Science.gov

Sample records for aeronautical engineering aer

  1. Aeronautical Engineering: A continuing bibliography

    NASA Technical Reports Server (NTRS)

    1982-01-01

    This bibliography lists 347 reports, articles and other documents introduced into the scientific and technical information system. Documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated compounds, equipment, and systems are included. Research and development in aerodynamics, aeronautics and ground support equipment for aeronautical vehicles are also included.

  2. Aeronautical Engineering: 1983 cumulative index

    NASA Technical Reports Server (NTRS)

    1984-01-01

    This bibliography is a cumulative index to the abstracts contained in NASA SP-7037 (158) through NASA SP-7037 (169) of Aeronautical Engineering: A Continuing Bibliography. NASA SP-7037 and its supplements have been compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, contract, report number, and accession number indexes.

  3. Compressibility Effects in Aeronautical Engineering

    NASA Technical Reports Server (NTRS)

    Stack, John

    1941-01-01

    Compressible-flow research, while a relatively new field in aeronautics, is very old, dating back almost to the development of the first firearm. Over the last hundred years, researches have been conducted in the ballistics field, but these results have been of practically no use in aeronautical engineering because the phenomena that have been studied have been the more or less steady supersonic condition of flow. Some work that has been done in connection with steam turbines, particularly nozzle studies, has been of value, In general, however, understanding of compressible-flow phenomena has been very incomplete and permitted no real basis for the solution of aeronautical engineering problems in which.the flow is likely to be unsteady because regions of both subsonic and supersonic speeds may occur. In the early phases of the development of the airplane, speeds were so low that the effects of compressibility could be justifiably ignored. During the last war and immediately after, however, propellers exhibited losses in efficiency as the tip speeds approached the speed of sound, and the first experiments of an aeronautical nature were therefore conducted with propellers. Results of these experiments indicated serious losses of efficiency, but aeronautical engineers were not seriously concerned at the time became it was generally possible. to design propellers with quite low tip. speeds. With the development of new engines having increased power and rotational speeds, however, the problems became of increasing importance.

  4. Aeronautical Engineering: A Continuing Bibliography. Supplement 421

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP#2000-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.

  5. Aeronautical Engineering: A Continuing Bibliography. Supplment 385

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-1998-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract.

  6. Aeronautical Engineering: A Continuing Bibliography with indexes

    NASA Technical Reports Server (NTRS)

    1984-01-01

    This bibliography lists 426 reports, articles and other documents introduced into the NASA scientific and technical information system in August 1984. Reports are cited in the area of Aeronautical Engineering. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing operation and performance of aircraft (including aircraft engines) and associated components, equipment and systems.

  7. Aeronautical Engineering: A Continuing Bibliography with Indexes

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-1999-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes-subject and author are included after the abstract section.

  8. Aeronautical Engineering: A Continuing Bibliography with Indexes

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This supplemental issue of Aeronautical Engineering: A Continuing Bibliography with Indexes lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes-subject and author are included after the abstract section.

  9. Aeronautical engineering. A continuing bibliography with indexes

    NASA Technical Reports Server (NTRS)

    1982-01-01

    This bibliography lists 326 reports, articles, and other documents introduced into the NASA scientific and technical information system in January 1982. Topics on aeronautical engineering and aerodynamics such as flight control systems, avionics, computer programs, computational fluid dynamics and composite structures are covered.

  10. Graduate engineering research participation in aeronautics

    NASA Technical Reports Server (NTRS)

    Roberts, A. S., Jr.

    1986-01-01

    The Aeronautics Graduate Research Program commenced in 1971, with the primary goal of engaging students who qualified for regular admission to the Graduate School of Engineering at Old Dominion University in a graduate engineering research and study program in collaboration with NASA Langley Research Center, Hampton, Virginia. The format and purposes of this program are discussed. Student selection and program statistics are summarized. Abstracts are presented in the folowing areas: aircraft design, aerodynamics, lift/drag characteristics; avionics; fluid mechanics; solid mechanics; instrumentation and measurement techniques; thermophysical properties experiments; large space structures; earth orbital dynamics; and environmental engineering.

  11. Aeronautics and Space Engineering Board: Aeronautics Assessment Committee

    NASA Technical Reports Server (NTRS)

    1977-01-01

    High temperature engine materials, fatigue and fracture life prediction, composite materials, propulsion noise pollution, propulsion components, full-scale engine research, V/STOL propulsion, advanced engine concepts, and advanced general aviation propulsion research were discussed.

  12. Aeronautical Research Engineer Milt Thompson computing data

    NASA Technical Reports Server (NTRS)

    1956-01-01

    Milton O. Thompson was hired as an engineer at the National Advisory Committee for Aeronautics' High-Speed Flight Station (later renamed the National Aeronautics and Space Administration's Dryden Flight Research Center) on March 19, 1956. In 1958 he became a research pilot, but in this photo Milt is working on data from another pilot's research flight. Thompson began flying with the U.S. Navy as a pilot trainee at the age of 19. He subsequently served during World War II, with duty in China and Japan. Following six years of active naval service, he entered the University of Washington, in Seattle, Washington. Milt graduated in 1953 with a Bachelor of Science degree in Engineering. He remained in the Naval Reserves during college, and continued flying--not only naval aircraft but crop dusters and forest-spraying aircraft. After college graduation, Milt became a flight test engineer for the Boeing Aircraft Company in Seattle, where he was employed for two years before coming to the High-Speed Flight Station.

  13. Graduate engineering research participation in aeronautics

    NASA Technical Reports Server (NTRS)

    Roberts, A. S., Jr.

    1984-01-01

    Graduate student engineering research in aeronautics at Old Dominion University is surveyed. Student participation was facilitated through a NASA sponsored university program which enabled the students to complete degrees. Research summaries are provided and plans for the termination of the grant program are outlined. Project topics include: Failure modes for mechanically fastened joints in composite materials; The dynamic stability of an earth orbiting satellite deploying hinged appendages; The analysis of the Losipescu shear test for composite materials; and the effect of boundary layer structure on wing tip vortex formation and decay.

  14. Aeronautical engineering: A continuing bibliography with indexes (supplement 324)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This bibliography lists 149 reports, articles, and other documents introduced into the NASA scientific and technical information system in December 1995. Subject coverage includes engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.

  15. Aeronautical engineering: A continuing bibliography with indexes (supplement 319)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This report lists 349 reports, articles and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.

  16. Aeronautical Engineering: A Continuing Bibliography With Indexes. Supplement 392

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This report lists reports, articles and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.

  17. Aeronautical engineering: A continuing bibliography with indexes (supplement 310)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This bibliography lists 29 reports, articles, and other documents introduced into the NASA scientific and technical information system in Nov. 1994. Subject coverage includes: engineering and theoretical aspects of design, construction,evaluation testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.

  18. Aeronautical Engineering: A Continuing Bibliography with Indexes. SUPPL-422

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This report lists reports, articles and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.

  19. Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplement 405

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This report lists reports, articles and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.

  20. Aeronautical engineering: A cumulative index to a continuing bibliography

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This bibliography is a cumulative index to the abstracts contained in NASA SP-7037 (197) through NASA SP-7037 (208) of Aeronautical Engineering: A Continuing Bibliography. NASA SP-7037 and its supplements have been compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, foreign technology, contract, report number, and accession number indexes.

  1. A cumulative index to Aeronautical Engineering: A continuing bibliography

    NASA Technical Reports Server (NTRS)

    1982-01-01

    This bibliography is a cumulated index to the abstracts contained in NASA SP-7037(132) through NASA SP-7037(143) of Aeronautical Engineering: A continuing bibliography. NASA SP-7037 and its supplements have been compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, contract, and report number indexes.

  2. Aeronautical engineering: A cumulative index to a continuing bibliography

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This bibliography is a cumulative index to the abstracts contained in NASA SP-7037(210) through NASA SP-7037(221) of Aeronautical Engineering: A Continuing Bibliography. NASA SP-7037 and its supplements have been compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, foreign technology, contract number, report number, and accession number indexes.

  3. A cumulative index to a continuing bibliography on aeronautical engineering

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This bibliography is a cumulative index to the abstracts contained in NASA-SP-7037(184) through NASA-SP-7037(195) of Aeronautical Engineering: A Continuing Bibliography. NASA SP-7037 and its supplements have been compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, foreign technology, contract, report number, and accession number indexes.

  4. Aeronautical Engineering: A continuing bibliography, 1982 cumulative index

    NASA Technical Reports Server (NTRS)

    1983-01-01

    This bibliography is a cumulative index to the abstracts contained in NASA SP-7037 (145) through NASA SP-7037 (156) of Aeronautical Engineering: A Continuing Bibliography. NASA SP-7037 and its supplements have been compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, contract, and report number indexes.

  5. Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplement 413

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-2000-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. Two indexes-subject and author are included after the abstract section.

  6. Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplement 420

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-2000-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. Two indexes-subject and author are included after the abstract section.

  7. Aeronautical Engineering: A Continuing Bibliography With Indexes. Supplement 406

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-1999-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. Two indexes-subject and author are included after the abstract section.

  8. Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplement 419

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-2000-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. Two indexes-subject and author are included after the abstract section.

  9. Aeronautical Engineering: A Continuing Bibliography With Indexes. Supplement 398

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This supplemental issue of Aeronautical Engineering lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes - subject and author are included after the abstract section.

  10. Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplement 389

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-1998-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract.

  11. Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplement 396

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-1999-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. Two indexes-subject and author are included after the abstract section.

  12. Aeronautical Engineering: A Continuing Bibliography With Indexes. Supplement 404

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-1999-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. Two indexes-subject and author are included after the abstract section.

  13. Aeronautical Engineering: A Continuing Bibliography With Indexes. Supplement 418

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-2000-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. Two indexes-subject and author are included after the abstract section.

  14. Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplement 387

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-1998-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract.

  15. Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplement 386

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-1998-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract.

  16. Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplement 391

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-1999-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract.

  17. Aeronautical engineering: A continuing bibliography with indexes (supplement 294)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This issue of Aeronautical Engineering - A Continuing Bibliography with Indexes lists 590 reports, journal articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspect of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. The bibliographic series is compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). Seven indexes are included: subject, personal author, corporate source, foreign technology, contract number, report number, and accession number.

  18. Aeronautical engineering: A continuing bibliography with indexes (supplement 284)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This bibliography lists 974 reports, articles, and other documents introduced into the NASA scientific and technical information system in Oct. 1992. The coverage includes documents on design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.

  19. A cumulative index to Aeronautical Engineering: A special bibliography

    NASA Technical Reports Server (NTRS)

    1978-01-01

    This publication is a cumulative index to the abstracts contained in NASA SP-7037 (80) through NASA SP-7037 (91) of Aeronautical Engineering: A Special Bibliography. NASA SP-7037 and its supplements have been compiled through the cooperative efforts of the American Institute of Aeronautics (AIAA) and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, contract, and report number indexes.

  20. Aeronautical Engineering: A continuing bibliography with indexes (supplement 175)

    NASA Technical Reports Server (NTRS)

    1984-01-01

    This bibliography lists 467 reports, articles and other documents introduced into the NASA scientific and technical information system in May 1984. Topics cover varied aspects of aeronautical engineering, geoscience, physics, astronomy, computer science, and support facilities.

  1. Aeronautical engineering: A continuing bibliography with indexes (supplement 282)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This bibliography lists 623 reports, articles, and other documents introduced into the NASA scientific and technical information system in Aug. 1992. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.

  2. Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplement 397

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This report lists reports, articles and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract.

  3. Aeronautical Engineering, a special bibliography with indexes, supplement 15

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This special bibliography lists 363 reports, articles, and other documents introduced into the NASA scientific and technical information system in January 1972. Emphasis is placed on engineering and theoretical aspects for design, construction, evaluation, testing, operation and performance of aircraft (including aircraft engines) and associated components, equipment and systems. Also included are entries on research and development in aeronautics and aerodynamics and research and ground support for aeronautical vehicles.

  4. Aeronautical engineering: A continuing bibliography with indexes (supplement 119)

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This bibliography lists 341 reports, articles, and other documents introduced into the NASA scientific and technical information system in January 1980. Abstracts on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems are presented. Research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles are also presented.

  5. Aeronautical Engineering: A special bibliography with indexes, supplement 13

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This special bibliography lists 283 reports, articles, and other documents introduced into the NASA scientific and technical information system in December, 1971. Emphasis is placed on engineering and theoretical aspects for design, construction, evaluation, testing, operation and performance of aircraft (including aircraft engines), and associated components, equipment and systems. Also included are entries on research and development in aeronautics and aerodynamics and research and ground support for aeronautical vehicles.

  6. Aeronautical engineering: A special bibliography with indexes, supplement 49

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The bibliography contains 368 abstract citations of reports, journal articles, and other documents concerned with the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. Research and development in aerodynamics, aeronautics, and ground support equipment are also treated. Subject, personal, and contract number indexes are included for ease of access.

  7. Aeronautical Engineering: A Continuing Bibliography. Supplement 383

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This bibliography lists reports, articles and other documents announced in the NASA science and technical information system. Subject coverage includes: Design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  8. Aeronautical Engineering: A Continuing Bibliography. Supplement 384

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This bibliography lists reports, articles and other documents announced in the NASA science and technical information system. Subject coverage includes: Design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  9. Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplment 394

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-1999-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes-subject and author are included after the abstract section.

  10. Aeronautical Engineering: A Continuing Bibliography With Indexes. Supplement 407

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-1999-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes-subject and author are included after the abstract section.

  11. Aeronautical engineering, a special bibliography, September 1971 (supplement 10)

    NASA Technical Reports Server (NTRS)

    1971-01-01

    This supplement to Aeronautical Engineering-A Special Bibliography (NASA SP-7037) lists 413 reports, journal articles, and other documents originally announced in September 1971 in Scientific and Technical Aerospace Reports (STAR) or in International Aerospace Abstracts (IAA). The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the bibliography consists of a standard bibliographic citation accompanied by an abstract. The listing of the entries is arranged in two major sections, IAA Entries and STAR Entries in that order. The citations and abstracts are reproduced exactly as they appeared originally in IAA or STAR, including the original accession numbers from the respective announcement journals.

  12. Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplement 415

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-2000-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes-subject and author are included after the abstract section.

  13. Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplement 411

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-2000-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes- subject and author are included after the abstract section.

  14. Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplement 408

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This supplemental issue of Aeronautical Engineering, a Continuing Bibliography with Indexes (NASA/SP#1999-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes#subject and author are included after the abstract section.

  15. Aeronautical Engineering: A Continuing Bibliography With Indexes. Supplement 414

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This report lists reports, articles and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes-subject and author are included after the abstract section.

  16. Aeronautical Engineering: A continuing bibliography with indexes, supplement 185

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This bibliography lists 462 reports, articles and other documents introduced into the NASA scientific and technical information system in February 1985. Aerodynamics, aeronautical engineering, aircraft design, aircraft stability and control, geophysics, social sciences, and space sciences are some of the areas covered.

  17. Aeronautical engineering: A continuing bibliography with indexes (supplement 316)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This bibliography lists 413 reports, articles, and other documents introduced into the NASA scientific and technical information system in April 1995. Subject coverage includes: aeronautics; mathematical and computer sciences; chemistry and material sciences; geosciences; design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  18. Aeronautical Engineering: A cumulative index to the 1980 issue

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This bibliography is a cumulative index to reports, articles, and other documents introduced into the NASA scientific and technical information system. Abstracts for the entries cited appeared in issues 119 through 130 of Aeronautical Engineering: A Continuing Bibliography (NASA SP-7037). Subject, personal author, corporate author, contract number, and report/accession number indexes are provided.

  19. The role of computational fluid dynamics in aeronautical engineering

    NASA Astrophysics Data System (ADS)

    Kishimoto, Takuji; Uchida, Takashi

    1988-12-01

    Numerical analyses by solving Euler/Navier-Stokes Equations has been used in practical aeronautical engineerings. Here, the results of two dimensional Navier-Stokes analyses of a multiple slotted flap, and a three dimensional wing design problem using Euler analyses are shown.

  20. Aeronautical engineering. A continuing bibliography with indexes, supplement 127, October 1980

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A bibliography containing 431 abstracts addressing various topics in aeronautical engineering is given. The coverage includes engineering and theoretical aspects of design. construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.

  1. National Aeronautics and Space Administration Science and Engineering Apprentice Program

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The National Aeronautics and Space Administration's Science and Engineering Apprentice Program for high school students is one of NASA's many efforts toward a goal of scientific literacy. It embraces science, mathematics, and technology as keys to purposeful and sustained progress and security for our nation and its people. It serves as a model for helping reform education by striving to address mechanisms to influence the knowledge, skills, and attitudes of our students. It focuses on what to do today to meet the challenges of tomorrow.

  2. Aeronautical engineering: A continuing bibliography with indexes (supplement 211)

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A continuing bibliography (NASA SP-7037) lists 519 reports, journal articles and other documents originally announced in February 1987 in Scientific and Technical Aerospace Reports (STAR) or in the International Aerospace Abstracts (IAA). The coverage includes documents on the engineering and theoretical aspect of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the bibliography consists of a standard bibliographic citation accompanied in most cases by an abstract. The listing of the entries is arranged by the first nine STAR specific categories and the remaining STAR major categories. The arrangement offers the user the most advantageous breakdown for individual objectives. The citations include the original accession numbers from the respective announcement journals. The IAA items will precede the STAR items within each category. Seven indexes entitled subject, personal author, corporate source, foreign technology, contract number, report number, and accession number are included.

  3. Quarterly Bulletin of the Division of Mechanical Engineering and the National Aeronautical Establishment, 1 October to 31 December 1975.

    DTIC Science & Technology

    AERONAUTICS, * MECHANICAL ENGINEERING , SHIPS, CONTROL SYSTEMS, AIRCRAFT, CANADA, HUMAN FACTORS ENGINEERING, GAS DYNAMICS, MECHANICS, FUELS, ENGINES, MARINE ENGINEERING, HYDRODYNAMICS, HARBORS, AERODYNAMICS, FLIGHT RECORDERS.

  4. Quarterly Bulletin of the Division of Mechanical Engineering and the National Aeronautical Establishment

    DTIC Science & Technology

    Contents: Aerodynamic and structural noise research at NAE; The dynamics of contained oil slicks; Current projects of the Division of Mechanical Engineering and the National Aeronautical Establishment.

  5. A cumulative index to Aeronautical Engineering, a continuing bibliography, supplement 105

    NASA Technical Reports Server (NTRS)

    1979-01-01

    This bibliography is a cumulative index to the abstracts contained in NASA SP-7037 (93) through NASA SP-7037 (104) of Aeronautical Engineering: A Continuing Bibliography. NASA SP-7037 and its supplements were compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, contract, and report number indexes.

  6. Aeronautical engineering: A cumulative index to a continuing bibliography (supplement 248)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This publication is a cumulative index to the abstracts contained in Supplements 236 through 247 of Aeronautical Engineering: A Continuing Bibliography. The bibliographic series is compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). Seven indexes are included -- subject, personal author, corporate source, foreign technology, contract number, report number and accession number.

  7. Aeronautical engineering: A cumulative index to a continuing bibliography (supplement 235)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This publication is a cummulative index to the abstracts contained in Supplements 223 through 234 of Aeronautical Engineering: A Continuing Bibliography. The bibliographic series is compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). Seven indexes are included -- subject, personal author, corporate source, foreign technology, contract number, report number and accession number.

  8. A cumulative index to the 1973 issues of Aeronautical engineering: A special bibliography

    NASA Technical Reports Server (NTRS)

    1974-01-01

    This publication is a cumulative index to the abstracts contained in NASA SP-7037 (28) through NASA SP-7037 (39) of Aeronautical Engineering: A Special Bibliography. NASA SP-7037 and its supplements have been compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, contract, and report number indexes.

  9. A cumulative index to Aeronautical Engineering: A special bibliography, January 1976

    NASA Technical Reports Server (NTRS)

    1976-01-01

    This publication is a cumulative index to the abstracts contained in NASA SP-7037 (54) through NASA SP-7037 (65) of Aeronautical Engineering: A Special Bibliography. NASA SP-7037 and its supplements have been compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, contract, and report number indexes.

  10. Aeronautical Engineering: A cumulative index to the 1984 issues of the continuing bibliography

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This bibliography is a cumulative index to the abstracts contained in NASA SP-7037(171) through NASA SP-7037(182) of Aeronautical Engineering: A Continuing Bibliography. NASA SP-7037 and its supplements have been compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, foreign technology, contract, report number, and accession number indexes.

  11. A cumulative index to the 1972 issues of aeronautical engineering: A special bibliography

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A cumulative index to the abstracts contained in NASA SP-7037 (15) through NASA SP-7037 (26) of Aeronautical Engineering: A Special Bibliography. NASA SP-7037 and its supplements has been complied through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, contract, and report number indexes.

  12. Aeronautical engineering: A cumulative index to a continuing bibliography (supplement 325)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This publication is a cumulative index to the abstracts contained in NASA SP-7037 supplements 313 through 324 of Aeronautical Engineering: A Continuing Bibliography. The bibliographic series is compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). This Cumulative index includes: a subject, personal author, corporate source, foreign technology, contract number, report number, and accession number.

  13. Aeronautical engineering: A cumulative index to a continuing bibliography (supplement 274)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This publication is a cumulative index to the abstracts contained in supplements 262 through 273 of Aeronautical Engineering: A Continuing Bibliography. The bibliographic series is compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). Seven indexes are included: subject, personal author, corporate source, foreign technology, contract number, report number, and accession number.

  14. Aeronautical engineering: A cumulative index to a continuing bibliography (supplement 287)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This publication is a cummulative index to the abstracts contained in Supplements 275 through 286 of Aeronautical Engineering: A Continuing Bibliography. The bibliographic series is compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). Seven indexes are included -- subject, personal author, corporate source, foreign technology, contract number, report number and accession number.

  15. Aeronautical engineering: A cumulative index to a continuing bibliography (supplement 261)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This publication is a cummulative index to the abstracts contained in Supplements 249 through 260 of Aeronautical Engineering: A Continuing Bibliography. The bibliographic series is compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). Seven indexes are included -- subject, personal author, corporate source, foreign technology, contract number, report number and accession number.

  16. Aeronautical Engineering: A Continuing Bibliography with Indexes, Supplement 410. Supplement 410

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-1999-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract.

  17. Vortex-Lattice Utilization. [in aeronautical engineering and aircraft design

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The many novel, innovative, and unique implementations and applications of the vortex-lattice method to aerodynamic design and analysis which have been performed by Industry, Government, and Universities were presented. Although this analytical tool is not new, it continues to be utilized and refined in the aeronautical community.

  18. Aeronautical engineering: A cumulative index to a continuing bibliography (supplement 300)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This publication is a cumulative index to the abstracts contained in supplements 288 through 299 of Aeronautical Engineering: A Continuing Bibliography. The bibliographic series is compiled through the efforts of the Center for Aerospace Information of the National Aeronautics and Space Administration (NASA). Seven indexes are included: subject, personal author, corporate source, foreign technology, contract number, report number, and accession number.

  19. Quarterly Bulletin of the Division of Mechanical Engineering and the National Aeronautical Establishment.

    DTIC Science & Technology

    Contents: The NAE flying spot scanner/analyser; Dynamic modelling of the innovation cycle as applied to fluidics; Current projects of the division of mechanical engineering and the national aeronautical establishment.

  20. A cumulative index to Aeronautical Engineering: A continuing bibliography, supplement 118

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Subject, personal author, corporate author, contract, and report number cumulative indexes are provided for documents cited in Aeronautical Engineering: A Continuing Bibliography from February 1979 through January 1980. (NASA SP 7037 supplements 106 through 117).

  1. Development of aeronautical engines by the Army and Navy

    NASA Technical Reports Server (NTRS)

    1921-01-01

    Different aircraft engines are categorized as being of interest to only the Army or Navy or to both armed services. A listing of the different engines is presented along with some statistics, namely, horsepower.

  2. Quarterly Bulletin of the Division of Mechanical Engineering and the National Aeronautical Establishment, Ottawa, 1 April to 30 June, 1976.

    DTIC Science & Technology

    EXPERIMENTAL DESIGN, PSYCHOMOTOR FUNCTION, CANADA, TEST METHODS, MODULES(ELECTRONICS), PATTERNS, MECHANICAL ENGINEERING , SYSTEMS ANALYSIS, HANDBOOKS, AERONAUTICAL ENGINEERING, SLEEP, FATIGUE(PHYSIOLOGY).

  3. Aeronautical engineering: A continuing bibliography with indexes (supplement 267)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This bibliography lists 661 reports, articles, and other documents introduced into the NASA scientific and technical information system in June, 1991. Subject coverage includes design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; theoretical and applied aspects of aerodynamics and general fluid dynamics; electrical engineering; aircraft control; remote sensing; computer sciences; nuclear physics; and social sciences.

  4. Aeronautical Engineering: A continuing bibliography with indexes (supplement 188)

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This bibliography lists 477 reports, articles and other documents introduced into the NASA scientific and technical information system in May 1985. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment and systems.

  5. Aeronautical engineering: A continuing bibliography with indexes (supplement 277)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This bibliography lists 467 reports, articles, and other documents introduced into the NASA scientific and technical information system in Mar. 1992. Subject coverage includes: the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines); and associated aircraft components, equipment, and systems. It also includes research and development in ground support systems, theoretical and applied aspects of aerodynamics, and general fluid dynamics.

  6. Aeronautical engineering: A continuing bibliography with indexes (supplement 256)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This bibliography lists 426 reports, articles, and other documents introduced into the NASA scientific and technical information system in August 1990. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  7. Aeronautical engineering: A continuing bibliography with indexes (supplement 245)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This bibliography lists 537 reports, articles, and other documents introduced into the NASA scientific and technical information system in October, 1989. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  8. Aeronautical engineering: A continuing bibliography with indexes (supplement 251)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This bibliography lists 526 reports, articles, and other documents introduced into the NASA scientific and technical information system in April 1990. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  9. Aeronautical engineering: A continuing bibliography with indexes (supplement 288)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This bibliography lists 661 reports, articles, and other documents introduced into the NASA scientific and technical information system in Jan. 1993. Subject coverage includes: design, construction, and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  10. Aeronautical engineering: A continuing bibliography with indexes (supplement 301)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This bibliography lists 1291 reports, articles, and other documents introduced into the NASA scientific and technical information system in Feb. 1994. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  11. Aeronautical engineering: A continuing bibliography with indexes (supplement 238)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This bibliography lists 458 reports, articles, and other documents introduced into the NASA scientific and technical information system in March, 1989. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  12. Aeronautical engineering: A continuing bibliography with indexes (supplement 281)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This bibliography lists 596 reports, articles, and other documents introduced into the NASA scientific and technical information system in Jul. 1992. Subject coverage includes: design, construction, and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  13. Aeronautical engineering: A continuing bibliography with indexes (supplement 323)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This bibliography lists 518 reports, articles, and other documents introduced into the NASA scientific and technical information system in November 1995. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  14. Aeronautical engineering: A continuing bibliography with indexes (supplement 289)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This bibliography lists 792 reports, articles, and other documents introduced into the NASA scientific and technical information system in Mar. 1993. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  15. Aeronautical engineering: A continuing bibliography with indexes (supplement 305)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This bibliography lists 239 reports, articles, and other documents recently introduced into the NASA scientific and technical information system. Subject coverage includes the following: the design, construction, and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  16. Aeronautical engineering: A continuing bibliography with indexes (supplement 260)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This bibliography lists 405 reports, articles, and other documents introduced into the NASA scientific and technical information system in December, 1990. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  17. Aeronautical engineering: A continuing bibliography with indexes (supplement 240)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This bibliography lists 629 reports, articles, and other documents introduced into the NASA scientific and technical information system in May, 1989. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  18. Aeronautical engineering: A continuing bibliography with indexes (supplement 286)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This bibliography lists 845 reports, articles, and other documents introduced into the NASA scientific and technical information system in Dec. 1992. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  19. Aeronautical engineering: A continuing bibliography with indexes (supplement 272)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This bibliography lists 719 reports, articles, and other documents introduced into the NASA scientific and technical information system in November, 1991. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  20. Aeronautical engineering: A continuing bibliography with indexes (supplement 262)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This bibliography lists 474 reports, articles, and other documents introduced into the NASA scientific and technical information system in Jan. 1991. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  1. Aeronautical engineering: A continuing bibliography with indexes (supplement 291)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This bibliography lists 757 reports, articles, and other documents introduced into the NASA scientific and technical information system in May. 1993. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  2. Aeronautical engineering: A continuing bibliography with indexes (supplement 292)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This bibliography lists 675 reports, articles, and other documents recently introduced into the NASA scientific and technical information system database. Subject coverage includes the following: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  3. Aeronautical engineering: A continuing bibliography with indexes (supplement 309)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This bibliography lists 212 reports, articles, and other documents introduced into the NASA scientific and technical information system in Oct. 1994. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  4. Aeronautical Engineering: a Continuing Bibliography with Indexes (Supplement 243)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This bibliography lists 423 reports, articles, and other documents introduced into the NASA scientific and technical information system in August 1989. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  5. Aeronautical engineering: A continuing bibliography with indexes (supplement 258)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This bibliography lists 536 reports, articles, and other documents introduced into the NASA scientific and technical information system in October 1990. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  6. Aeronautical engineering: A continuing bibliography with indexes (supplement 259)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This bibliography lists 774 reports, articles, and other documents introduced into the NASA scientific and technical information system in November, 1990. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  7. Aeronautical engineering: A continuing bibliography with indexes (supplement 249)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This bibliography lists 637 reports, articles, and other documents introduced into the NASA scientific and technical information system in November, 1988. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  8. Aeronautical engineering: A continuing bibliography with indexes (supplement 254)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This bibliography lists 538 reports, articles, and other documents introduced into the NASA scientific and technical information system in June 1990. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  9. Aeronautical engineering: A continuing bibliography with indexes (supplement 253)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This bibliography lists 637 reports, articles, and other documents introduced into the NASA scientific and technical information system in May, 1990. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  10. Aeronautical engineering: A continuing bibliography with indexes (supplement 246)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This bibliography lists 690 reports, articles, and other documents introduced into the NASA scientific and technical information system in November, 1989. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  11. Aeronautical engineering: A continuing bibliography with indexes (supplement 279)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This bibliography lists 759 reports, articles, and other documents introduced into the NASA scientific and technical information system in May 1992. Subject coverage includes: design, construction, and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  12. Aeronautical engineering: A continuing bibliography with indexes (supplement 269)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This bibliography lists 539 reports, articles, and other documents introduced into the NASA scientific and technical information system in August, 1991. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  13. Aeronautical engineering: A continuing bibliography with indexes (supplement 236)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This bibliography lists 430 reports, articles, and other documents introduced into the NASA scientific and technical information system in January, 1989. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  14. Aeronautical engineering: A continuing bibliography with indexes (supplement 276)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This bibliography lists 705 reports, articles, and other documents introduced into the NASA scientific and technical information system in Feb. 1992. Subject coverage includes: design, construction, and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  15. Aeronautical engineering: A continuing bibliography with indexes (supplement 271)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This bibliography lists 666 reports, articles, and other documents introduced into the NASA scientific and technical information system in October, 1991. Subject coverage includes design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  16. Aeronautical engineering: A continuing bibliography with indexes (supplement 298)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This bibliography lists 328 reports, articles, and other documents recently introduced into the NASA scientific and technical information system. Subject coverage includes the following areas: design, construction, and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  17. Aeronautical engineering: A continuing bibliography with indexes (supplement 247)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This bibliography lists 437 reports, articles, and other documents introduced into the NASA scientific and technical information system in December, 1989. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  18. Aeronautical engineering: A continuing bibliography with indexes (supplement 237)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This bibliography lists 572 reports, articles, and other documents introduced into the NASA scientific and technical information system in February, 1989. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  19. Aeronautical engineering: A continuing bibliography with indexes (supplement 239)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This bibliography lists 454 reports, articles, and other documents introduced into the NASA scientific and technical information system in April, 1989. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  20. Aeronautical engineering: A continuing bibliography with indexes (supplement 255)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This bibliography lists 529 reports, articles, and other documents introduced into the NASA scientific and technical information system in June 1990. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  1. Aeronautical engineering: A continuing bibliography with indexes (supplement 250)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This bibliography lists 420 reports, articles, and other documents introduced into the NASA scientific and technical information system in February, 1990. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  2. Aeronautical Engineering: a Continuing Bibliography with Indexes (Supplement 244)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This bibliography lists 465 reports, articles, and other documents introduced into the NASA scientific and technical information system in September 1989. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  3. Aeronautical engineering: A continuing bibliography with indexes (supplement 266)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This bibliography lists 645 reports, articles, and other documents introduced into the NASA scientific and technical information system in May 1991. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  4. Aeronautical engineering: A continuing bibliography with indexes (supplement 252)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This bibliography lists 425 reports, articles, and other documents introduced into the NASA scientific and technical information system in April 1990. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  5. Aeronautical engineering: A continuing bibliography with indexes (supplement 307)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This bibliography lists 338 reports, articles, and other documents introduced into the NASA scientific and technical information system in Aug. 1994. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  6. Aeronautical engineering: A continuing bibliography with indexes (supplement 308)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This bibliography lists 269 reports, articles, and other documents introduced into the NASA scientific and technical information system in Sep. 1994. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  7. Aeronautical engineering: A continuing bibliography with indexes (supplement 315)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This bibliography lists 217 reports, articles, and other documents introduced into the NASA scientific and technical information system in Mar. 1995. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  8. Aeronautical engineering: A continuing bibliography with indexes (supplement 280)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This bibliography lists 647 reports, articles, and other documents introduced into the NASA scientific and technical information system in June, 1991. Subject coverage includes: aerodynamics, air transportation safety, aircraft communication and navigation, aircraft design and performance, aircraft instrumentation, aircraft propulsion, aircraft stability and control, research facilities, astronautics, chemistry and materials, engineering, geosciences, computer sciences, physics, and social sciences.

  9. Aeronautical engineering: A continuing bibliography with indexes (supplement 233)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This bibliography lists 637 reports, articles, and other documents introduced into the NASA scientific and technical information system in November, 1988. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  10. Aeronautical engineering: A continuing bibliography with indexes (supplement 296)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This bibliography lists 592 reports, articles, and other documents introduced into the NASA scientific and technical information system in Oct. 1993. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  11. Aeronautical engineering: A continuing bibliography with indexes (supplement 304)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This bibliography lists 453 reports, articles, and other documents introduced into the NASA scientific and technical information system in May 1994. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  12. Aeronautical engineering: A continuing bibliography with indexes (supplement 303)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This bibliography lists 211 reports, articles, and other documents introduced into the NASA scientific and technical information database. Subject coverage includes: design, construction, and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  13. Aeronautical engineering: A continuing bibliography with indexes (supplement 293)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This bibliography lists 476 reports, articles, and other documents introduced into the NASA scientific and technical information system in July, 1992. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  14. Aeronautical engineering: A continuing bibliography with indexes (supplement 234)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This bibliography lists 539 reports, articles, and other documents introduced into the NASA scientific and technical information system in December, 1988. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  15. Aeronautical engineering: A continuing bibliography with indexes (supplement 314)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This bibliography lists 144 reports, articles, and other documents introduced into the NASA scientific and technical information system in Feb. 1995. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  16. Aeronautical engineering: A continuing bibliography with indexes (supplement 270)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This bibliography lists 600 reports, articles, and other documents introduced into the NASA scientific and technical information system in September, 1991. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  17. Aeronautical engineering: A continuing bibliography with indexes (supplement 242)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This bibliography lists 466 reports, articles, and other documents introduced into the NASA scientific and technical information system in July, 1989. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  18. Aeronautical engineering: A continuing bibliography with indexes (supplement 306)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This bibliography lists 181 reports, articles, and other documents recently introduced into the NASA STI Database. Subject coverage includes the following: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  19. Aeronautical engineering: A continuing bibliography with indexes (supplement 268)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This bibliography lists 406 reports, articles, and other documents introduced into the NASA scientific and technical information system in July, 1991. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  20. Aeronautical engineering: A continuing bibliography with indexes (supplement 285)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This bibliography lists 534 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System in Nov. 1992. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  1. Aeronautical engineering: A continuing bibliography with indexes (supplement 317)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This bibliography lists 224 reports, articles, and other documents introduced into the NASA scientific and technical information system in May 1995. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  2. Aeronautical engineering: A continuing bibliography with indexes (supplement 321)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This bibliography lists 496 reports, articles, and other documents introduced into the NASA scientific and technical information system in Sep. 1995. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  3. Aeronautical engineering: A continuing bibliography with indexes (supplement 299)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This bibliography lists 244 reports, articles, and other documents introduced into the NASA scientific and technical information system in Jan. 1994. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  4. Aeronautical engineering: A continuing bibliography with indexes (supplement 265)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This bibliography lists 554 reports, articles, and other documents introduced into the NASA scientific and technical information system in Apr. 1991. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  5. Aeronautical engineering: A continuing bibliography with indexes (supplement 264)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This bibliography lists 558 reports, articles, and other documents introduced into the NASA scientific and technical information system in Mar. 1991. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  6. Aeronautical engineering: A continuing bibliography with indexes (supplement 257)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This bibliography lists 560 reports, articles, and other documents introduced into the NASA scientific and technical information system in September 1990. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  7. Aeronautical engineering: A continuing bibliography with indexes (supplement 302)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This bibliography lists 152 reports, articles, and other documents introduced into the NASA scientific and technical information database. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  8. Aeronautical engineering: A continuing bibliography with indexes (supplement 297)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This bibliography lists 825 reports, articles, and other documents introduced into the NASA scientific and technical information system in Nov. 1993. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  9. Aeronautical engineering: A continuing bibliography with indexes (supplement 263)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This bibliography lists 517 reports, articles, and other documents introduced into the NASA scientific and technical information system in Feb. 1991. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  10. Aeronautical engineering: A continuing bibliography with indexes (supplement 295)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This bibliography lists 581 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System in Sep. 1993. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  11. Aeronautical engineering: A continuing bibliography with indexes (supplement 273)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This bibliography lists 808 reports, articles, and other documents introduced into the NASA scientific and technical information system in Dec. 1991. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  12. Aeronautical engineering: A continuing bibliography with indexes (supplement 322)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This bibliography lists 719 reports, articles, and other documents introduced into the NASA scientific and technical information system in Oct. 1995. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  13. Aeronautical engineering: A continuing bibliography with indexes (supplement 241)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This bibliography lists 526 reports, articles, and other documents introduced into the NASA scientific and technical information system in June, 1989. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  14. Aeronautical engineering: A continuing bibliography with indexes (supplement 290)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This bibliography lists 1396 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System in Apr. 1993. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  15. Aeronautical engineering: A continuing bibliography with indexes (supplement 283)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This bibliography lists 615 reports, articles, and other documents introduced into the NASA scientific and technical information system in Sep. 1992. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  16. Aeronautical engineering: A continuing bibliography with indexes (supplement 318)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This bibliography lists 217 reports, articles, and other documents introduced into the NASA scientific and technical information system in June 1995. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  17. AER image filtering

    NASA Astrophysics Data System (ADS)

    Gómez-Rodríguez, F.; Linares-Barranco, A.; Paz, R.; Miró-Amarante, L.; Jiménez, G.; Civit, A.

    2007-05-01

    Address Event Representation (AER) is an emergent neuromorphic interchip communication protocol that allows real-time virtual massive connectivity among huge number of neurons located on different chips.[1] By exploiting high speed digital communication circuits (with nano-seconds timing), synaptic neural connections can be time multiplexed, while neural activity signals (with mili-seconds timings) are sampled at low frequencies. Neurons generate "events" according to their activity levels. That is, more active neurons generate more events per unit time and access the interchip communication channel more frequently than neurons with low activity. In Neuromorphic system development, AER brings some advantages to develop real-time image processing system: (1) AER represents the information like time continuous stream not like a frame; (2) AER sends the most important information first (although this depends on the sender); (3) AER allows to process information as soon as it is received. When AER is used in artificial vision field, each pixel is considered like a neuron, so pixel's intensity is represented like a sequence of events; modifying the number and the frequency of these events, it is possible to make some image filtering. In this paper we present four image filters using AER: (a) Noise addition and suppression, (b) brightness modification, (c) single moving object tracking and (d) geometrical transformations (rotation, translation, reduction and magnification). For testing and debugging, we use USB-AER board developed by Robotic and Technology of Computers Applied to Rehabilitation (RTCAR) research group. This board is based on an FPGA, devoted to manage the AER functionality. This board also includes a micro-controlled for USB communication, 2 Mbytes RAM and 2 AER ports (one for input and one for output).

  18. Quarterly Bulletin of the Division of Mechanical Engineering and the National Aeronautical Establishment, Ottawa, 1 July to 30 September 1978.

    DTIC Science & Technology

    FOREIGN TECHNOLOGY, DATA PROCESSING, YAW, REAL TIME, SHOCK WAVES, CANADA, AERONAUTICS, MODEL TESTS, MECHANICAL ENGINEERING , GAS DISCHARGES, NAVAL ARCHITECTURE, HYDRODYNAMICS, SHOCK TUBES, LASER TRACKING, RAILROAD CARS.

  19. Prediction of Performance and Satisfaction of Aeronautical Engineering Students at the Naval Postgraduate School.

    ERIC Educational Resources Information Center

    Sofge, Charles T.

    A primary objective of this research was the development of predictors of academic performance and satisfaction for aeronautical engineering students. Three basic types of data used to develop predictors were biographical (historical), academic aptitude (graduate record exam), and individual interests (Strong Vocational Interest Blank) data.…

  20. Power Output and Air Requirements of a Two-stroke Cycle Engine for Aeronautical Use

    NASA Technical Reports Server (NTRS)

    Paton, C R; Kemper, Carlton

    1927-01-01

    This investigation was undertaken to determine the pressure and amount of air necessary for satisfactory high-speed, two-stroke cycle operation and thus permit the power requirements of the air pump or blower to be determined. Based on power output and air requirement here obtained the two-stroke cycle engine would seem to be favorable for aeronautical use. No attempts were made to secure satisfactory operation at idling speeds.

  1. Compact nanosecond laser system for the ignition of aeronautic combustion engines

    NASA Astrophysics Data System (ADS)

    Amiard-Hudebine, G.; Tison, G.; Freysz, E.

    2016-12-01

    We have studied and developed a compact nanosecond laser system dedicated to the ignition of aeronautic combustion engines. This system is based on a nanosecond microchip laser delivering 6 μJ nanosecond pulses, which are amplified in two successive stages. The first stage is based on an Ytterbium doped fiber amplifier (YDFA) working in a quasi-continuous-wave (QCW) regime. Pumped at 1 kHz repetition rate, it delivers TEM00 and linearly polarized nanosecond pulses centered at 1064 nm with energies up to 350 μJ. These results are in very good agreement with the model we specially designed for a pulsed QCW pump regime. The second amplification stage is based on a compact Nd:YAG double-pass amplifier pumped by a 400 W peak power QCW diode centered at λ = 808 nm and coupled to a 800 μm core multimode fiber. At 10 Hz repetition rate, this system amplifies the pulse delivered by the YDFA up to 11 mJ while preserving its beam profile, polarization ratio, and pulse duration. Finally, we demonstrate that this compact nanosecond system can ignite an experimental combustion chamber.

  2. Summary of Jimsphere wind profiles: Programs, data, comments, part 1. [for use in aeronautical vehicle design and engineering

    NASA Technical Reports Server (NTRS)

    Willett, J. A.

    1979-01-01

    Jimsphere wind profiles are documented for the following ranges and installations: Eastern Test Range, Cape Kennedy, Florida; Western Test Range; Point Mugu, California; White Sands Missile Range, New Mexico; Wallops Island, Virginia; Green River, Utah; and Vandenberg Air Force Base, California. Profile information for 1964-1977 includes data summaries, computer formats, frequency distributions, composite listings, etc., for use in establishing and interpreting natural environment criteria for aeronautical vehicle design and engineering operations.

  3. Numerical predictions and measurements in the lubrication of aeronautical engine and transmission components

    NASA Astrophysics Data System (ADS)

    Moraru, Laurentiu Eugen

    2005-11-01

    This dissertation treats a variety of aspects of the lubrication of mechanical components encountered in aeronautical engines and transmissions. The study covers dual clearance squeeze film dampers, mixed elastohydrodynamic lubrication (EHL) cases and thermal elastohydrodynamic contacts. The dual clearance squeeze film damper (SFD) invented by Fleming is investigated both theoretically and experimentally for cases when the sleeve that separates the two oil films is free to float and for cases when the separating sleeve is supported by a squirrel cage. The Reynolds equation is developed to handle each of these cases and it is solved analytically for short bearings. A rotordynamic model of a test rig is developed, for both the single and dual SFD cases. A computer code is written to calculate the motion of the test rig rotor. Experiments are performed in order to validate the theoretical results. Rotordynamics computations are found to favorably agree with measured data. A probabilistic model for mixed EHL is developed and implemented. Surface roughness of gears are measured and processed. The mixed EHL model incorporates the average flow model of Patir and Cheng and the elasto-plastic contact mechanics model of Chang Etsion and Bogy. The current algorithm allows for the computation of the load supported by an oil film and for the load supported by the elasto-plastically deformed asperities. This work also presents a way to incorporate the effect of the fluid induced roughness deformation by utilizing the "amplitude reduction" results provided by the deterministic analyses. The Lobatto point Gaussian integration algorithm of Elrod and Brewe was extended for thermal lubrication problems involving compressible lubricants and it was implemented in thermal elastohydrodynamic cases. The unknown variables across the film are written in series of Legendre polynomials. The thermal Reynolds equation is obtained in terms of the series coefficients and it is proven that it can

  4. Curriculum for modern aeronautics

    NASA Technical Reports Server (NTRS)

    Roberts, L.

    1975-01-01

    Methods for improving the university training of aeronautical engineering students are discussed. Specific topics considered are: (1) the kind of students which should be developed through aeronautical engineering education, (2) to what extent should aerospace engineering be prepared for diversity and change, (3) to what extent should theory be emphasized as compared with practical engineering and design, and (4) a suggestion for NASA/Industry/University collaboration.

  5. Engineer in charge: A history of the Langley Aeronautical Laboratory, 1917-1958

    NASA Technical Reports Server (NTRS)

    Hansen, James R.

    1986-01-01

    A history is presented by using the most technologically significant research programs associated with the Langley Aeronautical Laboratory from 1917 to 1958 and those programs that, after preliminary research, seemed best to illustrate how the laboratory was organized, how it works, and how it cooperated with industry and the military.

  6. Quarterly Bulletin of the Division of Mechanical Engineering and the National Aeronautical Establishment.

    DTIC Science & Technology

    PHYSICS LABORATORIES, REPORTS), (*SCIENTIFIC RESEARCH, CANADA), ACOUSTICS, WIND TUNNEL MODELS, TURBULENCE, MECHANICAL ENGINEERING , TURBOJET ENGINES, BUILDINGS, GUST LOADS, NOISE, STRESS(PHYSIOLOGY), RADIOBIOLOGY, AIR POLLUTION

  7. Profile of software engineering within the National Aeronautics and Space Administration (NASA)

    NASA Technical Reports Server (NTRS)

    Sinclair, Craig C.; Jeletic, Kellyann F.

    1994-01-01

    This paper presents findings of baselining activities being performed to characterize software practices within the National Aeronautics and Space Administration. It describes how such baseline findings might be used to focus software process improvement activities. Finally, based on the findings to date, it presents specific recommendations in focusing future NASA software process improvement efforts. The findings presented in this paper are based on data gathered and analyzed to date. As such, the quantitative data presented in this paper are preliminary in nature.

  8. Aeronautics. An Educator's Guide with Activities in Science, Mathematics, and Technology Education: What Pilot, Astronaut, or Aeronautical Engineer didn't Start out with a Toy Glider?

    NASA Technical Reports Server (NTRS)

    Biggs, Pat (Editor); Huetter, Ted (Editor)

    1998-01-01

    Welcome to the exciting world of aeronautics. The term aeronautics originated in France, and was derived from the Greek words for "air" and "to sail." It is the study of flight and the operation of aircraft. This educator guide explains basic aeronautical concepts, provides a background in the history of aviation, and sets them within the context of the flight environment (atmosphere, airports, and navigation). The activities in this guide are designed to be uncomplicated and fun. They have been developed by NASA Aerospace Education Services Program specialists, who have successfully used them in countless workshops and student programs around the United States. The activities encourage students to explore the nature of flight, and experience some real-life applications of mathematics, science, and technology. The subject of flight has a wonderful power to inspire learning.

  9. Nomenclature for Aeronautics

    NASA Technical Reports Server (NTRS)

    1927-01-01

    This nomenclature for aeronautics was prepared by a Special Conference on Aeronautical Nomenclature by the executive committee of the National Advisory Committee for Aeronautics at a meeting held on August 19, 1924, at which meeting Dr. Joseph S. Ames was appointed chairman of the conference. The conference was composed of representatives of the National Advisory Committee for Aeronautics and specially appointed representatives officially designated by the Army Air Service, the Bureau of Aeronautics of the Navy Department, the Bureau of Standards, the American Society of Mechanical Engineers, the Society of Automotive Engineers, and the Aeronautical Chamber of Commerce. The purpose of the committee in the preparation and publication of this report is to secure uniformity in the official documents of the government and, as far as possible, in technical and other commercial publications

  10. NASA Engine Icing Research Overview: Aeronautics Evaluation and Test Capabilities (AETC) Project

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    2015-01-01

    The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported by airlines under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion by the engine. The ice crystals can result in degraded engine performance, loss of thrust control, compressor surge or stall, and flameout of the combustor. The Aviation Safety Program at NASA has taken on the technical challenge of a turbofan engine icing caused by ice crystals which can exist in high altitude convective clouds. The NASA engine icing project consists of an integrated approach with four concurrent and ongoing research elements, each of which feeds critical information to the next element. The project objective is to gain understanding of high altitude ice crystals by developing knowledge bases and test facilities for testing full engines and engine components. The first element is to utilize a highly instrumented aircraft to characterize the high altitude convective cloud environment. The second element is the enhancement of the Propulsion Systems Laboratory altitude test facility for gas turbine engines to include the addition of an ice crystal cloud. The third element is basic research of the fundamental physics associated with ice crystal ice accretion. The fourth and final element is the development of computational tools with the goal of simulating the effects of ice crystal ingestion on compressor and gas turbine engine performance. The NASA goal is to provide knowledge to the engine and aircraft manufacturing communities to help mitigate, or eliminate turbofan engine interruptions, engine damage, and failures due to ice crystal ingestion.

  11. NASA thesaurus aeronautics vocabulary

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The controlled vocabulary used by the NASA Scientific and Technical Information effort to index documents in the area of aeronautics is presented. The terms comprise a subset of the 1988 edition of the NASA Thesaurus and its supplements issued through the end of 1990. The Aeronautics Vocabulary contains over 4700 terms presented in a hierarchical display format. In addition to aeronautics per se, the vocabulary covers supporting terminology from areas such as fluid dynamics, propulsion engineering, and test facilities and instrumentation.

  12. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program 1988, volume 2

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B.; Goldstein, Stanley H.

    1989-01-01

    The 1988 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JCS. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began in 1965 at JSC and in 1964 nationally, are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA Centers.

  13. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1992, volume 2

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)

    1992-01-01

    The 1992 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters Washington, DC. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers. This document contains reports 13 through 24.

  14. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program 1988, volume 1

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)

    1989-01-01

    The 1988 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began in 1965 at JSC and in 1964 nationally, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA Centers.

  15. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1987, volume 2

    NASA Technical Reports Server (NTRS)

    Jones, William B., Jr. (Editor); Goldstein, Stanley H. (Editor)

    1987-01-01

    The 1987 Johnson Space Center (JCS) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship program was conducted by Texas A and M University and JSC. The 10-week program was operated under the auspices of ASEE. The basic objectives of the program are: to further the professional knowledge of qualified engineering and science faculty members; to stimulate an exchange of ideas between participants and NASA; to enrich and refresh the research and teaching activities of participants' institutions; and to contribute to the research objective of the NASA Centers. This document is a compilation of the final reports on the research projects done by the faculty fellows during the summer of 1987.

  16. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1989, volume 1

    NASA Technical Reports Server (NTRS)

    Jones, William B., Jr. (Editor); Goldstein, Stanley H. (Editor)

    1989-01-01

    The 1989 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by Texas A and M University and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers.

  17. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1992, volume 1

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)

    1992-01-01

    The 1992 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, Washington, DC. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers. This document is a compilation of the final reports 1 through 12.

  18. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1989, volume 2

    NASA Technical Reports Server (NTRS)

    Jones, William B., Jr. (Editor); Goldstein, Stanley H. (Editor)

    1989-01-01

    The 1989 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by Texas A and M University and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers.

  19. The Education of Future Aeronautical Engineers: Conceiving, Designing, Implementing and Operating

    ERIC Educational Resources Information Center

    Crawley, Edward F.; Brodeur, Doris R.; Soderholm, Diane H.

    2008-01-01

    This paper will outline answers to the two central questions regarding improving engineering education: (1) What is the full set of knowledge, skills, and attitudes that engineering students should possess as they leave the university, and at what level of proficiency?; and (2) How can we do better at ensuring that students learn these skills? The…

  20. Design-Build-Write: Increasing the Impact of English for Specific Purposes Learning and Teaching in Aeronautical Engineering Education through Multiple Intelligences Task Design

    ERIC Educational Resources Information Center

    Tatzl, Dietmar

    2011-01-01

    This article presents an English for Specific Purposes (ESP) task developed for teaching aeronautical engineering students. The task Design-Build-Write rests on the assumption that engineering students are skilled at mathematical reasoning, problem solving, drawing and constructing. In Gardner's 1983 Multiple Intelligences (MI) theory, these…

  1. An inventory of aeronautical ground research facilities. Volume 2: Air breathing engine test facilities

    NASA Technical Reports Server (NTRS)

    Pirrello, C. J.; Hardin, R. D.; Heckart, M. V.; Brown, K. R.

    1971-01-01

    The inventory covers free jet and direct connect altitude cells, sea level static thrust stands, sea level test cells with ram air, and propulsion wind tunnels. Free jet altitude cells and propulsion wind tunnels are used for evaluation of complete inlet-engine-exhaust nozzle propulsion systems under simulated flight conditions. These facilities are similar in principal of operation and differ primarily in test section concept. The propulsion wind tunnel provides a closed test section and restrains the flow around the test specimen while the free jet is allowed to expand freely. A chamber of large diameter about the free jet is provided in which desired operating pressure levels may be maintained. Sea level test cells with ram air provide controlled, conditioned air directly to the engine face for performance evaluation at low altitude flight conditions. Direct connect altitude cells provide a means of performance evaluation at simulated conditions of Mach number and altitude with air supplied to the flight altitude conditions. Sea level static thrust stands simply provide an instrumented engine mounting for measuring thrust at zero airspeed. While all of these facilities are used for integrated engine testing, a few provide engine component test capability.

  2. An inventory of aeronautical ground research facilities. Volume 4: Engineering flight simulation facilities

    NASA Technical Reports Server (NTRS)

    Pirrello, C. J.; Hardin, R. D.; Capelluro, L. P.; Harrison, W. D.

    1971-01-01

    The general purpose capabilities of government and industry in the area of real time engineering flight simulation are discussed. The information covers computer equipment, visual systems, crew stations, and motion systems, along with brief statements of facility capabilities. Facility construction and typical operational costs are included where available. The facilities provide for economical and safe solutions to vehicle design, performance, control, and flying qualities problems of manned and unmanned flight systems.

  3. National Aeronautics and Space Administration (NASA)/American Society of Engineering Education (ASEE) Summer Faculty Fellowship Program - 2000

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Sickorez, Donn G. (Editor)

    2003-01-01

    The 2000 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began in 1965 at JSC and 1964 nationally, are to (1) further the professional knowledge of qualified engineering and science faculty, (2) stimulate an exchange of ideas between participants and NASA, (3) enrich and refresh the research and teaching activities of participants' institutions, and (4) contribute to the research objectives of the NASA Centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project commensurate with her/his interests and background, and worked in collabroation with a NASA/JSC colleague. This document is a compilation of the final reports on the research projects done by the faculty fellows during the summer of 2000.

  4. Nomenclature for Aeronautics

    NASA Technical Reports Server (NTRS)

    1939-01-01

    The nomenclature for aeronautics presented in this Report No. 474 is a revision of the last previous report on this subject (i.e., Report no. 240.) This report is published for the purpose of encouraging greater uniformity and precision in the use of terms relating to aeronautics, both in official documents of the Government and in commercial publications. Terms in general use in other branches of engineering have been included only where they have some special significance in aeronautics, or form an integral part of its terminology.

  5. The Development of a Project-Based Collaborative Technical Writing Model Founded on Learner Feedback in a Tertiary Aeronautical Engineering Program

    ERIC Educational Resources Information Center

    Tatzl, Dietmar; Hassler, Wolfgang; Messnarz, Bernd; Fluhr, Holger

    2012-01-01

    The present article describes and evaluates collaborative interdisciplinary group projects initiated by content lecturers and an English-as-a-Foreign-Language (EFL) instructor for the purpose of teaching technical writing skills in an aeronautical engineering degree program. The proposed technical writing model is assessed against the results of a…

  6. Aeronautic instruments

    NASA Technical Reports Server (NTRS)

    Everling, E; Koppe, H

    1924-01-01

    The development of aeronautic instruments. Vibrations, rapid changes of the conditions of flight and of atmospheric conditions, influence of the air stream all call for particular design and construction of the individual instruments. This is shown by certain examples of individual instruments and of various classes of instruments for measuring pressure, change of altitude, temperature, velocity, inclination and turning or combinations of these.

  7. NASA/University Conference on Aeronautics

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The proceedings of a conference on the future of aeronautics are presented. The subjects discussed include the following: (1) aeronautics and the education of the engineer, (2) technical trends in aeronautics, and (3) the role of the university in aeronautics. The technical trends in aeronautics are concerned with aircraft noise control, the effect of the aircraft on the environment, airborne electronics for automated flight, and trends in aircraft design.

  8. The Feasibility of Developing a Non-Engineering Aeronautical/Aerospace Science Doctoral Degree Program in U.S. Universities.

    ERIC Educational Resources Information Center

    Johnson, Jeffrey Alan; Lehrer, Henry R.

    1995-01-01

    A survey of 101 college aviation faculty that received a 79% response indicated that 68.3% agree on the current need and 75.9% on the future need for a nonengineering doctoral program in aeronautical/aerospace sciences; 51% believe the Council on Aviation Accreditation would be more willing to accredit institutions with such programs. (SK)

  9. The aerotaxis transducer gene aer, but not aer-2, is transcriptionally regulated by the anaerobic regulator ANR in Pseudomonas aeruginosa.

    PubMed

    Hong, Chang Soo; Kuroda, Akio; Ikeda, Tsukasa; Takiguchi, Noboru; Ohtake, Hisao; Kato, Junichi

    2004-01-01

    The regulation of aerotaxis in Pseudomonas aeruginosa is reported. P. aeruginosa possesses two aerotaxis transducers, Aer and Aer-2. The aerotactic responses of P. aeruginosa cells were induced during the transition from exponential to stationary growth phase. A deletion mutant for the anaerobic transcriptional regulator ANR showed decreased aerotaxis. The anr mutation eliminated Aer-mediated aerotaxis, but not Aer-2-mediated aerotaxis. Expression of an aer-lacZ transcriptional fusion was also induced during the transition from exponential to stationary growth phase. The anr mutant showed only background levels of aer-lacZ expression. Rapid amplification of cDNA ends (RACE) and DNA sequencing revealed that the 5' end of the mRNA was located at an A nucleotide -67 nt upstream of aer. The aer promoter contained two putative FNR/ANR boxes at -42.5 and -93.5 bp upstream of the transcriptional start site of aer. Mutational analysis of the aer promoter region revealed that both FNR/ANR boxes were essential for the expression of the aer gene. These results indicate that ANR is required for the activation of aer expression but it is not essential for Aer-2-mediated aerotaxis in P. aeruginosa.

  10. [Exploring Aeronautics

    NASA Technical Reports Server (NTRS)

    Robinson, Brandi

    2004-01-01

    This summer I have been working with the N.A.S.A. Project at Cuyahoga Community College (Tri-C) under the title of Exploring Aeronautics Project Leader. The class that I have worked with is comprised of students that will enter the eighth grade in the fall of 2004. The program primarily focuses upon math proficiency and individualized class projects. My duties have encompassed both realms. During the first 2-3 weeks of my internship, I worked at NASA Glenn Research Center (GRC) researching, organizing, and compiling information for weekly Scholastic Challenges and the Super Scholastic Challenge. I was able to complete an overview of Scholastic Challenge and staff responsibilities regarding the competition; a proposal for an interactive learning system, Quizdom; a schedule for challenge equipment, as well as a schedule listing submission deadlines for the staff. Also included in my tasks, during these first 2-3 weeks, were assisting Tammy Allen and Candice Thomas with the student application review and interview processes for student applicants. For the student and parent orientation, I was assigned publications and other varying tasks to complete before the start of the program. Upon the commencement of the program, I changed location from NASA GRC to Tri-C Metro Campus, where student classes for the Cleveland site are held. During the duration of the program, I work with the instructor for the Exploring Aeronautics class, kkkk, assisting in classroom management, daily attendance, curriculum, project building, and other tasks as needed. These tasks include the conducting of the weekly competition, known as Scholastic Challenge. As a Project Leader, I am also responsible for one subject area of the Scholastic Challenge aspect of the N.A.S.A. Project curriculum. Each week I have to prepare a mission that the participants will take home the following Monday and at least 10 questions that will be included in the pool of questions used for the Scholastic Challenge

  11. A Study of the Attitudes of Acquisition Managers and Engineers at Aeronautical Systems Division and Space Systems Division

    DTIC Science & Technology

    1989-09-01

    Harold Mercer, USMC, studied the career intent of junior Air Force and Naval officers in the civil engineering career field. With career intent as the...name of "career broadening." Serious consideration should be given to engineering incentive pay to retain a top level of "blue suiter " engineers. AFSC’s...contractor is hired to provide technical expertise and hold the Lt’s hands, an engineering degree is not required by the blue suiter . 56. Contractors and

  12. NASA's Role in Aeronautics: A Workshop. Volume 6: Aeronautical research

    NASA Technical Reports Server (NTRS)

    1981-01-01

    While each aspect of its aeronautical technology program is important to the current preeminence of the United States in aeronautics, the most essential contributions of NASA derive from its research. Successes and challenges in NASA's efforts to improve civil and military aviation are discussed for the following areas: turbulence, noise, supercritical aerodynamics, computational aerodynamics, fuels, high temperature materials, composite materials, single crystal components, powder metallurgy, and flight controls. Spin offs to engineering and other sciences explored include NASTRAN, lubricants, and composites.

  13. Using AER to Improve Teacher Education

    NASA Astrophysics Data System (ADS)

    Ludwig, Randi R.

    2013-06-01

    In many ways, the astronomy education community is uniquely poised to influence pre-service and in-service teacher preparation. Astro101 courses are among those most commonly taken to satisfy general education requirements for non-science majors, including 9-25% education majors (Deming & Hufnagel, 2001; Rudolph et al. 2010). In addition, the astronomy community's numerous observatories and NASA centers engage in many efforts to satisfy demand for in-service teacher professional development (PD). These efforts represent a great laboratory in which we can apply conclusions from astronomy education research (AER) studies in particular and science education research (SER) in general. Foremost, we can work to align typical Astro101 and teacher PD content coverage to heavily hit topics in the Next Generation Science Standards (http://www.nextgenscience.org/) and utilize methods of teaching those topics that have been identified as successful in AER studies. Additionally, we can work to present teacher education using methodology that has been identified by the SER community as effective for lasting learning. In this presentation, I will highlight some of the big ideas from AER and SER that may be most useful in teacher education, many of which we implement at UT Austin in the Hands-on-Science program for pre-service teacher education and in-service teacher PD.

  14. The development of turbojet aircraft in Germany, Britain, and the United States: A multi-national comparison of aeronautical engineering, 1935--1946

    NASA Astrophysics Data System (ADS)

    Pavelec, Sterling Michael

    In the 1930s aeronautical engineering needed revision. A presumptive anomaly was envisaged as piston-engine aircraft flew higher and faster. Radical alternatives to piston engines were considered in the unending quest for speed. Concurrently, but unwittingly, two turbojet engine programs were undertaken in Europe. The air-breathing three-stage turbojet engine was based on previous turbine technology; the revolutionary idea was the gas turbine as a prime mover for aircraft. In Germany, Dr. Hans von Ohain was the first to complete a flight-worthy turbojet engine for aircraft. Installed in a Heinkel designed aircraft, the Germans began the jet age on 27 August 1939. The Germans led throughout the war and were the first to produce jet aircraft for combat operations. The principal limiting factor for the German jet program was a lack of reliable engines. The continuing myths that Hitler orders, too little fuel, or too few pilots hindered the program are false. In England, Frank Whittle, without substantial support, but with dogged determination, also developed a turbojet engine. The British came second in the jet race when the Whittle engine powered the Gloster Pioneer on 15 May 1941. The Whittle-Gloster relationship continued and produced the only Allied combat jet aircraft during the war, the Meteor, which was confined to Home Defense in Britain. The American turbojet program was built directly from the Whittle engine. General Electric copied the Whittle designs and Bell Aircraft was contracted to build the first American jet plane. The Americans began the jet age on 1 October 1942 with a lackluster performance from their first jet, the Airacomet. But the Americans forged ahead, and had numerous engine and airframe programs in development by the end of the war. But, the Germans did it right and did it first. Partly because of a predisposition towards excellent engineering and physics, partly out of necessity, the Germans were able to produce combat turbojet aircraft

  15. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) summer faculty fellowship program, 1986, volume 2

    NASA Technical Reports Server (NTRS)

    Mcinnis, Bayliss (Editor); Goldstein, Stanley (Editor)

    1987-01-01

    The Johnson Space Center (JSC) NASA/ASEE Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The ten week program was operated under the auspices of the American Society for Engineering Education (ASEE). The basic objectives of the program are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA Centers. Each faculty fellow spent ten weeks at JSC engaged in a research project commensurate with his interests and background and worked in collaboration with a NASA/JSC colleague. The final reports on the research projects are presented. This volume, 2, contains sections 15 through 30.

  16. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program: 1996. Volume 2

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Sickorez, Donn G. (Editor)

    1997-01-01

    The objectives of the program, which began nationally in 1964 and at JSC in 1965 are to (1) further the professional knowledge qualified engineering and science faculty members, (2) stimulate an exchange of ideas between participants and NASA, (3) and refresh the research and teaching activities of participants' institutions, and (4) contribute to the research objectives of NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA JSC colleague.

  17. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) summer faculty fellowship program, 1986, volume 1

    NASA Technical Reports Server (NTRS)

    Mcinnis, Bayliss (Editor); Goldstein, Stanley (Editor)

    1987-01-01

    The Johnson Space Center (JSC) NASA/ASEE Summer Faculty Fellowship Program was conducted by the University of Houston. The basic objectives of the program are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching objectives of participants' institutions; and (4) to contribute to the research objectives of the NASA Centers. Each faculty fellow spent ten weeks at JSC engaged in a research project commensurate with his interests and background and worked in collaboration with a NASA/JSC colleague. Volume 1 contains sections 1 through 14.

  18. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1993, volume 1

    NASA Technical Reports Server (NTRS)

    Hyman, William A. (Editor); Goldstein, Stanley H. (Editor)

    1993-01-01

    The JSC NASA/ASEE Summer Faculty Fellowship Program was conducted by Texas A&M University and JSC. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are as follows: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA/JSC colleague. This document is a compilation of the final reports on the research projects completed by the faculty fellows during the summer of 1993.

  19. National Aeronautics and Space Administration (NASA)/american Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1991, Volume 2

    NASA Technical Reports Server (NTRS)

    Hyman, William A. (Editor); Goldstein, Stanley H. (Editor)

    1991-01-01

    The objectives of the program are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participant's institutions; and (4) to contribute to the research objectives of the NASA Centers. A compilation of the final reports on the research projects done by the faculty fellows during the summer of 1991 are presented. Some of the topics covered include: collision avoidance for rover vehicles, bioinstrumentation, neural nets, total quality management of flexible space structures, project scheduling, nondestructive tests, orthostatic intolerance to bedrest, hypersonic reentry simulation, measuring human energy expenditure, tribological models, trace element movement in Anarctic ice, gastrointestinal function, and computer assisted instruction.

  20. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1998. Volume 1

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Sickorez, Donn G. (Editor)

    1999-01-01

    JSC NASA/ASEE Summer Faculty Fellowship Program was conducted by the University of Houston and JSC, under ASEE. The objectives of the program are to further the professional knowledge of qualified engineering and science members; stimulate an exchange of ideas between participants and NASA; enrich and refresh the research and teaching activities of participants; and contribute to the research objectives of the NASA Centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project commensurate with his/her interests and background and worked in collaboration with a NASA/JSC colleague. This document is a compilation of the final reports on the fellows' research projects performed during the summer of 1998. Volume 1, current volume, contains the first reports, and volume 2 contains the remaining reports.

  1. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1993, volume 2

    NASA Technical Reports Server (NTRS)

    Hyman, William A. (Editor); Goldstein, Stanley H. (Editor)

    1993-01-01

    The JSC NASA/ASEE Summer Faculty Fellowship Program was conducted by Texas A&M University and JSC. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participant's institutions; and (4) to contribute to the research objectives of the NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA/JSC colleague. A compilation of the final reports on the research projects completed by the faculty fellows during the summer of 1993 is presented.

  2. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1994, volume 1

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard; Sickorez, Donn G.

    1995-01-01

    The JSC NASA/ASEE Summer Faculty Fellowship Program was conducted by Texas A&M University and JSC. The objectives of the program, which began nationally in 1964 and at JSC in 1965 are to: (1) further the professional knowledge of qualified engineering and science faculty members, (2) stimulate an exchange of ideas between participants and NASA, (3) enrich and refresh the research and teaching activities of participants' institutions, and (4) contribute to the research objectives of the NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA JSC colleague. This document is a compilation of the final reports on the research projects completed by the faculty fellows during the summer of 1994.

  3. National Aeronautics and Space Administration (NASA) /American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program. Volume 1

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Sickorez, Donn G. (Editor)

    1997-01-01

    The 1996 JSC NASA/ASEE Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The objectives of the program, which began nationally in 1964 and at JSC in 1965 are to (1) further the professional knowledge qualified engineering and science faculty members, (2) stimulate an exchange of ideas between participants and NASA, (3) refresh the research and teaching activities of participants' institutions, and (4) contribute to the research objectives of the NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA JSC colleague. This document is a compilation of the final reports on the research projects completed by the faculty fellows during the summer of 1996.

  4. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1987, volume 1

    NASA Technical Reports Server (NTRS)

    Jones, William B. (Editor); Goldstein, Stanley H. (Editor)

    1987-01-01

    The objective of the NASA/ASEE program were: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA centers. Each faculty fellow spent 10 weeks at Johnson Space Center engaged in a research project commensurate with his/her interests and background and worked in collaboration with a NASA/JSC colleague. A compilation is presented of the final reports on the research projects done by the fellows during the summer of 1987. This is volume 1 of a 2 volume report.

  5. Fundamental Aeronautics Program

    NASA Technical Reports Server (NTRS)

    Misra, Ajay

    2009-01-01

    The Overarching Mission of NASA's Aeronautics Research Mission Directorate (ARMD) is: To advance U.S. technological leadership in aeronautics in partnership with industry, academia, and other government agencies that conduct aeronautics-related research. ARMD supports the Agency's goal of developing a balanced overall program of science, exploration, and aeronautics, and ARMD's research plans also directly support the National Aeronautics R&D Policy and accompanying Executive Order 131419.

  6. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program: 1995.. Volume 2

    NASA Technical Reports Server (NTRS)

    Hyman, William A. (Editor); Sickorez, Donn G. (Editor)

    1996-01-01

    The JSC NASA/ASEE Summer Faculty Fellowship Program was conducted at JSC, including the White Sands Test Facility, by Texas A&M University and JSC. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participants' institutions; and (4) to contribute to the research objectives of the NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA/JSC colleague. In addition to the faculty participants, the 1995 program included five students. This document is a compilation of the final reports on the research projects completed by the faculty fellows and visiting students during the summer of 1995. The reports of two of the students are integral with that of the respective fellow. Three students wrote separate reports.

  7. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program: 1995. Volume 1

    NASA Technical Reports Server (NTRS)

    Hyman, William A. (Editor); Sickorez, Donn G. (Editor)

    1996-01-01

    The objectives of the JSC NASA/ASEE Summer Faculty Fellowship Program, which began nationally in 1964 and at JSC in 1965, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participants' institutions; and (4) to contribute to the research objectives of the NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA/JSC colleague. In addition to the faculty participants, the 1995 program included five students. This document is a compilation of the first fifteen of twenty-seven final reports on the research projects completed by the faculty fellows and visiting students during the summer of 1995. The reports of two of the students are integral with that of the respective fellow. Three students wrote separate reports included in Volume 2.

  8. Achieving Aeronautics Leadership: Aeronautics Strategic Enterprise Plan

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Today, more than ever, aggressive leadership is required to ensure that our national investments in aeronautical research, technology, and facilities are shaped into a coordinated, and high-impact, strategy. Under the auspices of the National Science and Technology Council, and in conjunction with the domestic industry, universities, the Department of Defense, and the Federal Aviation Administration - our partners in aeronautics - we propose to provide that leadership, and this document is our plan.

  9. Western Aeronautical Test Range

    NASA Technical Reports Server (NTRS)

    Sakahara, Robert D.

    2008-01-01

    This viewgraph presentation reviews the work of the Western Aeronautical Test Range (WATR). NASA's Western Aeronautical Test Range is a network of facilities used to support aeronautical research, science missions, exploration system concepts, and space operations. The WATR resides at NASA's Dryden Flight Research Center located at Edwards Air Force Base, California. The WATR is a part of NASA's Corporate Management of Aeronautical Facilities and funded by the Strategic Capability Asset Program (SCAP). Maps show the general location of the WATR area that is used for aeronautical testing and evaluation. The products, services and facilities of WATR are discussed,

  10. Progress Toward National Aeronautics Goals

    NASA Technical Reports Server (NTRS)

    Russo, Carlo J.; Sehra, Arun K.

    1999-01-01

    NASA has made definitive progress towards achieving several bold U.S. goals in aeronautics related to air breathing engines. The advanced technologies developed towards these goals span applications from general aviation to large subsonic and supersonic aircraft. The proof of successful technology development is demonstrated through successful technology transfer to U.S. industry and projected fleet impact. Specific examples of progress are discussed that quantifies the achievement towards these goals. In addition, a more detailed vision for NASA aeronautics is defined and key strategic issues are explored which invite international and national debate and involvement especially in reduced environmental impact for subsonic and supersonic aircraft, dramatic new capabilities in general aviation engines, and reduced development cycle time and costs.

  11. Nomenclature for Aeronautics

    NASA Technical Reports Server (NTRS)

    1923-01-01

    This nomenclature for aeronautics was prepared by a special conference on aeronautical nomenclature, composed of representatives of the Army and Navy Air Services, the Air Mail Service, the Bureau of Standards, the National Advisory Committee for Aeronautics, and private life. This report supersedes all previous publications of the committee on this subject. It is published with the intention of securing greater uniformity and accuracy in official documents of the government, and, as far as possible, in technical and other commercial publications. (author)

  12. Nomenclature for Aeronautics

    NASA Technical Reports Server (NTRS)

    1924-01-01

    This nomenclature for aeronautics was prepared by a special conference on aeronautical nomenclature by the Executive Committee of the National Advisory Committee for Aeronautics at a meeting held August 11, 1933. This publication supersedes all previous publications of the committee on this subject. The purpose of the committee in the preparation and publication of this report is to secure uniformity in the official documents of the government and, as far as possible, in technical and other commercial publications.

  13. Program of Research in Aeronautics

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A prospectus of the educational and research opportunities available at the Joint Institute for Advancement of Flight Sciences, operated at NASA Langley Research Center in conjunction with George Washington University's School of Engineering and Applied Sciences is presented. Requirements of admission to various degree programs are given as well as the course offerings in the areas of acoustics, aeronautics, environmental modelling, materials science, and structures and dynamics. Research facilities for each field of study are described. Presentations and publications (including dissertations and theses) generated by each program are listed as well as faculty members visting scientists and engineers.

  14. Nomenclature for aeronautics

    NASA Technical Reports Server (NTRS)

    1920-01-01

    Report defines the principal terms which have come into use in the development of aeronautics. It was prepared in cooperation with a committee engaged upon a similar undertaking in Great Britain. As a result this nomenclature is in substantial agreement with the one which has been adopted by the aeronautical authorities of Great Britain.

  15. Bibliography of Aeronautics: 1926

    NASA Technical Reports Server (NTRS)

    Brockett, Paul

    1928-01-01

    This Bibliography of Aeronautics for 1926 covers the aeronautical literature published from January 1 to December 31, 1926. The first Bibliography of Aeronautics was published by the Smithsonian Institution as volume 55 of the Smithsonian Miscellaneous Collections and covered the material published prior to June 30, 1909. Supplementary volumes of the Bibliography of Aeronautics for the subsequent years have been published by the National Advisory Committee for Aeronautics. The last preceding volume was for the calendar year 1925. As in the previous volumes, citations of the publications of all nations are included in the languages in which these publications originally appeared. The arrangement is dictionary form with author find subject entry, and one alphabetical arrangement. Detail in the matter of subject reference has been omitted on aCC01.mt of the cost of presentation, but an attempt has been made to give sufficient cross reference for research in special lines.

  16. Bibliography of Aeronautics: 1932

    NASA Technical Reports Server (NTRS)

    1935-01-01

    This Bibliography of Aeronautics for 1932 covers the aeronautical literature published from January 1 to December 31, 1932. The first Bibliography of Aeronautics was published by the Smithsonian Institution as volume 55 of the Smithsonian Miscellaneous Collections and covered the material published prior to June 30, 1909. Supplementary volumes of the Bibliography of Aeronautics for the subsequent years have been published by the National Advisory Committee for Aeronautics. The last preceding volume was for the calendar year 1931. As in the previous volumes, citations of the publications of all nations are included in the languages in which these publications originally appeared. The arrangement is in dictionary form with author and subject entry and one alphabetical arrangement. Detail in the matter of subject reference has been omitted on account of the cost of presentation, but an attempt has been made to give sufficient cross-reference for research in special lines.

  17. Bibliography of Aeronautics: 1928

    NASA Technical Reports Server (NTRS)

    Brockett, Paul

    1928-01-01

    This Bibliography of Aeronautics for 1928 covers the aeronautical literature published from January 1 to December 31, 1928. The first Bibliography of Aeronautics was published by the Smithsonian Institution as volume 55 of the Smithsonian Miscellaneous Collections and covered the material published prior to June 30, 1909. Supplementary volumes of the Bibliography of Aeronautics for the subsequent years have been published by the National Advisory Committee for Aeronautics. The last preceding volume was for the calendar year 1927. As in the previous volumes, citations of the publications of all nations are included in the languages in which these publications originally appeared. The arrangement is in dictionary form with author and subject entry, and one alphabetical arrangement. Detail in the matter of subject reference has been omitted on account of the cost of presentation, but an attempt has been made to give sufficient cross reference for research in special lines.

  18. Bibliography of Aeronautics, 1929

    NASA Technical Reports Server (NTRS)

    Brockett, Paul

    1930-01-01

    This Bibliography of Aeronautics for 1929 covers the aeronautical literature published from January 1 to December 31, 1929. The first Bibliography of Aeronautics was published by the Smithsonian Institution as Volume 55 of the Smithsonian Miscellaneous Collections and covered the material published prior to June 30, 1909. Supplementary volumes of the Bibliography of Aeronautics for the subsequent years have been published by the National Advisory Committee for Aeronautics. The last preceding volume was for the calendar year 1928. As in the previous volumes, citations of the pUblications of all nations are included in th.e languages in which. these publications originally appeared. The arrangement is in dictionary form with author and subject entry, and one alphabetical arrangement. Detail in the matter of subject reference has been omitted on account of the cost of presentation, but an attempt has been made to give sufficient cross reference for research in special lines.

  19. Review of Aeronautical Wind Tunnel Facilities

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The nation's aeronautical wind tunnel facilities constitute a valuable technological resource and make a significant contribution to the global supremacy of U.S. aircraft, both civil and military. At the request of NASA, the National Research Council's Aeronautics and Space Engineering Board organized a commitee to review the state of repair, adequacy, and future needs of major aeronautical wind tunnel facilities in meeting national goals. The comittee identified three main areas where actions are needed to sustain the capability of NASA's aeronautical wind tunnel facilities to support the national aeronautical research and development activities: tunnel maintenance and upgrading, productivity enhancement, and accommodation of new requirements (particularly in hypersonics). Each of these areas are addressed and the committee recommendations for appropriate actions presented.

  20. 1997 NASA Academy in Aeronautics

    NASA Technical Reports Server (NTRS)

    Andrisani, Dominick, II

    1998-01-01

    The NASA Academy in Aeronautics at the Dryden Flight Research Center (DFRC) was a ten-week summer leadership training program conducted for the first time in the summer of 1997. Funding was provided by a contract between DFRC and Purdue University. Mr. Lee Duke of DFRC was the contract monitor, and Professor Dominick Andrisani was the principal investigator. Five student research associates participated in the program. Biographies of the research associates are given in Appendix 1. Dominick Andrisani served as Dean of the NASA Academy in Aeronautics. NASA Academy in Aeronautics is a unique summer institute of higher learning that endeavors to provide insight into all of the elements that make NASA aeronautical research possible. At the same time the Academy assigns the research associate to be mentored by one of NASA!s best researchers so that they can contribute towards an active flight research program. Aeronautical research and development are an investment in the future, and NASA Academy is an investment in aeronautical leaders of the future. The Academy was run by the Indiana Space Grant Consortium at Purdue in strategic partnership with the National Space Grant College and Fellowship Program. Research associates at the Academy were selected with help from the Space Grant Consortium that sponsored the research associate. Research associate stipend and travel to DFRC were paid by the students' Space Grant Consortium. All other student expenses were paid by the Academy. Since the Academy at DFRC had only five students the opportunity for individual growth and attention was unique in the country. About 30% of the working time and most of the social time of the students were be spent as a "group" or "team." This time was devoted to exchange of ideas, on forays into the highest levels of decision making, and in executing aeronautical research. This was done by interviewing leaders throughout the aerospace industry, seminars, working dinners, and informal

  1. Canadian aeronautical mobile data trials

    NASA Technical Reports Server (NTRS)

    Pedersen, Allister; Pearson, Andrea

    1993-01-01

    This paper describes a series of aeronautical mobile data trials conducted on small aircraft (helicopters and fixed wing) utilizing a low-speed store-and-forward mobile data service. The paper outlines the user requirements for aeronautical mobile satellite communications. 'Flight following' and improved wide-area dispatch communications were identified as high priority requirements. A 'proof-of-concept' trial in a Cessna Skymaster aircraft is described. This trial identified certain development work as essential to the introduction of commercial service including antenna development, power supply modifications and doppler software modifications. Other improvements were also proposed. The initial aeronautical mobile data service available for pre-operational (Beta) trials is outlined. Pre-operational field trials commenced in October 1992 and consisted of installations on a Gralen Communications Inc. Cessna 177 and an Aerospatiale Astar 350 series light single engine helicopter. The paper concludes with a discussion of desirable near term mobile data service developments, commercial benefits, current safety benefits and potential future applications for improved safety.

  2. Western Aeronautical Test Range

    NASA Technical Reports Server (NTRS)

    Sakahara, Robert D.

    2008-01-01

    NASA's Western Aeronautical Test Range (WATR) is a network of facilities used to support aeronautical research, science missions, exploration system concepts, and space operations. The WATR resides at NASA's Dryden Flight Research Center located at Edwards Air Force Base, California. The WATR is a part of NASA's Corporate Management of Aeronautical Facilities and funded by the Strategic Capability Asset Program (SCAP). It is managed by the Aeronautics Test Program (ATP) of the Aeronautics Research Mission Directorate (ARMD) to provide the right facility at the right time. NASA is a tenant on Edwards Air Force Base and has an agreement with the Air Force Flight Test Center to use the land and airspace controlled by the Department of Defense (DoD). The topics include: 1) The WATR supports a variety of vehicles; 2) Dryden shares airspace with the AFFTC; 3) Restricted airspace, corridors, and special use areas are available for experimental aircraft; 4) WATR Products and Services; 5) WATR Support Configuration; 6) Telemetry Tracking; 7) Time Space Positioning; 8) Video; 9) Voice Communication; 10) Mobile Operations Facilities; 11) Data Processing; 12) Mission Control Center; 13) Real-Time Data Analysis; and 14) Range Safety.

  3. Diaphragms for Aeronautic Instruments

    NASA Technical Reports Server (NTRS)

    Hersey, M D

    1924-01-01

    This investigation was carried out at the request of the National Advisory Committee for Aeronautics and comprises an outline of historical developments and theoretical principles, together with a discussion of expedients for making the most effective use of existing diaphragms actuated by the hydrostatic pressure form an essential element of a great variety instruments for aeronautic and other technical purposes. The various physical data needed as a foundation for rational methods of diaphragm design have not, however, been available hitherto except in the most fragmentary form.

  4. University research in aeronautics

    NASA Technical Reports Server (NTRS)

    Duberg, J. E.

    1975-01-01

    The contributions which universities can make to aeronautical research projects are discussed. The activities of several facilities are presented to show the effectiveness of the educational and research programs. Reference is made to the Intergovernmental Personnel Act of 1970 which permits an exchange of federal agency personnel with state and local governments and with public and private higher education schools.

  5. Aeronautical facilities assessment

    NASA Technical Reports Server (NTRS)

    Penaranda, F. E. (Compiler)

    1985-01-01

    A survey of the free world's aeronautical facilities was undertaken and an evaluation made on where the relative strengths and weaknesses exist. Special emphasis is given to NASA's own capabilities and needs. The types of facilities surveyed are: Wind Tunnels; Airbreathing Propulsion Facilities; and Flight Simulators

  6. ARMD Fundamental Aeronautics Program

    NASA Technical Reports Server (NTRS)

    Dryer, Jay; DelRosario, Ruben

    2010-01-01

    This slide presentation focuses work of the Aeronautics Research Mission Directorate (ARMD) with particular interest on the work being done to address the environmental and energy efficiency challenges. Particular interest is on the Subsonic Fixed Wing (SFW) project, though there is discussion of the rotorcraft and the supersonics environmental challenges.

  7. ACTS broadband aeronautical experiment

    NASA Technical Reports Server (NTRS)

    Abbe, Brian S.; Jedrey, Thomas C.; Estabrook, Polly; Agan, Martin J.

    1993-01-01

    In the last decade, the demand for reliable data, voice, and video satellite communication links between aircraft and ground to improve air traffic control, airline management, and to meet the growing demand for passenger communications has increased significantly. It is expected that in the near future, the spectrum required for aeronautical communication services will grow significantly beyond that currently available at L-band. In anticipation of this, JPL is developing an experimental broadband aeronautical satellite communications system that will utilize NASA's Advanced Communications Technology Satellite (ACTS) as a satellite of opportunity and the technology developed under JPL's ACTS Mobile Terminal (AMT) Task to evaluate the feasibility of using K/Ka-band for these applications. The application of K/Ka-band for aeronautical satellite communications at cruise altitudes is particularly promising for several reasons: (1) the minimal amount of signal attenuation due to rain; (2) the reduced drag due to the smaller K/Ka-band antennas (as compared to the current L-band systems); and (3) the large amount of available bandwidth. The increased bandwidth available at these frequencies is expected to lead to significantly improved passenger communications - including full-duplex compressed video and multiple channel voice. A description of the proposed broadband experimental system will be presented including: (1) applications of K/Ka-band aeronautical satellite technology to U.S. industry; (2) the experiment objectives; (3) the experiment set-up; (4) experimental equipment description; and (5) industrial participation in the experiment and the benefits.

  8. Advanced Civilian Aeronautical Concepts

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M.

    1996-01-01

    Paper discusses alternatives to currently deployed systems which could provide revolutionary improvements in metrics applicable to civilian aeronautics. Specific missions addressed include subsonic transports, supersonic transports and personal aircraft. These alternative systems and concepts are enabled by recent and envisaged advancements in electronics, communications, computing and Designer Fluid Mechanics in conjunction with a design approach employing extensive synergistic interactions between propulsion, aerodynamics and structures.

  9. The history of aeronautical medicine in Venezuela

    NASA Technical Reports Server (NTRS)

    Iriarte, D. R.

    1986-01-01

    The Aerial Medical Service of the Ministry of Transportation and Communications of Venezuela was created on June 1949, and later became the Department of Aeronautical Medicine. Its functions include the medical examinations of future pilots, navigators and flight engineers. The importance of good mental and physical health in all flight and ground personnel to ensure the safety of air travel is discussed.

  10. Aeronautical Knowledge (Selected Articles),

    DTIC Science & Technology

    1981-01-14

    UNCLASSIFIED FTD-ID RSN -12348 Nm m ED I FTD-ID(RS)T-1234-80-- FOREIGN TECHNOLOGY DIVISION AERONAUTICAL KNOWLEDGE (Selected Articles) * DTIC cm. ’- D...of the spacecraft cabin, went through the structure of the eyes of the astronauts, and caused them to see flahig-. The frequency of the flashing was...to tell space travelers of the existence of belts of high radiation end alert them to the danger. Present and future missins must clarify the

  11. Civilian Aeronautical Futures - The Responsibly Imaginable

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M.

    2006-01-01

    Since 1940 Aeronautics has had an immense impact upon Global Human lifestyles and affairs - in both the Civilian and Military arenas. During this period Long distance Train and Ship passenger transport were largely supplanted by Air Travel and Aviation assumed a dominant role in warfare. The early 1940 s to the mid 1970 s was a particularly productive period in terms of Aeronautical Technology. What is interesting is that, since the mid 1970 s, the rate of Aeronautical Technological Progress has been far slower, the basic technology in nearly all of our current Aero Systems dates from the mid 70 s or earlier. This is especially true in terms of Configuration Aerodynamics, Aeronautics appears to have "settled" on the 707, double delta and rotary wing as the approach of choice for Subsonic long haul, supersonic cruise and VTOL respectively. Obviously there have been variants and some niche digression from this/these but in the main Aeronautics, particularly civilian Aeronautics, has become a self-professed "mature", Increasingly "Commodity", Industry. The Industry is far along an existing/deployed technology curve and focused, now for decades, on incremental/evolutionary change - largely Appliers vs. developers of technology. This is, of course, in sharp contrast to the situation in the early-to-later 20th century where Aeronautics was viewed as A Major Technological Engine, much the way IT/Bio/Nano/Energetics/Quantum Technologies are viewed today. A search for Visionary Aeronautical "Futures" papers/projections indicates a decided dearth thereof over the last 20 plus years compared to the previous quarter Century. Aeronautics is part of Aerospace and Aerospace [including Aeronautics] has seen major cutbacks over the last decades. Some numbers for the U.S. Aerospace Industry serve as examples. Order of 600,000 jobs lost, with some 180,000 more on the block over the next 10 years. Approximately 25% of the Aerospace workforce is eligible to retire and the average

  12. Space Shuttle main engine. NASA has not evaluated the alternate fuel turbopump costs and benefits. Report to the Administrator of the National Aeronautics and Space Administration

    NASA Astrophysics Data System (ADS)

    1993-10-01

    NASA's plans to develop an alternate high pressure fuel turbopump for the Space Shuttle's main engines were assessed by the General Accounting Office as a part of the evaluation of the Space Shuttle Safety and Obsolescence Upgrade program. The objective was to determine whether NASA has adequately analyzed cost, performance, and benefits that are expected to result from this program in comparison to other alternatives before resuming development of the alternate pump, which was suspended in 1992. The alternate fuel pump is one of five improvements being developed or planned to significantly enhance safety margins of the engines.

  13. NASA's Role in Aeronautics: A Workshop. Volume VI - Aeronautical Research.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Assembly of Engineering.

    The central task of a 1980 workshop on the role of the National Aeronautics and Space Administration (NASA) in aeronautics was to examine the relationship of NASA's research capabilities to the state of U.S. aviation and to make recommendations about NASA's future role in aeronautics. Following a brief introduction, the Overview Panel on…

  14. Multicasting mesh AER: a scalable assembly approach for reconfigurable neuromorphic structured AER systems. Application to ConvNets.

    PubMed

    Zamarreno-Ramos, C; Linares-Barranco, A; Serrano-Gotarredona, T; Linares-Barranco, B

    2013-02-01

    This paper presents a modular, scalable approach to assembling hierarchically structured neuromorphic Address Event Representation (AER) systems. The method consists of arranging modules in a 2D mesh, each communicating bidirectionally with all four neighbors. Address events include a module label. Each module includes an AER router which decides how to route address events. Two routing approaches have been proposed, analyzed and tested, using either destination or source module labels. Our analyses reveal that depending on traffic conditions and network topologies either one or the other approach may result in better performance. Experimental results are given after testing the approach using high-end Virtex-6 FPGAs. The approach is proposed for both single and multiple FPGAs, in which case a special bidirectional parallel-serial AER link with flow control is exploited, using the FPGA Rocket-I/O interfaces. Extensive test results are provided exploiting convolution modules of 64 × 64 pixels with kernels with sizes up to 11 × 11, which process real sensory data from a Dynamic Vision Sensor (DVS) retina. One single Virtex-6 FPGA can hold up to 64 of these convolution modules, which is equivalent to a neural network with 262 × 10(3) neurons and almost 32 million synapses.

  15. Aeronautical Envineering at Technion - Israel Institute of Technology.

    ERIC Educational Resources Information Center

    Mathieu, Richard D.

    The shortage of engineers in Israel and the role that the Technion - Israel Institute of Technology plays in the education of engineers is discussed. Emphasis is placed on the academic program, research, and related activities in the Department of Aeronautical Engineering. A brief description of the development of the institute and its…

  16. Aeronautics in NACA and NASA

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Initiated in 1915, the National Advisory Committee for Aeronautics/National Aeronautics and Space Administration (NACA/NASA) aeronautical programs have been the keystone of a sustained U.S. Government, industry, and university research effort which has been a primary factor in the development of our remarkable air transportation systems, the country's largest positive trade balance component, and the world's finest military Air Force. This overview summarizes the flow of events, and the major trends, that have led from the NACA origins to the present NASA Aeronautics program, and indicates some important directions for the years ahead.

  17. Aeronautical mobile satellite service: An overview

    NASA Astrophysics Data System (ADS)

    Rigley, Jack

    Successful flight trials of Aeronautical Mobile Satellite Services (AMSS) were first carried out in the 1960's but it is only in the past few years that plans to implement such a system have achieved any degree of certainty. System architecture has been agreed upon by users, service providers, and manufacturers. Detailed avionic characteristics have been approved and the International Civil Aviation Organization is currently preparing AMSS standards which will ensure the safety and regularity of international air traffic. In this paper, a review is provided of the history of AMSS, especially of Canadian participation, and a description of the technical and operational features of the system are given. The system will use the 1545-1555 and 1646.5-1656.5 MHz bands for satellite to aircraft and aircraft to satellite communication. Different categories of communication including air traffic control, aeronautical operational control, aeronautical administrative communications, and aeronautical passenger communication, will be assigned different priorities. A set of radio frequency (RF) channels have been defined to accommodate all foreseen traffic types. Standards for the avionics required for large passenger planes have been developed by the Airlines Electronic Engineering Committee.

  18. AER synthetic generation in hardware for bio-inspired spiking systems

    NASA Astrophysics Data System (ADS)

    Linares-Barranco, Alejandro; Linares-Barranco, Bernabe; Jimenez-Moreno, Gabriel; Civit-Balcells, Anton

    2005-06-01

    Address Event Representation (AER) is an emergent neuromorphic interchip communication protocol that allows for real-time virtual massive connectivity between huge number neurons located on different chips. By exploiting high speed digital communication circuits (with nano-seconds timings), synaptic neural connections can be time multiplexed, while neural activity signals (with mili-seconds timings) are sampled at low frequencies. Also, neurons generate 'events' according to their activity levels. More active neurons generate more events per unit time, and access the interchip communication channel more frequently, while neurons with low activity consume less communication bandwidth. When building multi-chip muti-layered AER systems it is absolutely necessary to have a computer interface that allows (a) to read AER interchip traffic into the computer and visualize it on screen, and (b) convert conventional frame-based video stream in the computer into AER and inject it at some point of the AER structure. This is necessary for test and debugging of complex AER systems. This paper addresses the problem of converting, in a computer, a conventional frame-based video stream into the spike event based representation AER. There exist several proposed software methods for synthetic generation of AER for bio-inspired systems. This paper presents a hardware implementation for one method, which is based on Linear-Feedback-Shift-Register (LFSR) pseudo-random number generation. The sequence of events generated by this hardware, which follows a Poisson distribution like a biological neuron, has been reconstructed using two AER integrator cells. The error of reconstruction for a set of images that produces different traffic loads of event in the AER bus is used as evaluation criteria. A VHDL description of the method, that includes the Xilinx PCI Core, has been implemented and tested using a general purpose PCI-AER board. This PCI-AER board has been developed by authors, and uses

  19. PAS/POLY-HAMP SIGNALING IN AER-2, A SOLUBLE HEME-BASED SENSOR

    PubMed Central

    Watts, Kylie J; Taylor, Barry L; Johnson, Mark S

    2011-01-01

    SUMMARY Poly-HAMP domains are widespread in bacterial chemoreceptors, but previous studies have focused on receptors with single HAMP domains. The Pseudomonas aeruginosa chemoreceptor, Aer-2, has an unusual domain architecture consisting of a PAS sensing domain sandwiched between three N-terminal and two C-terminal HAMP domains, followed by a conserved kinase control module. The structure of the N-terminal HAMP domains was recently solved, making Aer-2 the first protein with resolved poly-HAMP structure. The role of Aer-2 in P. aeruginosa is unclear, but here we show that Aer-2 can interact with the chemotaxis system of Escherichia coli to mediate repellent responses to oxygen, carbon monoxide and nitric oxide. Using this model system to investigate signaling and poly-HAMP function, we determined that the Aer-2 PAS domain binds penta-coordinated b-type heme and that reversible signaling requires four of the five HAMP domains. Deleting HAMP 2 and/or 3 resulted in a kinase-off phenotype, whereas deleting HAMP 4 and/or 5 resulted in a kinase-on phenotype. Overall, these data support a model in which ligand-bound Aer-2 PAS and HAMP 2 and 3 act together to relieve inhibition of the kinase control module by HAMP 4 and 5, resulting in the kinase-on state of the Aer-2 receptor. PMID:21255112

  20. Conversion of the Aeronautics Interactive Workstation

    NASA Technical Reports Server (NTRS)

    Riveras, Nykkita L.

    2004-01-01

    This summer I am working in the Educational Programs Office. My task is to convert the Aeronautics Interactive Workstation from a Macintosh (Mac) platform to a Personal Computer (PC) platform. The Aeronautics Interactive Workstation is a workstation in the Aerospace Educational Laboratory (AEL), which is one of the three components of the Science, Engineering, Mathematics, and Aerospace Academy (SEMAA). The AEL is a state-of-the-art, electronically enhanced, computerized classroom that puts cutting-edge technology at the fingertips of participating students. It provides a unique learning experience regarding aerospace technology that features activities equipped with aerospace hardware and software that model real-world challenges. The Aeronautics Interactive Workstation, in particular, offers a variety of activities pertaining to the history of aeronautics. When the Aeronautics Interactive Workstation was first implemented into the AEL it was designed with Macromedia Director 4 for a Mac. Today it is being converted to Macromedia DirectorMX2004 for a PC. Macromedia Director is the proven multimedia tool for building rich content and applications for CDs, DVDs, kiosks, and the Internet. It handles the widest variety of media and offers powerful features for building rich content that delivers red results, integrating interactive audio, video, bitmaps, vectors, text, fonts, and more. Macromedia Director currently offers two programmingkripting languages: Lingo, which is Director's own programmingkripting language and JavaScript. In the workstation, Lingo is used in the programming/scripting since it was the only language in use when the workstation was created. Since the workstation was created with an older version of Macromedia Director it hosted significantly different programming/scripting protocols. In order to successfully accomplish my task, the final product required correction of Xtra and programming/scripting errors. I also had to convert the Mac platform

  1. NASA Aeronautics Research: An Assessment

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The U.S. air transportation system is vital to the economic well-being and security of the United States. To support continued U.S. leadership in aviation, Congress and NASA requested that the National Research Council undertake a decadal survey of civil aeronautics research and technology (R&T) priorities that would help NASA fulfill its responsibility to preserve U.S. leadership in aeronautics technology. In 2006, the National Research Council published the Decadal Survey of Civil Aeronautics. That report presented a set of six strategic objectives for the next decade of aeronautics R&T, and it described 51 high-priority R&T challenges--characterized by five common themes--for both NASA and non-NASA researchers. The National Research Council produced the present report, which assesses NASA's Aeronautics Research Program, in response to the National Aeronautics and Space Administration Authorization Act of 2005 (Public Law 109-155). This report focuses on three sets of questions: 1. How well does NASA's research portfolio implement appropriate recommendations and address relevant high-priority research and technology challenges identified in the Decadal Survey of Civil Aeronautics? If gaps are found, what steps should be taken by the federal government to eliminate them? 2. How well does NASA's aeronautics research portfolio address the aeronautics research requirements of NASA, particularly for robotic and human space exploration? How well does NASA's aeronautics research portfolio address other federal government department/agency non-civil aeronautics research needs? If gaps are found, what steps should be taken by NASA and/or other parts of the federal government to eliminate them? 3. Will the nation have a skilled research workforce and research facilities commensurate with the requirements in (1) and (2) above? What critical improvements in workforce expertise and research facilities, if any, should NASA and the nation make to achieve the goals of NASA

  2. NASA's Aeronautics Vision

    NASA Technical Reports Server (NTRS)

    Tenney, Darrel R.

    2004-01-01

    Six long-term technology focus areas are: 1. Environmentally Friendly, Clean Burning Engines. Focus: Develop innovative technologies to enable intelligent turbine engines that significantly reduce harmful emissions while maintaining high performance and increasing reliability. 2. New Aircraft Energy Sources and Management. Focus: Discover new energy sources and intelligent management techniques directed towards zero emissions and enable new vehicle concepts for public mobility and new science missions. 3. Quiet Aircraft for Community Friendly Service. Focus: Develop and integrate noise reduction technology to enable unrestricted air transportation service to all communities. 4. Aerodynamic Performance for Fuel Efficiency. Focus: Improve aerodynamic efficiency,structures and materials technologies, and design tools and methodologies to reduce fuel burn and minimize environmental impact and enable new vehicle concepts and capabilities for public mobility and new science missions. 5. Aircraft Weight Reduction and Community Access. Focus: Develop ultralight smart materials and structures, aerodynamic concepts, and lightweight subsystems to increase vehicle efficiency, leading to high altitude long endurance vehicles, planetary aircraft, advanced vertical and short takeoff and landing vehicles and beyond. 6. Smart Aircraft and Autonomous Control. Focus: Enable aircraft to fly with reduced or no human intervention, to optimize flight over multiple regimes, and to provide maintenance on demand towards the goal of a feeling, seeing, sensing, sentient air vehicle.

  3. Aeronautical Engineering. A Continuing Bibliography with Indexes

    DTIC Science & Technology

    1987-09-01

    an onerous computational requirement. The CONFIGURATION IN SUPERSONIC FLOWS extended method is applied to the case of an unstaggered cascade. P...Doppler detection application. Standard methods Telemetering Conference, Las Vegas, NV, Oct. 13-16, 1986 . such as CA-CFAR, GO-CFAR and OS-CFAR prove to be...substantial improvements in detectability on-board recording. Analog and discrete data is incorporated in over the standard methods . Author the system

  4. NASA's Role in Aeronautics: A Workshop. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The state of the U.S. aeronautic industry and progressive changes in national priorities as reflected in federal unified budget outlays are reviewed as well as the contribution of NACA and the character and substance of U.S. aeronautical research under NASA. Eight possible roles for the future defined by NASA are examined and the extent to which the agency should carry out these activities is considered. The roles include: (1) national facilities expertise; (2) flight sciences research; (3) generic technology evolution; (4) vehicle class evolution; (5) technology demonstration; (6) prototype development; (7) technology validation; and (8) operations feasibility; How NASA's roles varies in the areas of military aviation, general aviation, transport aircraft aeronautics, rotorcraft aeronautics, engineering education, information dissemination, and cooperation with other organizations and agencies is discussed with regard to research in aerodynamics; structures and materials; propulsion; electronics and avionics; vehicle operations; and human engineering.

  5. 14 CFR 61.159 - Aeronautical experience: Airplane category rating.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... rating. 61.159 Section 61.159 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF...-command flight time or flight-engineer flight time toward the 1,500 hours of total time as a pilot... crewmember. (2) Flight-engineer time, provided the time— (i) Is acquired in an airplane required to have...

  6. 14 CFR 61.159 - Aeronautical experience: Airplane category rating.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... rating. 61.159 Section 61.159 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF...-command flight time or flight-engineer flight time toward the 1,500 hours of total time as a pilot... crewmember. (2) Flight-engineer time, provided the time— (i) Is acquired in an airplane required to have...

  7. Technical Communications in Aeronautics: Results of an Exploratory Study. NASA Technical Memorandum 101534, Parts 1 and 2.

    ERIC Educational Resources Information Center

    Pinelli, Thomas E.; And Others

    An exploratory study investigated technical communications in aeronautics by surveying aeronautical engineers and scientists. The study had five specific objectives: to solicit the opinions of aeronautical engineers and scientists regarding the importance of technical communications to their profession; to determine their use and production of…

  8. 1978 Aeronautics and Space Highlights

    NASA Technical Reports Server (NTRS)

    1978-01-01

    These highlights include the space shuttle, new astronauts, Pioneers to Venus, Voyagers to Jupiter and Saturn, High Energy Astronomy Observatories Space Telescope, Landsat/Seasat, space applications, wind energy research, and aeronautics.

  9. [Burns in an aeronautic environment].

    PubMed

    Rigotti, G

    1979-10-27

    Following an examination of the aetiology of burns in aeronautic environments, the physiopathology, classification and general and local treatment of the burn case is discussed. Special mention is then made of aircraft as an extremely useful means of transport.

  10. Air Force Academy Aeronautics Digest.

    DTIC Science & Technology

    1984-03-01

    map the external flow field on the upper surface of the wing and fuselage, *Major, USAF, Associate Professor of Aeronautics, DFAN 2 7...research effort at the USAF Academy to establish the capabilities and limitations of the seven-hole pressure probe in mapping unknown flow fields. The ... map their locations. III. Apparatus A. Wind Tunnel The Subsonic Wind Tunnel in the Aeronautics Laboratory of

  11. Time-recovering PCI-AER interface for bio-inspired spiking systems

    NASA Astrophysics Data System (ADS)

    Paz-Vicente, R.; Linares-Barranco, A.; Cascado, D.; Vicente, S.; Jimenez, G.; Civit, A.

    2005-06-01

    Address Event Representation (AER) is an emergent neuromorphic interchip communication protocol that allows for real-time virtual massive connectivity between huge number neurons located on different chips. By exploiting high speed digital communication circuits (with nano-seconds timings), synaptic neural connections can be time multiplexed, while neural activity signals (with mili-seconds timings) are sampled at low frequencies. Also, neurons generate 'events' according to their activity levels. More active neurons generate more events per unit time, and access the interchip communication channel more frequently, while neurons with low activity consume less communication bandwidth. When building multi-chip muti-layered AER systems it is absolutely necessary to have a computer interface that allows (a) to read AER interchip traffic into the computer and visualize it on screen, and (b) inject a sequence of events at some point of the AER structure. This is necessary for testing and debugging complex AER systems. This paper presents a PCI to AER interface, that dispatches a sequence of events received from the PCI bus with embedded timing information to establish when each event will be delivered. A set of specialized states machines has been introduced to recovery the possible time delays introduced by the asynchronous AER bus. On the input channel, the interface capture events assigning a timestamp and delivers them through the PCI bus to MATLAB applications. It has been implemented in real time hardware using VHDL and it has been tested in a PCI-AER board, developed by authors, that includes a Spartan II 200 FPGA. The demonstration hardware is currently capable to send and receive events at a peak rate of 8,3 Mev/sec, and a typical rate of 1 Mev/sec.

  12. 14 CFR 43.17 - Maintenance, preventive maintenance, and alterations performed on U.S. aeronautical products by...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... person holding a valid Transport Canada Civil Aviation Maintenance Engineer license and appropriate... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT MAINTENANCE... aeronautical product under airworthiness regulation by Transport Canada Civil Aviation. U.S....

  13. 14 CFR 43.17 - Maintenance, preventive maintenance, and alterations performed on U.S. aeronautical products by...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... person holding a valid Transport Canada Civil Aviation Maintenance Engineer license and appropriate... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT MAINTENANCE... aeronautical product under airworthiness regulation by Transport Canada Civil Aviation. U.S....

  14. 14 CFR 43.17 - Maintenance, preventive maintenance, and alterations performed on U.S. aeronautical products by...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... person holding a valid Transport Canada Civil Aviation Maintenance Engineer license and appropriate... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT MAINTENANCE... aeronautical product under airworthiness regulation by Transport Canada Civil Aviation. U.S....

  15. 14 CFR 43.17 - Maintenance, preventive maintenance, and alterations performed on U.S. aeronautical products by...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... person holding a valid Transport Canada Civil Aviation Maintenance Engineer license and appropriate... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT MAINTENANCE... aeronautical product under airworthiness regulation by Transport Canada Civil Aviation. U.S....

  16. Feedforward Categorization on AER Motion Events Using Cortex-Like Features in a Spiking Neural Network.

    PubMed

    Zhao, Bo; Ding, Ruoxi; Chen, Shoushun; Linares-Barranco, Bernabe; Tang, Huajin

    2015-09-01

    This paper introduces an event-driven feedforward categorization system, which takes data from a temporal contrast address event representation (AER) sensor. The proposed system extracts bio-inspired cortex-like features and discriminates different patterns using an AER based tempotron classifier (a network of leaky integrate-and-fire spiking neurons). One of the system's most appealing characteristics is its event-driven processing, with both input and features taking the form of address events (spikes). The system was evaluated on an AER posture dataset and compared with two recently developed bio-inspired models. Experimental results have shown that it consumes much less simulation time while still maintaining comparable performance. In addition, experiments on the Mixed National Institute of Standards and Technology (MNIST) image dataset have demonstrated that the proposed system can work not only on raw AER data but also on images (with a preprocessing step to convert images into AER events) and that it can maintain competitive accuracy even when noise is added. The system was further evaluated on the MNIST dynamic vision sensor dataset (in which data is recorded using an AER dynamic vision sensor), with testing accuracy of 88.14%.

  17. National Advisory Committee for Aeronautics

    NASA Technical Reports Server (NTRS)

    1938-01-01

    NASA was created from the National Advisory Committee on Aeronautics in 1958. This is a photo of the members of the advisory board of NACA in 1938. NACA was the governmental organization charged with the supervision and conduct of scientific laboratory research in aeronautics. Its laboratories located at Langley Field, Virginia, provide new knowledge underlying the continuous improvement in the performance, efficiency, and safety of American aircraft. At this meeting Dr. Joesph S. Ames, President Emeritus of John Hopkins University, was re-elected Chairman, and Dr. Vannevar Bush, President- elect of the Carnegie Institution of Washington, was elected Vice Chairman. Dr. Ames' re-election as chairman was a recognition of his outstanding contributions to the science of aeronautics. He has been the leading scientific member of the Committee for over twenty-three years and chairman for eleven years. Under his visionary leadership the great laboratories of the N.A.C.A. at Langley Field have been developed. Left to Right: Hon. C. M. Hester, Administrator, Civil Aeronautics Authority Captain S. M. Kraus, U.S.N. Brig. General A. W. Robins, Chief, Materiel Division, Army Air Corps. Dr. L.J. Biggs, Director, National Bureau of Standards Dr. E.P. Warner Dr. Orville Wright Dr. Joesph S. Ames, Chairman Dr. C.J. Abbot, Secretary, Smithsonian Institution J.F. Victory, Secretary Rear Adm. A.B. Cook, U.S.N., Chief, Bureau Aeronautics Authority Dr. Vannevar Bush Dr. J.C. Hunsaker Dr. G.W. Lewis, Director of Aeronautical Research. Absent: Col. Charles A. Lindbergh and Maj. Gen. H. 'Hap' Arnold, Chief, Army Air Corps. One Vacany: U.S. Weather Bureau.

  18. National Advisory Committee for Aeronautics Meeting

    NASA Technical Reports Server (NTRS)

    1921-01-01

    The National Advisory Committee for Aeronautics in session at Washington to discuss plans to place America foremost in the development of avaition. A report was heard from Dr. Ames, chairman of the executive committee, on research work to develop the new heavy oil fuel injection aircraft engine which does away with carburetor and spark plugs, and will lesson the fire hazard. Dr. S.W. Stratton, secretary of the committee and director of the Bureau of Standards, is shown seated at the extreme left. Around the table, left to right, are: Prof. Charles F. Marvin, chief of the weather bureau; Dr. John F. Hayford (Northwestern Univ.); Orville Wright; Major Thurman H. Bane (chief Engineer Div. Army); Paul Henderson, (Second Ass. Postmaster Gen.); Rear Adm. W.A. Moffet, Chief Bureau Aeronautics, Navy; Dr. Michael I. Pupin, (Columbia Univ.); Rear Adm. D.W. Taylor, U.S.N. (Chief Bureau Construction and repair); Dr. Charles D. Walcott, chairman, (Chief Air Service) and Dr. Joesph S. Ames, chairman executive committee (John Hopkins Univ.)

  19. Aer and Tsr guide Escherichia coli in spatial gradients of oxidizable substrates.

    PubMed

    Greer-Phillips, Suzanne E; Alexandre, Gladys; Taylor, Barry L; Zhulin, Igor B

    2003-09-01

    The Aer and Tsr chemoreceptors in Escherichia coli govern tactic responses to oxygen and redox potential that are parts of an overall behaviour known as energy taxis. They are also proposed to mediate responses to rapidly utilized carbon sources, glycerol and succinate, via the energy taxis mechanism. In this study, the Aer and Tsr proteins were individually expressed in an 'all-transducer-knockout' strain of E. coli and taxis was analysed in gradients of various oxidizable carbon sources. In addition to the known response to glycerol and succinate, it was found that Aer directed taxis towards ribose, galactose, maltose, malate, proline and alanine as well as the phosphotransferase system (PTS) carbohydrates glucose, mannitol, mannose, sorbitol and fructose, but not to aspartate, glutamate, glycine and arabinose. Tsr directed taxis towards sugars (including those transported by the PTS), but not to organic acids or amino acids. When a mutated Aer protein unable to bind the FAD cofactor was expressed in the receptor-less strain, chemotaxis was not restored to any substrate. Aer appears to mediate responses to rapidly oxidizable substrates, whether or not they are effective growth substrates, whereas Tsr appears to mediate taxis to substrates that support maximal growth, whether or not they are rapidly oxidizable. This correlates with the hypothesis that Aer and Tsr sense redox and proton motive force, respectively. Taken together, the results demonstrate that Aer and Tsr mediate responses to a broad range of chemicals and their attractant repertoires overlap with those of specialized chemoreceptors, namely Trg (ribose, galactose) and Tar (maltose).

  20. Fusion Welding of AerMet 100 Alloy

    SciTech Connect

    ENGLEHART, DAVID A.; MICHAEL, JOSEPH R.; NOVOTNY, PAUL M.; ROBINO, CHARLES V.

    1999-08-01

    A database of mechanical properties for weldment fusion and heat-affected zones was established for AerMet{reg_sign}100 alloy, and a study of the welding metallurgy of the alloy was conducted. The properties database was developed for a matrix of weld processes (electron beam and gas-tungsten arc) welding parameters (heat inputs) and post-weld heat treatment (PWHT) conditions. In order to insure commercial utility and acceptance, the matrix was commensurate with commercial welding technology and practice. Second, the mechanical properties were correlated with fundamental understanding of microstructure and microstructural evolution in this alloy. Finally, assessments of optimal weld process/PWHT combinations for cotildent application of the alloy in probable service conditions were made. The database of weldment mechanical properties demonstrated that a wide range of properties can be obtained in welds in this alloy. In addition, it was demonstrated that acceptable welds, some with near base metal properties, could be produced from several different initial heat treatments. This capability provides a means for defining process parameters and PWHT's to achieve appropriate properties for different applications, and provides useful flexibility in design and manufacturing. The database also indicated that an important region in welds is the softened region which develops in the heat-affected zone (HAZ) and analysis within the welding metallurgy studies indicated that the development of this region is governed by a complex interaction of precipitate overaging and austenite formation. Models and experimental data were therefore developed to describe overaging and austenite formation during thermal cycling. These models and experimental data can be applied to essentially any thermal cycle, and provide a basis for predicting the evolution of microstructure and properties during thermal processing.

  1. Aeronautics. America in Space: The First Decade.

    ERIC Educational Resources Information Center

    Anderton, David A.

    The major research and developments in aeronautics during the late 1950's and 1960's are reviewed descriptively with a minimum of technical content. Topics covered include aeronautical research, aeronautics in NASA, The National Advisory Committee for Aeronautics, the X-15 Research Airplane, variable-sweep wing design, the Supersonic Transport…

  2. 14 CFR 77.35 - Aeronautical studies.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Aeronautical studies. 77.35 Section 77.35 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRSPACE OBJECTS AFFECTING NAVIGABLE AIRSPACE (Eff. until 1-18-11) Aeronautical Studies of Effect of...

  3. 14 CFR 77.35 - Aeronautical studies.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aeronautical studies. 77.35 Section 77.35 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRSPACE OBJECTS AFFECTING NAVIGABLE AIRSPACE Aeronautical Studies of Effect of Proposed Construction on...

  4. Bag of Events: An Efficient Probability-Based Feature Extraction Method for AER Image Sensors.

    PubMed

    Peng, Xi; Zhao, Bo; Yan, Rui; Tang, Huajin; Yi, Zhang

    2016-03-18

    Address event representation (AER) image sensors represent the visual information as a sequence of events that denotes the luminance changes of the scene. In this paper, we introduce a feature extraction method for AER image sensors based on the probability theory, namely, bag of events (BOE). The proposed approach represents each object as the joint probability distribution of the concurrent events, and each event corresponds to a unique activated pixel of the AER sensor. The advantages of BOE include: 1) it is a statistical learning method and has a good interpretability in mathematics; 2) BOE can significantly reduce the effort to tune parameters for different data sets, because it only has one hyperparameter and is robust to the value of the parameter; 3) BOE is an online learning algorithm, which does not require the training data to be collected in advance; 4) BOE can achieve competitive results in real time for feature extraction (>275 frames/s and >120,000 events/s); and 5) the implementation complexity of BOE only involves some basic operations, e.g., addition and multiplication. This guarantees the hardware friendliness of our method. The experimental results on three popular AER databases (i.e., MNIST-dynamic vision sensor, Poker Card, and Posture) show that our method is remarkably faster than two recently proposed AER categorization systems while preserving a good classification accuracy.

  5. 14 CFR 61.159 - Aeronautical experience: Airplane category rating.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... rating. 61.159 Section 61.159 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... or aviation training device may not be used to satisfy this requirement. (4) 75 hours of instrument... second-in-command flight time or flight-engineer flight time toward the 1,500 hours of total time as...

  6. NASA aeronautics. [fact sheet on NASA programs for aeronautical research and aircraft development

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A fact sheet depicting the NASA programs involving aircraft development and aeronautics is presented. The fact sheet consists of artist concepts of the various aircraft which represent specific programs. Among the subjects discussed in the concise explanatory notes are: (1) the YF-12 aircraft, (2) hypersonic drag tests in wind tunnels, (3) augmentor wing concepts, (4) rotary wing development, (5) fly-by-wire aircraft control, (6) supercritical wings, (7) the quiet engine program for noise and emission abatement, (8) flight capabilities of lifting bodies, (9) tilt rotor concepts for improved helicopter performance, and (10) flight safety improvements for general aviation aircraft.

  7. Aeronautical applications of high-temperature superconductors

    NASA Technical Reports Server (NTRS)

    Turney, George E.; Luidens, Roger W.; Uherka, Kenneth; Hull, John

    1989-01-01

    The successful development of high-temperature superconductors (HTS) could have a major impact on future aeronautical propulsion and aeronautical flight vehicle systems. A preliminary examination of the potential application of HTS for aeronautics indicates that significant benefits may be realized through the development and implementation of these newly discovered materials. Applications of high-temperature superconductors (currently substantiated at 95 k) were envisioned for several classes of aeronautical systems, including subsonic and supersonic transports, hypersonic aircraft, V/STOL aircraft, rotorcraft, and solar, microwave and laser powered aircraft. Introduced and described are the particular applications and potential benefits of high-temperature superconductors as related to aeronautics and/or aeronautical systems.

  8. Aeronautical applications of high-temperature superconductors

    NASA Technical Reports Server (NTRS)

    Turney, George E.; Luidens, Roger W.; Uherka, Kenneth; Hull, John

    1989-01-01

    The successful development of high-temperature superconductors (HTS) could have a major impact on future aeronautical propulsion and aeronautical flight vehicle systems. A preliminary examination of the potential application of HTS for aeronautics indicates that significant benefits may be realized through the development and implementation of these newly discovered materials. Applications of high-temperature superconductors (currently substantiated at 95 K) were envisioned for several classes of aeronautical systems, including subsonic and supersonic transports, hypersonic aircraft, V/STOL aircraft, rotorcraft, and solar, microwave and laser powered aircraft. Introduced and described are the particular applications and potential benefits of high-temperature superconductors as related to aeronautics and/or aeronautical systems.

  9. Aeronautical technologies for the twenty-first century

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This study gives an overview of the future technologies in aeronautics. This collaborative effort relies upon the input of numerous experts from around the country. Specific issues covered include subsonic transport aircraft, high-speed civil transport aircraft short-haul aircraft, environmental issues, operational issues, aerodynamics, propulsion, materials and structures, avionics and control, and cognitive engineering. The appendices include bibliography, abbreviations and acronyms, and NASA fiscal year 1992 aeronautics funding (table) and participants. The forward states that over the last decade, foreign aircraft manufacturers have made significant inroads into the global aircraft market, to the detriment of U.S. interests. Recommendations are made to counter that trend.

  10. Aeronautical record : no. 1 (to June, 1923)

    NASA Technical Reports Server (NTRS)

    1923-01-01

    "...considerations have prompted us to pay special attention to the development of aeronautical industries and aerial navigation as a commercial enterprise and to publish an analytical review of events in the aeronautical world and of the attendant problems."

  11. An aeronautical mobile satellite experiment

    NASA Technical Reports Server (NTRS)

    Jedrey, T. C.; Dessouky, K. I.; Lay, N. E.

    1990-01-01

    The various activities and findings of a NASA/FAA/COMSAT/INMARSAT collaborative aeronautical mobile satellite experiment are detailed. The primary objective of the experiment was to demonstrate and evaluate an advanced digital mobile satellite terminal developed at the Jet Propulsion Laboratory under the NASA Mobile Satellite Program. The experiment was a significant milestone for NASA/JPL, since it was the first test of the mobile terminal in a true mobile satellite environment. The results were also of interest to the general mobile satellite community because of the advanced nature of the technologies employed in the terminal.

  12. Aeronautics Technology Possibilities for 2000: Report of a Workshop (January 1984).

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Commission on Engineering and Technical Systems.

    The National Research Council's Aeronautics and Space Engineering Board conducted a workshop in January 1984 to project what the state of knowledge of aeronautical technology could be in the year 2000 if necessary supporting resources were made available. Eight panels were organized to assess possibilities in the areas of: (1) aerodynamics; (2)…

  13. NASA's aeronautics research and technology base

    NASA Technical Reports Server (NTRS)

    1979-01-01

    NASA's research technology base in aeronautics is assessed in terms of: (1) US aeronautical technology needs and requirements in the future; (2) objectives of the aeronautics program; (3) magnitude and scope of the program; and (4) research and technology performed by NASA and other research organizations.

  14. Questions & Answers about Aeronautics and Space.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    Answers to 27 questions about aeronautics, space, and the National Aeronautics and Space Administration (NASA) are provided in this pamphlet. Among the topics dealt with in these questions are: costs of the space program; NASA's role in aeronautics; benefits received from the space program; why the United States hasn't developed means of rescuing…

  15. 14 CFR 61.105 - Aeronautical knowledge.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Aeronautical knowledge. 61.105 Section 61.105 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... log ground training from an authorized instructor or complete a home-study course on the...

  16. 14 CFR 61.97 - Aeronautical knowledge.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aeronautical knowledge. 61.97 Section 61.97 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN... ground training from an authorized instructor or complete a home-study course on the...

  17. 14 CFR 61.97 - Aeronautical knowledge.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Aeronautical knowledge. 61.97 Section 61.97 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN... ground training from an authorized instructor or complete a home-study course on the...

  18. 14 CFR 61.125 - Aeronautical knowledge.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aeronautical knowledge. 61.125 Section 61.125 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... log ground training from an authorized instructor, or complete a home-study course, on...

  19. 14 CFR 61.105 - Aeronautical knowledge.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aeronautical knowledge. 61.105 Section 61.105 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... log ground training from an authorized instructor or complete a home-study course on the...

  20. 14 CFR 61.125 - Aeronautical knowledge.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Aeronautical knowledge. 61.125 Section 61.125 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... log ground training from an authorized instructor, or complete a home-study course, on...

  1. Limb development and evolution: a frog embryo with no apical ectodermal ridge (AER)

    PubMed Central

    RICHARDSON, MICHAEL K.; CARL, TIMOTHY F.; HANKEN, JAMES; ELINSON, RICHARD P.; COPE, CELIA; BAGLEY, PETER

    1998-01-01

    The treefrog Eleutherodactylus coqui is a direct developer — it has no tadpole stage. The limb buds develop earlier than in metamorphosing species (indirect developers, such as Xenopus laevis). Previous molecular studies suggest that at least some mechanisms of limb development in E. coqui are similar to those of other vertebrates and we wished to see how limb morphogenesis in this species compares with that in other vertebrates. We found that the hind limb buds are larger and more advanced than the forelimbs at all stages examined, thus differing from the typical amniote pattern. The limb buds were also small compared to those in the chick. Scanning and transmission electron microscopy showed that although the apical ectoderm is thickened, there was no apical ectodermal ridge (AER). In addition, the limb buds lacked the dorsoventral flattening seen in many amniotes. These findings could suggest a mechanical function for the AER in maintaining dorsoventral flattening, although not all data are consistent with this view. Removal of distal ectoderm from E. coqui hindlimb buds does not stop outgrowth, although it does produce anterior defects in the skeletal pattern. The defects are less severe when the excisions are performed earlier. These results contrast with the chick, in which AER excision leads to loss of distal structures. We suggest that an AER was present in the common ancestor of anurans and amniotes and has been lost in at least some direct developers including E. coqui. PMID:9688504

  2. Aeronautical audio broadcasting via satellite

    NASA Technical Reports Server (NTRS)

    Tzeng, Forrest F.

    1993-01-01

    A system design for aeronautical audio broadcasting, with C-band uplink and L-band downlink, via Inmarsat space segments is presented. Near-transparent-quality compression of 5-kHz bandwidth audio at 20.5 kbit/s is achieved based on a hybrid technique employing linear predictive modeling and transform-domain residual quantization. Concatenated Reed-Solomon/convolutional codes with quadrature phase shift keying are selected for bandwidth and power efficiency. RF bandwidth at 25 kHz per channel, and a decoded bit error rate at 10(exp -6) with E(sub b)/N(sub o) at 3.75 dB are obtained. An interleaver, scrambler, modem synchronization, and frame format were designed, and frequency-division multiple access was selected over code-division multiple access. A link budget computation based on a worst-case scenario indicates sufficient system power margins. Transponder occupancy analysis for 72 audio channels demonstrates ample remaining capacity to accommodate emerging aeronautical services.

  3. The revolutionary impact of evolving aeronautical technologies

    NASA Technical Reports Server (NTRS)

    Kayten, G. G.; Driver, C.; Maglieri, D. J.

    1984-01-01

    Recent advances in aeronautical technologies which could produce revolutionary changes in transport aircraft if fully implemented are delineated. Laminar flow control offers a L/D improvement from the current 18 to 22 if used with a 767 configuration. Higher aspect and thickness/chord ratios could yield more efficient structural designs and further drag reduction. High-strength, fiber-reinforced composite structures can reduce structural weight by 10-30 percent. Improved engine cooling methods, higher stage loadings and exhaust temperatures can lower the SFC by 15 percent, engine weight by 15 percent, and the parts count by 50 percent. Aft-mounted counterrotating propellers can potentially decrease the SFC an additional 15-20 percent. Supersonic transport aircraft with L/D ratios of 18 and 70 seat miles/gal fuel efficiency can now be built that weigh half as much as the Concorde and carry the same load. The new SST would have superplastic-molded Al alloy structures.

  4. Life prediction technologies for aeronautical propulsion systems

    NASA Technical Reports Server (NTRS)

    Mcgaw, Michael A.

    1990-01-01

    Fatigue and fracture problems continue to occur in aeronautical gas turbine engines. Components whose useful life is limited by these failure modes include turbine hot-section blades, vanes, and disks. Safety considerations dictate that catastrophic failures be avoided, while economic considerations dictate that catastrophic failures be avoided, while economic considerations dictate that noncatastrophic failures occur as infrequently as possible. Therefore, the decision in design is making the tradeoff between engine performance and durability. LeRC has contributed to the aeropropulsion industry in the area of life prediction technology for over 30 years, developing creep and fatigue life prediction methodologies for hot-section materials. At the present time, emphasis is being placed on the development of methods capable of handling both thermal and mechanical fatigue under severe environments. Recent accomplishments include the development of more accurate creep-fatigue life prediction methods such as the total strain version of LeRC's strain-range partitioning (SRP) and the HOST-developed cyclic damage accumulation (CDA) model. Other examples include the development of a more accurate cumulative fatigue damage rule - the double damage curve approach (DDCA), which provides greatly improved accuracy in comparison with usual cumulative fatigue design rules. Other accomplishments in the area of high-temperature fatigue crack growth may also be mentioned. Finally, we are looking to the future and are beginning to do research on the advanced methods which will be required for development of advanced materials and propulsion systems over the next 10-20 years.

  5. Life prediction technologies for aeronautical propulsion systems

    NASA Technical Reports Server (NTRS)

    Mcgaw, Michael A.

    1987-01-01

    Fatigue and fracture problems continue to occur in aeronautical gas turbine engines. Components whose useful life is limited by these failure modes include turbine hot-section blades, vanes and disks. Safety considerations dictate that catastrophic failures be avoided, while economic considerations dictate that noncatastrophic failures occur as infrequently as possible. The design decision is therefore in making the tradeoff between engine performance and durability. The NASA Lewis Research Center has contributed to the aeropropulsion industry in the areas of life prediction technology for 30 years, developing creep and fatigue life prediction methodologies for hot-section materials. Emphasis is placed on the development of methods capable of handling both thermal and mechanical fatigue under severe environments. Recent accomplishments include the development of more accurate creep-fatigue life prediction methods such as the total strain version of Lewis' Strainrange Partitioning (SRP) and the HOST-developed Cyclic Damage Accumulation (CDA) model. Other examples include the Double Damage Curve Approach (DDCA), which provides greatly improved accuracy for cumulative fatigue design rules.

  6. Bacterial Energy Sensor Aer Modulates the Activity of the Chemotaxis Kinase CheA Based on the Redox State of the Flavin Cofactor.

    PubMed

    Samanta, Dipanjan; Widom, Joanne; Borbat, Peter P; Freed, Jack H; Crane, Brian R

    2016-12-09

    Flagellated bacteria modulate their swimming behavior in response to environmental cues through the CheA/CheY signaling pathway. In addition to responding to external chemicals, bacteria also monitor internal conditions that reflect the availability of oxygen, light, and reducing equivalents, in a process termed "energy taxis." In Escherichia coli, the transmembrane receptor Aer is the primary energy sensor for motility. Genetic and physiological data suggest that Aer monitors the electron transport chain through the redox state of its FAD cofactor. However, direct biochemical data correlating FAD redox chemistry with CheA kinase activity have been lacking. Here, we test this hypothesis via functional reconstitution of Aer into nanodiscs. As purified, Aer contains fully oxidized FAD, which can be chemically reduced to the anionic semiquinone (ASQ). Oxidized Aer activates CheA, whereas ASQ Aer reversibly inhibits CheA. Under these conditions, Aer cannot be further reduced to the hydroquinone, in contrast to the proposed Aer signaling model. Pulse ESR spectroscopy of the ASQ corroborates a potential mechanism for signaling in that the resulting distance between the two flavin-binding PAS (Per-Arnt-Sim) domains implies that they tightly sandwich the signal-transducing HAMP domain in the kinase-off state. Aer appears to follow oligomerization patterns observed for related chemoreceptors, as higher loading of Aer dimers into nanodiscs increases kinase activity. These results provide a new methodological platform to study Aer function along with new mechanistic details into its signal transduction process.

  7. Exploring in Aeronautics. An Introduction to Aeronautical Sciences.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Cleveland, OH. Lewis Research Center.

    This curriculum guide is based on a year of lectures and projects of a contemporary special-interest Explorer program intended to provide career guidance and motivation for promising students interested in aerospace engineering and scientific professions. The adult-oriented program avoids technicality and rigorous mathematics and stresses real…

  8. Mobile-ip Aeronautical Network Simulation Study

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Tran, Diepchi T.

    2001-01-01

    NASA is interested in applying mobile Internet protocol (mobile-ip) technologies to its space and aeronautics programs. In particular, mobile-ip will play a major role in the Advanced Aeronautic Transportation Technology (AATT), the Weather Information Communication (WINCOMM), and the Small Aircraft Transportation System (SATS) aeronautics programs. This report presents the results of a simulation study of mobile-ip for an aeronautical network. The study was performed to determine the performance of the transmission control protocol (TCP) in a mobile-ip environment and to gain an understanding of how long delays, handoffs, and noisy channels affect mobile-ip performance.

  9. 14 CFR 61.125 - Aeronautical knowledge.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... and effects of exceeding aircraft performance limitations; (9) Use of aeronautical charts and a..., and emergency operations appropriate to the aircraft; (14) Night and high-altitude operations;...

  10. 14 CFR 61.125 - Aeronautical knowledge.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... and effects of exceeding aircraft performance limitations; (9) Use of aeronautical charts and a..., and emergency operations appropriate to the aircraft; (14) Night and high-altitude operations;...

  11. 14 CFR 61.125 - Aeronautical knowledge.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... and effects of exceeding aircraft performance limitations; (9) Use of aeronautical charts and a..., and emergency operations appropriate to the aircraft; (14) Night and high-altitude operations;...

  12. 76 FR 16643 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-24

    ... From the Federal Register Online via the Government Publishing Office NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Meeting AGENCY: National Aeronautics... Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space Administration announces...

  13. 77 FR 61432 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-09

    ... From the Federal Register Online via the Government Publishing Office NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Meeting AGENCY: National Aeronautics... Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space Administration announces...

  14. 75 FR 50782 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-17

    ... From the Federal Register Online via the Government Publishing Office NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Meeting AGENCY: National Aeronautics... Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space Administration announces...

  15. 76 FR 40753 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-11

    ... From the Federal Register Online via the Government Publishing Office NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Meeting AGENCY: National Aeronautics... Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space Administration announces...

  16. 75 FR 41240 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-15

    ... From the Federal Register Online via the Government Publishing Office NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Meeting AGENCY: National Aeronautics... Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space Administration announces...

  17. Microstructural Mitigation of Hydrogen Environment Embrittlement of Ultra-High Strength AerMet(Trademark) 100

    DTIC Science & Technology

    2006-01-01

    composition and processing conditions based on such existing models. Qualitatively, increasing incoherence of M2C precipitates does not result in reduced...AerMetTM 100, including nanoscale carbides ( M2C = (Cr,Mo) 2C), cementite, undissolved alloy carbides, martensite laths and packet interfaces, prior...temper (482°C) are those associated with M2C carbides and martensite lath and packet boundaries. Those studies concluded that nano-scale, coherent and

  18. A polishing hybrid AER/UF membrane process for the treatment of a high DOC content surface water.

    PubMed

    Humbert, H; Gallard, H; Croué, J-P

    2012-03-15

    The efficacy of a combined AER/UF (Anion Exchange Resin/Ultrafiltration) process for the polishing treatment of a high DOC (Dissolved Organic Carbon) content (>8 mgC/L) surface water was investigated at lab-scale using a strong base AER. Both resin dose and bead size had a significant impact on the kinetic removal of DOC for short contact times (i.e. <15 min). For resin doses higher than 700 mg/L and median bead sizes below 250 μm DOC removal remained constant after 30 min of contact time with very high removal rates (80%). Optimum AER treatment conditions were applied in combination with UF membrane filtration on water previously treated by coagulation-flocculation (i.e. 3 mgC/L). A more severe fouling was observed for each filtration run in the presence of AER. This fouling was shown to be mainly reversible and caused by the progressive attrition of the AER through the centrifugal pump leading to the production of resin particles below 50 μm in diameter. More important, the presence of AER significantly lowered the irreversible fouling (loss of permeability recorded after backwash) and reduced the DOC content of the clarified water to l.8 mgC/L (40% removal rate), concentration that remained almost constant throughout the experiment.

  19. Reynolds number influences in aeronautics

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M.; Yip, Long P.; Yao, Chung-Sheng; Lin, John C.; Lawing, Pierce L.; Batina, John T.; Hardin, Jay C.; Horvath, Thomas J.; Fenbert, James W.; Domack, Christopher S.

    1993-01-01

    Reynolds number, a measure of the ratio of inertia to viscous forces, is a fundamental similarity parameter for fluid flows and therefore, would be expected to have a major influence in aerodynamics and aeronautics. Reynolds number influences are generally large, but monatomic, for attached laminar (continuum) flow; however, laminar flows are easily separated, inducing even stronger, non-monatomic, Reynolds number sensitivities. Probably the strongest Reynolds number influences occur in connection with transitional flow behavior. Transition can take place over a tremendous Reynolds number range, from the order of 20 x 10(exp 3) for 2-D free shear layers up to the order of 100 x 10(exp 6) for hypersonic boundary layers. This variability in transition behavior is especially important for complex configurations where various vehicle and flow field elements can undergo transition at various Reynolds numbers, causing often surprising changes in aerodynamics characteristics over wide ranges in Reynolds number. This is further compounded by the vast parameterization associated with transition, in that any parameter which influences mean viscous flow development (e.g., pressure gradient, flow curvature, wall temperature, Mach number, sweep, roughness, flow chemistry, shock interactions, etc.), and incident disturbance fields (acoustics, vorticity, particulates, temperature spottiness, even electro static discharges) can alter transition locations to first order. The usual method of dealing with the transition problem is to trip the flow in the generally lower Reynolds number wind tunnel to simulate the flight turbulent behavior. However, this is not wholly satisfactory as it results in incorrectly scaled viscous region thicknesses and cannot be utilized at all for applications such as turbine blades and helicopter rotors, nacelles, leading edge and nose regions, and High Altitude Long Endurance and hypersonic airbreathers where the transitional flow is an innately critical

  20. Economic analysis of aeronautical research and technology

    NASA Technical Reports Server (NTRS)

    Gellman, A. J.

    1982-01-01

    The appropriateness of government intervention in the civilian market for aeronautics research and technology (R&T) is examined. The economic rationale for government intervention is examined. The conclusion is that the institutional role played by NASA in civilian aeronautics R&T markets is economically justified.

  1. Multibeam satellite EIRP adaptability for aeronautical communications.

    NASA Technical Reports Server (NTRS)

    Kinal, G. V.; Bisaga, J. J.

    1973-01-01

    EIRP enhancement and management techniques, emphasizing aeronautical communications and adaptable multibeam concepts, are classified and characterized. User requirement and demand characteristics that exploit the improvement available from each technique are identified, and the relative performance improvement of each is discussed. It is concluded that aeronautical satellite communications could benefit greatly by the employment of these techniques.

  2. NASA GRC/Aeronautics Overview

    NASA Technical Reports Server (NTRS)

    Sehra, Arun K.

    2003-01-01

    Twenty-first-century aeropropulsion and power research will enable new transport engine and aircraft systems including: 1) Emerging ultralow noise and emissions with the use of intelligent turbofans; 2) Future distributed vectored propulsion with 24-hour operations and greater community mobility; 3) Research in hybrid combustion and electric propulsion systems leading to silent aircraft with near-zero emissions; and 4) The culmination of these revolutions will deliver an all-electric- powered propulsion system with zero-impact emissions and noise and high-capacity, on-demand operation

  3. Aeronautical enginnering: A cumulative index to a continuing bibliography (supplement 312)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a cumulative index to the abstracts contained in NASA SP-7037 (301) through NASA SP-7073 (311) of Aeronautical Engineering: A Continuing Bibliography. NASA SP-7037 and its supplements have been compiled by the Center for AeroSpace Information of the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, foreign technology, contract number, report number, and accession number indexes.

  4. TRENDS: The aeronautical post-test database management system

    NASA Technical Reports Server (NTRS)

    Bjorkman, W. S.; Bondi, M. J.

    1990-01-01

    TRENDS, an engineering-test database operating system developed by NASA to support rotorcraft flight tests, is described. Capabilities and characteristics of the system are presented, with examples of its use in recalling and analyzing rotorcraft flight-test data from a TRENDS database. The importance of system user-friendliness in gaining users' acceptance is stressed, as is the importance of integrating supporting narrative data with numerical data in engineering-test databases. Considerations relevant to the creation and maintenance of flight-test database are discussed and TRENDS' solutions to database management problems are described. Requirements, constraints, and other considerations which led to the system's configuration are discussed and some of the lessons learned during TRENDS' development are presented. Potential applications of TRENDS to a wide range of aeronautical and other engineering tests are identified.

  5. Center for Aeronautics and Space Information Sciences

    NASA Technical Reports Server (NTRS)

    Flynn, Michael J.

    1992-01-01

    This report summarizes the research done during 1991/92 under the Center for Aeronautics and Space Information Science (CASIS) program. The topics covered are computer architecture, networking, and neural nets.

  6. Astronautics and aeronautics, 1977: A chronology

    NASA Technical Reports Server (NTRS)

    Ritchie, E. H.

    1986-01-01

    This publication is a chronology of events during the year 1977 in the fields of aeronautical and space research, development, activity, and policy. It includes appendixes, an index, and illustrations. Chronological entries list sources for further inquiry.

  7. NASA Aeronautics: A New Strategic Vision

    NASA Video Gallery

    The aviation landscape is shifting. Emerging global trends are creating challenges that are changing the face of aviation for the next 20-40 years. How is NASA Aeronautics responding? With a new st...

  8. NASA Aeronautics Showcased at Balloon Fiesta

    NASA Video Gallery

    Visitors at the 2010 International Balloon Fiesta in Albuquerque, N.M., got visual stimulation from hundreds of colorful hot-air balloons soaring skyward, but also learned about NASA's aeronautics ...

  9. Aeronautics and space report of the President

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This report describes the activities and accomplishments of all agencies of the United States in the fields of aeronautics and space science during FY 1994. Activity summaries are presented for the following areas: space launch activities, space science, space flight and space technology, space communications, aeronuatics, and studies of the planet Earth. Several appendices providing data on U.S. launch activities, the Federal budget for space and aeronautics, remote sensing capabilities, and space policy are included.

  10. Aeronautical Wind Tunnels, Europe and Asia

    DTIC Science & Technology

    2006-02-01

    AERONAUTICAL WIND TUNNELS EUROPE AND ASIA Researchers: Katarina David Jenele Gorham Sarah Kim Patrick Miller... Wind Tunnels Europe and Asia 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f...18 Library of Congress – Federal Research Division Aeronautical Wind Tunnels Europe and Asia PREFACE 1 This catalog is a compilation of data on

  11. Adiabatic shear band formation in explosively driven AerMet-100 alloy cylinders

    SciTech Connect

    Sunwoo, A J; Becker, R; Goto, D M; Orzechowski, T J; Springer, H K; Syn, C K; Zhou, J

    2006-02-08

    Two differently heat-treated AerMet-100 alloy cylinders were explosively driven to fragmentation. Soft-captured fragments were studied to characterize the deformation and damage induced by high explosive loading. The characterization of the fragments reveals that the dominant failure mechanism appears to be dynamic fracture along adiabatic shear bands. These shear bands differ in size and morphology depending on the heat-treated conditions. Nanoindentation measurements of the adiabatic shear bands in either material condition indicate higher hardness in the bands compared to the matrix regions of the fragments.

  12. 14 CFR 29.903 - Engines.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Engines. 29.903 Section 29.903 Aeronautics... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant General § 29.903 Engines. (a) Engine type certification. Each engine must have an approved type certificate. Reciprocating engines for use in helicopters...

  13. 14 CFR 29.903 - Engines.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engines. 29.903 Section 29.903 Aeronautics... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant General § 29.903 Engines. (a) Engine type certification. Each engine must have an approved type certificate. Reciprocating engines for use in helicopters...

  14. 14 CFR 29.903 - Engines.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Engines. 29.903 Section 29.903 Aeronautics... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant General § 29.903 Engines. (a) Engine type certification. Each engine must have an approved type certificate. Reciprocating engines for use in helicopters...

  15. 14 CFR 27.903 - Engines.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engines. 27.903 Section 27.903 Aeronautics... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant General § 27.903 Engines. (a) Engine type certification. Each engine must have an approved type certificate. Reciprocating engines for use in helicopters...

  16. 14 CFR 29.903 - Engines.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engines. 29.903 Section 29.903 Aeronautics... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant General § 29.903 Engines. (a) Engine type certification. Each engine must have an approved type certificate. Reciprocating engines for use in helicopters...

  17. 14 CFR 29.903 - Engines.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engines. 29.903 Section 29.903 Aeronautics... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant General § 29.903 Engines. (a) Engine type certification. Each engine must have an approved type certificate. Reciprocating engines for use in helicopters...

  18. 14 CFR 27.903 - Engines.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engines. 27.903 Section 27.903 Aeronautics... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant General § 27.903 Engines. (a) Engine type certification. Each engine must have an approved type certificate. Reciprocating engines for use in helicopters...

  19. Application of CFD in aeronautics at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Maksymiuk, Catherine M.; Enomoto, Francis Y.; Vandalsem, William R.

    1995-01-01

    The role of Computational Fluid Dynamics (CFD) at Ames Research Center has expanded to address a broad range of aeronautical problems, including wind tunnel support, flight test support, design, and analysis. Balancing the requirements of each new problem against the available resources - software, hardware, time, and expertise - is critical to the effective use of CFD. Several case studies of recent applications highlight the depth of CFD capability at Ames, the tradeoffs involved in various approaches, and lessons learned in the use of CFD as an engineering tool.

  20. Aeronautical technology 2000: A projection of advanced vehicle concepts

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The Aeronautics and Space Engineering Board (ASEB) of the National Research Council conducted a Workshop on Aeronautical Technology: a Projection to the Year 2000 (Aerotech 2000 Workshop). The panels were asked to project advances in aeronautical technologies that could be available by the year 2000. As the workshop was drawing to a close, it became evident that a more comprehensive investigation of advanced air vehicle concepts than was possible in the limited time available at the workshop would be valuable. Thus, a special panel on vehicle applications was organized. In the course of two meetings, the panel identified and described representative types of aircraft judged possible with the workshop's technology projections. These representative aircraft types include: military aircraft; transport aircraft; rotorcraft; extremely high altitude aircraft; and transatmospheric aircraft. Improvements in performance, efficiency, and operational characteristics possible through the application of the workshop's year 2000 technology projections were discussed. The subgroups also identified the technologies considered essential and enhancing or supporting to achieve the projected aircraft improvements.

  1. 75 FR 54221 - Government/Industry Aeronautical Charting Forum Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-03

    ... Administration (FAA) Aeronautical Charting Forum (ACF) to discuss informational content and design of aeronautical charts and related products, as well as instrument flight procedures development policy and design... Aeronautical Charting Forum Meeting AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice...

  2. Differential auxin transport and accumulation in the stem base lead to profuse adventitious root primordia formation in the aerial roots (aer) mutant of tomato (Solanum lycopersicum L.).

    PubMed

    Mignolli, F; Mariotti, L; Picciarelli, P; Vidoz, M L

    2017-02-27

    The aerial roots (aer) mutant of tomato is characterized by a profuse and precocious formation of adventitious root primordia along the stem. We demonstrated that auxin is involved in the aer phenotype but ruled out higher auxin sensitivity of mutant plants. Interestingly, polar auxin transport was altered in aer, as young seedlings showed a reduced response to an auxin transport inhibitor and higher expression of auxin export carriers SlPIN1 and SlPIN3. An abrupt reduction in transcripts of auxin efflux and influx genes in older aer hypocotyls caused a marked deceleration of auxin transport in more mature tissues. Indeed, in 20days old aer plants, the transport of labeled IAA was faster in apices than in hypocotyls, displaying an opposite trend in comparison to a wild type. In addition, auxin transport facilitators (SlPIN1, SlPIN4, SlLAX5) were more expressed in aer apices than in hypocotyls, suggesting that auxin moves faster from the upper to the lower part of the stem. Consequently, a significantly higher level of free and conjugated IAA was found at the base of aer stems with respect to their apices. This auxin accumulation is likely the cause of the aer phenotype.

  3. HSCT Assessment Calculations with the AER 2-D Model: Sensitivities to Transport Formulation, PSC Formulation, Interannual Temperature Variation. Appendix C

    NASA Technical Reports Server (NTRS)

    Weisenstein, Debra K.; Ko, Malcolm K. W.; Scott, Courtney J.; Shia, Run-Lie; Jackman, Charles; Fleming, Eric; Considine, David; Kinnison, Douglas; Connell, Peter; Rotman, Douglas

    1998-01-01

    The summary are: (1) Some chemical differences in background atmosphere are surprisingly large (NOY). (2) Differences in model transport explain a majority of the intertnodel differences in the absence of PSCs. (3) With PSCS, large differences exist in predicted O3 depletion between models with the same transport. (4) AER/LLNL model calculates more O3 depletion in NH than LLNL. (5) AER/GSFC model cannot match calculated O3 depletion of GSFC model in SH. and (6) Results sensitive to interannual temperature variations (at least in NH).

  4. AerChemMIP: Quantifying the effects of chemistry and aerosols in CMIP6

    DOE PAGES

    Collins, William J.; Lamarque, Jean -François; Schulz, Michael; ...

    2017-02-09

    The Aerosol Chemistry Model Intercomparison Project (AerChemMIP) is endorsed by the Coupled-Model Intercomparison Project 6 (CMIP6) and is designed to quantify the climate and air quality impacts of aerosols and chemically reactive gases. These are specifically near-term climate forcers (NTCFs: methane, tropospheric ozone and aerosols, and their precursors), nitrous oxide and ozone-depleting halocarbons. The aim of AerChemMIP is to answer four scientific questions. 1. How have anthropogenic emissions contributed to global radiative forcing and affected regional climate over the historical period? 2. How might future policies (on climate, air quality and land use) affect the abundances of NTCFs and theirmore » climate impacts? 3.How do uncertainties in historical NTCF emissions affect radiative forcing estimates? 4. How important are climate feedbacks to natural NTCF emissions, atmospheric composition, and radiative effects? These questions will be addressed through targeted simulations with CMIP6 climate models that include an interactive representation of tropospheric aerosols and atmospheric chemistry. These simulations build on the CMIP6 Diagnostic, Evaluation and Characterization of Klima (DECK) experiments, the CMIP6 historical simulations, and future projections performed elsewhere in CMIP6, allowing the contributions from aerosols and/or chemistry to be quantified. As a result, specific diagnostics are requested as part of the CMIP6 data request to highlight the chemical composition of the atmosphere, to evaluate the performance of the models, and to understand differences in behaviour between them.« less

  5. AerChemMIP: quantifying the effects of chemistry and aerosols in CMIP6

    NASA Astrophysics Data System (ADS)

    Collins, William J.; Lamarque, Jean-François; Schulz, Michael; Boucher, Olivier; Eyring, Veronika; Hegglin, Michaela I.; Maycock, Amanda; Myhre, Gunnar; Prather, Michael; Shindell, Drew; Smith, Steven J.

    2017-02-01

    The Aerosol Chemistry Model Intercomparison Project (AerChemMIP) is endorsed by the Coupled-Model Intercomparison Project 6 (CMIP6) and is designed to quantify the climate and air quality impacts of aerosols and chemically reactive gases. These are specifically near-term climate forcers (NTCFs: methane, tropospheric ozone and aerosols, and their precursors), nitrous oxide and ozone-depleting halocarbons. The aim of AerChemMIP is to answer four scientific questions. 1. How have anthropogenic emissions contributed to global radiative forcing and affected regional climate over the historical period? 2. How might future policies (on climate, air quality and land use) affect the abundances of NTCFs and their climate impacts? 3.How do uncertainties in historical NTCF emissions affect radiative forcing estimates? 4. How important are climate feedbacks to natural NTCF emissions, atmospheric composition, and radiative effects? These questions will be addressed through targeted simulations with CMIP6 climate models that include an interactive representation of tropospheric aerosols and atmospheric chemistry. These simulations build on the CMIP6 Diagnostic, Evaluation and Characterization of Klima (DECK) experiments, the CMIP6 historical simulations, and future projections performed elsewhere in CMIP6, allowing the contributions from aerosols and/or chemistry to be quantified. Specific diagnostics are requested as part of the CMIP6 data request to highlight the chemical composition of the atmosphere, to evaluate the performance of the models, and to understand differences in behaviour between them.

  6. Aeronautics and space report of the President: 1981 activities

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Achievements in the aeronautics and space program by function are summarized. Activities in communications, Earth's resources and environment, space science, space transportation, international activities, and aeronautics are included.

  7. Human Factors in Aeronautics at NASA

    NASA Technical Reports Server (NTRS)

    Mogford, Richard

    2016-01-01

    This is a briefing to a regularly meeting DoD group called the Human Systems Community of Interest: Mission Effectiveness. I was asked to address human factors in aeronautics at NASA. (Exploration (space) human factors has apparently already been covered.) The briefing describes human factors organizations at NASA Ames and Langley. It then summarizes some aeronautics tasks that involve the application of human factors in the development of specific tools and capabilities. The tasks covered include aircrew checklists, dispatch operations, Playbook, Dynamic Weather Routes, Traffic Aware Strategic Aircrew Requests, and Airplane State Awareness and Prediction Technologies. I mention that most of our aeronautics work involves human factors as embedded in development tasks rather than basic research.

  8. Emerging Options and Opportunities in Civilian Aeronautics

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M.

    2012-01-01

    This paper addresses the major problems/issues with civilian aeronautics going forward, the contextual ongoing technology revolutions, the several emerging civilian aeronautical "Big Ideas" and associated enabling technological approaches. The ongoing IT Revolution is increasingly providing, as 5 senses virtual presence/reality becomes available, along with Nano/Molecular Manufacturing, virtual alternatives to Physical transportation for both people and goods. Paper examines the potential options available to aeronautics to maintain and perhaps grow "market share" in the context of this evolving competition. Many of these concepts are not new, but the emerging technology landscape is enhancing their viability and marketability. The concepts vary from the "interesting" to the truly revolutionary and all require considerable research. Paper considers the speed range from personal/general aviation to supersonic transports and technologies from energetics to fabrication.

  9. Air Breathing Propulsion Controls and Diagnostics Research at NASA Glenn Under NASA Aeronautics Research Mission Programs

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2014-01-01

    The Intelligent Control and Autonomy Branch (ICA) at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet the goals of the NASA Aeronautics Research Mission Directorate (ARMD) Programs. These efforts are primarily under the various projects under the Fundamental Aeronautics Program (FAP) and the Aviation Safety Program (ASP). The ICA Branch is focused on advancing the state-of-the-art of aero-engine control and diagnostics technologies to help improve aviation safety, increase efficiency, and enable operation with reduced emissions. This paper describes the various ICA research efforts under the NASA Aeronautics Research Mission Programs with a summary of motivation, background, technical approach, and recent accomplishments for each of the research tasks.

  10. Air Breathing Propulsion Controls and Diagnostics Research at NASA Glenn Under NASA Aeronautics Research Mission Programs

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2015-01-01

    The Intelligent Control and Autonomy Branch (ICA) at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet the goals of the NASA Aeronautics Research Mission Directorate (ARMD) Programs. These efforts are primarily under the various projects under the Advanced Air Vehicles Program (AAVP), Airspace Operations and Safety Program (AOSP) and Transformative Aeronautics Concepts Program (TAC). The ICA Branch is focused on advancing the state-of-the-art of aero-engine control and diagnostics technologies to help improve aviation safety, increase efficiency, and enable operation with reduced emissions. This paper describes the various ICA research efforts under the NASA Aeronautics Research Mission Programs with a summary of motivation, background, technical approach, and recent accomplishments for each of the research tasks.

  11. Langley aeronautics and space test highlights, 1984

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests which were performed during calendar year 1984 in Langley test facilities are highlighted. The broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research are illustrated.

  12. Inmarsat aeronautical mobile satellite system: Internetworking issues

    NASA Technical Reports Server (NTRS)

    Sengupta, Jay R.

    1990-01-01

    The Inmarsat Aeronautical Mobile Satellite System (AMSS) provides air-ground and air-air communications services to aero-mobile users on a global basis. Communicating parties may be connected either directly, or more commonly, via interconnecting networks to the Inmarsat AMSS, in order to construct end-to-end communications circuits. The aircraft earth station (AES) and the aeronautical ground earth station (GES) are the points of interconnection of the Inmarsat AMSS to users, as well as to interconnecting networks. This paper reviews the internetworking aspects of the Inmarsat AMSS, by introducing the Inmarsat AMSS network architecture and services concepts and then discussing the internetwork address/numbering and routing techniques.

  13. Wireless Sensor Applications in Extreme Aeronautical Environments

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Atkinson, Gary M.

    2013-01-01

    NASA aeronautical programs require rigorous ground and flight testing. Many of the testing environments can be extremely harsh. These environments include cryogenic temperatures and high temperatures (greater than 1500 C). Temperature, pressure, vibration, ionizing radiation, and chemical exposure may all be part of the harsh environment found in testing. This paper presents a survey of research opportunities for universities and industry to develop new wireless sensors that address anticipated structural health monitoring (SHM) and testing needs for aeronautical vehicles. Potential applications of passive wireless sensors for ground testing and high altitude aircraft operations are presented. Some of the challenges and issues of the technology are also presented.

  14. AerGOM, an improved algorithm for stratospheric aerosol extinction retrieval from GOMOS observations - Part 1: Algorithm description

    NASA Astrophysics Data System (ADS)

    Vanhellemont, Filip; Mateshvili, Nina; Blanot, Laurent; Étienne Robert, Charles; Bingen, Christine; Sofieva, Viktoria; Dalaudier, Francis; Tétard, Cédric; Fussen, Didier; Dekemper, Emmanuel; Kyrölä, Erkki; Laine, Marko; Tamminen, Johanna; Zehner, Claus

    2016-09-01

    The GOMOS instrument on Envisat has successfully demonstrated that a UV-Vis-NIR spaceborne stellar occultation instrument is capable of delivering quality data on the gaseous and particulate composition of Earth's atmosphere. Still, some problems related to data inversion remained to be examined. In the past, it was found that the aerosol extinction profile retrievals in the upper troposphere and stratosphere are of good quality at a reference wavelength of 500 nm but suffer from anomalous, retrieval-related perturbations at other wavelengths. Identification of algorithmic problems and subsequent improvement was therefore necessary. This work has been carried out; the resulting AerGOM Level 2 retrieval algorithm together with the first data version AerGOMv1.0 forms the subject of this paper. The AerGOM algorithm differs from the standard GOMOS IPF processor in a number of important ways: more accurate physical laws have been implemented, all retrieval-related covariances are taken into account, and the aerosol extinction spectral model is strongly improved. Retrieval examples demonstrate that the previously observed profile perturbations have disappeared, and the obtained extinction spectra look in general more consistent. We present a detailed validation study in a companion paper; here, to give a first idea of the data quality, a worst-case comparison at 386 nm shows SAGE II-AerGOM correlation coefficients that are up to 1 order of magnitude larger than the ones obtained with the GOMOS IPFv6.01 data set.

  15. Astronautics and aeronautics, 1974: A chronology

    NASA Technical Reports Server (NTRS)

    Brun, N. L.

    1977-01-01

    The 14th volume in the NASA series of day-by-day records of aeronautical and space events has somewhat narrowed its scope and selectivity in its brief accounts from immediately available, open sources. This year the emphasis is even more directly focused on concrete air and space activities. The text continues to reflect some events in other agencies and countries.

  16. Experiment In Aeronautical-Mobile/Satellite Communication

    NASA Technical Reports Server (NTRS)

    Jedrey, Thomas C.; Lay, Norman E.; Dessouky, Khaled

    1992-01-01

    Report describes study of performance of digital mobile/satellite communication terminals of advanced design intended for use in ground stations and airplanes in aeronautical-mobile service. Study was collaboration of NASA, Federal Aviation Administration (FAA), Communications Satellite Corp. (COMSAT), and International Maritime Satellite System (INMARSAT).

  17. Developing a global aeronautical satellite system

    NASA Technical Reports Server (NTRS)

    Dement, Donald K.

    1988-01-01

    Arinc, an airline industry-owned and operated company in the United States, has taken steps toward establishing a global aeronautical satellite communications system. Plans call for initiation of a thin-route data operation in 1989, upgrading to establish voice communications via shared spot-beam transponders carried on other satellites, and deploying a worldwide network using dedicated satellites by 1994.

  18. Astronautics and aeronautics, 1978: A chronology

    NASA Technical Reports Server (NTRS)

    Janson, Bette R.

    1986-01-01

    This is the 18th in a series of annual chronologies of significant events in the fields of astronautics and aeronautics. Events covered are international as well as national and political as well as scientific and technical. This series is a reference work for historians, NASA personnel, government agencies, congressional staffs, and the media.

  19. Astronautics and aeronautics, 1976. A chronology

    NASA Technical Reports Server (NTRS)

    Ritchie, E. H.

    1984-01-01

    A chronology of events concerning astronautics and aeronautics for the year 1976 is presented. Some of the many and varied topics include the aerospace industry, planetary exploration, space transportation system, defense department programs, politics, and aerospace medicine. The entries are organized by the month and presented in a news release format.

  20. Astronautics and aeronautics, 1985: A chronology

    NASA Technical Reports Server (NTRS)

    Janson, Bette R.

    1988-01-01

    This book is part of a series of annual chronologies of significant events in the fields of astronautics and aeronautics. Events covered are international as well as national, in political as well as scientific and technical areas. This series is an important reference work used by historians, NASA personnel, government agencies, and congressional staffs, as well as the media.

  1. Exploring Aeronautics and Space Technology. Teacher Edition.

    ERIC Educational Resources Information Center

    Buck, Sue; And Others

    This curriculum guide contains six units of instruction for an introduction to the technology systems in the National Aeronautics and Space Administration (NASA). Designed to be used either as a stand-alone publication or to be infused into the instruction and activities of an existing technology education program, this publication describes the…

  2. Dr. Alexander H. Flax: Technologist of Aeronautics

    DTIC Science & Technology

    1992-03-01

    aeronautics. (82:19) The ability to apply theory made the difference in the spectacular aviation feats of this time--Lindbergh, Wiley Post, 6 Amelia ... Earhart and Howard Hughes. Of these, the Lindbergh flight was perceived by the popular imagination as the event of the century. The plane had one motor

  3. 14 CFR 61.105 - Aeronautical knowledge.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... intended use, data on takeoff and landing distances, weather reports and forecasts, and fuel requirements...) Recognition of critical weather situations from the ground and in flight, windshear avoidance, and the procurement and use of aeronautical weather reports and forecasts; (7) Safe and efficient operation...

  4. 14 CFR 61.105 - Aeronautical knowledge.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... intended use, data on takeoff and landing distances, weather reports and forecasts, and fuel requirements...) Recognition of critical weather situations from the ground and in flight, windshear avoidance, and the procurement and use of aeronautical weather reports and forecasts; (7) Safe and efficient operation...

  5. 14 CFR 61.105 - Aeronautical knowledge.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... intended use, data on takeoff and landing distances, weather reports and forecasts, and fuel requirements...) Recognition of critical weather situations from the ground and in flight, windshear avoidance, and the procurement and use of aeronautical weather reports and forecasts; (7) Safe and efficient operation...

  6. 14 CFR 61.97 - Aeronautical knowledge.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... takeoff and landing distances, weather reports and forecasts, and fuel requirements; and (ii) How to plan... using pilotage with the aid of a magnetic compass; (5) Recognition of critical weather situations from the ground and in flight, windshear avoidance, and the procurement and use of aeronautical...

  7. 14 CFR 61.97 - Aeronautical knowledge.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... takeoff and landing distances, weather reports and forecasts, and fuel requirements; and (ii) How to plan... using pilotage with the aid of a magnetic compass; (5) Recognition of critical weather situations from the ground and in flight, windshear avoidance, and the procurement and use of aeronautical...

  8. 14 CFR 61.97 - Aeronautical knowledge.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... takeoff and landing distances, weather reports and forecasts, and fuel requirements; and (ii) How to plan... using pilotage with the aid of a magnetic compass; (5) Recognition of critical weather situations from the ground and in flight, windshear avoidance, and the procurement and use of aeronautical...

  9. Bibliography of Aeronautics, 1920-1921

    NASA Technical Reports Server (NTRS)

    Brockett, Paul

    1925-01-01

    This work covers the literatme published from January 1, 1920, to December 31, 1921, and continues the work of the Smithsonian Institution issued as Volume 55 of the Smithsonian Miscellaneous Collections, which covered the material published prior to June 30, 1909, and the work of Lhe National Advisory Committee for Aeronautics as published in the Bibliography of Aeronautics for the years 1909 to 1916 and 1917 to 1919. As in the Smithsonian volume and in the Bibliography of Aeronautics for the years 1909 to 1916 and 1917 to 1919, citations of the publications of all nations have been included in the languages in which these publications originally appeared. The arrangement is in dictionary form with author and subject entry and one alphabetical arrangement. Detail in the matter of subject reference has been omitted on account of the cost of presentation, but an attempt has been made to give sufficient cross reference for research in special lines. The National Advisory Committee for Aeronautics will next present a bibliography for the year 1922.

  10. NASA's Role in Aeronautics: A Workshop. Volume I--Summary.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Assembly of Engineering.

    The central task of the workshop summarized in this report was to examine the relationship of the National Aeronautics and Space Administration's (NASA's) aeronautical research capabilities to the state of U.S. aviation and to make recommendations about NASA's future roles in aeronautics. Topics include NASA's role in: (1) aeronautics research and…

  11. 14 CFR 77.29 - Evaluating aeronautical effect.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Evaluating aeronautical effect. 77.29 Section 77.29 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRSPACE SAFE, EFFICIENT USE, AND PRESERVATION OF THE NAVIGABLE AIRSPACE Aeronautical Studies...

  12. 14 CFR 77.29 - Evaluating aeronautical effect.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Evaluating aeronautical effect. 77.29 Section 77.29 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRSPACE SAFE, EFFICIENT USE, AND PRESERVATION OF THE NAVIGABLE AIRSPACE Aeronautical Studies...

  13. 14 CFR 77.29 - Evaluating aeronautical effect.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Evaluating aeronautical effect. 77.29 Section 77.29 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRSPACE SAFE, EFFICIENT USE, AND PRESERVATION OF THE NAVIGABLE AIRSPACE Aeronautical Studies...

  14. 78 FR 69885 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-21

    ... SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Meeting AGENCY: National Aeronautics... meeting of the Aeronautics Committee of the NASA Advisory Council. This Committee reports to the NAC. The... for the Aeronautics Committee, NASA Headquarters, Washington, DC 20546, (202) 358-0566, or...

  15. Ensuring US National Aeronautics Test Capabilities

    NASA Technical Reports Server (NTRS)

    Marshall, Timothy J.

    2010-01-01

    U.S. leadership in aeronautics depends on ready access to technologically advanced, efficient, and affordable aeronautics test capabilities. These systems include major wind tunnels and propulsion test facilities and flight test capabilities. The federal government owns the majority of the major aeronautics test capabilities in the United States, primarily through the National Aeronautics and Space Administration (NASA) and the Department of Defense (DoD). However, changes in the Aerospace landscape, primarily the decrease in demand for testing over the last 20 years required an overarching strategy for management of these national assets. Therefore, NASA established the Aeronautics Test Program (ATP) as a two-pronged strategic initiative to: (1) retain and invest in NASA aeronautics test capabilities considered strategically important to the agency and the nation, and (2) establish a strong, high level partnership with the DoD. Test facility utilization is a critical factor for ATP because it relies on user occupancy fees to recover a substantial part of the operations costs for its facilities. Decreasing utilization is an indicator of excess capacity and in some cases low-risk redundancy (i.e., several facilities with basically the same capability and overall low utilization). However, low utilization does not necessarily translate to lack of strategic importance. Some facilities with relatively low utilization are nonetheless vitally important because of the unique nature of the capability and the foreseeable aeronautics testing needs. Unfortunately, since its inception, the customer base for ATP has continued to shrink. Utilization of ATP wind tunnels has declined by more than 50% from the FY 2006 levels. This significant decrease in customer usage is attributable to several factors, including the overall decline in new programs and projects in the aerospace sector; the impact of computational fluid dynamics (CFD) on the design, development, and research

  16. 14 CFR 25.903 - Engines.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engines. 25.903 Section 25.903 Aeronautics... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.903 Engines. (a) Engine type certificate. (1) Each engine must have a type certificate and must meet the applicable requirements of part 34 of...

  17. 14 CFR 33.21 - Engine cooling.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine cooling. 33.21 Section 33.21 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; General § 33.21 Engine cooling. Engine design...

  18. 14 CFR 33.21 - Engine cooling.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Engine cooling. 33.21 Section 33.21 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; General § 33.21 Engine cooling. Engine design...

  19. 14 CFR 33.21 - Engine cooling.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Engine cooling. 33.21 Section 33.21 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; General § 33.21 Engine cooling. Engine design...

  20. 14 CFR 33.21 - Engine cooling.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine cooling. 33.21 Section 33.21 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; General § 33.21 Engine cooling. Engine design...

  1. 14 CFR 25.903 - Engines.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engines. 25.903 Section 25.903 Aeronautics... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.903 Engines. (a) Engine type certificate. (1) Each engine must have a type certificate and must meet the applicable requirements of part 34 of...

  2. 14 CFR 33.21 - Engine cooling.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine cooling. 33.21 Section 33.21 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; General § 33.21 Engine cooling. Engine design...

  3. An Update of the Nation's Long-Term Strategic Needs for NASA's Aeronautics Test Facilities

    NASA Technical Reports Server (NTRS)

    Anton, Philip S.; Raman, Raj; Osburg, Jan; Kallimani, James G.

    2009-01-01

    The National Aeronautics and Space Administration's (NASA's) major wind tunnel (WT), propulsion test (PT), and simulation facilities exist to serve NASA's and the nation's aeronautics needs. RAND Corporation researchers conducted a prior study of these facilities from 2002 to 2003, identifying (1) NASA's continuing ability to serve national needs, (2) which facilities appear strategically important from an engineering perspective given the vehicle classes the nation investigates and produces, and (3) management challenges and issues. This documented briefing (DB) is the final report from a new, one-year study (conducted from September 2006 through January 2008), partially updating the prior assessment. The study focuses on updating the list of facilities in the prior study that were deemed to be strategically important (again, from an engineering perspective) in serving those needs. This update also adds a new assessment of national needs for six major aeronautics simulators at NASA and lists those deemed strategically important.

  4. Taxis of Pseudomonas putida F1 toward phenylacetic acid is mediated by the energy taxis receptor Aer2.

    PubMed

    Luu, Rita A; Schneider, Benjamin J; Ho, Christie C; Nesteryuk, Vasyl; Ngwesse, Stacy E; Liu, Xianxian; Parales, Juanito V; Ditty, Jayna L; Parales, Rebecca E

    2013-04-01

    The phenylacetic acid (PAA) degradation pathway is a widely distributed funneling pathway for the catabolism of aromatic compounds, including the environmental pollutants styrene and ethylbenzene. However, bacterial chemotaxis to PAA has not been studied. The chemotactic strain Pseudomonas putida F1 has the ability to utilize PAA as a sole carbon and energy source. We identified a putative PAA degradation gene cluster (paa) in P. putida F1 and demonstrated that PAA serves as a chemoattractant. The chemotactic response was induced during growth with PAA and was dependent on PAA metabolism. A functional cheA gene was required for the response, indicating that PAA is sensed through the conserved chemotaxis signal transduction system. A P. putida F1 mutant lacking the energy taxis receptor Aer2 was deficient in PAA taxis, indicating that Aer2 is responsible for mediating the response to PAA. The requirement for metabolism and the role of Aer2 in the response indicate that P. putida F1 uses energy taxis to detect PAA. We also revealed that PAA is an attractant for Escherichia coli; however, a mutant lacking a functional Aer energy receptor had a wild-type response to PAA in swim plate assays, suggesting that PAA is detected through a different mechanism in E. coli. The role of Aer2 as an energy taxis receptor provides the potential to sense a broad range of aromatic growth substrates as chemoattractants. Since chemotaxis has been shown to enhance the biodegradation of toxic pollutants, the ability to sense PAA gradients may have implications for the bioremediation of aromatic hydrocarbons that are degraded via the PAA pathway.

  5. Taxis of Pseudomonas putida F1 toward Phenylacetic Acid Is Mediated by the Energy Taxis Receptor Aer2

    PubMed Central

    Luu, Rita A.; Schneider, Benjamin J.; Ho, Christie C.; Nesteryuk, Vasyl; Ngwesse, Stacy E.; Liu, Xianxian; Parales, Juanito V.; Ditty, Jayna L.

    2013-01-01

    The phenylacetic acid (PAA) degradation pathway is a widely distributed funneling pathway for the catabolism of aromatic compounds, including the environmental pollutants styrene and ethylbenzene. However, bacterial chemotaxis to PAA has not been studied. The chemotactic strain Pseudomonas putida F1 has the ability to utilize PAA as a sole carbon and energy source. We identified a putative PAA degradation gene cluster (paa) in P. putida F1 and demonstrated that PAA serves as a chemoattractant. The chemotactic response was induced during growth with PAA and was dependent on PAA metabolism. A functional cheA gene was required for the response, indicating that PAA is sensed through the conserved chemotaxis signal transduction system. A P. putida F1 mutant lacking the energy taxis receptor Aer2 was deficient in PAA taxis, indicating that Aer2 is responsible for mediating the response to PAA. The requirement for metabolism and the role of Aer2 in the response indicate that P. putida F1 uses energy taxis to detect PAA. We also revealed that PAA is an attractant for Escherichia coli; however, a mutant lacking a functional Aer energy receptor had a wild-type response to PAA in swim plate assays, suggesting that PAA is detected through a different mechanism in E. coli. The role of Aer2 as an energy taxis receptor provides the potential to sense a broad range of aromatic growth substrates as chemoattractants. Since chemotaxis has been shown to enhance the biodegradation of toxic pollutants, the ability to sense PAA gradients may have implications for the bioremediation of aromatic hydrocarbons that are degraded via the PAA pathway. PMID:23377939

  6. Sp6 and Sp8 Transcription Factors Control AER Formation and Dorsal-Ventral Patterning in Limb Development

    PubMed Central

    Haro, Endika; Delgado, Irene; Junco, Marisa; Yamada, Yoshihiko; Mansouri, Ahmed; Oberg, Kerby C.; Ros, Marian A.

    2014-01-01

    The formation and maintenance of the apical ectodermal ridge (AER) is critical for the outgrowth and patterning of the vertebrate limb. The induction of the AER is a complex process that relies on integrated interactions among the Fgf, Wnt, and Bmp signaling pathways that operate within the ectoderm and between the ectoderm and the mesoderm of the early limb bud. The transcription factors Sp6 and Sp8 are expressed in the limb ectoderm and AER during limb development. Sp6 mutant mice display a mild syndactyly phenotype while Sp8 mutants exhibit severe limb truncations. Both mutants show defects in AER maturation and in dorsal-ventral patterning. To gain further insights into the role Sp6 and Sp8 play in limb development, we have produced mice lacking both Sp6 and Sp8 activity in the limb ectoderm. Remarkably, the elimination or significant reduction in Sp6;Sp8 gene dosage leads to tetra-amelia; initial budding occurs, but neither Fgf8 nor En1 are activated. Mutants bearing a single functional allele of Sp8 (Sp6−/−;Sp8+/−) exhibit a split-hand/foot malformation phenotype with double dorsal digit tips probably due to an irregular and immature AER that is not maintained in the center of the bud and on the abnormal expansion of Wnt7a expression to the ventral ectoderm. Our data are compatible with Sp6 and Sp8 working together and in a dose-dependent manner as indispensable mediators of Wnt/βcatenin and Bmp signaling in the limb ectoderm. We suggest that the function of these factors links proximal-distal and dorsal-ventral patterning. PMID:25166858

  7. Aeronautical Engineering: A Continuing Bibliography with Indexes (Supplement 216)

    DTIC Science & Technology

    1987-08-01

    HELO COMPUTER-AIDED PROCESSES FOR THE GROUND TESTING PATRICK J. DONOGHUE, PREBEN JENSEN, and ROBERT M. OF AVIATION EQUIPMENT [ SISTEMA ZADACH PROEKTIRO...Exploitation of Landes The digitall map as a tactical situation display DYAI EPNE(Frencee)-Front 󈨄 campaign and complesmentairy p 423 A87-3t4117

  8. Aeronautical Engineering: A Continuing Bibliography with Indexes (Supplement 218)

    DTIC Science & Technology

    1987-10-01

    34# United Technologies Research Center, East EVALUATION OF THREE NUMERICAL METHODS FOR Hartford, Conn. PROPULSION INTEGRATION STUDIES ON TRANSONIC UNSTEADY...Results for a point-vortex method are Langley Research Center, Hampton, Va. found to agree with the separation-vortex model up to periods CALCULATION OF...KHALID (National apolications. The strengths and weaknesses of the methods are Research Council of Canada, Ottawa) (ICAS, Congress, 15th, indicated

  9. Comparison of Marketing Techniques to Enroll Females at a Major Aeronautical University

    ERIC Educational Resources Information Center

    Cross, David Scott

    2012-01-01

    Traditionally, industries belonging to the science, technology, engineering, and mathematics (STEM) fields are dominated by males. Recruitment and enrollment of females for STEM fields have become an issue among universities specializing in fields such as aviation and aeronautics. The research problem for this study was that marketing departments…

  10. National Aeronautics Research, Development, Test and Evaluation (RDT&E) Infrastructure Plan

    DTIC Science & Technology

    2011-01-01

    strict sense . For example, wind tunnels may be used for testing wind turbines , automotive vehicles, or other prod- ucts. Thus, aeronautics R&D is...Icing Test Facilities A greater understanding of the impact that icing conditions have on turbine engine opera- tions is needed to develop enhanced...necessary to develop monitoring strategies for safe turbine engine operations . While there currently is a shortfall in the ability to conduct this

  11. Aeronautic Instruments. Section II : Altitude Instruments

    NASA Technical Reports Server (NTRS)

    Mears, A H; Henrickson, H B; Brombacher, W G

    1923-01-01

    This report is Section two of a series of reports on aeronautic instruments (Technical Report nos. 125 to 132, inclusive). This section discusses briefly barometric altitude determinations, and describes in detail the principal types of altimeters and barographs used in aeronautics during the recent war. This is followed by a discussion of performance requirements for such instruments and an account of the methods of testing developed by the Bureau of Standards. The report concludes with a brief account of the results of recent investigations. For accurate measurements of altitude, reference must also be made to thermometer readings of atmospheric temperature, since the altitude is not fixed by atmospheric pressure alone. This matter is discussed in connection with barometric altitude determination.

  12. Aeronautics and Space Report of the President

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Nineteen eighty-eight marked the United States' return to space flight with two successful space shuttle launches in September and December, as well as six successful expendable rocket launches. Meanwhile, many other less spectacular but important contributions were made in aeronautics and space by the 14 participating government organizations. Each organization's aeronautics and/or space activities for the year are presented. The organizations involved include: (1) NASA; (2) Department of Defense; (3) Department of Commerce; (4) Department of Energy; (5) Department of the Interior; (6) Department of Agriculture; (7) Federal Communications Commission; (8) Department of Transportation; (9) Environmental Protection Agency; (10) National Science Foundation; (11) Smithsonian Institution; (12) Department of State; (13) Arms Control and Disarmament Agency; and (14) United States Information Agency.

  13. The history and importance of aeronautic dentistry.

    PubMed

    Rai, Balwant; Kaur, Jasdeep

    2011-06-01

    Current projected missions to Mars will require 18 to 24 months of exposure to microgravity conditions, which might have serious effects on human physiology, including that of the oral cavity. Very few studies have been published on the effect of microgravity on the oral cavity, although it has been reported that microgravity increases the prevalence of periodontitis, dental caries, bone loss and fracture in the jaw bone, pain and numbness in teeth and oral cavity tissue, salivary duct stones, and oral cancer. Aeronautic dentistry is a new field, so further study of the effects of microgravity are required. In this article, we review the role of aeronautic dentistry in space missions and offer our recommendations for the future growth of this field.

  14. World-wide aeronautical satellite communications

    NASA Technical Reports Server (NTRS)

    Wood, Peter; Smith, Keith

    1988-01-01

    INMARSAT decided to expand the spectrum covered by its new generation of satellites, INMARSAT-2, to include 1 MHz (subsequently increased to 3 MHz) of the spectrum designed for aeronautical use. It began a design study that led to the specifications for the system that is now being implemented. Subsequently, INMARSAT awarded contracts for the design of avionics and high gain antennas to a number of manufactures, while several of the signatories that provide ground equipment for communicating with the INMARSAT satellites are modifying their earth stations to work with the avionic equipment. As a resullt of these activities, a world-wide aeronautical satellite system supporting both voice and data will become operational in 1989.

  15. Aeronautics and Space Report of the President

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The years 1989 to 1990 activities are reported including human space flight, unmanned expendable launch vehicles, space science and applications, space communications operations, space research and technology, and aeronautics research and technology. Contributions made by the 14 participating government organizations are outline. Each organization's aeronautics and/or space activities for the year are presented. The organizations involved include: (1) NASA; (2) Dept. of Defense; (3) Dept. of Commerce; (4) Dept. of Energy; (5) Dept. of the Interior; (6) Dept. of Agriculture; (7) Federal Communications Commission; (8) Dept. of Transportation; (9) Environmental Protection Agency; (10) National Science Foundation; (11) Smithsonian Institution; (12) Dept. of State; (13) Arms Control and Disarmament; and (14) United States Information Agency.

  16. Langley aeronautics and space test highlights, 1983

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests which were performed during calendar year 1983 in Langley test facilities, a number of which are unique in the world are highlighted. Both the broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research are illustrated.

  17. Future Aeronautical Communication Infrastructure Technology Investigation

    NASA Technical Reports Server (NTRS)

    Gilbert, Tricia; Jin, Jenny; Bergerm Jason; Henriksen, Steven

    2008-01-01

    This National Aeronautics and Space Administration (NASA) Contractor Report summarizes and documents the work performed to investigate technologies that could support long-term aeronautical mobile communications operating concepts for air traffic management (ATM) in the timeframe of 2020 and beyond, and includes the associated findings and recommendations made by ITT Corporation and NASA Glenn Research Center to the Federal Aviation Administration (FAA). The work was completed as the final phase of a multiyear NASA contract in support of the Future Communication Study (FCS), a cooperative research and development program of the United States FAA, NASA, and EUROCONTROL. This final report focuses on an assessment of final five candidate technologies, and also provides an overview of the entire technology assessment process, including final recommendations.

  18. Aeronautical Mobile Satellite Service (AMSS) test plan

    NASA Astrophysics Data System (ADS)

    Sandlin, Sean M.

    1991-05-01

    A test program is described which will be conducted by the Federal Aviation Administration to support the validation of Standards and Recommended Practices being developed for the Aeronautical Mobile Satellite Service by the International Civil Aviation Organization. A description of the Communication Test Facility is also presented which will be used to perform the tests. A brief description is also included of each test to be performed along with setup and data to be recorded.

  19. The K-8 Aeronautics Internet Textbook

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The following report is broken down into two components. First, a status report covering the period from August 15, 1998 to October 30, 1998. The remainder of the report summarizes all project accomplishments of the K-8 Aeronautics Internet Textbook over the period of June 19, 1995 through October 30, 1998. The report also discusses observations and lessons learned in the undertaking of the project.

  20. Software System Safety and the NASA Aeronautics Blueprint

    NASA Technical Reports Server (NTRS)

    Holloway, C. Michael; Hayhurst, Kelly J.

    2002-01-01

    NASA's Aeronautics Blueprint lays out a research agenda for the Agency s aeronautics program. The word software appears only four times in this Blueprint, but the critical importance of safe and correct software to the fulfillment of the proposed research is evident on almost every page. Most of the technology solutions proposed to address challenges in aviation are software dependent technologies. Of the fifty-two specific technology solutions described in the Blueprint, forty-one depend, at least in part, on software for success. For thirty-five of these forty-one, software is not only critical to success, but also to human safety. That is, implementing the technology solutions will require using software in such a way that it may, if not specified, designed, and implemented properly, lead to fatal accidents. These results have at least two implications for the research based on the Blueprint: (1) knowledge about the current state-of-the-art and state-of-the-practice in software engineering and software system safety is essential, and (2) research into current unsolved problems in these software disciplines is also essential.

  1. AerGOM, an improved algorithm for stratospheric aerosol extinction retrieval from GOMOS observations - Part 2: Intercomparisons

    NASA Astrophysics Data System (ADS)

    Étienne Robert, Charles; Bingen, Christine; Vanhellemont, Filip; Mateshvili, Nina; Dekemper, Emmanuel; Tétard, Cédric; Fussen, Didier; Bourassa, Adam; Zehner, Claus

    2016-09-01

    AerGOM is a retrieval algorithm developed for the GOMOS instrument onboard Envisat as an alternative to the operational retrieval (IPF). AerGOM enhances the quality of the stratospheric aerosol extinction retrieval due to the extension of the spectral range used, refines the aerosol spectral parameterization, the simultaneous inversion of all atmospheric species as well as an improvement of the Rayleigh scattering correction. The retrieval algorithm allows for a good characterization of the stratospheric aerosol extinction for a wide range of wavelengths.In this work, we present the results of stratospheric aerosol extinction comparisons between AerGOM and various spaceborne instruments (SAGE II, SAGE III, POAM III, ACE-MAESTRO and OSIRIS) for different wavelengths. The aerosol extinction intercomparisons for λ < 700 nm and above 20 km show agreements with SAGE II version 7 and SAGE III version 4.0 within ±15 % and ±45 %, respectively. There is a strong positive bias below 20 km at λ < 700 nm, which suggests that cirrus clouds at these altitudes have a large impact on the extinction values. Comparisons performed with GOMOS IPF v6.01 alongside AerGOM show that at short wavelengths and altitudes below 20 km, IPF retrievals are more accurate when evaluated against SAGE II and SAGE III but are much less precise than AerGOM. A modified aerosol spectral parameterization can improve AerGOM in this spectral and altitude range and leads to results that have an accuracy similar to IPF retrievals. Comparisons of AerGOM aerosol extinction coefficients with OSIRIS and SAGE III measurements at wavelengths larger than 700 nm show a very large negative bias at altitudes above 25 km. Therefore, the use of AerGOM aerosol extinction data is not recommended for λ > 700 nm.Due to the unique observational technique of GOMOS, some of the results appear to be dependent on the star occultation parameters such as star apparent temperature and magnitude, solar zenith angle

  2. Smart Aeronautical Chart Management System Design

    NASA Astrophysics Data System (ADS)

    Pakdil, M. E.; Celik, R. N.; Kaya, Ö.; Konak, Y. C.; Guney, C.

    2015-10-01

    Civil aviation is developing rapidly, and the number of domestic and international operations is increasing exponentially every year than the previous one. Airline companies with increased air traffic and the number of passengers increase the demand of new aircrafts. An aircraft needs not only fuel but also pilot and aeronautical information (charts, digital navigation information, flight plan, and etc.) to perform flight operation. One of the most important components in aeronautical information is the terminal chart. Authorized institution in every state is responsible to publish their terminal charts for certain periods. Although these charts are produced in accordance with ICAO's Annex 4 and Annex 15, cartographic representation and page layout differs in each state's publication. This situation makes difficult to read them by pilots. In this paper, standard instrument departure (SID) charts are analysed to produce by use of cutting-edge and competitive technologies instead of classical computer-aided drawing and vector based graphic applications that are currently used by main chart producers. The goal is to design efficient and commercial chart management system that is able to produce aeronautical charts with same cartographic representation for all states.

  3. An electronic pressure profile display system for aeronautic test facilities

    NASA Technical Reports Server (NTRS)

    Woike, Mark R.

    1990-01-01

    The NASA Lewis Research Center has installed an Electronic Pressure Profile Display system. This system provides for the real-time display of pressure readings on high resolution graphics monitors. The Electronic Pressure Profile Display system will replace manometer banks currently used in aeronautic test facilities. The Electronic Pressure Profile Display system consists of an industrial type Digital Pressure Transmitter (DPT) unit which interfaces with a host computer. The host computer collects the pressure data from the DPT unit, converts it into engineering units, and displays the readings on a high resolution graphics monitor in bar graph format. Software was developed to accomplish the above tasks and also draw facility diagrams as background information on the displays. Data transfer between host computer and DPT unit is done with serial communications. Up to 64 channels are displayed with one second update time. This paper describes the system configuration, its features, and its advantages over existing systems.

  4. Aeronautical Mobile Airport Communications System (AeroMACS)

    NASA Technical Reports Server (NTRS)

    Budinger, James M.; Hall, Edward

    2011-01-01

    To help increase the capacity and efficiency of the nation s airports, a secure wideband wireless communications system is proposed for use on the airport surface. This paper provides an overview of the research and development process for the Aeronautical Mobile Airport Communications System (AeroMACS). AeroMACS is based on a specific commercial profile of the Institute of Electrical and Electronics Engineers (IEEE) 802.16 standard known as Wireless Worldwide Interoperability for Microwave Access or WiMAX (WiMax Forum). The paper includes background on the need for global interoperability in air/ground data communications, describes potential AeroMACS applications, addresses allocated frequency spectrum constraints, summarizes the international standardization process, and provides findings and recommendations from the world s first AeroMACS prototype implemented in Cleveland, Ohio, USA.

  5. An Electronic Pressure Profile Display system for aeronautic test facilities

    NASA Technical Reports Server (NTRS)

    Woike, Mark R.

    1990-01-01

    The NASA Lewis Research Center has installed an Electronic Pressure Profile Display system. This system provides for the real-time display of pressure readings on high resolution graphics monitors. The Electronic Pressure Profile Display system will replace manometer banks currently used in aeronautic test facilities. The Electronic Pressure Profile Display system consists of an industrial type Digital Pressure Transmitter (DPI) unit which interfaces with a host computer. The host computer collects the pressure data from the DPI unit, converts it into engineering units, and displays the readings on a high resolution graphics monitor in bar graph format. Software was developed to accomplish the above tasks and also draw facility diagrams as background information on the displays. Data transfer between host computer and DPT unit is done with serial communications. Up to 64 channels are displayed with one second update time. This paper describes the system configuration, its features, and its advantages over existing systems.

  6. A review of the Magnus effect in aeronautics

    NASA Astrophysics Data System (ADS)

    Seifert, Jost

    2012-11-01

    The Magnus effect is well-known for its influence on the flight path of a spinning ball. Besides ball games, the method of producing a lift force by spinning a body of revolution in cross-flow was not used in any kind of commercial application until the year 1924, when Anton Flettner invented and built the first rotor ship Buckau. This sailboat extracted its propulsive force from the airflow around two large rotating cylinders. It attracted attention wherever it was presented to the public and inspired scientists and engineers to use a rotating cylinder as a lifting device for aircraft. This article reviews the application of Magnus effect devices and concepts in aeronautics that have been investigated by various researchers and concludes with discussions on future challenges in their application.

  7. Model research: The National Advisory Committee for Aeronautics, 1915-1958, volume 1

    NASA Technical Reports Server (NTRS)

    Roland, A.

    1984-01-01

    The National Advisory Committee for Aeronautics, the predecessor of NASA, was the premier aeronautical research organization in the United States. It conducted scientific study of the problems of flight with a view to their practical solution. This institutional history traces the birth and evolution of the NACA and analyzes such recurrent themes as the roles of science and engineering, the influence of politics on technology, the way in which the institution shapes technology and technology shapes the institution, the contributions of key individuals, the nature of the research process, and the relation between military and civilian aviation.

  8. 77 FR 38091 - NASA Advisory Council; Aeronautics Committee; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-26

    ...: NASA Goddard Space Flight Center (GSFC), Building 34, Room 120B, 8800 Greenbelt Road, Greenbelt, MD... SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Meeting. AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In accordance with the Federal...

  9. 77 FR 50759 - Government/Industry Aeronautical Charting Forum Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-22

    ...This notice announces the bi-annual meeting of the Federal Aviation Administration (FAA) Aeronautical Charting Forum (ACF) to discuss informational content and design of aeronautical charts and related products, as well as instrument flight procedures development policy and design...

  10. An aeronautical-mobile satellite experiment

    NASA Technical Reports Server (NTRS)

    Jedrey, Thomas C.; Dessouky, Khaled I.; Lay, Norman E.

    1991-01-01

    The various activities and findings of a NASA/FAA/COMSAT/INMARSAT collaborative aeronautical mobile-satellite experiment are detailed. The primary objective of the experiment was to demonstrate and evaluate an advanced digital mobile-satellite terminal developed at the Jet Propulsion Laboratory under the NASA Mobile Satellite Program. The experiment was a significant milestone for NASA/JPL, since it was the first test of the mobile terminal in a true mobile-satellite environment. The results were also of interest to the general mobile-satellite community because of the advanced nature of the technologies employed in the terminal.

  11. Solar energy and the aeronautics industry. Thesis

    NASA Technical Reports Server (NTRS)

    Benedek, L.

    1985-01-01

    An introduction to the physical aspects of solar energy, incidental energy and variations in solar flux is presented, along with an explanation of the physical principles of obtaining solar energy. The history of the application of solar energy to aeronautics, including the Gossamer Penguin and the Solar Challenger is given. Finally, an analysis of the possibilities of using a reaction motor with hybrid propulsion combining solar energy with traditional fuels as well as calculations of the proposed cycle and its mode of operation are given.

  12. Fundamentals of Aeronautical and Aerospace Medical Science,

    DTIC Science & Technology

    1981-07-17

    184) -I & A0A1 8 F ORE IGN TIC.iOLOY DIV UUIAN?-PAT?1m5 APA ON i tFUND~AMENTALS OF AERONAUTICAL AND AEROSPACE MEDICAL SCtEC.j (UlIJUL lI MC 01*0. A...xysel, con- rSin.- more than 1/5 of the air, is essential for human metabolism. Since human beings have lived constantly under norma " air pressure...Temperature under different air flow rate, research subjects wearing norma ; indoor clothing: 1) dry bulb temperature, C; 9) air flow, m/sec; 3) wet

  13. Solar energy and the aeronautics industry

    NASA Astrophysics Data System (ADS)

    Benedek, L.

    1985-11-01

    An introduction to the physical aspects of solar energy, incidental energy and variations in solar flux is presented, along with an explanation of the physical principles of obtaining solar energy. The history of the application of solar energy to aeronautics, including the Gossamer Penguin and the Solar Challenger is given. Finally, an analysis of the possibilities of using a reaction motor with hybrid propulsion combining solar energy with traditional fuels as well as calculations of the proposed cycle and its mode of operation are given.

  14. The K-8 Aeronautics Internet Textbook

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Efforts were focused on web site migration, from UC (University of California) Davis to the National Business Aviation Association's (NBAA) web site. K8AIT (K-8 Aeronautics Internet Textbook), which has remained an unadvertised web site, receives almost two million hits per month. Project continuation funding with the National Business Aviation Association is being pursued. A Memorandum of Understanding (MOU) between NASA Ames LTP (Learning Technologies Project) and Cislunar has been drafted and approved by NASA's legal department. Additional web content on space flight and the Wright brothers has been added in English and Spanish.

  15. MSAT aeronautical mobile satellite communications terminal development

    NASA Technical Reports Server (NTRS)

    Sutherland, C. A.; Sydor, J. T.

    1995-01-01

    CAL has undertaken the development of a new aeronautical mobile terminal for the North American MSAT market. The terminal is to meet the MSAT standard and is aimed in particular at the 300,000 general aviation and business aircraft in North America. The terminals are therefore relatively low cost and small in size when compared to those currently being produced for larger airline aircraft. The terminal incorporates a top mounted mechanical steered antenna and a unique antenna steering subsystem. An overview of the terminal design is presented.

  16. NASA Aeronautics: Research and Technology Program Highlights

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This report contains numerous color illustrations to describe the NASA programs in aeronautics. The basic ideas involved are explained in brief paragraphs. The seven chapters deal with Subsonic aircraft, High-speed transport, High-performance military aircraft, Hypersonic/Transatmospheric vehicles, Critical disciplines, National facilities and Organizations & installations. Some individual aircraft discussed are : the SR-71 aircraft, aerospace planes, the high-speed civil transport (HSCT), the X-29 forward-swept wing research aircraft, and the X-31 aircraft. Critical disciplines discussed are numerical aerodynamic simulation, computational fluid dynamics, computational structural dynamics and new experimental testing techniques.

  17. Transient Inhibition of FGFR2b-ligands signaling leads to irreversible loss of cellular β-catenin organization and signaling in AER during mouse limb development.

    PubMed

    Danopoulos, Soula; Parsa, Sara; Al Alam, Denise; Tabatabai, Reza; Baptista, Sheryl; Tiozzo, Caterina; Carraro, Gianni; Wheeler, Matthew; Barreto, Guillermo; Braun, Thomas; Li, Xiaokun; Hajihosseini, Mohammad K; Bellusci, Saverio

    2013-01-01

    The vertebrate limbs develop through coordinated series of inductive, growth and patterning events. Fibroblast Growth Factor receptor 2b (FGFR2b) signaling controls the induction of the Apical Ectodermal Ridge (AER) but its putative roles in limb outgrowth and patterning, as well as in AER morphology and cell behavior have remained unclear. We have investigated these roles through graded and reversible expression of soluble dominant-negative FGFR2b molecules at various times during mouse limb development, using a doxycycline/transactivator/tet(O)-responsive system. Transient attenuation (≤ 24 hours) of FGFR2b-ligands signaling at E8.5, prior to limb bud induction, leads mostly to the loss or truncation of proximal skeletal elements with less severe impact on distal elements. Attenuation from E9.5 onwards, however, has an irreversible effect on the stability of the AER, resulting in a progressive loss of distal limb skeletal elements. The primary consequences of FGFR2b-ligands attenuation is a transient loss of cell adhesion and down-regulation of P63, β1-integrin and E-cadherin, and a permanent loss of cellular β-catenin organization and WNT signaling within the AER. Combined, these effects lead to the progressive transformation of the AER cells from pluristratified to squamous epithelial-like cells within 24 hours of doxycycline administration. These findings show that FGFR2b-ligands signaling has critical stage-specific roles in maintaining the AER during limb development.

  18. NASA's Role in Aeronautics: A Workshop. Volume V - Rotorcraft.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Assembly of Engineering.

    The central task of a 1980 workshop on the role of the National Aeronautics and Space Administration (NASA) in aeronautics was to examine the relationship of NASA's research capabilities to the state of U.S. aviation and to make recommendations about NASA's future role in aeronautics. Following an introduction, findings and recommendations of the…

  19. NASA's Role in Aeronautics: A Workshop. Volume II - Military Aviation.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Assembly of Engineering.

    The central task of a 1980 workshop on the role of the National Aeronautics and Space Administration (NASA) in aeronautics was to examine the relationship of NASA's research capabilities to the state of U.S. aviation and to make recommendations about NASA's future role in aeronautics. The findings and recommendations of the Panel on Military…

  20. NASA's Role in Aeronautics: A Workshop. Volume IV - General Aviation.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Assembly of Engineering.

    The central task of a 1980 workshop on the role of the National Aeronautics and Space Administration (NASA) in aeronautics was to examine the relationship of NASA's research capabilities to the state of U.S. aviation and to make recommendations about NASA's future role in aeronautics. The findings and recommendations of the Panel on General…

  1. 14 CFR 61.159 - Aeronautical experience: Airplane category rating.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Aeronautical experience: Airplane category... Transport Pilots § 61.159 Aeronautical experience: Airplane category rating. (a) Except as provided in... certificate with an airplane category and class rating must have at least 1,500 hours of total time as a...

  2. Aeronautics and Space Report of the President: 1975 Activities.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This report, submitted to the Congress by President Ford in accordance with the National Aeronautics and Space Act of 1958, summarizes the United States' space and aeronautics activities for the year 1975. Detailed summaries of the activities of the following governmental departments or agencies are provided: National Aeronautics and Space…

  3. NASA's Role in Aeronautics: A Workshop. Volume III - Transport Aircraft.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Assembly of Engineering.

    The central task of a 1980 workshop on the role of the National Aeronautics and Space Administration (NASA) in aeronautics was to examine the relationship of NASA's research capabilities to the state of U.S. aviation and to make recommendations about NASA's future role in aeronautics. The specific task of the Panel on Transport Aircraft was to…

  4. 76 FR 58843 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-22

    ... SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Meeting AGENCY: National Aeronautics... meeting of the Aeronautics Committee of the NASA Advisory Council. The meeting will be held for the...) 358-0566, or susan.l.minor@nasa.gov . SUPPLEMENTARY INFORMATION: The meeting will be open to...

  5. 75 FR 17166 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-05

    ... SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Meeting AGENCY: National Aeronautics... meeting of the Aeronautics Committee of the NASA Advisory Council. The meeting will be held for the.... ADDRESSES: NASA Langley Research Center, Building 1219, Room 225, Hampton, Virginia (Note that visitors...

  6. 76 FR 183 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-03

    ... SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Meeting AGENCY: National Aeronautics... meeting of the Aeronautics Committee of the NASA Advisory Council. The meeting will be held for the... Administration Headquarters, Washington, DC 20546, (202) 358-0566, or susan.l.minor@nasa.gov ....

  7. A CCIR aeronautical mobile satellite report

    NASA Technical Reports Server (NTRS)

    Davarian, Faramaz; Bishop, Dennis; Rogers, David; Smith, Ernest K.

    1989-01-01

    Propagation effects in the aeronautical mobile-satellite service differ from those in the fixed-satellite service and other mobile-satellite services because: small antennas are used on aircraft, and the aircraft body may affect the performance of the antenna; high aircraft speeds cause large Doppler spreads; aircraft terminals must accommodate a large dynamic range in transmission and reception; and due to their high speeds, banking maneuvers, and three-dimensional operation, aircraft routinely require exceptionally high integrity of communications, making even short-term propagation effects very important. Data and models specifically required to characterize the path impairments are discussed, which include: tropospheric effects, including gaseous attenuation, cloud and rain attenuation, fog attenuation, refraction and scintillation; surface reflection (multipath) effects; ionospheric effects such as scintillation; and environmental effects (aircraft motion, sea state, land surface type). Aeronautical mobile-satellite systems may operate on a worldwide basis, including propagation paths at low elevation angles. Several measurements of multipath parameters over land and sea were conducted. In some cases, laboratory simulations are used to compare measured data and verify model parameters. The received signals is considered in terms of its possible components: a direct wave subject to atmospheric effects, and a reflected wave, which generally contains mostly a diffuse component.

  8. Continued development and validation of the AER two-dimensional interactive model

    NASA Technical Reports Server (NTRS)

    Ko, M. K. W.; Sze, N. D.; Shia, R. L.; Mackay, M.; Weisenstein, D. K.; Zhou, S. T.

    1996-01-01

    Results from two-dimensional chemistry-transport models have been used to predict the future behavior of ozone in the stratosphere. Since the transport circulation, temperature, and aerosol surface area are fixed in these models, they cannot account for the effects of changes in these quantities, which could be modified because of ozone redistribution and/or other changes in the troposphere associated with climate changes. Interactive two-dimensional models, which calculate the transport circulation and temperature along with concentrations of the chemical species, could provide answers to complement the results from three-dimension model calculations. In this project, we performed the following tasks in pursuit of the respective goals: (1) We continued to refine the 2-D chemistry-transport model; (2) We developed a microphysics model to calculate the aerosol loading and its size distribution; (3) The treatment of physics in the AER 2-D interactive model were refined in the following areas--the heating rate in the troposphere, and wave-forcing from propagation of planetary waves.

  9. A Bio-Inspired AER Temporal Tri-Color Differentiator Pixel Array.

    PubMed

    Farian, Łukasz; Leñero-Bardallo, Juan Antonio; Häfliger, Philipp

    2015-10-01

    This article investigates the potential of a bio-inspired vision sensor with pixels that detect transients between three primary colors. The in-pixel color processing is inspired by the retinal color opponency that are found in mammalian retinas. Color transitions in a pixel are represented by voltage spikes, which are akin to a neuron's action potential. These spikes are conveyed off-chip by the Address Event Representation (AER) protocol. To achieve sensitivity to three different color spectra within the visual spectrum, each pixel has three stacked photodiodes at different depths in the silicon substrate. The sensor has been fabricated in the standard TSMC 90 nm CMOS technology. A post-processing method to decode events into color transitions has been proposed and implemented as a custom interface to display real-time color changes in the visual scene. Experimental results are provided. Color transitions can be detected at high speed (up to 2.7 kHz). The sensor has a dynamic range of 58 dB and a power consumption of 22.5 mW. This type of sensor can be of use in industrial, robotics, automotive and other applications where essential information is contained in transient emissions shifts within the visual spectrum.

  10. Application of Mobile-ip to Space and Aeronautical Networks

    NASA Technical Reports Server (NTRS)

    Leung, Kent; Shell, Dan; Ivancic, William D.; Stewart, David H.; Bell, Terry L.; Kachmar, Brian A.

    2001-01-01

    The National Aeronautics and Space Administration (NASA) is interested in applying mobile Internet protocol (mobile-ip) technologies to its space and aeronautics programs. In particular, mobile-ip will play a major role in the Advanced Aeronautic Transportation Technology (AAT-F), the Weather Information Communication (WINCOMM), and the Small Aircraft Transportation System (SATS) aeronautics programs. This paper describes mobile-ip and mobile routers--in particular, the features, capabilities, and initial performance of the mobile router are presented. The application of mobile-router technology to NASA's space and aeronautics programs is also discussed.

  11. Aeronautical concerns and National Aeronautics and Space Administration atmospheric electricity projects

    NASA Technical Reports Server (NTRS)

    Vaughan, W. W.

    1980-01-01

    The phenomenology of lightning and lightning measurement techniques are briefly examined with a particular reference to aeronautics. Developments made in airborne and satellite detection methods are reported. NASA research efforts are outlined which cover topics including in-situ measurements, design factors and protection, remote optical and radio frequency measurements, and space vehicle design.

  12. A fuel level sensor for aeronautical applications

    NASA Astrophysics Data System (ADS)

    Petrazzuoli, L.; Persichetti, G.; Onorato, G.; Grimaldi, I. A.; Testa, G.; Bernini, R.

    2015-03-01

    A novel fuel level sensor for aeronautical applications is developed. The sensor is based on an array of total internal reflection (TIR) point sensors. Respect to conventional TIR sensors the new design permits to be sensitive to common jet fuels (JetA, JP4,JP7) but also to operate with new alternative fuels. The sensor doesn't require aircraft calibration, temperature compensation and furthermore is able to operate correctly when partially or totally exposed to presence of condensed water on its surface. The point sensors are multiplexed on a single fiber by optical couplers and interrogated simultaneously by Optical Time Domain Reflectometry (OTDR) at a wavelength of 1550nm. Experimental results show a resolution of +/-1.5mm could be achieved. The sensors is also able to measure the free water level in the fuel.

  13. Future developments in aeronautical satellite communications

    NASA Technical Reports Server (NTRS)

    Wood, Peter

    1990-01-01

    Very shortly aeronautical satellite communications will be introduced on a world wide basis. By the end of the year, voice communications (both to the cabin and cockpit) and packet data communications will be available to both airlines and executive aircraft. During the decade following the introduction of the system, there will be many enhancements and developments which will increase the range of applications, expand the potential number of users, and reduce costs. A number of ways in which the system is expected to evolve over this period are presented. Among the issues which are covered are the impact of spot beam satellites, spectrum and power conservation techniques, and the expanding range of user services.

  14. Performance of a Regional Aeronautical Telecommunications Network

    NASA Technical Reports Server (NTRS)

    Bretmersky, Steven C.; Ripamonti, Claudio; Konangi, Vijay K.; Kerczewski, Robert J.

    2001-01-01

    This paper reports the findings of the simulation of the ATN (Aeronautical Telecommunications Network) for three typical average-sized U.S. airports and their associated air traffic patterns. The models of the protocols were designed to achieve the same functionality and meet the ATN specifications. The focus of this project is on the subnetwork and routing aspects of the simulation. To maintain continuous communication between the aircrafts and the ground facilities, a model based on mobile IP is used. The results indicate that continuous communication is indeed possible. The network can support two applications of significance in the immediate future FTP and HTTP traffic. Results from this simulation prove the feasibility of development of the ATN concept for AC/ATM (Advanced Communications for Air Traffic Management).

  15. Modulation and Synchronization for Aeronautical Telemetry

    NASA Astrophysics Data System (ADS)

    Shaw, Christopher G.

    Aeronautical telemetry systems have historically been implemented with constant envelope modulations like CPM. Shifts in system constraints including reduced available bandwidth and increased throughput demands have caused many in the field to reevaluate traditional methods and design practices. This work examines the costs and benefits of using APSK for aeronautical telemetry instead of CPM. Variable rate turbo codes are used to improve the power efficiency of 16- and 32-APSK. Spectral regrowth in nonlinear power amplifiers when driven by non-constant envelope modulation is also considered. Simulation results show the improved spectral efficiency of this modulation scheme over those currently defined in telemetry standards. Additionally, the impact of transitioning from continuous transmission to burst-mode is considered. Synchronization loops are ineffective in burst-mode communication. Data-aided feedforward algorithms can be used to estimate offsets in carrier phase, frequency, and symbol timing between the transmitter and the receiver. If a data-aided algorithm is used, a portion of the transmitted signal is devoted to a known sequence of pilot symbols. Optimum pilot sequences for the three synchronization parameters are obtained analytically and numerically for different system constraints. The alternating sequence is shown to be optimal given a peak power constraint. Alternatively, synchronization can be accomplished using blind algorithms that do not rely on a priori knowledge of a pilot sequence. If blind algorithms are used, the observation interval can be longer than for data-aided algorithms. There are combinations of pilot sequence length and packet length where data-aided algorithms perform better than blind algorithms and vice versa. The conclusion is that a sequential arrangement of blind algorithms operating over an entire burst performs better than a CRB-achieving data-aided algorithm operating over a short pilot sequence.

  16. The Vitamin B12-Dependent Photoreceptor AerR Relieves Photosystem Gene Repression by Extending the Interaction of CrtJ with Photosystem Promoters

    PubMed Central

    Fang, Mingxu

    2017-01-01

    ABSTRACT Purple nonsulfur bacteria adapt their physiology to a wide variety of environmental conditions often through the control of transcription. One of the main transcription factors involved in controlling expression of the Rhodobacter capsulatus photosystem is CrtJ, which functions as an aerobic repressor of photosystem genes. Recently, we reported that a vitamin B12 binding antirepressor of CrtJ called AerR is required for anaerobic expression of the photosystem. However, the mechanism whereby AerR regulates CrtJ activity is unclear. In this study, we used a combination of next-generation sequencing and biochemical methods to globally identify genes under control of CrtJ and the role of AerR in controlling this regulation. Our results indicate that CrtJ has a much larger regulon than previously known, with a surprising regulatory function under both aerobic and anaerobic photosynthetic growth conditions. A combination of in vivo chromatin immunoprecipitation-DNA sequencing (ChIP-seq) and ChIP-seq and exonuclease digestion (ChIP-exo) studies and in vitro biochemical studies demonstrate that AerR forms a 1:2 complex with CrtJ (AerR-CrtJ2) and that this complex binds to many promoters under photosynthetic conditions. The results of in vitro and in vivo DNA binding studies indicate that AerR-CrtJ2 anaerobically forms an extended interaction with the bacteriochlorophyll bchC promoter to relieve repression by CrtJ. This is contrasted by aerobic growth conditions where CrtJ alone functions as an aerobic repressor of bchC expression. These results indicate that the DNA binding activity of CrtJ is modified by interacting with AerR in a redox-regulated manner and that this interaction alters CrtJ’s function. PMID:28325764

  17. 14 CFR 33.95 - Engine-propeller systems tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine-propeller systems tests. 33.95 Section 33.95 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.95 Engine-propeller...

  18. 14 CFR 34.62 - Test procedure (propulsion engines).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Test procedure (propulsion engines). 34.62 Section 34.62 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... (propulsion engines). (a)(1) The engine shall be tested in each of the following engine operating modes...

  19. 14 CFR 33.70 - Engine life-limited parts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine life-limited parts. 33.70 Section 33.70 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.70 Engine...

  20. 14 CFR 33.91 - Engine system and component tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine system and component tests. 33.91 Section 33.91 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.91 Engine system...

  1. The Aer protein and the serine chemoreceptor Tsr independently sense intracellular energy levels and transduce oxygen, redox, and energy signals for Escherichia coli behavior

    PubMed Central

    Rebbapragada, Anuradha; Johnson, Mark S.; Harding, Gordon P.; Zuccarelli, Anthony J.; Fletcher, Hansel M.; Zhulin, Igor B.; Taylor, Barry L.

    1997-01-01

    We identified a protein, Aer, as a signal transducer that senses intracellular energy levels rather than the external environment and that transduces signals for aerotaxis (taxis to oxygen) and other energy-dependent behavioral responses in Escherichia coli. Domains in Aer are similar to the signaling domain in chemotaxis receptors and the putative oxygen-sensing domain of some transcriptional activators. A putative FAD-binding site in the N-terminal domain of Aer shares a consensus sequence with the NifL, Bat, and Wc-1 signal-transducing proteins that regulate gene expression in response to redox changes, oxygen, and blue light, respectively. A double mutant deficient in aer and tsr, which codes for the serine chemoreceptor, was negative for aerotaxis, redox taxis, and glycerol taxis, each of which requires the proton motive force and/or electron transport system for signaling. We propose that Aer and Tsr sense the proton motive force or cellular redox state and thereby integrate diverse signals that guide E. coli to environments where maximal energy is available for growth. PMID:9380671

  2. Evaluating CMA Equalization of SOQPSK-TG for Aeronautical Telemetry

    DTIC Science & Technology

    2015-03-01

    Aeronautical Telemetry March 2015 DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited. Test Resource Management...Equalization of SOQPK-TG Data for Aeronautical Telemetry 5a. CONTRACT NUMBER: W900KK-13-C-0026 5b. GRANT NUMBER: N/A 5c. PROGRAM ELEMENT NUMBER 6...This standard is defined and used for aeronautical telemetry. Based on the iNET-packet structure, the adaptive block processing CMA equalizer can be

  3. Cyber Technology for Materials and Structures in Aeronautics and Aerospace

    NASA Technical Reports Server (NTRS)

    Pipes, R. Byron

    2002-01-01

    The evolution of composites applications in aeronautics from 1970 to the present is discussed. The barriers and challenges to economic application and to certification are presented and recommendations for accelerated development are outlined. The potential benefits of emerging technologies to aeronautics and their foundation in composite materials are described and the resulting benefits in vehicle take off gross weight are quantified. Finally, a 21st century vision for aeronautics in which human mobility is increased by an order of magnitude is articulated.

  4. The National Aeronautics and Space Administration interdisciplinary studies in space technology at the University of Kansas

    NASA Technical Reports Server (NTRS)

    Barr, B. G.

    1974-01-01

    A broad range of research projects contained in a cooperative space technology program at the University of Kansas are reported as they relate to the following three areas of interdisciplinary interest: (1) remote sensing of earth resources; (2) stability and control of light and general aviation aircraft; and (3) the vibrational response characteristics of aeronautical and space vehicles. Details of specific research efforts are given under their appropriate departments, among which are aerospace engineering, chemical and petroleum engineering, environmental health, water resources, the remote sensing laboratory, and geoscience applications studies.

  5. The 1982 Aeronautics and Space Highlights

    NASA Technical Reports Server (NTRS)

    1982-01-01

    This video includes STS 3 & 4, Challenger completed, unmanned launches, the Hubble Space Telescope, Pioneers 8 & 9 encounter, Mars Pictures, Landsat 4, wind energy, ion-electric engines, solar powered medical system, medical image analysis, rotor systems research aircraft, XV-15, propfan research, aircraft icing studies, and Oshkosh Sirshow.

  6. Aeronautical Facilities Catalogue. Volume 1: Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Penaranda, F. E. (Compiler); Freda, M. S. (Compiler)

    1985-01-01

    Domestic and foreign wind tunnel facilities are enumerated and their technical parameters are described. Data pertinent to managers and engineers are presented. Facilities judged comparable in testing capability are noted and grouped together. Several comprehensive cross-indexes and charts are included.

  7. Aeronautical Drafting, Drafting 3: 9257.02.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    Intended for students interested in the aircraft and missile field of engineering and drafting, the course covers fundamentals, working drawings, and auxiliary views and sections that are related to this field. Considered advanced training, a prerequisite for the course is mastery of the skills indicated in Electrical and Electronic…

  8. Modeling Spacecraft Fuel Slosh at Embry-Riddle Aeronautical University

    NASA Technical Reports Server (NTRS)

    Schlee, Keith L.

    2007-01-01

    As a NASA-sponsored GSRP Fellow, I worked with other researchers and analysts at Embry-Riddle Aeronautical University and NASA's ELV Division to investigate the effect of spacecraft fuel slosh. NASA's research into the effects of fuel slosh includes modeling the response in full-sized tanks using equipment such as the Spinning Slosh Test Rig (SSTR), located at Southwest Research Institute (SwRI). NASA and SwRI engineers analyze data taken from SSTR runs and hand-derive equations of motion to identify model parameters and characterize the sloshing motion. With guidance from my faculty advisor, Dr. Sathya Gangadharan, and NASA flight controls analysts James Sudermann and Charles Walker, I set out to automate this parameter identification process by building a simple physical experimental setup to model free surface slosh in a spherical tank with a simple pendulum analog. This setup was then modeled using Simulink and SimMechanics. The Simulink Parameter Estimation Tool was then used to identify the model parameters.

  9. NDE for Material Characterization in Aeronautic and Space Applications

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Kautz, Harold E.; Gyekenyesi, Andrew L.; Abdul-Aziz, Ali; Martin, Richard E.

    2000-01-01

    This paper describes selected nondestructive evaluation (NDE) approaches that were developed or tailored at the NASA Glenn Research Center for characterizing advanced material systems. The emphasis is on high-temperature aerospace propulsion applications. The material systems include monolithic ceramics, superalloys, and high temperature composites. In the aeronautic area, the highlights are cooled ceramic plate structures for turbine applications, F-TiAl blade materials for low-pressure turbines, thermoelastic stress analysis (TSA) for residual stress measurements in titanium based and nickel based engine materials, and acousto ultrasonics (AU) for creep damage assessment in nickel-based alloys. In the space area, examples consist of cooled carbon-carbon composites for gas generator combustors and flywheel rotors composed of carbon fiber reinforced polymer matrix composites for energy storage on the international space station (ISS). The role of NDE in solving manufacturing problems, the effect of defects on structural behavior, and the use of NDE-based finite element modeling are discussed. NDE technology needs for improved microelectronic and mechanical systems as well as health monitoring of micro-materials and components are briefly discussed.

  10. A distributed data acquisition system for aeronautics test facilities

    NASA Technical Reports Server (NTRS)

    Fronek, Dennis L.; Setter, Robert N.; Blumenthal, Philip Z.; Smalley, Robert R.

    1987-01-01

    The NASA Lewis Research Center is in the process of installing a new data acquisition and display system. This new system will provide small and medium sized aeronautics test facilities with a state-of-the-art real-time data acquisition and display system. The new data system will provide for the acquisition of signals from a variety of instrumentation sources. They include analog measurements of temperatures, pressures, and other steady state voltage inputs; frequency inputs to measure speed and flow; discrete I/O for significant events, and modular instrument systems such as multiplexed pressure modules or electronic instrumentation with a IEEE 488 interface. The data system is designed to acquire data, convert it to engineering units, compute test dependent performance calculations, limit check selected channels or calculations, and display the information in alphanumeric or graphical form with a cycle time of one second for the alphanumeric data. This paper describes the system configuration, its salient features, and the expected impact on testing.

  11. NASA Ames Sustainability Initiatives: Aeronautics, Space Exploration, and Sustainable Futures

    NASA Technical Reports Server (NTRS)

    Grymes, Rosalind A.

    2015-01-01

    In support of the mission-specific challenges of aeronautics and space exploration, NASA Ames produces a wealth of research and technology advancements with significant relevance to larger issues of planetary sustainability. NASA research on NexGen airspace solutions and its development of autonomous and intelligent technologies will revolutionize both the nation's air transporation systems and have applicability to the low altitude flight economy and to both air and ground transporation, more generally. NASA's understanding of the Earth as a complex of integrated systems contributes to humanity's perception of the sustainability of our home planet. Research at NASA Ames on closed environment life support systems produces directly applicable lessons on energy, water, and resource management in ground-based infrastructure. Moreover, every NASA campus is a 'city'; including an urbanscape and a workplace including scientists, human relations specialists, plumbers, engineers, facility managers, construction trades, transportation managers, software developers, leaders, financial planners, technologists, electricians, students, accountants, and even lawyers. NASA is applying the lessons of our mission-related activities to our urbanscapes and infrastructure, and also anticipates a leadership role in developing future environments for living and working in space.

  12. Identification of Technologies for Provision of Future Aeronautical Communications

    NASA Technical Reports Server (NTRS)

    Gilbert, Tricia; Dyer, Glen; Henriksen, Steve; Berger, Jason; Jin, Jenny; Boci, Tony

    2006-01-01

    This report describes the process, findings, and recommendations of the second of three phases of the Future Communications Study (FCS) technology investigation conducted by NASA Glenn Research Center and ITT Advanced Engineering & Sciences Division for the Federal Aviation Administration (FAA). The FCS is a collaborative research effort between the FAA and Eurocontrol to address frequency congestion and spectrum depletion for safety critical airground communications. The goal of the technology investigation is to identify technologies that can support the longterm aeronautical mobile communication operating concept. A derived set of evaluation criteria traceable to the operating concept document is presented. An adaptation of the analytical hierarchy process is described and recommended for selecting candidates for detailed evaluation. Evaluations of a subset of technologies brought forward from the prescreening process are provided. Five of those are identified as candidates with the highest potential for continental airspace solutions in L-band (P-34, W-CDMA, LDL, B-VHF, and E-TDMA). Additional technologies are identified as best performers in the unique environments of remote/oceanic airspace in the satellite bands (Inmarsat SBB and a custom satellite solution) and the airport flight domain in C-band (802.16e). Details of the evaluation criteria, channel models, and the technology evaluations are provided in appendixes.

  13. Air Breathing Propulsion Controls and Diagnostics Research at NASA Glenn Under NASA Aeronautics Research Mission Programs

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2014-01-01

    This lecture will provide an overview of the aircraft turbine engine control research at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the current state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. The traditional engine control problem has been to provide a means to safely transition the engine from one steady-state operating point to another based on the pilot throttle inputs. With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects in partnership with other organizations within GRC and across NASA, other government agencies, the U.S. aerospace industry, and academia to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA programs under the Aeronautics Research Mission. The second part of the lecture provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges and the key progress to date are summarized. The technologies to be discussed include system level engine control concepts, gas path diagnostics, active component control, and distributed engine control architecture. The lecture will end with a futuristic perspective of how the various current technology developments will lead to an Intelligent and Autonomous Propulsion System requiring none to very minimum pilot interface

  14. Achieving QoS for aeronautical telecommunication networks over differentiated services

    NASA Astrophysics Data System (ADS)

    Bai, Haowei; Atiquzzaman, Mohammed; Ivancic, William A.

    2001-07-01

    Aeronautical Telecommunication Network (ATN) has been developed by the International Civil Aviation Organization to integrate Air-Ground and Ground-Ground data communication for aeronautical applications into a single network serving Air Traffic Control and Aeronautical Operational Communications. To carry time critical information required for aeronautical applications, ATN provides different Quality of Services (QoS) to applications. ATN has been designed as a standalone network with its own protocols which requires building an expensive separate network for ATN. However, the cost of building ATN can be reduced if it can run over a public network such as the Internet. Although the current Internet does not provide QoS, Internet Engineering Task Force (IETF) is standardizing the Differentiated Services (DiffServ) network to provide differential QoS to users of next generation data networks. The objective of this paper is to investigate the possibility of providing QoS to ATN applications when it runs over the DiffServ network in the next generation Internet. Our results show that the QoS requirements of ATN applications can be successfully provided when they run over a DiffServ backbone in the next generation Internet.

  15. Sequence Stratigraphy of the Lower Cretaceous in Aer Sag, Erlian Basin, North China

    NASA Astrophysics Data System (ADS)

    Yao, Wei; De Batist, Marc; Wu, Chonglong

    2014-05-01

    The concepts of sequence stratigraphy, initially developed for the study of marine depositional systems, are increasingly also being applied to sequences deposited in lacustrine basins, particularly in the context of petroleum exploration. However, lacustrine basins differ from marine basins. They are typically smaller, exhibit a strong diversification in sedimentary facies, generally contain thinner sequences and are characterized by multiple sedimentary source regions. These characteristics should be taken into account when analyzing sequence stratigraphy in lacustrine basins. Aer Sag is a balanced-fill sag in Erlian basin, North China. During the Early Cretaceous tectonic subsidence is the main controlling factor for sequence development. Based on the unconformities observed at the top of different inversion-induced depositional cycles, the 2nd-order sequence of the Lower Cretaceous can be sub-divided into six 3rd-order sequences of which the lower four, which bear most of the hydrocarbon reservoirs, are the focus of this study. Generally, a complete 3rd-order sequence can be partitioned into four systems tracts: i.e. lowstand systems tract (LST), transgressive systems tract (TST), highstand systems tract (HST) and forced regression systems tract (FRST). In LSTs, tectonic activity is weak and there is a slow subsidence rate. Thus, the rate of creation of accommodation space is so slow that coarsening-upward prograding sedimentary units develop. In TSTs, tectonic activity becomes stronger and the rate of creation of accommodation space outpaces the rate of sediment supply. TSTs are characterized by fining-upward retrograding sedimentary units and by onlaps on seismic profiles that are caused by the expansion of the lake. In HSTs, tectonic activity slows down again and the rate of creation of accommodation space becomes lower than the rate of sediment supply, which causes the lake to shrink and the development of coarsening-upward prograding sedimentary units. In

  16. Advancing Aeronautics: A Decision Framework for Selecting Research Agendas

    NASA Technical Reports Server (NTRS)

    Anton, Philip S.; Ecola, Liisa; Kallimani, James G.; Light, Thomas; Ohlandt, Chad J. R.; Osburg, Jan; Raman, Raj; Grammich, Clifford A.

    2011-01-01

    Publicly funded research has long played a role in the development of aeronautics, ranging from foundational research on airfoils to development of the air-traffic control system. Yet more than a century after the research and development of successful controlled, sustained, heavier-than-air flight vehicles, there are questions over the future of aeronautics research. The field of aeronautics is relatively mature, technological developments within it have become more evolutionary, and funding decisions are sometimes motivated by the continued pursuit of these evolutionary research tracks rather than by larger factors. These developments raise questions over whether public funding of aeronautics research continues to be appropriate or necessary and at what levels. Tightened federal budgets and increasing calls to address other public demands make these questions sharper still. To help it address the questions of appropriate directions for publicly funded aeronautics research, the National Aeronautics and Space Administration's (NASA's) Aeronautics Research Mission Directorate (ARMD) asked the RAND Corporation to assess the elements required to develop a strategic view of aeronautics research opportunities; identify candidate aeronautic grand challenges, paradigms, and concepts; outline a framework for evaluating them; and exercise the framework as an example of how to use it. Accordingly, this research seeks to address these questions: What aeronautics research should be supported by the U.S. government? What compelling and desirable benefits drive government-supported research? How should the government--especially NASA--make decisions about which research to support? Advancing aeronautics involves broad policy and decisionmaking challenges. Decisions involve tradeoffs among competing perspectives, uncertainties, and informed judgment.

  17. Aeronautics and Space Report of the President

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Fiscal Year (FY) 2002 brought advances on many fronts in support of NASA's new vision, announced by Administrator Sean O Keefe on April 12, "to improve life here, to extend life to there, to find life beyond." NASA successfully carried out four Space Shuttle missions, including three to the International Space Station (ISS) and one servicing mission to the Hubble Space Telescope (HST). By the end of the fiscal year, humans had occupied the ISS continuously for 2 years. NASA also managed five expendable launch vehicle (ELV) missions and participated in eight international cooperative ELV launches. In the area of space science, two of the Great Observatories, the Hubble Space Telescope and the Chandra X-Ray Observatory, continued to make spectacular observations. The Mars Global Surveyor and Mars Odyssey carried out their mapping missions of the red planet in unprecedented detail. Among other achievements, the Near Earth Asteroid Rendezvous (NEAR) Shoemaker spacecraft made the first soft landing on an asteroid, and the Solar and Heliospheric Observatory (SOHO) monitored a variety of solar activity, including the largest sunspot observed in 10 years. The education and public outreach program stemming from NASA's space science missions continues to grow. In the area of Earth science, attention focused on completing the first Earth Observing Satellite series. Four spacecraft were successfully launched. The goal is to understand our home planet as a system, as well as how the global environment responds to change. In aerospace technology, NASA conducted studies to improve aviation safety and environmental friendliness, progressed with its Space Launch Initiative Program, and explored a variety of pioneering technologies, including nanotechnology, for their application to aeronautics and aerospace. NASA remained broadly engaged in the international arena and concluded over 60 international cooperative and reimbursable international agreements during FY 2002.

  18. 14 CFR 121.387 - Flight engineer.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight engineer. 121.387 Section 121.387 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS..., FLAG, AND SUPPLEMENTAL OPERATIONS Airman and Crewmember Requirements § 121.387 Flight engineer....

  19. 14 CFR 121.387 - Flight engineer.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight engineer. 121.387 Section 121.387 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS..., FLAG, AND SUPPLEMENTAL OPERATIONS Airman and Crewmember Requirements § 121.387 Flight engineer....

  20. 14 CFR 121.387 - Flight engineer.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight engineer. 121.387 Section 121.387 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS..., FLAG, AND SUPPLEMENTAL OPERATIONS Airman and Crewmember Requirements § 121.387 Flight engineer....

  1. 14 CFR 121.387 - Flight engineer.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight engineer. 121.387 Section 121.387 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS..., FLAG, AND SUPPLEMENTAL OPERATIONS Airman and Crewmember Requirements § 121.387 Flight engineer....

  2. 14 CFR 121.387 - Flight engineer.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight engineer. 121.387 Section 121.387 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS..., FLAG, AND SUPPLEMENTAL OPERATIONS Airman and Crewmember Requirements § 121.387 Flight engineer....

  3. Designs that Fly: What the History of Aeronautics Tells Us about the Future of Design-Based Research in Education

    ERIC Educational Resources Information Center

    O'Neill, D. Kevin

    2012-01-01

    For almost two decades, there has been growing interest in what design-based research (DBR) can contribute to both educational practice and theory. Since its introduction into the literature, this orientation to educational research has repeatedly been likened to aeronautical engineering as a way to clarify its nature and argue its potential. This…

  4. NASA/University Conference on Aeronautics (University of Kansas, Lawrence, Kansas, October 23-24, 1974). NASA SP-372.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This volume represents the collection of papers and panel discussions of the (NASA)/University Conference held in October 1974. The purpose of this conference was to bring together representatives from universities, government, and industry to discuss and assess trends and opportunities in aeronautical engineering education with the expectation of…

  5. Psychological aspects of aeronautical flight simulation

    NASA Technical Reports Server (NTRS)

    Huff, E. M.; Nagel, D. C.

    1975-01-01

    Attention is given to the class of ground based devices which have been used by scientists, engineers, and test pilots to evaluate current or future aircraft systems. The characteristics of a flight simulator and its major subsystems are considered, taking into account simulator cockpits, visual scene attachments, aspects of visual attachment fidelity, simulator motion systems, motion system fidelity, and simulation computer systems. Questions related to psychological research and simulation are examined. Simulator validity criteria are discussed along with problems of subsystem fidelity.

  6. Determination of distribution coefficient of {sup 137}Cs and {sup 90}Sr in soil from AERE, Savar

    SciTech Connect

    Mollah, A.S.; Ullah, S.M.

    1998-12-31

    The sorption characteristics of {sup 137}Cs and {sup 90}Sr on soil matrix have been studied by the batch technique. The sorption coefficients (K{sub d}) and retardation factor (R{sub f}) have been determined for these radionuclides on soil matrices collected from a number of locations in and around the proposed site for shallow land disposal of low-level radioactive wastes at the Atomic Energy Research Establishment (AERE) campus, Savar. The K{sub d} values varied from 1,278 to 2,156 ml/g for {sup 137}Cs and from 350 to 640 ml/g for {sup 90}Sr. The retardation factors varied from 1,709 to 3,072 for {sup 137}Cs and from 409 to 903 for {sub 90}Sr. The results obtained indicated that the AERE soils have good sorption capacity for {sup 137}Cs and {sup 90}Sr radionuclides. These data could be used in radionuclides transport and safety assessment models.

  7. Building a knowledge base of severe adverse drug events based on AERS reporting data using semantic web technologies.

    PubMed

    Jiang, Guoqian; Wang, Liwei; Liu, Hongfang; Solbrig, Harold R; Chute, Christopher G

    2013-01-01

    A semantically coded knowledge base of adverse drug events (ADEs) with severity information is critical for clinical decision support systems and translational research applications. However it remains challenging to measure and identify the severity information of ADEs. The objective of the study is to develop and evaluate a semantic web based approach for building a knowledge base of severe ADEs based on the FDA Adverse Event Reporting System (AERS) reporting data. We utilized a normalized AERS reporting dataset and extracted putative drug-ADE pairs and their associated outcome codes in the domain of cardiac disorders. We validated the drug-ADE associations using ADE datasets from SIDe Effect Resource (SIDER) and the UMLS. We leveraged the Common Terminology Criteria for Adverse Event (CTCAE) grading system and classified the ADEs into the CTCAE in the Web Ontology Language (OWL). We identified and validated 2,444 unique Drug-ADE pairs in the domain of cardiac disorders, of which 760 pairs are in Grade 5, 775 pairs in Grade 4 and 2,196 pairs in Grade 3.

  8. The Western Aeronautical Test Range of NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Moore, A. L.

    1984-01-01

    An overview of the Western Aeronautical Test Range (WATR) of NASA Ames Research Center (ARC) is presented in this paper. The three WATR facilities are discussed, and three WATR elements - mission control centerns, communications systems, real-time processing and display systems, and tracking systems -are reviewed. The relationships within the NASA WATR, with respect to the NASA aeronautics program, are also discussed.

  9. NASA's Role in Aeronautics: A Workshop. Volume VII - Background Papers.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Assembly of Engineering.

    Sixteen background papers presented to a plenary session at a 1980 workshop on the role of the National Aeronautics and Space Administration (NASA) in aeronautics are presented. The central task of the workshop was to examine the relationship of NASA's research capabilities to the state of U.S. aviation and to make recommendations about NASA's…

  10. Aeronautics and Space Report of the President: 1977 Activities.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The national programs in aeronautics and space made steady progress in 1977 toward their long-term objectives. In aeronautics the goals were improved performance, energy efficiency, and safety in aircraft. In space the goals were: (1) better remote sensing systems to generate more sophisticated information about the Earth's environment; (2)…

  11. Compressed Aeronautical Chart Processing Operator’s Manual

    DTIC Science & Technology

    2007-11-02

    the processing thread A4A denotes a CAC ODI build for an (A) aeronautical chart at the (4) operational navigation chart (ONC) (1:1M) scale with...builds when both charts are at the same scale. For example, the processing thread A4A denotes a CAC ODI build for an (A) aeronautical chart at the (4

  12. Uncertainties in modelling Mt. Pinatubo eruption with 2-D AER model and CCM SOCOL

    NASA Astrophysics Data System (ADS)

    Kenzelmann, P.; Weisenstein, D.; Peter, T.; Luo, B. P.; Rozanov, E.; Fueglistaler, S.; Thomason, L. W.

    2009-04-01

    Large volcanic eruptions may introduce a strong forcing on climate. They challenge the skills of climate models. In addition to the short time attenuation of solar light by ashes the formation of stratospheric sulphate aerosols, due to volcanic sulphur dioxide injection into the lower stratosphere, may lead to a significant enhancement of the global albedo. The sulphate aerosols have a residence time of about 2 years. As a consequence of the enhanced sulphate aerosol concentration both the stratospheric chemistry and dynamics are strongly affected. Due to absorption of longwave and near infrared radiation the temperature in the lower stratosphere increases. So far chemistry climate models overestimate this warming [Eyring et al. 2006]. We present an extensive validation of extinction measurements and model runs of the eruption of Mt. Pinatubo in 1991. Even if Mt. Pinatubo eruption has been the best quantified volcanic eruption of this magnitude, the measurements show considerable uncertainties. For instance the total amount of sulphur emitted to the stratosphere ranges from 5-12 Mt sulphur [e.g. Guo et al. 2004, McCormick, 1992]. The largest uncertainties are in the specification of the main aerosol cloud. SAGE II, for instance, could not measure the peak of the aerosol extinction for about 1.5 years, because optical termination was reached. The gap-filling of the SAGE II [Thomason and Peter, 2006] using lidar measurements underestimates the total extinctions in the tropics for the first half year after the eruption by 30% compared to AVHRR [Rusell et. al 1992]. The same applies to the optical dataset described by Stenchikov et al. [1998]. We compare these extinction data derived from measurements with extinctions derived from AER 2D aerosol model calculations [Weisenstein et al., 2007]. Full microphysical calculations with injections of 14, 17, 20 and 26 Mt SO2 in the lower stratosphere were performed. The optical aerosol properties derived from SAGE II

  13. Computers in Engineering Teaching.

    ERIC Educational Resources Information Center

    Rushby, N. J.

    This bibliography cites 26 books, papers, and reports dealing with various uses of computers in engineering education; and describes several computer programs available for use in teaching aeronautical, chemical, civil, electrical and electronic, mechanical, and nuclear engineering. Each computer program entry is presented by name, author,…

  14. 14 CFR 23.1111 - Turbine engine bleed air system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Turbine engine bleed air system. 23.1111 Section 23.1111 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Induction System § 23.1111 Turbine engine bleed air system. For turbine engine bleed air systems,...

  15. 14 CFR 23.1111 - Turbine engine bleed air system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbine engine bleed air system. 23.1111 Section 23.1111 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Induction System § 23.1111 Turbine engine bleed air system. For turbine engine bleed air systems,...

  16. Propulsion Controls and Diagnostics Research in Support of NASA Aeronautics and Exploration Mission Programs

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2011-01-01

    The Controls and Dynamics Branch (CDB) at National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA programs under the Aeronautics Research and Exploration Systems Missions. This paper provides a brief overview of the various CDB tasks in support of the NASA programs. The programmatic structure of the CDB activities is described along with a brief overview of each of the CDB tasks including research objectives, technical challenges, and recent accomplishments. These tasks include active control of propulsion system components, intelligent propulsion diagnostics and control for reliable fault identification and accommodation, distributed engine control, and investigations into unsteady propulsion systems.

  17. Aeronautic Instruments. Section V : Power Plant Instruments

    NASA Technical Reports Server (NTRS)

    Washburn, G E; Sylvander, R C; Mueller, E F; Wilhelm, R M; Eaton, H N; Warner, John A C

    1923-01-01

    Part 1 gives a general discussion of the uses, principles, construction, and operation of airplane tachometers. Detailed description of all available instruments, both foreign and domestic, are given. Part 2 describes methods of tests and effect of various conditions encountered in airplane flight such as change of temperature, vibration, tilting, and reduced air pressure. Part 3 describes the principal types of distance reading thermometers for aircraft engines, including an explanation of the physical principles involved in the functioning of the instruments and proper filling of the bulbs. Performance requirements and testing methods are given and a discussion of the source of error and results of tests. Part 4 gives methods of tests and calibration, also requirements of gauges of this type for the pressure measurement of the air pressure in gasoline tanks and the engine oil pressure on airplanes. Part 5 describes two types of gasoline gauges, the float type and the pressure type. Methods of testing and calibrating gasoline depth gauges are given. The Schroeder, R. A. E., and the Mark II flowmeters are described.

  18. A Hybrid Satellite-Terrestrial Approach to Aeronautical Communication Networks

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Chomos, Gerald J.; Griner, James H.; Mainger, Steven W.; Martzaklis, Konstantinos S.; Kachmar, Brian A.

    2000-01-01

    Rapid growth in air travel has been projected to continue for the foreseeable future. To maintain a safe and efficient national and global aviation system, significant advances in communications systems supporting aviation are required. Satellites will increasingly play a critical role in the aeronautical communications network. At the same time, current ground-based communications links, primarily very high frequency (VHF), will continue to be employed due to cost advantages and legacy issues. Hence a hybrid satellite-terrestrial network, or group of networks, will emerge. The increased complexity of future aeronautical communications networks dictates that system-level modeling be employed to obtain an optimal system fulfilling a majority of user needs. The NASA Glenn Research Center is investigating the current and potential future state of aeronautical communications, and is developing a simulation and modeling program to research future communications architectures for national and global aeronautical needs. This paper describes the primary requirements, the current infrastructure, and emerging trends of aeronautical communications, including a growing role for satellite communications. The need for a hybrid communications system architecture approach including both satellite and ground-based communications links is explained. Future aeronautical communication network topologies and key issues in simulation and modeling of future aeronautical communications systems are described.

  19. Engineering Technology Education: Bibliography 1989.

    ERIC Educational Resources Information Center

    Dyrud, Marilyn A., Comp.

    1990-01-01

    Over 200 references divided into 24 different areas are presented. Topics include administration, aeronautics, architecture, biomedical technology, CAD/CAM, civil engineering, computers, curriculum, electrical/electronics engineering, industrial engineering, industry and employment, instructional technology, laboratories, lasers, liberal studies,…

  20. Aeronautics and space report of the president, 1974 activities

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The U.S. Government activities for 1974 in aeronautics and space are presented. Significant contributions toward the fulfillment of the nation's goals in space and aeronautics are covered, including application of space systems and technology to beneficial uses on earth, exploration of space and increase of scientific knowledge, development of improved space systems and technology, international cooperation, and advancement of civil and military aeronautics. Also in 1974, space activities in the private sector expanded to provide additional services to the public. The accomplishments are summarized.

  1. Astronautics and Aeronautics, 1986-1990: A Chronology

    NASA Technical Reports Server (NTRS)

    Gawdiak, Ihor Y.; Miro, Ramon J.; Stueland, Sam

    1997-01-01

    This chronology of events in aeronautics, aviation, space science, and space exploration was prepared by the Federal Research Division of the LibrarY of Congress for the History Division of the National Aeronautics and Space Administration (NASA). It covers the years 1996-1990 and continues the series of annual chronologies published by NASA. The present volume returns to the format used in the Astronautics and Aeronautics, 1979-1984: A Chronology volume. It also integrates in a single table the information presented in two or three previous publications.

  2. NASA's Role in Aeronautics: A Workshop. Volume 7: Background papers

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The nature and implications of the current state of U.S. aviation in a world setting are examined as well as their significance for NASA's role in the nation's aeronautical future. The outlook for the 1980's is examined from the point of view of legislation, economics and finance; petroleum; manpower, metallic materials, general aviation; military aviation; transport aircraft developments; and helicopters. Possible NASA assistance to DOD and the FAA is examined and the evolution of NACA and NASA in aeronautics and of NASA's aeronautics capabilities are described.

  3. An Overview of the NASA Aeronautics Test Program Strategic Plan

    NASA Technical Reports Server (NTRS)

    Marshall, Timothy J.

    2010-01-01

    U.S. leadership in aeronautics depends on ready access to technologically advanced, efficient, and affordable aeronautics test capabilities. These systems include major wind tunnels and propulsion test facilities and flight test capabilities. The federal government owns the majority of the major aeronautics test capabilities in the United States, primarily through the National Aeronautics and Space Administration (NASA) and the Department of Defense (DoD), however an overarching strategy for management of these national assets was needed. Therefore, in Fiscal Year (FY) 2006 NASA established the Aeronautics Test Program (ATP) as a two-pronged strategic initiative to: (1) retain and invest in NASA aeronautics test capabilities considered strategically important to the agency and the nation, and (2) establish a strong, high level partnership with the DoD Test Resources Management Center (TRMC), stewards of the DoD test and evaluation infrastructure. Since then, approximately seventy percent of the ATP budget has been directed to underpin fixed and variable costs of facility operations within its portfolio and the balance towards strategic investments in its test facilities, including maintenance and capability upgrades. Also, a strong guiding coalition was established through the National Partnership for Aeronautics Testing (NPAT), with governance by the senior leadership of NASA s Aeronautics Research Mission Directorate (ARMD) and the DoD's TRMC. As part of its strategic planning, ATP has performed or participated in many studies and analyses, including assessments of major NASA and DoD aeronautics test capabilities, test facility condition evaluations and market research. The ATP strategy has also benefitted from unpublished RAND research and analysis by Ant n et al. (2009). Together, these various studies, reports and assessments serve as a foundation for a new, five year strategic plan that will guide ATP through FY 2014. Our vision for the future is a balanced

  4. Astronautics and Aeronautics, 1991-1995: A Chronology

    NASA Technical Reports Server (NTRS)

    Gawdiak, Ihor Y. (Compiler); Shetland, Charles (Compiler)

    2000-01-01

    This chronology of events in aeronautics, aviation, space science, and space exploration was prepared by the Federal Research Division of the Library of Congress and RSIS for the History Division of the National Aeronautics and Space Administration (NASA). It covers the years 1991-1995 and continues the series of annual chronologies published by NASA. The present volume uses the format of the previous edition of this series, Astronautics and Aeronautics, 1986-1990: A Chronology. It also integrates, in the appendices, information presented in previous publication

  5. 75 FR 27332 - AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC; Eagle Creek Water Resources, LLC; Eagle Creek Land...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ... Energy Regulatory Commission AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC; Eagle Creek Water Resources... Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC, and Eagle Creek Land Resources, LLC.... For the transferee: Mr. Paul Ho, Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC,...

  6. 77 FR 13592 - AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC, Eagle Creek Land...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ... Energy Regulatory Commission AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources... Power, LLC, Eagle Creek Water Resources, LLC, and Eagle Creek Land Resources, LLC (transferees) filed an...) 805-1469. Transferees: Mr. Bernard H. Cherry, Eagle Creek Hydro Power, LLC, Eagle Creek...

  7. National Aeronautics and Space Administration (NASA) education 1993--2009

    NASA Astrophysics Data System (ADS)

    Ivie, Christine M.

    The National Aeronautics and Space Administration was established in 1958 and began operating a formal education program in 1993. The purpose of this study was to analyze the education program from 1993 -- 2009 by examining strategic plan documents produced by the NASA education office and interviewing NASA education officials who served during that time period. Constant changes in education leadership at NASA resulted in changes in direction in the education program and the documents produced by each administration reflected both small and some significant changes in program direction. The result of the analysis of documents and interview data was the identification of several trends in the NASA education program. This study identified three significant trends in NASA education. First, the approach that NASA took in both its EPO efforts and in the efforts directed by the Office of Education is disjointed and seems to reflect individual preferences in education approaches designed to reach populations that are of interest to the individuals in decision-making positions rather than reflect a systematic approach designed to meet identified goals and outcomes. Second, this disjointed and person-driven approach led to a lack of consistent evaluation data available for review and planning purposes. Third, there was an ongoing assumption made by the education community that NASA education efforts were tied to larger education reports, concerns, needs, initiatives and evidence collected and presented in Science Technology Engineering and Math (STEM) education-related studies over the past twenty years. In fact, there is no evidence that the programs and projects initiated were a response to these identified needs or initiatives. That does not mean that NASA's efforts did not contribute to STEM education initiatives in the United States. This study, however, indicates that contributions to those initiatives occurred as a byproduct of the effort and not because of specific

  8. U.S. AMCOMs Activities for TTCP AER/WPN High Speed Strike Action Group 27

    DTIC Science & Technology

    2016-11-01

    Code Modeling The AMRDEC in-house numerical code used for this study is a variation of the Combustion Research and Flow Technology (CRAFT...Kennedy and Melissa A. McDaniel System Simulation and Development Directorate Aviation and Missile Research , Development, and Engineering Center...ORGANIZATION NAME(S) AND ADDRESS(ES) Commander, U.S. Army Research , Development, and Engineering Command ATTN: RDMR-SSM-A Redstone Arsenal

  9. Astronautics and Aeronautics, 1979-1984: A chronology

    NASA Technical Reports Server (NTRS)

    Janson, Bette R.; Ritchie, Eleanor H.

    1989-01-01

    This volume of the Astronautics and Aeronautics series covers 1979 through 1984. The series provides a chronological presentation of all significant events and developments in space exploration and the administration of the space program during the period covered.

  10. 77 FR 13683 - Government/Industry Aeronautical Charting Forum Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ... Charting Group, contact Valerie S. Watson, FAA, National Aeronautical Navigation Products (AeroNav Products... permits. Issued in Washington, DC, on February 28, 2012. Valerie S. Watson, Co-Chair,...

  11. Bureau of Aeronautics, October 16, 1943, Photograph #4875. AERIAL OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Bureau of Aeronautics, October 16, 1943, Photograph #4875. AERIAL OF ROOSEVELT BASE LOOKING EAST - Roosevelt Base, Bounded by Ocean Boulevard, Pennsylvania Avenue, Richardson Avenue, & Idaho Street, Long Beach, Los Angeles County, CA

  12. 1971 Aeronautics and Space Highlights. [NASA programs and research

    NASA Technical Reports Server (NTRS)

    1971-01-01

    These highlights include Mariner orbit of Mars, Interplanetary Monitoring Platform, Orbiting Solar Observatory, small scientific satellite, sounding rockets, Stratoscope 11, earth resources, aeronautics, jet noise abatement, airport runway safety, Apollo 14 and 15, and Skylab.

  13. Bureau of Aeronautics, June 5, 1945, Photograph 519. ASERIAL OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Bureau of Aeronautics, June 5, 1945, Photograph 51-9. ASERIAL OF ROOSEVELT BASE, DIRECT OVERHEAD, SHOWING PIERS AND MOLE UNDER CONSTRUCTION - Roosevelt Base, Bounded by Ocean Boulevard, Pennsylvania Avenue, Richardson Avenue, & Idaho Street, Long Beach, Los Angeles County, CA

  14. 75 FR 11225 - Government/Industry Aeronautical Charting Forum Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Government/Industry Aeronautical Charting Forum Meeting AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of public meeting. SUMMARY: This notice announces the...

  15. 76 FR 53530 - Government/Industry Aeronautical Charting Forum Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-26

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Government/Industry Aeronautical Charting Forum Meeting AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of public meeting. SUMMARY: This notice announces the...

  16. 76 FR 12211 - Government/Industry Aeronautical Charting Forum Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-04

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Government/Industry Aeronautical Charting Forum Meeting AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of public meeting. SUMMARY: This notice announces the...

  17. 78 FR 12415 - Government/Industry Aeronautical Charting Forum Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-22

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Government/Industry Aeronautical Charting Forum Meeting AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of public meeting. SUMMARY: This notice announces the...

  18. NASA Aeronautics and Space Database for bibliometric analysis

    NASA Technical Reports Server (NTRS)

    Powers, R.; Rudman, R.

    2004-01-01

    The authors use the NASA Aeronautics and Space Database to perform bibliometric analysis of citations. This paper explains their research methodology and gives some sample results showing collaboration trends between NASA Centers and other institutions.

  19. National Aeronautics and Space Administration technology application team program

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Contracts are reported between the RTI TATeam and the National Aeronautics and Space Administration (NASA), the Environmental Protection Agency (EPA), and other governmental, educational, and industrial organizations participating in NASA's Technology Utilization Program.

  20. NASA Ames and Future of Space Exploration, Science, and Aeronautics

    NASA Technical Reports Server (NTRS)

    Cohen, Jacob

    2015-01-01

    Pushing the frontiers of aeronautics and space exploration presents multiple challenges. NASA Ames Research Center is at the forefront of tackling these issues, conducting cutting edge research in the fields of air traffic management, entry systems, advanced information technology, intelligent human and robotic systems, astrobiology, aeronautics, space, earth and life sciences and small satellites. Knowledge gained from this research helps ensure the success of NASA's missions, leading us closer to a world that was only imagined as science fiction just decades ago.

  1. First Semiannual Report of the National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    Glennan, T. Keith

    1959-01-01

    The First Semiannual Report of the National Aeronautics and Space Administration (NASA) is submitted to Congress pursuant to section 206 (a) of the National Aeronautics and Space Act of 1958 (Public Law 85-568) to provide for research into problems of flight within and outside the Earth's atmosphere, which states: The Administration shall submit to the President for transmittal to Congress, semiannually and at such other times as it deems desirable, a report on its activities and accomplishments.

  2. Kennedy Educate to Innovate (KETI) Aeronautics PowerPoint Presentation

    NASA Technical Reports Server (NTRS)

    Davila, Dina

    2010-01-01

    This slide presentation reviews some fundamental features of aeronautics. It is designed to introduce students to aeronautics and to engage them in Science Technology Education and Mathematics (STEM). It reviews the history of airflight, the aircraft components and their interaction with the forces that make flight possible (i.e. lift, weight drag and thrust), and the interaction of the components that create aircraft movements (roll, pitch and yaw)

  3. An ocean scatter propagation model for aeronautical satellite communication applications

    NASA Technical Reports Server (NTRS)

    Moreland, K. W.

    1990-01-01

    In this paper an ocean scattering propagation model, developed for aircraft-to-satellite (aeronautical) applications, is described. The purpose of the propagation model is to characterize the behavior of sea reflected multipath as a function of physical propagation path parameters. An accurate validation against the theoretical far field solution for a perfectly conducting sinusoidal surface is provided. Simulation results for typical L band aeronautical applications with low complexity antennas are presented.

  4. A Vision in Aeronautics: The K-12 Wind Tunnel Project

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A Vision in Aeronautics, a project within the NASA Lewis Research Center's Information Infrastructure Technologies and Applications (IITA) K-12 Program, employs small-scale, subsonic wind tunnels to inspire students to explore the world of aeronautics and computers. Recently, two educational K-12 wind tunnels were built in the Cleveland area. During the 1995-1996 school year, preliminary testing occurred in both tunnels.

  5. 14 CFR 33.84 - Engine overtorque test.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine overtorque test. 33.84 Section 33.84... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.84 Engine overtorque test. (a) If approval of a maximum engine overtorque is sought for an engine incorporating a free power...

  6. 14 CFR 33.70 - Engine life-limited parts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine life-limited parts. 33.70 Section 33... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.70 Engine life... the maximum allowable number of flight cycles for each engine life-limited part. Engine...

  7. 14 CFR 33.84 - Engine overtorque test.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine overtorque test. 33.84 Section 33.84... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.84 Engine overtorque test. (a) If approval of a maximum engine overtorque is sought for an engine incorporating a free power...

  8. Federal Funding of Engineering Research and Development, 1980-1984.

    ERIC Educational Resources Information Center

    American Society of Mechanical Engineers, Washington, DC.

    Data on the sources, amounts, and trends of federal funding for engineering research and development (R&D) are presented for 1980-1984. Narrative highlights are provided for: the total federal funding obligations for engineering R&D, mechanical engineering, astronautical engineering, aeronautical engineering, chemical engineering, civil…

  9. The Research and Training Activities for the Joint Institute for Aeronautics and Acoustics

    NASA Technical Reports Server (NTRS)

    Cantwell, Brian

    1997-01-01

    This proposal requests continued support for the program of activities to be undertaken by the Ames-Stanford Joint Institute for Aeronautics and Acoustics during the one-year period October 1, 1997 to September 30, 1998. The emphasis in this program is on training and research in experimental and computational methods with application to aerodynamics, acoustics and the important interactions between them. The program comprises activities in active flow control, Large Eddy Simulation of jet noise, flap aerodynamics and acoustics, high lift modeling studies and luminescent paint applications. During the proposed period there will be a continued emphasis on the interaction between NASA Ames, Stanford University and Industry, particularly in connection with the noise and high lift activities. The program will be conducted within the general framework of the Memorandum of Understanding (1976) establishing the Institute, as updated in 1993. As outlined in the agreement, the purposes of the Institute include the following: (1) To conduct basic and applied research; (2) to promote joint endeavors between Center scientists and those in the academic community; (3) to provide training to graduate students in specialized areas of aeronautics and acoustics through participation in the research programs of the Institute; (4) to provide opportunities for Post-Doctoral Fellows to collaborate in research programs of the Institute; and (5) to disseminate information about important aeronautical topics and to enable scientists and engineers of the Center to stay abreast of new advances through symposia, seminars and publications.

  10. The Research and Training Activities for the Joint Institute for Aeronautics and Acoustics

    NASA Technical Reports Server (NTRS)

    Cantwell, Brian

    1996-01-01

    This proposal requests continued support for the program of activities to be undertaken by the Ames-Stanford Joint Institute for Aeronautics and Acoustics during the one-year period October 1, 1996 to September 30, 1997. The emphasis in this program is on training and research in experimental and computational methods with application to aerodynamics, acoustics and the important interactions between them. The program comprises activities in active flow control, Large Eddy Simulation of jet noise, flap aerodynamics and acoustics, high lift modeling studies and luminescent paint applications. During the proposed period there will be a continued emphasis on the interaction between NASA Ames, Stanford University and Industry, particularly in connection with the noise and high lift activities. The program will be conducted within the general framework of the Memorandum of Understanding (1976) establishing the Institute, as updated in 1993. As outlined in the agreement, the purposes of the institute include the following: To conduct basic and applied research. To promote joint endeavors between Center scientists and those in the academic community To provide training to graduate students in specialized areas of aeronautics and acoustics through participation in the research programs of the Institute. To provide opportunities for Post-Doctoral Fellows to collaborate in research programs of the Institute. To disseminate information about important aeronautical topics and to enable scientists and engineers of the Center to stay abreast of new advances through symposia, seminars and publications.

  11. Aeronautical Engineering and Aerospace Engineering: A Learner-Centered Teaching Perspective in Higher Education

    ERIC Educational Resources Information Center

    Gohardani, Omid; Gohardani, Amir S.; Dokter, Erin; Macario, Kyla

    2014-01-01

    Teaching in the 21st century requires a modern teaching practice coherent with the evolutions of the Information Age. Interestingly, teaching practices have stretched beyond an art form and into the realm of science. Following these scientific trails, one can argue that one of the greatest challenges educators currently face is to maintain student…

  12. 14 CFR 29.361 - Engine torque.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine torque. 29.361 Section 29.361... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 29.361 Engine torque. The limit engine torque may not be less than the following: (a) For turbine engines, the highest of— (1)...

  13. 14 CFR 29.361 - Engine torque.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Engine torque. 29.361 Section 29.361... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 29.361 Engine torque. The limit engine torque may not be less than the following: (a) For turbine engines, the highest of— (1)...

  14. 14 CFR 29.361 - Engine torque.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Engine torque. 29.361 Section 29.361... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 29.361 Engine torque. The limit engine torque may not be less than the following: (a) For turbine engines, the highest of— (1)...

  15. 14 CFR 27.1011 - Engines: General.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engines: General. 27.1011 Section 27.1011... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1011 Engines: General. (a) Each engine must... maximum oil consumption of the engine under the same conditions, plus a suitable margin to ensure...

  16. 14 CFR 29.1011 - Engines: general.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Engines: general. 29.1011 Section 29.1011... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Oil System § 29.1011 Engines: general. (a) Each engine... the maximum allowable oil consumption of the engine under the same conditions, plus a suitable...

  17. 14 CFR 29.1011 - Engines: general.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Engines: general. 29.1011 Section 29.1011... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Oil System § 29.1011 Engines: general. (a) Each engine... the maximum allowable oil consumption of the engine under the same conditions, plus a suitable...

  18. 14 CFR 29.1011 - Engines: general.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engines: general. 29.1011 Section 29.1011... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Oil System § 29.1011 Engines: general. (a) Each engine... the maximum allowable oil consumption of the engine under the same conditions, plus a suitable...

  19. 14 CFR 27.1011 - Engines: General.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Engines: General. 27.1011 Section 27.1011... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1011 Engines: General. (a) Each engine must... maximum oil consumption of the engine under the same conditions, plus a suitable margin to ensure...

  20. 14 CFR 23.1143 - Engine controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine controls. 23.1143 Section 23.1143... Accessories § 23.1143 Engine controls. (a) There must be a separate power or thrust control for each engine... supercharger controls must be arranged to allow— (1) Separate control of each engine and each supercharger;...