Science.gov

Sample records for aeronautic space administration

  1. National Aeronautics and Space Administration technology application team program

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Contracts are reported between the RTI TATeam and the National Aeronautics and Space Administration (NASA), the Environmental Protection Agency (EPA), and other governmental, educational, and industrial organizations participating in NASA's Technology Utilization Program.

  2. First Semiannual Report of the National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    Glennan, T. Keith

    1959-01-01

    The First Semiannual Report of the National Aeronautics and Space Administration (NASA) is submitted to Congress pursuant to section 206 (a) of the National Aeronautics and Space Act of 1958 (Public Law 85-568) to provide for research into problems of flight within and outside the Earth's atmosphere, which states: The Administration shall submit to the President for transmittal to Congress, semiannually and at such other times as it deems desirable, a report on its activities and accomplishments.

  3. 78 FR 13383 - Public Availability of the National Aeronautics and Space Administration FY 2012 Service Contract...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-27

    ... SPACE ADMINISTRATION Public Availability of the National Aeronautics and Space Administration FY 2012 Service Contract Inventory (SCI) AGENCY: Office of Procurement, National Aeronautics and Space... National Aeronautics and Space Administration (NASA) is publishing this notice to advise the public of...

  4. National Aeronautics and Space Administration Scientific and Technical Information Programs.

    ERIC Educational Resources Information Center

    Pinelli, Thomas E., Ed.

    1990-01-01

    Eleven articles discuss informational and educational programs of the National Aeronautics and Space Administration (NASA). Some of the areas discussed include scientific and technical information management, the new Space and Earth Science Information Systems, transfer of technology to other industries, intellectual property issues, and the…

  5. National Aeronautics and Space Administration (NASA) Education 1993-2009

    ERIC Educational Resources Information Center

    Ivie, Christine M.

    2009-01-01

    The National Aeronautics and Space Administration was established in 1958 and began operating a formal education program in 1993. The purpose of this study was to analyze the education program from 1993-2009 by examining strategic plan documents produced by the NASA education office and interviewing NASA education officials who served during that…

  6. National Aeronautics and Space Administration Biological Specimen Repository

    NASA Technical Reports Server (NTRS)

    McMonigal, Kathleen A.; Pietrzyk, Robert a.; Johnson, Mary Anne

    2008-01-01

    The National Aeronautics and Space Administration Biological Specimen Repository (Repository) is a storage bank that is used to maintain biological specimens over extended periods of time and under well-controlled conditions. Samples from the International Space Station (ISS), including blood and urine, will be collected, processed and archived during the preflight, inflight and postflight phases of ISS missions. This investigation has been developed to archive biosamples for use as a resource for future space flight related research. The International Space Station (ISS) provides a platform to investigate the effects of microgravity on human physiology prior to lunar and exploration class missions. The storage of crewmember samples from many different ISS flights in a single repository will be a valuable resource with which researchers can study space flight related changes and investigate physiological markers. The development of the National Aeronautics and Space Administration Biological Specimen Repository will allow for the collection, processing, storage, maintenance, and ethical distribution of biosamples to meet goals of scientific and programmatic relevance to the space program. Archiving of the biosamples will provide future research opportunities including investigating patterns of physiological changes, analysis of components unknown at this time or analyses performed by new methodologies.

  7. National Aeronautics and Space Administration FY 2001 Accountability Report

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The National Aeronautics and Space Administration (NASA) is an independent Agency established to plan and manage the future of the Nation's civil aeronautics and space program. This Accountability Report covers Federal Fiscal Year (FY) 2001 (October 1, 2000, through September 30, 2001), with discussion of some subsequent events The Report contains an overview addressing the Agency's critical programs and financial performance and includes highlights of performance organized by goals and objectives of the Enterprises and Crosscutting Processes. The Report also summarizes NASA's stewardship over budget and financial resources, including audited financial statements and footnotes. The financial statements reflect an overall position of offices and activities, including assets and liabilities, as well as results of operations, pursuant to requirements of Federal law (31 U.S.C. 3515(b)). The auditor's opinions on NASA's financial statements, reports on internal controls, and compliance with laws and regulations are included in this Report.

  8. National Aeronautics and Space Administration Fiscal Year 2001 Accountability Report

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The National Aeronautics and Space Administration (NASA) is an independent Agency established to plan and manage the future of the Nation's civil aeronautics and space program. This Accountability Report covers Federal Fiscal Year (FY) 2001 (October 1, 2000, through September 30, 2001), with discussion of some subsequent events. The Report contains an overview addressing the Agency's critical programs and financial performance and includes highlights of performance organized by goals and objectives of the Enterprises and Crosscutting Processes. The Report also summarizes NASA's stewardship over budget and financial resources, including audited financial statements and footnotes. The financial statements reflect an overall position of offices and activities, including assets and liabilities, as well as results of operations, pursuant to requirements of Federal law (31 U.S.C. 3515(b)). The auditor's opinions on NASA's financial statements, reports on internal controls, and compliance with laws and regulations are included in this report.

  9. 77 FR 7183 - Public Availability of the National Aeronautics and Space Administration FY 2011 Service Contract...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-10

    ... SPACE ADMINISTRATION Public Availability of the National Aeronautics and Space Administration FY 2011 Service Contract Inventory AGENCY: National Aeronautics and Space Administration. ACTION: Notice of Public... 2010 (Pub. L. 111-117), National Aeronautics and Space Administration (NASA) is publishing this...

  10. National Aeronautics and Space Administration Science and Engineering Apprentice Program

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The National Aeronautics and Space Administration's Science and Engineering Apprentice Program for high school students is one of NASA's many efforts toward a goal of scientific literacy. It embraces science, mathematics, and technology as keys to purposeful and sustained progress and security for our nation and its people. It serves as a model for helping reform education by striving to address mechanisms to influence the knowledge, skills, and attitudes of our students. It focuses on what to do today to meet the challenges of tomorrow.

  11. 3 CFR - Designation of Officers of the National Aeronautics And Space Administration To Act as Administrator

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... And Space Administration To Act as Administrator Presidential Documents Other Presidential Documents Memorandum of January 16, 2009 Designation of Officers of the National Aeronautics And Space Administration... Administration By the authority vested in me as President by the Constitution and the laws of the United...

  12. 76 FR 6827 - Public Availability of the National Aeronautic and Space Administration FY 2010 Service Contract...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-08

    ... SPACE ADMINISTRATION Public Availability of the National Aeronautic and Space Administration FY 2010 Service Contract Inventory AGENCY: National Aeronautic and Space Administration. ACTION: Notice of public... of the Consolidated Appropriations Act of 2010 (Pub. L. 111-117), National Aeronautic and...

  13. National Aeronautics and Space Administration plans for space communication technology

    NASA Technical Reports Server (NTRS)

    Alexovich, R. E.

    1979-01-01

    A program plan is presented for a space communications application utilizing the 30/20 GHz frequency bands (30 GHz uplink and 20 GHz downlink). Results of market demand studies and spacecraft systems studies which significantly affect the supporting research and technology program are also presented, along with the scheduled activities of the program plan.

  14. National Aeronautics and Space Administration (NASA) education 1993--2009

    NASA Astrophysics Data System (ADS)

    Ivie, Christine M.

    The National Aeronautics and Space Administration was established in 1958 and began operating a formal education program in 1993. The purpose of this study was to analyze the education program from 1993 -- 2009 by examining strategic plan documents produced by the NASA education office and interviewing NASA education officials who served during that time period. Constant changes in education leadership at NASA resulted in changes in direction in the education program and the documents produced by each administration reflected both small and some significant changes in program direction. The result of the analysis of documents and interview data was the identification of several trends in the NASA education program. This study identified three significant trends in NASA education. First, the approach that NASA took in both its EPO efforts and in the efforts directed by the Office of Education is disjointed and seems to reflect individual preferences in education approaches designed to reach populations that are of interest to the individuals in decision-making positions rather than reflect a systematic approach designed to meet identified goals and outcomes. Second, this disjointed and person-driven approach led to a lack of consistent evaluation data available for review and planning purposes. Third, there was an ongoing assumption made by the education community that NASA education efforts were tied to larger education reports, concerns, needs, initiatives and evidence collected and presented in Science Technology Engineering and Math (STEM) education-related studies over the past twenty years. In fact, there is no evidence that the programs and projects initiated were a response to these identified needs or initiatives. That does not mean that NASA's efforts did not contribute to STEM education initiatives in the United States. This study, however, indicates that contributions to those initiatives occurred as a byproduct of the effort and not because of specific

  15. Aeronautical concerns and National Aeronautics and Space Administration atmospheric electricity projects

    NASA Technical Reports Server (NTRS)

    Vaughan, W. W.

    1980-01-01

    The phenomenology of lightning and lightning measurement techniques are briefly examined with a particular reference to aeronautics. Developments made in airborne and satellite detection methods are reported. NASA research efforts are outlined which cover topics including in-situ measurements, design factors and protection, remote optical and radio frequency measurements, and space vehicle design.

  16. National Aeronautics and Space Administration 1999 Accountability Report

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This Accountability Report consolidates reports required by various statutes and summarizes NASA's program accomplishments and its stewardship over budget and financial resources. It is a culmination of NASA's management process, which begins with mission definition and program planning, continues with the formulation and justification of budgets for the President and Congress, and ends with the resulting scientific and engineering program accomplishments. The report covers activities from October 1, 1998, through September 30, 1999, with a discussion of some subsequent events. Program accomplishments included the deployment and operation of the Chandra X-ray Observatory, the delivery of supplies and equipment needed to live and operate on the International Space Station, and the development of the first global 3-D map of Mars. Achievements are highlighted in the Statement of the Administrator and summarized in the performance section of this report.

  17. Overview of the National Aeronautics and Space Administration tether activities

    NASA Technical Reports Server (NTRS)

    Penzo, Paul A.

    1989-01-01

    NASA research concerning the use of tethers in space is reviewed, including joint research with the Italian Space Agency. Tether applications under consideration are described, such as a tethered fuel depot and a tethered gravity laboratory platform for the Space Station, providing artificial gravity to and from Mars, payload recovery and waste management, aerothermodynamic magnetospheric physics, and electrodynamic propulsion, braking, and power generation for the Space Shuttle. Also, tether flight demonstrations are examined, including the Small Expendable Deployer System, the Get-Away Tether Experiment, the Tether Elevator Crawler System, and the Kinetic Isolation Tether Experiment.

  18. National Aeronautics and Space Administration Exploration Systems Interim Strategy

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Contents include the following: 1. The Exploration Systems Mission Directorate within NASA. Enabling the Vision for Space Exploration. The Role of the Directorate. 2. Strategic Context and Approach. Corporate Focus. Focused, Prioritized Requirements. Spiral Transformation. Management Rigor. 3. Achieving Directorate Objectives. Strategy to Task Process. Capability Development. Research and Technology Development. 4. Beyond the Horizon. Appendices.

  19. National Aeronautics and Space Administration 2003 Strategic Plan

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Imagine knowing that we are not alone, but that life is abundant in our solar system and throughout the universe. Imagine a world where we can safely travel anywhere, anytime, on our home planet, and in space. Imagine a world in which long-term weather forecasts are reliable, and natural disasters are predictable and perhaps even preventable. NASA is changing our understanding of the world, exploring the unknown, and creating new awareness about who we are and what our place is in the cosmos. For the first time in history, we have the tools, the insight and ability to seek answers to some of humanity's most profound questions: 1) How did we get here? 2) Where are we going? 3) Are we alone? In addition to pursuing these compelling questions, NASA helps the Nation to meet its challenges and address its urgent national needs. Among these are the requirements to improve the security and safety of our air transportation system and counter the looming shortage of U.S. scientists and engineers in our next generation of Americans.

  20. National Aeronautics and Space Administration Training Grant Supplement

    NASA Technical Reports Server (NTRS)

    DeWitt, Kenneth J.

    2005-01-01

    The following section summarizes the impact of the Ohio Space Grant Consortium (OSGC) in Ohio and to NASA over the last four-year period (February 1, 2001 to April 30, 2005) and highlights the important accomplishments of the consortium. The strength of the OSGC network of universities, community colleges, government agencies, industry, and outreach affiliates is well-established and is growing. The OSGC Consortium Management Structure was designed and remains committed to using the talents and diversity of everyone within this collaborative network, and operational policies and procedures are such that all consortium members are active contributors resulting in quality OSGC programs in research, education and service, while receiving a relatively small amount of NASA funds. The number of quality activities, both on- and off-campus, and collaborations/partnerships that OSGC has established with NASA and government agencies, state and local government, educational institutions, and private industry, has been impressive. Further desired university affiliate expansion requires additional funds. Diversity is shown in the OSGC 12-member Executive Committee by the presence of three campus representatives from Central State University, Wilberforce University, and The Ohio State University (two underrepresented minority, one female). One additional female campus representative (Cleveland State University) is currently on sabbatical leave and a valuable alternate member attends. Other additional female and underrepresented minority members are on the larger OSGC Advisory committee. All committee members participate fully in all consortium management and policy decisions. The OSGC Executive Committee strives to achieve and communicate a culture of trust, respect, teamwork, open communication, creativity, and empowerment. These programs have shown results and impact by their visibility and importance to Ohio and to NASA, resulting in strategic alliances created throughout

  1. Project Mercury: Man-In-Space Program of the National Aeronautics and Space Administration. [Report of the Committee on Aeronautical and Space Sciences United States Senate

    NASA Technical Reports Server (NTRS)

    1959-01-01

    The purpose of this staff study, made at the request of the chairman, is to serve members of the Committee on Aeronautical and Space Sciences as a source of basic information on Project Mercury, the man-in-space program of the National Aeronautics and Space Administration. The study is largely derived from unclassified information released by the National Aeronautics and Space Administration and testimony concerning Project Mercury given during hearings before this committee. The program descriptions are based upon current program planning. Since this is a highly advanced research and development program, the project is obviously subject to changes that may result from future developments and accomplishments characteristic of such research activities. Certain information with respect to revised schedules, obtained on a classified basis by the committee during inspection trips, is necessarily omitted. The appendixes to the study include information that may prove helpful on various aspects of space flight and exploration. Included are unofficial comments and observations relating to Russia's manned space flight activities and also a complete chronology of all satellites, lunar probes, and space probes up to the present.

  2. National Aeronautics and Space Administration and the Indian Space Research Organisation Synthetic Aperture Radar Mission Concept

    NASA Astrophysics Data System (ADS)

    Bawden, G. W.; Rosen, P. A.; Dubayah, R.; Hager, B. H.; Joughin, I. R.

    2014-12-01

    The U.S. National Aeronautics and Space Administration and the Indian Space Research Organisation are planning a synthetic aperture radar (currently named NISAR) mission for launch in 2020. The mission is a dual L- and S-band polarimetric SAR satellite with a 12-day interferometric orbit and 240 km wide ground swath. The 3-year mission will have a circular sun synchronous orbit (6 am and 6 pm) with a 98° inclination and 747 km altitude that will provide systematic global coverage. Its primary science objectives are to: measure solid Earth surface deformation (earthquakes, volcanic unrest, land subsidence/uplift, landslides); track and understand cryosphere dynamics (glaciers, ice sheets, sea ice, and permafrost); characterize and track changes in vegetation structure and wetlands for understanding ecosystem dynamics and carbon cycle; and support global disaster response. We will describe the current mission concept: the satellite design/capabilities, spacecraft, launch vehicle, and data flow.

  3. Profile of software engineering within the National Aeronautics and Space Administration (NASA)

    NASA Technical Reports Server (NTRS)

    Sinclair, Craig C.; Jeletic, Kellyann F.

    1994-01-01

    This paper presents findings of baselining activities being performed to characterize software practices within the National Aeronautics and Space Administration. It describes how such baseline findings might be used to focus software process improvement activities. Finally, based on the findings to date, it presents specific recommendations in focusing future NASA software process improvement efforts. The findings presented in this paper are based on data gathered and analyzed to date. As such, the quantitative data presented in this paper are preliminary in nature.

  4. National Aeronautics and Space Administration Twenty-Fifth Anniversary, 1958-1983

    NASA Technical Reports Server (NTRS)

    1983-01-01

    This year marks a major milestone for the National Aeronautics and Space Administration: its silver anniversary. It seems appropriate, on this occasion, to sum up how NASA has responded to the legislative charter that established the agency. Among the responsibilities the Congress assigned NASA in the National Aeronautics and Space Act of 1958 were these: preservation of U.S. leadership in aerospace science and technology; cooperation with other nations in the peaceful application of technology; expansion of human knowledge of phenomena in the atmosphere and in space; pursuit of the practical benefits to be gained from aeronautical and space activities. There can be no doubt that NASA's quarter century of effort has preserved the nation's leadership role and strengthened its posture in aerospace science and technology. As for international cooperation. NASA has - since its inception - fostered the concept that the fruits of civil space research are to be shared with all mankind. The agency has provided technical assistance to scores of nations and has actively promoted cooperative ventures; indeed, virtually every major NASA space project today boasts some degree of foreign participation. In the last 25 years, man has teamed more about his planet, the near-Earth environment, and the universe than in all the prior years of history. NASA's space science program has spearheaded this great expansion of human knowledge. And, from the beginning, NASA has vigorously pursued the practical benefits that aerospace research offers. The agency pioneered in weather, communications and Earth resources survey satellites, the prime examples of space technology applied for Earth benefit, and it has built a broad base for expanding into new applications, some of which promise direct benefits of exceptional order. In aeronautical research, NASA has contributed in substantial degree to safer, better performing, more efficient, more environmentally acceptable aircraft.

  5. The National Aeronautics and Space Administration interdisciplinary studies in space technology at the University of Kansas

    NASA Technical Reports Server (NTRS)

    Barr, B. G.

    1974-01-01

    A broad range of research projects contained in a cooperative space technology program at the University of Kansas are reported as they relate to the following three areas of interdisciplinary interest: (1) remote sensing of earth resources; (2) stability and control of light and general aviation aircraft; and (3) the vibrational response characteristics of aeronautical and space vehicles. Details of specific research efforts are given under their appropriate departments, among which are aerospace engineering, chemical and petroleum engineering, environmental health, water resources, the remote sensing laboratory, and geoscience applications studies.

  6. Intellectual Property Rights at the National Aeronautics and Space Administration, Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Williams, Vernon E.

    1994-01-01

    At a fundamental level, intellectual property is the core work product of a technical organization. The National Aeronautics and Space Administration (NASA), produces a variety of intellectual property including: patents, trademarks, data rights, copyright and rights associated with National Security. For a scientific organization to properly manage its work product it has to manage its intellectual property. This paper endeavors to describe how the intellectual property rights are generated and allocated at NASA. The author then goes on to discuss how the intellectual property might be managed to meet the objectives of program implementation, technology transfer and security.

  7. The National Aeronautics and Space Administration Nondestructive Evaluation Program for Safe and Reliable Operations

    NASA Technical Reports Server (NTRS)

    Generazio, Ed

    2005-01-01

    The National Aeronautics and Space Administration (NASA) Nondestructive Evaluation (NDE) Program is presented. As a result of the loss of seven astronauts and the Space Shuttle Columbia on February 1, 2003, NASA has undergone many changes in its organization. NDE is one of the key areas that are recognized by the Columbia Accident Investigation Board (CAIB) that needed to be strengthened by warranting NDE as a discipline with Independent Technical Authority (iTA). The current NASA NDE system and activities are presented including the latest developments in inspection technologies being applied to the Space Transportation System (STS). The unfolding trends and directions in NDE for the future are discussed as they apply to assuring safe and reliable operations.

  8. Tropospheric Wind Monitoring During Day-of-Launch Operations for National Aeronautics and Space Administration's Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Leach, Richard

    2004-01-01

    The Environments Group at the National Aeronautics and Space Administration's Marshall Space Flight Center (NASA/MSFC) monitors the winds aloft at Kennedy Space Center (KSC) during the countdown for all Space Shuttle launches. Assessment of tropospheric winds is used to support the ascent phase of launch. Three systems at KSC are used to generate independent tropospheric wind profiles prior to launch; 1) high resolution Jimsphere balloon system, 2) 50-MHz Doppler Radar Wind Profiler (DRWP) and 3) low resolution radiosonde system. Data generated by the systems are used to assess spatial and temporal wind variability during launch countdown to ensure wind change observed does not violate wind change criteria constraints.

  9. Education and public outreach initiatives from the National Aeronautics and Space Administration

    NASA Astrophysics Data System (ADS)

    Daou, Doris

    2011-06-01

    From the dawn of consciousness, humans have looked up and wondered about what the universe holds. It is that sense of wonder and thirst for knowledge that astronomy has helped fuel. In this paper we look at how education and public outreach has been a major element in preparing the next generation of astronomers and in sharing with the public the excitement of discoveries we make when we explore the Universe. The National Aeronautics and Space Administration (NASA) has a clear set of goals and objectives related to education and public outreach. These goals follow directly from NASA's mission ``to inspire the next generation of explorers''. Making progress towards achieving these goals has become an important part of the broad justification for public support of space science. Here we will describe a number of education and public outreach initiatives that are examples of the plethora of NASA funded programs and resources.

  10. A Tribute to National Aeronautics and Space Administration Minority Astronauts: Past and Present

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The National Aeronautics and Space Administration (NASA) has been selecting astronauts since 1959. The first group was called the "Mercury Seven." These seven men were chosen because of their performance as military officers and test pilots, their character, their intelligence, and their guts. Six of these seven flew in the Mercury capsule. Several additional groups were chosen between 1959 and 1978. It was an exciting period in the American space program. Many of these astronauts participated in the Gemini and Apollo programs, traveled and walked on the Moon, docked with the Russians during the Apollo-Soyuz Test Project, and occupied America's first space station, the Skylab. With the onset of the Space Shuttle, a new era began. The astronauts selected in 19 78 broke the traditional mold. For the first time, minorities and women became part of America's astronaut corps. Since then, eight additional groups have been selected, with an increasing mix of African American, Hispanic, Latino, Asian/Pacific Islander, and Native American men and women. These astronauts will continue the American space program into the new millennium by continuing flights on the Space Shuttle and participating in the construction and occupancy of the International Space Station. These astronauts, and those who will be chosen in the future, will lead America and its partners to future voyages beyond the influence of Earth's gravity.

  11. Update of Ulysses FSAR results using updated NASA (National Aeronautics and Space Administration) probabilities

    SciTech Connect

    Not Available

    1990-05-18

    The mission risk results reported in the Ulysses Final Safety Analysis Report (FSAR) issued on March 14, 1990, were based on initiating accident probabilities the National Aeronautics and Space Administration (NASA) provided to the Department of Energy (DOE) on July 13, 1988. These probabilities were provided in terms of ranges; the geometric mean of these ranges were used in the development and presentation of the results in the FSAR for source terms, radiological consequences and risks. Subsequent to the issuance of the FSAR, DOE received a revised set of probabilities from NASA. These probabilities were presented in terms of distributions for each initiating accident and characterized by a mean and cumulative percentile values. NASA recommended that DOE use the updated probabilities to update the Ulysses FSAR results. Accordingly, at the request of DOE, this letter report has been prepared to evaluate the changes in the Ulysses FSAR results when the updated mean probabilities are used.

  12. Automation of orbit determination functions for National Aeronautics and Space Administration (NASA)-supported satellite missions

    NASA Technical Reports Server (NTRS)

    Mardirossian, H.; Heuerman, K.; Beri, A.; Samii, M. V.; Doll, C. E.

    1989-01-01

    The Flight Dynamics Facility (FDF) at Goddard Space Flight Center (GSFC) provides spacecraft trajectory determination for a wide variety of National Aeronautics and Space Administration (NASA)-supported satellite missions, using the Tracking Data Relay Satellite System (TDRSS) and Ground Spaceflight and Tracking Data Network (GSTDN). To take advantage of computerized decision making processes that can be used in spacecraft navigation, the Orbit Determination Automation System (ODAS) was designed, developed, and implemented as a prototype system to automate orbit determination (OD) and orbit quality assurance (QA) functions performed by orbit operations. Based on a machine-resident generic schedule and predetermined mission-dependent QA criteria, ODAS autonomously activates an interface with the existing trajectory determination system using a batch least-squares differential correction algorithm to perform the basic OD functions. The computational parameters determined during the OD are processed to make computerized decisions regarding QA, and a controlled recovery process isactivated when the criteria are not satisfied. The complete cycle is autonomous and continuous. ODAS was extensively tested for performance under conditions resembling actual operational conditions and found to be effective and reliable for extended autonomous OD. Details of the system structure and function are discussed, and test results are presented.

  13. Automation of orbit determination functions for National Aeronautics and Space Administration (NASA)-supported satellite missions

    NASA Technical Reports Server (NTRS)

    Mardirossian, H.; Beri, A. C.; Doll, C. E.

    1990-01-01

    The Flight Dynamics Facility (FDF) at Goddard Space Flight Center (GSFC) provides spacecraft trajectory determination for a wide variety of National Aeronautics and Space Administration (NASA)-supported satellite missions, using the Tracking Data Relay Satellite System (TDRSS) and Ground Spaceflight and Tracking Data Network (GSTDN). To take advantage of computerized decision making processes that can be used in spacecraft navigation, the Orbit Determination Automation System (ODAS) was designed, developed, and implemented as a prototype system to automate orbit determination (OD) and orbit quality assurance (QA) functions performed by orbit operations. Based on a machine-resident generic schedule and predetermined mission-dependent QA criteria, ODAS autonomously activates an interface with the existing trajectory determination system using a batch least-squares differential correction algorithm to perform the basic OD functions. The computational parameters determined during the OD are processed to make computerized decisions regarding QA, and a controlled recovery process is activated when the criteria are not satisfied. The complete cycle is autonomous and continuous. ODAS was extensively tested for performance under conditions resembling actual operational conditions and found to be effective and reliable for extended autonomous OD. Details of the system structure and function are discussed, and test results are presented.

  14. Questions & Answers about Aeronautics and Space.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    Answers to 27 questions about aeronautics, space, and the National Aeronautics and Space Administration (NASA) are provided in this pamphlet. Among the topics dealt with in these questions are: costs of the space program; NASA's role in aeronautics; benefits received from the space program; why the United States hasn't developed means of rescuing…

  15. Design by Prototype: Examples from the National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    Mulenburg, Gerald M.; Gundo, Daniel P.

    2002-01-01

    This paper describes and provides exa.mples of a technique called Design-by-Prototype used in the development of research hardware at the National Aeronautics and Space Administration's (NASA) Ames Research Center. This is not a new idea. Artisans and great masters have used prototyping as a design technique for centuries. They created prototypes to try out their ideas before making the primary artifact they were planning. This abstract is itself a prototype for others to use in determining the value of the paper it describes. At the Ames Research Center Design-by-Prototype is used for developing unique, one-of-a-kind hardware for small, high-risk projects. The need tor this new/old process is the proliferation of computer "design tools" that can result in both excessive time expended in design, and a lack of imbedded reality in the final product. Despite creating beautiful three-dimensional models and detailed computer drawings that can consume hundreds of engineering hours, the resulting designs can be extremely difficult to make, requiring many changes that add to the cost and schedule. Much design time can be saved and expensive rework eliminated using Design-by-Prototype.

  16. Contribution of the National Aeronautics and Space Administration Langley Research Center

    NASA Technical Reports Server (NTRS)

    Compton, W. B., III; Runckel, J. F.

    1975-01-01

    As part of a special international effort, three nozzles were designed and tested on single nacelle models in wind tunnels of several nations belonging to the North Atlantic Treaty Organization. All three of these nozzles were investigated in the Langley 16-foot transonic wind tunnel at the National Aeronautics and Space Administration's Langley Research Center. Langley Research Center also contributed theoretical calculations of the jet plume boundary and afterbody pressures. The calculations were obtained using an iterative solution which combined the inviscid Douglas Neumann method for the external flow with the method of characteristics for the flow in the jet plume. For the investigation, the nozzles were mounted on a single nacelle model 15.24 centimeters in diameter and 162.56 centimeters long. Tests were made at free stream Mach number from 0.4 to 1.2, and at Reynolds numbers per meter from 7.38 million to 13.78 million depending on the Mach number. Four types of data were recorded: afterbody pressure data, afterbody force data, model boundary layer data, and tunnel wall pressure data. The ratio of jet total pressure to free stream static pressure ranged up to 8.5. A description of the wind tunnel, model, and test procedure is included.

  17. Remarks of Ruth Bates Harris, Deputy Assistant Administrator, National Aeronautics and Space Administration at summer institute closing activity

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Applications of experience and knowledge gained from aeronautical and space research and exploration are discussed briefly. Spinoffs are presented which improve the quality of life by contributing to advances in health, transportation, foods, communications, energy, safety, and manufacturing.

  18. Recent developments in the National Aeronautics and Space Administration (NASA) space tracking facilities in Australia

    NASA Astrophysics Data System (ADS)

    Coleby, R. S.

    Following NASA's announcement in 1979 of a plan to consolidate its deep space tracking and earth orbiting spacecraft tracking networks into three centers - Canberra, Madrid and Goldstone - substantial engineering changes have been made to the NASA facilities within Australia. The paper describes these engineering and organizational changes and recent developments which strengthen the capabilities of the Australian facilities at the Canberra Deep Space Communication Complex.

  19. Quality improvement prototype: Johnson Space Center, National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Johnson Space Flight Center was recognized by the Office of Management and Budget as a model for its high standards of quality. Included are an executive summary of the center's activities, an organizational overview, techniques for improving quality, the status of the quality effort and a listing of key personnel.

  20. Friction Stir Welding Development at National Aeronautics and Space Administration-Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Carter, Robert W.; Ding, Robert J.; Lawless, Kirby G.; Nunes, Arthur C., Jr.; Russell, Carolyn K.; Shah, Sandeep R.; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    This paper presents an over-view of friction stir welding (FSW) process development and applications at Marshall Space Flight Center (MSFC). FSW process development started as a laboratory curiosity but soon found support from many users. The FSW process advanced very quickly and has found many applications both within and outside the aerospace industry. It is currently being adapted for joining key elements of the Space Shuttle External Tank for improved producibility and reliability. FSW process modeling is done to better understand and improve the process. Special tools have been developed to weld variable thickness materials including very thin and very thick materials. FSW is now being applied to higher temperature materials such as copper and to advanced materials such as metal matrix composites. FSW technology is being successfully transferred from MSFC laboratory to shop floors of many commercial companies.

  1. Space Research Data Management in the National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    Ludwig, G. H.

    1986-01-01

    Space related scientific research has passed through a natural evolutionary process. The task of extracting the meaningful information from the raw data is highly involved and will require data processing capabilities that do not exist today. The results are presented of a three year examination of this subject, using an earlier report as a starting point. The general conclusion is that there are areas in which NASA's data management practices can be improved and recommends specific actions. These actions will enhance NASA's ability to extract more of the potential data and to capitalize on future opportunities.

  2. The Characteristics of Project Managers: An Exploration of Complex Projects in the National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    Mulenburg, Gerald M.

    2000-01-01

    Study of characteristics and relationships of project managers of complex projects in the National Aeronautics and Space Administration. Study is based on Research Design, Data Collection, Interviews, Case Studies, and Data Analysis across varying disciplines such as biological research, space research, advanced aeronautical test facilities, aeronautic flight demonstrations, and projects at different NASA centers to ensure that findings were not endemic to one type of project management, or to one Center's management philosophies. Each project is treated as a separate case with the primary data collected during semi-structured interviews with the project manager responsible for the overall project. Results of the various efforts show some definite similarities of characteristics and relationships among the project managers in the study. A model for how the project managers formulated and managed their projects is included.

  3. Overview of the National Aeronautics and Space Administration's Nondestructive Evaluation (NDE) Program

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.

    2002-01-01

    NASA's Office of Safety and Mission Assurance sponsors an Agency-wide NDE Program that supports Aeronautics and Space Transportation Technology, Human Exploration and Development of Space, Earth Science, and Space Science Enterprises. For each of these Enterprises, safety is the number one priority. Development of the next generation aero-space launch and transportation vehicles, satellites, and deep space probes have highlighted the enabling role that NDE plays in these advanced technology systems. Specific areas of advanced component development, component integrity, and structural heath management are critically supported by NDE technologies. The simultaneous goals of assuring safety, maintaining overall operational efficiency, and developing and utilizing revolutionary technologies to expand human activity and space-based commerce in the frontiers of air and space places increasing demands on the Agencies NDE infrastructure and resources. In this presentation, an overview of NASA's NDE Program will be presented, that includes a background and status of current Enterprise NDE issues, and the NDE investment areas being developed to meet Enterprise safety and mission assurance needs through the year 2009 and beyond.

  4. Implementation of the Enhanced Flight Termination System at National Aeronautics and Space Administration Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Tow, David

    2010-01-01

    This paper discusses the methodology, requirements, tests, and results of the implementation of the current operating capability for the Enhanced Flight Termination System (EFTS) at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center (DFRC). The implementation involves the development of the EFTS at NASA DFRC starting from the requirements to system safety review to full end to end system testing, and concluding with the acceptance of the system as an operational system. The paper discusses the first operational usage and subsequent flight utilizing EFTS successfully.

  5. The 2006 Kennedy Space Center Range Reference Atmosphere Model Validation Study and Sensitivity Analysis to the Performance of the National Aeronautics and Space Administration's Space Shuttle Vehicle

    NASA Technical Reports Server (NTRS)

    Burns, Lee; Decker, Ryan; Harrington, Brian; Merry, Carl

    2008-01-01

    The Kennedy Space Center (KSC) Range Reference Atmosphere (RRA) is a statistical model that summarizes wind and thermodynamic atmospheric variability from surface to 70 km. The National Aeronautics and Space Administration's (NASA) Space Shuttle program, which launches from KSC, utilizes the KSC RRA data to evaluate environmental constraints on various aspects of the vehicle during ascent. An update to the KSC RRA was recently completed. As part of the update, the Natural Environments Branch at NASA's Marshall Space Flight Center (MSFC) conducted a validation study and a comparison analysis to the existing KSC RRA database version 1983. Assessments to the Space Shuttle vehicle ascent profile characteristics were performed by JSC/Ascent Flight Design Division to determine impacts of the updated model to the vehicle performance. Details on the model updates and the vehicle sensitivity analyses with the update model are presented.

  6. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1989, volume 2

    NASA Technical Reports Server (NTRS)

    Jones, William B., Jr. (Editor); Goldstein, Stanley H. (Editor)

    1989-01-01

    The 1989 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by Texas A and M University and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers.

  7. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1987, volume 2

    NASA Technical Reports Server (NTRS)

    Jones, William B., Jr. (Editor); Goldstein, Stanley H. (Editor)

    1987-01-01

    The 1987 Johnson Space Center (JCS) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship program was conducted by Texas A and M University and JSC. The 10-week program was operated under the auspices of ASEE. The basic objectives of the program are: to further the professional knowledge of qualified engineering and science faculty members; to stimulate an exchange of ideas between participants and NASA; to enrich and refresh the research and teaching activities of participants' institutions; and to contribute to the research objective of the NASA Centers. This document is a compilation of the final reports on the research projects done by the faculty fellows during the summer of 1987.

  8. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program 1988, volume 2

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B.; Goldstein, Stanley H.

    1989-01-01

    The 1988 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JCS. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began in 1965 at JSC and in 1964 nationally, are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA Centers.

  9. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1992, volume 1

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)

    1992-01-01

    The 1992 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, Washington, DC. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers. This document is a compilation of the final reports 1 through 12.

  10. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program 1988, volume 1

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)

    1989-01-01

    The 1988 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began in 1965 at JSC and in 1964 nationally, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA Centers.

  11. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1989, volume 1

    NASA Technical Reports Server (NTRS)

    Jones, William B., Jr. (Editor); Goldstein, Stanley H. (Editor)

    1989-01-01

    The 1989 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by Texas A and M University and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers.

  12. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1992, volume 2

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)

    1992-01-01

    The 1992 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters Washington, DC. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers. This document contains reports 13 through 24.

  13. National Aeronautics and Space Administration Biological and Physical Research Enterprise Strategy

    NASA Technical Reports Server (NTRS)

    2003-01-01

    As the 21st century begins, NASA's new Vision and Mission focuses the Agency's Enterprises toward exploration and discovery.The Biological and Physical Research Enterprise has a unique and enabling role in support of the Agency's Vision and Mission. Our strategic research seeks innovations and solutions to enable the extension of life into deep space safely and productively. Our fundamental research, as well as our research partnerships with industry and other agencies, allow new knowledge and tech- nologies to bring improvements to life on Earth. Our interdisciplinary research in the unique laboratory of microgravity addresses opportunities and challenges on our home planet as well as in space environments. The Enterprise maintains a key role in encouraging and engaging the next generation of explorers from primary school through the grad- uate level via our direct student participation in space research.The Biological and Physical Research Enterprise encompasses three themes. The biological sciences research theme investigates ways to support a safe human presence in space. This theme addresses the definition and control of physiological and psychological risks from the space environment, including radiation,reduced gravity, and isolation. The biological sciences research theme is also responsible for the develop- ment of human support systems technology as well as fundamental biological research spanning topics from genomics to ecologies. The physical sciences research theme supports research that takes advantage of the space environment to expand our understanding of the fundamental laws of nature. This theme also supports applied physical sciences research to improve safety and performance of humans in space. The research partnerships and flight support theme establishes policies and allocates space resources to encourage and develop entrepreneurial partners access to space research.Working together across research disciplines, the Biological and Physical

  14. The National Aeronautics and Space Administration's Earth Science Applications Program: Exploring Partnerships to Enhance Decision Making in Public Health Practice

    NASA Technical Reports Server (NTRS)

    Vann, Timi S.; Venezia, Robert A.

    2002-01-01

    The National Aeronautics and Space Administration (NASA), Earth Science Enterprise is engaged in applications of NASA Earth science and remote sensing technologies for public health. Efforts are focused on establishing partnerships with those agencies and organizations that have responsibility for protecting the Nation's Health. The program's goal is the integration of NASA's advanced data and technology for enhanced decision support in the areas of disease surveillance and environmental health. A focused applications program, based on understanding partner issues and requirements, has the potential to significantly contribute to more informed decision making in public health practice. This paper intends to provide background information on NASA's investment in public health and is a call for partnership with the larger practice community.

  15. Modeling, Analysis and Simulation Approaches Used in Development of the National Aeronautics and Space Administration Max Launch Abort System

    NASA Technical Reports Server (NTRS)

    Yuchnovicz, Daniel E.; Dennehy, Cornelius J.; Schuster, David M.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Engineering and Safety Center was chartered to develop an alternate launch abort system (LAS) as risk mitigation for the Orion Project. Its successful flight test provided data for the design of future LAS vehicles. Design of the flight test vehicle (FTV) and pad abort trajectory relied heavily on modeling and simulation including computational fluid dynamics for vehicle aero modeling, 6-degree-of-freedom kinematics models for flight trajectory modeling, and 3-degree-of-freedom kinematics models for parachute force modeling. This paper highlights the simulation techniques and the interaction between the aerodynamics, flight mechanics, and aerodynamic decelerator disciplines during development of the Max Launch Abort System FTV.

  16. The astrophysics program at the National Aeronautics and Space Administration (NASA)

    NASA Technical Reports Server (NTRS)

    Pellerin, C. J.

    1990-01-01

    Three broad themes characterize the goals of the Astrophysics Division at NASA. These are obtaining an understanding of the origin and evolution of the universe, the fundamental laws of physics, and the birth and evolutionary cycle of galaxies, stars, planets and life. These goals are pursued through contemporaneous observations across the electromagnetic spectrum with high sensitivity and resolution. The strategy to accomplish these goals is fourfold: the establishment of long term space based observatories implemented through the Great Observatories program; attainment of crucial bridging and supporting measurements visa missions of intermediate and small scope conducted within the Explorer, Spacelab, and Space Station Attached Payload Programs; enhancement of scientific access to results of space based research activities through an integrated data system; and development and maintenance of the scientific/technical base for space astrophysics programs through the research and analysis and suborbital programs. The near term activities supporting the first two objectives are discussed.

  17. Summer High School Apprenticeship Research Program (SHARP) of the National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A total of 125 talented high school students had the opportunity to gain first hand experience about science and engineering careers by working directly with a NASA scientist or engineer during the summer. This marked the fifth year of operation for NASA's Summer High School Apprenticehsip Research Program (SHARP). Ferguson Bryan served as the SHARP contractor and worked closely with NASA staff at Headquarters and the eight participating sites to plan, implement, and evaluate the Program. The main objectives were to strengthen SHARP and expand the number of students in the Program. These eight sites participated in the Program: Ames Research Center North, Ames' Dryden Flight Research Facility, Goddard Space Flight Center, Goddard's Wallops Flight Facility, Kennedy Space Center, Langley Research Center, Lewis Research Center, and Marshall Space Flight Center.

  18. The 1985 National Aeronautics and Space Administration's Summer High School Apprenticeship Research Program (SHARP)

    NASA Technical Reports Server (NTRS)

    1985-01-01

    In 1985, a total of 126 talented high school students gained first hand knowledge about science and engineering careers by working directly with a NASA scientist or engineer during the summer. This marked the sixth year of operation for NASA's Summer High School Apprenticeship Research Program (SHARP). The major priority of maintaining the high standards and success of prior years was satisfied. The following eight sites participated in the Program: Ames Research Center, Ames' Dryden Flight Research Facility, Goddard Space Flight Center, Goddard's Wallop Flight Facility, Kennedy Space Center, Langley Research Center, Lewis Research Center, and Marshall Space Flight Center. Tresp Associates served as the SHARP contractor and worked closely with NASA staff at headquarters and the sites just mentioned to plan, implement, and evaluate the program.

  19. Third National Aeronautics and Space Administration Weather and climate program science review

    NASA Technical Reports Server (NTRS)

    Kreins, E. R. (Editor)

    1977-01-01

    Research results of developing experimental and prototype operational systems, sensors, and space facilities for monitoring, and understanding the atmosphere are reported. Major aspects include: (1) detection, monitoring, and prediction of severe storms; (2) improvement of global forecasting; and (3) monitoring and prediction of climate change.

  20. Assessment of Intelligent Processing Equipment in the National Aeronautics and Space Administration, 1991

    NASA Technical Reports Server (NTRS)

    Jones, C. S.

    1992-01-01

    Summarized here is an assessment of intelligent processing equipment (IPE) within NASA. An attempt is made to determine the state of IPE development and research in specific areas where NASA might contribute to the national capability. Mechanisms to transfer NASA technology to the U.S. private sector in this critical area are discussed. It was concluded that intelligent processing equipment is finding extensive use in the manufacture of space hardware, especially in the propulsion components of the shuttle. The major benefits are found in improved process consistency, which lowers cost as it reduces rework. Advanced feedback controls are under development and being implemented gradually into shuttle manufacturing. Implementation is much more extensive in new programs, such as in the advanced solid rocket motor and the Space Station Freedom.

  1. Assessment of intelligent processing equipment in the National Aeronautics and Space Administration, 1991

    NASA Astrophysics Data System (ADS)

    Jones, C. S.

    1992-04-01

    Summarized here is an assessment of intelligent processing equipment (IPE) within NASA. An attempt is made to determine the state of IPE development and research in specific areas where NASA might contribute to the national capability. Mechanisms to transfer NASA technology to the U.S. private sector in this critical area are discussed. It was concluded that intelligent processing equipment is finding extensive use in the manufacture of space hardware, especially in the propulsion components of the shuttle. The major benefits are found in improved process consistency, which lowers cost as it reduces rework. Advanced feedback controls are under development and being implemented gradually into shuttle manufacturing. Implementation is much more extensive in new programs, such as in the advanced solid rocket motor and the Space Station Freedom.

  2. Advanced space design program to the Universities Space Research Association and the National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    Nevill, Gale E., Jr.

    1988-01-01

    The goal of the Fall 1987 class of EGM 4000 was the investigation of engineering aspects contributing to the development of NASA's Controlled Ecological Life Support System (CELSS). The areas investigated were the geometry of plant growth chambers, automated seeding of plants, remote sensing of plant health, and processing of grain into edible forms. The group investigating variable spacing of individual soybean plants designed growth trays consisting of three dimensional trapezoids arranged in a compact circular configuration. The automated seed manipulation and planting group investigated the electrical and mechanical properties of wheat seeds and developed three seeding concepts based upon these properties. The plant health and disease sensing group developed a list of reliable plant health indicators and investigated potential detection technologies.

  3. National Aeronautics and Space Administration Manned Spacecraft Center data base requirements study

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A study was conducted to evaluate the types of data that the Manned Spacecraft Center (MSC) should automate in order to make available essential management and technical information to support MSC's various functions and missions. In addition, the software and hardware capabilities to best handle the storage and retrieval of this data were analyzed. Based on the results of this study, recommendations are presented for a unified data base that provides a cost effective solution to MSC's data automation requirements. The recommendations are projected through a time frame that includes the earth orbit space station.

  4. Fourth National Aeronautics and Space Administration Weather and Climate Program Science Review

    NASA Technical Reports Server (NTRS)

    Kreins, E. R. (Editor)

    1979-01-01

    The NASA Weather and Climate Program has two major thrusts. The first involves the development of experimental and prototype operational satellite systems, sensors, and space facilities for monitoring and understanding the atmosphere. The second thrust involves basic scientific investigation aimed at studying the physical and chemical processes which control weather and climate. This fourth science review concentrated on the scientific research rather than the hardware development aspect of the program. These proceedings contain 65 papers covering the three general areas: severe storms and local weather research, global weather, and climate.

  5. Natural Atmospheric Environment Model Development for the National Aeronautics and Space Administration's Second Generation Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Roberts, Barry C.; Leahy, Frank; Overbey, Glenn; Batts, Glen W.; Parker, Nelson (Technical Monitor)

    2002-01-01

    The National Aeronautics and Space Administration (NASA) recently began development of a new reusable launch vehicle. The program office is located at Marshall Space Flight Center (MSFC) and is called the Second Generation Reusable Launch Vehicle (2GRLV). The purpose of the program is to improve upon the safety and reliability of the first generation reusable launch vehicle, the Space Shuttle. Specifically, the goals are to reduce the risk of crew loss to less than 1-in-10,000 missions and decreased costs by a factor of 10 to approximately $1,000 per pound of payload launched to low Earth orbit. The program is currently in the very early stages of development and many two-stage vehicle concepts will be evaluated. Risk reduction activities are also taking place. These activities include developing new technologies and advancing current technologies to be used by the vehicle. The Environments Group at MSFC is tasked by the 2GRLV Program to develop and maintain an extensive series of analytical tools and environmental databases which enable it to provide detailed atmospheric studies in support of structural, guidance, navigation and control, and operation of the 2GRLV.

  6. The past, present, and future of National Aeronautics and Space Administration spaceflight diet in support of microgravity rodent experiments.

    PubMed

    Sun, Gwo-Shing; Tou, Janet C; Yu, Diane; Girten, Beverly E; Cohen, Jacob

    2014-02-01

    Rodents have been the most frequently flown animal model used to study physiological responses to the space environment. In support of future of space exploration, the National Aeronautics and Space Administration (NASA) envisions an animal research program focused on rodents. Therefore, the development of a rodent diet that is suitable for the spaceflight environment including long duration spaceflight is a high priority. Recognizing the importance of nutrition in affecting spaceflight physiological responses and ensuring reliable biomedical and biological science return, NASA developed the nutrient-upgraded rodent food bar (NuRFB) as a standard diet for rodent spaceflight. Depending on future animal habitat hardware and planned spaceflight experiments, modification of the NuRFB or development of a new diet formulation may be needed, particularly for long term spaceflights. Research in this area consists primarily of internal technical reports that are not readily accessible. Therefore, the aims of this contribution are to provide a brief history of the development of rodent spaceflight diets, to review the present diet used in rodent spaceflight studies, and to discuss some of the challenges and potential solutions for diets to be used in future long-term rodent spaceflight studies. PMID:24012282

  7. National Aeronautics and Space Administration (NASA) Environmental Control and Life Support (ECLS) Integrated Roadmap Development

    NASA Technical Reports Server (NTRS)

    Metcalf, Jordan; Peterson, Laurie; Carrasquillo, Robyn; Bagdigian, Robert

    2011-01-01

    At present, NASA has considered a number of future human space exploration mission concepts . Yet, detailed mission requirements and vehicle architectures remain mostly undefined, making technology investment strategies difficult to develop and sustain without a top-level roadmap to serve as a guide. This paper documents a roadmap for development of Environmental Control and Life Support Systems (ECLSS) capabilities required to enhance the long-term operation of the International Space Station (ISS) as well as enable beyond-Low Earth Orbit (LEO) human exploration missions. Three generic mission types were defined to serve as a basis for developing a prioritized list of needed capabilities and technologies. Those are 1) a short duration micro gravity mission; 2) a long duration transit microgravity mission; and 3) a long duration surface exploration mission. To organize the effort, ECLSS was categorized into three major functional groups (atmosphere, water, and solid waste management) with each broken down into sub-functions. The ability of existing state-of-the-art (SOA) technologies to meet the functional needs of each of the three mission types was then assessed by NASA subject matter experts. When SOA capabilities were deemed to fall short of meeting the needs of one or more mission types, those gaps were prioritized in terms of whether or not the corresponding capabilities enable or enhance each of the mission types. The result was a list of enabling and enhancing capabilities needs that can be used to guide future ECLSS development, as well as a list of existing hardware that is ready to go for exploration-class missions. A strategy to fulfill those needs over time was then developed in the form of a roadmap. Through execution of this roadmap, the hardware and technologies intended to meet exploration needs will, in many cases, directly benefit the ISS operational capability, benefit the Multi-Purpose Crew Vehicle (MPCV), and guide long-term technology

  8. National Aeronautics and Space Administration (NASA) Environmental Control and Life Support (ECLS) Integrated Roadmap Development

    NASA Technical Reports Server (NTRS)

    Metcalf, Jordan; Peterson, Laurie; Carrasquillo, Robyn; Bagdigian, Robert

    2012-01-01

    Although NASA is currently considering a number of future human space exploration mission concepts, detailed mission requirements and vehicle architectures remain mostly undefined, making technology investment strategies difficult to develop and sustain without a top-level roadmap to serve as a guide. This paper documents the process and results of an effort to define a roadmap for Environmental Control and Life Support Systems (ECLSS) capabilities required to enhance the long-term operation of the International Space Station (ISS) as well as enable beyond-Low Earth Orbit (LEO) human exploration missions. Three generic mission types were defined to serve as a basis for developing a prioritized list of needed capabilities and technologies. Those are 1) a short duration micro-gravity mission; 2) a long duration microgravity mission; and 3) a long duration partial gravity (surface) exploration mission. To organize the effort, a functional decomposition of ECLSS was completed starting with the three primary functions: atmosphere, water, and solid waste management. Each was further decomposed into sub-functions to the point that current state-of-the-art (SOA) technologies could be tied to the sub-function. Each technology was then assessed by NASA subject matter experts as to its ability to meet the functional needs of each of the three mission types. When SOA capabilities were deemed to fall short of meeting the needs of one or more mission types, those gaps were prioritized in terms of whether or not the corresponding capabilities enable or enhance each of the mission types. The result was a list of enabling and enhancing capability needs that can be used to guide future ECLSS development, as well as a list of existing hardware that is ready to go for exploration-class missions. A strategy to fulfill those needs over time was then developed in the form of a roadmap. Through execution of this roadmap, the hardware and technologies intended to meet exploration needs

  9. National Aeronautics and Space Administration (NASA)/American Society of Engineering Education (ASEE) Summer Faculty Fellowship Program - 2000

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Sickorez, Donn G. (Editor)

    2003-01-01

    The 2000 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began in 1965 at JSC and 1964 nationally, are to (1) further the professional knowledge of qualified engineering and science faculty, (2) stimulate an exchange of ideas between participants and NASA, (3) enrich and refresh the research and teaching activities of participants' institutions, and (4) contribute to the research objectives of the NASA Centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project commensurate with her/his interests and background, and worked in collabroation with a NASA/JSC colleague. This document is a compilation of the final reports on the research projects done by the faculty fellows during the summer of 2000.

  10. Summary Report of the NASA Management Study Group: Recommendations to the Administrator, National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    Phillips, Samuel C.

    1986-01-01

    The NASA Management Study Group (NMSG) was established under the auspices of the National Acedamy of Public Administration at the request of the Administrator of NASA to assess NASA's management practices and to evaluate the effectiveness of the NASA organization. This report summarizes the conclusions and recommendations of the NMSG on the overall management and organization of NASA.

  11. The Pine Ridge-Mayo National Aeronautics and Space Administration Telemedicine Project: Program Activities and Participant Reactions

    NASA Technical Reports Server (NTRS)

    Kottke, T. E.; Little Finger, L.; Trapp, M. A.; Panser, L. A.; Novotny, P. J.

    1996-01-01

    OBJECTIVE: To determine the response of participants to the Pine Ridge-Mayo National Aeronautics and Space Administration telemedicine project. DESIGN: We describe a 3-month demonstration project of medical education and clinical consultations conducted by means of satellite transmission. Postparticipation questionnaires and a postproject survey were used to assess the success of the activity. MATERIAL AND METHODS: Patients and employees at the Pine Ridge Indian Health Service Hospital in southwestern South Dakota and employees at Mayo Clinic Rochester participated in a telemedicine project, after which they completed exit surveys and a postproject questionnaire to ascertain the acceptability of this mode of health care. RESULTS: Almost all Pine Ridge and Mayo Clinic participants viewed the project as beneficial. The educational sessions received favorable evaluations, and almost two-thirds of the patients who completed evaluations thought the consultation had contributed to their medical care. More than 90% of the respondents from Pine Ridge and more than 85% of the respondents from Mayo Clinic Rochester said that they would recommend participation in this project to others. More than 90% of respondents from Pine Ridge and 80% of Mayo respondents agreed with the statement that the project should continue. CONCLUSION: These data suggest that a program of clinical consultation services, professional education, and patient education available by telemedicine might be viewed as beneficial.

  12. The 2006 Cape Canaveral Air Force Station Range Reference Atmosphere Model Validation Study and Sensitivity Analysis to the National Aeronautics and Space Administration's Space Shuttle

    NASA Technical Reports Server (NTRS)

    Burns, Lee; Merry, Carl; Decker, Ryan; Harrington, Brian

    2008-01-01

    The 2006 Cape Canaveral Air Force Station (CCAFS) Range Reference Atmosphere (RRA) is a statistical model summarizing the wind and thermodynamic atmospheric variability from surface to 70 kin. Launches of the National Aeronautics and Space Administration's (NASA) Space Shuttle from Kennedy Space Center utilize CCAFS RRA data to evaluate environmental constraints on various aspects of the vehicle during ascent. An update to the CCAFS RRA was recently completed. As part of the update, a validation study on the 2006 version was conducted as well as a comparison analysis of the 2006 version to the existing CCAFS RRA database version 1983. Assessments to the Space Shuttle vehicle ascent profile characteristics were performed to determine impacts of the updated model to the vehicle performance. Details on the model updates and the vehicle sensitivity analyses with the update model are presented.

  13. The National Aeronautics and Space Administration (NASA)/Goddard Space Flight Center (GSFC) sounding-rocket program

    NASA Technical Reports Server (NTRS)

    Guidotti, J. G.

    1976-01-01

    An overall introduction to the NASA sounding rocket program as managed by the Goddard Space Flight Center is presented. The various sounding rockets, auxiliary systems (telemetry, guidance, etc.), launch sites, and services which NASA can provide are briefly described.

  14. Application of Mobile-ip to Space and Aeronautical Networks

    NASA Technical Reports Server (NTRS)

    Leung, Kent; Shell, Dan; Ivancic, William D.; Stewart, David H.; Bell, Terry L.; Kachmar, Brian A.

    2001-01-01

    The National Aeronautics and Space Administration (NASA) is interested in applying mobile Internet protocol (mobile-ip) technologies to its space and aeronautics programs. In particular, mobile-ip will play a major role in the Advanced Aeronautic Transportation Technology (AAT-F), the Weather Information Communication (WINCOMM), and the Small Aircraft Transportation System (SATS) aeronautics programs. This paper describes mobile-ip and mobile routers--in particular, the features, capabilities, and initial performance of the mobile router are presented. The application of mobile-router technology to NASA's space and aeronautics programs is also discussed.

  15. Aeronautics and space report of the President

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This report describes the activities and accomplishments of all agencies of the United States in the fields of aeronautics and space science during FY 1994. Activity summaries are presented for the following areas: space launch activities, space science, space flight and space technology, space communications, aeronuatics, and studies of the planet Earth. Several appendices providing data on U.S. launch activities, the Federal budget for space and aeronautics, remote sensing capabilities, and space policy are included.

  16. Summary of the National Aeronautics and Space Administration Lunar Helium-3/Fusion Power Workshop, Cleveland, Ohio, April 25-26, 1988

    SciTech Connect

    Epstein, G.L.; Plescia, J.B.; Gabris, E.A.

    1989-01-01

    The National Aeronautics and Space Administration (NASA) Lunar Helium-3/Fusion Power Workshop was held April 25-26, 1988, in Cleveland, Ohio, to discuss the feasibility of mining /sup 3/He from the lunar regolith for use in terrestrial fusion applications, which was said to offer an economic payoff for space missions. The development of the moon as a source of materials for use on earth is being studied by NASA's Office of Exploration as a potential next step in extending human presence into the solar system. The discovery in 1985 of useful quantities of /sup 3/He on the moon makes this assessment particularly timely. Forty-five experts from the nuclear fusion, mining, and lunar communities participated. An overview of mining /sup 3/He from the moon and two applications concepts were presented at the opening session of the workshop.

  17. Space Shuttle main engine. NASA has not evaluated the alternate fuel turbopump costs and benefits. Report to the Administrator of the National Aeronautics and Space Administration

    NASA Astrophysics Data System (ADS)

    1993-10-01

    NASA's plans to develop an alternate high pressure fuel turbopump for the Space Shuttle's main engines were assessed by the General Accounting Office as a part of the evaluation of the Space Shuttle Safety and Obsolescence Upgrade program. The objective was to determine whether NASA has adequately analyzed cost, performance, and benefits that are expected to result from this program in comparison to other alternatives before resuming development of the alternate pump, which was suspended in 1992. The alternate fuel pump is one of five improvements being developed or planned to significantly enhance safety margins of the engines.

  18. Serving the Space Administration

    ERIC Educational Resources Information Center

    Campbell, Jack E.; Thompson, Arthur W.

    1974-01-01

    The purpose of the current program was to establish an upward mobility program that afforded employees an opportunity to improve their credibility in job opportunity selection under the directives of the National Aeronautics and Space Administration. (Author/RK)

  19. The applicability and availability of Former Soviet Union (FSU) space-related capabilities and facilities to energy-related space activities of Department of Energy, Department of Defense and National Aeronautics and Space Administration

    NASA Astrophysics Data System (ADS)

    Pellechi, M.

    1993-01-01

    A senior-level Department of Energy (DOE), Department of Defense (DoD), and National Aeronautics and Space Administration (NASA) team visited the former Soviet Union (FSU) from 16-28 Oct. 1992. The purpose of the visit was to investigate the applicability and availability of FSU space-related capabilities and facilities to the energy-related space activities of the three agencies. This included renewable energy, nuclear power and propulsion, radiation effects, remote sensing, optics, and lasers. The U.S. delegation was successful in identifying some capabilities that would be useful to the three organizations. Efforts to utilize some of the FSU capabilities viewed are being initiated. Concurrently, there will be a technical assessment performed on the information gained from this and other recent visits to the FSU relative to space research.

  20. Government Information Quarterly. Volume 7, no. 2: National Aeronautics and Space Administration Scientific and Technical Information Programs. Special issue

    NASA Technical Reports Server (NTRS)

    Hernon, Peter (Editor); Mcclure, Charles R. (Editor); Pinelli, Thomas E. (Editor)

    1990-01-01

    NASA scientific and technical information (STI) programs are discussed. Topics include management of information in a research and development agency, the new space and Earth science information systems at NASA's archive, scientific and technical information management, and technology transfer of NASA aerospace technology to other industries.

  1. Center for Aeronautics and Space Information Sciences

    NASA Technical Reports Server (NTRS)

    Flynn, Michael J.

    1992-01-01

    This report summarizes the research done during 1991/92 under the Center for Aeronautics and Space Information Science (CASIS) program. The topics covered are computer architecture, networking, and neural nets.

  2. The National Aeronautics and Space Administration (NASA) Tracking and Data Relay Satellite System (TDRSS) program Economic and programmatic, considerations

    NASA Astrophysics Data System (ADS)

    Aller, R. O.

    1985-10-01

    The Tracking and Data Relay Satellite System (TDRSS) represents the principal element of a new space-based tracking and communication network which will support NASA spaceflight missions in low earth orbit. In its complete configuration, the TDRSS network will include a space segment consisting of three highly specialized communication satellites in geosynchronous orbit, a ground segment consisting of an earth terminal, and associated data handling and control facilities. The TDRSS network has the objective to provide communication and data relay services between the earth-orbiting spacecraft and their ground-based mission control and data handling centers. The first TDRSS spacecraft has been now in service for two years. The present paper is concerned with the TDRSS experience from the perspective of the various programmatic and economic considerations which relate to the program.

  3. The National Aeronautics and Space Administration (NASA) Tracking and Data Relay Satellite System (TDRSS) program Economic and programmatic, considerations

    NASA Technical Reports Server (NTRS)

    Aller, R. O.

    1985-01-01

    The Tracking and Data Relay Satellite System (TDRSS) represents the principal element of a new space-based tracking and communication network which will support NASA spaceflight missions in low earth orbit. In its complete configuration, the TDRSS network will include a space segment consisting of three highly specialized communication satellites in geosynchronous orbit, a ground segment consisting of an earth terminal, and associated data handling and control facilities. The TDRSS network has the objective to provide communication and data relay services between the earth-orbiting spacecraft and their ground-based mission control and data handling centers. The first TDRSS spacecraft has been now in service for two years. The present paper is concerned with the TDRSS experience from the perspective of the various programmatic and economic considerations which relate to the program.

  4. National Aeronautics and Space Administration operations: Remote sensing experiments in the New York Bight, 7-17 April 1975

    NASA Technical Reports Server (NTRS)

    Usry, J. W.; Hall, J. B., Jr.

    1975-01-01

    Results are given of remote sensing experiments conducted in the New York Bight between April 7-17, 1975, to evaluate the role of remote sensing technology to aid in monitoring ocean dumping. Remote sensors were flown on the C-54, U-2, and C-130 aircraft while the National Oceanic and Atmospheric Administration obtained concurrent in situ sea truth data using helicopters and surface platforms. The test site, aircraft platforms, experiments, and supporting sensors are described. The operation of each aircraft are discussed and aircraft flight lines, flight parameters, and data identification parameters are presented in figures and tables.

  5. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) summer faculty fellowship program, 1986, volume 1

    NASA Technical Reports Server (NTRS)

    Mcinnis, Bayliss (Editor); Goldstein, Stanley (Editor)

    1987-01-01

    The Johnson Space Center (JSC) NASA/ASEE Summer Faculty Fellowship Program was conducted by the University of Houston. The basic objectives of the program are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching objectives of participants' institutions; and (4) to contribute to the research objectives of the NASA Centers. Each faculty fellow spent ten weeks at JSC engaged in a research project commensurate with his interests and background and worked in collaboration with a NASA/JSC colleague. Volume 1 contains sections 1 through 14.

  6. The Successful Development of an Automated Rendezvous and Capture (AR&C) System for the National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    Roe, Fred D.; Howard, Richard T.

    2003-01-01

    During the 1990's, the Marshall Space Flight Center (MSFC) conducted pioneering research in the development of an automated rendezvous and capture/docking (AR&C) system for U.S. space vehicles. Development and demonstration of a rendezvous sensor was identified early in the AR&C Program as the critical enabling technology that allows automated proximity operations and docking. A first generation rendezvous sensor, the Video Guidance Sensor (VGS), was developed and successfully flown on STS-87 and STS-95, proving the concept of a video- based sensor. A ground demonstration of the entire system and software was successfully tested. Advances in both video and signal processing technologies and the lessons learned from the two successful flight experiments provided a baseline for the development, by the MSFC, of a new generation of video based rendezvous sensor. The Advanced Video Guidance Sensor (AGS) has greatly increased performance and additional capability for longer-range operation with a new target designed as a direct replacement for existing ISS hemispherical reflectors.

  7. Aeronautics and space report of the President: 1981 activities

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Achievements in the aeronautics and space program by function are summarized. Activities in communications, Earth's resources and environment, space science, space transportation, international activities, and aeronautics are included.

  8. Color/magnitude calibration for National Aeronautics and Space Administration (NASA) standard Fixed-Head Star Trackers (FHST)

    NASA Technical Reports Server (NTRS)

    Landis, J.; Leid, Terry; Garber, A.; Lee, M.

    1994-01-01

    This paper characterizes and analyzes the spectral response of Ball Aerospace fixed-head star trackers, (FHST's) currently in use on some three-axis stabilized spacecraft. The FHST output is a function of the frequency and intensity of the incident light and the position of the star image in the field of view. The FHST's on board the Extreme Ultraviolet Explorer (EUVE) have had occasional problems identifying stars with a high B-V value. These problems are characterized by inaccurate intensity counts observed by the tracker. The inaccuracies are due to errors in the observed star magnitude values. These errors are unique to each individual FHST. For this reason, data were also collected and analyzed from the Upper Atmosphere Research Satellite (UARS). As a consequence of this work, the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) hopes to improve the attitude accuracy on these missions and to adopt better star selection procedures for catalogs.

  9. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1987, volume 1

    NASA Technical Reports Server (NTRS)

    Jones, William B. (Editor); Goldstein, Stanley H. (Editor)

    1987-01-01

    The objective of the NASA/ASEE program were: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA centers. Each faculty fellow spent 10 weeks at Johnson Space Center engaged in a research project commensurate with his/her interests and background and worked in collaboration with a NASA/JSC colleague. A compilation is presented of the final reports on the research projects done by the fellows during the summer of 1987. This is volume 1 of a 2 volume report.

  10. National Aeronautics and Space Administration (NASA)/american Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1991, Volume 2

    NASA Technical Reports Server (NTRS)

    Hyman, William A. (Editor); Goldstein, Stanley H. (Editor)

    1991-01-01

    The objectives of the program are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participant's institutions; and (4) to contribute to the research objectives of the NASA Centers. A compilation of the final reports on the research projects done by the faculty fellows during the summer of 1991 are presented. Some of the topics covered include: collision avoidance for rover vehicles, bioinstrumentation, neural nets, total quality management of flexible space structures, project scheduling, nondestructive tests, orthostatic intolerance to bedrest, hypersonic reentry simulation, measuring human energy expenditure, tribological models, trace element movement in Anarctic ice, gastrointestinal function, and computer assisted instruction.

  11. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) summer faculty fellowship program, 1986, volume 2

    NASA Technical Reports Server (NTRS)

    Mcinnis, Bayliss (Editor); Goldstein, Stanley (Editor)

    1987-01-01

    The Johnson Space Center (JSC) NASA/ASEE Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The ten week program was operated under the auspices of the American Society for Engineering Education (ASEE). The basic objectives of the program are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA Centers. Each faculty fellow spent ten weeks at JSC engaged in a research project commensurate with his interests and background and worked in collaboration with a NASA/JSC colleague. The final reports on the research projects are presented. This volume, 2, contains sections 15 through 30.

  12. National Aeronautics and Space Administration (NASA) Environmental Control and Life Support (ECLS) Capability Roadmap Development for Exploration

    NASA Technical Reports Server (NTRS)

    Bagdigian, Robert M.; Carrasquillo, Robyn L.; Metcalf, Jordan; Peterson, Laurie

    2012-01-01

    NASA is considering a number of future human space exploration mission concepts. Although detailed requirements and vehicle architectures remain mostly undefined, near-term technology investment decisions need to be guided by the anticipated capabilities needed to enable or enhance the mission concepts. This paper describes a roadmap that NASA has formulated to guide the development of Environmental Control and Life Support Systems (ECLSS) capabilities required to enhance the long-term operation of the International Space Station (ISS) and enable beyond-Low Earth Orbit (LEO) human exploration missions. Three generic mission types were defined to serve as a basis for developing a prioritized list of needed capabilities and technologies. Those are 1) a short duration micro gravity mission; 2) a long duration transit microgravity mission; and 3) a long duration surface exploration mission. To organize the effort, ECLSS was categorized into three major functional groups (atmosphere, water, and solid waste management) with each broken down into sub-functions. The ability of existing, flight-proven state-of-the-art (SOA) technologies to meet the functional needs of each of the three mission types was then assessed. When SOA capabilities fell short of meeting the needs, those "gaps" were prioritized in terms of whether or not the corresponding capabilities enable or enhance each of the mission types. The resulting list of enabling and enhancing capability gaps can be used to guide future ECLSS development. A strategy to fulfill those needs over time was then developed in the form of a roadmap. Through execution of this roadmap, the hardware and technologies needed to enable and enhance exploration may be developed in a manner that synergistically benefits the ISS operational capability, supports Multi-Purpose Crew Vehicle (MPCV) development, and sustains long-term technology investments for longer duration missions. This paper summarizes NASA s ECLSS capability roadmap

  13. NASA [National Aeronautics and Space Administration] low power DIPS [Dynamic Isotope Power System] conceptual design study; Final report

    SciTech Connect

    Otting, W.

    1990-12-01

    This report describes the conceptual design and integration of a low power (0.5 to 1.0 kWe) Dynamic Isotope Power System (DIPS) Low Power (LPD) with the Mariner Mark II (MMII) spacecraft for use on interplanetary and space exploration missions as an alternative to RTGs. A detailed MMII/LPD system description is provided that discusses, among other things, the design requirements, design point selection, system layout and spacecraft integration, mechanical design, electrical system design, interface assessments, reliability, and safety. Performance characteristics are given for the reference 500 We LPD using a peak cycle temperature of 1100 K. Parametrics are provided giving the LPD performance characteristics at power levels up to 1.0 kWe and peak cycle temperatures as high as 1300 K. A side-by-side comparison of the LPD performance with the RTG performance is provided. Finally, program plans, costs, and schedules are provided giving the overall plan for design, development, fabrication, qualification, and acceptance of the LPD system.

  14. Aeronautics and Space Report of the President

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Fiscal Year (FY) 2002 brought advances on many fronts in support of NASA's new vision, announced by Administrator Sean O Keefe on April 12, "to improve life here, to extend life to there, to find life beyond." NASA successfully carried out four Space Shuttle missions, including three to the International Space Station (ISS) and one servicing mission to the Hubble Space Telescope (HST). By the end of the fiscal year, humans had occupied the ISS continuously for 2 years. NASA also managed five expendable launch vehicle (ELV) missions and participated in eight international cooperative ELV launches. In the area of space science, two of the Great Observatories, the Hubble Space Telescope and the Chandra X-Ray Observatory, continued to make spectacular observations. The Mars Global Surveyor and Mars Odyssey carried out their mapping missions of the red planet in unprecedented detail. Among other achievements, the Near Earth Asteroid Rendezvous (NEAR) Shoemaker spacecraft made the first soft landing on an asteroid, and the Solar and Heliospheric Observatory (SOHO) monitored a variety of solar activity, including the largest sunspot observed in 10 years. The education and public outreach program stemming from NASA's space science missions continues to grow. In the area of Earth science, attention focused on completing the first Earth Observing Satellite series. Four spacecraft were successfully launched. The goal is to understand our home planet as a system, as well as how the global environment responds to change. In aerospace technology, NASA conducted studies to improve aviation safety and environmental friendliness, progressed with its Space Launch Initiative Program, and explored a variety of pioneering technologies, including nanotechnology, for their application to aeronautics and aerospace. NASA remained broadly engaged in the international arena and concluded over 60 international cooperative and reimbursable international agreements during FY 2002.

  15. The 2006 Cape Canaveral Air Force Station Range Reference Atmosphere Model Validation Study and Sensitivity Analysis to the National Aeronautics and Space Administration's Space Shuttle

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Burns, Lee; Merry, Carl; Harrington, Brian

    2008-01-01

    Atmospheric parameters are essential in assessing the flight performance of aerospace vehicles. The effects of the Earth's atmosphere on aerospace vehicles influence various aspects of the vehicle during ascent ranging from its flight trajectory to the structural dynamics and aerodynamic heatmg on the vehicle. Atmospheric databases charactenzing the wind and thermodynamic environments, known as Range Reference Atmospheres (RRA), have been developed at space launch ranges by a governmental interagency working group for use by aerospace vehicle programs. The National Aeronantics and Space Administration's (NASA) Space Shuttle Program (SSP), which launches from Kennedy Space Center, utilizes atmosphenc statistics derived from the Cape Canaveral Air Force Station Range Reference Atmosphere (CCAFS RRA) database to evaluate environmental constraints on various aspects of the vehlcle during ascent.

  16. Swamp Works: A New Approach to Develop Space Mining and Resource Extraction Technologies at the National Aeronautics Space Administration (NASA) Kennedy Space Center (KSC)

    NASA Technical Reports Server (NTRS)

    Mueller, R. P.; Sibille, L.; Leucht, K.; Smith, J. D.; Townsend, I. I.; Nick, A. J.; Schuler, J. M.

    2015-01-01

    The first steps for In Situ Resource Utilization (ISRU) on target bodies such as the Moon, Mars and Near Earth Asteroids (NEA), and even comets, involve the same sequence of steps as in the terrestrial mining of resources. First exploration including prospecting must occur, and then the resource must be acquired through excavation methods if it is of value. Subsequently a load, haul and dump sequence of events occurs, followed by processing of the resource in an ISRU plant, to produce useful commodities. While these technologies and related supporting operations are mature in terrestrial applications, they will be different in space since the environment and indigenous materials are different than on Earth. In addition, the equipment must be highly automated, since for the majority of the production cycle time, there will be no humans present to assist or intervene. This space mining equipment must withstand a harsh environment which includes vacuum, radical temperature swing cycles, highly abrasive lofted dust, electrostatic effects, van der Waals forces effects, galactic cosmic radiation, solar particle events, high thermal gradients when spanning sunlight terminators, steep slopes into craters / lava tubes and cryogenic temperatures as low as 40 K in permanently shadowed regions. In addition the equipment must be tele-operated from Earth or a local base where the crew is sheltered. If the tele-operation occurs from Earth then significant communications latency effects mandate the use of autonomous control systems in the mining equipment. While this is an extremely challenging engineering design scenario, it is also an opportunity, since the technologies developed in this endeavor could be used in the next generations of terrestrial mining equipment, in order to mine deeper, safer, more economical and with a higher degree of flexibility. New space technologies could precipitate new mining solutions here on Earth. The NASA KSC Swamp Works is an innovation

  17. Address by James C. Fletcher, Administrator National Aeronautics and Space Administration at the National Academy of Engineering, Washington, D.C., 10 November 1975

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Future plans and programs of the space agency are discussed. Topics discussed include solar energy, space stations, planetary exploration, interstellar exploration, the space shuttles, and satellites.

  18. Langley aeronautics and space test highlights, 1984

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests which were performed during calendar year 1984 in Langley test facilities are highlighted. The broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research are illustrated.

  19. Aeronautics and Space Report of the President

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The years 1989 to 1990 activities are reported including human space flight, unmanned expendable launch vehicles, space science and applications, space communications operations, space research and technology, and aeronautics research and technology. Contributions made by the 14 participating government organizations are outline. Each organization's aeronautics and/or space activities for the year are presented. The organizations involved include: (1) NASA; (2) Dept. of Defense; (3) Dept. of Commerce; (4) Dept. of Energy; (5) Dept. of the Interior; (6) Dept. of Agriculture; (7) Federal Communications Commission; (8) Dept. of Transportation; (9) Environmental Protection Agency; (10) National Science Foundation; (11) Smithsonian Institution; (12) Dept. of State; (13) Arms Control and Disarmament; and (14) United States Information Agency.

  20. Aeronautics and Space Report of the President

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Nineteen eighty-eight marked the United States' return to space flight with two successful space shuttle launches in September and December, as well as six successful expendable rocket launches. Meanwhile, many other less spectacular but important contributions were made in aeronautics and space by the 14 participating government organizations. Each organization's aeronautics and/or space activities for the year are presented. The organizations involved include: (1) NASA; (2) Department of Defense; (3) Department of Commerce; (4) Department of Energy; (5) Department of the Interior; (6) Department of Agriculture; (7) Federal Communications Commission; (8) Department of Transportation; (9) Environmental Protection Agency; (10) National Science Foundation; (11) Smithsonian Institution; (12) Department of State; (13) Arms Control and Disarmament Agency; and (14) United States Information Agency.

  1. Langley aeronautics and space test highlights, 1983

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests which were performed during calendar year 1983 in Langley test facilities, a number of which are unique in the world are highlighted. Both the broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research are illustrated.

  2. Classical and modern control strategies for the deployment, reconfiguration, and station-keeping of the National Aeronautics and Space Administration (NASA) Benchmark Tetrahedron Constellation

    NASA Astrophysics Data System (ADS)

    Capo-Lugo, Pedro A.

    Formation flying consists of multiple spacecraft orbiting in a required configuration about a planet or through Space. The National Aeronautics and Space Administration (NASA) Benchmark Tetrahedron Constellation is one of the proposed constellations to be launched in the year 2009 and provides the motivation for this investigation. The problem that will be researched here consists of three stages. The first stage contains the deployment of the satellites; the second stage is the reconfiguration process to transfer the satellites through different specific sizes of the NASA benchmark problem; and, the third stage is the station-keeping procedure for the tetrahedron constellation. Every stage contains different control schemes and transfer procedures to obtain/maintain the proposed tetrahedron constellation. In the first stage, the deployment procedure will depend on a combination of two techniques in which impulsive maneuvers and a digital controller are used to deploy the satellites and to maintain the tetrahedron constellation at the following apogee point. The second stage that corresponds to the reconfiguration procedure shows a different control scheme in which the intelligent control systems are implemented to perform this procedure. In this research work, intelligent systems will eliminate the use of complex mathematical models and will reduce the computational time to perform different maneuvers. Finally, the station-keeping process, which is the third stage of this research problem, will be implemented with a two-level hierarchical control scheme to maintain the separation distance constraints of the NASA Benchmark Tetrahedron Constellation. For this station-keeping procedure, the system of equations defining the dynamics of a pair of satellites is transformed to take in account the perturbation due to the oblateness of the Earth and the disturbances due to solar pressure. The control procedures used in this research will be transformed from a continuous

  3. The 2006 Cape Canaveral Air Force Station Range Reference Atmosphere Model Validation Study and Sensitivity Analysis to the National Aeronautics and Space Administration's Space Shuttle

    NASA Technical Reports Server (NTRS)

    Decker, Ryan; Burns, Lee; Merry, Carl; Harrington, Brian

    2008-01-01

    NASA's Space Shuttle utilizes atmospheric thermodynamic properties to evaluate structural dynamics and vehicle flight performance impacts by the atmosphere during ascent. Statistical characteristics of atmospheric thermodynamic properties at Kennedy Space Center (KSC) used in Space. Shuttle Vehicle assessments are contained in the Cape Canaveral Air Force Station (CCAFS) Range Reference Atmosphere (RRA) Database. Database contains tabulations for monthly and annual means (mu), standard deviations (sigma) and skewness of wind and thermodynamic variables. Wind, Thermodynamic, Humidity and Hydrostatic parameters 1 km resolution interval from 0-30 km 2 km resolution interval 30-70 km Multiple revisions of the CCAFS RRA database have been developed since initial RRA published in 1963. 1971, 1983, 2006 Space Shuttle program utilized 1983 version for use in deriving "hot" and "cold" atmospheres, atmospheric density dispersions for use in vehicle certification analyses and selection of atmospheric thermodynamic profiles for use in vehicle ascent design and certification analyses. During STS-114 launch preparations in July 2005 atmospheric density observations between 50-80 kft exceeded density limits used for aerodynamic ascent heating constraints in vehicle certification analyses. Mission specific analyses were conducted and concluded that the density bias resulted in small changes to heating rates and integrated heat loading on the vehicle. In 2001, the Air Force Combat Climatology Center began developing an updated RRA for CCAFS.

  4. Aeronautics. America in Space: The First Decade.

    ERIC Educational Resources Information Center

    Anderton, David A.

    The major research and developments in aeronautics during the late 1950's and 1960's are reviewed descriptively with a minimum of technical content. Topics covered include aeronautical research, aeronautics in NASA, The National Advisory Committee for Aeronautics, the X-15 Research Airplane, variable-sweep wing design, the Supersonic Transport…

  5. Aeronautics and Space Report of the President: 1975 Activities.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This report, submitted to the Congress by President Ford in accordance with the National Aeronautics and Space Act of 1958, summarizes the United States' space and aeronautics activities for the year 1975. Detailed summaries of the activities of the following governmental departments or agencies are provided: National Aeronautics and Space…

  6. 76 FR 40753 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-11

    ... SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Meeting AGENCY: National Aeronautics... Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space Administration announces a..., Executive Secretary for the Aeronautics Committee, National Aeronautics and Space......

  7. Aeronautics and space report of the president, 1974 activities

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The U.S. Government activities for 1974 in aeronautics and space are presented. Significant contributions toward the fulfillment of the nation's goals in space and aeronautics are covered, including application of space systems and technology to beneficial uses on earth, exploration of space and increase of scientific knowledge, development of improved space systems and technology, international cooperation, and advancement of civil and military aeronautics. Also in 1974, space activities in the private sector expanded to provide additional services to the public. The accomplishments are summarized.

  8. Aeronautics and Space Report of the President: 1977 Activities.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The national programs in aeronautics and space made steady progress in 1977 toward their long-term objectives. In aeronautics the goals were improved performance, energy efficiency, and safety in aircraft. In space the goals were: (1) better remote sensing systems to generate more sophisticated information about the Earth's environment; (2)…

  9. 77 FR 61432 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-09

    ... SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Meeting AGENCY: National Aeronautics... Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space Administration announces a... Committee Management Officer, National Aeronautics and Space Administration. BILLING......

  10. Aeronautics and space report of the President, 1982 activities

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Achievements of the space program are summerized in the area of communication, Earth resources, environment, space sciences, transportation, aeronautics, and space energy. Space program activities of the various deprtments and agencies of the Federal Government are discussed in relation to the agencies' goals and policies. Records of U.S. and world spacecraft launchings, successful U.S. launches for 1982, U.S. launched applications and scientific satellites and space probes since 1975, U.S. and Soviet manned spaceflights since 1961, data on U.S. space launch vehicles, and budget summaries are provided. The national space policy and the aeronautical research and technology policy statements are included.

  11. NASA Aeronautics and Space Database for bibliometric analysis

    NASA Technical Reports Server (NTRS)

    Powers, R.; Rudman, R.

    2004-01-01

    The authors use the NASA Aeronautics and Space Database to perform bibliometric analysis of citations. This paper explains their research methodology and gives some sample results showing collaboration trends between NASA Centers and other institutions.

  12. NASA Ames and Future of Space Exploration, Science, and Aeronautics

    NASA Technical Reports Server (NTRS)

    Cohen, Jacob

    2015-01-01

    Pushing the frontiers of aeronautics and space exploration presents multiple challenges. NASA Ames Research Center is at the forefront of tackling these issues, conducting cutting edge research in the fields of air traffic management, entry systems, advanced information technology, intelligent human and robotic systems, astrobiology, aeronautics, space, earth and life sciences and small satellites. Knowledge gained from this research helps ensure the success of NASA's missions, leading us closer to a world that was only imagined as science fiction just decades ago.

  13. NASA/NBS (National Aeronautics and Space Administration/National Bureau of Standards) standard reference model for telerobot control system architecture (NASREM)

    NASA Technical Reports Server (NTRS)

    Albus, James S.; Mccain, Harry G.; Lumia, Ronald

    1989-01-01

    The document describes the NASA Standard Reference Model (NASREM) Architecture for the Space Station Telerobot Control System. It defines the functional requirements and high level specifications of the control system for the NASA space Station document for the functional specification, and a guideline for the development of the control system architecture, of the 10C Flight Telerobot Servicer. The NASREM telerobot control system architecture defines a set of standard modules and interfaces which facilitates software design, development, validation, and test, and make possible the integration of telerobotics software from a wide variety of sources. Standard interfaces also provide the software hooks necessary to incrementally upgrade future Flight Telerobot Systems as new capabilities develop in computer science, robotics, and autonomous system control.

  14. Summary Report for National Aeronautics Space Administration (NASA) and Centro Para Prevencao da Poluicao (C3P) 2011 International Workshop on Environment and Alternative Energy

    NASA Technical Reports Server (NTRS)

    Greene, Brian

    2011-01-01

    The C3P &. NASA International Workshop on Environment and Alternative Energy was held on November 15-18, 2011 at the European Space Agency (ESA)'s Research and Technology Centre (ESTEC) in Noordwijk, The Netherlands. The theme of the workshop was "Global Collaboration in Environmental and Alternative Energy Strategies". The workshop was held at ESTEC's conference center. More than 110 individuals from eleven countries attended the workshop. For the first time since the inception of NASA-C3P workshops, a full day was dedicated to a student session. Fifteen students from around the globe gave oral presentations along with poster displays relating to the latest technologies in environmental and alternative energy strategies. Judges from NASA, C3P and ESA awarded plaques to the top three students. In addition to the students, thirty eight U.S. and international subject matter experts presented on the following general environmental-related topics: (1) Hazardous materials management and substitution in support of space operations (2) Emerging renewable and alternative energy technologies (3) Sustainable development and redevelopment (4) Remediation technologies and strategies The workshop also included a panel discussion on the topic of the challenges of operating installations across borders. Throughout the workshop, attendees heard about the scope of environmental and energy challenges that industry and governments face. They heard about technologies for increasing energy efficiency and increasing use of renewable energy. They learned about ways companies and government agencies are using materials, processes, goods and services in a manner more respectful with the environment and in compliance with health and safety rules. The concept of partnerships and their inherent benefits was evidenced throughout the workshop. Partnering is a key aspect of sustainability because sustainable development is complicated. Through formal presentations and side discussions, attendees

  15. A Full-Scale Fire Program to Evaluate New Furnishings and Textile Materials Developed by the National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    Hillenbrand, L. J.; Wray, J. A.

    1973-01-01

    The plans for the present series of full-scale experimental fires were initiated at the suggestion of NASA following the presentation of a film and discussion illustrating Battelle-Columbus' recent work in fire research. That film showed bedroom-type fires carried out as a part of a program to determine the influence of the cyclic characteristics of real fires under limited ventilation on the burning and pyrolysis properties of the room furnishings. A new series of fires was suggested by NASA designed to show the performance of new fire resistant and fire retardant materials by providing comparative fire and smoldering environmental conditions. More recently, the goal for the new series of fires was written in a meeting with NASA personnel and others at Battelle on May 3 and 4, 1972. The goal was as follows: To establish the need for special materials of improved fire safety in domiciliary settings of public concern, and to assess, in a professionally acceptable manner, the potential of materials arising from the new space-age technology for this purpose. It was anticipated that some new materials arising from the space-age technology and not yet available through conventional commercial channels might provide significant improvements in fire safety if the best of the commercially available materials showed important shortcomings in this area. It was the intent of this program to assess the benefits that could accrue from the use of these new materials. Fire safety is a matter requiring the evaluation of a number of factors. For example, fire resistance and fire spread, visibility during the fire, toxicity of evolved gases, and the fire-fighting problem that is created must be evaluated before the relative hazard can be assessed. The plan of the program provided for sampling and instrumentation to evaluate these factors, consistent with the goal of technological utilization that has been specified. Arrangements were made with the Columbus Fire Department to use an

  16. Optical sensors for aeronautics and space

    NASA Technical Reports Server (NTRS)

    Baumbick, R. J.; Alexander, J.; Katz, R.; Terry, J.

    1980-01-01

    A review of some NASA and DOD programs to develop optical sensors with fiberoptics for instrumentation and control is presented. Fiberoptic systems offer some distinct advantages. Noise immunity is one important asset. Fiberoptic systems do not conduct electricity and therefore can be used in and near areas that contain explosive or flammable materials. One objective of these programs is to produce more reliable sensors and to improve the safety and operating economy of future aircraft and space vehicles.

  17. FY 1978 aeronautics and space technology program summary

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Highlights of the aeronautics program include research on aircraft energy efficiency, supersonic cruise aircraft, vertical takeoff and landing aircraft, short haul/short takeoff and landing aircraft, and general aviation aircraft. The space technology program includes work on space structures, propulsion systems, power systems, materials, and electronics.

  18. The Alpha-Helix Concept: Innovative utilization of the Space Station Program. A report to the National Aeronautical and Space Administration requesting establishment of a Sensory Physiology Laboratory on the Space Station

    NASA Technical Reports Server (NTRS)

    Bandurski, R. S.; Singh, N.

    1983-01-01

    A major laboratory dedicated to biological-medical research is proposed for the Space Platform. The laboratory would focus on sensor physiology and biochemistry since sensory physiology represents the first impact of the new space environment on living organisms. Microgravity and the high radiation environment of space would be used to help solve the problems of prolonged sojourns in space but, more importantly, to help solve terrestrial problems of human health and agricultural productivity. The emphasis would be on experimental use of microorganisms and small plants and small animals to minimize the space and time required to use the Space Platform for maximum human betterment. The Alpha Helix Concept, that is, the use of the Space Platform to bring experimental biomedicine to a new and extreme frontier is introduced so as to better understand the worldly environment. Staffing and instrumenting the Space Platform biomedical laboratory in a manner patterned after successful terrestrial sensory physiology laboratories is also proposed.

  19. Quality Program Provisions for Aeronautical and Space System Contractors

    NASA Technical Reports Server (NTRS)

    1969-01-01

    This publication sets forth quality program requirements for NASA aeronautical and space programs, systems, subsystems, and related services. These requirements provide for the effective operation of a quality program which ensures that quality criteria and requirements are recognized, definitized, and performed satisfactorily.

  20. 75 FR 41240 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-15

    ... From the Federal Register Online via the Government Publishing Office NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Meeting AGENCY: National Aeronautics... Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space Administration announces...

  1. 75 FR 50782 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-17

    ... From the Federal Register Online via the Government Publishing Office NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Meeting AGENCY: National Aeronautics... Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space Administration announces...

  2. 77 FR 38091 - NASA Advisory Council; Aeronautics Committee; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-26

    ... From the Federal Register Online via the Government Publishing Office NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Meeting. AGENCY: National Aeronautics... Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space Administration announces...

  3. Aeronautics and Space Report of the President: Fiscal Year 1998 Activities

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The National Aeronautics and Space Act of 1958 directed the annual Aeronautics and Space Report to include a "comprehensive description of the programmed activities and the accomplishments of all agencies of the United States in the field of aeronautics and space activities during the preceding calendar year. In recent years, the reports have been prepared on a fiscal year (FY) basis, consistent with the budgetary period now used in programs of the Federal Government. This year's report covers activities that took place from October 1, 1997, through September 30, 1998. The activities of agencies included are NASA, the Department of Defense, The Federal Aviation Administration, the Department of Commerce, the Department of the Interior, the Federal Communications Commission, the Department of Agriculture, the National Science Foundation, the Department of State, the Department of Energy, the Smithsonian Institution, the Arms Control and Disarmament Agency, the Environmental Protection Agency, and the U.S. Information Agency. Appendices cover the U.S. Government Spacecraft Record, World Record of Space Launches Successful in Attaining Earth Orbit or Beyond , Successful Launches to Orbit on U.S. Launch Vehicles, October 1, 1997-September 30, 1998, U.S. and Russian Human Space Flights, 1961-September 30, 1998, U.S. Space Launch Vehicles, Space Activities of the U.S. Government-Historical Budget Summary, Space Activities of the U.S. Government-Budget Authority in Equivalent FY 1998 Dollars, Federal Space Activities Budget, Federal Aeronautics Budget, and a glossary

  4. Chemical Gas Sensors for Aeronautic and Space Applications 2

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Chen, Liong-Yu; Neudeck, Phil G.; Knight, Dale; Liu, C. C.; Wu, Q. H.; Zhou, H. J.; Makel, Darby; Liu, M.; Rauch, W. A.

    1998-01-01

    Aeronautic and space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Areas of interest include launch vehicle safety monitoring, emission monitoring, and fire detection. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensors is based on progress in two types of technology: 1) Micromachining and microfabrication technology to fabricate miniaturized sensors. 2) The development of high temperature semiconductors, especially silicon carbide. Sensor development for each application involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this microfabricated gas sensor technology make this area of sensor development a field of significant interest.

  5. Chemical Gas Sensors for Aeronautic and Space Applications 2

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Chen, L. Y.; Neudeck, P. G.; Knight, D.; Liu, C. C.; Wu, Q. H.; Zhou, H. J.; Makel, D.; Liu, M.; Rauch, W. A.

    1998-01-01

    Aeronautic and Space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Areas of most interest include launch vehicle safety monitoring emission monitoring and fire detection. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensor is based on progress two types of technology: 1) Micro-machining and micro-fabrication technology to fabricate miniaturized sensors. 2) The development of high temperature semiconductors, especially silicon carbide. Sensor development for each application involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this micro-fabricated gas sensor technology make this area of sensor development a field of significant interest.

  6. Chemical Gas Sensors for Aeronautic and Space Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Chen, Liang-Yu; Neudeck, Philip G.; Knight, Dak; Liu, Chung-Chiun; Wu, Quing-Hai; Zhou, Huan-Jun

    1997-01-01

    Aeronautic and space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Two areas of particular interest are safety monitoring and emission monitoring. In safety monitoring, detection of low concentrations of hydrogen at potentially low temperatures is important while for emission monitoring the detection of nitrogen oxides, hydrogen, hydrocarbons and oxygen is of interest. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensors is based on progress in two types of technology: (1) Micromachining and microfabrication technology to fabricate miniaturized sensors. (2) The development of high temperature semiconductors, especially silicon carbide. The detection of each type of gas involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this microfabricated gas sensor technology make this general area of sensor development a field of significant interest.

  7. Chemical Gas Sensors for Aeronautics and Space Applications III

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Neudeck, P. G.; Chen, L. Y.; Liu, C. C.; Wu, Q. H.; Sawayda, M. S.; Jin, Z.; Hammond, J.; Makel, D.; Liu, M.; Rauch, W. A.; Hall, G.

    1999-01-01

    Aeronautic and space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Areas of interest include launch vehicle safety monitoring, emission monitoring, and fire detection. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensors is based on progress in two types of technology: 1) Micromachining and microfabrication technology to fabricate miniaturized sensors. 2) The development of high temperature semiconductors, especially silicon carbide. Sensor development for each application involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this microfabricated gas sensor technology make this area of sensor development a field of significant interest.

  8. Aeronautics and space report of the President, 1983 activities

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Achievements in communication; space science; space transportation; aeronautics; and Earth resources and environment are summarized. Activities of the various Federal agencies and cooperation with NASA in these areas are described. The Presidential policy announcement on the endorsement of commercial operation of expendable launch vehicles is included. Tables show, the space activities budget; a historical budget summary, U.S. space launch vehicles; U.S. and Soviet manned spaceflights, 1961 to 1983; U.S. launched space probes, 1975 to 1983; U.S. launched scientific and applications satellites, 1978 to 1983; the U.S. spacecraft record; the world record of space launches successful in attaining Earth orbit or beyond; and successful U.S. launchings for 1983.

  9. Tribology needs for future space and aeronautical systems

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1991-01-01

    Future aeronautical and space missions will push tribology technology beyond its current capability. The objective is to discuss the current state of the art of tribology as it is applied to advanced aircraft and spacecraft. Areas of discussion include materials lubrication mechanisms, factors affecting lubrication, current and future tribological problem areas, potential new lubrication techniques, and perceived technology requirements that need to be met in order to solve these tribology problems.

  10. From Aeronautics to Space: Lessons in Human Automation

    NASA Technical Reports Server (NTRS)

    Connors, Mary M.; Rosekind, Mark R. (Technical Monitor)

    1996-01-01

    Civilian air flight continues on a growth curve, as more and more people utilize air travel to meet business and personal travel needs: This consumer-driven demand has resulted in the adoption of new methods to increase air system capacity and to make the air transportation system increasingly more efficient. As a consequence, civilian aviation, as an industry, has assumed a leading role in the use of automated systems, and, by implication, in the understanding of how human openers interact with these systems. Aeronautical automation systems serve a variety of roles. These include controlling aircraft and aiding, advising and monitoring numerous functions in the aircraft/airspace system. Experiences in the use of human/automation systems gathered from aviation are, in many cases, generalizable to other industries having similar requirements for human and non-human intelligent system interaction. However, the human/automation lessons learned from aviation have special relevance to the space application, where many of the same operational demands prevail. The application of aeronautical lessons of human-automated interaction to spaceflight is the subject of this paper. The discussion will address: the progress that has been made through aeronautically-based research and experience in understanding human/automation interaction, ways that this understanding can be applied to the needs of space, and the limits of our present understanding of human/automations systems. Suggestions will be offered related to human-automation research generally, and to the particular needs of the space endeavor.

  11. Information Systems for NASA's Aeronautics and Space Enterprises

    NASA Technical Reports Server (NTRS)

    Kutler, Paul

    1998-01-01

    The aerospace industry is being challenged to reduce costs and development time as well as utilize new technologies to improve product performance. Information technology (IT) is the key to providing revolutionary solutions to the challenges posed by the increasing complexity of NASA's aeronautics and space missions and the sophisticated nature of the systems that enable them. The NASA Ames vision is to develop technologies enabling the information age, expanding the frontiers of knowledge for aeronautics and space, improving America's competitive position, and inspiring future generations. Ames' missions to accomplish that vision include: 1) performing research to support the American aviation community through the unique integration of computation, experimentation, simulation and flight testing, 2) studying the health of our planet, understanding living systems in space and the origins of the universe, developing technologies for space flight, and 3) to research, develop and deliver information technologies and applications. Information technology may be defined as the use of advance computing systems to generate data, analyze data, transform data into knowledge and to use as an aid in the decision-making process. The knowledge from transformed data can be displayed in visual, virtual and multimedia environments. The decision-making process can be fully autonomous or aided by a cognitive processes, i.e., computational aids designed to leverage human capacities. IT Systems can learn as they go, developing the capability to make decisions or aid the decision making process on the basis of experiences gained using limited data inputs. In the future, information systems will be used to aid space mission synthesis, virtual aerospace system design, aid damaged aircraft during landing, perform robotic surgery, and monitor the health and status of spacecraft and planetary probes. NASA Ames through the Center of Excellence for Information Technology Office is leading the

  12. Intelligent Systems: Shaping the Future of Aeronautics and Space Exploration

    NASA Technical Reports Server (NTRS)

    Krishnakumar, Kalmanje; Lohn, Jason; Kaneshige, John

    2004-01-01

    Intelligent systems are nature-inspired, mathematically sound, computationally intensive problem solving tools and methodologies that have become important for NASA's future roles in Aeronautics and Space Exploration. Intelligent systems will enable safe, cost and mission-effective approaches to air& control, system design, spacecraft autonomy, robotic space exploration and human exploration of Moon, Mars, and beyond. In this talk, we will discuss intelligent system technologies and expand on the role of intelligent systems in NASA's missions. We will also present several examples of which some are highlighted m this extended abstract.

  13. Aeronautics and Space Report of the President: Fiscal Year 1996 Activities

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Topics considered include: (1) Space launch activities: space shuttle missions; expendable launch vehicles. (2) Space science: astronomy and space physics; solar system exploration. (3) Space flight and technology: life and microgravity sciences; space shuttle technology; reuseable launch vehicles; international space station; energy; safety and mission assurance; commercial development and regulation of space; surveillance. (4) Space communications: communications satellites; space network; ground networks; mission control and data systems. (5) Aeronautical activities: technology developments; air traffic control and navigation; weather-related aeronautical activities; flight safety and security; aviation medicine and human factors. (6) Studies of the planet earth: terrestrial studies and applications: atmospheric studies: oceanographic studies; international aeronautical and space activities; and appendices.

  14. An application of the Multi-Purpose System Simulation /MPSS/ model to the Monitor and Control Display System /MACDS/ at the National Aeronautics and Space Administration /NASA/ Goddard Space Flight Center /GSFC/

    NASA Technical Reports Server (NTRS)

    Mill, F. W.; Krebs, G. N.; Strauss, E. S.

    1976-01-01

    The Multi-Purpose System Simulator (MPSS) model was used to investigate the current and projected performance of the Monitor and Control Display System (MACDS) at the Goddard Space Flight Center in processing and displaying launch data adequately. MACDS consists of two interconnected mini-computers with associated terminal input and display output equipment and a disk-stored data base. Three configurations of MACDS were evaluated via MPSS and their performances ascertained. First, the current version of MACDS was found inadequate to handle projected launch data loads because of unacceptable data backlogging. Second, the current MACDS hardware with enhanced software was capable of handling two times the anticipated data loads. Third, an up-graded hardware ensemble combined with the enhanced software was capable of handling four times the anticipated data loads.

  15. 14 CFR 77.35 - Aeronautical studies.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aeronautical studies. 77.35 Section 77.35 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRSPACE OBJECTS AFFECTING NAVIGABLE AIRSPACE Aeronautical Studies of Effect of Proposed Construction on Navigable Airspace § 77.35 Aeronautical studies....

  16. NASA Ames Sustainability Initiatives: Aeronautics, Space Exploration, and Sustainable Futures

    NASA Technical Reports Server (NTRS)

    Grymes, Rosalind A.

    2015-01-01

    In support of the mission-specific challenges of aeronautics and space exploration, NASA Ames produces a wealth of research and technology advancements with significant relevance to larger issues of planetary sustainability. NASA research on NexGen airspace solutions and its development of autonomous and intelligent technologies will revolutionize both the nation's air transporation systems and have applicability to the low altitude flight economy and to both air and ground transporation, more generally. NASA's understanding of the Earth as a complex of integrated systems contributes to humanity's perception of the sustainability of our home planet. Research at NASA Ames on closed environment life support systems produces directly applicable lessons on energy, water, and resource management in ground-based infrastructure. Moreover, every NASA campus is a 'city'; including an urbanscape and a workplace including scientists, human relations specialists, plumbers, engineers, facility managers, construction trades, transportation managers, software developers, leaders, financial planners, technologists, electricians, students, accountants, and even lawyers. NASA is applying the lessons of our mission-related activities to our urbanscapes and infrastructure, and also anticipates a leadership role in developing future environments for living and working in space.

  17. NDE for Material Characterization in Aeronautic and Space Applications

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Kautz, Harold E.; Gyekenyesi, Andrew L.; Abdul-Aziz, Ali; Martin, Richard E.

    2000-01-01

    This paper describes selected nondestructive evaluation (NDE) approaches that were developed or tailored at the NASA Glenn Research Center for characterizing advanced material systems. The emphasis is on high-temperature aerospace propulsion applications. The material systems include monolithic ceramics, superalloys, and high temperature composites. In the aeronautic area, the highlights are cooled ceramic plate structures for turbine applications, F-TiAl blade materials for low-pressure turbines, thermoelastic stress analysis (TSA) for residual stress measurements in titanium based and nickel based engine materials, and acousto ultrasonics (AU) for creep damage assessment in nickel-based alloys. In the space area, examples consist of cooled carbon-carbon composites for gas generator combustors and flywheel rotors composed of carbon fiber reinforced polymer matrix composites for energy storage on the international space station (ISS). The role of NDE in solving manufacturing problems, the effect of defects on structural behavior, and the use of NDE-based finite element modeling are discussed. NDE technology needs for improved microelectronic and mechanical systems as well as health monitoring of micro-materials and components are briefly discussed.

  18. Beam queuing for aeronautical free space optical networks

    NASA Astrophysics Data System (ADS)

    Karras, Kimon; Marinos, Dimitris; Kouros, Pavlos

    2010-08-01

    Free space optical technologies are currently only very marginally used in aviation, particularly for communication purposes. Most applications occur in a military environment, with civilian aviation remaining oblivious to its advantages. One of these is high-bandwidth communication between the various actors available in an aeronautical network. Considerable research is underway in order to resolve a multitude of issues like reliable reception and transmission of the optical signal and the construction of high performance, small and lightweight terminals for the optical transceiver. The slow Pointing, Acquisition and Tracking of the latter represents a significant issue, which detracts from their usability in such an environment. Since an aircraft may carry only a limited number of such terminals on board, the delay of a terminal in reacquiring a target (which is in the order of several seconds) constitutes a significant hurdle in achieving satisfactory connectivity. This paper proposes an optimization technique, in which packet are reordered dynamically before transmission in the sender node in order to minimize terminal movement and thus avoid the time-consuming PAT process. Several parameters are considered such as QoS of the packets, minimization of the number of movements of the terminal and of the distance it must traverse when it reacquires a target. The algorithm was tested by integrating it into a custom built, discrete event SystemC simulator. The results verify that incorporating into such a system yields tangible benefits in terms of the practical throughput achieved by the system through the minimization of idle time, while moving.

  19. 14 CFR 61.105 - Aeronautical knowledge.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Aeronautical knowledge. 61.105 Section 61.105 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Private Pilots § 61.105 Aeronautical knowledge. (a) General. A person who...

  20. 14 CFR 61.125 - Aeronautical knowledge.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Aeronautical knowledge. 61.125 Section 61.125 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Commercial Pilots § 61.125 Aeronautical knowledge. (a) General. A person...

  1. 14 CFR 61.97 - Aeronautical knowledge.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Aeronautical knowledge. 61.97 Section 61.97 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Recreational Pilots § 61.97 Aeronautical knowledge. (a) General. A person...

  2. 14 CFR 61.97 - Aeronautical knowledge.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Aeronautical knowledge. 61.97 Section 61.97 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Recreational Pilots § 61.97 Aeronautical knowledge. (a) General. A person...

  3. 14 CFR 61.125 - Aeronautical knowledge.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Aeronautical knowledge. 61.125 Section 61.125 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Commercial Pilots § 61.125 Aeronautical knowledge. (a) General. A person...

  4. Facilitating Student Involvement in NASA Research: The NASA Space Grant Aeronautics Example

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.

    1998-01-01

    Many consider NASA programs to be exclusively space-oriented. However, NASA's roots originated in the aeronautical sciences. Recent developments within NASA elevated the declining role of aeronautics back to a position of priority. On a parallel pattern, aeronautics was a priority in the legislation which authorized the National Space Grant College and Fellowship Program. This paper outlines the development of the aeronautics aspect of the National Space Grant College and Fellowship Program, and the resulting student opportunities in research. Results from two aeronautics surveys provide a baseline and direction for further development. A key result of this work is the increase in student research opportunities which now exist in more states and at the national level.

  5. NASA's Role in Aeronautics: A Workshop. Volume VI - Aeronautical Research.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Assembly of Engineering.

    The central task of a 1980 workshop on the role of the National Aeronautics and Space Administration (NASA) in aeronautics was to examine the relationship of NASA's research capabilities to the state of U.S. aviation and to make recommendations about NASA's future role in aeronautics. Following a brief introduction, the Overview Panel on…

  6. Aeronautics and Space Report of the President: Fiscal Year 2000 Activities

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The National Aeronautics and Space Act of 1958 directed the annual Aeronautics and Space Report to include a "comprehensive description of the programmed activities and the accomplishments of all agencies of the United States in the field of aeronautics and space activities during the preceding calendar year." In recent years, the reports have been prepared on a fiscal year basis, consistent with the budgetary period now used in programs of the Federal Government. This year's report covers activities that took place from October 1, 1999, through September 30, 2000.

  7. Aeronautics and Space Report of the President - Fiscal Year 2010 Activities

    NASA Technical Reports Server (NTRS)

    2011-01-01

    The National Aeronautics and Space Act of 1958 directed the annual Aeronautics and Space Report to include a "comprehensive description of the programmed activities and the accomplishments of all agencies of the United States in the field of aeronautics and space activities during the preceding calendar year." In recent years, the reports have been prepared on a fiscal-year basis, consistent with the budgetary period now used in programs of the Federal Government. This year's report covers activities that took place from October 1, 2009, through September 30, 2010.

  8. Aeronautics and Space Report of the President: Fiscal Year 2007 Activities

    NASA Technical Reports Server (NTRS)

    2009-01-01

    The National Aeronautics and Space Act of 1958 directed the annual Aeronautics and Space Report to include a "comprehensive description of the programmed activities and the accomplishments of all agencies of the United States in the field of aeronautics and space activities during the preceding calendar year." In recent years, the reports have been prepared on a fiscal-year basis, consistent with the budgetary period now used in programs of the Federal Government. This year's report covers activities that took place from October 1, 2006, through September 30, 2007.

  9. Aeronautics and Space Report of the President: Fiscal Year 2003 Activities

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The National Aeronautics and Space Act of 1958 directed the annual Aeronautics and Space Report to include a comprehensive description of the programmed activities and the accomplishments of all agencies of the United States in the field of aeronautics and space activities during the preceding calendar year. In recent years, the reports have been prepared on a fiscal-year basis, consistent with the budgetary period now used in programs of the Federal Government. This year's report covers activities that took place from October 1, 2002, through September 30, 2003.

  10. Aeronautics and Space Report of the President: Fiscal Year 1999 Activities

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The National Aeronautics and Space Act of 1958 directed the annual Aeronautics and Space Report to include a "comprehensive description of the programmed activities and the accomplishments of all agencies of the United States in the field of aeronautics and space activities during the preceding calendar year." In recent years, the reports have been prepared on a fiscal year basis, consistent with the budgetary period now used in programs of the Federal Government. This year's report covers activities that took place from October 1, 1998, through September 30, 1999.

  11. Aeronautics and Space Report of the President - Fiscal Year 2008 Activities

    NASA Technical Reports Server (NTRS)

    2009-01-01

    The National Aeronautics and Space Act of 1958 directed the annual Aeronautics and Space Report to include a "comprehensive description of the programmed activities and the accomplishments of all agencies of the United States in the field of aeronautics and space activities during the preceding calendar year." In recent years, the reports have been prepared on a fiscal-year basis, consistent with the budgetary period now used in programs of the Federal Government. This year's report covers activities that took place from October 1, 2007, through September 30, 2008.

  12. Aeronautics and Space Report of the President: Fiscal Year 2001 Activities

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The National Aeronautics and Space Act of 1958 directed the annual Aeronautics and Space Report to include a 'comprehensive description of the programmed activities and the accomplishments of all agencies of the United States in the field of aeronautics and space activities during the preceding calendar year.' In recent years the reports have been prepared on a fiscal-year basis consistent with the budgetary period now used in programs of the Federal Government. This year's report covers activities that took place from October 1, 2000, through September 30, 2001.

  13. Aeronautics and Space Report of the President: Fiscal Year 2005 Activities

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The National Aeronautics and Space Act of 1958 directed the annual Aeronautics and Space Report to include a "comprehensive description of the programmed activities and the accomplishments of all agencies of the United States in the field of aeronautics and space activities during the preceding calendar year." In recent years, the reports have been prepared on a fiscal-year basis, consistent with the budgetary period now used in programs of the Federal Government. This year's report covers activities that took place from October 1 , 2004, through September 30, 2005.

  14. 78 FR 7816 - NASA Advisory Council; Aeronautics Committee; Unmanned Aircraft Systems Subcommittee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-04

    ... From the Federal Register Online via the Government Publishing Office NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Unmanned Aircraft Systems... Aeronautics and Space Administration announces a meeting of the Unmanned Aircraft Systems (UAS)...

  15. 78 FR 25100 - NASA Advisory Council; Aeronautics Committee; Unmanned Aircraft Systems Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-29

    ... From the Federal Register Online via the Government Publishing Office NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Unmanned Aircraft Systems... Aeronautics and Space Administration announces a meeting of the Unmanned Aircraft Systems (UAS)...

  16. 77 FR 59020 - NASA Advisory Council; Aeronautics Committee; Unmanned Aircraft Systems Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-25

    ... From the Federal Register Online via the Government Publishing Office NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Unmanned Aircraft Systems... Aeronautics and Space Administration announces a meeting of the Unmanned Aircraft Systems (UAS)...

  17. 76 FR 75565 - NASA Advisory Council; Aeronautics Committee; Unmanned Aircraft Systems (UAS) Subcommittee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-02

    ... From the Federal Register Online via the Government Publishing Office NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Unmanned Aircraft Systems (UAS) Subcommittee Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of Meeting....

  18. Activities of the Aeronautics and Space Engineering Board Commission on Engineering and Technical Systems

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The agenda of the Aeronautics and Space Engineering Board meeting is reviewed. Items discussed included; engineering and technical requirements of the space station, NASA's altitude wind tunnel, rocket engine casings, advanced flight vehicle technology, the space shuttle, and on-orbit space maintenance. Board members along with their institutional affiliation are listed.

  19. Aeronautics and space report of the President, 1980 activities

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The year's achievements in the areas of communication, Earth resources, environment, space sciences, transportation, and space energy are summarized and current and planned activities in these areas at the various departments and agencies of the Federal Government are summarized. Tables show U.S. and world spacecraft records, spacecraft launchings for 1980, and scientific payload anf probes launched 1975-1980. Budget data are included.

  20. 14 CFR 61.105 - Aeronautical knowledge.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ....105 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED.... (b) Aeronautical knowledge areas. (1) Applicable Federal Aviation Regulations of this chapter that...) Recognition of critical weather situations from the ground and in flight, windshear avoidance, and...

  1. 14 CFR 61.97 - Aeronautical knowledge.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN.... (b) Aeronautical knowledge areas. (1) Applicable Federal Aviation Regulations of this chapter that... using pilotage with the aid of a magnetic compass; (5) Recognition of critical weather situations...

  2. 14 CFR 61.105 - Aeronautical knowledge.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ....105 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED.... (b) Aeronautical knowledge areas. (1) Applicable Federal Aviation Regulations of this chapter that...) Recognition of critical weather situations from the ground and in flight, windshear avoidance, and...

  3. 14 CFR 61.125 - Aeronautical knowledge.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ....125 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... rating sought. (b) Aeronautical knowledge areas. (1) Applicable Federal Aviation Regulations of this... principles of flight; (4) Meteorology to include recognition of critical weather situations,...

  4. 14 CFR 61.125 - Aeronautical knowledge.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ....125 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... rating sought. (b) Aeronautical knowledge areas. (1) Applicable Federal Aviation Regulations of this... principles of flight; (4) Meteorology to include recognition of critical weather situations,...

  5. Graphene-Based Filters and Supercapacitors for Space and Aeronautical Applications

    NASA Technical Reports Server (NTRS)

    Calle, Carlos I.

    2015-01-01

    Overview of the capabilities of graphene for selective filters and for energy storage with a general description of the work being done at NASA Kennedy Space Center in collaboration with the University of California Los Angeles for space and aeronautical applications.

  6. National Aeronautics and Space Administration Budget Estimates, Fiscal Year 2011

    NASA Technical Reports Server (NTRS)

    2010-01-01

    The Budget includes three new robust exploration programs: (1) Technology demonstration program, $7.8 five years. Funds the development and demonstration of technologies that reduce the cost and expand the capabilities of future exploration activities, including in-orbit refueling and storage. (2) Heavy-Lift and Propulsion R&D, $3.1 billion over five years. Funds R&D for new launch systems, propellants, materials, and combustion processes. (3) Robotic precursor missions, $3.0 billion over five years. Funds cost-effective means to scout exploration targets and identify hazards and resources for human visitation and habitation. In addition, the Budget enhances the current Human Research Program by 42%; and supports the Participatory Exploration Program at 5 million per year for activities across many NASA programs.

  7. National Aeronautics and Space Administration: 1998 Accountability Report

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This Accountability Report summarizes NASA's program accomplishments and its stewardship over budget and financial resources. The report is the culmination of NASA's management process, which begins with mission definition and program planning, continues with formulation and justification of NASA's budgets for the President and Congress, and ends with NASA scientific and engineering program accomplishments. This report covers NASA's activities from October 1, 1997, through September 30, 1998, with discussion of some subsequent events.

  8. National Aeronautics and Space Administration's (NASA) Automated Information Security Handbook

    NASA Technical Reports Server (NTRS)

    Roback, E.

    1991-01-01

    The NASA Automated Information Security Handbook provides NASA's overall approach to automated information systems security including discussions of such aspects as: program goals and objectives, assignment of responsibilities, risk assessment, foreign national access, contingency planning and disaster recovery, awareness training, procurement, certification, planning, and special considerations for microcomputers.

  9. Department of Defense / General Services Administration / National Aeronautics and Space...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-26

    ..., dated September 30, 1993. The rule is not a major rule under 5 U.S.C. 804. Timetable: Action Date FR Cite NPRM 03/10/08 73 FR 12699 NPRM Comment Period End 05/09/08 Final Rule 12/00/10 Regulatory...: Action Date FR Cite NPRM 04/13/09 74 FR 16823 NPRM Comment Period End 06/12/09 Final Rule...

  10. National Aeronautics and Space Administration Authorization Act of 2014

    THOMAS, 113th Congress

    Rep. Palazzo, Steven M. [R-MS-4

    2014-04-07

    06/23/2014 Received in the Senate and Read twice and referred to the Committee on Commerce, Science, and Transportation. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:

  11. National Aeronautics and Space Administration. 2003 Strategic Plan

    NASA Technical Reports Server (NTRS)

    2003-01-01

    As the 21st century begins to unfold, NASA will focus, with renewed vigor, on the challenges and opportunities before us and on developing the unique capabilities that strengthen America and address our national needs. Our Mission is driven by science, exploration, and discovery, and it will be carried out with a firm commitment to fiscal responsibility. We will study climate change and the natural and human-induced hazards to Earth's ecosystem. We will help to counter the threat of international terrorism by developing technologies that can improve the security and safety of our air transportation system. We will lead the world into a new understanding of our planet, our solar system, and the universe around us, and in so doing, we will begin to understand whether life may have developed elsewhere in the cosmos. This strategic plan lays out our hopes for the future and the important things we seek to accomplish for America. We are privileged to be entrusted with these pursuits and thrilled to be able to carry them out. We invite you to join us on this great adventure. Releasing this strategic plan with our 2004 budget request represents our new commitment to the integration of budget and performance reporting. In this way, we will ensure that strategic priorities are aligned with and influence budget priorities. Our new Integrated Budget and Performance Document, a companion volume to this strategic plan, expands on the goals and objectives presented here and identifies the specific long-term and annual performance measures for which we will be held accountable.

  12. Statement of Aaron Cohen, Director, Research and Engineering, Johnson Space Center and Chairman, Space Station Advanced Technology Advisory Committee, National Aeronautics and Space Administration, before the Subcommittee on Science, Technology, and Space, Committee on Commerce, Science, and Transportation, United States Senate

    NASA Technical Reports Server (NTRS)

    Cohen, A.

    1985-01-01

    The activities of NASA's Space Station Advanced Technology Advisory Committee is discussed. Advanced Technology Advisory Committee (ATAC) activities over the last year are reviewed in preparation of the report to Congress on the potential for advancing automation and robotics technology for the space station and for the U.S. economy.

  13. Technical needs and research opportunities provided by projected aeronautical and space systems

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.

    1992-01-01

    The overall goal of the present task is to identify the enabling and supporting technologies for projected aeronautical and space systems. A detailed examination was made of the technical needs in the structures, dynamics and materials areas required for the realization of these systems. Also, the level of integration required with other disciplines was identified. The aeronautical systems considered cover the broad spectrum of rotorcraft; subsonic, supersonic and hypersonic aircraft; extremely high-altitude aircraft; and transatmospheric vehicles. The space systems considered include space transportation systems; spacecrafts for near-earth observation; spacecrafts for planetary and solar exploration; and large space systems. A monograph is being compiled which summarizes the results of this study. The different chapters of the monograph are being written by leading experts from governmental laboratories, industry and universities.

  14. 14 CFR 63.37 - Aeronautical experience requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Aeronautical experience requirements. 63.37 Section 63.37 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: FLIGHT CREWMEMBERS OTHER THAN PILOTS Flight Engineers § 63.37 Aeronautical experience requirements. (a) Except...

  15. Aeronautical Engineering: 1983 cumulative index

    NASA Technical Reports Server (NTRS)

    1984-01-01

    This bibliography is a cumulative index to the abstracts contained in NASA SP-7037 (158) through NASA SP-7037 (169) of Aeronautical Engineering: A Continuing Bibliography. NASA SP-7037 and its supplements have been compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, contract, report number, and accession number indexes.

  16. Forty-Fourth Annual Report of the National Advisory Committee for Aeronautics Administrative Report Including Technical Reports Nos. 1342 to 1392

    NASA Technical Reports Server (NTRS)

    1959-01-01

    In accordance with act of Congress, approved March 3, 1915, as amended (U.S.C., title 50, .sw 151), which established the National Advisory Committee for Aeronautics, the Committee submits its Forty-fourth Annual Report for the fiscal year 1958. This is the Committee's final report to the Congress. The National Aeronautics and Space Act of 1958 (Public Law 85-568) provides in section 301 that the NACA "shall cease to exist" and "all functions, powers, duties, and obligations, and all real and personal property, personnel (other than members of the Committee), funds, and records of the NACA shall be transferred to the National Aeronautics and Space Administration. The aforesaid act provides that "this section shall take effect 90 days after the date of the enactment of this act, or on any earlier date on which the Administrator shall determining and announce by proclamation published in the Federal Register, that the Administration has been organized and is prepared to discharge the duties and exercise the power conferred upon it by this act." The Administrator, Hon. T. Keith Glennan has advised the Committee of his intention to issue such proclamation, effective October 1,1958.

  17. 78 FR 38076 - NASA Advisory Council; Aeronautics Committee; Unmanned Aircraft Systems Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-25

    ... SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Unmanned Aircraft Systems... Aeronautics and Space Administration announces a meeting of the Unmanned Aircraft Systems (UAS) Subcommittee... meeting includes the following topics: ] Review of NASA Unmanned Aircraft System (UAS) Integration...

  18. 78 FR 69885 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-21

    ... SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Meeting AGENCY: National Aeronautics... meeting of the Aeronautics Committee of the NASA Advisory Council. This Committee reports to the NAC. The... for the Aeronautics Committee, NASA Headquarters, Washington, DC 20546, (202) 358-0566, or...

  19. NASA's Role in Aeronautics: A Workshop. Volume I--Summary.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Assembly of Engineering.

    The central task of the workshop summarized in this report was to examine the relationship of the National Aeronautics and Space Administration's (NASA's) aeronautical research capabilities to the state of U.S. aviation and to make recommendations about NASA's future roles in aeronautics. Topics include NASA's role in: (1) aeronautics research and…

  20. Aeronautics in NACA and NASA

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Initiated in 1915, the National Advisory Committee for Aeronautics/National Aeronautics and Space Administration (NACA/NASA) aeronautical programs have been the keystone of a sustained U.S. Government, industry, and university research effort which has been a primary factor in the development of our remarkable air transportation systems, the country's largest positive trade balance component, and the world's finest military Air Force. This overview summarizes the flow of events, and the major trends, that have led from the NACA origins to the present NASA Aeronautics program, and indicates some important directions for the years ahead.

  1. 78 FR 10640 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-14

    ... SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Meeting AGENCY: National Aeronautics... meeting of the Aeronautics Committee of the NASA Advisory Council. The meeting will be held for the... Administration Headquarters, Washington, DC 20546, (202) 358-0566, or susan.l.minor@nasa.gov ....

  2. 76 FR 183 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-03

    ... SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Meeting AGENCY: National Aeronautics... meeting of the Aeronautics Committee of the NASA Advisory Council. The meeting will be held for the... Administration Headquarters, Washington, DC 20546, (202) 358-0566, or susan.l.minor@nasa.gov ....

  3. Nondestructive Evaluation Approaches Developed for Material Characterization in Aeronautics and Space Applications

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Kautz, Harold E.; Gyekenyesi, Andrew L.; Abdul-Aziz, Ali; Martin, Richard E.

    2001-01-01

    At the NASA Glenn Research Center, nondestructive evaluation (NDE) approaches were developed or tailored for characterizing advanced material systems. The emphasis was on high-temperature aerospace propulsion applications. The material systems included monolithic ceramics, superalloys, and high-temperature composites. In the aeronautics area, the major applications were cooled ceramic plate structures for turbine applications, gamma-TiAl blade materials for low-pressure turbines, thermoelastic stress analysis for residual stress measurements in titanium-based and nickel-based engine materials, and acousto-ultrasonics for creep damage assessment in nickel-based alloys. In the space area, applications consisted of cooled carbon-carbon composites for gas generator combustors and flywheel rotors composed of carbon-fiber-reinforced polymer matrix composites for energy storage on the International Space Station.

  4. National Aeronautics and Space Administration Marshall Space Flight Center Space Transportation Directorate Risk Management Implementation Program

    NASA Technical Reports Server (NTRS)

    Duarte, Luis Alberto; Kross, Denny (Technical Monitor)

    2001-01-01

    The US civil aerospace program has been a great contributor to the creation and implementation of techniques and methods to identify, analyze, and confront risk. NASA has accomplished mission success in many instances, but also has had many failures. Anomalies have kept the Agency from achieving success on other occasions, as well. While NASA has mastered ways to prevent risks, and to quickly and effectively react and recover from anomalies or failures, it was not until few years ago that a comprehensive Risk Management process started being implemented in some of its programs and projects. A Continuous Risk Management (CRM) cycle process was developed and has been promoted and used successfully in programs and projects across the Agency.

  5. Budget estimates, fiscal year 1995. Volume 1: Agency summary, human space flight, and science, aeronautics and technology

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The NASA budget request has been restructured in FY 1995 into four appropriations: human space flight; science, aeronautics, and technology; mission support; and inspector general. The human space flight appropriations provides funding for NASA's human space flight activities. This includes the on-orbit infrastructure (space station and Spacelab), transportation capability (space shuttle program, including operations, program support, and performance and safety upgrades), and the Russian cooperation program, which includes the flight activities associated with the cooperative research flights to the Russian Mir space station. These activities are funded in the following budget line items: space station, Russian cooperation, space shuttle, and payload utilization and operations. The science, aeronautics, and technology appropriations provides funding for the research and development activities of NASA. This includes funds to extend our knowledge of the earth, its space environment, and the universe and to invest in new technologies, particularly in aeronautics, to ensure the future competitiveness of the nation. These objectives are achieved through the following elements: space science, life and microgravity sciences and applications, mission to planet earth, aeronautical research and technology, advanced concepts and technology, launch services, mission communication services, and academic programs.

  6. 14 CFR 61.155 - Aeronautical knowledge.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ....155 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... knowledge areas. (1) Applicable Federal Aviation Regulations of this chapter that relate to airline... aircraft's flight characteristics and performance in normal and abnormal flight regimes; (11) Human...

  7. 14 CFR 61.155 - Aeronautical knowledge.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ....155 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... knowledge areas. (1) Applicable Federal Aviation Regulations of this chapter that relate to airline... aircraft's flight characteristics and performance in normal and abnormal flight regimes; (11) Human...

  8. 14 CFR 61.155 - Aeronautical knowledge.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....155 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... knowledge areas. (1) Applicable Federal Aviation Regulations of this chapter that relate to airline... aircraft's flight characteristics and performance in normal and abnormal flight regimes; (11) Human...

  9. 14 CFR 61.155 - Aeronautical knowledge.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ....155 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... knowledge areas. (1) Applicable Federal Aviation Regulations of this chapter that relate to airline... aircraft's flight characteristics and performance in normal and abnormal flight regimes; (11) Human...

  10. Office of Aeronautics and Space Technology preliminary requirements for space science and applications platform studies

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Needs and requirements for a free flying space science and applications platform to host groupings of compatible, extended mission experiments in earth orbit are discussed. A payload model which serves to define a typical set of mission requirements in the form of a descriptive data base is presented along with experiment leval and group level data summarizations and flight schedules. The payload descriptions are grouped by technology into the following categories: communications, materials (long term effect upon), materials technology development, power, sensors, and thermal control.

  11. 78 FR 41114 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-09

    ... SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Meeting AGENCY: National Aeronautics... meeting of the Aeronautics Committee of the NASA Advisory Council. This Committee reports to the NAC. The.... to 5:00 p.m.; Local Time. ADDRESSES: NASA Headquarters, Room 6E40, 300 E Street SW., Washington,...

  12. 76 FR 58843 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-22

    ... SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Meeting AGENCY: National Aeronautics... meeting of the Aeronautics Committee of the NASA Advisory Council. The meeting will be held for the...) 358-0566, or susan.l.minor@nasa.gov . SUPPLEMENTARY INFORMATION: The meeting will be open to...

  13. 75 FR 17166 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-05

    ... SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Meeting AGENCY: National Aeronautics... meeting of the Aeronautics Committee of the NASA Advisory Council. The meeting will be held for the.... ADDRESSES: NASA Langley Research Center, Building 1219, Room 225, Hampton, Virginia (Note that visitors...

  14. NASA's Role in Aeronautics: A Workshop. Volume III - Transport Aircraft.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Assembly of Engineering.

    The central task of a 1980 workshop on the role of the National Aeronautics and Space Administration (NASA) in aeronautics was to examine the relationship of NASA's research capabilities to the state of U.S. aviation and to make recommendations about NASA's future role in aeronautics. The specific task of the Panel on Transport Aircraft was to…

  15. NASA's Role in Aeronautics: A Workshop. Volume II - Military Aviation.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Assembly of Engineering.

    The central task of a 1980 workshop on the role of the National Aeronautics and Space Administration (NASA) in aeronautics was to examine the relationship of NASA's research capabilities to the state of U.S. aviation and to make recommendations about NASA's future role in aeronautics. The findings and recommendations of the Panel on Military…

  16. NASA's Role in Aeronautics: A Workshop. Volume IV - General Aviation.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Assembly of Engineering.

    The central task of a 1980 workshop on the role of the National Aeronautics and Space Administration (NASA) in aeronautics was to examine the relationship of NASA's research capabilities to the state of U.S. aviation and to make recommendations about NASA's future role in aeronautics. The findings and recommendations of the Panel on General…

  17. Aeronautics and Space Report of the President, Fiscal Year 2002 Activities

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Fiscal Year (FY) 2002 brought advances on many fronts in support of NASAs new vision, announced by Administrator Sean OKeefe on April 12, to improve life here, to extend life to there, to find life beyond. NASA successfully carried out four Space Shuttle missions, including three to the International Space Station (ISS) and one servicing mission to the Hubble Space Telescope (HST). By the end of the fiscal year, humans had occupied the ISS continuously for 2 years. NASA also managed five expendable launch vehicle (ELV) missions and participated in eight international cooperative ELV launches. In the area of space science, two of the Great Observatories, the Hubble Space Telescope and the Chandra X-Ray Observatory, continued to make spectacular observations. The Mars Global Surveyor and Mars Odyssey carried out their mapping missions of the red planet in unprecedented detail. Among other achievements, the Near Earth Asteroid Rendezvous (NEAR) Shoemaker spacecraft made the first soft landing on an asteroid, and the Solar and Heliospheric Observatory (SOHO) monitored a variety of solar activity, including the largest sunspot observed in 10 years. The education and public outreach program stemming from NASAs space science missions continues to grow. In the area of Earth science, attention focused on completing the first Earth Observing Satellite series. Four spacecraft were successfully launched. The goal is to understand our home planet as a system, as well as how the global environment responds to change.

  18. 14 CFR 1201.103 - Administration.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Administration. 1201.103 Section 1201.103 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Introduction § 1201.103 Administration. (a) NASA is headed by an Administrator, who is...

  19. 14 CFR 1201.103 - Administration.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Administration. 1201.103 Section 1201.103 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Introduction § 1201.103 Administration. (a) NASA is headed by an Administrator, who is...

  20. 14 CFR 1201.103 - Administration.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Administration. 1201.103 Section 1201.103 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Introduction § 1201.103 Administration. (a) NASA is headed by an Administrator, who is...

  1. 14 CFR § 1201.103 - Administration.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Administration. § 1201.103 Section § 1201.103 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Introduction § 1201.103 Administration. (a) NASA is headed by an Administrator, who...

  2. 14 CFR 1201.103 - Administration.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Administration. 1201.103 Section 1201.103 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Introduction § 1201.103 Administration. (a) NASA is headed by an Administrator, who is...

  3. 14 CFR 1260.147 - Contract administration.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Contract administration. 1260.147 Section 1260.147 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GRANTS AND COOPERATIVE... administration. A system for contract administration shall be maintained to ensure contractor conformance...

  4. Astronautics and Aeronautics, 1979-1984: A chronology

    NASA Technical Reports Server (NTRS)

    Janson, Bette R.; Ritchie, Eleanor H.

    1989-01-01

    This volume of the Astronautics and Aeronautics series covers 1979 through 1984. The series provides a chronological presentation of all significant events and developments in space exploration and the administration of the space program during the period covered.

  5. Aeronautics: An Educator's Guide with Activities in Science, Mathematics, and Technology Education.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This educator's guide, developed for students in grades 2-4, discusses the field of aeronautics. It begins with education standards and skill matrices for the classroom activities, a description of the National Aeronautics and Space Administration (NASA) aeronautics mission, and a brief history of aeronautics. Activities are written for the…

  6. NASA Aeronautics Research: An Assessment

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The U.S. air transportation system is vital to the economic well-being and security of the United States. To support continued U.S. leadership in aviation, Congress and NASA requested that the National Research Council undertake a decadal survey of civil aeronautics research and technology (R&T) priorities that would help NASA fulfill its responsibility to preserve U.S. leadership in aeronautics technology. In 2006, the National Research Council published the Decadal Survey of Civil Aeronautics. That report presented a set of six strategic objectives for the next decade of aeronautics R&T, and it described 51 high-priority R&T challenges--characterized by five common themes--for both NASA and non-NASA researchers. The National Research Council produced the present report, which assesses NASA's Aeronautics Research Program, in response to the National Aeronautics and Space Administration Authorization Act of 2005 (Public Law 109-155). This report focuses on three sets of questions: 1. How well does NASA's research portfolio implement appropriate recommendations and address relevant high-priority research and technology challenges identified in the Decadal Survey of Civil Aeronautics? If gaps are found, what steps should be taken by the federal government to eliminate them? 2. How well does NASA's aeronautics research portfolio address the aeronautics research requirements of NASA, particularly for robotic and human space exploration? How well does NASA's aeronautics research portfolio address other federal government department/agency non-civil aeronautics research needs? If gaps are found, what steps should be taken by NASA and/or other parts of the federal government to eliminate them? 3. Will the nation have a skilled research workforce and research facilities commensurate with the requirements in (1) and (2) above? What critical improvements in workforce expertise and research facilities, if any, should NASA and the nation make to achieve the goals of NASA

  7. 76 FR 65752 - International Space Station (ISS) National Laboratory Advisory Committee; Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-24

    ... SPACE ADMINISTRATION International Space Station (ISS) National Laboratory Advisory Committee; Charter Renewal AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of renewal and... Relations, (202) 358-0550, National Aeronautics and Space Administration, Washington, DC 20546-0001....

  8. NASA Office of Aeronautics and Space Technology Summer Workshop. Executive summary. [in-space research using the Space Transportation System

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Research and technology investigations are identified in eleven discipline technologies which require or which could significantly benefit from an in-space experiment, systems demonstrations, or component test using the Space Transportation System. Synopses of the eleven technology panels reports are presented.

  9. 14 CFR 1275.106 - Administrative actions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Administrative actions. 1275.106 Section 1275.106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION RESEARCH MISCONDUCT § 1275.106 Administrative actions. (a) Listed in paragraphs (a)(1) through (a)(3) of this section...

  10. 14 CFR 1275.106 - Administrative actions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Administrative actions. 1275.106 Section 1275.106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION RESEARCH MISCONDUCT § 1275.106 Administrative actions. (a) Listed in paragraphs (a)(1) through (a)(3) of this section...

  11. 14 CFR 1275.106 - Administrative actions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Administrative actions. 1275.106 Section 1275.106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION RESEARCH MISCONDUCT § 1275.106 Administrative actions. (a) Listed in paragraphs (a)(1) through (a)(3) of this section...

  12. 14 CFR 1275.106 - Administrative actions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Administrative actions. 1275.106 Section 1275.106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION RESEARCH MISCONDUCT § 1275.106 Administrative actions. (a) Listed in paragraphs (a)(1) through (a)(3) of this section...

  13. 75 FR 16197 - NASA Advisory Council; Space Operations Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-31

    ... SPACE ADMINISTRATION NASA Advisory Council; Space Operations Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space...

  14. 77 FR 4370 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-27

    ... SPACE ADMINISTRATION NASA Advisory Council; Commercial Space Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space...

  15. 76 FR 17712 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-30

    ... SPACE ADMINISTRATION NASA Advisory Council; Commercial Space Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space...

  16. 75 FR 11200 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ... SPACE ADMINISTRATION NASA Advisory Council; Commercial Space Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of Meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space...

  17. 75 FR 39974 - NASA Advisory Council; Space Operations Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-13

    ... SPACE ADMINISTRATION NASA Advisory Council; Space Operations Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space...

  18. 76 FR 20717 - NASA Advisory Council; Space Operations Committee; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... SPACE ADMINISTRATION NASA Advisory Council; Space Operations Committee; Meeting. AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space...

  19. 78 FR 42111 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-15

    ... SPACE ADMINISTRATION NASA Advisory Council; Commercial Space Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-462, as amended, the National Aeronautics and Space...

  20. 75 FR 5630 - NASA Advisory Council; Space Operations Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-03

    ... SPACE ADMINISTRATION NASA Advisory Council; Space Operations Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space...

  1. 77 FR 20852 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-06

    ... SPACE ADMINISTRATION NASA Advisory Council; Commercial Space Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of Meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space...

  2. 75 FR 17437 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-06

    ... SPACE ADMINISTRATION NASA Advisory Council; Commercial Space Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space...

  3. 78 FR 10213 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-13

    ... SPACE ADMINISTRATION NASA Advisory Council; Commercial Space Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-462, as amended, the National Aeronautics and Space...

  4. 75 FR 51853 - NASA Advisory Council; Space Operations Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-23

    ... SPACE ADMINISTRATION NASA Advisory Council; Space Operations Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space...

  5. 75 FR 53349 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ... SPACE ADMINISTRATION NASA Advisory Council; Commercial Space Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of Meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space...

  6. 76 FR 3674 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ... SPACE ADMINISTRATION NASA Advisory Council; Commercial Space Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space...

  7. 75 FR 28821 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-24

    ... SPACE ADMINISTRATION NASA Advisory Council; Commercial Space Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space...

  8. 75 FR 39973 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-13

    ... SPACE ADMINISTRATION NASA Advisory Council; Commercial Space Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space...

  9. 77 FR 67028 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-08

    ... SPACE ADMINISTRATION NASA Advisory Council; Commercial Space Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-462, as amended, the National Aeronautics and Space...

  10. 76 FR 3673 - NASA Advisory Council; Space Operations Committee; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ... SPACE ADMINISTRATION NASA Advisory Council; Space Operations Committee; Meeting. AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space...

  11. 77 FR 38678 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-28

    ... SPACE ADMINISTRATION NASA Advisory Council; Commercial Space Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-462, as amended, the National Aeronautics and Space...

  12. Annual report of the National Advisory Committee for Aeronautics (36th). administrative report including Technical Report nos. 951 to 1002

    NASA Technical Reports Server (NTRS)

    1951-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  13. Annual report of the National Advisory Committee for Aeronautics (40th). administrative report including Technical Report nos. 1158-1209

    NASA Technical Reports Server (NTRS)

    1956-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  14. Annual report of the National Advisory Committee for Aeronautics (38th). administrative report including Technical Report nos. 1059 to 1110

    NASA Technical Reports Server (NTRS)

    1954-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  15. Annual report of the National Advisory Committee for Aeronautics (42nd). administrative report including Technical Report nos. 1254 to 1295

    NASA Technical Reports Server (NTRS)

    1957-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  16. Annual report of the National Advisory Committee for Aeronautics (41st). administrative report including Technical Report nos. 1210 to 1253

    NASA Technical Reports Server (NTRS)

    1957-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  17. Annual report of the National Advisory Committee for Aeronautics (34th). administrative report including Technical Report nos. 892 to 921

    NASA Technical Reports Server (NTRS)

    1951-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  18. Annual report of the National Advisory Committee for Aeronautics (35th). administrative report including Technical Report nos. 922 to 950

    NASA Technical Reports Server (NTRS)

    1951-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  19. Annual report of the National Advisory Committee for Aeronautics (29th) : administrative report including Technical Report nos. 752 to 773

    NASA Technical Reports Server (NTRS)

    1948-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  20. Annual report of the National Advisory Committee for Aeronautics (44th). administrative report including Technical Report nos. 1342 to 1366

    NASA Technical Reports Server (NTRS)

    1959-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  1. Annual report of the National Advisory Committee for Aeronautics (39th). administrative report including Technical Report nos. 1111 to 1134

    NASA Technical Reports Server (NTRS)

    1955-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  2. Western Aeronautical Test Range

    NASA Technical Reports Server (NTRS)

    Sakahara, Robert D.

    2008-01-01

    This viewgraph presentation reviews the work of the Western Aeronautical Test Range (WATR). NASA's Western Aeronautical Test Range is a network of facilities used to support aeronautical research, science missions, exploration system concepts, and space operations. The WATR resides at NASA's Dryden Flight Research Center located at Edwards Air Force Base, California. The WATR is a part of NASA's Corporate Management of Aeronautical Facilities and funded by the Strategic Capability Asset Program (SCAP). Maps show the general location of the WATR area that is used for aeronautical testing and evaluation. The products, services and facilities of WATR are discussed,

  3. Proceedings of the Ninth Annual Summer Conference: NASA/USRA University Advanced Aeronautics Design Program and Advanced Space Design Program

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The NASA/USRA University Advanced Design Program was established in 1984 as an attempt to add more and better design education to primarily undergraduate engineering programs. The original focus of the pilot program encompassing nine universities and five NASA centers was on space design. Two years later, the program was expanded to include aeronautics design with six universities and three NASA centers participating. This year marks the last of a three-year cycle of participation by forty-one universities, eight NASA centers, and one industry participant. The Advanced Space Design Program offers universities an opportunity to plan and design missions and hardware that would be of usc in the future as NASA enters a new era of exploration and discovery, while the Advanced Aeronautics Design Program generally offers opportunities for study of design problems closer to the present time, ranging from small, slow-speed vehicles to large, supersonic and hypersonic passenger transports. The systems approach to the design problem is emphasized in both the space and aeronautics projects. The student teams pursue the chosen problem during their senior year in a one- or two-semester capstone design course and submit a comprehensive written report at the conclusion of the project. Finally, student representatives from each of the universities summarize their work in oral presentations at the Annual Summer Conference, sponsored by one of the NASA centers and attended by the university faculty, NASA and USRA personnel and aerospace industry representatives. As the Advanced Design Program has grown in size, it has also matured in terms of the quality of the student projects. The present volume represents the student work accomplished during the 1992-1993 academic year reported at the Ninth Annual Summer Conference hosted by NASA Lyndon B. Johnson Space Center, June 14-18, 1993.

  4. NASA Office of Aeronautical and Space Technology Summer Workshop. Volume 7: Materials panel

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Materials technology requirements pertinent to structures, power, and propulsion for future space missions are identified along with candidate space flight experiments. Most requirements are mission driven, only four (all relating to space processing of materials) are considered to be opportunity driven. Exploitation of the space environment in performing basic research to improve the understanding of materials phenomena (such as solidification) and manufacturing and assembly in space to support missions such as solar energy stations which require the forming, erection, joining, and repair of structures in space are among the topics discussed.

  5. NASA Office of Aeronautics and Space Technology Summer Workshop. Volume 8: Thermal control panel

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Technology deficiencies in the area of thermal control for future space missions are identified with emphasis on large space structures and cold controlled environments. Thermal control surfaces, heat pipes, and contamination are considered along with cryogenics, insulation, and design techniques. Major directions forecast for thermal control technology development and space experiments are: (1) extend the useful lifetime of cryogenic systems for space, (2) reduce temperature gradients, and (3) improve temperature stability.

  6. Achieving Aeronautics Leadership: Aeronautics Strategic Enterprise Plan

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Today, more than ever, aggressive leadership is required to ensure that our national investments in aeronautical research, technology, and facilities are shaped into a coordinated, and high-impact, strategy. Under the auspices of the National Science and Technology Council, and in conjunction with the domestic industry, universities, the Department of Defense, and the Federal Aviation Administration - our partners in aeronautics - we propose to provide that leadership, and this document is our plan.

  7. Annual Report of the National Advisory Committee for Aeronautics (1st). [Administrative Report Including Technical Reports Nos. 1 to 7

    NASA Technical Reports Server (NTRS)

    1916-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, Congressional report, summaries of the committee's activities and research accomplished, expenditures, problems, recommendations, and a compilation of technical reports produced.

  8. NASA Office of Aeronautical and Space Technology Summer Workshop. Volume 6: Structures and dynamics panel

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Structural requirements for future space missions were defined in relation to technology needs and payloads. Specific areas examined include: large area space structures (antennas, solar array structures, and platforms); a long, slender structure or boom used to support large objects from the shuttle or hold two bodies apart in space; and advanced composite structures for cost effective weight reductions. Other topics discussed include: minimum gage concepts, high temperature components, load and response determination and control, and reliability and life prediction.

  9. NASA Office of Aeronautics and Space Technology Summer Workshop. Volume 4: Power technology panel

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Technology requirements in the areas of energy sources and conversion, power processing, distribution, conversion, and transmission, and energy storage are identified for space shuttle payloads. It is concluded that the power system technology currently available is adequate to accomplish all missions in the 1973 Mission Model, but that further development is needed to support space opportunities of the future as identified by users. Space experiments are proposed in the following areas: power generation in space, advanced photovoltaic energy converters, solar and nuclear thermoelectric technology, nickel-cadmium batteries, flywheels (mechanical storage), satellite-to-ground transmission and reconversion systems, and regenerative fuel cells.

  10. 77 FR 41203 - NASA International Space Station Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-12

    ... SPACE ADMINISTRATION NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and...

  11. 75 FR 51852 - NASA International Space Station Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-23

    ... SPACE ADMINISTRATION NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and...

  12. 78 FR 49296 - NASA International Space Station Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ... SPACE ADMINISTRATION NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and...

  13. 77 FR 66082 - NASA International Space Station Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-01

    ... SPACE ADMINISTRATION NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of Meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and...

  14. 77 FR 2765 - NASA International Space Station Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-19

    ... SPACE ADMINISTRATION NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and...

  15. 78 FR 77502 - NASA International Space Station Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-23

    ... SPACE ADMINISTRATION NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of Meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and...

  16. NASA Office of Aeronautics and Space Technology Summer Workshop. Volume 1: Data processing and transfer panel

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The data processing and transfer technology areas that need to be developed and that could benefit from space flight experiments are identified. Factors considered include: user requirements, concepts in 'Outlook for Space', and cost reduction. Major program thrusts formulated are an increase in end-to-end information handling and a reduction in life cycle costs.

  17. NASA Office of Aeronautics and Space Technology Summer Workshop. Volume 9: Entry technology panel

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An advanced space transportation system heavy lift orbiter, hypersonic atmospheric entry missions, development of an emergency astronaut life boat, and basic research in boundary layer transition are among the topics discussed. Emphasis is placed on the need for space testing and for better mathematical models describing the flow fields around complex structures.

  18. NASA Office of Aeronautics and Space Technology Summer Workshop. Volume 2: Sensing and data acquisitions panel

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Advanced technology requirements associated with sensing and data acquisition systems were assessed for future space missions. Sensing and data acquisition system payloads which would benefit from the use of the space shuttle in demonstrating technology readiness are identified. Topics covered include: atmospheric sensing payloads, earth resources sensing payloads, microwave systems sensing payloads, technology development/evaluation payloads, and astronomy/planetary payloads.

  19. 14 CFR 1251.108 - Administrative requirements for small recipients.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Administrative requirements for small recipients. 1251.108 Section 1251.108 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON BASIS OF HANDICAP General Provisions § 1251.108 Administrative requirements for...

  20. 14 CFR 1245.115 - Action by the Administrator.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Action by the Administrator. 1245.115 Section 1245.115 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PATENTS AND OTHER INTELLECTUAL PROPERTY RIGHTS Patent Waiver Regulations § 1245.115 Action by the Administrator. (a)...

  1. 14 CFR 1264.143 - Right to administrative offset.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Right to administrative offset. 1264.143 Section 1264.143 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION IMPLEMENTATION OF THE PROGRAM FRAUD CIVIL PENALTIES ACT OF 1986 § 1264.143 Right to administrative offset. The amount of any penalty or assessment which has...

  2. 14 CFR 1264.143 - Right to administrative offset.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Right to administrative offset. 1264.143 Section 1264.143 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION IMPLEMENTATION OF THE PROGRAM FRAUD CIVIL PENALTIES ACT OF 1986 § 1264.143 Right to administrative offset. The amount of...

  3. 14 CFR 1264.143 - Right to administrative offset.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Right to administrative offset. 1264.143 Section 1264.143 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION IMPLEMENTATION OF THE PROGRAM FRAUD CIVIL PENALTIES ACT OF 1986 § 1264.143 Right to administrative offset. The amount of...

  4. 14 CFR 1264.143 - Right to administrative offset.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Right to administrative offset. 1264.143 Section 1264.143 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION IMPLEMENTATION OF THE PROGRAM FRAUD CIVIL PENALTIES ACT OF 1986 § 1264.143 Right to administrative offset. The amount of...

  5. 14 CFR § 1275.106 - Administrative actions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Administrative actions. § 1275.106 Section § 1275.106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION RESEARCH MISCONDUCT § 1275.106 Administrative actions. (a) Listed in paragraphs (a)(1) through (a)(3) of this section...

  6. NASA Office of Aeronautics and Space Technology Summer Workshop. Volume 3: Navigation, guidance and control panel

    NASA Technical Reports Server (NTRS)

    1975-01-01

    User technology requirements are identified in relation to needed technology advancement for future space missions in the areas of navigation, guidance, and control. Emphasis is placed on: reduction of mission support cost by 50% through autonomous operation, a ten-fold increase in mission output through improved pointing and control, and a hundred-fold increase in human productivity in space through large-scale teleoperator applications.

  7. A cumulative index to Aeronautical Engineering: A special bibliography

    NASA Technical Reports Server (NTRS)

    1978-01-01

    This publication is a cumulative index to the abstracts contained in NASA SP-7037 (80) through NASA SP-7037 (91) of Aeronautical Engineering: A Special Bibliography. NASA SP-7037 and its supplements have been compiled through the cooperative efforts of the American Institute of Aeronautics (AIAA) and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, contract, and report number indexes.

  8. NASA's Role in Aeronautics: A Workshop. Volume VII - Background Papers.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Assembly of Engineering.

    Sixteen background papers presented to a plenary session at a 1980 workshop on the role of the National Aeronautics and Space Administration (NASA) in aeronautics are presented. The central task of the workshop was to examine the relationship of NASA's research capabilities to the state of U.S. aviation and to make recommendations about NASA's…

  9. 14 CFR 61.159 - Aeronautical experience: Airplane category rating.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... rating. 61.159 Section 61.159 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Transport Pilots § 61.159 Aeronautical experience: Airplane category rating. (a) Except as provided in... certificate with an airplane category and class rating must have at least 1,500 hours of total time as a...

  10. 14 CFR 61.159 - Aeronautical experience: Airplane category rating.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... rating. 61.159 Section 61.159 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Transport Pilots § 61.159 Aeronautical experience: Airplane category rating. (a) Except as provided in... certificate with an airplane category and class rating must have at least 1,500 hours of total time as a...

  11. 14 CFR 61.159 - Aeronautical experience: Airplane category rating.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... rating. 61.159 Section 61.159 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Transport Pilots § 61.159 Aeronautical experience: Airplane category rating. (a) Except as provided in... certificate with an airplane category and class rating must have at least 1,500 hours of total time as a...

  12. 14 CFR 61.159 - Aeronautical experience: Airplane category rating.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... rating. 61.159 Section 61.159 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Transport Pilots § 61.159 Aeronautical experience: Airplane category rating. (a) Except as provided in... certificate with an airplane category and class rating must have at least 1,500 hours of total time as a...

  13. A cumulative index to a continuing bibliography on aeronautical engineering

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This bibliography is a cumulative index to the abstracts contained in NASA-SP-7037(184) through NASA-SP-7037(195) of Aeronautical Engineering: A Continuing Bibliography. NASA SP-7037 and its supplements have been compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, foreign technology, contract, report number, and accession number indexes.

  14. Aeronautical engineering: A cumulative index to a continuing bibliography

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This bibliography is a cumulative index to the abstracts contained in NASA SP-7037(210) through NASA SP-7037(221) of Aeronautical Engineering: A Continuing Bibliography. NASA SP-7037 and its supplements have been compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, foreign technology, contract number, report number, and accession number indexes.

  15. Aeronautical Engineering: A continuing bibliography, 1982 cumulative index

    NASA Technical Reports Server (NTRS)

    1983-01-01

    This bibliography is a cumulative index to the abstracts contained in NASA SP-7037 (145) through NASA SP-7037 (156) of Aeronautical Engineering: A Continuing Bibliography. NASA SP-7037 and its supplements have been compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, contract, and report number indexes.

  16. A cumulative index to Aeronautical Engineering: A continuing bibliography

    NASA Technical Reports Server (NTRS)

    1982-01-01

    This bibliography is a cumulated index to the abstracts contained in NASA SP-7037(132) through NASA SP-7037(143) of Aeronautical Engineering: A continuing bibliography. NASA SP-7037 and its supplements have been compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, contract, and report number indexes.

  17. Aeronautical engineering: A cumulative index to a continuing bibliography

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This bibliography is a cumulative index to the abstracts contained in NASA SP-7037 (197) through NASA SP-7037 (208) of Aeronautical Engineering: A Continuing Bibliography. NASA SP-7037 and its supplements have been compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, foreign technology, contract, report number, and accession number indexes.

  18. NASA University Research Centers Technical Advances in Education, Aeronautics, Space, Autonomy, Earth and Environment

    NASA Technical Reports Server (NTRS)

    Jamshidi, M. (Editor); Lumia, R. (Editor); Tunstel, E., Jr. (Editor); White, B. (Editor); Malone, J. (Editor); Sakimoto, P. (Editor)

    1997-01-01

    This first volume of the Autonomous Control Engineering (ACE) Center Press Series on NASA University Research Center's (URC's) Advanced Technologies on Space Exploration and National Service constitute a report on the research papers and presentations delivered by NASA Installations and industry and Report of the NASA's fourteen URC's held at the First National Conference in Albuquerque, New Mexico from February 16-19, 1997.

  19. Legislative Origins of the National Aeronautics and Space Act of 1958. Monograph No. 8

    NASA Technical Reports Server (NTRS)

    Logsdon, John M. (Compiler)

    1992-01-01

    A transcript of a 1992 collective oral history with several individuals who helped to draft the Space Act in 1958 is presented. Contributors include: Paul G. Dembling, Willis H. Shapley, Eilene M. Galloway, Glen P. Wilson, George Reedy, H. Guyford Stever and George Siegel.

  20. NASA Office of Aeronautics and Space Technology Summer Workshop. Volume 10: Basic research panel

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Possible research experiments using the space transportation system are identified based on user requirements. Opportunity driven research areas include quantum electronics, cryogenics system technology, superconducting devices and detectors, and photo-induced reactions. Mission driven research requirements were examined and ranked based on inputs from the user group.

  1. NASA Office of Aeronautics and Space Technology Summer Workshop. Volume 11: Life support panel

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Life support technology requirements for long-term space habitation are identified with emphasis on regeneration capabilities and biological life support systems. Other topics discussed include: water recovery, oxygen recovery, waste management recycle, and a man-made closed ecology with selected biological species.

  2. Ground stations for aeronautical and space laser communications at German Aerospace Center

    NASA Astrophysics Data System (ADS)

    Moll, Florian; Shrestha, Amita; Fuchs, Christian

    2015-10-01

    Free-space laser communications are subject of current research and development in many research and industrial bodies. Long distance air-ground and space-ground can be implemented in future communication networks as feeder, backbone and backhaul links for various air- and space-based scenarios. The Institute of Communications and Navigation of the German Aerospace Center (DLR) operates two ground stations to investigate the communication channel and system: the Optical Ground Station Oberpfaffenhofen and the Transportable Optical Ground Station. The first one is a fixed installation and operated as experimental station with focus on channel measurements and tests of new developments. Various measurement devices, communication receivers and optical setups may easily be installed for different objectives. The facility is described with its dome installation, telescope setup and infrastructure. Past and current deployment in several projects is described and selected measurement achievements presented. The second ground station is developed for semi-operational use and demonstration purposes. Based on experience with the experimental ground station, this one is developed with higher level of integration and system robustness. The focus application is the space-ground and air-ground downlink of payload data from Earth observation missions. Therefore, it is also designed to be easily transportable for worldwide deployment. The system is explained and main components are discussed. The characteristics of both ground stations are presented and discussed. Further advancements in the equipment and capability are also presented.

  3. NASA's Office of Aeronautics and Exploration Technology space power flight projects

    NASA Technical Reports Server (NTRS)

    Chmielewski, Art B.; Pyle, Jon S.

    1991-01-01

    NASA created a program called In-STEP (in-space technology experiments program) to give the aerospace community an opportunity to validate advanced technologies in space. In-STEP has funded feasibility studies for the following experiments in the power technology arena: a microsphere insulation investigation, a utilized regenerative fuel cell experiment, an inflatable solar collector experiment, a moving belt radiator experiment, and a liquid drop radiator experiment. The following experiments are currently in the experiment definition phase: an integrated two-phase thermal experiment, an electrolysis performance experiment, and a sodium sulfur battery experiment. Three In-STEP experiments are entering the hardware fabrication phase: thermal energy storage technology, solar array module plasma interaction, and heat pipe performance experiments. Each of these experiments is described, with an emphasis on the benefits of technology validation.

  4. NASA Office of Aeronautics and Space Technology Summer Workshop. Volume 5: Propulsion technology panel, part 1

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Payload experiments which could be carried out in near earth space using the shuttle orbiter, its payload bay, the Spacelab, and/or some free-flying device that might be used for long duration testing were identified. Specific areas examined in terms of user requirements include: chemical propulsion, nuclear propulsion (fission, fussion, radioisotopes), and collected energy (coherent energy and solar electromagnetic energy). Cost reduction objectives for advanced propulsion technology development were also developed.

  5. Aeronautics and Space Report of the President: Fiscal Year 2009 Activities

    NASA Technical Reports Server (NTRS)

    2009-01-01

    In fiscal year 2009 (FY 09), the Exploration Systems Mission Directorate's (ESMD) Advanced Capabilities Division (ACD) provided critical research and technology products that reduced operational and technical risks for the flight systems being developed by the Constellation Program.1 These products addressed high-priority technology requirements for lunar exploration; risk mitigation related to astronaut health and performance; basic research in life and physical sciences using the International Space Station (ISS), free-flying spacecraft, and ground-based laboratories; and lunar robotic missions to gather data relevant to future human lunar missions.

  6. The 1974 NASA-ASEE summer faculty fellowship aeronautics and space research program

    NASA Technical Reports Server (NTRS)

    Obrien, J. F., Jr.; Jones, C. O.; Barfield, B. F.

    1974-01-01

    Research activities by participants in the fellowship program are documented, and include such topics as: (1) multispectral imagery for detecting southern pine beetle infestations; (2) trajectory optimization techniques for low thrust vehicles; (3) concentration characteristics of a fresnel solar strip reflection concentrator; (4) calaboration and reduction of video camera data; (5) fracture mechanics of Cer-Vit glass-ceramic; (6) space shuttle external propellant tank prelaunch heat transfer; (7) holographic interferometric fringes; and (8) atmospheric wind and stress profiles in a two-dimensional internal boundary layer.

  7. Magnetic levitation systems for future aeronautics and space research and missions

    NASA Technical Reports Server (NTRS)

    Blankson, Isaiah M.; Mankins, John C.

    1996-01-01

    The objectives, advantages, and research needs for several applications of superconducting magnetic levitation to aerodynamics research, testing, and space-launch are discussed. Applications include very large-scale magnetic balance and suspension systems for high alpha testing, support interference-free testing of slender hypersonic propulsion/airframe integrated vehicles, and hypersonic maglev. Current practice and concepts are outlined as part of a unified effort in high magnetic fields R&D within NASA. Recent advances in the design and construction of the proposed ground-based Holloman test track (rocket sled) that uses magnetic levitation are presented. It is protected that ground speeds of up to Mach 8 to 11 at sea-level are possible with such a system. This capability may enable supersonic combustor tests as well as ramjet-to-scramjet transition simulation to be performed in clean air. Finally a novel space launch concept (Maglifter) which uses magnetic levitation and propulsion for a re-usable 'first stage' and rocket or air-breathing combined-cycle propulsion for its second stage is discussed in detail. Performance of this concept is compared with conventional advanced launch systems and a preliminary concept for a subscale system demonstration is presented.

  8. 14 CFR 1214.1705 - Selection of space flight participants.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Selection of space flight participants. 1214.1705 Section 1214.1705 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Space Flight Participants § 1214.1705 Selection of space flight participants. (a) The agency will publicly announce each space...

  9. 14 CFR 1214.1705 - Selection of space flight participants.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Selection of space flight participants. 1214.1705 Section 1214.1705 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Space Flight Participants § 1214.1705 Selection of space flight participants. (a) The agency will publicly announce each space...

  10. NASA Historical Data Book. Volume 6; NASA Space Applications, Aeronautics and Space Research and Technology, Tracking and Data Acquisition/Support Operations, Commercial Programs and

    NASA Technical Reports Server (NTRS)

    Rumerman, Judy A.

    2000-01-01

    This sixth volume of the NASA Historical Data Book is a continuation of those earlier efforts. This fundamental reference tool presents information, much of it statistical, documenting the development of several critical areas of NASA responsibility for the period between 1979 and 1988. This volume includes detailed information on the space applications effort, the development and operation of aeronautics and space research and technology programs, tracking and data acquisition/space operations, commercial programs, facilities and installations, personnel, and finances and procurement during this era. Special thanks are owed to the student research assistants who gathered and input much of the tabular material-a particularly tedious undertaking. There are numerous people at NASA associated with historical study, technical information, and the mechanics of publishing who helped in myriad ways in the preparation of this historical data book.

  11. Astronautics and Aeronautics, 1991-1995: A Chronology

    NASA Technical Reports Server (NTRS)

    Gawdiak, Ihor Y. (Compiler); Shetland, Charles (Compiler)

    2000-01-01

    This chronology of events in aeronautics, aviation, space science, and space exploration was prepared by the Federal Research Division of the Library of Congress and RSIS for the History Division of the National Aeronautics and Space Administration (NASA). It covers the years 1991-1995 and continues the series of annual chronologies published by NASA. The present volume uses the format of the previous edition of this series, Astronautics and Aeronautics, 1986-1990: A Chronology. It also integrates, in the appendices, information presented in previous publication

  12. Astronautics and Aeronautics, 1986-1990: A Chronology

    NASA Technical Reports Server (NTRS)

    Gawdiak, Ihor Y.; Miro, Ramon J.; Stueland, Sam

    1997-01-01

    This chronology of events in aeronautics, aviation, space science, and space exploration was prepared by the Federal Research Division of the LibrarY of Congress for the History Division of the National Aeronautics and Space Administration (NASA). It covers the years 1996-1990 and continues the series of annual chronologies published by NASA. The present volume returns to the format used in the Astronautics and Aeronautics, 1979-1984: A Chronology volume. It also integrates in a single table the information presented in two or three previous publications.

  13. Final Summary of Research Report to the National Aeronautics and Space Administration Cosmochemistry Program

    NASA Technical Reports Server (NTRS)

    O'D. Alexander, Conel

    2003-01-01

    The discovery of presolar grains in meteorites is one of the most exciting recent developments in meteoritics. Six types of presolar grain have been discovered: diamond, Sic, graphite, Si3N4, Al2O3 and MgAl2O4. These grains have been identified as presolar because their isotopic compositions are very different from those of Solar System materials. Comparison of their isotopic compositions with astronomical observations and theoretical models indicates most of the grains formed in the envelopes of highly evolved stars. They are, therefore, a new source of information with which to test astrophysical models of the evolution of these stars. In fact, because several elements can often be measured in the same grain, including elements that are not measurable spectroscopically in stars, the grain data provide some very stringent constraints for these models. Our primary goal is to create large, unbiased, multi-isotope databases of single presolar Sic, Si,N,, oxide and graphite grains in meteorites, as well as any new presolar grain types that are identified in the future. These will be used to: (i) test stellar and nucleosynthetic models, (ii) constrain the galactic chemical evolution (GCE) paths of the isotopes of Si, Ti, O and Mg, (iii) establish how many stellar sources contributed to the Solar System, (iv) constrain relative dust production rates of various stellar types and (v) assess how representative of galactic dust production the record in meteorites is. The primary tool for this project is a highly automated grain analysis system on the Carnegie 6f ion probe.

  14. Final Summary of Research Report to the National Aeronautics and Space Administration Cosmochemistry Program

    NASA Technical Reports Server (NTRS)

    O'D.Alexander, Conel

    2004-01-01

    The discovery of presolar grains in meteorites is one of the most exciting recent developments in meteoritics. Six types of presolar grain have been discovered: diamond, Sic, graphite, Si3N4, Al2O3 and MgAl2O4. These grains have been identified as presolar because their isotopic compositions are very different from those of Solar System materials. Comparison of their isotopic compositions with astronomical observations and theoretical models indicates most of the grains formed in the envelopes of highly evolved stars. They are, therefore, a new source of information with which to test astrophysical models of the evolution of these stars. In fact, because several elements can often be measured in the same grain, including elements that are not measurable spectroscopically in stars, the grain data provide some very stringent constraints for these models. Our primary goal is to create large, unbiased, multi-isotope databases of single presolar Sic, Si,N,, oxide and graphite grains in meteorites, as well as any new presolar grain types that are identified in the future. These will be used to: (i) test stellar and nucleosynthetic models, (ii) constrain the galactic chemical evolution (GCE) paths of the isotopes of Si, Ti, 0 and Mg, (iii) establish how many stellar sources contributed to the Solar System, (iv) constrain relative dust production rates of various stellar types and (v) assess how representative of galactic dust production the record in meteorites is. The primary tool for this project is a highly automated grain analysis system we have developed for the Carnegie 6f ion probe.

  15. Research Report to the National Aeronautics and Space Administration Cosmochemistry Program

    NASA Technical Reports Server (NTRS)

    Alexander, Conel O'D.

    2004-01-01

    The discovery of presolar grains in meteorites is one of the most exciting recent developments in meteoritics. Six types of presolar grain have been discovered: diamond, Sic, graphite, Si3N4, Al2O3 and MgAl2O4 (NIITLER, 2003). These grains have been identified as presolar because their isotopic compositions are very different from those of Solar System materials. Comparison of their isotopic compositions with astronomical observations and theoretical models indicates that most of the grains formed in the envelopes of highly evolved stars. They are, therefore, a new source of information with which to test astrophysical models of the evolution of these stars. In fact, because several elements can often be measured in the same grain, including elements that are not measurable spectroscopically in stars, the grain data provide some very stringent constraints for these models. Our primary goal is to create large, unbiased, multi-isotope databases of single presolar Sic, Si3N4, oxide and graphite grains in meteorites, as well as any new presolar grain types that are identified in the future. These will be used to: (i) test stellar and nucleosynthetic models, (ii) constrain the galactic chemical evolution (GCE) paths of the isotopes of Si, Ti, O and Mg, (iii) establish how many stellar sources contributed to the Solar System, (iv) constrain relative dust production rates of various stellar types and (v) assess how representative of galactic dust production the record in meteorites is. The primary tool for this project is a highly automated grain analysis system on the Carnegie 6f ion probe. This proposal was part of a long-standing research effort that is still ongoing.

  16. National Aeronautics and Space Administration's research program in earth remote sensing instrumentation

    NASA Technical Reports Server (NTRS)

    Plotkin, Henry H.; Sokoloski, Martin M.; Rubin, Bernard

    1991-01-01

    Terrestrial and atmospheric missions of NASA's program to develop remote sensing instrumentation are described along with several of the instruments and related mission. Systems such as lidar and radar, passive coherent sensors, passive noncoherent sensors, as well as cryogenic cooler technology are discussed.

  17. National Aeronautics and Space Administration fundamental research program. Information utilization and evaluation, appendices

    NASA Technical Reports Server (NTRS)

    Estes, J. E.; Eisgruber, L.

    1981-01-01

    Important points presented and recommendations made at an information and decision processes workshop held in Asilomar, California; at a data and information performance workshop held in Houston, Texas; and at a data base use and management workshop held near San Jose, California are summarized. Issues raised at a special session of the Soil Conservation Society of America's remote sensing for resource management conference in Kansas City, Missouri are also highlighted. The goals, status and activities of the NASA program definition study of basic research requirements, the necessity of making the computer science community aware of user needs with respect to information related to renewable resources, performance parameters and criteria for judging federal information systems, and the requirements and characteristics of scientific data bases are among the topics reported.

  18. 77 FR 63897 - Notice of License Terminations for National Aeronautics and Space Administration; Plum Brook...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-17

    ...), concerning the proposed action to decommission the NASA PBRF, appeared in the Federal Register (65 FR ] 12040... Assessment and Finding of No Significant Impact concerning this action in the Federal Register (65 FR 16421... for a Hearing'' for the PBRF in the Federal Register (72 FR 46521; August 20, 2007). On March 24,...

  19. Services provided in support of the planetary quarantine requirements of the National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    Favero, M. S.

    1972-01-01

    The evaluation is discussed of the terminal sterilization process for unmanned lander spacecraft. Results of biochemical test deviations encountered with the identification schemes are tabulated. Studies to examine the possibility of shifts in biochemical reaction patterns during storage and subculture of the environmental Bacillius isolates are also reported.

  20. National Aeronautics and Space Administration fundamental research program. Information utilization and evaluation

    NASA Technical Reports Server (NTRS)

    Estes, J. E.; Eisgruber, L.

    1981-01-01

    In the second half of the 1980's NASA can expect to face difficult choices among alternative fundamental and applied research, and development projects that could potentially lead to improvements in the information systems used to manage renewable resources. The working group on information utilization and evaluation believes that effective choices cannot be made without a better understanding of the current and prospective problems and opportunities involved in the application of remote sensing to improve renewable research information systems. A renewable resources information system is defined in a broad context to include a flow of data/information from: acquisition through processing, storage, integration with other data, analysis, graphic presentation, decision making, and assessment of the affects of those decisions.

  1. Information requirements of the National Aeronautics and Space Administration's safety, environmental health, and occupational medicine programs

    NASA Technical Reports Server (NTRS)

    Whyte, A. A.

    1978-01-01

    A survey of the internal and external reporting and recordkeeping procedures of these programs was conducted and the major problems associated with them are outlined. The impact of probable future requirements on existing information systems is evaluated. This report also presents the benefits of combining the safety and health information systems into one computerized system and recommendations for the development and scope of that system.

  2. Guidelines for health surveillance in the NASA (National Aeronautics and Space Administration) workplace

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The adequacy of biomedical data sheets used by the NASA medical staff for NASA employees and contractors was assessed. Procedures for developing medical histories, conducting medical examinations, and collecting toxicity data were reviewed. Recommendations for employee health maintenance and early detection of work-related abnormalities are given.

  3. A bill to redesignate certain facilities of the National Aeronautics and Space Administration.

    THOMAS, 113th Congress

    Sen. Feinstein, Dianne [D-CA

    2013-10-31

    10/31/2013 Read twice and referred to the Committee on Commerce, Science, and Transportation. (text of measure as introduced: CR S7732) (All Actions) Notes: For further action, see H.R.667, which became Public Law 113-75 on 1/16/2014. Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  4. Commercial ELV services and the National Aeronautics and Space Administration - Concord or discord?

    NASA Technical Reports Server (NTRS)

    Frankle, Edward A.

    1988-01-01

    In implementation of the U.S. policy to foster and encourage the commercial expendable launch vehicle (ELV) industry, tensions have developed between the industry and U.S. Government agencies in two distinct areas: industry use of government facilities and government purchase of commercial ELV services. The reasons for the tensions and discrete legal problems for each area are identified and discussed. Specifically, in the use of government facilities area, issues of insurance and indemnification for third-party liability and government property, concerns over priority and scheduling, and dispute-resolution procedures are discussed. In the area of government purchase of ELV launch services, a comparison is made between a launch service purchase and prior procurement practice. In all areas, the conclusion is reached that while problems still exist, they generally are understood and great progress has been made toward their resolution.

  5. Guidelines for development of NASA (National Aeronautics and Space Administration) computer security training programs

    NASA Technical Reports Server (NTRS)

    Tompkins, F. G.

    1983-01-01

    The report presents guidance for the NASA Computer Security Program Manager and the NASA Center Computer Security Officials as they develop training requirements and implement computer security training programs. NASA audiences are categorized based on the computer security knowledge required to accomplish identified job functions. Training requirements, in terms of training subject areas, are presented for both computer security program management personnel and computer resource providers and users. Sources of computer security training are identified.

  6. Guidelines for contingency planning NASA (National Aeronautics and Space Administration) ADP security risk reduction decision studies

    NASA Technical Reports Server (NTRS)

    Tompkins, F. G.

    1984-01-01

    Guidance is presented to NASA Computer Security Officials for determining the acceptability or unacceptability of ADP security risks based on the technical, operational and economic feasibility of potential safeguards. The risk management process is reviewed as a specialized application of the systems approach to problem solving and information systems analysis and design. Reporting the results of the risk reduction analysis to management is considered. Report formats for the risk reduction study are provided.

  7. Guidelines for developing NASA (National Aeronautics and Space Administration) ADP security risk management plans

    NASA Technical Reports Server (NTRS)

    Tompkins, F. G.

    1983-01-01

    This report presents guidance to NASA Computer security officials for developing ADP security risk management plans. The six components of the risk management process are identified and discussed. Guidance is presented on how to manage security risks that have been identified during a risk analysis performed at a data processing facility or during the security evaluation of an application system.

  8. Review of NASA's (National Aeronautics and Space Administration) Numerical Aerodynamic Simulation Program

    NASA Technical Reports Server (NTRS)

    1984-01-01

    NASA has planned a supercomputer for computational fluid dynamics research since the mid-1970's. With the approval of the Numerical Aerodynamic Simulation Program as a FY 1984 new start, Congress requested an assessment of the program's objectives, projected short- and long-term uses, program design, computer architecture, user needs, and handling of proprietary and classified information. Specifically requested was an examination of the merits of proceeding with multiple high speed processor (HSP) systems contrasted with a single high speed processor system. The panel found NASA's objectives and projected uses sound and the projected distribution of users as realistic as possible at this stage. The multiple-HSP, whereby new, more powerful state-of-the-art HSP's would be integrated into a flexible network, was judged to present major advantages over any single HSP system.

  9. National Aeronautics and Space Administration Manned Spacecraft Center data based requirements study

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The results are summarized of a study to determine the requirements of a data management system to meet the needs of MSC in mission planning and program and resource management during the 1975 time frame. The study addresses overall system requirements, implementation considerations, and cost/benefit comparisions.

  10. National Aeronautics and Space Administration FY 02 Revised Final Annual Performance Plan

    NASA Astrophysics Data System (ADS)

    2002-01-01

    The Government Performance and Results Act (GPRA) was passed by Congress and signed by the President in 1993. GPRA was enacted to improve the efficiency of all Federal agencies, with the following specific goals: (1) Improve Federal program management, effectiveness, and public accountability; (2) Improve Congressional decision making on where to commit the Nation's financial and human resources; and (3) Improve citizen confidence in government performance. GPRA directs Executive Branch agencies to develop a customer-focused strategic plan that aligns activities with concrete missions and goals. The Act directs agencies to manage and measure results to justify Congressional appropriations and authorizations. The Report Consolidation Act of 2000 directs agencies to provide a report on the degree of success in achieving the goals and performance measures defined in the strategic and performance plans one hundred and fifty days after the completion of the fiscal year.

  11. Services provided in support of the planetary quarantine requirements of the National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    Favero, M. S.

    1973-01-01

    The project to evaluate thermal sterilization for unmanned landers is reported. A temperature controlled oven with a nitrogen gas supply containing a known concentration of water is discussed. The studies show that bacillus lentus, bacillus brevis, bacillus coagulans, atypical bacillus spp., and actinomycete are isolated heat survivors. The thermal resistance is given for naturally occurring airborne bacterial spores collected on exposed teflon ribbons.

  12. Automating the Analytical Laboratories Section, Lewis Research Center, National Aeronautics and Space Administration: A feasibility study

    NASA Technical Reports Server (NTRS)

    Boyle, W. G.; Barton, G. W.

    1979-01-01

    The feasibility of computerized automation of the Analytical Laboratories Section at NASA's Lewis Research Center was considered. Since that laboratory's duties are not routine, the automation goals were set with that in mind. Four instruments were selected as the most likely automation candidates: an atomic absorption spectrophotometer, an emission spectrometer, an X-ray fluorescence spectrometer, and an X-ray diffraction unit. Two options for computer automation were described: a time-shared central computer and a system with microcomputers for each instrument connected to a central computer. A third option, presented for future planning, expands the microcomputer version. Costs and benefits for each option were considered. It was concluded that the microcomputer version best fits the goals and duties of the laboratory and that such an automted system is needed to meet the laboratory's future requirements.

  13. Environmental impact statement for National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The probable environmental impact and adverse effects of the Lewis Research Center are assessed. The Cleveland and Plum Brook facilities are briefly described. It is felt that the absence of harmful environmental impact from the Cleveland site is apparent, and the monitoring at the Plum Brook reactor facility shows the effectiveness of effluent controls. The probable adverse effects are considered for air, water, and noise pollution, and radioactive and hazardous waste storage and disposal; it is concluded that all emissions are maintained below Federal, and local standards. There are no appropriate alternatives to the operation of the Center, and no improvement in environmental quality would result from relocation. The relationship between local short-term productivity is briefly discussed. No adverse comment has been received from public agencies or private organizations or individuals.

  14. Services provided in support of the planetary quarantine requirements of the National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    Favero, M. S.

    1972-01-01

    The efficiency of a biodetection grinder, used to recover buried contamination, was tested using spacecraft components and laminated polystyrene strips containing Bacillus subtilis var. niger spores. The surfaces were decontaminated before tests. Results are given in tabular form. Tables are also given for heat resistance of bacteria spores, prevalence of bacteria in spacecraft before launch, and the types of bacteria found in Apollo 15 spacecraft components and command modules.

  15. Software Engineering Laboratory (SEL) report to the National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    Basili, V. R.

    1982-01-01

    Software development predictors, error analysis, reliability models and software metric analysis are studied. The use of dynamic characteristics as predictors for software development is also studied.

  16. Services provided in support of the planetary quarantine requirements of the National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    Favero, M. S.

    1972-01-01

    Heat studies with the highly resistant bacterial spore isolated from Cape Kennedy soil were continued, and the D130C was determined. The interior surfaces of the command module of the Apollo 17 spacecraft were studied for microbial contamination during assembly and testing. The thermal resistance of naturally occurring airborne bacterial spores was determined, using the heating times of 2, 4, 6, and 8 hr. at 125 C. The evaluation of a terminal sterilization process for unmanned lander spacecraft is also continuing.

  17. 14 CFR 1240.110 - Recommendation to the Administrator.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Recommendation to the Administrator. 1240.110 Section 1240.110 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INVENTIONS AND CONTRIBUTIONS Awards for Scientific and Technical Contributions § 1240.110 Recommendation to...

  18. 14 CFR 1240.110 - Recommendation to the Administrator.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Recommendation to the Administrator. 1240.110 Section 1240.110 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INVENTIONS AND CONTRIBUTIONS Awards for Scientific and Technical Contributions § 1240.110 Recommendation to...

  19. 14 CFR 1240.110 - Recommendation to the Administrator.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Recommendation to the Administrator. 1240.110 Section 1240.110 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INVENTIONS AND CONTRIBUTIONS Awards for Scientific and Technical Contributions § 1240.110 Recommendation to...

  20. NASA aeronautics

    NASA Technical Reports Server (NTRS)

    Anderton, D. A.

    1982-01-01

    Aeronautical research programs are discussed in relation to research methods and the status of the programs. The energy efficient aircraft, STOL aircraft and general aviation aircraft are considered. Aerodynamic concepts, rotary wing aircraft, aircraft safety, noise reduction, and aircraft configurations are among the topics included.

  1. 14 CFR 1214.1705 - Selection of space flight participants.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Selection of space flight participants. 1214.1705 Section 1214.1705 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Space Flight Participants § 1214.1705 Selection of space flight participants. (a) The agency...

  2. 14 CFR 1214.1705 - Selection of space flight participants.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Selection of space flight participants. 1214.1705 Section 1214.1705 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Space Flight Participants § 1214.1705 Selection of space flight participants. (a) The agency...

  3. 14 CFR 1214.402 - International Space Station crewmember responsibilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true International Space Station crewmember responsibilities. 1214.402 Section 1214.402 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT International Space Station Crew § 1214.402 International Space Station...

  4. 77 FR 32699 - NASA Advisory Council; Aeronautics Committee; UAS Subcommittee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-01

    ... SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; UAS Subcommittee Meeting AGENCY... Administration (NASA) announces a meeting of the Unmanned Aircraft Systems (UAS) Subcommittee of the Aeronautics Committee of the NASA Advisory Council. The meeting will be held for the purpose of soliciting, from...

  5. An Administrator's Checklist for Open-Space.

    ERIC Educational Resources Information Center

    Nolan, Robert R.; Roper, Susan Stavert

    A checklist is provided of practical steps to be considered and acted upon in planning and implementing an open-space school. The document divides the process into three phases: initial planning, just prior to moving, and post-move. Considerations in the planning stage involve: staff and community input in deciding upon open space; clarification…

  6. Western Aeronautical Test Range

    NASA Technical Reports Server (NTRS)

    Sakahara, Robert D.

    2008-01-01

    NASA's Western Aeronautical Test Range (WATR) is a network of facilities used to support aeronautical research, science missions, exploration system concepts, and space operations. The WATR resides at NASA's Dryden Flight Research Center located at Edwards Air Force Base, California. The WATR is a part of NASA's Corporate Management of Aeronautical Facilities and funded by the Strategic Capability Asset Program (SCAP). It is managed by the Aeronautics Test Program (ATP) of the Aeronautics Research Mission Directorate (ARMD) to provide the right facility at the right time. NASA is a tenant on Edwards Air Force Base and has an agreement with the Air Force Flight Test Center to use the land and airspace controlled by the Department of Defense (DoD). The topics include: 1) The WATR supports a variety of vehicles; 2) Dryden shares airspace with the AFFTC; 3) Restricted airspace, corridors, and special use areas are available for experimental aircraft; 4) WATR Products and Services; 5) WATR Support Configuration; 6) Telemetry Tracking; 7) Time Space Positioning; 8) Video; 9) Voice Communication; 10) Mobile Operations Facilities; 11) Data Processing; 12) Mission Control Center; 13) Real-Time Data Analysis; and 14) Range Safety.

  7. 14 CFR § 1214.1705 - Selection of space flight participants.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Selection of space flight participants. § 1214.1705 Section § 1214.1705 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Space Flight Participants § 1214.1705 Selection of space flight participants. (a)...

  8. 14 CFR 61.185 - Aeronautical knowledge.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aeronautical knowledge. 61.185 Section 61... Flight Instructors With a Sport Pilot Rating § 61.185 Aeronautical knowledge. (a) A person who is... aeronautical knowledge areas for a recreational, private, and commercial pilot certificate applicable to...

  9. 14 CFR 61.125 - Aeronautical knowledge.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aeronautical knowledge. 61.125 Section 61... Aeronautical knowledge. (a) General. A person who applies for a commercial pilot certificate must receive and... aeronautical knowledge areas of paragraph (b) of this section that apply to the aircraft category and...

  10. 14 CFR 61.185 - Aeronautical knowledge.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Aeronautical knowledge. 61.185 Section 61... Flight Instructors With a Sport Pilot Rating § 61.185 Aeronautical knowledge. (a) A person who is... aeronautical knowledge areas for a recreational, private, and commercial pilot certificate applicable to...

  11. 14 CFR 61.185 - Aeronautical knowledge.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Aeronautical knowledge. 61.185 Section 61... Flight Instructors With a Sport Pilot Rating § 61.185 Aeronautical knowledge. (a) A person who is... aeronautical knowledge areas for a recreational, private, and commercial pilot certificate applicable to...

  12. 14 CFR 61.185 - Aeronautical knowledge.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Aeronautical knowledge. 61.185 Section 61... Flight Instructors With a Sport Pilot Rating § 61.185 Aeronautical knowledge. (a) A person who is... aeronautical knowledge areas for a recreational, private, and commercial pilot certificate applicable to...

  13. 14 CFR 61.185 - Aeronautical knowledge.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Aeronautical knowledge. 61.185 Section 61... Flight Instructors With a Sport Pilot Rating § 61.185 Aeronautical knowledge. (a) A person who is... aeronautical knowledge areas for a recreational, private, and commercial pilot certificate applicable to...

  14. 14 CFR § 1240.110 - Recommendation to, and action by, the Administrator.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Recommendation to, and action by, the Administrator. § 1240.110 Section § 1240.110 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INVENTIONS AND CONTRIBUTIONS Awards for Scientific and Technical Contributions...

  15. 14 CFR 1240.110 - Recommendation to, and action by, the Administrator.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Recommendation to, and action by, the Administrator. 1240.110 Section 1240.110 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INVENTIONS AND CONTRIBUTIONS Awards for Scientific and Technical Contributions § 1240.110 Recommendation...

  16. [Exploring Aeronautics

    NASA Technical Reports Server (NTRS)

    Robinson, Brandi

    2004-01-01

    This summer I have been working with the N.A.S.A. Project at Cuyahoga Community College (Tri-C) under the title of Exploring Aeronautics Project Leader. The class that I have worked with is comprised of students that will enter the eighth grade in the fall of 2004. The program primarily focuses upon math proficiency and individualized class projects. My duties have encompassed both realms. During the first 2-3 weeks of my internship, I worked at NASA Glenn Research Center (GRC) researching, organizing, and compiling information for weekly Scholastic Challenges and the Super Scholastic Challenge. I was able to complete an overview of Scholastic Challenge and staff responsibilities regarding the competition; a proposal for an interactive learning system, Quizdom; a schedule for challenge equipment, as well as a schedule listing submission deadlines for the staff. Also included in my tasks, during these first 2-3 weeks, were assisting Tammy Allen and Candice Thomas with the student application review and interview processes for student applicants. For the student and parent orientation, I was assigned publications and other varying tasks to complete before the start of the program. Upon the commencement of the program, I changed location from NASA GRC to Tri-C Metro Campus, where student classes for the Cleveland site are held. During the duration of the program, I work with the instructor for the Exploring Aeronautics class, kkkk, assisting in classroom management, daily attendance, curriculum, project building, and other tasks as needed. These tasks include the conducting of the weekly competition, known as Scholastic Challenge. As a Project Leader, I am also responsible for one subject area of the Scholastic Challenge aspect of the N.A.S.A. Project curriculum. Each week I have to prepare a mission that the participants will take home the following Monday and at least 10 questions that will be included in the pool of questions used for the Scholastic Challenge

  17. 14 CFR 13.205 - Administrative law judges.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Administrative law judges. 13.205 Section 13.205 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROCEDURAL... Administrative law judges. (a) Powers of an administrative law judge. In accordance with the rules of...

  18. 14 CFR 13.205 - Administrative law judges.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Administrative law judges. 13.205 Section 13.205 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROCEDURAL... Administrative law judges. (a) Powers of an administrative law judge. In accordance with the rules of...

  19. 14 CFR 13.205 - Administrative law judges.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Administrative law judges. 13.205 Section 13.205 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROCEDURAL... Administrative law judges. (a) Powers of an administrative law judge. In accordance with the rules of...

  20. Environmental statement for National Aeronautics and Space Administration, Office of Space Science, launch vehicle and propulsion programs

    NASA Technical Reports Server (NTRS)

    1972-01-01

    NASA OSS Launch Vehicle and Propulsion Programs are responsible for the launch of approximately 20 automated science and applications spacecraft per year. These launches are for NASA programs and those of other U. S. government agencies, private organizations, such as the Comsat Corporation, foreign countries, and international organizations. Launches occur from Cape Kennedy, Florida; Vandenberg Air Force Base, California; Wallops Island, Virginia; and the San Marco Platform in the Indian Ocean off Kenya. Spacecraft launched by this program contribute in a variety of ways to the control of and betterment of the environment. Environmental effects caused by the launch vehicles are limited in extent, duration, and intensity and are considered insignificant.

  1. Transcript of proceedings: National Aeronautics and Space Administration, Goddard Space Flight Center, 1972 GSFC Battery Workshop, first day

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The proceedings of the 1972 NASA/Goddard Battery Workshop are reported. Topics discussed include: separators, materials and processing, test and storage experience, and improved energy density systems.

  2. Aeronautical engineering: A continuing bibliography with indexes (supplement 294)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This issue of Aeronautical Engineering - A Continuing Bibliography with Indexes lists 590 reports, journal articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspect of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. The bibliographic series is compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). Seven indexes are included: subject, personal author, corporate source, foreign technology, contract number, report number, and accession number.

  3. Aeronautical engineering: A cumulative index to a continuing bibliography (supplement 300)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This publication is a cumulative index to the abstracts contained in supplements 288 through 299 of Aeronautical Engineering: A Continuing Bibliography. The bibliographic series is compiled through the efforts of the Center for Aerospace Information of the National Aeronautics and Space Administration (NASA). Seven indexes are included: subject, personal author, corporate source, foreign technology, contract number, report number, and accession number.

  4. 14 CFR 61.163 - Aeronautical experience: Powered-lift category rating.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... category rating. 61.163 Section 61.163 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Transport Pilots § 61.163 Aeronautical experience: Powered-lift category rating. (a) A person who is applying for an airline transport pilot certificate with a powered-lift category rating must have at...

  5. 14 CFR 61.163 - Aeronautical experience: Powered-lift category rating.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... category rating. 61.163 Section 61.163 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Transport Pilots § 61.163 Aeronautical experience: Powered-lift category rating. (a) A person who is applying for an airline transport pilot certificate with a powered-lift category rating must have at...

  6. 14 CFR 61.163 - Aeronautical experience: Powered-lift category rating.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... category rating. 61.163 Section 61.163 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Transport Pilots § 61.163 Aeronautical experience: Powered-lift category rating. (a) A person who is applying for an airline transport pilot certificate with a powered-lift category rating must have at...

  7. 14 CFR 61.163 - Aeronautical experience: Powered-lift category rating.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... category rating. 61.163 Section 61.163 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Transport Pilots § 61.163 Aeronautical experience: Powered-lift category rating. (a) A person who is applying for an airline transport pilot certificate with a powered-lift category rating must have at...

  8. Aeronautical engineering: A cumulative index to a continuing bibliography (supplement 248)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This publication is a cumulative index to the abstracts contained in Supplements 236 through 247 of Aeronautical Engineering: A Continuing Bibliography. The bibliographic series is compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). Seven indexes are included -- subject, personal author, corporate source, foreign technology, contract number, report number and accession number.

  9. Aeronautical engineering: A cumulative index to a continuing bibliography (supplement 274)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This publication is a cumulative index to the abstracts contained in supplements 262 through 273 of Aeronautical Engineering: A Continuing Bibliography. The bibliographic series is compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). Seven indexes are included: subject, personal author, corporate source, foreign technology, contract number, report number, and accession number.

  10. Aeronautical engineering: A cumulative index to a continuing bibliography (supplement 287)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This publication is a cummulative index to the abstracts contained in Supplements 275 through 286 of Aeronautical Engineering: A Continuing Bibliography. The bibliographic series is compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). Seven indexes are included -- subject, personal author, corporate source, foreign technology, contract number, report number and accession number.

  11. Aeronautical engineering: A cumulative index to a continuing bibliography (supplement 235)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This publication is a cummulative index to the abstracts contained in Supplements 223 through 234 of Aeronautical Engineering: A Continuing Bibliography. The bibliographic series is compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). Seven indexes are included -- subject, personal author, corporate source, foreign technology, contract number, report number and accession number.

  12. Aeronautical engineering: A cumulative index to a continuing bibliography (supplement 261)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This publication is a cummulative index to the abstracts contained in Supplements 249 through 260 of Aeronautical Engineering: A Continuing Bibliography. The bibliographic series is compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). Seven indexes are included -- subject, personal author, corporate source, foreign technology, contract number, report number and accession number.

  13. Aeronautical engineering: A cumulative index to a continuing bibliography (supplement 325)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This publication is a cumulative index to the abstracts contained in NASA SP-7037 supplements 313 through 324 of Aeronautical Engineering: A Continuing Bibliography. The bibliographic series is compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). This Cumulative index includes: a subject, personal author, corporate source, foreign technology, contract number, report number, and accession number.

  14. A cumulative index to the 1973 issues of Aeronautical engineering: A special bibliography

    NASA Technical Reports Server (NTRS)

    1974-01-01

    This publication is a cumulative index to the abstracts contained in NASA SP-7037 (28) through NASA SP-7037 (39) of Aeronautical Engineering: A Special Bibliography. NASA SP-7037 and its supplements have been compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, contract, and report number indexes.

  15. A cumulative index to Aeronautical Engineering, a continuing bibliography, supplement 105

    NASA Technical Reports Server (NTRS)

    1979-01-01

    This bibliography is a cumulative index to the abstracts contained in NASA SP-7037 (93) through NASA SP-7037 (104) of Aeronautical Engineering: A Continuing Bibliography. NASA SP-7037 and its supplements were compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, contract, and report number indexes.

  16. A cumulative index to the 1972 issues of aeronautical engineering: A special bibliography

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A cumulative index to the abstracts contained in NASA SP-7037 (15) through NASA SP-7037 (26) of Aeronautical Engineering: A Special Bibliography. NASA SP-7037 and its supplements has been complied through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, contract, and report number indexes.

  17. A cumulative index to Aeronautical Engineering: A special bibliography, January 1976

    NASA Technical Reports Server (NTRS)

    1976-01-01

    This publication is a cumulative index to the abstracts contained in NASA SP-7037 (54) through NASA SP-7037 (65) of Aeronautical Engineering: A Special Bibliography. NASA SP-7037 and its supplements have been compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, contract, and report number indexes.

  18. Aeronautical Engineering: A cumulative index to the 1984 issues of the continuing bibliography

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This bibliography is a cumulative index to the abstracts contained in NASA SP-7037(171) through NASA SP-7037(182) of Aeronautical Engineering: A Continuing Bibliography. NASA SP-7037 and its supplements have been compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, foreign technology, contract, report number, and accession number indexes.

  19. 77 FR 52067 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-28

    ... SPACE ADMINISTRATION NASA Advisory Council; Commercial Space Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: This Committee reports to the NAC... Agreements --Ames Research Center's Commercial Space Activities and Plans --Dryden Flight Research...

  20. 14 CFR 1214.702 - Authority and responsibility of the Space Shuttle commander.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Authority and responsibility of the Space Shuttle commander. 1214.702 Section 1214.702 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT The Authority of the Space Shuttle Commander § 1214.702 Authority and...

  1. 14 CFR 1214.702 - Authority and responsibility of the Space Shuttle commander.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Authority and responsibility of the Space Shuttle commander. 1214.702 Section 1214.702 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT The Authority of the Space Shuttle Commander § 1214.702 Authority and...

  2. Future Aeronautical Communication Infrastructure Technology Investigation

    NASA Technical Reports Server (NTRS)

    Gilbert, Tricia; Jin, Jenny; Bergerm Jason; Henriksen, Steven

    2008-01-01

    This National Aeronautics and Space Administration (NASA) Contractor Report summarizes and documents the work performed to investigate technologies that could support long-term aeronautical mobile communications operating concepts for air traffic management (ATM) in the timeframe of 2020 and beyond, and includes the associated findings and recommendations made by ITT Corporation and NASA Glenn Research Center to the Federal Aviation Administration (FAA). The work was completed as the final phase of a multiyear NASA contract in support of the Future Communication Study (FCS), a cooperative research and development program of the United States FAA, NASA, and EUROCONTROL. This final report focuses on an assessment of final five candidate technologies, and also provides an overview of the entire technology assessment process, including final recommendations.

  3. Report to the Congress from The President of the United States. United States Aeronautics and Space Activities 1967.

    ERIC Educational Resources Information Center

    Johnson, Lyndon B.

    This report extensively reviews the progress of the United States in space during 1967, the tenth year of the space age. The first chapter of the report summarizes the 1967 space activities; and each of the remaining 13 chapters is devoted to reviewing the space-related activities of a particular federal agency (13 agencies included). Appendices…

  4. 14 CFR § 1264.143 - Right to administrative offset.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Right to administrative offset. § 1264.143 Section § 1264.143 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION IMPLEMENTATION OF THE PROGRAM FRAUD CIVIL PENALTIES ACT OF 1986 § 1264.143 Right to administrative offset. The amount of any penalty or assessment which...

  5. Annual report of the National Advisory Committee for Aeronautics (3rd).administrative report including Technical Report nos. 13 to 23

    NASA Technical Reports Server (NTRS)

    1918-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, Congressional report, summaries of the committee's activities and research accomplished, expenditures, and problems.

  6. Annual report of the National Advisory Committee for Aeronautics (22nd).administrative report including Technical Report nos. 542 to 576

    NASA Technical Reports Server (NTRS)

    1937-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, Congressional report, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  7. Annual report of the National Advisory Committee for Aeronautics (25th).administrative report including Technical Report nos. 645 to 680

    NASA Technical Reports Server (NTRS)

    1940-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  8. Annual report of the National Advisory Committee for Aeronautics (33rd).administrative report including Technical Report nos. 863 to 891

    NASA Technical Reports Server (NTRS)

    1950-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  9. Annual report of the National Advisory Committee for Aeronautics (8th).administrative report including Technical Reports nos. 133 to 158

    NASA Technical Reports Server (NTRS)

    1923-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, congressional report, summaries of the committee's activities and research accomplished, and expenditures.

  10. Annual report of the National Advisory Committee for Aeronautics (23rd).administrative report including Technical Report nos. 577 to 611

    NASA Technical Reports Server (NTRS)

    1937-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  11. Annual report for the National Advisory Committee for Aeronautics (11th).administrative report including Technical Reports nos. 210 to 232

    NASA Technical Reports Server (NTRS)

    1926-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the president, congressional report, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  12. Annual report of the National Advisory Committee for Aeronautics (28th).administrative report including Technical Report nos. 727 to 751

    NASA Technical Reports Server (NTRS)

    1946-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  13. Annual Report of the National Advisory Committee for Aeronautics (27Th).Administrative Report Including Technical Report Nos. 704 to 726

    NASA Technical Reports Server (NTRS)

    1942-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  14. Annual report of the National Advisory Committee for Aeronautics (17th).administrative report including Technical Report nos. 365 to 400

    NASA Technical Reports Server (NTRS)

    1932-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the president, congressional report, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  15. Annual report of the National Advisory Committee for Aeronautics (24th).administrative report including Technical Report nos. 612 to 644

    NASA Technical Reports Server (NTRS)

    1939-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  16. Annual report of the National Advisory Committee for Aeronautics (13th).administrative report including Technical Reports nos. 257 to 282

    NASA Technical Reports Server (NTRS)

    1928-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, Congressional report, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  17. Annual report for the National Advisory Committee for Aeronautics (10th).administrative report including Technical Reports nos. 186 to 209

    NASA Technical Reports Server (NTRS)

    1925-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the president, congressional report, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  18. Annual report of the National Advisory Committee for Aeronautics (18th).administrative report including Technical Report nos. 401 to 440

    NASA Technical Reports Server (NTRS)

    1933-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, Congressional report, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  19. Annual report of the National Advisory Committee for Aeronautics (19th).administrative report including Technical Report nos. 441 to 474

    NASA Technical Reports Server (NTRS)

    1934-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, Congressional report, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  20. Annual report of the National Advisory Committee for Aeronautics (16th).administrative report including Technical Reports nos. 337 to 364

    NASA Technical Reports Server (NTRS)

    1931-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, Congressional report, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  1. Annual report of the National Advisory Committee for Aeronautics (26th).administrative report including Technical Report nos. 681 to 703

    NASA Technical Reports Server (NTRS)

    1941-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  2. Annual report of the National Advisory Committee for Aeronautics (14th).administrative report including Technical Reports nos. 283 to 308

    NASA Technical Reports Server (NTRS)

    1929-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the president, congressional report, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  3. Annual report of the National Advisory Committee for Aeronautics (21st).administrative report including Technical Report nos. 508 to 541

    NASA Technical Reports Server (NTRS)

    1936-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, Congressional report, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  4. Annual report of the National Advisory Committee for Aeronautics (30th).administrative report including Technical Report nos. 774 to 803

    NASA Technical Reports Server (NTRS)

    1949-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, summaries of Committee's activities and research accomplished, bibliographies, and financial report.

  5. Annual report for the National Advisory Committee for Aeronautics (12th).administrative report including Technical Reports nos. 233 to 256

    NASA Technical Reports Server (NTRS)

    1927-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the president, congressional report, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  6. Annual report of the National Advisory Committee for Aeronautics (7th).administrative report including Technical Reports nos. 111 to 132

    NASA Technical Reports Server (NTRS)

    1923-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, Congressional report, summaries of the committee's activities and research accomplished, and expenditures.

  7. Annual report of the National Advisory Committee for Aeronautics (20th).administrative report including Technical Report nos. 475 to 507

    NASA Technical Reports Server (NTRS)

    1935-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, Congressional report, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  8. Annual report of the National Advisory Committee for Aeronautics (15th).administrative report including Technical Reports nos. 309 to 336

    NASA Technical Reports Server (NTRS)

    1930-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, Congressional report, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  9. Annual Report of the National Advisory Committee for Aeronautics (9Th).Administrative Report Including Technical Reports Nos. 159 to 185

    NASA Technical Reports Server (NTRS)

    1924-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, Congressional report, summaries of the committee's activities and research accomplished, and expenditures.

  10. 76 FR 40753 - NASA Advisory Council; Commercial Space; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-11

    ... SPACE ADMINISTRATION NASA Advisory Council; Commercial Space; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space Administration announces...

  11. Advancing Aeronautics: A Decision Framework for Selecting Research Agendas

    NASA Technical Reports Server (NTRS)

    Anton, Philip S.; Ecola, Liisa; Kallimani, James G.; Light, Thomas; Ohlandt, Chad J. R.; Osburg, Jan; Raman, Raj; Grammich, Clifford A.

    2011-01-01

    Publicly funded research has long played a role in the development of aeronautics, ranging from foundational research on airfoils to development of the air-traffic control system. Yet more than a century after the research and development of successful controlled, sustained, heavier-than-air flight vehicles, there are questions over the future of aeronautics research. The field of aeronautics is relatively mature, technological developments within it have become more evolutionary, and funding decisions are sometimes motivated by the continued pursuit of these evolutionary research tracks rather than by larger factors. These developments raise questions over whether public funding of aeronautics research continues to be appropriate or necessary and at what levels. Tightened federal budgets and increasing calls to address other public demands make these questions sharper still. To help it address the questions of appropriate directions for publicly funded aeronautics research, the National Aeronautics and Space Administration's (NASA's) Aeronautics Research Mission Directorate (ARMD) asked the RAND Corporation to assess the elements required to develop a strategic view of aeronautics research opportunities; identify candidate aeronautic grand challenges, paradigms, and concepts; outline a framework for evaluating them; and exercise the framework as an example of how to use it. Accordingly, this research seeks to address these questions: What aeronautics research should be supported by the U.S. government? What compelling and desirable benefits drive government-supported research? How should the government--especially NASA--make decisions about which research to support? Advancing aeronautics involves broad policy and decisionmaking challenges. Decisions involve tradeoffs among competing perspectives, uncertainties, and informed judgment.

  12. 14 CFR 302.607 - Decision by administrative law judge.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Decision by administrative law judge. 302.607 Section 302.607 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION... Proceedings Concerning Airport Fees § 302.607 Decision by administrative law judge. The administrative...

  13. 14 CFR 302.607 - Decision by administrative law judge.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Decision by administrative law judge. 302.607 Section 302.607 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION... Proceedings Concerning Airport Fees § 302.607 Decision by administrative law judge. The administrative...

  14. 14 CFR 302.607 - Decision by administrative law judge.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Decision by administrative law judge. 302.607 Section 302.607 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION... Proceedings Concerning Airport Fees § 302.607 Decision by administrative law judge. The administrative...

  15. 14 CFR 302.607 - Decision by administrative law judge.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Decision by administrative law judge. 302.607 Section 302.607 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION... Proceedings Concerning Airport Fees § 302.607 Decision by administrative law judge. The administrative...

  16. 75 FR 4875 - NASA Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-29

    ... SPACE ADMINISTRATION NASA Commercial Space Committee; Meeting AGENCY: National Aeronautics and Space... Law 92-463, as amended, the National Aeronautics and Space Administration announces a meeting of the Commercial Space Committee to the NASA Advisory Council. DATES: Tuesday, February 16, 2010, 10 a.m.-5...

  17. Annual report of the National Advisory Committee for Aeronautics (4th).administrative report including Technical Reports nos. 24 to 50

    NASA Technical Reports Server (NTRS)

    1920-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, Congressional report, summaries of the committee's activities and research accomplished, expenditures, problems, recommendations, and a compilation of technical reports produced.

  18. Annual report of the National Advisory Committee for Aeronautics (5th).administrative report including Technical Reports nos. 51 to 82

    NASA Technical Reports Server (NTRS)

    1920-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, Congressional report, summaries of the committee's activities and research accomplished, expenditures, and a compilation of technical reports produced.

  19. 14 CFR 414.41 - Administrative law judge's recommended decision in safety approval actions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Administrative law judge's recommended decision in safety approval actions. 414.41 Section 414.41 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING SAFETY APPROVALS Appeal Procedures § 414.41 Administrative law...

  20. 14 CFR 406.5 - Administrative law judge's recommended decision in license, permit, and payload actions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Administrative law judge's recommended decision in license, permit, and payload actions. 406.5 Section 406.5 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROCEDURE INVESTIGATIONS, ENFORCEMENT, AND ADMINISTRATIVE...

  1. 14 CFR 61.105 - Aeronautical knowledge.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aeronautical knowledge. 61.105 Section 61... Aeronautical knowledge. (a) General. A person who is applying for a private pilot certificate must receive and... knowledge areas of paragraph (b) of this section that apply to the aircraft category and class rating...

  2. 78 FR 66964 - International Space Station National Laboratory Advisory Committee; Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-07

    ... SPACE ADMINISTRATION International Space Station National Laboratory Advisory Committee; Charter Renewal AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of renewal of the charter of the International Space Station National Laboratory Advisory Committee. SUMMARY: Pursuant to...

  3. 14 CFR 1214.101 - Eligibility for flight of a non-U.S. government reimbursable payload on the Space Shuttle.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Eligibility for flight of a non-U.S. government reimbursable payload on the Space Shuttle. 1214.101 Section 1214.101 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General Provisions Regarding Space...

  4. 14 CFR § 1214.101 - Eligibility for flight of a non-U.S. government reimbursable payload on the Space Shuttle.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Eligibility for flight of a non-U.S. government reimbursable payload on the Space Shuttle. § 1214.101 Section § 1214.101 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General Provisions Regarding Space...

  5. 14 CFR 1214.101 - Eligibility for flight of a non-U.S. government reimbursable payload on the Space Shuttle.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Eligibility for flight of a non-U.S. government reimbursable payload on the Space Shuttle. 1214.101 Section 1214.101 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General Provisions Regarding Space Shuttle Flights of Payloads for Non-U.S....

  6. 14 CFR 1214.101 - Eligibility for flight of a non-U.S. government reimbursable payload on the Space Shuttle.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Eligibility for flight of a non-U.S. government reimbursable payload on the Space Shuttle. 1214.101 Section 1214.101 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General Provisions Regarding Space Shuttle Flights of Payloads for Non-U.S....

  7. 14 CFR 1214.101 - Eligibility for flight of a non-U.S. government reimbursable payload on the Space Shuttle.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Eligibility for flight of a non-U.S. government reimbursable payload on the Space Shuttle. 1214.101 Section 1214.101 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General Provisions Regarding Space...

  8. Aeronautical enginnering: A cumulative index to a continuing bibliography (supplement 312)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a cumulative index to the abstracts contained in NASA SP-7037 (301) through NASA SP-7073 (311) of Aeronautical Engineering: A Continuing Bibliography. NASA SP-7037 and its supplements have been compiled by the Center for AeroSpace Information of the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, foreign technology, contract number, report number, and accession number indexes.

  9. 14 CFR 406.109 - Administrative law judges-powers and limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Administrative law judges-powers and limitations. 406.109 Section 406.109 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... Rules of Practice in FAA Space Transportation Adjudications § 406.109 Administrative law...

  10. 14 CFR 406.109 - Administrative law judges-powers and limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Administrative law judges-powers and limitations. 406.109 Section 406.109 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... Rules of Practice in FAA Space Transportation Adjudications § 406.109 Administrative law...

  11. 14 CFR 406.109 - Administrative law judges-powers and limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Administrative law judges-powers and limitations. 406.109 Section 406.109 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... Rules of Practice in FAA Space Transportation Adjudications § 406.109 Administrative law...

  12. 14 CFR 406.109 - Administrative law judges-powers and limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Administrative law judges-powers and limitations. 406.109 Section 406.109 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... Rules of Practice in FAA Space Transportation Adjudications § 406.109 Administrative law...

  13. Fundamental Aeronautics Program

    NASA Technical Reports Server (NTRS)

    Misra, Ajay

    2009-01-01

    The Overarching Mission of NASA's Aeronautics Research Mission Directorate (ARMD) is: To advance U.S. technological leadership in aeronautics in partnership with industry, academia, and other government agencies that conduct aeronautics-related research. ARMD supports the Agency's goal of developing a balanced overall program of science, exploration, and aeronautics, and ARMD's research plans also directly support the National Aeronautics R&D Policy and accompanying Executive Order 131419.

  14. Reagan Administration Prepares Budget Cuts.

    ERIC Educational Resources Information Center

    Norman, Colin

    1981-01-01

    Describes tentative federal budget cuts affecting science education in the National Science Foundation, National Aeronautics and Space Administration, Department of Energy, National Institutes of Health, and the specific areas these budget cuts will affect. (DS)

  15. 14 CFR 460.51 - Space flight participant training.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Space flight participant training. 460.51 Section 460.51 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING HUMAN SPACE FLIGHT REQUIREMENTS Launch and Reentry with a Space...

  16. 14 CFR 435.8 - Human space flight.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Human space flight. 435.8 Section 435.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Human space flight. An applicant for a license to conduct a reentry with flight crew or a space...

  17. 14 CFR 435.8 - Human space flight.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Human space flight. 435.8 Section 435.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Human space flight. An applicant for a license to conduct a reentry with flight crew or a space...

  18. 14 CFR 435.8 - Human space flight.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Human space flight. 435.8 Section 435.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Human space flight. An applicant for a license to conduct a reentry with flight crew or a space...

  19. 14 CFR 435.8 - Human space flight.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Human space flight. 435.8 Section 435.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Human space flight. An applicant for a license to conduct a reentry with flight crew or a space...

  20. 14 CFR 460.51 - Space flight participant training.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Space flight participant training. 460.51 Section 460.51 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING HUMAN SPACE FLIGHT REQUIREMENTS Launch and Reentry with a Space...

  1. 14 CFR 460.51 - Space flight participant training.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Space flight participant training. 460.51 Section 460.51 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING HUMAN SPACE FLIGHT REQUIREMENTS Launch and Reentry with a Space...

  2. 14 CFR 460.51 - Space flight participant training.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Space flight participant training. 460.51 Section 460.51 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING HUMAN SPACE FLIGHT REQUIREMENTS Launch and Reentry with a Space...

  3. 14 CFR 435.8 - Human space flight.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Human space flight. 435.8 Section 435.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Human space flight. An applicant for a license to conduct a reentry with flight crew or a space...

  4. 14 CFR 460.51 - Space flight participant training.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Space flight participant training. 460.51 Section 460.51 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING HUMAN SPACE FLIGHT REQUIREMENTS Launch and Reentry with a Space...

  5. In-house experiments in large space structures at the Air Force Wright Aeronautical Laboratories Flight Dynamics Laboratory

    NASA Technical Reports Server (NTRS)

    Gordon, Robert W.; Ozguner, Umit; Yurkovich, Steven

    1989-01-01

    The Flight Dynamics Laboratory is committed to an in-house, experimental investigation of several technical areas critical to the dynamic performance of future Air Force large space structures. The advanced beam experiment was successfully completed and provided much experience in the implementation of active control approaches on real hardware. A series of experiments is under way in evaluating ground test methods on the 12 meter trusses with significant passive damping. Ground simulated zero-g response data from the undamped truss will be compared directly with true zero-g flight test data. The performance of several leading active control approaches will be measured and compared on one of the trusses in the presence of significant passive damping. In the future, the PACOSS dynamic test article will be set up as a test bed for the evaluation of system identification and control techniques on a complex, representative structure with high modal density and significant passive damping.

  6. Annual report of the National Advisory Committee for Aeronautics (6th).administrative report including Technical Reports nos. 83 to 110

    NASA Technical Reports Server (NTRS)

    1921-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, Congressional report, summaries of the committee's activities and research accomplished, expenditures, House of Representatives bill 14061, a copy of the bill introduced to the House of Representatives to regulate air navigation, and a compilation of technical reports produced.

  7. A Digital Library for the National Advisory Committee for Aeronautics

    NASA Technical Reports Server (NTRS)

    Nelson, Michael L.

    1999-01-01

    We describe the digital library (DL) for the National Advisory Committee for Aeronautics (NACA), the NACA Technical Report Server (NACATRS). The predecessor organization for the National Aeronautics and Space Administration (NASA), NACA existed from 1915 until 1958. The primary manifestation of NACA's research was the NACA report series. We describe the process of converting this collection of reports to digital format and making it available on the World Wide Web (WWW) and is a node in the NASA Technical Report Server (NTRS). We describe the current state of the project, the resulting DL technology developed from the project, and the future plans for NACATRS.

  8. 14 CFR 120.111 - Administrative and other matters.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Administrative and other matters. 120.111 Section 120.111 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND OPERATORS FOR COMPENSATION OR HIRE: CERTIFICATION AND OPERATIONS DRUG AND ALCOHOL TESTING PROGRAM Drug Testing...

  9. 14 CFR 13.11 - Administrative disposition of certain violations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Administrative disposition of certain violations. 13.11 Section 13.11 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... enforcement action, an appropriate official of the FAA field office responsible for processing the...

  10. 14 CFR 302.17 - Administrative law judges.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Administrative law judges. 302.17 Section 302.17 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION... Evidentiary Hearing Proceedings § 302.17 Administrative law judges. (a) Powers and delegation of authority....

  11. 14 CFR 302.17 - Administrative law judges.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Administrative law judges. 302.17 Section 302.17 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION... Evidentiary Hearing Proceedings § 302.17 Administrative law judges. (a) Powers and delegation of authority....

  12. 14 CFR 302.17 - Administrative law judges.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Administrative law judges. 302.17 Section 302.17 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION... Evidentiary Hearing Proceedings § 302.17 Administrative law judges. (a) Powers and delegation of authority....

  13. 14 CFR 302.17 - Administrative law judges.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Administrative law judges. 302.17 Section 302.17 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION... Evidentiary Hearing Proceedings § 302.17 Administrative law judges. (a) Powers and delegation of authority....

  14. 14 CFR 77.67 - Final decision of the Administrator.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Final decision of the Administrator. 77.67 Section 77.67 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRSPACE OBJECTS AFFECTING NAVIGABLE AIRSPACE Rules of Practice for Hearings Under Subpart D § 77.67 Final decision of the...

  15. 14 CFR 147.15 - Space requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Space requirements. 147.15 Section 147.15 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SCHOOLS AND... Space requirements. An applicant for an aviation maintenance technician school certificate and...

  16. 14 CFR 147.15 - Space requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Space requirements. 147.15 Section 147.15 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SCHOOLS AND... Space requirements. An applicant for an aviation maintenance technician school certificate and...

  17. 14 CFR 147.15 - Space requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Space requirements. 147.15 Section 147.15 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SCHOOLS AND... Space requirements. An applicant for an aviation maintenance technician school certificate and...

  18. 14 CFR 147.15 - Space requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Space requirements. 147.15 Section 147.15 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SCHOOLS AND... Space requirements. An applicant for an aviation maintenance technician school certificate and...

  19. 14 CFR 147.15 - Space requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Space requirements. 147.15 Section 147.15 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SCHOOLS AND... Space requirements. An applicant for an aviation maintenance technician school certificate and...

  20. Ensuring US National Aeronautics Test Capabilities

    NASA Technical Reports Server (NTRS)

    Marshall, Timothy J.

    2010-01-01

    U.S. leadership in aeronautics depends on ready access to technologically advanced, efficient, and affordable aeronautics test capabilities. These systems include major wind tunnels and propulsion test facilities and flight test capabilities. The federal government owns the majority of the major aeronautics test capabilities in the United States, primarily through the National Aeronautics and Space Administration (NASA) and the Department of Defense (DoD). However, changes in the Aerospace landscape, primarily the decrease in demand for testing over the last 20 years required an overarching strategy for management of these national assets. Therefore, NASA established the Aeronautics Test Program (ATP) as a two-pronged strategic initiative to: (1) retain and invest in NASA aeronautics test capabilities considered strategically important to the agency and the nation, and (2) establish a strong, high level partnership with the DoD. Test facility utilization is a critical factor for ATP because it relies on user occupancy fees to recover a substantial part of the operations costs for its facilities. Decreasing utilization is an indicator of excess capacity and in some cases low-risk redundancy (i.e., several facilities with basically the same capability and overall low utilization). However, low utilization does not necessarily translate to lack of strategic importance. Some facilities with relatively low utilization are nonetheless vitally important because of the unique nature of the capability and the foreseeable aeronautics testing needs. Unfortunately, since its inception, the customer base for ATP has continued to shrink. Utilization of ATP wind tunnels has declined by more than 50% from the FY 2006 levels. This significant decrease in customer usage is attributable to several factors, including the overall decline in new programs and projects in the aerospace sector; the impact of computational fluid dynamics (CFD) on the design, development, and research

  1. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program: 1996. Volume 2

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Sickorez, Donn G. (Editor)

    1997-01-01

    The objectives of the program, which began nationally in 1964 and at JSC in 1965 are to (1) further the professional knowledge qualified engineering and science faculty members, (2) stimulate an exchange of ideas between participants and NASA, (3) and refresh the research and teaching activities of participants' institutions, and (4) contribute to the research objectives of NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA JSC colleague.

  2. Final Summary of Research Report to the National Aeronautics and Space Administration Origins of Solar Systems Program

    NASA Technical Reports Server (NTRS)

    O'D. Alexander, Conel

    2003-01-01

    The chondrites are aggregates of components (e.g. chondrules, chondrule rims and matrix) that formed in the nebula but, at present, there is no consensus on how any of these components formed or whether their formation produced or post dated the chemical fractionations between the chondrites. Chondrites are, at present, the most primitive Solar System objects available for laboratory study and the conditions under which their principle components formed would provide the most direct constraints for models of nebula formation and evolution. The conditions under which chondrules formed is of particular importance because, if their relative abundance in chondrites approximates that in the nebula, they are the products of one of the most energetic and pervasive processes that operated in the early Solar System. The goal of this proposal was to combine theoretical modeling with a comprehensive study of the elemental and isotopic compositions of the major components in unequilibrated ordinary chondrites (UOCs), with the aim of determining the conditions in the nebula at the time of their formation. The isotopes of volatile and moderately volatile elements should be particularly revealing of conditions during chondrule formation, as evaporation under most conditions would lead to isotopic mass fractionation. Modeling of chondrule and matrix formation requires the development of a kinetic model of evaporation and condensation, and calibration of this model against experiments. Cosmic spherules present an opportunity to test our evaporation models under flash heating conditions that would be difficult to simulate experimentally. However, there is surprisingly little known about the isotopic compositions of silicate cosmic spherules, and a number of questions need to be addressed. Is the range of compositions they exhibit due to evaporation? If they are, are the relative volatilities consistent with the models/experiments and are the isotopic fractionations consistent with Rayleigh conditions? For instance, do the alkalis and S evaporate prior to significant melting so that conditions did not meet the Rayleigh criteria of rapid diffusion? If so, their isotopic fractionation might be considerably suppressed. Could this mechanism of K loss apply to chondrule formation? The Fe isotopic fractionation during evaporation of silicates has not been measured, so cosmic spherules might provide a clue to whether FeO diffusion is fast enough to maintain Rayleigh conditions during evaporation. And so on.

  3. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1994, volume 1

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard; Sickorez, Donn G.

    1995-01-01

    The JSC NASA/ASEE Summer Faculty Fellowship Program was conducted by Texas A&M University and JSC. The objectives of the program, which began nationally in 1964 and at JSC in 1965 are to: (1) further the professional knowledge of qualified engineering and science faculty members, (2) stimulate an exchange of ideas between participants and NASA, (3) enrich and refresh the research and teaching activities of participants' institutions, and (4) contribute to the research objectives of the NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA JSC colleague. This document is a compilation of the final reports on the research projects completed by the faculty fellows during the summer of 1994.

  4. National Aeronautics and Space Administration (nasa)/american Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1991, Volume 1

    NASA Technical Reports Server (NTRS)

    Hyman, William A. (Editor); Goldstein, Stanley H. (Editor)

    1991-01-01

    Presented here is a compilation of the final reports of the research projects done by the faculty members during the summer of 1991. Topics covered include optical correlation; lunar production and application of solar cells and synthesis of diamond film; software quality assurance; photographic image resolution; target detection using fractal geometry; evaluation of fungal metabolic compounds released to the air in a restricted environment; and planning and resource management in an intelligent automated power management system.

  5. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1993, volume 1

    SciTech Connect

    Hyman, W.A.; Goldstein, S.H.

    1993-12-01

    The JSC NASA/ASEE Summer Faculty Fellowship Program was conducted by Texas A M University and JSC. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are as follows: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA/JSC colleague. This document is a compilation of the final reports on the research projects completed by the faculty fellows during the summer of 1993. Separate abstracts have been prepared for articles from this report.

  6. An Overview of Ecological Modeling and Machine Learning Research Within the U.S. National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    Coughlan, Joseph C.

    2004-01-01

    In the early 1980 s NASA began research to understand global habitability and quantify the processes and fluxes between the Earth's vegetation and the biosphere. This effort evolved into the Earth Observing System Program which current encompasses 18 platforms and 80 sensors. During this time, the global environmental research community has evolved from a data poor to a data rich research area and is challenged to provide timely use of these new data. This talk will outline some of the data mining research NASA has funded in support for the environmental sciences in the Intelligent Systems project and will give a specific example in ecological forecasting, predicting the land surface properties given nowcasts and weather forecasts, using the Terrestrial Observation and Prediction System (TOPS).

  7. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program: 1995.. Volume 2

    NASA Technical Reports Server (NTRS)

    Hyman, William A. (Editor); Sickorez, Donn G. (Editor)

    1996-01-01

    The JSC NASA/ASEE Summer Faculty Fellowship Program was conducted at JSC, including the White Sands Test Facility, by Texas A&M University and JSC. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participants' institutions; and (4) to contribute to the research objectives of the NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA/JSC colleague. In addition to the faculty participants, the 1995 program included five students. This document is a compilation of the final reports on the research projects completed by the faculty fellows and visiting students during the summer of 1995. The reports of two of the students are integral with that of the respective fellow. Three students wrote separate reports.

  8. The National Aeronautics and Space Administration-U.S. Public Health Service Health Evaluation and Enhancement Program - Summary of results.

    NASA Technical Reports Server (NTRS)

    Durbeck, D. C.; Heinzelmann, F.; Schacter, J.; Haskell, W. L.; Payne, G. H.; Moxley, R. T., III; Nemiroff, M.; Limoncelli, D. D.; Arnoldi, L. B.; Fox, S. M., III

    1972-01-01

    An exercise program was initiated in a federal agency to assess the feasibility of such a program, and to identify the factors that influenced joining, adherence to, and effectiveness of the program. The program was utilized by 237 of the 998 eligible federal employees; mean attendance rate was 1.3 days/week. Those who volunteered perceived a need for increased physical activity, believed they had sufficient time to participate and derived subjective as well as objective benefits. Significant improvements were found in heart rate response to the standard exercise test, body weight, skinfold measurements and triglyceride levels.

  9. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1993, volume 2

    NASA Technical Reports Server (NTRS)

    Hyman, William A. (Editor); Goldstein, Stanley H. (Editor)

    1993-01-01

    The JSC NASA/ASEE Summer Faculty Fellowship Program was conducted by Texas A&M University and JSC. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participant's institutions; and (4) to contribute to the research objectives of the NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA/JSC colleague. A compilation of the final reports on the research projects completed by the faculty fellows during the summer of 1993 is presented.

  10. Postdoctoral and Senior Postdoctoral Resident Research Associateship Program and Research Management Associateship Program for the National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Information on the status of all Resident Research Associated and Research Management Associates is provided. All Associated whose tenure continued as of June 1, 1985 are listed alphabetically by laboratory. Also included are their countries of citizenship and dates of tenure. The status of reporting obligations are summarized. A list of progress reports received during this reporting period is also provided. All Associates who terminated during the reporting period are listed.

  11. National Aeronautics and Space Administration (NASA) /American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program. Volume 1

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Sickorez, Donn G. (Editor)

    1997-01-01

    The 1996 JSC NASA/ASEE Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The objectives of the program, which began nationally in 1964 and at JSC in 1965 are to (1) further the professional knowledge qualified engineering and science faculty members, (2) stimulate an exchange of ideas between participants and NASA, (3) refresh the research and teaching activities of participants' institutions, and (4) contribute to the research objectives of the NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA JSC colleague. This document is a compilation of the final reports on the research projects completed by the faculty fellows during the summer of 1996.

  12. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1993, volume 1

    NASA Technical Reports Server (NTRS)

    Hyman, William A. (Editor); Goldstein, Stanley H. (Editor)

    1993-01-01

    The JSC NASA/ASEE Summer Faculty Fellowship Program was conducted by Texas A&M University and JSC. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are as follows: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA/JSC colleague. This document is a compilation of the final reports on the research projects completed by the faculty fellows during the summer of 1993.

  13. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program: 1995. Volume 1

    NASA Technical Reports Server (NTRS)

    Hyman, William A. (Editor); Sickorez, Donn G. (Editor)

    1996-01-01

    The objectives of the JSC NASA/ASEE Summer Faculty Fellowship Program, which began nationally in 1964 and at JSC in 1965, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participants' institutions; and (4) to contribute to the research objectives of the NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA/JSC colleague. In addition to the faculty participants, the 1995 program included five students. This document is a compilation of the first fifteen of twenty-seven final reports on the research projects completed by the faculty fellows and visiting students during the summer of 1995. The reports of two of the students are integral with that of the respective fellow. Three students wrote separate reports included in Volume 2.

  14. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1998. Volume 1

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Sickorez, Donn G. (Editor)

    1999-01-01

    JSC NASA/ASEE Summer Faculty Fellowship Program was conducted by the University of Houston and JSC, under ASEE. The objectives of the program are to further the professional knowledge of qualified engineering and science members; stimulate an exchange of ideas between participants and NASA; enrich and refresh the research and teaching activities of participants; and contribute to the research objectives of the NASA Centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project commensurate with his/her interests and background and worked in collaboration with a NASA/JSC colleague. This document is a compilation of the final reports on the fellows' research projects performed during the summer of 1998. Volume 1, current volume, contains the first reports, and volume 2 contains the remaining reports.

  15. 14 CFR 15.3 - Administrative claim, when presented; appropriate office.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Administrative claim, when presented; appropriate office. 15.3 Section 15.3 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Administrative claim, when presented; appropriate office. (a) A claim is deemed to have been presented when...

  16. 14 CFR 15.3 - Administrative claim, when presented; appropriate office.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Administrative claim, when presented; appropriate office. 15.3 Section 15.3 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Administrative claim, when presented; appropriate office. (a) A claim is deemed to have been presented when...

  17. 14 CFR 13.231 - Argument before the administrative law judge.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Argument before the administrative law judge. 13.231 Section 13.231 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Actions § 13.231 Argument before the administrative law judge. (a) Arguments during the hearing....

  18. 14 CFR 302.215 - Briefs to the administrative law judge.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Briefs to the administrative law judge. 302.215 Section 302.215 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION....215 Briefs to the administrative law judge. Briefs to the administrative law judge shall be...

  19. 14 CFR 302.215 - Briefs to the administrative law judge.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Briefs to the administrative law judge. 302.215 Section 302.215 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION....215 Briefs to the administrative law judge. Briefs to the administrative law judge shall be...

  20. 14 CFR 13.231 - Argument before the administrative law judge.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Argument before the administrative law judge. 13.231 Section 13.231 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Actions § 13.231 Argument before the administrative law judge. (a) Arguments during the hearing....

  1. 14 CFR 302.215 - Briefs to the administrative law judge.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Briefs to the administrative law judge. 302.215 Section 302.215 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION....215 Briefs to the administrative law judge. Briefs to the administrative law judge shall be...

  2. 14 CFR 302.215 - Briefs to the administrative law judge.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Briefs to the administrative law judge. 302.215 Section 302.215 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION....215 Briefs to the administrative law judge. Briefs to the administrative law judge shall be...

  3. 14 CFR 13.231 - Argument before the administrative law judge.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Argument before the administrative law judge. 13.231 Section 13.231 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Actions § 13.231 Argument before the administrative law judge. (a) Arguments during the hearing....

  4. 14 CFR 13.231 - Argument before the administrative law judge.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Argument before the administrative law judge. 13.231 Section 13.231 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Actions § 13.231 Argument before the administrative law judge. (a) Arguments during the hearing....

  5. Job Prospects for Aeronautical Engineers.

    ERIC Educational Resources Information Center

    Basta, Nicholas

    1985-01-01

    Huge defense budgets and a commercial aircraft comeback are contributing to high demands for aeronautical engineers. Job offers are plentiful and are expected to rise by 41 percent from 1982 to 1995. Federal space programs will provide additional employment opportunities. (DH)

  6. 14 CFR 414.41 - Administrative law judge's recommended decision in safety approval actions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Administrative law judge's recommended decision in safety approval actions. 414.41 Section 414.41 Aeronautics and Space COMMERCIAL SPACE... Procedures § 414.41 Administrative law judge's recommended decision in safety approval actions. (a)...

  7. 14 CFR 406.5 - Administrative law judge's recommended decision in license, permit, and payload actions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Administrative law judge's recommended decision in license, permit, and payload actions. 406.5 Section 406.5 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION...

  8. 14 CFR 406.5 - Administrative law judge's recommended decision in license, permit, and payload actions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Administrative law judge's recommended decision in license, permit, and payload actions. 406.5 Section 406.5 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION...

  9. 14 CFR 406.5 - Administrative law judge's recommended decision in license, permit, and payload actions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Administrative law judge's recommended decision in license, permit, and payload actions. 406.5 Section 406.5 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION...

  10. 14 CFR 414.41 - Administrative law judge's recommended decision in safety approval actions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Administrative law judge's recommended decision in safety approval actions. 414.41 Section 414.41 Aeronautics and Space COMMERCIAL SPACE... Procedures § 414.41 Administrative law judge's recommended decision in safety approval actions. (a)...

  11. 14 CFR 414.41 - Administrative law judge's recommended decision in safety approval actions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Administrative law judge's recommended decision in safety approval actions. 414.41 Section 414.41 Aeronautics and Space COMMERCIAL SPACE... Procedures § 414.41 Administrative law judge's recommended decision in safety approval actions. (a)...

  12. 14 CFR 406.5 - Administrative law judge's recommended decision in license, permit, and payload actions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Administrative law judge's recommended decision in license, permit, and payload actions. 406.5 Section 406.5 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION...

  13. 14 CFR 414.41 - Administrative law judge's recommended decision in safety approval actions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Administrative law judge's recommended decision in safety approval actions. 414.41 Section 414.41 Aeronautics and Space COMMERCIAL SPACE... Procedures § 414.41 Administrative law judge's recommended decision in safety approval actions. (a)...

  14. 78 FR 8684 - Fifteenth Meeting: RTCA Special Committee 217-Aeronautical Databases Joint with EUROCAE WG-44...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-06

    ... Federal Aviation Administration Fifteenth Meeting: RTCA Special Committee 217--Aeronautical Databases Joint with EUROCAE WG-44--Aeronautical Databases AGENCY: Federal Aviation Administration (FAA), U.S. Department of Transportation (DOT). ACTION: Notice of RTCA Special Committee 217--Aeronautical...

  15. 78 FR 25134 - Sixteenth Meeting: RTCA Special Committee 217-Aeronautical Databases Joint With EUROCAE WG-44...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-29

    ... Federal Aviation Administration Sixteenth Meeting: RTCA Special Committee 217--Aeronautical Databases Joint With EUROCAE WG-44--Aeronautical Databases AGENCY: Federal Aviation Administration (FAA), U.S. Department of Transportation (DOT). ACTION: Notice of RTCA Special Committee 217--Aeronautical...

  16. 78 FR 51809 - Seventeenth Meeting: RTCA Special Committee 217-Aeronautical Databases Joint With EUROCAE WG-44...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-21

    ... Federal Aviation Administration Seventeenth Meeting: RTCA Special Committee 217--Aeronautical Databases Joint With EUROCAE WG-44--Aeronautical Databases AGENCY: Federal Aviation Administration (FAA), U.S. Department of Transportation (DOT). ACTION: Notice of RTCA Special Committee 217--Aeronautical...

  17. 78 FR 66418 - Eighteenth Meeting: RTCA Special Committee 217-Aeronautical Databases Joint With EUROCAE WG-44...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-05

    ... Federal Aviation Administration Eighteenth Meeting: RTCA Special Committee 217--Aeronautical Databases Joint With EUROCAE WG-44--Aeronautical Databases AGENCY: Federal Aviation Administration (FAA), U.S. Department of Transportation (DOT). ACTION: Notice of RTCA Special Committee 217--Aeronautical...

  18. Progress in aeronautical research and technology applicable to civil air transports

    NASA Technical Reports Server (NTRS)

    Bower, R. E.

    1981-01-01

    Recent progress in the aeronautical research and technology program being conducted by the United States National Aeronautics and Space Administration is discussed. Emphasis is on computational capability, new testing facilities, drag reduction, turbofan and turboprop propulsion, noise, composite materials, active controls, integrated avionics, cockpit displays, flight management, and operating problems. It is shown that this technology is significantly impacting the efficiency of the new civil air transports. The excitement of emerging research promises even greater benefits to future aircraft developments.

  19. 14 CFR 417.19 - Registration of space objects.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Registration of space objects. 417.19 Section 417.19 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... Registration of space objects. (a) To assist the U.S. Government in implementing Article IV of the...

  20. 14 CFR 415.8 - Human space flight.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Human space flight. 415.8 Section 415.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH LICENSE General § 415.8 Human space flight. To obtain a launch license,...

  1. 14 CFR 431.8 - Human space flight.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Human space flight. 431.8 Section 431.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH VEHICLE (RLV) General § 431.8 Human space...

  2. 14 CFR 23.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank expansion space. 23.969 Section 23.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT....969 Fuel tank expansion space. Each fuel tank must have an expansion space of not less than...

  3. 14 CFR 417.19 - Registration of space objects.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Registration of space objects. 417.19 Section 417.19 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... Registration of space objects. (a) To assist the U.S. Government in implementing Article IV of the...

  4. 14 CFR 415.8 - Human space flight.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Human space flight. 415.8 Section 415.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH LICENSE General § 415.8 Human space flight. To obtain a launch license,...

  5. 14 CFR 431.8 - Human space flight.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Human space flight. 431.8 Section 431.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH VEHICLE (RLV) General § 431.8 Human space...

  6. 14 CFR 23.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank expansion space. 23.969 Section 23.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT....969 Fuel tank expansion space. Each fuel tank must have an expansion space of not less than...

  7. 14 CFR 23.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank expansion space. 23.969 Section 23.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT....969 Fuel tank expansion space. Each fuel tank must have an expansion space of not less than...

  8. 14 CFR 417.19 - Registration of space objects.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Registration of space objects. 417.19 Section 417.19 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... Registration of space objects. (a) To assist the U.S. Government in implementing Article IV of the...

  9. 14 CFR 415.8 - Human space flight.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Human space flight. 415.8 Section 415.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH LICENSE General § 415.8 Human space flight. To obtain a launch license,...

  10. 14 CFR 431.8 - Human space flight.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Human space flight. 431.8 Section 431.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH VEHICLE (RLV) General § 431.8 Human space...

  11. 14 CFR 417.19 - Registration of space objects.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Registration of space objects. 417.19 Section 417.19 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... Registration of space objects. (a) To assist the U.S. Government in implementing Article IV of the...

  12. 14 CFR 431.8 - Human space flight.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Human space flight. 431.8 Section 431.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH VEHICLE (RLV) General § 431.8 Human space...

  13. 14 CFR 415.8 - Human space flight.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Human space flight. 415.8 Section 415.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH LICENSE General § 415.8 Human space flight. To obtain a launch license,...

  14. 14 CFR 23.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank expansion space. 23.969 Section 23.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT....969 Fuel tank expansion space. Each fuel tank must have an expansion space of not less than...

  15. 14 CFR 415.8 - Human space flight.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Human space flight. 415.8 Section 415.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH LICENSE General § 415.8 Human space flight. To obtain a launch license,...

  16. 14 CFR 23.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank expansion space. 23.969 Section 23.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT....969 Fuel tank expansion space. Each fuel tank must have an expansion space of not less than...

  17. 14 CFR 417.19 - Registration of space objects.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Registration of space objects. 417.19 Section 417.19 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... Registration of space objects. (a) To assist the U.S. Government in implementing Article IV of the...

  18. 14 CFR 431.8 - Human space flight.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Human space flight. 431.8 Section 431.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH VEHICLE (RLV) General § 431.8 Human space...

  19. An Overview of the NASA Aeronautics Test Program Strategic Plan

    NASA Technical Reports Server (NTRS)

    Marshall, Timothy J.

    2010-01-01

    U.S. leadership in aeronautics depends on ready access to technologically advanced, efficient, and affordable aeronautics test capabilities. These systems include major wind tunnels and propulsion test facilities and flight test capabilities. The federal government owns the majority of the major aeronautics test capabilities in the United States, primarily through the National Aeronautics and Space Administration (NASA) and the Department of Defense (DoD), however an overarching strategy for management of these national assets was needed. Therefore, in Fiscal Year (FY) 2006 NASA established the Aeronautics Test Program (ATP) as a two-pronged strategic initiative to: (1) retain and invest in NASA aeronautics test capabilities considered strategically important to the agency and the nation, and (2) establish a strong, high level partnership with the DoD Test Resources Management Center (TRMC), stewards of the DoD test and evaluation infrastructure. Since then, approximately seventy percent of the ATP budget has been directed to underpin fixed and variable costs of facility operations within its portfolio and the balance towards strategic investments in its test facilities, including maintenance and capability upgrades. Also, a strong guiding coalition was established through the National Partnership for Aeronautics Testing (NPAT), with governance by the senior leadership of NASA s Aeronautics Research Mission Directorate (ARMD) and the DoD's TRMC. As part of its strategic planning, ATP has performed or participated in many studies and analyses, including assessments of major NASA and DoD aeronautics test capabilities, test facility condition evaluations and market research. The ATP strategy has also benefitted from unpublished RAND research and analysis by Ant n et al. (2009). Together, these various studies, reports and assessments serve as a foundation for a new, five year strategic plan that will guide ATP through FY 2014. Our vision for the future is a balanced

  20. Thirty-Ninth Annual Report of the National Advisory Committee for Aeronautics: Administrative Report Including Technical Reports Nos. 1111 to 1157

    NASA Technical Reports Server (NTRS)

    1955-01-01

    This is the fiftieth year since Wilbur and Orville Wright at Kitty Hawk N. C., made their powered flight. That airplane was a fragile and unsteady machine of no immediate utility. It flew for only a minute but it disclosed the solution of the age-old problem of human flight. The Wrights were the first in the history of man to fly. There was no one to teach them. They had to discover principles and to learn the art by cautious and methodical experimenting. From their own research they obtained the practical information needed to design their successful flying machine. The Wrights received no effective aid from the theoretical studies of flight made by the mathematicians of the nineteenth century. The science of aerodynamics was developed in response to the practical demands of aeronautics in the years to follow. In 1908, the Wrights demonstrated at Fort Myer, Va., a vastly improved flyer, the first military airplane. It carried a passenger and flew for more than an hour. Following this public demonstration, the development of the airplane was taken up vigorously. At first France and Germany took the lead, then Great Britain, but the United States lagged behind in the furthering of this greatest American development of the century. With war clouds in view in 1915, the Congress established the National Advisory Committee for Aeronautics to undertake the scientific study of the problems of fight with a view to their practical solution. President Wilson appointed the members of the first Committee, consisting of the heads of the military and civil agencies of the Government concerned with aeronautics and experts from private life.