give geoid height-elevation relationships differing in functional form but predicting geoid anomalies of comparable magnitude. The thermal cooling model explaining ocean floor subsidence away from mid-ocean ridges predicts a linear age-geoid height relationship of 0.16 m/m.y. Geos 3 altimetry profiles were examined to test these theoretical relationships. A profile over the mid-Atlantic ridge is closely matched by the geoid curve derived from the thermal cooling model. The observed geoid anomaly over the Atlantic margin of North America can be explained by Airy compensation. The relation between geoid anomaly and bathymetry across the Bermuda Swell is consistent with Pratt compensation with a 100-km depth of compensation.

  14. Continental magnetic anomaly constraints on continental reconstruction

    NASA Technical Reports Server (NTRS)

    Vonfrese, R. R. B.; Hinze, W. J.; Olivier, R.; Bentley, C. R.

    1985-01-01

    Crustal magnetic anomalies mapped by the MAGSAT satellite for North and South America, Europe, Africa, India, Australia and Antarctica and adjacent marine areas were adjusted to a common elevation of 400 km and differentially reduced to the radial pole of intensity 60,000 nT. These radially polarized anomalies are normalized for differential inclination, declination and intensity effects of the geomagnetic field, so that in principle they directly reflected the geometric and magnetic polarization attributes of sources which include regional petrologic variations of the crust and upper mantle, and crustal thickness and thermal perturbations. Continental anomalies demonstrate remarkably detailed correlation of regional magnetic sources across rifted margins when plotted on a reconstruction of Pangea. Accordingly, they suggest further fundamental constraints on the geologic evolution of the continents and their reconstructions.

  15. Remagnetization of the Rush Springs Formation, Cement, Oklahoma: Implications for dating hydrocarbon migration and aeromagnetic exploration

    SciTech Connect

    Elmore, R.D.; Leach, M.C. )

    1990-02-01

    The Permian Rush Springs Formation above the Cement anticline in Oklahoma contains a Late Permian-Early Triassic chemical remanent magnetization (CRM) that is interpreted to reside in authigenic magnetite. The CRM is found in bleached, carbonate-cemented sandstones that were altered by hydrocarbons and contain authigenic magnetite. The magnetite presumably precipitated in the Late Permian-Early Triassic as a result of chemical conditions created by hydrocarbons or associated fluids that migrated from underlying reservoir units. Red sandstones around Cement that were not altered by hydrocarbons contain a Permian CRM that resides in hematite. The red and bleached sandstones have similar magnetization intensities and susceptibilities; this raises questions about the use of aeromagnetic surveys in hydrocarbon exploration.

  16. Aeromagnetic Survey of Taylor Mountains Area in Southwest Alaska, A Website for the Distribution of Data

    USGS Publications Warehouse

    U.S. Geological Survey

    2006-01-01

    USGS Data Series Report for the release of aeromagnetic data collected in the Taylor Mountains Area of Southwest Alaska and associated contractor reports. Summary: An airborne high-resolution magnetic and coincidental horizontal magnetic gradiometer survey was completed over the Taylor Mountains area in southwest Alaska. The flying was undertaken by McPhar Geosurveys Ltd. on behalf of the United States Geological Survey (USGS). First tests and calibration flights were completed by April 7, 2004, and data acquisition was initiated on April 17, 2004. The final data acquisition and final test/calibrations flight was completed on May 31, 2004. Data acquired during the survey totaled 8,971.15 line-miles.

  17. A High-Resolution Aeromagnetic Survey to Identify Buried Faults at Dixie Valley, Nevada

    SciTech Connect

    Smith, Richard Paul; Grauch, V. J. S.; Blackwell, David D.

    2002-09-01

    Preliminary results from a high-resolution aeromagnetic survey (200m line spacing) acquired in Dixie Valley early in 2002 provide confirmation of intra-basin faulting based on subtle surface indications. In addition the data allow identification of the locations and trends of many faults that have not been recognized at the surface, and provide a picture of intrabasin faulting patterns not possible using other techniques. The data reveal a suite of northeasterly-trending curving and branching faults that surround a relatively coherent block in the area of Humboldt Salt Marsh, the deepest part of the basin. The producing reservoir occurs at the north end of this coherent block, where rampart faults from the northwest side of the valley merge with anthithetic faults from the central and southeast parts of the valley.

  18. FORTRAN codes to implement enhanced local wave number technique to determine the depth and location and shape of the causative source using magnetic anomaly

    NASA Astrophysics Data System (ADS)

    Agarwal, B. N. P.; Srivastava, Shalivahan

    2008-12-01

    The total field magnetic anomaly is analyzed to compute the depth and location and geometry of the causative source using two FORTRAN source codes, viz., FRCON1D and ELW. No assumption on the nature of source geometry, susceptibility contrast, etc. has been made. The source geometry is estimated by computing the structural index from previously determined depth and location. A detailed procedure is outlined for using these codes through a theoretical anomaly. The suppression of high-frequency noise in the observed data is tackled by designing a box-car window with cosine termination. The termination criterion is based on the peak position of the derivative operator computed for a pre-assumed depth of a shallow source below which the target is situated. The applicability of these codes has been demonstrated by analyzing a total field aeromagnetic anomaly of the Matheson area of northern Ontario, Canada.

  19. Curie point depth from spectral analysis of aeromagnetic data for geothermal reconnaissance in Afghanistan

    NASA Astrophysics Data System (ADS)

    Saibi, H.; Aboud, E.; Gottsmann, J.

    2015-11-01

    The geologic setting of Afghanistan has the potential to contain significant mineral, petroleum and geothermal resources. However, much of the country's potential remains unknown due to limited exploration surveys. Here, we present countrywide aeromagnetic data to estimate the Curie point depth (CPD) and to evaluate the geothermal exploration potential. CPD is an isothermal surface at which magnetic minerals lose their magnetization and as such outlines an isotherm of about 580 °C. We use spectral analysis on the aeromagnetic data to estimate the CPD spatial distribution and compare our findings with known geothermal fields in the western part of Afghanistan. The results outline four regions with geothermal potential: 1) regions of shallow Curie point depths (∼16-21 km) are located in the Helmand basin. 2) regions of intermediate depths (∼21-27 km) are located in the southern Helmand basin and the Baluchistan area. 3) Regions of great depths (∼25-35 km) are located in the Farad block. 4) Regions of greatest depths (∼35-40 km) are located in the western part of the northern Afghanistan platform. The deduced thermal structure in western Afghanistan relates to the collision of the Eurasian and Indian plates, while the shallow CPDs are related to crustal thinning. This study also shows that the geothermal systems are associated with complex magmatic and tectonic association of major intrusions and fault systems. Our results imply geothermal gradients ranging from 14 °C/km to 36 °C/km and heat-flow values ranging from 36 to 90 mW/m2 for the study area.

  20. Detection of Aeromagnetic Field Changes Using an Unmanned Autonomous Helicopter: Repeated Experiments at Tarumae Volcano (Japan)

    NASA Astrophysics Data System (ADS)

    Hashimoto, T.; Koyama, T.; Yanagisawa, T.; Yoshimoto, M.; Ohminato, T.; Kaneko, T.

    2015-12-01

    Volcanic eruptions often prohibit humans from approaching active craters. Meanwhile, it is important, especially at the initial stage of an eruption, to perform visual surveillance, geophysical/chemical measurements and material sampling in the vicinity of the craters. Besides scientific purposes, information from such surveys is helpful for the local government in deciding the response to volcanic unrest. We started airborne surveys using an unmanned helicopter on a trial basis in cooperation with the Hokkaido Regional Development Bureau. As a part of the project, we repeated aeromagnetic surveys over Mt. Tarumae (1,041m), one of the active volcanoes in northern Japan in 2011, 2012 and 2013. Owing to its high accuracy of positioning control in the autonomous flight with the aid of GPS navigation and the fairly small magnetic field gradient in the air, temporal changes up to 30 nT were successfully detected through a direct comparison between separate surveys. The field changes in the air were mostly consistent with those on the ground surface, which suggested remagnetization due to cooling beneath the summit lava dome. Through our three-year experiments, the unmanned helicopter was proved to be useful for aeromagnetic monitoring. Although the system still has some limitations in terms of maximum flight altitude and operational range from the base station, we emphasize the following three advantages of this technique. (1) Operation without exposing human to volcanic hazards. (2) Straightforward data processing procedure to obtain temporal magnetic field changes, which is especially important in an emergency response such as an ongoing unrest. (3) Great reduction of the cost to maintain ground-based monitoring stations for many years. Acknowledgments: We express sincere thanks to Muroran and Sapporo Development and Construction Departments of the HRDB for the cooperation in the field experiments using their unmanned helicopter.

  1. The Mackenzie River magnetic anomaly, Yukon and Northwest Territories, Canada-Evidence for Early Proterozoic magmatic arc crust at the edge of the North American craton

    USGS Publications Warehouse

    Pilkington, M.; Saltus, R.W.

    2009-01-01

    We characterize the nature of the source of the high-amplitude, long-wavelength, Mackenzie River magnetic anomaly (MRA), Yukon and Northwest Territories, Canada, based on magnetic field data collected at three different altitudes: 300??m, 3.5??km and 400??km. The MRA is the largest amplitude (13??nT) satellite magnetic anomaly over Canada. Within the extent of the MRA, source depth estimates (8-12??km) from Euler deconvolution of low-altitude aeromagnetic data show coincidence with basement depths interpreted from reflection seismic data. Inversion of high-altitude (3.5??km) aeromagnetic data produces an average magnetization of 2.5??A/m within a 15- to 35-km deep layer, a value typical of magmatic arc complexes. Early Proterozoic magmatic arc rocks have been sampled to the southeast of the MRA, within the Fort Simpson magnetic anomaly. The MRA is one of several broad-scale magnetic highs that occur along the inboard margin of the Cordillera in Canada and Alaska, which are coincident with geometric changes in the thrust front transition from the mobile belt to stable cratonic North America. The inferred early Proterozoic magmatic arc complex along the western edge of the North American craton likely influenced later tectonic evolution, by acting as a buttress along the inboard margin of the Cordilleran fold-and-thrust belt. Crown Copyright ?? 2008.

  2. Geopotential field anomalies and regional tectonic features

    NASA Astrophysics Data System (ADS)

    Mandea, Mioara; Korte, Monika

    2016-07-01

    Maps of both gravity and magnetic field anomalies offer crucial information about physical properties of the Earth's crust and upper mantle, required in understanding geological settings and tectonic structures. Density and magnetization represent independent rock properties and thus provide complementary information on compositional and structural changes. Two regions are considered: southern Africa (encompassing South Africa, Namibia and Botswana) and Germany. This twofold choice is motivated firstly by the fact that these regions represent rather diverse geological and geophysical conditions (old Archean crust with strong magnetic anomalies in southern Africa, and much younger, weakly magnetized crust in central Europe) and secondly by our intimate knowledge of the magnetic vector ground data from these two regions. We take also advantage of the recently developed satellite potential field models and compare magnetic and gravity gradient anomalies of some 200 km resolution. Comparing short and long wavelength anomalies and the correlation of rather large scale magnetic and gravity anomalies, and relating them to known lithospheric structures, we generally find a better agreement over the southern African region than the German territory. This probably indicates a stronger concordance between near-surface and deeper structures in the former area, which can be perceived to agree with a thicker lithosphere.

  3. Hyperspectral Anomaly Detection in Urban Scenarios

    NASA Astrophysics Data System (ADS)

    Rejas Ayuga, J. G.; Martínez Marín, R.; Marchamalo Sacristán, M.; Bonatti, J.; Ojeda, J. C.

    2016-06-01

    We have studied the spectral features of reflectance and emissivity in the pattern recognition of urban materials in several single hyperspectral scenes through a comparative analysis of anomaly detection methods and their relationship with city surfaces with the aim to improve information extraction processes. Spectral ranges of the visible-near infrared (VNIR), shortwave infrared (SWIR) and thermal infrared (TIR) from hyperspectral data cubes of AHS sensor and HyMAP and MASTER of two cities, Alcalá de Henares (Spain) and San José (Costa Rica) respectively, have been used. In this research it is assumed no prior knowledge of the targets, thus, the pixels are automatically separated according to their spectral information, significantly differentiated with respect to a background, either globally for the full scene, or locally by image segmentation. Several experiments on urban scenarios and semi-urban have been designed, analyzing the behaviour of the standard RX anomaly detector and different methods based on subspace, image projection and segmentation-based anomaly detection methods. A new technique for anomaly detection in hyperspectral data called DATB (Detector of Anomalies from Thermal Background) based on dimensionality reduction by projecting targets with unknown spectral signatures to a background calculated from thermal spectrum wavelengths is presented. First results and their consequences in non-supervised classification and extraction information processes are discussed.

  4. Astrometric solar system anomalies

    SciTech Connect

    Nieto, Michael Martin; Anderson, John D

    2009-01-01

    There are at least four unexplained anomalies connected with astrometric data. perhaps the most disturbing is the fact that when a spacecraft on a flyby trajectory approaches the Earth within 2000 km or less, it often experiences a change in total orbital energy per unit mass. next, a secular change in the astronomical unit AU is definitely a concern. It is increasing by about 15 cm yr{sup -1}. The other two anomalies are perhaps less disturbing because of known sources of nongravitational acceleration. The first is an apparent slowing of the two Pioneer spacecraft as they exit the solar system in opposite directions. Some astronomers and physicists are convinced this effect is of concern, but many others are convinced it is produced by a nearly identical thermal emission from both spacecraft, in a direction away from the Sun, thereby producing acceleration toward the Sun. The fourth anomaly is a measured increase in the eccentricity of the Moon's orbit. Here again, an increase is expected from tidal friction in both the Earth and Moon. However, there is a reported unexplained increase that is significant at the three-sigma level. It is produent to suspect that all four anomalies have mundane explanations, or that one or more anomalies are a result of systematic error. Yet they might eventually be explained by new physics. For example, a slightly modified theory of gravitation is not ruled out, perhaps analogous to Einstein's 1916 explanation for the excess precession of Mercury's perihelion.

  5. Gravimetric maps of the Central African Republic

    NASA Technical Reports Server (NTRS)

    Albouy, J.; Godivier, R. (Principal Investigator)

    1982-01-01

    Gravimetric maps of the Central African Republic are described including a map of Bouguer anomalies at 1/1,000,000 in two sections (eastern sheet, western sheet) and a map, in color, of Bouguer anomalies at 1/2,000,000. Instrumentation, data acquisition, calibration, and data correction procedures are discussed.

  6. Magnetic anomalies in East Antarctica: a window on major tectonic provinces and their boundaries

    USGS Publications Warehouse

    Golynsky, A.V.

    2007-01-01

    An analysis of aeromagnetic data compiled within the Antarctic Digital Magnetic Anomaly Project (ADMAP) yields significant new insight into major tectonic provinces of East Antarctica. Several previously unknown crustal blocks are imaged in the deep interior of the continent, which are interpreted as cratonic nuclei. These cratons are fringed by a large and continuous orogenic belt between Coats Land and Princess Elizabeth Land, with possible branches in the deeper interior of East Antarctica. Most of the crustal provinces and boundaries identified in this study are only in part exposed. More detailed analyses of these crustal provinces and their tectonic boundaries would require systematic acquisition of additional high-resolution magnetic data, because at present the ADMAP database is largely inadequate to address many remaining questions regarding Antarctica’s tectonic evolution.

  7. Candidate-penetrative-fracture mapping of the Grand Canyon area, Arizona, from spatial correlation of deep geophysical features and surficial lineaments

    USGS Publications Warehouse

    Gettings, Mark E.; Bultman, Mark W.

    2005-01-01

    Some aquifers of the southwestern Colorado Plateaus Province are deeply buried and overlain by several impermeable shale layers, and so recharge to the aquifer probably is mainly by seepage down penetrative-fracture systems. The purpose of this 2-year study, sponsored by the U.S. National Park Service, was to map candidate deep penetrative fractures over a 120,000-km2 area, using gravity and aeromagnetic-anomaly data together with surficial-fracture data. The study area was on the Colorado Plateau south of the Grand Canyon and west of Black Mesa; mapping was carried out at a scale of 1:250,000. The resulting database constitutes a spatially registered estimate of deep-fracture locations. Candidate penetrative fractures were located by spatial correlation of horizontal- gradient and analytic-signal maximums of gravity and magnetic anomalies with major surficial lineaments obtained from geologic, topographic, side-looking-airborne-radar, and satellite imagery. The maps define a subset of candidate penetrative fractures because of limitations in the data coverage and the analytical technique. In particular, the data and analytical technique used cannot predict whether the fractures are open or closed. Correlations were carried out by using image-processing software, such that every pixel on the resulting images was coded to uniquely identify which datasets are correlated. The technique correctly identified known and many new deep fracture systems. The resulting penetrative-fracture-distribution maps constitute an objectively obtained, repeatable dataset and a benchmark from which additional studies can begin. The maps also define in detail the tectonic fabrics of the southwestern Colorado Plateaus Province. Overlaying the correlated lineaments on the normalized-density-of-vegetation-index image reveals that many of these lineaments correlate with the boundaries of vegetation zones in drainages and canyons and so may be controlling near-surface water availability in

  8. Mapping the structure and depth to magnetic basement in the United States using the magnetic tilt-depth method

    NASA Astrophysics Data System (ADS)

    Salem, A.; Williams, S.; Fairhead, J.; Ravat, D.; Blakely, R.

    2008-05-01

    We provide a rationale for rapidly assessing the depth and structure of sedimentary basins from magnetic anomaly data. Our methodology is based on "tilt-depth" calculated strictly from first-order derivatives of the total magnetic field. We assume a simple buried vertical contact model such that the 0 degree contour of the tilt derivative closely follows the edge of the vertical contact, while the distance between the 0 and +/-45 degree contours provides an estimate of the depth to the top of the buried contact. We have applied the tilt-depth method to two magnetic databases with very different scales. In the first application, we used the Magnetic Anomaly Map of North America covering the continental United States, gridded at a sample interval of 1 km. Calculated depths show a strong correlation with known areas of shallow basement and sedimentary basins. To quantitatively evaluate the results, we low-pass filtered the calculated depths, desampled the grid to a 1-degree sample interval, and compared with a grid of sediment thickness based on drilling data (Laske and Masters, 1997). In visual comparisons, these two datasets show a striking correlation between basement highs and lows, and, quantitatively, the overall correlation coefficient between the two grids is 0.87. We also applied the tilt-depth methodology to high-resolution aeromagnetic data from the Olympic Peninsula of Washington State. To first order, the Olympic Peninsula is a massive east-plunging anticline consisting of two distinct subduction-related terranes: An essentially nonmagnetic core of highly deformed Tertiary sedimentary rocks, and a periphery of highly magnetic, early Eocene volcanic rocks. The tilt-depth method successfully identified a number of important tectonic elements known from geologic mapping. The steeply dipping thrust contact between core and periphery rocks was clearly delineated, and other more subtle magnetic anomalies within the periphery volcanic rocks and even within the

  9. Large-Angle Anomalies in the CMB

    DOE PAGESBeta

    Copi, Craig J.; Huterer, Dragan; Schwarz, Dominik J.; Starkman, Glenn D.

    2010-01-01

    We review the recently found large-scale anomalies in the maps of temperature anisotropies in the cosmic microwave background. These include alignments of the largest modes of CMB anisotropy with each other and with geometry and direction of motion of the solar ssystem, and the unusually low power at these largest scales. We discuss these findings in relation to expectation from standard inflationary cosmology, their statistical significance, the tools to study them, and the various attempts to explain them.

  10. Earth analog for Martian magnetic anomalies: remanence properties of hemo-ilmenite norites in the Bjerkreim-Sokndal intrusion, Rogaland, Norway

    NASA Astrophysics Data System (ADS)

    McEnroe, S. A.; Brown, L. L.; Robinson, Peter

    2004-10-01

    To explain the very large remanent magnetic anomalies on Mars, which no longer has a global magnetic field, it is important to evaluate rocks on Earth with the necessary properties of high natural remanent magnetization (NRM) and coercivity. Here, we describe a possible analog from the 230-km 2 930 Ma Bjerkreim-Sokndal layered intrusion (BKS) in Rogaland, Norway. In the layered series of the BKS, fractional crystallization of jotunitic magma was punctuated by influx and mixing of more primitive magmas, producing six megacyclic units, each typically with early plagioclase-rich norites, intermediate hemo-ilmenite-rich norites and late magnetite norites with subordinate near end-member ilmenite. Following each influx, the magma resumed normal crystallization and, following the last, near the base of Megacyclic Unit IV, crystallization continued until norites gave way to massive fayalite-magnetite mangerites and quartz mangerites in the upper part of the intrusion. The Megacycles are marked on a regional aeromagnetic map by remanent-controlled negative anomalies over ilmenite norites and induced positive anomalies over magnetite norites and mangerites. A prominent negative anomaly (with amplitude -13,000 nT in a high-resolution helicopter survey, down to -27,000 nT below background in ground magnetic profiles) occurs over the central part of Megacyclic Unit IV. The anomaly is centered on ilmenite norite Unit IVe and is most intense where cumulate layering is near vertical at the southeast edge of the Bjerkreim Lobe of the intrusion at Heskestad. Here, Unit IVe is flanked to the east by magnetite norite of Unit IVc and country-rock gneisses (group E) and to the west by Unit IVf magnetite norite and mangerites (group W). Magnetic properties were measured on 128 oriented samples. Susceptibilities are similar for all three sample groups at ˜8×10 -2, but Koenigsberger ratios are very different, with average values of 7.7 for IVe, and <1 for groups E and W. The IVe samples

  11. QCD trace anomaly

    SciTech Connect

    Andersen, Jens O.; Leganger, Lars E.; Strickland, Michael; Su, Nan

    2011-10-15

    In this brief report we compare the predictions of a recent next-to-next-to-leading order hard-thermal-loop perturbation theory (HTLpt) calculation of the QCD trace anomaly to available lattice data. We focus on the trace anomaly scaled by T{sup 2} in two cases: N{sub f}=0 and N{sub f}=3. When using the canonical value of {mu}=2{pi}T for the renormalization scale, we find that for Yang-Mills theory (N{sub f}=0) agreement between HTLpt and lattice data for the T{sup 2}-scaled trace anomaly begins at temperatures on the order of 8T{sub c}, while treating the subtracted piece as an interaction term when including quarks (N{sub f}=3) agreement begins already at temperatures above 2T{sub c}. In both cases we find that at very high temperatures the T{sup 2}-scaled trace anomaly increases with temperature in accordance with the predictions of HTLpt.

  12. Modeling the Pioneer anomaly

    NASA Astrophysics Data System (ADS)

    Leibovitz, Jacques

    2007-04-01

    Scientists continue their attempts to model the observed Pioneer anomaly (PA) as an artifact of measurement or of equipment operation. Scientists also explore ``new physics'' as a possible explanation, but they have eliminated dark matter (DM). Here, the main arguments used to eliminate DM are refuted and then the anomaly is modeled by application of Newton laws to the observed macroscopic properties of DM. Around a central mass M, the modeling predicts a DM distribution that produces the PA at short distances (R smaller than 188 AU) from a star like the Sun, and a flat rotation curve at sufficiently large distances from the center of a galaxy. Below about 188 AU from the Sun, the modeling predicts that the anomaly may be expressed as PA = 8.3E-8 [R̂(-2)] -- 1 cm (s)̂(-2). It shows that the anomaly remains fairly constant down to 5 AU, decreases significantly from 5 AU to 1 AU where it becomes zero and changes sign below a distance of 1 AU, then increases rapidly in magnitude as R decreases in that range. Verifiable tests are proposed. Some related topics for future research are proposed.

  13. Magnetic anomalies over the Andaman Islands and their geological significance

    NASA Astrophysics Data System (ADS)

    Subba Rao, P. B. V.; Radhakrishna, M.; Haripriya, K.; Rao, B. Someswara; Chandrasekharam, D.

    2016-03-01

    The Andaman Islands form part of the outer-arc accretionary sedimentary complex belonging to the Andaman-Sumatra active subduction zone. The islands are characterized by thick cover of Neogene sediments along with exposed ophiolite rocks at few places. A regional magnetic survey was carried out for the first time over the Andaman Islands with a view to understand the correlation of anomaly signatures with surface geology of the islands. The residual total field magnetic anomaly maps have revealed distinct magnetic anomalies having intermediate to high amplitude magnetic signatures and correlate with the areas over/close to the exposed ophiolite rocks along the east coast of north, middle and the south Andaman Islands. The 2D modelling of magnetic anomalies along selected E-W profiles across the islands indicate that the ophiolite bodies extend to a depth of about 5-8 km and spatially correlate with the mapped fault/thrust zones.

  14. Study of gravity and magnetic anomalies using MAGSAT data

    NASA Technical Reports Server (NTRS)

    Braile, L. W.; Hinze, W. J.; Vonfrese, R. R. B. (Principal Investigator)

    1981-01-01

    The results of modeling satellite-elevation magnetic and gravity data using the constraints imposed by near surface data and seismic evidence shows that the magnetic minimum can be accounted for by either an intracrustal lithologic variation or by an upwarp of the Curie point isotherm. The long wavelength anomalies of the NOO's-vector magnetic survey of the conterminous U.S. were contoured and processed by various frequency filters to enhance particular characteristics. A preliminary inversion of the data was completed and the anomaly field calculated at 450 km from the equivalent magnet sources to compare with the POGO satellite data. Considerable progress was made in studing the satellite magnetic data of South America and adjacent marine areas. Preliminary versions of the 1 deg free-air gravity anomaly map (20 m gal contour interval) and the high cut (lambda approximately 8 deg) filtered anomaly maps are included.

  15. Aeromagnetic measurements in the Cascade Range and Modoc Plateau of northern California; report on work done from December 1, 1980, to May 31, 1981

    USGS Publications Warehouse

    Couch, Richard W.; Gemperle, Michael

    1982-01-01

    Spectral analysis of aeromagnetic data collected over 6orth-central California during the summer of 1980 aided in determining magnetic-source bottom depths beneath the survey area. Five regions of shallow magnetic source bottom depths were detected: 1) Secret Spring Mountain and National Lava Beds Monument area, 2) the Mount Shasta area, 3) the Eddys Mountain area, 4) the Big Valley Mountains area, and 5) an area northeast of Lassen Peak. Except for the Eddys Mountain area, all regions exhibiting shallow depths are suggested to be due to elevated Curie-point isotherms. The elevated Curie-point depth beneath Secret Spring Mountain and the National Lava Beds Monument area was found to be 4-7 km BSL (Below Sea Level) and is an extension of a zone mapped beneath an area immediately to the north in Oregon. A similar depth was detected for the Mount Shasta area and the area northeast of Lassen Peak. A depth of 4-6 km BSL was detected beneath the Big Valley Mountains area. The shallow Curie-point depths beneath Secret Spring Mountain, Mount Shasta, Big Valley Mountains, and the area northeast of Lassen Peak appear to form a segmented Zone of elevated Curie-point isotherm depths which underlies the High Cascade Mountains and Modoc Plateau in north-central California. A small area of shallow depths to magnetic-source bottoms, 4-5 km BSL, beneath the Eddys Mountain area is attributed to a lithologic boundary rather than an elevated Curie-point isotherm. Deeper magnetic source bottom depths were mapped throughout the remainder of the study area, with depths greater than 9 km BSL indicated beneath Lassen Peak and greater than ii km BSL indicated beneath the Western Cascades, Eastern Klamath Mountains, and Great Valley.

  16. A major geothermal anomaly in the Gulf of California

    USGS Publications Warehouse

    Lawver, L.A.; Williams, D.L.; Von Herzen, R. P.

    1975-01-01

    We have mapped a 3-km wide, high heat flow anomaly with a maximum value of 30 ??calorie cm -2 s-1 within a zone of seafloor extension in the central Gulf of California. From seismic reflection data and thermal modelling we suggest that the anomaly is caused by a 1-km wide basaltic intrusion which is roughly 100 m deep and less than 18,000 yr old. ?? 1975 Nature Publishing Group.

  17. Interpretation of high resolution aeromagnetic data over southern Benue Trough, southeastern Nigeria

    NASA Astrophysics Data System (ADS)

    Oha, I. A.; Onuoha, K. M.; Nwegbu, A. N.; Abba, A. U.

    2016-03-01

    High resolution airborne magnetic data of parts of the southern Benue Trough were digitally processed and analyzed in order to estimate the depth of magnetic sources and to map the distribution and orientation of subsurface structural features. Enhancement techniques applied include, reduction to pole/equator (RTP/RTE), first and second vertical derivatives, horizontal gradients and analytic signal. Results from these procedures show that at least 40% of the sedimentary basin contain shallow (<200 m) magmatic bodies, which in most cases are intermediate to mafic intrusive and hyperbysal rocks, and may occur as sills, dikes or batholiths. Magnetic lineaments with a predominant NE-SW trend appear to be more densely distributed around the basement rocks of the Oban Hills and metamorphosed rocks around the Workum Hills. 3D standard Euler deconvolution and Source Parameter Imaging (SPI TM) techniques were employed for depth estimation. Results from the two methods show similar depth estimates. The maximum depth to basement values for 3D Euler and SPI are 4.40 and 4.85 km with mean depths of 0.42 and 0.37 km, respectively. Results of 2D modelling of magnetic profiles drawn perpendicular to major anomalies in the study area reveal the existence of deep seated faults which may have controlled the emplacement of intrusive bodies in the basin. The abundance of intrusive bodies in the study area renders this part of the southern Nigerian sedimentary basins unattractive for petroleum exploration. However, the area possesses high potential for large accumulation of base metal mineralization.

  18. Remanent magnetization and 3-dimensional density model of the Kentucky anomaly region

    NASA Technical Reports Server (NTRS)

    Mayhew, M. A.; Estes, R. H.; Myers, D. M.

    1984-01-01

    A three-dimensional model of the Kentucky body was developed to fit surface gravity and long wavelength aeromagnetic data. Magnetization and density parameters for the model are much like those of Mayhew et al (1982). The magnetic anomaly due to the model at satellite altitude is shown to be much too small by itself to account for the anomaly measured by Magsat. It is demonstrated that the source region for the satellite anomaly is considerably more extensive than the Kentucky body sensu stricto. The extended source region is modeled first using prismatic model sources and then using dipole array sources. Magnetization directions for the source region found by inversion of various combinations of scalar and vector data are found to be close to the main field direction, implying the lack of a strong remanent component. It is shown by simulation that in a case (such as this) where the geometry of the source is known, if a strong remanent component is present its direction is readily detectable, but by scalar data as readily as vector data.

  19. Anomaly discrimination in hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Chen, Shih-Yu; Paylor, Drew; Chang, Chein-I.

    2014-05-01

    Anomaly detection finds data samples whose signatures are spectrally distinct from their surrounding data samples. Unfortunately, it cannot discriminate the anomalies it detected one from another. In order to accomplish this task it requires a way of measuring spectral similarity such as spectral angle mapper (SAM) or spectral information divergence (SID) to determine if a detected anomaly is different from another. However, this arises in a challenging issue of how to find an appropriate thresholding value for this purpose. Interestingly, this issue has not received much attention in the past. This paper investigates the issue of anomaly discrimination which can differentiate detected anomalies without using any spectral measure. The ideas are to makes use unsupervised target detection algorithms, Automatic Target Generation Process (ATGP) coupled with an anomaly detector to distinguish detected anomalies. Experimental results show that the proposed methods are indeed very effective in anomaly discrimination.

  20. Improved determination of vector lithospheric magnetic anomalies from MAGSAT data

    NASA Technical Reports Server (NTRS)

    Ravat, Dhananjay

    1993-01-01

    Scientific contributions made in developing new methods to isolate and map vector magnetic anomalies from measurements made by Magsat are described. In addition to the objective of the proposal, the isolation and mapping of equatorial vector lithospheric Magsat anomalies, isolation of polar ionospheric fields during the period were also studied. Significant progress was also made in isolation of polar delta(Z) component and scalar anomalies as well as integration and synthesis of various techniques of removing equatorial and polar ionospheric effects. The significant contributions of this research are: (1) development of empirical/analytical techniques in modeling ionospheric fields in Magsat data and their removal from uncorrected anomalies to obtain better estimates of lithospheric anomalies (this task was accomplished for equatorial delta(X), delta(Z), and delta(B) component and polar delta(Z) and delta(B) component measurements; (2) integration of important processing techniques developed during the last decade with the newly developed technologies of ionospheric field modeling into an optimum processing scheme; and (3) implementation of the above processing scheme to map the most robust magnetic anomalies of the lithosphere (components as well as scalar).

  1. Antler anomalies in tule elk

    USGS Publications Warehouse

    Gogan, Peter J.P.; Jessup, David A.; Barrett, Reginald H.

    1988-01-01

    Antler anomalies were evident in tule elk (Cervus elaphus nannodes) within 1 yr of reintroduction to Point Reyes, California (USA). These anomalies are consistent with previously described mineral deficiency-induced anomalies in cervids. The elk were judged deficient in copper. Low levels of copper in soils and vegetation at the release site, exacerbated by possible protein deficiency due to poor range conditions, are postulated as likely causes of the antler anomalies.

  2. Gravity anomaly detection: Apollo/Soyuz

    NASA Technical Reports Server (NTRS)

    Vonbun, F. O.; Kahn, W. D.; Bryan, J. W.; Schmid, P. E.; Wells, W. T.; Conrad, D. T.

    1976-01-01

    The Goddard Apollo-Soyuz Geodynamics Experiment is described. It was performed to demonstrate the feasibility of tracking and recovering high frequency components of the earth's gravity field by utilizing a synchronous orbiting tracking station such as ATS-6. Gravity anomalies of 5 MGLS or larger having wavelengths of 300 to 1000 kilometers on the earth's surface are important for geologic studies of the upper layers of the earth's crust. Short wavelength Earth's gravity anomalies were detected from space. Two prime areas of data collection were selected for the experiment: (1) the center of the African continent and (2) the Indian Ocean Depression centered at 5% north latitude and 75% east longitude. Preliminary results show that the detectability objective of the experiment was met in both areas as well as at several additional anomalous areas around the globe. Gravity anomalies of the Karakoram and Himalayan mountain ranges, ocean trenches, as well as the Diamantina Depth, can be seen. Maps outlining the anomalies discovered are shown.

  3. Spectral Methods for Magnetic Anomalies

    NASA Astrophysics Data System (ADS)

    Parker, R. L.; Gee, J. S.

    2013-12-01

    Spectral methods, that is, those based in the Fourier transform, have long been employed in the analysis of magnetic anomalies. For example, Schouten and MaCamy's Earth filter is used extensively to map patterns to the pole, and Parker's Fourier transform series facilitates forward modeling and provides an efficient algorithm for inversion of profiles and surveys. From a different, and perhaps less familiar perspective, magnetic anomalies can be represented as the realization of a stationary stochastic process and then statistical theory can be brought to bear. It is vital to incorporate the full 2-D power spectrum, even when discussing profile data. For example, early analysis of long profiles failed to discover the small-wavenumber peak in the power spectrum predicted by one-dimensional theory. The long-wavelength excess is the result of spatial aliasing, when energy leaks into the along-track spectrum from the cross-track components of the 2-D spectrum. Spectral techniques may be used to improve interpolation and downward continuation of survey data. They can also evaluate the reliability of sub-track magnetization models both across and and along strike. Along-strike profiles turn out to be surprisingly good indicators of the magnetization directly under them; there is high coherence between the magnetic anomaly and the magnetization over a wide band. In contrast, coherence is weak at long wavelengths on across-strike lines, which is naturally the favored orientation for most studies. When vector (or multiple level) measurements are available, cross-spectral analysis can reveal the wavenumber interval where the geophysical signal resides, and where noise dominates. One powerful diagnostic is that the phase spectrum between the vertical and along-path components of the field must be constant 90 degrees. To illustrate, it was found that on some very long Project Magnetic lines, only the lowest 10% of the wavenumber band contain useful geophysical signal. In this

  4. Mass Anomalies on Ganymede

    NASA Technical Reports Server (NTRS)

    Schubert, G.; Anderson, J. D.; Jacobson, R. A.; Lau, E. L.; Moore, W. B.; Palguta, J.

    2004-01-01

    Radio Doppler data from two Ganymede encounters (G1 and G2) on the first two orbits in the Galileo mission have been analyzed previously for gravity information . For a satellite in hydrostatic equilibrium, its gravitational field can be modeled adequately by a truncated spherical harmonic series of degree two. However, a fourth degree field is required in order to fit the second Galileo flyby (G2). This need for a higher degree field strongly suggests that Ganymede s gravitational field is perturbed by a gravity anomaly near the G2 closest approach point (79.29 latitude, 123.68 west longitude). In fact, a plot of the Doppler residuals , after removal of the best-fit model for the zero degree term (GM) and the second degree moments (J2 and C22), suggests that if an anomaly exists, it is located downtrack of the closest approach point, closer to the equator.

  5. Preliminary analysis of gravity and aeromagnetic surveys of the Timber Mountain Area, southern Nevada

    SciTech Connect

    Kane, M.F.; Webring, M.W.; Bhattacharyya, B.K.

    1981-12-31

    Recent (1977 to 1978) gravity and aeromagnetic surveys of the Timber Mountain region, southern Nevada, have revealed new details of subsurface structure and lithology. The data strongly suggest that deformation caused by volcanic events has been accommodated along straight-line faults combining in such a fashion as to given a curvilinear appearance to regional structure. The magnetic data suggest that rock units in the central graben and along the southeast margin of Timber Mountain may have been altered, perhaps thermally, from their original state. The gravity data indicate that the south part of the Timber Mountain is underlain by relatively dense rock possibly intrusive rock, like that which crops out along its southeast side. The gravity data also suggest that the Silent Canyon caldera may extend considerably south of its presently indicated southern limit and may underlie much of the area of Timber Mountain. The moat areas appear to be more rectangular or triangular than annular in shape. The southern part of Timber Mountain caldera is separated from the Yucca Mountain area to the south by a triangular horst. The structural relations of the rock units making up the horst are complex. Several linear terrain features in the southern part of the caldera area are closely aligned with geophysical features, implying that the terrain features are fault-controlled.

  6. Can we estimate total magnetization directions from aeromagnetic data using Helbig's integrals?

    USGS Publications Warehouse

    Phillips, J.D.

    2005-01-01

    An algorithm that implements Helbig's (1963) integrals for estimating the vector components (mx, my, mz) of tile magnetic dipole moment from the first order moments of the vector magnetic field components (??X, ??Y, ??Z) is tested on real and synthetic data. After a grid of total field aeromagnetic data is converted to vector component grids using Fourier filtering, Helbig's infinite integrals are evaluated as finite integrals in small moving windows using a quadrature algorithm based on the 2-D trapezoidal rule. Prior to integration, best-fit planar surfaces must be removed from the component data within the data windows in order to make the results independent of the coordinate system origin. Two different approaches are described for interpreting the results of the integration. In the "direct" method, results from pairs of different window sizes are compared to identify grid nodes where the angular difference between solutions is small. These solutions provide valid estimates of total magnetization directions for compact sources such as spheres or dipoles, but not for horizontally elongated or 2-D sources. In the "indirect" method, which is more forgiving of source geometry, results of the quadrature analysis are scanned for solutions that are parallel to a specified total magnetization direction.

  7. Nature of basement rocks under the Los Angeles Basin, southern California, as inferred from aeromagnetic data

    SciTech Connect

    Langenheim, V.E.; Jachens, R.C. . Branch of Geophysics)

    1993-04-01

    The Los Angeles (L.A.) Basin, one of the world's richest oil-producing basins, is underlain by at least two basement assemblages. Because the thickness of the basin sediments reaches up to a minimum of 10 km, magnetic data allow a more regional view of the juxtaposition and nature of basement rocks than do available drill-hole data. Aeromagnetic data indicate that a zone of magnetic rocks extends along the coast east of the Newport-Inglewood fault zone from the San Joaquin Hills northwest to the Santa Monica Mountains. The magnetic highs produced by these rocks appear to be a continuation of intense magnetic highs that are present over exposed rocks of the Peninsular Ranges batholith to the southwest. Modeling of a 180 nT magnetic high over the San Joaquin Hills indicates that the tops of two concealed magnetic sources are at about 1.5 km and 4.5 km depth, which places these bodies at or beneath the basement surface. Modeling of magnetic highs over the exposed batholithic rocks to the south reveals a source with similar geometry and magnetic properties. The associated gravity highs of the San Joaquin Hills suggest that the probable lithology of these concealed magnetic bodies is a dense crystalline rock such as gabbro.

  8. Research on RTP aeromagnetic gradient data and its applicability in different latitudes

    NASA Astrophysics Data System (ADS)

    Li, Lin; Guo, Hua; Wang, Ping; Jia, Wei-Jie

    2016-03-01

    Aeromagnetic gradient data needs to be reduced to the pole so that it can be better applied to geological interpretation through theoretical derivation. In this paper, we conduct research on the morphological characteristics of the total and horizontal gradient modules before and after reduction to the pole and design models at different latitudes, with consistent and inconsistent magnetic field direction and geological body magnetization direction. We discuss how to use the total gradient module and horizontal gradient module in geological interpretation. The reduced-to-the-pole (RTP) method is required for the horizontal gradient module method but not for the total gradient module. Finally, the conclusions derived from the theoretical models are verified through analysis of real data. The position determination of a geological body using the total gradient method, gradient data, or total-field data works better without RTP, ensuring data primitive authenticity. However, the horizontal gradient module should be reduced to the pole to determine the boundary of the geological body. Finally, the theoretical model is verified by actual data analysis. Both the total and horizontal gradient methods can be applied to geological interpretation.

  9. A high-order statistical tensor based algorithm for anomaly detection in hyperspectral imagery.

    PubMed

    Geng, Xiurui; Sun, Kang; Ji, Luyan; Zhao, Yongchao

    2014-01-01

    Recently, high-order statistics have received more and more interest in the field of hyperspectral anomaly detection. However, most of the existing high-order statistics based anomaly detection methods require stepwise iterations since they are the direct applications of blind source separation. Moreover, these methods usually produce multiple detection maps rather than a single anomaly distribution image. In this study, we exploit the concept of coskewness tensor and propose a new anomaly detection method, which is called COSD (coskewness detector). COSD does not need iteration and can produce single detection map. The experiments based on both simulated and real hyperspectral data sets verify the effectiveness of our algorithm. PMID:25366706

  10. Interpretation of the magnetic anomaly over the Omaha Oil Field, Gallatin County, Illinois

    SciTech Connect

    Sparlin, M.A. ); Lewis, R.D. . Waterways Experiment Station)

    1994-07-01

    A 40 nanoTesla (nT) magnetic anomaly identified in an aeromagnetic survey over southern Illinois contours as a localized magnetic high on the west flank of a regional magnetic low. This magnetic anomaly is generally coincident with the Omaha Oil Field in northwest Gallatin County, Illinois. It was initially assumed that cultural sources of steel associated with this oil field were the primary source of the magnetic feature; however, similar oil fields overflown by the survey do not exhibit magnetic anomalies in the data set. The Luther Rister et ux [number sign]1 well, drilled near the apex of the Omaha structural dome, encountered two zones of ultramafic intrusive rock containing 9.0% by volume magnetite. These intrusives were identified to be alnoeites which are a class of mantle-derived ultramafic rock that can be associated with the incipient stages of crustal rifting. A ground magnetic survey verified the presence of the anomaly, and provided detailed data for 3-D modeling of the source. Petrophysical evaluations, magnetic susceptibility measurements and thin section modal analysis were made on drill cuttings from the ultramafic intrusives encountered in the Luther Rister [number sign]1 well. These measurements were made to constrain the 3-D magnetic modeling by the petrophysical characteristics of the source. After removal of the regional magnetic field, the resulting 140 nT residual magnetic anomaly was successfully modeled using two ultramafic sills with an igneous feeder plug. The two igneous sills adequately account for the structural closure exhibited in the Omaha Oil Field and raise the interesting possibility of other hydrocarbon trapping structures generated by intrusives emplaced into the sedimentary section.

  11. Physicochemical isotope anomalies

    SciTech Connect

    Esat, T.M.

    1988-06-01

    Isotopic composition of refractory elements can be modified, by physical processes such as distillation and sputtering, in unexpected patterns. Distillation enriches the heavy isotopes in the residue and the light isotopes in the vapor. However, current models appear to be inadequate to describe the detailed mass dependence, in particular for large fractionations. Coarse- and fine-grained inclusions from the Allende meteorite exhibit correlated isotope effects in Mg both as mass-dependent fractionation and residual anomalies. This isotope pattern can be duplicated by high temperature distillation in the laboratory. A ubiquitous property of meteoritic inclusions for Mg as well as for most of the other elements, where measurements exist, is mass-dependent fractionation. In contrast, terrestrial materials such as microtektites, tektite buttons as well as lunar orange and green glass spheres have normal Mg isotopic composition. A subset of interplanetary dust particles labelled as chondritic aggregates exhibit excesses in {sup 26}Mg and deuterium anomalies. Sputtering is expected to be a dominant mechanism in the destruction of grains within interstellar dust clouds. An active proto-sun as well as the present solar-wind and solar-flare flux are of sufficient intensity to sputter significant amounts of material. Laboratory experiments in Mg show widespread isotope effects including residual {sup 26}Mg excesses and mass dependent fractionation. It is possible that the {sup 26}Mg excesses in interplanetary dust is related to sputtering by energetic solar-wind particles. The implication if the laboratory distillation and sputtering effects are discussed and contrasted with the anomalies in meteoritic inclusions the other extraterrestrial materials the authors have access to.

  12. Hypercharged anomaly mediation.

    PubMed

    Dermísek, Radovan; Verlinde, Herman; Wang, Lian-Tao

    2008-04-01

    We show that, in string models with the minimal supersymmetric standard model residing on D-branes, the bino mass can be generated in a geometrically separated hidden sector. Hypercharge mediation thus naturally teams up with anomaly mediation. The mixed scenario predicts a distinctive yet viable superpartner spectrum, provided that the ratio alpha between the bino and gravitino mass lies in the range 0.05 < or = |alpha| < or = 0.25 and m(3/2) > or = 35 TeV. We summarize some of the experimental signatures of this scenario. PMID:18517937

  13. Satellite magnetic anomalies over subduction zones - The Aleutian Arc anomaly

    NASA Technical Reports Server (NTRS)

    Clark, S. C.; Frey, H.; Thomas, H. H.

    1985-01-01

    Positive magnetic anomalies seen in MAGSAT average scalar anomaly data overlying some subduction zones can be explained in terms of the magnetization contrast between the cold subducted oceanic slab and the surrounding hotter, nonmagnetic mantle. Three-dimensional modeling studies show that peak anomaly amplitude and location depend on slab length and dip. A model for the Aleutian Arc anomaly matches the general trend of the observed MAGSAT anomaly if a slab thickness of 7 km and a relatively high (induced plus viscous) magnetization contrast of 4 A/m are used. A second source body along the present day continental margin is required to match the observed anomaly in detail, and may be modeled as a relic slab from subduction prior to 60 m.y. ago.

  14. The XXXXY Chromosome Anomaly

    PubMed Central

    Zaleski, Witold A.; Houston, C. Stuart; Pozsonyi, J.; Ying, K. L.

    1966-01-01

    The majority of abnormal sex chromosome complexes in the male have been considered to be variants of Klinefelter's syndrome but an exception should probably be made in the case of the XXXXY individual who has distinctive phenotypic features. Clinical, radiological and cytological data on three new cases of XXXXY syndrome are presented and 30 cases from the literature are reviewed. In many cases the published clinical and radiological data were supplemented and re-evaluated. Mental retardation, usually severe, was present in all cases. Typical facies was observed in many; clinodactyly of the fifth finger was seen in nearly all. Radiological examination revealed abnormalities in the elbows and wrists in all the 19 personally evaluated cases, and other skeletal anomalies were very frequent. Cryptorchism is very common and absence of Leydig's cells may differentiate the XXXXY chromosome anomaly from polysomic variants of Klinefelter's syndrome. The relationship of this syndrome to Klinefelter's syndrome and to Down's syndrome is discussed. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 6Fig. 7Fig. 8Fig. 9Fig. 10Fig. 11Fig. 12Fig. 13Fig. 14Fig. 15 PMID:4222822

  15. Trace anomaly driven inflation

    NASA Astrophysics Data System (ADS)

    Hawking, S. W.; Hertog, T.; Reall, H. S.

    2001-04-01

    This paper investigates Starobinsky's model of inflation driven by the trace anomaly of conformally coupled matter fields. This model does not suffer from the problem of contrived initial conditions that occurs in most models of inflation driven by a scalar field. The universe can be nucleated semiclassically by a cosmological instanton that is much larger than the Planck scale provided there are sufficiently many matter fields. There are two cosmological instantons: the four sphere and a new ``double bubble'' solution. This paper considers a universe nucleated by the four sphere. The AdS/CFT correspondence is used to calculate the correlation function for scalar and tensor metric perturbations during the ensuing de Sitter phase. The analytic structure of the scalar and tensor propagators is discussed in detail. Observational constraints on the model are discussed. Quantum loops of matter fields are shown to strongly suppress short scale metric perturbations, which implies that short distance modifications of gravity would probably not be observable in the cosmic microwave background. This is probably true for any model of inflation provided there are sufficiently many matter fields. This point is illustrated by a comparison of anomaly driven inflation in four dimensions and in a Randall-Sundrum brane-world model.

  16. Automated anomaly detection processor

    NASA Astrophysics Data System (ADS)

    Kraiman, James B.; Arouh, Scott L.; Webb, Michael L.

    2002-07-01

    Robust exploitation of tracking and surveillance data will provide an early warning and cueing capability for military and civilian Law Enforcement Agency operations. This will improve dynamic tasking of limited resources and hence operational efficiency. The challenge is to rapidly identify threat activity within a huge background of noncombatant traffic. We discuss development of an Automated Anomaly Detection Processor (AADP) that exploits multi-INT, multi-sensor tracking and surveillance data to rapidly identify and characterize events and/or objects of military interest, without requiring operators to specify threat behaviors or templates. The AADP has successfully detected an anomaly in traffic patterns in Los Angeles, analyzed ship track data collected during a Fleet Battle Experiment to detect simulated mine laying behavior amongst maritime noncombatants, and is currently under development for surface vessel tracking within the Coast Guard's Vessel Traffic Service to support port security, ship inspection, and harbor traffic control missions, and to monitor medical surveillance databases for early alert of a bioterrorist attack. The AADP can also be integrated into combat simulations to enhance model fidelity of multi-sensor fusion effects in military operations.

  17. High resolution imaging of the Methana volcanic complex, Greece, with magnetotelluric and aeromagnetic data

    NASA Astrophysics Data System (ADS)

    Efstathiou, A.; Tzanis, A.; Chailas, S.; Lagios, E.; Stamatakis, M.

    2012-04-01

    The Methana calc-alkaline volcanic complex is located off the NE coast of Argolis Peninsula (Peloponnesus, Greece) at the NW terminus of the Hellenic Volcanic Arc (HVA). It consists of approximately 32 domes, with the most recent eruptive episodes dated to 258 BCE and 1700 CE. Herein, we report the results an attempt to investigate the volcano's interior with joint interpretation of Magnetotelluric and Aeromagnetic data. The aeromagnetic data was inverted with the UBC-GIF 3D magnetic inversion suite, constrained by several in-situ susceptibility measurements. At depths to 2 km, the inversion resolves individual intrusions corresponding to known phases of volcanic activity (domes), with susceptibilities >0.1. At depths greater than 4.5 km, a more weakly magnetized domain is detected (~0.025); its ceiling is well resolved; its floor cannot be placed with certainty but extends to at least 7 km. The depths are comparable to those of magma chambers. Based on the palaeomagnetic analysis of nearby volcanic rocks, it may be safely suggested that its temperature should not be higher than 550-600°C, but also not considerably lower. It may comprise a magma chamber, inasmuch as it compares well with the temperatures and locations of known magma chambers along the HVA. Finally, there's exists evidence of the location of the vents through which the extrusive activity has taken place. A Magnetotelluric survey comprising 14 stations was conducted IN 1992, as part of a geothermal project. Herein, this data is reevaluated with modern analysis methods and re-interpreted with 2D inversion. The results indicate the presence of conductors at depths of 1500-2500 m beneath the centre of the Peninsula, extensive horizontal conductors at, or just below sea level and conductive protrusions above sea level. The joint interpretation of the susceptibility and geoelectric images is based on the premise that they both are generated by hydrothermal circulation which depresses resistivity and

  18. Cerium anomaly at microscale in fossils.

    PubMed

    Gueriau, Pierre; Mocuta, Cristian; Bertrand, Loïc

    2015-09-01

    Patterns in rare earth element (REE) concentrations are essential instruments to assess geochemical processes in Earth and environmental sciences. Excursions in the "cerium anomaly" are widely used to inform on past redox conditions in sediments. This proxy resources to the specificity of cerium to adopt both the +III and +IV oxidation states, while most rare earths are purely trivalent and share very similar reactivity and transport properties. In practical terms, the level of cerium anomaly is established through elemental point quantification and profiling. All these models rely on a supposed homogeneity of the cerium oxidation state within the samples. However, this has never been demonstrated, whereas the cerium concentration can significantly vary within a sample, as shown for fossils, which would vastly complicate interpretation of REE patterns. Here, we report direct micrometric mapping of Ce speciation through synchrotron X-ray absorption spectroscopy and production of local rare earth patterns in paleontological fossil tissues through X-ray fluorescence mapping. The sensitivity of the approach is demonstrated on well-preserved fishes and crustaceans from the Late Cretaceous (ca. 95 million years (Myr) old). The presence of Ce under the +IV form within the fossil tissues is attributed to slightly oxidative local conditions of burial and agrees well with the limited negative cerium anomaly observed in REE patterns. The [Ce(IV)]/[Ce(tot)] ratio appears remarkably stable at the microscale within each fossil and is similar between fossils from the locality. Speciation maps were obtained from an original combination of synchrotron microbeam X-ray fluorescence, absorption spectroscopy, and diffraction, together with light and electron microscopy. This work also highlights the need for more systematic studies of cerium geochemistry at the microscale in paleontological contexts, in particular across fossil histologies. PMID:26239283

  19. The Northern Boundary of the Michoacan Block: As Inferred From Aeromagnetic Data

    NASA Astrophysics Data System (ADS)

    Rosas-Elguera, J.; Lopez Loera, H.; Fregoso, E.; Maciel Flores, R.; Peña, L.; Alatorre-Zamora, M. A.

    2015-12-01

    The western part of the Guerrero terrane is comprised of the Jalisco and Michoacan Blocks (Rosas-Elguera et al., 1996 and references therein), a fault-bounded crustal blocks at western of Mexico. The Michoacan block is bounded by the N-NE segment of the Rio Balsas in the east, and the Colima graben in the west, the Chapala-Oaxaca fault to the north, and the Middle America Trench to the south. Northern boundary is formed with the Chapala-Oaxaca fault zone (Harrison y Johnson, 1985). The Cotija half-graben is the end-tip of this fault zone. A combined radiometric and paleomagnetic analyses in the Cotija half-graben were carried out (Rosas-Elguera, et al, 2003). Radiometric dates between 31.60 and 8.39 Ma confirm both the southern extension of the Sierra Madre Occidental and the early mafic Tans-Mexican Volcanic Belt succession at the northern part of the Michoacan block. Paleomagnetic data indicate a counterclockwise rotation of ~ 24° about a vertical axis for the Michoacan block. The Michoacan-Guanajuato Volcanic Field forms an area of extensive monogenetic volcanism. This volcanic field contains more than 1000 eruptive centers distributed over an area of 40,000 Km2. The Chapala-Oaxaca fault zone separates the northern MGVF and the southern MGVF. Hasenaka and Carmichael (1987) recognized three different petrologic associations in the MGVF: calc-alkaline rocks typical arc characteristic, K2O-rich alkaline rocks with relatively high MgO contents and TiO2-rich alkaline rocks with relatively low MgO contents. We present the aeromagnetic results (after Consejo de Recursos Minerales, 1999) which suggest a clear relationship between the geologic features and the magnetic response.

  20. Remote detection of geobotanical anomalies associated with hydrocarbon microseepage

    NASA Technical Reports Server (NTRS)

    Rock, B. N.

    1985-01-01

    As part of the continuing study of the Lost River, West Virginia NASA/Geosat Test Case Site, an extensive soil gas survey of the site was conducted during the summer of 1983. This soil gas survey has identified an order of magnitude methane, ethane, propane, and butane anomaly that is precisely coincident with the linear maple anomaly reported previously. This and other maple anomalies were previously suggested to be indicative of anaerobic soil conditions associated with hydrocarbon microseepage. In vitro studies support the view that anomalous distributions of native tree species tolerant of anaerobic soil conditions may be useful indicators of methane microseepage in heavily vegetated areas of the United States characterized by deciduous forest cover. Remote sensing systems which allow discrimination and mapping of native tree species and/or species associations will provide the exploration community with a means of identifying vegetation distributional anomalies indicative of microseepage.

  1. The south-central United States magnetic anomaly

    NASA Technical Reports Server (NTRS)

    Hinze, W. J.; Braile, L. W. (Principal Investigator); Starich, P. J.

    1984-01-01

    The South-Central United States Magnetic Anomaly is the most prominent positive feature in the MAGSAT scalar magnetic field over North America. The anomaly correlates with increased crustal thickness, above average crustal velocity, negative free air gravity anomalies and an extensive zone of Middle Proterozoic anorogenic felsic basement rocks. Spherical dipole source inversion of the MAGSAT scalar data and subsequent calculation of reduced to pole and derivative maps provide constraints for a crustal magnetic model which corresponds geographically to the extensive Middle Proterozoic felsic rocks trending northeasterly across the United States. These felsic rocks contain insufficient magnetization or volume to produce the anomaly, but are rather indicative of a crustal zone which was disturbed during a Middle Proterozoic thermal event which enriched magnetic material deep in the crust.

  2. The south-central United States magnetic anomaly

    NASA Technical Reports Server (NTRS)

    Starich, P. J.

    1985-01-01

    The South-Central United States Magnetic Anomaly is the most prominent positive feature in the MAGSAT scalar magnetic field over North America. The anomaly correlates with increased crustal thickness, above average crustal velocity, negative free-air gravity anomalies and an extensive zone of Middle Proterozoic anorogenic felsic basement rocks. Spherical dipole source inversion of the MAGSAT scalar data and subsequent calculation of reduced-to-pole and derivative maps provide additional constraints for a crustal magnetic model which corresponds geographically to the extensive Middle Proterozoic felsic rocks trending northeasterly across the United States. These felsic rocks contain insufficient magnetization or volume to produce the anomaly, but are rather indicative of a crustal zone which was disturbed during a Middle Proterozoic thermal event which enriched magnetic material deep in the crust.

  3. Quantum anomalies in dense matter

    SciTech Connect

    Son, D.T.; Zhitnitsky, Ariel R.

    2004-10-01

    We consider the effects of quantum anomalies involving the baryon current for high-density matter. In the effective Lagrangian, the anomaly terms describe the interaction of three light fields: the electromagnetic photons A{sub {mu}}, neutral light Nambu-Goldstone bosons ({pi}, {eta}, {eta}{sup '}), and the superfluid phonon. The anomaly induced interactions lead to a number of interesting phenomena which may have phenomenological consequences observable in neutron stars.

  4. Anomaly depth detection in trans-admittance mammography: a formula independent of anomaly size or admittivity contrast

    NASA Astrophysics Data System (ADS)

    Zhang, Tingting; Lee, Eunjung; Seo, Jin Keun

    2014-04-01

    Trans-admittance mammography (TAM) is a bioimpedance technique for breast cancer detection. It is based on the comparison of tissue conductivity: cancerous tissue is identified by its higher conductivity in comparison with the surrounding normal tissue. In TAM, the breast is compressed between two electrical plates (in a similar architecture to x-ray mammography). The bottom plate has many sensing point electrodes that provide two-dimensional images (trans-admittance maps) that are induced by voltage differences between the two plates. Multi-frequency admittance data (Neumann data) are measured over the range 50 Hz-500 kHz. TAM aims to determine the location and size of any anomaly from the multi-frequency admittance data. Various anomaly detection algorithms can be used to process TAM data to determine the transverse positions of anomalies. However, existing methods cannot reliably determine the depth or size of an anomaly. Breast cancer detection using TAM would be improved if the depth or size of an anomaly could also be estimated, properties that are independent of the admittivity contrast. A formula is proposed here that can estimate the depth of an anomaly independent of its size and the admittivity contrast. This depth estimation can also be used to derive an estimation of the size of the anomaly. The proposed estimations are verified rigorously under a simplified model. Numerical simulation shows that the proposed method also works well in general settings.

  5. Upgraded gravity anomaly base of the United States

    USGS Publications Warehouse

    Keller, Gordon R.; Hildenbrand, T.G.; Kucks, R.; Roman, D.; Hittelman, A.M.

    2002-01-01

    A concerted effort to compile an upgraded gravity anomaly database, grid, and map for the United States by the end of 2002 is under way. This effort can be considered as the first step in building a data system for gravity measurements, and it builds on existing collaborative efforts. This paper outlines the strategy for assembling the individual map and digital products related to the United States gravity database.

  6. Magan: A new approach to the analysis and interpretation of marine magnetic anomalies

    NASA Astrophysics Data System (ADS)

    Schettino, Antonio

    2012-02-01

    The identification of marine magnetic anomalies is an important phase of plate tectonic modeling, but is limited by the lack of professional software, either free or commercial, which may help in the accomplishment of this task, and by the practice of performing approximations that may prevent in some instances a correct interpretation of the magnetic data. Although basic forward-modeling and inversion algorithms that may be incorporated in the core of gravity or magnetic application software have been published since the late 1950s, most research groups have implemented their own tools independently from each other, and apart from a few cases such computer programs are not publicly accessible. Here a new methodology of analysis of marine magnetic data is described, which allows a quantitative correlation of magnetic anomalies from different profiles and a statistical determination of relative plate velocities. The method is implemented through a new free software package, Magan, available for the MS Windows environment. The program is especially designed to work with NGDC GEODAS ship-track and aeromagnetic data, but allows the import of any ASCII text file containing magnetic anomaly data. The basic forward-modeling algorithms included in the Magan core are based on well-known techniques of potential field geophysics, modified to take into account specific requirements of marine magnetic data analysis and plate tectonic modeling. Such a kernel is flanked by a friendly graphical user interface (GUI), which helps and speeds up the interpretation of the ship-track data. In particular, the program allows one to (1) draw and edit flow lines where magnetic data can be projected, (2) calculate more accurately modeled anomalies through the use of apparent polar wander paths and single block parameters, (3) generate age-distance and time-velocity graphs, and (4) generate crossing point files that can be subsequently used to build magnetic isochrons.

  7. Rare Upper Airway Anomalies.

    PubMed

    Windsor, Alanna; Clemmens, Clarice; Jacobs, Ian N

    2016-01-01

    A broad spectrum of congenital upper airway anomalies can occur as a result of errors during embryologic development. In this review, we will describe the clinical presentation, diagnosis, and management strategies for a few select, rare congenital malformations of this system. The diagnostic tools used in workup of these disorders range from prenatal tests to radiological imaging, swallowing evaluations, indirect or direct laryngoscopy, and rigid bronchoscopy. While these congenital defects can occur in isolation, they are often associated with disorders of other organ systems or may present as part of a syndrome. Therefore workup and treatment planning for patients with these disorders often involves a team of multiple specialists, including paediatricians, otolaryngologists, pulmonologists, speech pathologists, gastroenterologists, and geneticists. PMID:26277452

  8. Genetics of lymphatic anomalies

    PubMed Central

    Brouillard, Pascal; Boon, Laurence; Vikkula, Miikka

    2014-01-01

    Lymphatic anomalies include a variety of developmental and/or functional defects affecting the lymphatic vessels: sporadic and familial forms of primary lymphedema, secondary lymphedema, chylothorax and chylous ascites, lymphatic malformations, and overgrowth syndromes with a lymphatic component. Germline mutations have been identified in at least 20 genes that encode proteins acting around VEGFR-3 signaling but also downstream of other tyrosine kinase receptors. These mutations exert their effects via the RAS/MAPK and the PI3K/AKT pathways and explain more than a quarter of the incidence of primary lymphedema, mostly of inherited forms. More common forms may also result from multigenic effects or post-zygotic mutations. Most of the corresponding murine knockouts are homozygous lethal, while heterozygotes are healthy, which suggests differences in human and murine physiology and the influence of other factors. PMID:24590274

  9. New digital magnetic anomaly database for North America

    USGS Publications Warehouse

    Finn, C.A.; Pilkington, M.; Cuevas, A.; Hernandez, I.; Urrutia, J.

    2001-01-01

    The Geological Survey of Canada (GSC), U.S. Geological Survey (USGS), and Consejo de Recursos Minerales of Mexico (CRM) are compiling an upgraded digital magnetic anomaly database and map for North America. This trinational project is expected to be completed by late 2002.

  10. MAGSAT anomaly field data of the crustal properties of Australia

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Progress is reported in producing maps of Australia showing; crustal magnetic anomalies at constant elevation; bulk surface magnetization; and the geomagnetic field intensity, inclination and declination for the Australian region from global models of the geomagnetic field derived from MAGSAT data. The development of a data base management system is also considered.

  11. CHAMP Magnetic Anomalies of the Antarctic Crust

    NASA Technical Reports Server (NTRS)

    Kim, Hyung Rae; Gaya-Pique, Luis R.; vonFrese, Ralph R. B.; Taylor, Patrick T.; Kim, Jeong Woo

    2003-01-01

    Regional magnetic signals of the crust are strongly masked by the core field and its secular variations components and hence difficult to isolate in the satellite measurements. In particular, the un-modeled effects of the strong auroral external fields and the complicated- behavior of the core field near the geomagnetic poles conspire to greatly reduce the crustal magnetic signal-to-noise ratio in the polar regions relative to the rest of the Earth. We can, however, use spectral correlation theory to filter the static lithospheric and core field components from the dynamic external field effects. To help isolate regional lithospheric from core field components, the correlations between CHAMP magnetic anomalies and the pseudo magnetic effects inferred from gravity-derived crustal thickness variations can also be exploited.. Employing these procedures, we processed the CHAMP magnetic observations for an improved magnetic anomaly map of the Antarctic crust. Relative to the much higher altitude Orsted and noisier Magsat observations, the CHAMP magnetic anomalies at 400 km altitude reveal new details on the effects of intracrustal magnetic features and crustal thickness variations of the Antarctic.

  12. Nolen-Schiffer anomaly

    SciTech Connect

    Pieper, S.C.; Wiringa, R.B.

    1995-08-01

    The Argonne v{sub 18} potential contains a detailed treatment of the pp, pn and nn electromagnetic potential, including Coulomb, vacuum polarization, Darwin Foldy and magnetic moment terms, all with suitable form factors and was fit to pp and pn data using the appropriate nuclear masses. In addition, it contains a nuclear charge-symmetry breaking (CSB) term adjusted to reproduce the difference in the experimental pp and nn scattering lengths. We have used these potential terms to compute differences in the binding energies of mirror isospin-1/2 nuclei (Nolen-Schiffer [NS] anomaly). Variational Monte Carlo calculations for the {sup 3}He-{sup 3}H system and cluster variational Monte Carlo for the {sup 15}O-{sup 15}N and {sup 17}F-{sup 17}O systems were made. In the first case, the best variational wave function for the A = 3 nuclei was used. However, because our {sup 16}O wave function does not reproduce accurately the {sup 16}O rms radius, to which the NS anomaly is very sensitive, we adjusted the A = 15 and A = 17 wave functions to reproduce the experimental density profiles. Our computed energy differences for these three systems are 0.757 {plus_minus} .001, 3.544 {plus_minus} .018 and 3.458 {plus_minus} .040 MeV respectively, which are to be compared with the experimental differences of 0.764, 3.537, and 3.544 MeV. Most of the theoretical uncertainties are due to uncertainties in the experimental rms radii. The nuclear CSB potential contributes 0.066, 0.188, and 0.090 MeV to these totals. We also attempted calculations for A = 39 and A = 41. However, in these cases, the experimental uncertainties in the rms radius make it impossible to extract useful information about the contribution of the nuclear CSB potential.

  13. Conjugate volcanic rifted margins, seafloor spreading, and microcontinent: Insights from new high-resolution aeromagnetic surveys in the Norway Basin

    NASA Astrophysics Data System (ADS)

    Gernigon, Laurent; Blischke, Anett; Nasuti, Aziz; Sand, Morten

    2015-05-01

    We have acquired and processed new aeromagnetic data that cover the entire oceanic Norway Basin located between the Møre volcanic rifted margin and the Jan Mayen microcontinent (JMMC). The new compilation allows us to revisit the structure of the conjugate volcanic (rifted) margins and the spreading evolution of the Norway Basin from the Early Eocene breakup time to the Late Oligocene when the Aegir Ridge became extinct. The volcanic margins (in a strict sense) that formed before the opening of the Norway Basin have been disconnected with the previous Jurassic-Mid-Cretaceous episode of crustal thinning. We also show evidence of relationships between the margin architecture, the breakup magmatism distribution along the continent-oceanic transition, and the subsequent oceanic segmentation. The Norway Basin shows a complex system of asymmetric oceanic segments locally affected by episodic ridge jumps. The new aeromagnetic compilation also confirms that a fan-shaped spreading evolution of the Norway Basin was clearly active before the cessation of seafloor spreading and extinction of the Aegir Ridge. An important Mid-Eocene kinematic event at around magnetic chron C21r can be recognized in the Norway Basin. This event coincides with the onset of diking and increasing rifting activity (and possible oceanic accretion?) between the proto-JMMC and the East Greenland margin. It led to a second phase of breakup and microcontinent formation in the Norwegian-Greenland Sea ~26 Myrs later in the Oligocene.

  14. Airborne detection of magnetic anomalies associated with soils on the Oak Ridge Reservation, Tennessee

    SciTech Connect

    Doll, W.E.; Beard, L.P.; Helm, J.M.

    1995-04-01

    Reconnaissance airborne geophysical data acquired over the 35,000-acre Oak Ridge Reservation (ORR), TN, show several magnetic anomalies over undisturbed areas mapped as Copper Ridge Dolomite (CRD). The anomalies of interest are most apparent in magnetic gradient maps where they exceed 0.06 nT/m and in some cases exceed 0.5 nT/m. Anomalies as large as 25nT are seen on maps. Some of the anomalies correlate with known or suspected karst, or with apparent conductivity anomalies calculated from electromagnetic data acquired contemporaneously with the magnetic data. Some of the anomalies have a strong correlation with topographic lows or closed depressions. Surface magnetic data have been acquired over some of these sites and have confirmed the existence of the anomalies. Ground inspections in the vicinity of several of the anomalies has not led to any discoveries of manmade surface materials of sufficient size to generate the observed anomalies. One would expect an anomaly of approximately 1 nT for a pickup truck from 200 ft altitude. Typical residual magnetic anomalies have magnitudes of 5--10 nT, and some are as large as 25nT. The absence of roads or other indications of culture (past or present) near the anomalies and the modeling of anomalies in data acquired with surface instruments indicate that man-made metallic objects are unlikely to be responsible for the anomaly. The authors show that observed anomalies in the CRD can reasonably be associated with thickening of the soil layer. The occurrence of the anomalies in areas where evidences of karstification are seen would follow because sediment deposition would occur in topographic lows. Linear groups of anomalies on the maps may be associated with fracture zones which were eroded more than adjacent rocks and were subsequently covered with a thicker blanket of sediment. This study indicates that airborne magnetic data may be of use in other sites where fracture zones or buried collapse structures are of interest.

  15. Seismic data fusion anomaly detection

    NASA Astrophysics Data System (ADS)

    Harrity, Kyle; Blasch, Erik; Alford, Mark; Ezekiel, Soundararajan; Ferris, David

    2014-06-01

    Detecting anomalies in non-stationary signals has valuable applications in many fields including medicine and meteorology. These include uses such as identifying possible heart conditions from an Electrocardiography (ECG) signals or predicting earthquakes via seismographic data. Over the many choices of anomaly detection algorithms, it is important to compare possible methods. In this paper, we examine and compare two approaches to anomaly detection and see how data fusion methods may improve performance. The first approach involves using an artificial neural network (ANN) to detect anomalies in a wavelet de-noised signal. The other method uses a perspective neural network (PNN) to analyze an arbitrary number of "perspectives" or transformations of the observed signal for anomalies. Possible perspectives may include wavelet de-noising, Fourier transform, peak-filtering, etc.. In order to evaluate these techniques via signal fusion metrics, we must apply signal preprocessing techniques such as de-noising methods to the original signal and then use a neural network to find anomalies in the generated signal. From this secondary result it is possible to use data fusion techniques that can be evaluated via existing data fusion metrics for single and multiple perspectives. The result will show which anomaly detection method, according to the metrics, is better suited overall for anomaly detection applications. The method used in this study could be applied to compare other signal processing algorithms.

  16. Medical management of vascular anomalies.

    PubMed

    Trenor, Cameron C

    2016-03-01

    We have entered an exciting era in the care of patients with vascular anomalies. These disorders require multidisciplinary care and coordination and dedicated centers have emerged to address this need. Vascular tumors have been treated with medical therapies for many years, while malformations have been historically treated with endovascular and operative procedures. The recent serendipitous discoveries of propranolol and sirolimus for vascular anomalies have revolutionized this field. In particular, sirolimus responses are challenging the dogma that vascular malformations are not biologically active. While initially explored for lymphatic anomalies, sirolimus is now being used broadly throughout the spectrum of vascular anomalies. Whether medical therapies are reserved for refractory patients or used first line is currently dependent on the experience and availability of alternative therapies at each institution. On the horizon, we anticipate new drugs targeting genes and pathways involved in vascular anomalies to be developed. Also, combinations of medications and protocols combining medical and procedural approaches are in development for refractory patients. PMID:27607327

  17. Congenital Anomalies of the Nose.

    PubMed

    Funamura, Jamie L; Tollefson, Travis T

    2016-04-01

    Congenital anomalies of the nose range from complete aplasia of the nose to duplications and nasal masses. Nasal development is the result of a complex embryologic patterning and fusion of multiple primordial structures. Loss of signaling proteins or failure of migration or proliferation can result in structural anomalies with significant cosmetic and functional consequences. Congenital anomalies of the nose can be categorized into four broad categories: (1) aplastic or hypoplastic, (2) hyperplastic or duplications, (3) clefts, and (4) nasal masses. Our knowledge of the embryologic origin of these anomalies helps dictate subsequent work-up for associated conditions, and the appropriate treatment or surgical approach to manage newborns and children with these anomalies. PMID:27097134

  18. Geologic and aeromagnetic maps and mineral resource potential survey of the Blackjack Springs Wilderness, Vilas County, Wisconsin

    USGS Publications Warehouse

    Schulz, Klaus J.

    1983-01-01

    The mineral resource potential of the Blackjack Springs Wilderness in the Nicolet National Forest, Vilas County, Wisc., was evaluated in 1982.  No bedrock exposures are known in or near the wilderness.  Geophysical data and regional geologic relations suggest that the area consists mostly of recrystallized and deformed mafic volcanic rocks and associated mafic intrusives of Early Proterozoic age.  The only identified mineral resources in the Blackjack Springs Wilderness are sand and gravel, but these commodities are abundant regionally.  While the occurrence of stratabound massive-sulfide (cooper-zinc-lead) and (or) magmatic sulfide (copper and (or) nickel)-type deposits are possible in the wilderness, their occurrence is not probable.

  19. Aeromagnetic map of the Powderhorn wilderness study area and Cannibal Plateau Roadless Area, Gunnison and Hinsdale counties, Colorado

    USGS Publications Warehouse

    Martin, R.A.; Sharp, William N.

    1983-01-01

    The Powderhorn Wilderness Study Area (51,000 acres or 20,640 hectares) and the contiguous Cannibal Plateau Roadless Area (29,500 acres or 11,959 hectares) are on the Gunnison County-Hinsdale County boundary, approximately 50mi (80 km) southwest of Gunnison and a few miles east of Lake City, Colo. Part of the area has been known as the Powderhorn Primitive Area. The mineral resource potential of the study area has been assessed by the U.S. Geological Survey and the U.S. Bureau of Mines; this assessment involved, besides the geologic study and economic appraisal (Sharp and others, 1983), a geophysical survey (this report) by the Geological Survey, and a geochemical survey (Sharp and Lane, 1983) by the Geological Survey and the Bureau of Mines. 

  20. Aeromagnetic and gravity maps of the Freel and Dardanelles Roadless Areas, Alpine and El Dorado counties, California

    USGS Publications Warehouse

    Plouff, Donald

    1983-01-01

    The Freel and Dardanelles Roadless Areas comprise 51 mi2 (132 km2) in the central Sierra Nevada south of Lake Tahoe.  The Sierra Nevada crest passes through the eastern part of the area.  Prominent mountains include Stevens Peak (elev 10,061 ft), Waterhouse Peak (elev 9,497 ft), and Freel Peak (elev 10,881 ft).

  1. System for closure of a physical anomaly

    DOEpatents

    Bearinger, Jane P; Maitland, Duncan J; Schumann, Daniel L; Wilson, Thomas S

    2014-11-11

    Systems for closure of a physical anomaly. Closure is accomplished by a closure body with an exterior surface. The exterior surface contacts the opening of the anomaly and closes the anomaly. The closure body has a primary shape for closing the anomaly and a secondary shape for being positioned in the physical anomaly. The closure body preferably comprises a shape memory polymer.

  2. Tracing incipient continental breakup from dike swarms: application of high-resolution aeromagnetics in Namibia

    NASA Astrophysics Data System (ADS)

    Trumbull, R.; Vietor, T.; Hahne, K.; Wackerle, R.; Kamati, T.; Ledru, P.

    2003-04-01

    High-resolution aeromagnetic data reveals a major Mesozoic dike swarm in north-central Namibia (the Henties Bay-Outjo Dikes or HOD), which extends NE at least 600 km inland from the Atlantic coast and 800 km from the continental shelf edge. Field relations and radiometric dates indicate emplacement ages of 120 to 140 Ma for the predominantly basic dikes, which agrees with ages of flood basalts and alkaline igneous complexes in the same region, and with similar rocks on the conjugate margin of Brazil and Uruguay. The density (number per unit area) and orientation of dikes in the HOD vary with distance from the coast, reflecting structural changes in the crustal basement and perhaps also proximity to a magma source at the developing continent-ocean boundary. In the coastal section (to ca. 100 km inland) the density of dikes is highest and orientations are dominantly NE-SW, with subordinate but important coast-parallel components. In the central section, the density of dikes decreases continuously inland and coast-parallel orientations are rare. In the northern section close to the boundary of the Congo Craton, the density of dikes increases again and orientations become more irregular and increasingly discordant to the structures of the Neoproterzoic Damara Belt. Some of the dikes propagate across the craton boundary in a fan-like array extending to beneath the Etosha Basin. Within the craton, the density of dikes is lower and individual dikes are longer and more continuous than in the Damara Belt, probably reflecting the more rigid and thicker crust. We interpret the HOD as one arm of a triple junction formed at the intersection of the NE-trending Damara Belt and the Namibian shelf edge west of Walfish Bay. This rift geometry is unlikely to reflect doming over a mantle plume since plate reconstructions place the Tristan plume head under southern Congo in the Early Cretaceous. Instead, it may represent reactivation of much older structures at the juncture between the

  3. Interpretation of Gravimetric and Aeromagnetic Data of the Tecoripa Chart in Southeast Sonora, Mexico.

    NASA Astrophysics Data System (ADS)

    Martínez-Retama, S.; Montaño-Del Cid, M. A.

    2015-12-01

    The Tecoripa chart H12-D64 is located southeast of the state of Sonora, México, south of Arizona. The geology is represented by sedimentary rocks of the Ordovician and Triassic, volcanic rocks of the Upper Cretaceous and Tertiary, intrusive rocks from the Upper Cretaceous- Tertiary and sedimentary rocks of the Cenozoic. In this paper a gravimetric study was conducted to determine the configuration and depth of the basement and to develop a structural model of the subsurface. For this purpose a consistent gravimetric survey in 3 profiles was conducted. To complement this study, gravimetric data obtained by INEGI (96 gravimetric stations spaced every 4000 m) that correspond to a regional survey was also used. The two sets of data were corrected and processed with the WinGLink software. The profiles were then modeled using the Talwani method. 4 Profiles corresponding to the gravimetric survey and 5 data profiles from INEGI were modeled. Aeromagnetic data from the total field of Tecoripa chart were also processed. The digital information was integrated and processed by generating a data grid. Processes applied to data consisted of reduction to the pole, regional-residual separation and upward continuations. In general, the obtained structural models show intrusive bodies associated with well-defined high gravimetric and magnetic and low gravimetric and magnetic are associated with basins and sedimentary rocks. The obtained geological models show the basement represented by volcanic rocks of the Tarahumara Formation from the Upper Cretaceous which are in contact with sedimentary rocks from the Barranca Group from Upper Cretaceous and limestones from the Middle Ordovician. Both volcanic and sedimentary rocks are intruded by granodiorite- granite with ages of the Tertiary-Oligocene. Based on the superficial geology as well as in the configuration of the basement and the obtained structural model the existence of faults with NW-SE orientation that originate Horst and

  4. Euro-African MAGSAT anomaly-tectonic observations

    NASA Technical Reports Server (NTRS)

    Hinze, W. J.; Olivier, R.; Vonfrese, R. R. B.

    1985-01-01

    Preliminary satellite (MAGSAT) scalar magnetic anomaly data are compiled and differentially reduced to radial polarization by equivalent point source inversion for comparison with tectonic data of Africa, Europe and adjacent marine areas. A number of associations are evident to constrain analyses of the tectonic features and history of the region. The Precambrian shields of Africa and Europe exhibit varied magnetic signatures. All shields are not magnetic highs and, in fact, the Baltic shield is a marked minimum. The reduced-to-the-pole magnetic map shows a marked tendency for northeasterly striking anomalies in the eastern Atlantic and adjacent Africa, which is coincident to the track of several hot spots for the past 100 million years. However, there is little consistency in the sign of the magnetic anomalies and the track of the hot spots. Comparison of the radially polarized anomalies of Africa and Europe with other reduced-to-the-pole magnetic satellite anomaly maps of the Western Hemisphere support the reconstruction of the continents prior to the origin of the present-day Atlantic Ocean in the Mesozoic Era.

  5. Euro-african MAGSAT Anomaly-tectonic Observations

    NASA Technical Reports Server (NTRS)

    Hinze, W. J.; Vonfrese, R. R. B. (Principal Investigator); Olivier, R.

    1984-01-01

    Preliminary satellite (MAGSAT) scalar magnetic anomaly data are compiled and differentially reduced to radial polarization by equivalent point source inversion for comparison with tectonic data of Africa, Europe and adjacent marine areas. A number of associations are evident to constrain analyses of the tectonic features and history of the region. The Precambrian shields of Africa and Europe exhibit varied magnetic signatures. All shields are not magnetic highs and, in fact, the Baltic shield is a marked minimum. The reduced-to-the-pole magnetic map shows a marked tendency for northeasterly striking anomalies in the eastern Atlantic and adjacent Africa, which is coincident to the track of several hot spots for the past 100 million years. However, there is little consistency in the sign of the magnetic anomalies and the track of the hot spots. Comparison of the radially polarized anomalies of Africa and Europe with other reduced-to-the-pole magnetic satellite anomaly maps of the Western Hemisphere support the reconstruction of the continents prior to the origin of the present-day Atlantic Ocean in the Mesozoic Era.

  6. Frozen subduction in the Yangtze block: insights from the deep seismic profiling and gravity anomaly in east Sichuan fold belt

    NASA Astrophysics Data System (ADS)

    Xiong, Xiaosong; Gao, Rui; Wang, Haiyan; Zhang, Jisheng; Guo, Lianghui

    2016-04-01

    The Sichuan basin is the main part of the middle-upper Yangtze block, which has been experienced a long-term tectonic evolution since Archean. The Yangtze block was regarded as a stable block until the collision with the Cathaysia block in late Neoproterozoic. A new deep seismic reflection profile conducted in the eastern Sichuan fold belt (ESFB) discovered a serials of south-dipping reflectors shown from lower crust to the mantle imply a frozen subduction zone within the Yangtze block. In order to prove the speculation, we also obtain the middle-lower crustal gravity anomalies by removing the gravity anomalies induced by the sedimentary rocks and the mantle beneath the Moho, which shows the mid-lower crustal structure of the Sichuan basin can be divided into eastern and western parts. Combined with the geochronology and Aeromagnetic anomalies, we speculated the Yangtze block was amalgamated by the West Sichuan and East Sichuan blocks separated by the Huayin-Chongqing line. The frozen subduction zone subsequently shifted to a shear zone accommodated the lower crustal shortening when the decollement at the base of the Nanhua system functioned in the upper plate.

  7. Investigation of the deep crustal structure and magmatic activity at the NW Hellenic Volcanic Arc with 3-D aeromagnetic inversion and seimotectonic analysis.

    NASA Astrophysics Data System (ADS)

    Efstathiou, Angeliki; Tzanis, Andreas; Chailas, Stylianos; Stamatakis, Michael

    2013-04-01

    We report the results of a joint analysis of geophysical (aeromagnetic) and seismotectonic data, applied to the investigation of the deep structure, magmatic activity and geothermal potential of the north-western stretches of the Hellenic Volcanic Arc (HVA). The HVA is usually considered to be a single arcuate entity stretching from Sousaki (near Corinth) at the NW, to Nisyros Island at the SE. However, different types of and their ages indicate the presence of two different volcanic groups. Our study focuses on the northern part of the west (older) volcanic group and includes the Crommyonian (Sousaki) volcanic field at the west end of Megaris peninsula (east margin on the contemporary Corinth Rift), the Aegina and Methana volcanic complex at the Saronic Gulf, where typical Quaternary calc-alkaline volcanics predominate, and the Argolid peninsula to the south and south-west. In addition to the rocks associated with Quaternary volcanism, the study area includes a series of Mesozoic ultramafic (ophiolitic) outcrops at the Megaris peninsula, to the north and north-east of the Crommyonian volcanic field, as well as throughout the Argolid. A major deep structural and tectonic feature of the study area, and one with profound influence on crustal deformation and the evolution of rapidly deforming extensional structures like the Corinth Rift and the Saronic Gulf, is the local geometry and dynamics of the African oceanic crust subducting beneath the Aegean plate. Locally, the subducting slab has a NNW strike and ENE plunge, with the dip angle changing rapidly (steepening) approx. beneath the Argolid. The aeromagnetic data was extracted from the recently (re)compiled aeromagnetic map of Greece (Chailas et al, 2010) and was inverted with the UBC-GIF magnetic inversion suite (Li and Oldenburg, 1996). The inversion included rigorous geological constraints introduced by means of numerous in-situ magnetic susceptibility measurements. The inversion has imaged several isolated

  8. Investigation of the deep crustal structure and magmatic activity at the NW Hellenic Volcanic Arc with 3-D aeromagnetic inversion and seimotectonic analysis.

    NASA Astrophysics Data System (ADS)

    Efstathiou, Angeliki; Tzanis, Andreas; Chailas, Stylianos; Stamatakis, Michael

    2013-04-01

    We report the results of a joint analysis of geophysical (aeromagnetic) and seismotectonic data, applied to the investigation of the deep structure, magmatic activity and geothermal potential of the north-western stretches of the Hellenic Volcanic Arc (HVA). The HVA is usually considered to be a single arcuate entity stretching from Sousaki (near Corinth) at the NW, to Nisyros Island at the SE. However, different types of and their ages indicate the presence of two different volcanic groups. Our study focuses on the northern part of the west (older) volcanic group and includes the Crommyonian (Sousaki) volcanic field at the west end of Megaris peninsula (east margin on the contemporary Corinth Rift), the Aegina and Methana volcanic complex at the Saronic Gulf, where typical Quaternary calc-alkaline volcanics predominate, and the Argolid peninsula to the south and south-west. In addition to the rocks associated with Quaternary volcanism, the study area includes a series of Mesozoic ultramafic (ophiolitic) outcrops at the Megaris peninsula, to the north and north-east of the Crommyonian volcanic field, as well as throughout the Argolid. A major deep structural and tectonic feature of the study area, and one with profound influence on crustal deformation and the evolution of rapidly deforming extensional structures like the Corinth Rift and the Saronic Gulf, is the local geometry and dynamics of the African oceanic crust subducting beneath the Aegean plate. Locally, the subducting slab has a NNW strike and ENE plunge, with the dip angle changing rapidly (steepening) approx. beneath the Argolid. The aeromagnetic data was extracted from the recently (re)compiled aeromagnetic map of Greece (Chailas et al, 2010) and was inverted with the UBC-GIF magnetic inversion suite (Li and Oldenburg, 1996). The inversion included rigorous geological constraints introduced by means of numerous in-situ magnetic susceptibility measurements. The inversion has imaged several isolated

  9. Recognition of geochemical anomalies using a deep autoencoder network

    NASA Astrophysics Data System (ADS)

    Xiong, Yihui; Zuo, Renguang

    2016-01-01

    In this paper, we train an autoencoder network to encode and reconstruct a geochemical sample population with unknown complex multivariate probability distributions. During the training, small probability samples contribute little to the autoencoder network. These samples can be recognized by the trained model as anomalous samples due to their comparatively higher reconstructed errors. The southwestern Fujian district (China) is chosen as a case study area. A variety of learning rates, iterations, and the size of each hidden layer are constructing and training the deep autoencoder networks on all the geochemical samples. The reconstruction error (or, anomaly score) of each training sample is used to recognize multivariate geochemical anomalies associated with Fe polymetallic mineralization. By comparing the results obtained with a continuous restricted Boltzmann machine, we conclude that the autoencoder network can be trained to recognize multivariate geochemical anomalies. Most of the known skarn-type Fe deposits are located in areas with high reconstruction errors or anomaly scores in the anomaly map, indicating that these anomalies may be related to Fe mineralization.

  10. Binning of satellite magnetic anomalies

    NASA Technical Reports Server (NTRS)

    Goyal, H. K.; Vonfrese, R. R. B.; Hinze, W. J.

    1985-01-01

    Crustal magnetic anomaly signals over satellite orbits were simulated to investigate numerical averaging as an anomaly estimator. Averaging as an anomaly estimator involves significant problems concerning spatial and amplitude smoothing of the satellite magnetic observations. The results of simulations suggest that the error of numerical averaging constitutes a small and relatively minor component of the total error-budget of higher orbital anomaly estimates, whereas for lower orbital estimates numerical averaging error increases substantially. As an alternative to numerical averaging, least-squares collocation was investigated and observed to produce substantially more accurate anomaly estimates, particularly as the orbital elevation of prediction was decreased towards the crustal sources. In contrast to averaging, collocation is a significantly more resource-intensive procedure to apply because of the practical, but surmountable problems related to establishing and inverting the covariance matrix for accurate anomaly prediction. However, collocation may be much more effectively used to exploit the anomaly details contained in the lower orbital satellite magnetic data for geologic analysis.

  11. Reliability of CHAMP Anomaly Continuations

    NASA Technical Reports Server (NTRS)

    vonFrese, Ralph R. B.; Kim, Hyung Rae; Taylor, Patrick T.; Asgharzadeh, Mohammad F.

    2003-01-01

    CHAMP is recording state-of-the-art magnetic and gravity field observations at altitudes ranging over roughly 300 - 550 km. However, anomaly continuation is severely limited by the non-uniqueness of the process and satellite anomaly errors. Indeed, our numerical anomaly simulations from satellite to airborne altitudes show that effective downward continuations of the CHAMP data are restricted to within approximately 50 km of the observation altitudes while upward continuations can be effective over a somewhat larger altitude range. The great unreliability of downward continuation requires that the satellite geopotential observations must be analyzed at satellite altitudes if the anomaly details are to be exploited most fully. Given current anomaly error levels, joint inversion of satellite and near- surface anomalies is the best approach for implementing satellite geopotential observations for subsurface studies. We demonstrate the power of this approach using a crustal model constrained by joint inversions of near-surface and satellite magnetic and gravity observations for Maude Rise, Antarctica, in the southwestern Indian Ocean. Our modeling suggests that the dominant satellite altitude magnetic anomalies are produced by crustal thickness variations and remanent magnetization of the normal polarity Cretaceous Quiet Zone.

  12. Lunar magnetic anomalies detected by the Apollo subsatellite magnetometers

    NASA Technical Reports Server (NTRS)

    Hood, L. L.; Coleman, P. J., Jr.; Russell, C. T.; Wilhelms, D. E.

    1979-01-01

    Properties of lunar crustal magnetization thus far deduced from Apollo subsatellite magnetometer data are reviewed using two of the most accurate available magnetic anomaly maps, one covering a portion of the lunar near side and the other a part of the far side. The largest single anomaly found within the region of coverage on the near-side map correlates exactly with a conspicuous light-colored marking in western Oceanus Procellarum called Reiner Gamma. This feature is interpreted as an unusual deposit of ejecta from secondary craters of the large nearby primary impact crater Cavalerius. The mean altitude of the far-side anomaly gap is much higher than that of the near side map and the surface geology is more complex; individual anomaly sources have therefore not yet been identified. The mechanism of magnetization and the origin of the magnetizing field remain unresolved, but the uniformity with which the Reiner Gamma deposit is apparently magnetized, and the north-south depletion of magnetization intensity across a substantial portion of the far side, seem to require the existence of an ambient field, perhaps of global or larger extent.

  13. Investigation into the regional wrench tectonics of inner East Anatolia (Turkey) using potential field data

    NASA Astrophysics Data System (ADS)

    Büyüksaraç, Aydın

    2007-01-01

    The residual aeromagnetic and gravity anomalies of inner East Anatolia, surveyed by the Mineral Research and Exploration (MTA) of Turkey, display complexities. Some faults, which are known and new lineaments, are drawn from maxspot map derived from the location of the horizontal gradient of gravity anomalies. Tectonic lineaments of inner East Anatolia exhibit similarities to the direction of East Anatolian Fault Zone. Anticlockwise rotation, approximately -30°, defined from disorientations of aeromagnetic anomalies. The lineaments obtained from maxspots map produced from the gravity anomalies and disoriented aeromagnetic anomalies are in-line with the mobilistic system revealed by the palaeomagnetic data. These Alpine age continental rotations caused westward wrenching of the global lithosphere and led to significant tectonic reactivation and deformations. GPS measurements, current tectonic knowledge and the results of the evaluation of potential field data were combined in a base map to demonstrate similarities.

  14. Hierarchical Kohonenen net for anomaly detection in network security.

    PubMed

    Sarasamma, Suseela T; Zhu, Qiuming A; Huff, Julie

    2005-04-01

    A novel multilevel hierarchical Kohonen Net (K-Map) for an intrusion detection system is presented. Each level of the hierarchical map is modeled as a simple winner-take-all K-Map. One significant advantage of this multilevel hierarchical K-Map is its computational efficiency. Unlike other statistical anomaly detection methods such as nearest neighbor approach, K-means clustering or probabilistic analysis that employ distance computation in the feature space to identify the outliers, our approach does not involve costly point-to-point computation in organizing the data into clusters. Another advantage is the reduced network size. We use the classification capability of the K-Map on selected dimensions of data set in detecting anomalies. Randomly selected subsets that contain both attacks and normal records from the KDD Cup 1999 benchmark data are used to train the hierarchical net. We use a confidence measure to label the clusters. Then we use the test set from the same KDD Cup 1999 benchmark to test the hierarchical net. We show that a hierarchical K-Map in which each layer operates on a small subset of the feature space is superior to a single-layer K-Map operating on the whole feature space in detecting a variety of attacks in terms of detection rate as well as false positive rate. PMID:15828658

  15. Classifying sex biased congenital anomalies

    SciTech Connect

    Lubinsky, M.S.

    1997-03-31

    The reasons for sex biases in congenital anomalies that arise before structural or hormonal dimorphisms are established has long been unclear. A review of such disorders shows that patterning and tissue anomalies are female biased, and structural findings are more common in males. This suggests different gender dependent susceptibilities to developmental disturbances, with female vulnerabilities focused on early blastogenesis/determination, while males are more likely to involve later organogenesis/morphogenesis. A dual origin for some anomalies explains paradoxical reductions of sex biases with greater severity (i.e., multiple rather than single malformations), presumably as more severe events increase the involvement of an otherwise minor process with opposite biases to those of the primary mechanism. The cause for these sex differences is unknown, but early dimorphisms, such as differences in growth or presence of H-Y antigen, may be responsible. This model provides a useful rationale for understanding and classifying sex-biased congenital anomalies. 42 refs., 7 tabs.

  16. Genetics Home Reference: Peters anomaly

    MedlinePlus

    ... the anterior segment is abnormal, leading to incomplete separation of the cornea from the iris or the ... anomaly type I is characterized by an incomplete separation of the cornea and iris and mild to ...

  17. Geopotential field anomalies and regional tectonic features - two case studies: southern Africa and Germany

    NASA Astrophysics Data System (ADS)

    Korte, Monika; Mandea, Mioara

    2016-05-01

    Maps of magnetic and gravity field anomalies provide information about physical properties of the Earth's crust and upper mantle, helpful in understanding geological conditions and tectonic structures. Depending on data availability, whether from the ground, airborne, or from satellites, potential field anomaly maps contain information on different ranges of spatial wavelengths, roughly corresponding to sources at different depths. Focussing on magnetic data, we compare amplitudes and characteristics of anomalies from maps based on various available data and as measured at geomagnetic repeat stations. Two cases are investigated: southern Africa, characterized by geologically old cratons and strong magnetic anomalies, and the smaller region of Germany with much younger crust and weaker anomalies. Estimating lithospheric magnetic anomaly values from the ground stations' time series (repeat station crustal biases) reveals magnetospheric field contributions causing time-varying offsets of several nT in the results. Similar influences might be one source of discrepancy when merging anomaly maps from different epochs. Moreover, we take advantage of recently developed satellite potential field models and compare magnetic and gravity gradient anomalies of ˜ 200 km resolution. Density and magnetization represent independent rock properties and thus provide complementary information on compositional and structural changes. Comparing short- and long-wavelength anomalies and the correlation of rather large-scale magnetic and gravity anomalies, and relating them to known lithospheric structures, we generally find a better agreement in the southern African region than the German region. This probably indicates stronger concordance between near-surface (down to at most a few km) and deeper (several kilometres down to Curie depth) structures in the former area, which can be seen to agree with a thicker lithosphere and a lower heat flux reported in the literature for the southern

  18. Remanent and induced magnetic anomalies over a layered intrusion: Effects from crystal fractionation and magma recharge

    NASA Astrophysics Data System (ADS)

    McEnroe, Suzanne A.; Brown, Laurie L.; Robinson, Peter

    2009-12-01

    The Bjerkreim-Sokndal (BKS) norite - quartz mangerite layered intrusion is part of the early Neoproterozoic Rogaland Anorthosite Province intruded into the Fennoscandian shield in south Norway at ~ 930 Ma. The BKS is exposed over an area of 230 km 2 with a thickness of ~ 7000 m and is of economic interest for ilmenite, magnetite and apatite deposits. From the point of view of magnetic minerals, in the course of fractional crystallization and magma evolution, the ilmenite becomes less Fe 3+-rich reflected by a change from ilmenite with hematite exsolution to nearly pure ilmenite. Magnetite starts to crystallize relatively late in the intrusive history, but its crystallization is interrupted by influxes of more primitive magma. The variations in aeromagnetic and ground-magnetic anomalies measured over the BKS can be explained in terms of the measured magnetic properties of NRM, susceptibility, and hysteresis presented here, and in terms of mineralogy. Early layers in the intrusion contain hemo-ilmenite. As the magma evolved and magnetite started to crystallize, this caused a distinct change over the layering from remanence-controlled negative anomalies to induced positive anomalies. When new, more primitive magma was injected into the system, hemo-ilmenite returned as the major oxide and the resulting magnetic anomalies are again negative. The most dramatic change in the magnetic signature is in the upper part of the intrusion in MCU IVe, where magnetite became a well established cumulate phase as indicated by susceptibility, but its induced magnetization is overcome by large NRMs associated either with hemo-ilmenite, or with hemo-ilmenite and magnetite exsolved from pyroxenes. The average natural remanent magnetizations change from ~ 3 A/m in MCU IVd, to 15 A/m in MCU IVe, and back to 2 A/m in the overlying MCU IVf, producing a strong negative remanent anomaly that has been followed along strike for at least 20 km by ground-magnetic measurements. The highly varied

  19. Overgrowth syndromes with vascular anomalies.

    PubMed

    Blei, Francine

    2015-04-01

    Overgrowth syndromes with vascular anomalies encompass entities with a vascular anomaly as the predominant feature vs those syndromes with predominant somatic overgrowth and a vascular anomaly as a more minor component. The focus of this article is to categorize these syndromes phenotypically, including updated clinical criteria, radiologic features, evaluation, management issues, pathophysiology, and genetic information. A literature review was conducted in PubMed using key words "overgrowth syndromes and vascular anomalies" as well as specific literature reviews for each entity and supportive genetic information (e.g., somatic mosaicism). Additional searches in OMIM and Gene Reviews were conducted for each syndrome. Disease entities were categorized by predominant clinical features, known genetic information, and putative affected signaling pathway. Overgrowth syndromes with vascular anomalies are a heterogeneous group of disorders, often with variable clinical expression, due to germline or somatic mutations. Overgrowth can be focal (e.g., macrocephaly) or generalized, often asymmetrically (and/or mosaically) distributed. All germ layers may be affected, and the abnormalities may be progressive. Patients with overgrowth syndromes may be at an increased risk for malignancies. Practitioners should be attentive to patients having syndromes with overgrowth and vascular defects. These patients require proactive evaluation, referral to appropriate specialists, and in some cases, early monitoring for potential malignancies. Progress in identifying vascular anomaly-related overgrowth syndromes and their genetic etiology has been robust in the past decade and is contributing to genetically based prenatal diagnosis and new therapies targeting the putative causative genetic mutations. PMID:25937473

  20. Gravity Anomalies and Depths of Sedimentary of Mekong Delta Area, South of Vietnam

    NASA Astrophysics Data System (ADS)

    Dang Van, L.

    2014-12-01

    The Mekong Delta is the region in the south of Vietnam with the total area of about 40.000 km2 and almost of this area is covered by water. Gravity measurement of this area was performed by Cuu Long Petroleum Agency (Vietnam) in 1980's and the Bouguer anomaly map of this area at the scale of 1/500.000 was established.We used the Bouguer anomaly map to study the geological structure of this area. This paper is divided into two parts. Firstly, we split the Mekong Delta area into two basins (CanTho-DongThap and TraCu basins) and two swells (Saigon and SocTrang swells) and delineated their boundaries by using the characteristics of Bouguer anomalies. Secondly, we used the second polynomial formula to separate the Bouger anomaly map into the regional and residual gravity anomaly maps. With this residual anomaly map, the 3D basemenf of Cenozoic-Mesozoic sediments of this area was computed by using the Parker-Oldenburg method.

  1. Effects of surface anomalies on certain model generated meteorological histories

    NASA Technical Reports Server (NTRS)

    Spar, J.

    1972-01-01

    The Mintz-Arakawa 2-level general circulation model has been used in a series of experiments to compute the response of the model atmosphere to: (1) a positive sea surface temperature anomaly in the North Pacific Ocean in summer and in winter, (2) an identical anomaly in the South Pacific Ocean in the Southern Hemisphere winter, and (3) anomalous northward and southward displacements of the Northern Hemisphere snow line over the continents. In each case computations were carried out for 90 forecast days. Results are shown in terms of the differences between anomaly and control histories. Time series of certain regional response indices, including area-average sea level pressure and 600 mb circulation indices, as well as 30-day mean sea level pressure maps are used in the analysis. Of particular interest is the evidence of significant interhemisphere influence.

  2. Some key issues in isotopic anomalies - Astrophysical history and aggregation

    NASA Technical Reports Server (NTRS)

    Clayton, D. D.

    1982-01-01

    Astrophysical history, particularly that period extending from stellar nucleosynthesis events to the formation of meteorites, is discussed as the key element for the understanding of isotopic anomalies in meteorites. The bulk homogeneity of the interstellar medium is considered, and it is argued that, despite the presence of spatial inhomogeneities due to different nucleosynthesis rates in different parts of the galaxy and supernova ejecta, a cosmic chemical memory of nucleosynthesis patterns, rather than an inhomogeneous injection, is the source of isotopic anomalies. According to this view, volatility patterns and some isotopic patterns are mapped onto a grain-size spectrum, and the FUN systematics may be explained by interstellar sputtering. Furthermore, meteoritic He and Ne abundances are inferred to be presolar, and the ubiquitous titanium isotopic anomalies are explained by processes of chemical fixation and condensation in varying environments.

  3. Toward Baseline Software Anomalies in NASA Missions

    NASA Technical Reports Server (NTRS)

    Layman, Lucas; Zelkowitz, Marvin; Basili, Victor; Nikora, Allen P.

    2012-01-01

    In this fast abstract, we provide preliminary findings an analysis of 14,500 spacecraft anomalies from unmanned NASA missions. We provide some baselines for the distributions of software vs. non-software anomalies in spaceflight systems, the risk ratings of software anomalies, and the corrective actions associated with software anomalies.

  4. The last frontier? High-resolution, near-bottom measurements of the Hawaiian Jurassic magnetic anomaly sequence

    NASA Astrophysics Data System (ADS)

    Tivey, M.; Tominaga, M.; Sager, W. W.

    2012-12-01

    The Jurassic sequence of marine magnetic anomalies i.e. older than M29 remain the last part of the marine magnetic anomaly sequence of the geomagnetic polarity timescale (GPTS) that can be gleaned from the ocean crustal record. While Jurassic crust is present in several areas of the world's ocean basins, the oldest and arguably best preserved sequence is in the western Pacific where three lineations sets (Japanese, Hawaiian and Phoenix) converge on the oldest remaining ocean crust on the planet (i.e. crust that has not been subducted). The magnetic anomalies in these 3 lineation sets are marked by low amplitude, relatively indistinct anomalies (tiny wiggles) that collectively have been called the Jurassic quiet Zone (JQZ). Over the past 20 years we have been working on resolving the character and origin of these anomalies with various technologies to improve our resolution of this period. Following an aeromagnetic survey that revealed the possible presence of lineated anomalies older than M29 in the Japanese lineations, we conducted a deeptow magnetometer survey of the Japanese sequence in 1992. In 2002/03 we extended and confirmed this deeptow record with a deeptowed sidescan and magnetometer survey of the Japanese lineation sequence by tying in ODP Hole 801C and extending the anomaly sequence between M29 and M44. These surveys reveal remarkably fast reversals that are lineated and decrease in intensity back in time until M38, prior to which the sequence becomes somewhat confused (the LAZ or low amplitude zone) before recovering in both amplitude and lineated character around Hole 801C (M42). These results are partially supported by recently reported terrestrial magnetostratigraphy records that show the existence of reversals back to M38. A Jurassic GPTS was constructed from this Japanese anomaly sequence, but the overall global significance of the reversal sequence and systematic field intensity changes require confirmation from crustal records created at

  5. Light dark matter anomalies after LUX

    NASA Astrophysics Data System (ADS)

    Gresham, Moira I.; Zurek, Kathryn M.

    2014-01-01

    We examine the consistency of light dark matter (DM) elastic scattering in CoGeNT, DAMA, and CDMS-silicon in light of constraints from XENON, CDMS, LUX, PICASSO and COUPP. We consider a variety of operators that have been employed to reconcile anomalies with constraints, including anapole, magnetic dipole, momentum-dependent, and isospin-violating DM. We find that elastic scattering through these alternative operators does not substantially reduce the tension between the signals and the null constraints for operators where at least two of the three purported signals map onto a common space in the DM mass-scattering cross-section plane. Taking a choice of the scintillation efficiency that lies at the -1σ region of the Manzur et al. measurement relieves tension between signals and the LUX constraint—in particular for a magnetic dipole interaction and a xenophobic interaction (though for the latter the signal regions do not substantially overlap). We also find that modest changes in the halo model do not alter this result. We conclude that, even relaxing the assumption about the type of elastic scattering interaction and taking a conservative choice for the scintillation efficiency, LUX and the results from other null experiments remain in tension with a light DM elastic scattering explanation of direct detection anomalies.

  6. MAGSAT anomaly field inversion and interpretation for the US

    NASA Technical Reports Server (NTRS)

    Mayhew, M. A. (Principal Investigator)

    1982-01-01

    Long wavelength anomalies in the total magnetic field measured by MAGSAT over the United States and adjacent areas are inverted to an equivalent layer crustal magnetization distribution. The model is based on an equal area dipole grid at the Earth's surface. Model resolution, defined as the closest dipole spacing giving a solution having physical significance, is about 220 km for MAGSAT data in the elevation range 300-500 km. The magnetization contours correlate well with large scale tectonic provinces. A higher resolution (200 km) model based on relatively noise free synthetic "pseudodata" is also presented. Magnetic anomaly component data measured by MAGSAT is compared with synthetic anomaly component fields arising from an equivalent source dipole array at the Earth's surface generated from total field anomaly data alone. An excellent inverse correlation between apparent magnetization and heat flow in the western U.S. is demonstrated. A regional heat flow map which is presented and compared with published maps, predicts high heat flow in Nebraska and the Dakotas, suggesting the presence of a "blind" geothermal area of regional extent.

  7. Waterlike structural and excess entropy anomalies in liquid beryllium fluoride.

    PubMed

    Agarwal, Manish; Chakravarty, Charusita

    2007-11-22

    The relationship between structural order metrics and the excess entropy is studied using the transferable rigid ion model (TRIM) of beryllium fluoride melt, which is known to display waterlike thermodynamic anomalies. The order map for liquid BeF2, plotted between translational and tetrahedral order metrics, shows a structurally anomalous regime, similar to that seen in water and silica melt, corresponding to a band of state points for which average tetrahedral (q(tet)) and translational (tau) order are strongly correlated. The tetrahedral order parameter distributions further substantiate the analogous structural properties of BeF2, SiO2, and H2O. A region of excess entropy anomaly can be defined within which the pair correlation contribution to the excess entropy (S2) shows an anomalous rise with isothermal compression. Within this region of anomalous entropy behavior, q(tet) and S2 display a strong negative correlation, indicating the connection between the thermodynamic and the structural anomalies. The existence of this region of excess entropy anomaly must play an important role in determining the existence of diffusional and mobility anomalies, given the excess entropy scaling of transport properties observed in many liquids. PMID:17963376

  8. Geoid anomalies and fracture zones in the Pacific Ocean

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The high degree and order geoid field in the Pacific is a superposition of fracture zone anomalies and hot-spot swell anomalies. A two-dimensional spectral analysis of this field reveals a very strong north-south wavenumber contribution with a dominant wavelength of about 2000 km, a much smaller contribution from east-west wavenumbers, and negligible contributions from other directions. One dimensional profiles were taken in order to appreciate the magnitudes of the north-south and east-west components. A calculated geoid anomaly using an idealized fracture zone model contains just about the same amount of power in the 2350 km band wavelength as does the north-south profile of the SEASAT geoid field. In an attempt to correlate plate age with geoid anomalies, a digitized age map of the Pacific was used to generate a synthetic geoid, which was subtracted from SEASAT. This procedure produces a residual geoid in which the fracture zone anomalies appear to be diminished, if not removed.

  9. Non-relativistic scale anomalies

    NASA Astrophysics Data System (ADS)

    Arav, Igal; Chapman, Shira; Oz, Yaron

    2016-06-01

    We extend the cohomological analysis in arXiv:1410.5831 of anisotropic Lifshitz scale anomalies. We consider non-relativistic theories with a dynamical critical exponent z = 2 with or without non-relativistic boosts and a particle number symmetry. We distinguish between cases depending on whether the time direction does or does not induce a foliation structure. We analyse both 1 + 1 and 2 + 1 spacetime dimensions. In 1 + 1 dimensions we find no scale anomalies with Galilean boost symmetries. The anomalies in 2 + 1 dimensions with Galilean boosts and a foliation structure are all B-type and are identical to the Lifshitz case in the purely spatial sector. With Galilean boosts and without a foliation structure we find also an A-type scale anomaly. There is an infinite ladder of B-type anomalies in the absence of a foliation structure with or without Galilean boosts. We discuss the relation between the existence of a foliation structure and the causality of the field theory.

  10. Experimental Anomalies in Neutrino Physics

    NASA Astrophysics Data System (ADS)

    Palamara, Ornella

    2014-03-01

    In recent years, experimental anomalies ranging in significance (2.8-3.8 σ) have been reported from a variety of experiments studying neutrinos over baselines less than 1 km. Results from the LSND and MiniBooNE short-baseline νe /νe appearance experiments show anomalies which cannot be described by oscillations between the three standard model neutrinos (the ``LSND anomaly''). In addition, a re-analysis of the anti-neutrino flux produced by nuclear power reactors has led to an apparent deficit in νe event rates in a number of reactor experiments (the ``reactor anomaly''). Similarly, calibration runs using 51Cr and 37Ar radioactive sources in the Gallium solar neutrino experiments GALLEX and SAGE have shown an unexplained deficit in the electron neutrino event rate over very short distances (the ``Gallium anomaly''). The puzzling results from these experiments, which together may suggest the existence of physics beyond the Standard Model and hint at exciting new physics, including the possibility of additional low-mass sterile neutrino states, have raised the interest in the community for new experimental efforts that could eventually solve this puzzle. Definitive evidence for sterile neutrinos would be a revolutionary discovery, with implications for particle physics as well as cosmology. Proposals to address these signals by employing accelerator, reactor and radioactive source experiments are in the planning stages or underway worldwide. In this talk some of these will be reviewed, with emphasis on the accelerator programs.

  11. Magsat to CHAMP: Magnetic Satellite Explorations of Lithospheric Anomalies over Kursk, Bangui and the Antarctic

    NASA Technical Reports Server (NTRS)

    Kim, H.; Taylor, Patrick T.; vonFrese, R. R.; Kim, J. W.

    2004-01-01

    We compare crustal magnetic anomaly maps over the Kursk (Russia) and Bangui (Central African Republic) isolated anomalies and the Antarctic derived from the Magsat, \\Orsted and CHAMP satellite fields. We wish to demonstrate how progress in satellite magnetic missions has improved the recovery of the crustal magnetic field. The 6-month long Magsat mission of 25 years ago generated two major methods of processing satellite magnetic anomaly data for lithospheric studies. The first was a global perspective using spherical harmonics that emphasize the more regional and global lithospheric fields. However, these fields commonly do not resolve local anomaly features in any detail. Therefore a second procedure involved the use of the individual satellite orbit or track data to recover small-scale anomalies on a regional scale. We present results over prominent magnetic anomalies such as Kursk, Bangui and the large Antarctic continent that demonstrate how the various analysis methods affect the recovery of crustal anomalies. The more recent \\Orsted and CHAMP missions are successfully recording data with an improved accuracy and with full spatial and temporal coverage. We show and interpret the total magnetic intensity anomaly maps over these areas from all three satellite magnetometer data sets.

  12. Teleconnection of the 1997 El Nino Observed by Spaceborne Sensors and the Dacadal Anomalies in the Northeast Pacific

    NASA Technical Reports Server (NTRS)

    Liu, W.; Hu, H.; Xie, X.

    1999-01-01

    Liu et al.[1998] (hereafter referred as LTH), superimposed wind velocity anomalies observed by the NASA Scatterometer (NSCAT) on the map of sea surface temperature (SST) anomalies observed by the Advanced Very High Resolution Radiometer (AVHRR) in the Pacific at the end of May 1997, and illustrated that the three regions of anomalous warming in the North Pacific Ocean are related to wind anomalies through different mechanisms.

  13. Digital Aeromagnetic Data and Derivative Products from a Helicopter Survey over the Town of Taos and Surrounding Areas, Taos County, New Mexico

    USGS Publications Warehouse

    Bankey, Viki; Grauch, V.J.S.; Fugro Airborne Surveys Corporation

    2004-01-01

    This report contains digital data, image files, and text files describing data formats and survey procedures for aeromagnetic data collected during a helicopter geophysical survey in northern New Mexico during October 2003. The survey covers the Town of Taos, Taos Pueblo, and surrounding communities in Taos County. Several derivative products from these data are also presented, including reduced-to-pole, horizontal gradient magnitude, and downward continued grids and images.

  14. Digital aeromagnetic data and derivative products from a helicopter survey over the town of Blanca and surrounding areas, Alamosa and Costilla counties, Colorado

    USGS Publications Warehouse

    Bankey, Viki; Grauch, V.J.S.; Fugro Airborne Surveys Corporation

    2004-01-01

    This CD-ROM contains digital data, image files, and text files describing data formats and survey procedures for aeromagnetic data collected during a helicopter geophysical survey in southern Colorado during October 2003. The survey covers the town of Blanca and surrounding communities in Alamosa and Costilla Counties. Several derivative products from these data are also presented, including reduced-to-pole, horizontal gradient magnitude, and downward continued grids and images.

  15. Measuring anomaly with algorithmic entropy

    NASA Astrophysics Data System (ADS)

    Solano, Wanda M.

    Anomaly detection refers to the identification of observations that are considered outside of normal. Since they are unknown to the system prior to training and rare, the anomaly detection problem is particularly challenging. Model based techniques require large quantities of existing data are to build the model. Statistically based techniques result in the use of statistical metrics or thresholds for determining whether a particular observation is anomalous. I propose a novel approach to anomaly detection using wavelet based algorithmic entropy that does not require modeling or large amounts of data. My method embodies the concept of information distance that rests on the fact that data encodes information. This distance is large when little information is shared, and small when there is greater information sharing. I compare my approach with several techniques in the literature using data obtained from testing of NASA's Space Shuttle Main Engines (SSME)

  16. Spacecraft environmental anomalies expert system

    NASA Technical Reports Server (NTRS)

    Koons, H. C.; Gorney, D. J.

    1988-01-01

    A microcomputer-based expert system is being developed at the Aerospace Corporation Space Sciences Laboratory to assist in the diagnosis of satellite anomalies caused by the space environment. The expert system is designed to address anomalies caused by surface charging, bulk charging, single event effects and total radiation dose. These effects depend on the orbit of the satellite, the local environment (which is highly variable), the satellite exposure time and the hardness of the circuits and components of the satellite. The expert system is a rule-based system that uses the Texas Instruments Personal Consultant Plus expert system shell. The completed expert system knowledge base will include 150 to 200 rules, as well as a spacecraft attributes database, an historical spacecraft anomalies database, and a space environment database which is updated in near real-time. Currently, the expert system is undergoing development and testing within the Aerospace Corporation Space Sciences Laboratory.

  17. Graph anomalies in cyber communications

    SciTech Connect

    Vander Wiel, Scott A; Storlie, Curtis B; Sandine, Gary; Hagberg, Aric A; Fisk, Michael

    2011-01-11

    Enterprises monitor cyber traffic for viruses, intruders and stolen information. Detection methods look for known signatures of malicious traffic or search for anomalies with respect to a nominal reference model. Traditional anomaly detection focuses on aggregate traffic at central nodes or on user-level monitoring. More recently, however, traffic is being viewed more holistically as a dynamic communication graph. Attention to the graph nature of the traffic has expanded the types of anomalies that are being sought. We give an overview of several cyber data streams collected at Los Alamos National Laboratory and discuss current work in modeling the graph dynamics of traffic over the network. We consider global properties and local properties within the communication graph. A method for monitoring relative entropy on multiple correlated properties is discussed in detail.

  18. Boundary terms of conformal anomaly

    NASA Astrophysics Data System (ADS)

    Solodukhin, Sergey N.

    2016-01-01

    We analyze the structure of the boundary terms in the conformal anomaly integrated over a manifold with boundaries. We suggest that the anomalies of type B, polynomial in the Weyl tensor, are accompanied with the respective boundary terms of the Gibbons-Hawking type. Their form is dictated by the requirement that they produce a variation which compensates the normal derivatives of the metric variation on the boundary in order to have a well-defined variational procedure. This suggestion agrees with recent findings in four dimensions for free fields of various spins. We generalize this consideration to six dimensions and derive explicitly the respective boundary terms. We point out that the integrated conformal anomaly in odd dimensions is non-vanishing due to the boundary terms. These terms are specified in three and five dimensions.

  19. Branchial Anomalies: Diagnosis and Management

    PubMed Central

    Azeez, Arun; Thada, Nikhil Dinaker; Rao, Pallavi; Prasad, Kishore Chandra

    2014-01-01

    Objective. To find out the incidence of involvement of individual arches, anatomical types of lesions, the age and sex incidence, the site and side of predilection, the common clinical features, the common investigations, treatment, and complications of the different anomalies. Setting. Academic Department of Otolaryngology, Head and Neck Surgery. Design. A 10 year retrospective study. Participants. 30 patients with clinically proven branchial anomalies including patients with bilateral disease totaling 34 lesions. Main Outcome Measures. The demographical data, clinical features, type of branchial anomalies, and the management details were recorded and analyzed. Results and Observations. The mean age of presentation was 18.67 years. Male to female sex ratio was 1.27 : 1 with a male preponderance. Of the 34 lesions, maximum incidence was of second arch anomalies (50%) followed by first arch. We had two cases each of third and fourth arch anomalies. Only 1 (3.3%) patients of the 30 presented with lesion at birth. The most common pathological type of lesions was fistula (58.82%) followed by cyst. 41.18% of the lesions occurred on the right side. All the patients underwent surgical excision. None of our patients had involvement of facial nerve in first branchial anomaly. All patients had tracts going superficial to the facial nerve. Conclusion. Confirming the extent of the tract is mandatory before any surgery as these lesions pass in relation to some of the most vital structures of the neck. Surgery should always be the treatment option. injection of dye, microscopic removal and inclusion of surrounding tissue while excising the tract leads to a decreased incidence of recurrence. PMID:24772172

  20. Genetic basis for vascular anomalies.

    PubMed

    Kirkorian, A Yasmine; Grossberg, Anna L; Püttgen, Katherine B

    2016-03-01

    The fundamental genetics of many isolated vascular anomalies and syndromes associated with vascular anomalies have been elucidated. The rate of discovery continues to increase, expanding our understanding of the underlying interconnected molecular pathways. This review summarizes genetic and clinical information on the following diagnoses: capillary malformation, venous malformation, lymphatic malformation, arteriovenous malformation, PIK3CA-related overgrowth spectrum (PROS), Proteus syndrome, SOLAMEN syndrome, Sturge-Weber syndrome, phakomatosis pigmentovascularis, congenital hemangioma, verrucous venous malformation, cutaneomucosal venous malformation, blue rubber bleb nevus syndrome, capillary malformation-arteriovenous malformation syndrome, Parkes-Weber syndrome, and Maffucci syndrome. PMID:27607321

  1. Boundary anomalies and correlation functions

    NASA Astrophysics Data System (ADS)

    Huang, Kuo-Wei

    2016-08-01

    It was shown recently that boundary terms of conformal anomalies recover the universal contribution to the entanglement entropy and also play an important role in the boundary monotonicity theorem of odd-dimensional quantum field theories. Motivated by these results, we investigate relationships between boundary anomalies and the stress tensor correlation functions in conformal field theories. In particular, we focus on how the conformal Ward identity and the renormalization group equation are modified by boundary central charges. Renormalized stress tensors induced by boundary Weyl invariants are also discussed, with examples in spherical and cylindrical geometries.

  2. Remanent magnetization and three-dimensional density model of the Kentucky anomaly region

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Existing software was modified to handle 3-D density and magnetization models of the Kentucky body and is being tested. Gravity and magnetic anomaly data sets are ready for use. A preliminary block model is under construction using the 1:1,000,000 maps. An x-y grid to overlay the 1:2,500,000 Albers maps and keyed to the 1:1,000,000 scale block models was created. Software was developed to generate a smoothed MAGSAT data set over this grid; this is to be input to an inversion program for generating the regional magnetization map. The regional scale 1:2,500,000 map mosaic is being digitized using previous magnetization models, the U.S. magnetic anomaly map, and regional tectonic maps as a guide.

  3. Observational manifestations of anomaly inflow

    SciTech Connect

    Boyarsky, Alexey; Shaposhnikov, Mikhail

    2005-10-15

    In theories with chiral couplings, one of the important consistency requirements is that of the cancellation of a gauge anomaly. In particular, this is one of the conditions imposed on the hypercharges in the standard model. However, anomaly cancellation condition of the standard model looks unnatural from the perspective of a theory with extra dimensions. Indeed, if our world were embedded into an odd-dimensional space, then the full theory would be automatically anomaly-free. In this paper we discuss the physical consequences of anomaly noncancellation for effective 4-dimensional field theory. We demonstrate that in such a theory parallel electric and magnetic fields get modified. In particular, this happens for any particle possessing both electric charge and magnetic moment. This effect, if observed, can serve as a low energy signature of extra dimensions. On the other hand, if such an effect is absent or is very small, then from the point of view of any theory with extra dimensions it is just another fine-tuning and should acquire theoretical explanation.

  4. Thermal anomalies in stressed Teflon.

    NASA Technical Reports Server (NTRS)

    Lee, S. H.; Wulff, C. A.

    1972-01-01

    In the course of testing polytetrafluoroethylene (Teflon) as a calorimetric gasketing material, serendipity revealed a thermal anomaly in stressed film that occurs concomitantly with the well-documented 25 C transition. The magnitude of the excess energy absorption - about 35 cal/g - is suggested to be related to the restricted thermal expansion of the film.

  5. Coral can have growth anomalies

    EPA Science Inventory

    Coral growth anomalies (GAs) are changes in the coral cells that deposit the calcium carbonate skeleton. They usually appear as raised areas of the skeleton and tissue that are different from the surrounding normal areas on the same colony. The features include abnormal shape a...

  6. Numerical anomalies mimicking physical effects

    NASA Astrophysics Data System (ADS)

    Menikoff, R.

    Numerical simulations of flows with shock waves typically use finite-difference shock-capturing algorithms. These algorithms give a shock a numerical width in order to generate the entropy increase that must occur across a shock wave. For algorithms in conservation form, steady-state shock waves are insensitive to the numerical dissipation because of the Hugoniot jump conditions. However, localized numerical errors occur when shock waves interact. Examples are the 'excess wall heating' in the Noh problem (shock reflected from rigid wall), errors when a shock impacts a material interface or an abrupt change in mesh spacing, and the start-up error from initializing a shock as a discontinuity. This class of anomalies can be explained by the entropy generation that occurs in the transient flow when a shock profile is formed or changed. The entropy error is localized spatially but under mesh refinement does not decrease in magnitude. Similar effects have been observed in shock tube experiments with partly dispersed shock waves. In this case, the shock has a physical width due to a relaxation process. An entropy anomaly from a transient shock interaction is inherent in the structure of the conservation equations for fluid flow. The anomaly can be expected to occur whenever heat conduction can be neglected and a shock wave has a non-zero width, whether the width is physical or numerical. Thus, the numerical anomaly from an artificial shock width mimics a real physical effect.

  7. Tectonic and structural setting of the northeastern central Gulf of Suez area using aeromagnetic data

    NASA Astrophysics Data System (ADS)

    Zahra, Hesham Shaker; Nakhla, Adel Mokhles

    2016-03-01

    Cumulative qualitative and quantitative analysis of the filtered regional and residual magnetic components of the northeastern central area of the Gulf of Suez, as well as images of the second vertical derivatives of the reduced to the northern magnetic pole map of the total magnetic intensity field images, supplemented with the available geologic information, enabled the precise delineation of the detailed structural configuration of the basement complex, which consequently illustrated the structural deformational pattern of the overlying sedimentary succession. The basement tectonic map reflects a series of N-S to NNW-SSE oriented belts of high and low basement structures. These structures are interrupted by a set of NE-SW crossing diagonal faults having varying throws and creating promising blocks for exploration. An often remarkable correlation between the reduced to the magnetic pole map and the basement relief map is noted, in particular the outline of various oil fields. A larger number of the tilted fault blocks and basement culminations have been outlined and numerous interesting exploration prospects are indicated, which appear to warrant further follow up investigation.

  8. Ionospheric anomalies observed over South Korea preceding the Great Tohoku earthquake of 2011

    NASA Astrophysics Data System (ADS)

    Choi, B. K.; Park, J. U.; Lee, S. J.

    2012-08-01

    We investigated the ionospheric anomalies observed before the Tohoku earthquake, which occurred near the northeast coast of Honshu, Japan on 11 March, 2011. Based on data from a ground-based Global Positioning System (GPS) network on the Korean Peninsula, ionospheric anomalies were detected in the total electron content (TEC) during the daytime a few days before earthquake. Ionospheric TEC anomalies appeared on 5, 8 and 11 March. In particular, the ionospheric disturbances on 8 March evidenced a remarkable increase in TEC. The GPS TEC variation associated with the Tohoku earthquake was an increase of approximately 20 total electron content units (TECU), observed simultaneously in local and global TEC measurements. To investigate these pre-earthquake ionospheric anomalies, space weather conditions such as the solar activity index (F10.7) and geomagnetic activity indices (the Kp and Dst indices) were examined. We also created two-dimensional TEC maps to visual the spatial variations in the ionospheric anomalies preceding the earthquake.

  9. Gravity anomaly and geoid undulation results in local areas from GEOS-3 altimeter data

    NASA Technical Reports Server (NTRS)

    Rapp, R. H.

    1979-01-01

    The adjusted GEOS-3 altimeter data, taken as averages within a data frame, have been used to construct free air anomaly and geoid undulation profiles and maps in areas of geophysical interest. Profiles were constructed across the Philippine Trench (at a latitude of 6 deg) and across the Bonin Trench (at a latitude of 28 deg). In the latter case an anomaly variation of 443 mgals in 143 km was derived from the altimeter data. These variations agreed reasonably with terrestrial estimates, considering the predicted point accuracy was about + or - 27 mgals. An area over the Patton Sea mounts was also investigated with the altimeter anomaly field agreeing well with the terrestrial data except for the point directly over the top of the sea mount. It is concluded that the GEOS-3 altimeter data is valuable not only for determining 5 deg and 1 deg x 1 deg mean anomalies, but also can be used to describe more local anomaly variations.

  10. Observations in the South Atlantic Geomagnetic Anomaly with Intercosmos-Bulgaria-1300 during a geomagnetic storm

    SciTech Connect

    Gogoshev, M.M.; Gogosheva, TS.N.; Kostadinov, I.N.; Markova, T.I.; Kisovski, S.

    1985-01-01

    The region of South Atlantic Geomagnetic Anomaly was investigated by the Intercosmos-Bulgaria-1300 satellite, launched on August 7, 1981. On the basis of data obtained from 15 orbits during increased geomagnetic activity in August 1981, a map of the Anomaly was elaborated. Two centers of activity were identified. By means of the EMO-5 electrophotometer on board the Intercosmos-Bulgaria-1300 satellite, the atmosphere glow in lines 5577 A, 6300 A and 4278 A was studied. 11 references.

  11. Maps showing anomalous concentrations of lead, molybdenum, bismuth, and tungsten in stream sediment and heavy-mineral concentrate from parts of the Ajo and Lukeville 1 degree by 2 degrees quadrangles, Arizona

    USGS Publications Warehouse

    Theobald, P.K.; Barton, H.N.

    1988-01-01

    These maps are part of a folio of maps of the Ajo and Lukeville 1° x 2° quadrangles, Arizona, prepared under the Conterminous United States Mineral Assessment Program. Other publications in this folio include U.S. Geological Survey Miscellaneous Field Studies Maps MF-1834-A, 1834–B, and 1834–C and U.S. Geological Survey Open-File Reports 82–419, 82–599, and 83–734. Open-File Reports 82–419 and 83–734 constitute the basic data and initial interpretation on which this discussion is predicated. Open-File Report 82–599 is an aeromagnetic map.

  12. Planck CMB anomalies: astrophysical and cosmological secondary effects and the curse of masking

    SciTech Connect

    Rassat, A.; Starck, J.-L.; Paykari, P.; Sureau, F.; Bobin, J. E-mail: jstarck@cea.fr E-mail: florent.sureau@cea.fr

    2014-08-01

    Large-scale anomalies have been reported in CMB data with both WMAP and Planck data. These could be due to foreground residuals and or systematic effects, though their confirmation with Planck data suggests they are not due to a problem in the WMAP or Planck pipelines. If these anomalies are in fact primordial, then understanding their origin is fundamental to either validate the standard model of cosmology or to explore new physics. We investigate three other possible issues: 1) the trade-off between minimising systematics due to foreground contamination (with a conservative mask) and minimising systematics due to masking, 2) astrophysical secondary effects (the kinetic Doppler quadrupole and kinetic Sunyaev-Zel'dovich effect), and 3) secondary cosmological signals (the integrated Sachs-Wolfe effect). We address the masking issue by considering new procedures that use both WMAP and Planck to produce higher quality full-sky maps using the sparsity methodology (LGMCA maps). We show the impact of masking is dominant over that of residual foregrounds, and the LGMCA full-sky maps can be used without further processing to study anomalies. We consider four official Planck PR1 and two LGMCA CMB maps. Analysis of the observed CMB maps shows that only the low quadrupole and quadrupole-octopole alignment seem significant, but that the planar octopole, Axis of Evil, mirror parity and cold spot are not significant in nearly all maps considered. After subtraction of astrophysical and cosmological secondary effects, only the low quadrupole may still be considered anomalous, meaning the significance of only one anomaly is affected by secondary effect subtraction out of six anomalies considered. In the spirit of reproducible research all reconstructed maps and codes will be made available for download here http://www.cosmostat.org/anomaliesCMB.html.

  13. Surveying the South Pole-Aitken basin magnetic anomaly for remnant impactor metallic iron

    NASA Astrophysics Data System (ADS)

    Cahill, Joshua T. S.; Hagerty, Justin J.; Lawrence, David J.; Klima, Rachel L.; Blewett, David T.

    2014-11-01

    The Moon has areas of magnetized crust ("magnetic anomalies"), the origins of which are poorly constrained. A magnetic anomaly near the northern rim of South Pole-Aitken (SPA) basin was recently postulated to originate from remnant metallic iron emplaced by the SPA basin-forming impactor. Here, we remotely examine the regolith of this SPA magnetic anomaly with a combination of Clementine and Lunar Prospector derived iron maps for any evidence of enhanced metallic iron content. We find that these data sets do not definitively detect the hypothesized remnant metallic iron within the upper tens of centimeters of the lunar regolith.

  14. Surveying the South Pole-Aitken basin magnetic anomaly for remnant impactor metallic iron

    USGS Publications Warehouse

    Cahill, Joshua T.S.; Hagerty, Justin J.; Lawrence, David M.; Klima, Rachel L.; Blewett, David T.

    2014-01-01

    The Moon has areas of magnetized crust ("magnetic anomalies"), the origins of which are poorly constrained. A magnetic anomaly near the northern rim of South Pole-Aitken (SPA) basin was recently postulated to originate from remnant metallic iron emplaced by the SPA basin-forming impactor. Here, we remotely examine the regolith of this SPA magnetic anomaly with a combination of Clementine and Lunar Prospector derived iron maps for any evidence of enhanced metallic iron content. We find that these data sets do not definitively detect the hypothesized remnant metallic iron within the upper tens of centimeters of the lunar regolith.

  15. Chandra solves the mystery: Understanding the UV anomaly discovered by HST

    NASA Astrophysics Data System (ADS)

    Mathur, Smita; Gupta, Anjali

    2016-04-01

    A strange anomaly was discovered during our 180 day HST campaign to observe NGC5548 for reverberation mapping. The UV emission lines responded to changes in the UV continuum, as they should, during most ofthe observing season. However, there was a period of about 60--70 days during which the UV emission lines decorrelated from continuum variations. Understanding this anomaly is vital to the success of reverberation mapping technique. We also observed the source 4 times with Chandra during the 180 day HST observations. Chandra observations revealed the presence of soft excess during the anomaly, but there was no soft excess before or after the anomaly. This suggests that the accretion disk temperature increased from the ``normal'' state, peaking in FUV, to that peaking in soft X-rays during the anomaly. Thus, there was no ionizing continuum to which to reverberate. There are more curious things about the response of emission lines, such as the time at which the anomaly sets in and the amount flux decrease during the anomaly. I will discuss the details of this first-of-its-kind behavior and present detailed explanation.

  16. Do MAGSAT anomalies contain a record of past and present-day mantle convection under South America?

    NASA Technical Reports Server (NTRS)

    Hastings, D. A.

    1985-01-01

    Global anomaly maps from the National Aeronautics and Space Administration's Magnetic Field Satellite (MAGSAT) have been spatially filtered to reduce the prominence of long-wavelength east-west bands and to improve the discrimination of anomalies within structural provinces. Previous research suggested a correlation between total-field MAGSAT anomaly lows in equatorial regions with crustal bodies of relatively high average magnetic susceptibility (such as Archaean shields), and of anomaly highs with bodies of low susceptibility (such as deep parts of basins). These correlations reverse at higher latitudes.

  17. Local gravity anomalies produced by dislocation sources.

    USGS Publications Warehouse

    Savage, J.C.

    1984-01-01

    Dilatancy, in general, does not correspond to the absence of a free air anomaly, as might be suggested by the special case of a spherical source of dilatation. For two-dimensional models a cylindrical source of dilatation produces no free air gravity anomaly, dip-slip faulting produces no Bouguer anomaly, and open cracks produce a Bouguer anomaly equal to that which would be produced had the material within the crack been mined out without deforming the solid. -from Author

  18. Anomaly constraints on monopoles and dyons

    SciTech Connect

    Csaki, Csaba; Shirman, Yuri; Terning, John

    2010-06-15

    Fermions with magnetic charges can contribute to anomalies. We derive the axial anomaly and gauge anomalies for monopoles and dyons, and find eight new gauge anomaly cancellation conditions in a general theory with both electric and magnetic charges. As a by-product, we also extend the Zwanziger two-potential formalism to include the {theta} parameter, and elaborate on the condition for CP invariance in theories with fermionic dyons.

  19. Loop anomalies in the causal approach

    NASA Astrophysics Data System (ADS)

    Grigore, Dan-Radu

    2015-01-01

    We consider gauge models in the causal approach and study one-loop contributions to the chronological products and the anomalies they produce. We prove that in order greater than 4 there are no one-loop anomalies. Next we analyze one-loop anomalies in the second- and third-order of the perturbation theory. We prove that the even parity contributions (with respect to parity) do not produce anomalies; for the odd parity contributions we reobtain the well-known result.

  20. New analytic solutions for modeling vertical gravity gradient anomalies

    NASA Astrophysics Data System (ADS)

    Kim, Seung-Sep; Wessel, Paul

    2016-05-01

    Modern processing of satellite altimetry for use in marine gravimetry involves computing the along-track slopes of observed sea-surface heights, projecting them into east-west and north-south deflection of the vertical grids, and using Laplace's equation to algebraically obtain a grid of the vertical gravity gradient (VGG). The VGG grid is then integrated via overlapping, flat Earth Fourier transforms to yield a free-air anomaly grid. Because of this integration and associated edge effects, the VGG grid retains more short-wavelength information (e.g., fracture zone and seamount signatures) that is of particular importance for plate tectonic investigations. While modeling of gravity anomalies over arbitrary bodies has long been a standard undertaking, similar modeling of VGG anomalies over oceanic features is not commonplace yet. Here we derive analytic solutions for VGG anomalies over simple bodies and arbitrary 2-D and 3-D sources. We demonstrate their usability in determining mass excess and deficiency across the Mendocino fracture zone (a 2-D feature) and find the best bulk density estimate for Jasper seamount (a 3-D feature). The methodologies used herein are implemented in the Generic Mapping Tools, available from gmt.soest.hawaii.edu.

  1. Titanium isotopic anomalies in meteorites

    NASA Astrophysics Data System (ADS)

    Neimeyer, S.; Lugmair, G. W.

    1984-07-01

    Studies of Ti isotopic compositions have shown that virtually every Ca-Al-rich Allende inclusion contains anomalous Ti. The present investigation is concerned with the results of a study of Ti isotopic compositions in meteorites. One objective of the study is to evaluate the possibility of a relation between oxygen and Ti anomalies, while another objective is to explore questions regarding the origin of the Ti anomalies. A summary of the major experimental findings of the study of Ti isotopic compositions is also presented. It is noted that an assessment of the implications of the Ti results favors a chemical memory type of model in which products from various nucleosynthetic sources survive in mineral grains. Isotopic heterogeneities are then preserved due to incomplete mixing and/or equilibriation with the bulk of solar system matter. Strong arguments are found to exist against a pure late supernova injection model.

  2. Survey of Anomaly Detection Methods

    SciTech Connect

    Ng, B

    2006-10-12

    This survey defines the problem of anomaly detection and provides an overview of existing methods. The methods are categorized into two general classes: generative and discriminative. A generative approach involves building a model that represents the joint distribution of the input features and the output labels of system behavior (e.g., normal or anomalous) then applies the model to formulate a decision rule for detecting anomalies. On the other hand, a discriminative approach aims directly to find the decision rule, with the smallest error rate, that distinguishes between normal and anomalous behavior. For each approach, we will give an overview of popular techniques and provide references to state-of-the-art applications.

  3. Titanium isotopic anomalies in meteorites

    NASA Technical Reports Server (NTRS)

    Niemeyer, S.; Lugmair, G. W.

    1984-01-01

    Studies of Ti isotopic compositions have shown that virtually every Ca-Al-rich Allende inclusion contains anomalous Ti. The present investigation is concerned with the results of a study of Ti isotopic compositions in meteorites. One objective of the study is to evaluate the possibility of a relation between oxygen and Ti anomalies, while another objective is to explore questions regarding the origin of the Ti anomalies. A summary of the major experimental findings of the study of Ti isotopic compositions is also presented. It is noted that an assessment of the implications of the Ti results favors a chemical memory type of model in which products from various nucleosynthetic sources survive in mineral grains. Isotopic heterogeneities are then preserved due to incomplete mixing and/or equilibriation with the bulk of solar system matter. Strong arguments are found to exist against a pure late supernova injection model.

  4. Model selection for anomaly detection

    NASA Astrophysics Data System (ADS)

    Burnaev, E.; Erofeev, P.; Smolyakov, D.

    2015-12-01

    Anomaly detection based on one-class classification algorithms is broadly used in many applied domains like image processing (e.g. detection of whether a patient is "cancerous" or "healthy" from mammography image), network intrusion detection, etc. Performance of an anomaly detection algorithm crucially depends on a kernel, used to measure similarity in a feature space. The standard approaches (e.g. cross-validation) for kernel selection, used in two-class classification problems, can not be used directly due to the specific nature of a data (absence of a second, abnormal, class data). In this paper we generalize several kernel selection methods from binary-class case to the case of one-class classification and perform extensive comparison of these approaches using both synthetic and real-world data.

  5. Isotopic anomalies in extraterrestrial grains.

    PubMed

    Ireland, T R

    1996-03-01

    Isotopic compositions are referred to as anomalous if the isotopic ratios measured cannot be related to the terrestrial (solar) composition of a given element. While small effects close to the resolution of mass spectrometric techniques can have ambiguous origins, the discovery of large isotopic anomalies in inclusions and grains from primitive meteorites suggests that material from distinct sites of stellar nucleosynthesis has been preserved. Refractory inclusions, which are predominantly composed of the refractory oxides of Al, Ca, Ti, and Mg, in chondritic meteorites commonly have excesses in the heaviest isotopes of Ca, Ti, and Cr which are inferred to have been produced in a supernova. Refractory inclusions also contain excess 26Mg from short lived 26Al decay. However, despite the isotopic anomalies indicating the preservation of distinct nucleosynthetic sites, refractory inclusions have been processed in the solar system and are not interstellar grains. Carbon (graphite and diamond) and silicon carbide grains from the same meteorites also have large isotopic anomalies but these phases are not stable in the oxidized solar nebula which suggests that they are presolar and formed in the circumstellar atmospheres of carbon-rich stars. Diamond has a characteristic signature enriched in the lightest and heaviest isotopes of Xe, and graphite shows a wide range in C isotopic compositions. SiC commonly has C and N isotopic signatures which are characteristic of H-burning in the C-N-O cycle in low-mass stars. Heavier elements such as Si, Ti, Xe, Ba, and Nd, carry an isotopic signature of the s-process. A minor population of SiC (known as Grains X, ca. 1%) are distinct in having decay products of short lived isotopes 26Al (now 26Mg), 44Ti (now 44Ca), and 49V (now 49Ti), as well as 28Si excesses which are characteristic of supernova nucleosynthesis. The preservation of these isotopic anomalies allows the examination of detailed nucleosynthetic pathways in stars. PMID

  6. Pigmentary anomalies and hearing loss.

    PubMed

    Toriello, Helga V

    2011-01-01

    A number of syndromes that include hearing loss in the phenotype also have pigmentary anomalies as a component manifestation. One of the most common of these is Waardenburg syndrome, which includes hypopigmentation and sensorineural hearing loss in the phenotype. There are four types of Waardenburg syndrome, distinguishable from each other by clinical findings. However, there are several other syndromes which include not only hypopigmentation, but also hyperpigmentation in the phenotype. This paper serves as a review of many of these syndromes. PMID:21358185

  7. Cloacal anomaly with bladder tumor

    PubMed Central

    Seth, Amlesh; Ram, Ishwar

    2013-01-01

    A rare case of squamous cell carcinoma of bladder occurring in a 36-year-old female with persistent cloacal anomaly who presented with frequency, urgency, dysuria, and recurrent urinary tract infection is reported. Contrast Enhanced Computed Tomography with three dimensional reconstruction showed presence of bladder tumor and persistent cloaca. She underwent pelvic exenteration and wet colostomy. Histopathologic findings revealed locally advanced moderately differentiated squamous cell carcinoma. PMID:23956519

  8. Prenatal diagnosis of cloacal anomaly.

    PubMed

    Cacciaguerra, S; Lo Presti, L; Di Leo, L; Grasso, S; Gangarossa, S; Di Benedetto, V; Di Benedetto, A

    1998-02-01

    The authors present a case of prenatal diagnosis of cloacal anomaly, characterized by the presence of oligohydramnios and cystic pelvic mass with changing features during observation. Postnatal study confirmed the presence of a recto-cloacal fistula, with a high confluence of the urinary, genital and intestinal systems. Both parents had a chromosome 9 inversion (p11q13), but the child was chromosomally normal. PMID:9561584

  9. Anomalies and Discrete Chiral Symmetries

    SciTech Connect

    Creutz, M.

    2009-09-07

    The quantum anomaly that breaks the U(1) axial symmetry of massless multi-flavored QCD leaves behind a discrete flavor-singlet chiral invariance. With massive quarks, this residual symmetry has a close connection with the strong CP-violating parameter theta. One result is that if the lightest quarks are degenerate, then a first order transition will occur when theta passes through pi. The resulting framework helps clarify when the rooting prescription for extrapolating in the number of flavors is valid.

  10. Columbus Payloads Flow Rate Anomalies

    NASA Technical Reports Server (NTRS)

    Quaranta, Albino; Bufano, Gaetana; DePalo, Savino; Holt, James M.; Szigetvari, Zoltan; Palumberi, Sergio; Hinderer, S.

    2011-01-01

    The Columbus Active Thermal Control System (ATCS) is the main thermal bus for the pressurized racks working inside the European laboratory. One of the ATCS goals is to provide proper water flow rate to each payload (P/L) by controlling actively the pressure drop across the common plenum distribution piping. Overall flow measurement performed by the Water Pump Assembly (WPA) is the only flow rate monitor available at system level and is not part of the feedback control system. At rack activation the flow rate provided by the system is derived on ground by computing the WPA flow increase. With this approach, several anomalies were raised during these 3 years on-orbit, with the indication of low flow rate conditions on the European racks FSL, BioLab, EDR and EPM. This paper reviews the system and P/Ls calibration approach, the anomalies occurred, the engineering evaluation on the measurement approach and the accuracy improvements proposed, the on-orbit test under evaluation with NASA and finally discusses possible short and long term solutions in case of anomaly confirmation.

  11. GPR anomaly detection with robust principal component analysis

    NASA Astrophysics Data System (ADS)

    Masarik, Matthew P.; Burns, Joseph; Thelen, Brian T.; Kelly, Jack; Havens, Timothy C.

    2015-05-01

    This paper investigates the application of Robust Principal Component Analysis (RPCA) to ground penetrating radar as a means to improve GPR anomaly detection. The method consists of a preprocessing routine to smoothly align the ground and remove the ground response (haircut), followed by mapping to the frequency domain, applying RPCA, and then mapping the sparse component of the RPCA decomposition back to the time domain. A prescreener is then applied to the time-domain sparse component to perform anomaly detection. The emphasis of the RPCA algorithm on sparsity has the effect of significantly increasing the apparent signal-to-clutter ratio (SCR) as compared to the original data, thereby enabling improved anomaly detection. This method is compared to detrending (spatial-mean removal) and classical principal component analysis (PCA), and the RPCA-based processing is seen to provide substantial improvements in the apparent SCR over both of these alternative processing schemes. In particular, the algorithm has been applied to both field collected impulse GPR data and has shown significant improvement in terms of the ROC curve relative to detrending and PCA.

  12. A Small Autonomous Unmanned Aerial Vehicle, Ant-Plane 4, for aeromagnetic survey

    NASA Astrophysics Data System (ADS)

    Funaki, M.; Tanabe, S.; Project, A.

    2007-05-01

    in order to reduce the plane magnetization. After 4 hours 14 minutes from the takeoff, the 500km flight was accomplished and the magnetic data were stored in the data logger. The straight flight course was almost consistent with the way point course, but the course was drastically disturbed when the plane was turning. The resolution of magnetic field decreased to 30nT, when the plane flew to the tail wind. However, it is worse against the head wind. Obtained anomaly pattern was compared with the magnetic anomaly pattern published by Geoscience Australia. Both patterns were essentially consistent, although a part of pattern in the head wind flights was not resemble. Ant-Plane 4 flew up to 5700 m in altitude with aerosol counter, thermometer and hygrometer at northern part of Japan. A drastic change of temperature, humidity and particle number was observed at the inversion layer of atmosphere. Consequently we conclude that the small drone Ant-Plane 4 can be used for geophysical research. We are making effort to develop Ant-Plane for more simple assemblage and more easy operation.

  13. Global anomalies and effective field theory

    NASA Astrophysics Data System (ADS)

    Golkar, Siavash; Sethi, Savdeep

    2016-05-01

    We show that matching anomalies under large gauge transformations and large diffeomorphisms can explain the appearance and non-renormalization of couplings in effective field theory. We focus on thermal effective field theory, where we argue that the appearance of certain unusual Chern-Simons couplings is a consequence of global anomalies. As an example, we show that a mixed global anomaly in four dimensions fixes the chiral vortical effect coefficient (up to an overall additive factor). This is an experimentally measurable prediction from a global anomaly. For certain situations, we propose a simpler method for calculating global anomalies which uses correlation functions rather than eta invariants.

  14. Remanent and Induced Magnetic Anomalies over the Bjerkreim-Sokndal Layered Intrusion: Effects from Crystal Fractionation and Magma Recharge

    NASA Astrophysics Data System (ADS)

    McEnroe, S. A.; Brown, L. L.; Robinson, P.

    2013-12-01

    The Bjerkreim-Sokndal (BKS) norite-quartz mangerite layered intrusion is part of the early Neoproterozoic Rogaland Anorthosite Province intruded into the Fennoscandian shield in south Norway at ~930 Ma. The BKS is exposed over an area of 230 km2 with a thickness of ~7000m and is of economic interest for hemo-ilmenite, magnetite and apatite deposits. From the point of view of magnetic minerals, in the course of fractional crystallization and magma evolution, the ilmenite becomes less Fe3+-rich reflected by a change from ilmenite with hematite exsolution to nearly pure ilmenite. Magnetite starts to crystallize relatively late in the intrusive history, but its crystallization is interrupted by influxes of more primitive magma containing hemo-ilmenite. The variations in aeromagnetic and ground-magnetic anomalies measured over the BKS can be explained in terms of the magnetic properties of NRM, susceptibility, and hysteresis. Magnetic properties are correlated with the oxide mineralogy and mineral chemistry. Early layers in the intrusion contain hemo-ilmenite. As the magma evolved and magnetite started to crystallize, this caused a distinct change over the layering from remanence-controlled negative anomalies to induced positive anomalies. When new, more primitive magma was injected into the system, hemo-ilmenite returned as the major oxide and the resulting magnetic anomalies are again negative. The most dramatic change in the magnetic signature is in the upper part of the intrusion in MCU IVe, where magnetite became a well established cumulate phase as indicated by susceptibility, but its induced magnetization is overcome by large NRM's associated either with hemo-ilmenite or with hemo-ilmenite and magnetite exsolved from pyroxenes. The average natural remanent magnetizations change from ~3 A/m in MCU IVd, to 15 A/m in MCU IVe, and back to 2 A/m in the overlying MCU IVf, producing a strong negative remanent anomaly that has been followed along strike for at least 20

  15. Satellite GN and C Anomaly Trends

    NASA Technical Reports Server (NTRS)

    Robertson, Brent; Stoneking, Eric

    2003-01-01

    On-orbit anomaly records for satellites launched from 1990 through 2001 are reviewed to determine recent trends of un-manned space mission critical failures. Anomalies categorized by subsystems show that Guidance, Navigation and Control (GN&C) subsystems have a high number of anomalies that result in a mission critical failure when compared to other subsystems. A mission critical failure is defined as a premature loss of a satellite or loss of its ability to perform its primary mission during its design life. The majority of anomalies are shown to occur early in the mission, usually within one year from launch. GN&C anomalies are categorized by cause and equipment type involved. A statistical analysis of the data is presented for all anomalies compared with the GN&C anomalies for various mission types, orbits and time periods. Conclusions and recommendations are presented for improving mission success and reliability.

  16. Trends in environmentally induced spacecraft anomalies

    NASA Technical Reports Server (NTRS)

    Wilkinson, Daniel C.

    1989-01-01

    The Spacecraft Anomaly Data Base was useful in identifying trends in anomaly occurrence. Trends alone do not provide quantitative testimony to a spacecraft's reliability, but they do indicate areas that command closer study. An in-depth analysis of a specific anomaly can be expensive and difficult without access to the spacecraft. Statistically verified anomaly trends can provide a good reference point to begin anomaly analysis. Many spacecraft experience an increase in anomalies during the period of several days centered on the solar equinox, a period that is also correlated with sun eclipse at geostationary altitude and an increase in major geomagnetic storms. Increase anomaly occurrence can also be seen during the local time interval between midnight and dawn. This local time interval represents a region in Earth's near space that experiences an enhancement in electron plasma density due to a migration from the magnetotail during or following a geomagnetic substorm.

  17. On global gravity anomalies and two-scale mantle convection

    NASA Technical Reports Server (NTRS)

    Marsh, B. D.; Marsh, J. G.

    1976-01-01

    The two-scale model of mantle convection developed by Richter and Parsons (1975) predicts that if the depth of the convective layer is about 600 km, then for a plate moving at 10 cm/yr, longitudinal convective rolls will be produced in about 50 million years, and the strike of these rolls indicates the direction of motion of the plate relative to the upper mantle. The paper tests these predictions by examining a new global free air gravity model complete to the 30th degree and order. The free air gravity map developed shows a series of linear positive and negative anomalies (with transverse wavelengths of about 2000 km) spanning the Pacific Ocean, crossing the Pacific rise and striking parallel to the Hawaiian seamounts. It is suggested that the pattern of these anomalies may indicate the presence of longitudinal convective rolls beneath the Pacific plates, a result which tends to support the predictions of Richter and Parsons.

  18. Effect of attractive interactions on the water-like anomalies of a core-softened model potential.

    PubMed

    Pant, Shashank; Gera, Tarun; Choudhury, Niharendu

    2013-12-28

    It is now well established that water-like anomalies can be reproduced by a spherically symmetric potential with two length scales, popularly known as core-softened potential. In the present study we aim to investigate the effect of attractive interactions among the particles in a model fluid interacting with core-softened potential on the existence and location of various water-like anomalies in the temperature-pressure plane. We employ extensive molecular dynamic simulations to study anomalous nature of various order parameters and properties under isothermal compression. Order map analyses have also been done for all the potentials. We observe that all the systems with varying depth of attractive wells show structural, dynamic, and thermodynamic anomalies. As many of the previous studies involving model water and a class of core softened potentials have concluded that the structural anomaly region encloses the diffusion anomaly region, which in turn, encloses the density anomaly region, the same pattern has also been observed in the present study for the systems with less depth of attractive well. For the systems with deeper attractive well, we observe that the diffusion anomaly region shifts toward higher densities and is not always enclosed by the structural anomaly region. Also, density anomaly region is not completely enclosed by diffusion anomaly region in this case. PMID:24387380

  19. Effect of attractive interactions on the water-like anomalies of a core-softened model potential

    SciTech Connect

    Pant, Shashank; Gera, Tarun; Choudhury, Niharendu E-mail: niharc2002@yahoo.com

    2013-12-28

    It is now well established that water-like anomalies can be reproduced by a spherically symmetric potential with two length scales, popularly known as core-softened potential. In the present study we aim to investigate the effect of attractive interactions among the particles in a model fluid interacting with core-softened potential on the existence and location of various water-like anomalies in the temperature-pressure plane. We employ extensive molecular dynamic simulations to study anomalous nature of various order parameters and properties under isothermal compression. Order map analyses have also been done for all the potentials. We observe that all the systems with varying depth of attractive wells show structural, dynamic, and thermodynamic anomalies. As many of the previous studies involving model water and a class of core softened potentials have concluded that the structural anomaly region encloses the diffusion anomaly region, which in turn, encloses the density anomaly region, the same pattern has also been observed in the present study for the systems with less depth of attractive well. For the systems with deeper attractive well, we observe that the diffusion anomaly region shifts toward higher densities and is not always enclosed by the structural anomaly region. Also, density anomaly region is not completely enclosed by diffusion anomaly region in this case.

  20. Structural geology and regional tectonics of the Mineral County area, Nevada, using Shuttle Imaging Radar-B and digital aeromagnetic data

    NASA Technical Reports Server (NTRS)

    Borengasser, Marcus X.; Taranik, James V.

    1988-01-01

    SIR-B and aeromagnetic lineaments show a correlation with known faults within the Walker Lane of the western Basin and Range Province. Walker Lane faults can be extended based on SIR-B data and unmapped Walker Lane features are identified. South of the Pancake Range lineament, Walker Lane faults are seldom recognized but SIR-B data have the potential for delineating structural features in this area. Earthquake hypocenter distribution in profiles across a SIR-B lineament is consistent with that expected from a vertical fault. Field examination indicates that the lineament is an unmapped neotectonic Walker Lane feature.

  1. Planck CMB Anomalies: Astrophysical and Cosmological Secondary Effects and the Curse of Masking

    NASA Astrophysics Data System (ADS)

    Rassat, Anais

    2016-07-01

    Large-scale anomalies have been reported in CMB data with both WMAP and Planck data. These could be due to foreground residuals and or systematic effects, though their confirmation with Planck data suggests they are not due to a problem in the WMAP or Planck pipelines. If these anomalies are in fact primordial, then understanding their origin is fundamental to either validate the standard model of cosmology or to explore new physics. We investigate three other possible issues: 1) the trade-off between minimising systematics due to foreground contamination (with a conservative mask) and minimising systematics due to masking, 2) astrophysical secondary effects (the kinetic Doppler quadrupole and kinetic Sunyaev-Zel'dovich effect), and 3) secondary cosmological signals (the integrated Sachs-Wolfe effect). We address the masking issue by considering new procedures that use both WMAP and Planck to produce higher quality full-sky maps using the sparsity methodology (LGMCA maps). We show the impact of masking is dominant over that of residual foregrounds, and the LGMCA full-sky maps can be used without further processing to study anomalies. We consider four official Planck PR1 and two LGMCA CMB maps. Analysis of the observed CMB maps shows that only the low quadrupole and quadrupole-octopole alignment seem significant, but that the planar octopole, Axis of Evil, mirror parity and cold spot are not significant in nearly all maps considered. After subtraction of astrophysical and cosmological secondary effects, only the low quadrupole may still be considered anomalous, meaning the significance of only one anomaly is affected by secondary effect subtraction out of six anomalies considered. In the spirit of reproducible research all reconstructed maps and codes are available online.

  2. Hot Flow Anomalies at Venus

    NASA Technical Reports Server (NTRS)

    Collinson, G. A.; Sibeck, David Gary; Boardsen, Scott A.; Moore, Tom; Barabash, S.; Masters, A.; Shane, N.; Slavin, J.A.; Coates, A.J.; Zhang, T. L.; Sarantos, M.

    2012-01-01

    We present a multi-instrument study of a hot flow anomaly (HFA) observed by the Venus Express spacecraft in the Venusian foreshock, on 22 March 2008, incorporating both Venus Express Magnetometer and Analyzer of Space Plasmas and Energetic Atoms (ASPERA) plasma observations. Centered on an interplanetary magnetic field discontinuity with inward convective motional electric fields on both sides, with a decreased core field strength, ion observations consistent with a flow deflection, and bounded by compressive heated edges, the properties of this event are consistent with those of HFAs observed at other planets within the solar system.

  3. Anomaly detection for internet surveillance

    NASA Astrophysics Data System (ADS)

    Bouma, Henri; Raaijmakers, Stephan; Halma, Arvid; Wedemeijer, Harry

    2012-06-01

    Many threats in the real world can be related to activity of persons on the internet. Internet surveillance aims to predict and prevent attacks and to assist in finding suspects based on information from the web. However, the amount of data on the internet rapidly increases and it is time consuming to monitor many websites. In this paper, we present a novel method to automatically monitor trends and find anomalies on the internet. The system was tested on Twitter data. The results showed that it can successfully recognize abnormal changes in activity or emotion.

  4. Hot flow anomalies at Venus

    NASA Astrophysics Data System (ADS)

    Collinson, G. A.; Sibeck, D. G.; Masters, A.; Shane, N.; Slavin, J. A.; Coates, A. J.; Zhang, T. L.; Sarantos, M.; Boardsen, S.; Moore, T. E.; Barabash, S.

    2012-04-01

    We present a multi-instrument study of a hot flow anomaly (HFA) observed by the Venus Express spacecraft in the Venusian foreshock, on 22 March 2008, incorporating both Venus Express Magnetometer and Analyzer of Space Plasmas and Energetic Atoms (ASPERA) plasma observations. Centered on an interplanetary magnetic field discontinuity with inward convective motional electric fields on both sides, with a decreased core field strength, ion observations consistent with a flow deflection, and bounded by compressive heated edges, the properties of this event are consistent with those of HFAs observed at other planets within the solar system.

  5. Geophysically inferred structural and lithologic map of the precambrian basement in the Joplin 1 degree by 2 degrees Quadrangle, Kansas and Missouri

    USGS Publications Warehouse

    McCafferty, Anne E.; Cordell, Lindrith E.

    1992-01-01

    This report is an analysis of regional gravity and aeromagnetic data that was carried out as part of a Conterminuous United States Mineral Assessment Program (CUSMAP) study of the Joplin 1° X 2° quadrangle, Kansas and Missouri. It is one in a series of reports representing a cooperative effort between the U.S. Geological Survey, Kansas Geological Survey, and Missouri Department of Natural Resources, Division of Geology and Land Survey. The work presented here is part of a larger project whose goal is to assess the mineral resource potential of the Paleozoic sedimentary section and crystalline basement within the quadrangle. Reports discussing geochemical, geological, and various other aspects of the study area are included in this Miscellaneous Field Studies Map series as MF-2125-A through MF-2125-E. Geophysical interpretation of Precambrian crystalline basement lithology and structure is the focus of this report. The study of the crystalline basement is complicated by the lack of exposures due to the presence of a thick sequence of Phanerozoic sedimentary cover. In areas where there are no outcrops, the geologist must turn to other indirect methods to assist in an understanding of the basement. Previous investigations of the buried basement in this region used available drill hole data, isotope age information, and regional geophysical data (Sims, 1990; Denison and others, 1984; Bickford and others, 1986). These studies were regional in scope and were presented at state and multistate scales. The work documented here used recently collected detailed gravity and aeromagnetic data to enhance the regional geologic knowledge of the area. Terrace-density and terrace-magnetization maps were calculated from the gravity and aeromagnetic data, leading directly to inferred physical-property (density and magnetization) maps. Once these maps were produced, the known geology and drill-hole data were reconciled with the physical-property maps to form a refined structural and

  6. Indoor waypoint navigation via magnetic anomalies.

    PubMed

    Riehle, Timothy H; Anderson, Shane M; Lichter, Patrick A; Condon, John P; Sheikh, Suneel I; Hedin, Daniel S

    2011-01-01

    A wide assortment of technologies have been proposed to construct indoor navigation services for the blind and vision impaired. Proximity-based systems and multilateration systems have been successfully demonstrated and employed. Despite the technical success of these technologies, broad adoption has been limited due to their significant infrastructure and maintenance costs. An alternative approach utilizing the indoor magnetic signatures inherent to steel-frame buildings solves the infrastructure cost problem; in effect the existing building is the location system infrastructure. Although magnetic indoor navigation does not require the installation of dedicated hardware, the dedication of resources to produce precise survey maps of magnetic anomalies represents a further barrier to adoption. In the present work an alternative leader-follower form of waypoint-navigation system has been developed that works without surveyed magnetic maps of a site. Instead the wayfarer's magnetometer readings are compared to a pre-recorded magnetic "leader" trace containing magnetic data collected along a route and annotated with waypoint information. The goal of the navigation system is to correlate the follower's magnetometer data with the leader's to trigger audio cues at precise points along the route, thus providing location-based guidance to the user. The system should also provide early indications of off-route conditions. As part of the research effort a smartphone based application was created to record and annotate leader traces with audio and numeric data at waypoints of interest, and algorithms were developed to determine (1) when the follower reaches a waypoint and (2) when the follower goes off-route. A navigation system utilizing this technology would enable a low-cost indoor navigation system capable of replaying audio annotations at precise locations along pre-recorded routes. PMID:22255538

  7. Space Weather, Cosmic Rays, and Satellite Anomalies

    NASA Astrophysics Data System (ADS)

    Lev, Dorman

    Results are presented of the Satellite Anomaly Project, which aims to improve the methods of safeguarding satellites in the Earth’s magnetosphere from the negative effects of the space environment. Anomaly data from the USSR and Russian “Kosmos” series satellites in the period 1971-1999 are combined into one database, together with similar information on other spacecraft. This database contains, beyond the anomaly information, various characteristics of space weather: geomagnetic activity indices (Ap, AE and Dst), fluxes and fluencies of electrons and protons at different energies, high energy cosmic ray variations and other solar, interplanetary and solar wind data. A comparative analysis of the distribution of each of these parameters relative to satellite anomalies was carried out for the total number of anomalies (about 6000 events), and separately for high altitude orbit satellites ( 5000 events) and low altitude (about 800 events). No relation was found between low and high altitude satellite anomalies. Daily numbers of satellite anomalies, averaged by a superposed epoch method around sudden storm commencements and proton event onsets for high (>1500 km) and low (<1500 km) altitude orbits revealed a big difference in behavior. Satellites were divided into several groups according to their orbital characteristics (altitude and inclination). The relation of satellite anomalies to the environmental parameters was found to be different for various orbits, and this should be taken into account when developing anomaly frequency models. The preliminary anomaly frequency models are presented.

  8. Magnetic Anomaly Lineations in the Gulf of Aden

    NASA Astrophysics Data System (ADS)

    Noguchi, Y.; Nakanishi, M.; Tamaki, K.; Fujimoto, H.; Huchon, P.; Leroy, S. D.; Styles, P.

    2014-12-01

    We present the magnetic anomaly lineations in the Gulf of Aden. The Gulf of Aden has slow spreading ridges between the Arabia Plate and Somalia Plate. The Arabian plate moves away from Somalia Plate in an NE direction, at a rate of about 2 cm/yr. Previous works indicates that seafloor spreading started about 20 Ma in the eastern part of the Gulf of Aden and propagated westward. The spreading axis has a E-W trend west of 46 E and that east of 46 E has a N60 W trend. We examined magnetic data acquired in the cruises by R/V L'Atalante in 1995, R/V Hakuho-maru from 2000 to 2001, R/V Maurice Ewing in 2001, and Shackleton in 1975 and 1979. We also used data obtained from National Geophysical Data Center, NOAA. We calculated magnetic anomalies using the latest Internation Geomagnetic Reference Field. Elongated negative magnetic anomalies, which amplitude are more than 500 nT, observed over the spreading centers. Most of the elongated anomalies are parallel with the spreading centers. The elongated magnetic anomalies west of 46 30'E have an E-W trend around the spreading centers. Several discontinuities in the magnetic anomaly contour map illustrate the position of the fracture zones concealed by sediments. We identified magnetic lineations from 43 E to 52 E. Most of magnetic lineations west and east of 46 30'E have N-E and N60-65 W strikes, respectively. The oldest lineations are C3r (5.48~5.74 Ma) between 43 10'E and 44 E and C5Ar (12.4~12.7 Ma) east of 44 E. Our identification of magnetic anomaly lineations indicates a symmetric seafloor spreading with a spreading rate of about 1.0 cm/yr, although Leroy et al. (2004) showed an asymmetric seafloor spreading of the Sheba Ridge, east of our study area. The kinematics of the Arabia plate changed about 5 Ma, but our results did not show any coeval change in spreading rates of the spreading system in the Gulf of Aden.

  9. Conductivity Anomalies in Central Europe

    NASA Astrophysics Data System (ADS)

    Neska, Anne

    2016-01-01

    This paper is a review of studies which, by applying the magnetotelluric, geomagnetic deep sounding, and magnetovariational sounding methods (the latter refers to usage of the horizontal magnetic tensor), investigate Central Europe for zones of enhanced electrical conductivity. The study areas comprise the region of the Trans-European Suture Zone (i.e. the south Baltic region and Poland), the North German Basin, the German and Czech Variscides, the Pannonian Basin (Hungary), and the Polish, Slovakian, Ukrainian, and Romanian Carpathians. This part of the world is well investigated in terms of data coverage and of the density of published studies, whereas the certainty that the results lead to comprehensive interpretations varies within the reviewed literature. A comparison of spatially coincident or adjacent studies reveals the important role that the data coverage of a distinct conductivity anomaly plays for the consistency of results. The encountered conductivity anomalies are understood as linked to basin sediments, asthenospheric upwelling, large differences in lithospheric age, and—this concerns most of them, which all concentrate in the middle crust—tectonic boundaries that developed during all mountain building phases that have taken place on the continent.

  10. In-Situ Hydraulic Conductivities of Soils and Anomalies at a Future Biofuel Production Site

    NASA Astrophysics Data System (ADS)

    Williamson, M. F.; Jackson, C. R.; Hale, J. C.; Sletten, H. R.

    2010-12-01

    Forested hillslopes of the Upper Coastal Plain at the Savannah River Site, SC, feature a shallow clay loam argillic layer with low median saturated hydraulic conductivity. Observations from a grid of shallow, maximum-rise piezometers indicate that perching on this clay layer is common. However, flow measurements from an interflow-interception trench indicate that lateral flow is rare and most soil water percolates through the clay layer. We hypothesize that the lack of frequent lateral flow is due to penetration of the clay layer by roots of pine trees. We used ground penetrating radar (GPR) to map the soil structure and potential anomalies, such as root holes, down to two meters depth at three 10×10-m plots. At each plot, a 1×10-m trench was later back-hoe excavated along a transect that showed the most anomalies on the GPR maps. Each trench was excavated at 0.5-m intervals until the clay layer was reached (two plots were excavated to a final depth of 0.875 m and the third plot was excavated to a final depth of 1.0 m). At each interval, compact constant-head permeameters (CCHPs) were used to measure in-situ hydraulic conductivities in the clay-loam matrix and in any visually apparent anomalies. Conductivity was also estimated using a second 1×10-m transect of CCHP measurements taken within randomly placed augur holes. Additional holes targeted GPR anomalies. The second transect was created in case the back-hoe impacted conductivity readings. High-conductivity anomalies were also visually investigated by excavating with a shovel. Photographs of soil wetness were taken at visually apparent anomalies with a multispectral camera. We discovered that all visually apparent anomalies found are represented on the GPR maps, but that not all of the predicted anomalies on the GPR maps are visually apparent. We discovered that tree root holes create anomalies, but that there were also many conductivity anomalies that could not be visually distinguished from low

  11. Magnetic models of crystalline terrane: accounting for the effect of topography.

    USGS Publications Warehouse

    Blakely, R.J.; Grauch, V.J.S.

    1983-01-01

    Facilitates geologic interpretation of an aeromagnetic survey of the Oregon Cascade Range by calculating the magnetic field caused by a 3-D topographic model. Maps of the calculated field are compared with observed aeromagnetic data both visually and with a numerical technique that produces a contour map of correlation coefficients for the model. These comparisons allow quick recognition of anomalies caused by normally or reversely magnetized topographic features and, more importantly, identification of anomalies caused by geologic features not obviously caused by the topography. -from Authors

  12. Altered Orientation and Flight Paths of Pigeons Reared on Gravity Anomalies: A GPS Tracking Study

    PubMed Central

    Blaser, Nicole; Guskov, Sergei I.; Meskenaite, Virginia; Kanevskyi, Valerii A.; Lipp, Hans-Peter

    2013-01-01

    The mechanisms of pigeon homing are still not understood, in particular how they determine their position at unfamiliar locations. The “gravity vector” theory holds that pigeons memorize the gravity vector at their home loft and deduct home direction and distance from the angular difference between memorized and actual gravity vector. However, the gravity vector is tilted by different densities in the earth crust leading to gravity anomalies. We predicted that pigeons reared on different gravity anomalies would show different initial orientation and also show changes in their flight path when crossing a gravity anomaly. We reared one group of pigeons in a strong gravity anomaly with a north-to-south gravity gradient, and the other group of pigeons in a normal area but on a spot with a strong local anomaly with a west-to-east gravity gradient. After training over shorter distances, pigeons were released from a gravitationally and geomagnetically normal site 50 km north in the same direction for both home lofts. As expected by the theory, the two groups of pigeons showed divergent initial orientation. In addition, some of the GPS-tracked pigeons also showed changes in their flight paths when crossing gravity anomalies. We conclude that even small local gravity anomalies at the birth place of pigeons may have the potential to bias the map sense of pigeons, while reactivity to gravity gradients during flight was variable and appeared to depend on individual navigational strategies and frequency of position updates. PMID:24194860

  13. Viscous remanent magnetization model for the Broken Ridge satellite magnetic anomaly

    NASA Technical Reports Server (NTRS)

    Johnson, B. D.

    1985-01-01

    An equivalent source model solution of the satellite magnetic field over Australia obtained by Mayhew et al. (1980) showed that the satellite anomalies could be related to geological features in Australia. When the processing and selection of the Magsat data over the Australian region had progressed to the point where interpretation procedures could be initiated, it was decided to start by attempting to model the Broken Ridge satellite anomaly, which represents one of the very few relatively isolated anomalies in the Magsat maps, with an unambiguous source region. Attention is given to details concerning the Broken Ridge satellite magnetic anomaly, the modeling method used, the Broken Ridge models, modeling results, and characteristics of magnetization.

  14. Study on the annual variation of satellite magnetic anomaly in China

    NASA Astrophysics Data System (ADS)

    Wang, C.; Chen, B.; Yuan, J.

    2015-12-01

    The CHAMP satellite mission is providing reliable measurements from which the global lithospheric magnetic field. Using 7 years (2003~2009) of CHAMP satellite scalar magnetic field data, we derive the annual variation of satellite magnetic anomaly in China. For the satellite data selection, a wide range of geomagnetic index and other data selection filters have been used to best isolate suitably quiet magnetospheric and ionospheric conditions. By further separating the magnetic anomalies from the core and external field components in the satellite data, the result has low noise levels. We study on the annual variation of magnetic anomaly between 2003 and 2007 in China, the maps of annual variation can truly reflect the changing of the distribution of magnetic anomalies in China.

  15. Experimental Investigation into the Radar Anomalies on the Surface of Venus

    NASA Technical Reports Server (NTRS)

    Kohler, E.; Gavin, P.; Chevrier, V.; Johnson, Natasha M.

    2012-01-01

    Radar mapping of thc surface of Venus shows areas of high reflectivity (low emissivity) in the Venusian highlands at altitudes between 2.5-4.75 kilometers. The origin of the radar anomalies found in the Venusian highlands remains unclear. Most explanations of the potential causes for these radar anomalies come from theoretical work. Previous studies suggest increased surface roughness or materials with higher dielectric constants as well as surface atmospheric interactions. Several possible candidates of high-dielectric materials are tellurium) ferroelectric materials, and lead or bismuth sulfides. While previous studies have been influential in determining possible sources for the Venus anomalies, only a very few hypotheses have been verified via experimentation. This work intends to experimentally constrain the source of the radar anomalies on Venus. This study proposes to investigate four possible materials that could potentially cause the high reflectivities on the surface of Venus and tests their behavior under simulated Venusian conditions.

  16. Chromium isotopic anomalies in the Murchison meteorite

    NASA Astrophysics Data System (ADS)

    Esat, T. M.; Ireland, T. R.

    1989-02-01

    The abundances of chromium isotopes, in refractory inclusions from the Allende meteorite, show wide-spread anomalies. The chromium isotope anomalies are similar in pattern to the anomalies discovered in Ca and Ti. The largest effects occur at the neutron-rich isotopes Ca-48, Ti-50 and Cr-54. Individual Cr-rich pink spinels, from the Murchison meteorite, exhibit large and variable excesses in Cr-53 and Cr-54 including the largest Cr-53 anomaly so far reported. Magnesium isotopes, in Murchison Cr-poor blue spinels, also show variable anomalies in Mg-26 including mass-dependent fractionation favoring the lighter isotopes. The Cr-53, Cr-54 and Mg-26 anomalies in Murchison spinels are indicative of a heterogeneous distribution of magnesium and chromium isotopes in the early solar nebula and require a contribution from several nucleosynthetic components in addition to physicochemical processing.

  17. Minor congenital anomalies and ataxic cerebral palsy.

    PubMed Central

    Miller, G

    1989-01-01

    The incidence of minor congenital anomalies was examined in 36 patients with ataxic cerebral palsy, in unaffected family members, and in 100 unrelated control subjects. None of the control subjects or family members had more than four anomalies, and 25 of 36 (69%) of the patients had more than four. The distribution of anomalies differed considerably, with 60% of the index cases having seven or more, and 94% of the controls having three or less. The number occurring in the patients was significantly more than in their relatives. Of the 25 patients with more than four anomalies, 16 (64%) had undergone potentially adverse perinatal or early postnatal events. Thus minor congenital anomalies were considerably more frequent in those with ataxic cerebral palsy than in related or unrelated control subjects. These anomalies may be markers of early prenatal factors that contributed to the adverse outcome either directly or by predisposing to perinatal difficulties. PMID:2751330

  18. Sea level anomalies exacerbate beach erosion

    NASA Astrophysics Data System (ADS)

    Theuerkauf, Ethan J.; Rodriguez, Antonio B.; Fegley, Stephen R.; Luettich, Richard A.

    2014-07-01

    Sea level anomalies are intra-seasonal increases in water level forced by meteorological and oceanographic processes unrelated to storms. The effects of sea level anomalies on beach morphology are unknown but important to constrain because these events have been recognized over large stretches of continental margins. Here, we present beach erosion measurements along Onslow Beach, a barrier island on the U.S. East Coast, in response to a year with frequent sea level anomalies and no major storms. The anomalies enabled extensive erosion, which was similar and in most places greater than the erosion that occurred during a year with a hurricane. These results highlight the importance of sea level anomalies in facilitating coastal erosion and advocate for their inclusion in beach-erosion models and management plans. Sea level anomalies amplify the erosive effects of accelerated sea level rise and changes in storminess associated with global climate change.

  19. Geology and Mineral Resources of the North Absaroka Wilderness and Vicinity, Park County, Wyoming, with Sections on Mineralization of the Sunlight Mining Region and Geology and Mineralization of the Cooke City Mining District, and a Section on Aeromagnetic Survey

    USGS Publications Warehouse

    Nelson, Willis H.; Prostka, Harold J.; Williams, Frank E.; Elliott, James E.; Peterson, Donald L.

    1980-01-01

    SUMMARY The North Absaroka Wilderness is approximately 560 square miles (1,450 km 2 ) of rugged scenic mountainous terrain that adjoins the eastern boundary of Yellowstone National Park in northwestern Wyoming. The area was studied during 1970, 1971, and 1972 by personnel of the U. S. Geological Survey and the U. S. Bureau of Mines to evaluate its mineral-resource potential as required by the Wilderness Act of 1964. This evaluation is based on a search of the literature courthouse and production records, geologic field mapping, field inspection of claims and prospects, analyses of bedrock and stream-sediment samples, and an aeromagnetic survey. The North Absaroka Wilderness is underlain almost entirely by andesitic and basaltic volcanic rocks of Eocene age. These volcanics rest on deformed sedimentary rocks of Paleozoic and, locally, of Mesozoic age that are exposed at places along the northern and eastern edges of the wilderness. Dikes and other igneous intrusive bodies cut both the volcanic and sedimentary rocks. A nearly flat detachment fault, the Heart Mountain fault, and a related steep break-away fault have displaced middle and upper Paleozoic rocks and some of the older part of the volcanic sequence to the southeast. A much greater thickness of volcanic rocks was found to be involved in Heart Mountain faulting than had previously been recognized; however, most of the volcanic rocks and many of the intrusives were emplaced after Heart Mountain faulting. Local folding and high-angle faulting in mid-Eocene time have deformed all but the youngest part of the volcanic sequence in the southeastern part of the wilderness. This deformation is interpreted as the last pulse of Laramide orogeny. The results of this study indicate that the mineral-resource potential of the wilderness is minimal. Bentonite, petroleum, low-quality coal, and localized deposits of uranium and chromite have been produced in the surrounding region from rocks that underlie the volcanic rocks

  20. Anisotropic Solar Wind Sputtering of the Lunar Surface Induced by Crustal Magnetic Anomalies

    NASA Technical Reports Server (NTRS)

    Poppe, A. R.; Sarantos, M.; Halekas, J. S.; Delory, G. T.; Saito, Y.; Nishino, M.

    2014-01-01

    The lunar exosphere is generated by several processes each of which generates neutral distributions with different spatial and temporal variability. Solar wind sputtering of the lunar surface is a major process for many regolith-derived species and typically generates neutral distributions with a cosine dependence on solar zenith angle. Complicating this picture are remanent crustal magnetic anomalies on the lunar surface, which decelerate and partially reflect the solar wind before it strikes the surface. We use Kaguya maps of solar wind reflection efficiencies, Lunar Prospector maps of crustal field strengths, and published neutral sputtering yields to calculate anisotropic solar wind sputtering maps. We feed these maps to a Monte Carlo neutral exospheric model to explore three-dimensional exospheric anisotropies and find that significant anisotropies should be present in the neutral exosphere depending on selenographic location and solar wind conditions. Better understanding of solar wind/crustal anomaly interactions could potentially improve our results.