Sample records for aeronautics committee unmanned

  1. 78 FR 38076 - NASA Advisory Council; Aeronautics Committee; Unmanned Aircraft Systems Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-25

    ...) 358-1578, or [email protected] . SUPPLEMENTARY INFORMATION: The meeting will be open to the... telephone should contact Ms. Brenda L. Mulac at (202) 358-1578 for the web link, toll-free number and... at 202-358-1578. Patricia D. Rausch, Advisory Committee Management Officer, National Aeronautics and...

  2. 78 FR 25100 - NASA Advisory Council; Aeronautics Committee; Unmanned Aircraft Systems Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-29

    ... Aeronautics and Space Administration Headquarters, Washington, DC 20546, (202) 358-1578, or brenda.l.mulac.... Brenda L. Mulac at (202) 358-1578 for the web link, toll-free number and passcode. The agenda for the... L. Mulac at (202) 358-1578. Patricia D. Rausch, Advisory Committee Management Officer, National...

  3. 77 FR 61432 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-09

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-080] NASA Advisory Council; Aeronautics Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of Meeting. SUMMARY... Aeronautics and Space Administration announces a meeting of the Aeronautics Committee of the NASA Advisory...

  4. 78 FR 69885 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-21

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13-133] NASA Advisory Council; Aeronautics... Aeronautics and Space Administration announces a meeting of the Aeronautics Committee of the NASA Advisory... INFORMATION CONTACT: Ms. Susan L. Minor, Executive Secretary for the Aeronautics Committee, NASA Headquarters...

  5. 75 FR 2925 - Sixteenth Plenary Meeting: RTCA Special Committee 203: Unmanned Aircraft Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-19

    ... Special Committee 203: Unmanned Aircraft Systems AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 203: Unmanned Aircraft Systems. SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 203: Unmanned Aircraft Systems. DATES...

  6. 76 FR 16643 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-24

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-024)] NASA Advisory Council; Aeronautics... Aeronautics and Space Administration announces a meeting of the Aeronautics Committee of the NASA Advisory.... ADDRESSES: Thursday, April 14, 2011--NASA Dryden Flight Research Center (DFRC), Lilly Drive Building 4825...

  7. 76 FR 58843 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-22

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 11-082] NASA Advisory Council; Aeronautics... Aeronautics and Space Administration announces a meeting of the Aeronautics Committee of the NASA Advisory... Headquarters, Washington, DC 20546, (202) 358-0566, or [email protected]nasa.gov . SUPPLEMENTARY INFORMATION: The...

  8. 75 FR 41240 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-15

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-079)] NASA Advisory Council; Aeronautics... Aeronautics and Space Administration announces a meeting of the Aeronautics Committee of the NASA Advisory....m. to 4 p.m. (local time). ADDRESSES: NASA Glenn Research Center, Building 15, Small Dining...

  9. 75 FR 17166 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-05

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-038)] NASA Advisory Council; Aeronautics... Aeronautics and Space Administration announces a meeting of the Aeronautics Committee of the NASA Advisory... a.m. to 1 p.m.; Eastern Daylight Time. ADDRESSES: NASA Langley Research Center, Building 1219, Room...

  10. 78 FR 10640 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-14

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (13-010)] NASA Advisory Council; Aeronautics... Aeronautics and Space Administration announces a meeting of the Aeronautics Committee of the NASA Advisory..., or [email protected]nasa.gov . SUPPLEMENTARY INFORMATION: The meeting will be open to the public up to...

  11. 77 FR 38091 - NASA Advisory Council; Aeronautics Committee; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-26

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 12-047] NASA Advisory Council; Aeronautics... National Aeronautics and Space Administration announces a meeting of the Aeronautics Committee of the NASA..., July 24, 2012, 8 a.m. to 3 p.m. local time. ADDRESSES: NASA Goddard Space Flight Center (GSFC...

  12. 78 FR 41114 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-09

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-075] NASA Advisory Council; Aeronautics... Aeronautics and Space Administration announces a meeting of the Aeronautics Committee of the NASA Advisory... planning. DATES: Tuesday, July 30, 2013, 9:00 a.m. to 5:00 p.m.; Local Time. ADDRESSES: NASA Headquarters...

  13. 75 FR 50782 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-17

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-087)] NASA Advisory Council; Aeronautics... Aeronautics and Space Administration announces a meeting of the Aeronautics Committee of the NASA Advisory..., 2010, 8 a.m. to 12:30 p.m.; Local Time. ADDRESSES: NASA Ames Conference Center, Building 3, 500...

  14. 75 FR 63534 - Seventh Meeting-Special Committee 222: Inmarsat Aeronautical Mobile Satellite (Route) Services

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-15

    ... 222: Inmarsat Aeronautical Mobile Satellite (Route) Services AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 222: Inmarsat Aeronautical Mobile Satellite (Route... Committee 222: Inmarsat Aeronautical Mobile Satellite (Route) Services. DATES: The meeting will be held...

  15. 75 FR 15770 - Fifth Meeting-Special Committee 222: Inmarsat Aeronautical Mobile Satellite (Route) Services

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-30

    ...: Inmarsat Aeronautical Mobile Satellite (Route) Services AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 222: Inmarsat Aeronautical Mobile Satellite (Route) Services... Committee 222: Inmarsat Aeronautical Mobile Satellite (Route) Services. DATES: The meeting will be held...

  16. 75 FR 39724 - Sixth Meeting-Special Committee 222: Inmarsat Aeronautical Mobile Satellite (Route) Services

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-12

    ...: Inmarsat Aeronautical Mobile Satellite (Route) Services AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 222: Inmarsat Aeronautical Mobile Satellite (Route) Services... Committee 222: Inmarsat Aeronautical Mobile Satellite (Route) Services. DATES: The meeting will be held...

  17. 78 FR 51809 - Seventeenth Meeting: RTCA Special Committee 217-Aeronautical Databases Joint With EUROCAE WG-44...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-21

    ... Committee 217--Aeronautical Databases Joint With EUROCAE WG-44--Aeronautical Databases AGENCY: Federal... Committee 217--Aeronautical Databases Joint with EUROCAE WG-44--Aeronautical Databases. SUMMARY: The FAA is... Databases being held jointly with EUROCAE WG-44--Aeronautical Databases. DATES: The meeting will be held...

  18. 78 FR 8684 - Fifteenth Meeting: RTCA Special Committee 217-Aeronautical Databases Joint with EUROCAE WG-44...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-06

    ... Committee 217--Aeronautical Databases Joint with EUROCAE WG-44--Aeronautical Databases AGENCY: Federal... Committee 217--Aeronautical Databases Joint with EUROCAE WG-44--Aeronautical Databases. SUMMARY: The FAA is... Databases being held jointly with EUROCAE WG-44--Aeronautical Databases. DATES: The meeting will be held...

  19. 78 FR 25134 - Sixteenth Meeting: RTCA Special Committee 217-Aeronautical Databases Joint With EUROCAE WG-44...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-29

    ... Committee 217--Aeronautical Databases Joint With EUROCAE WG-44--Aeronautical Databases AGENCY: Federal... Committee 217--Aeronautical Databases Joint with EUROCAE WG-44--Aeronautical Databases. SUMMARY: The FAA is... Databases being held jointly with EUROCAE WG-44--Aeronautical Databases. DATES: The meeting will be held...

  20. 78 FR 66418 - Eighteenth Meeting: RTCA Special Committee 217-Aeronautical Databases Joint With EUROCAE WG-44...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-05

    ... Committee 217--Aeronautical Databases Joint With EUROCAE WG-44--Aeronautical Databases AGENCY: Federal... Committee 217--Aeronautical Databases Joint with EUROCAE WG-44--Aeronautical Databases. SUMMARY: The FAA is... Databases being held jointly with EUROCAE WG-44--Aeronautical Databases. DATES: The meeting will be held...

  1. 76 FR 66350 - Eighth Meeting: RTCA Special Committee 222 Inmarsat Aeronautical Mobile Satellite (Route) Services

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-26

    ... Committee 222 Inmarsat Aeronautical Mobile Satellite (Route) Services AGENCY: Federal Aviation..., Inmarsat Aeronautical Mobile Satellite (Route) Services meeting. SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 222, Inmarsat Aeronautical Mobile Satellite...

  2. 76 FR 54526 - 26th Meeting: RTCA Special Committee 206: Aeronautical Information and Meteorological Data Link

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-01

    ... 206: Aeronautical Information and Meteorological Data Link AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 206: Aeronautical Information and Meteorological... of RTCA Special Committee 206: Aeronautical Information and Meteorological Data Link Services. DATES...

  3. 78 FR 69928 - First Meeting: RTCA Special Committee 228-Minimum Operational Performance Standards for Unmanned...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-21

    ... 228--Minimum Operational Performance Standards for Unmanned Aircraft Systems AGENCY: Federal Aviation...--Minimum Operational Performance Standards for Unmanned Aircraft Systems. SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 228--Minimum Operational Performance...

  4. 78 FR 38093 - First Meeting: RTCA Special Committee 228-Minimum Operational Performance Standards for Unmanned...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-25

    ... 228--Minimum Operational Performance Standards for Unmanned Aircraft Systems AGENCY: Federal Aviation...--Minimum Operational Performance Standards for Unmanned Aircraft Systems. SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 228--Minimum Operational Performance...

  5. 77 FR 30046 - Ninth Meeting: RTCA Special Committee 222, Inmarsat Aeronautical Mobile Satellite (Route) Services

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-21

    ... 222, Inmarsat Aeronautical Mobile Satellite (Route) Services AGENCY: Federal Aviation Administration..., Inmarsat Aeronautical Mobile Satellite (Route) Services. SUMMARY: The FAA is issuing this notice to advise the public of the Ninth meeting of RTCA Special Committee 222, Inmarsat Aeronautical Mobile Satellite...

  6. 75 FR 36722 - Aeronautics Science and Technology Subcommittee; Committee on Technology; National Science and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-28

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Aeronautics Science and Technology Subcommittee; Committee on Technology; National Science and Technology Council ACTION: Notice of Meeting--Public input is... Evaluation (RDT&E) Infrastructure Plan. SUMMARY: The Aeronautics Science and Technology Subcommittee (ASTS...

  7. Nomenclature for Aeronautics

    NASA Technical Reports Server (NTRS)

    1927-01-01

    This nomenclature for aeronautics was prepared by a Special Conference on Aeronautical Nomenclature by the executive committee of the National Advisory Committee for Aeronautics at a meeting held on August 19, 1924, at which meeting Dr. Joseph S. Ames was appointed chairman of the conference. The conference was composed of representatives of the National Advisory Committee for Aeronautics and specially appointed representatives officially designated by the Army Air Service, the Bureau of Aeronautics of the Navy Department, the Bureau of Standards, the American Society of Mechanical Engineers, the Society of Automotive Engineers, and the Aeronautical Chamber of Commerce. The purpose of the committee in the preparation and publication of this report is to secure uniformity in the official documents of the government and, as far as possible, in technical and other commercial publications

  8. 75 FR 81678 - Aeronautics Science and Technology Subcommittee; Committee on Technology; National Science and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-28

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Aeronautics Science and Technology Subcommittee; Committee on Technology; National Science and Technology Council ACTION: Notice of Meeting--Public input is.... SUMMARY: The Aeronautics Science and Technology Subcommittee (ASTS) of the National Science and Technology...

  9. Nomenclature for Aeronautics

    NASA Technical Reports Server (NTRS)

    1924-01-01

    This nomenclature for aeronautics was prepared by a special conference on aeronautical nomenclature by the Executive Committee of the National Advisory Committee for Aeronautics at a meeting held August 11, 1933. This publication supersedes all previous publications of the committee on this subject. The purpose of the committee in the preparation and publication of this report is to secure uniformity in the official documents of the government and, as far as possible, in technical and other commercial publications.

  10. 78 FR 7816 - NASA Advisory Council; Aeronautics Committee; Unmanned Aircraft Systems Subcommittee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-04

    ....m. to 4:30 p.m., Local Time. ADDRESSES: National Aeronautics and Space Administration Headquarters... and Space Administration Headquarters, Washington, DC 20546, (202) 358-1578, or [email protected], officially- issued picture identification such as driver's license to enter the NASA Headquarters building...

  11. Model research, the National Advisory Committee for Aeronautics, 1915-1958, volume 2

    NASA Technical Reports Server (NTRS)

    Roland, A.

    1985-01-01

    Appendices providing comprehensive data on personnel, organization, funding, research programs, and publications of the National Advisory Committee for Aeronautics (NACA) are presented. Information concerning NACA-related legislation and research facilities is also included.

  12. A Digital Library for the National Advisory Committee for Aeronautics

    NASA Technical Reports Server (NTRS)

    Nelson, Michael L.

    1999-01-01

    We describe the digital library (DL) for the National Advisory Committee for Aeronautics (NACA), the NACA Technical Report Server (NACATRS). The predecessor organization for the National Aeronautics and Space Administration (NASA), NACA existed from 1915 until 1958. The primary manifestation of NACA's research was the NACA report series. We describe the process of converting this collection of reports to digital format and making it available on the World Wide Web (WWW) and is a node in the NASA Technical Report Server (NTRS). We describe the current state of the project, the resulting DL technology developed from the project, and the future plans for NACATRS.

  13. Project Mercury: Man-In-Space Program of the National Aeronautics and Space Administration. [Report of the Committee on Aeronautical and Space Sciences United States Senate

    NASA Technical Reports Server (NTRS)

    1959-01-01

    The purpose of this staff study, made at the request of the chairman, is to serve members of the Committee on Aeronautical and Space Sciences as a source of basic information on Project Mercury, the man-in-space program of the National Aeronautics and Space Administration. The study is largely derived from unclassified information released by the National Aeronautics and Space Administration and testimony concerning Project Mercury given during hearings before this committee. The program descriptions are based upon current program planning. Since this is a highly advanced research and development program, the project is obviously subject to changes that may result from future developments and accomplishments characteristic of such research activities. Certain information with respect to revised schedules, obtained on a classified basis by the committee during inspection trips, is necessarily omitted. The appendixes to the study include information that may prove helpful on various aspects of space flight and exploration. Included are unofficial comments and observations relating to Russia's manned space flight activities and also a complete chronology of all satellites, lunar probes, and space probes up to the present.

  14. Preliminary Design of a Modular Unmanned Research Vehicle. Volume 2. Subsystem Technical Development Design Study

    DTIC Science & Technology

    1988-12-01

    members of our committee for their contributions to our work : Major Lanson Hudson, Lieutenant Colonel Paul King, and Dr. Curtis Spenny provided many... Effectiveness MSL Mean Sea Level MURV Modular Unmanned Research Vehicle n.p. neutral point NASA National Aeronautics and Space Administration PAM Pulse Amplitude...subsystem objectives and measures of effectiveness , see Volume One, Figure 2.2 The systems approach was then applied to generate and select the best

  15. 76 FR 75565 - NASA Advisory Council; Aeronautics Committee; Unmanned Aircraft Systems (UAS) Subcommittee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-02

    ...., Local Time. ADDRESSES: National Aeronautics and Space Administration Headquarters, Room 6B42, 301 E... Administration Headquarters, Washington, DC 20546, (202) 358-1578, or [email protected] . SUPPLEMENTARY... Headquarters building (West Lobby--Visitor Control Center) and must state that they are attending the NASA...

  16. Model research: The National Advisory Committee for Aeronautics, 1915-1958, volume 1

    NASA Technical Reports Server (NTRS)

    Roland, A.

    1984-01-01

    The National Advisory Committee for Aeronautics, the predecessor of NASA, was the premier aeronautical research organization in the United States. It conducted scientific study of the problems of flight with a view to their practical solution. This institutional history traces the birth and evolution of the NACA and analyzes such recurrent themes as the roles of science and engineering, the influence of politics on technology, the way in which the institution shapes technology and technology shapes the institution, the contributions of key individuals, the nature of the research process, and the relation between military and civilian aviation.

  17. Nomenclature for Aeronautics

    NASA Technical Reports Server (NTRS)

    1923-01-01

    This nomenclature for aeronautics was prepared by a special conference on aeronautical nomenclature, composed of representatives of the Army and Navy Air Services, the Air Mail Service, the Bureau of Standards, the National Advisory Committee for Aeronautics, and private life. This report supersedes all previous publications of the committee on this subject. It is published with the intention of securing greater uniformity and accuracy in official documents of the government, and, as far as possible, in technical and other commercial publications. (author)

  18. Annual report of the National Advisory Committee for Aeronautics (40th). administrative report including Technical Report nos. 1158-1209

    NASA Technical Reports Server (NTRS)

    1956-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  19. Annual report of the National Advisory Committee for Aeronautics (30th).administrative report including Technical Report nos. 774 to 803

    NASA Technical Reports Server (NTRS)

    1949-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, summaries of Committee's activities and research accomplished, bibliographies, and financial report.

  20. Annual report of the National Advisory Committee for Aeronautics (23rd).administrative report including Technical Report nos. 577 to 611

    NASA Technical Reports Server (NTRS)

    1937-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  1. Annual report of the National Advisory Committee for Aeronautics (42nd). administrative report including Technical Report nos. 1254 to 1295

    NASA Technical Reports Server (NTRS)

    1957-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  2. Annual report of the National Advisory Committee for Aeronautics (26th).administrative report including Technical Report nos. 681 to 703

    NASA Technical Reports Server (NTRS)

    1941-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  3. Annual report of the National Advisory Committee for Aeronautics (35th). administrative report including Technical Report nos. 922 to 950

    NASA Technical Reports Server (NTRS)

    1951-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  4. Annual report of the National Advisory Committee for Aeronautics (34th). administrative report including Technical Report nos. 892 to 921

    NASA Technical Reports Server (NTRS)

    1951-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  5. Annual report of the National Advisory Committee for Aeronautics (33rd).administrative report including Technical Report nos. 863 to 891

    NASA Technical Reports Server (NTRS)

    1950-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  6. Annual report of the National Advisory Committee for Aeronautics (32nd).administative report including Technical Report nos. 834 to 862

    NASA Technical Reports Server (NTRS)

    1949-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  7. Annual report of the National Advisory Committee for Aeronautics (29th) : administrative report including Technical Report nos. 752 to 773

    NASA Technical Reports Server (NTRS)

    1948-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  8. Annual report of the National Advisory Committee for Aeronautics (7th).administrative report including Technical Reports nos. 111 to 132

    NASA Technical Reports Server (NTRS)

    1923-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, Congressional report, summaries of the committee's activities and research accomplished, and expenditures.

  9. Annual Report of the National Advisory Committee for Aeronautics (9Th).Administrative Report Including Technical Reports Nos. 159 to 185

    NASA Technical Reports Server (NTRS)

    1924-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, Congressional report, summaries of the committee's activities and research accomplished, and expenditures.

  10. Annual report of the National Advisory Committee for Aeronautics (36th). administrative report including Technical Report nos. 951 to 1002

    NASA Technical Reports Server (NTRS)

    1951-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  11. Annual report of the National Advisory Committee for Aeronautics (8th).administrative report including Technical Reports nos. 133 to 158

    NASA Technical Reports Server (NTRS)

    1923-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, congressional report, summaries of the committee's activities and research accomplished, and expenditures.

  12. Annual report of the National Advisory Committee for Aeronautics (28th).administrative report including Technical Report nos. 727 to 751

    NASA Technical Reports Server (NTRS)

    1946-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  13. Annual report of the National Advisory Committee for Aeronautics (41st). administrative report including Technical Report nos. 1210 to 1253

    NASA Technical Reports Server (NTRS)

    1957-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  14. Annual report of the National Advisory Committee for Aeronautics (44th). administrative report including Technical Report nos. 1342 to 1366

    NASA Technical Reports Server (NTRS)

    1959-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  15. Annual report of the National Advisory Committee for Aeronautics (39th). administrative report including Technical Report nos. 1111 to 1134

    NASA Technical Reports Server (NTRS)

    1955-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  16. Annual Report of the National Advisory Committee for Aeronautics (27Th).Administrative Report Including Technical Report Nos. 704 to 726

    NASA Technical Reports Server (NTRS)

    1942-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  17. Annual report of the National Advisory Committee for Aeronautics (43rd). administrative report including Technical Report nos. 1296 to 1341

    NASA Technical Reports Server (NTRS)

    1958-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  18. Annual report of the National Advisory Committee for Aeronautics (37th). administrative report including Technical Report nos. 1003 to 1031

    NASA Technical Reports Server (NTRS)

    1952-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  19. Annual report of the National Advisory Committee for Aeronautics (25th).administrative report including Technical Report nos. 645 to 680

    NASA Technical Reports Server (NTRS)

    1940-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  20. Annual report of the National Advisory Committee for Aeronautics (38th). administrative report including Technical Report nos. 1059 to 1110

    NASA Technical Reports Server (NTRS)

    1954-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  1. Annual report of the National Advisory Committee for Aeronautics (24th).administrative report including Technical Report nos. 612 to 644

    NASA Technical Reports Server (NTRS)

    1939-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  2. Annual report of the National Advisory Committee for Aeronautics (3rd).administrative report including Technical Report nos. 13 to 23

    NASA Technical Reports Server (NTRS)

    1918-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, Congressional report, summaries of the committee's activities and research accomplished, expenditures, and problems.

  3. Forty-Fourth Annual Report of the National Advisory Committee for Aeronautics Administrative Report Including Technical Reports Nos. 1342 to 1392

    NASA Technical Reports Server (NTRS)

    1959-01-01

    In accordance with act of Congress, approved March 3, 1915, as amended (U.S.C., title 50, .sw 151), which established the National Advisory Committee for Aeronautics, the Committee submits its Forty-fourth Annual Report for the fiscal year 1958. This is the Committee's final report to the Congress. The National Aeronautics and Space Act of 1958 (Public Law 85-568) provides in section 301 that the NACA "shall cease to exist" and "all functions, powers, duties, and obligations, and all real and personal property, personnel (other than members of the Committee), funds, and records of the NACA shall be transferred to the National Aeronautics and Space Administration. The aforesaid act provides that "this section shall take effect 90 days after the date of the enactment of this act, or on any earlier date on which the Administrator shall determining and announce by proclamation published in the Federal Register, that the Administration has been organized and is prepared to discharge the duties and exercise the power conferred upon it by this act." The Administrator, Hon. T. Keith Glennan has advised the Committee of his intention to issue such proclamation, effective October 1,1958.

  4. Annual report for the National Advisory Committee for Aeronautics (11th).administrative report including Technical Reports nos. 210 to 232

    NASA Technical Reports Server (NTRS)

    1926-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the president, congressional report, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  5. Annual report of the National Advisory Committee for Aeronautics (16th).administrative report including Technical Reports nos. 337 to 364

    NASA Technical Reports Server (NTRS)

    1931-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, Congressional report, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  6. Annual report of the National Advisory Committee for Aeronautics (22nd).administrative report including Technical Report nos. 542 to 576

    NASA Technical Reports Server (NTRS)

    1937-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, Congressional report, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  7. Annual report for the National Advisory Committee for Aeronautics (10th).administrative report including Technical Reports nos. 186 to 209

    NASA Technical Reports Server (NTRS)

    1925-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the president, congressional report, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  8. Annual report of the National Advisory Committee for Aeronautics (15th).administrative report including Technical Reports nos. 309 to 336

    NASA Technical Reports Server (NTRS)

    1930-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, Congressional report, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  9. Annual report of the National Advisory Committee for Aeronautics (18th).administrative report including Technical Report nos. 401 to 440

    NASA Technical Reports Server (NTRS)

    1933-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, Congressional report, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  10. Annual report of the National Advisory Committee for Aeronautics (13th).administrative report including Technical Reports nos. 257 to 282

    NASA Technical Reports Server (NTRS)

    1928-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, Congressional report, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  11. Annual report of the National Advisory Committee for Aeronautics (17th).administrative report including Technical Report nos. 365 to 400

    NASA Technical Reports Server (NTRS)

    1932-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the president, congressional report, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  12. Annual report of the National Advisory Committee for Aeronautics (14th).administrative report including Technical Reports nos. 283 to 308

    NASA Technical Reports Server (NTRS)

    1929-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the president, congressional report, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  13. Annual report for the National Advisory Committee for Aeronautics (12th).administrative report including Technical Reports nos. 233 to 256

    NASA Technical Reports Server (NTRS)

    1927-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the president, congressional report, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  14. Annual report of the National Advisory Committee for Aeronautics (20th).administrative report including Technical Report nos. 475 to 507

    NASA Technical Reports Server (NTRS)

    1935-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, Congressional report, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  15. Annual report of the National Advisory Committee for Aeronautics (21st).administrative report including Technical Report nos. 508 to 541

    NASA Technical Reports Server (NTRS)

    1936-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, Congressional report, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  16. Annual report of the National Advisory Committee for Aeronautics (19th).administrative report including Technical Report nos. 441 to 474

    NASA Technical Reports Server (NTRS)

    1934-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, Congressional report, summaries of the committee's activities and research accomplished, bibliographies, and financial report.

  17. Annual report of the National Advisory Committee for Aeronautics (5th).administrative report including Technical Reports nos. 51 to 82

    NASA Technical Reports Server (NTRS)

    1920-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, Congressional report, summaries of the committee's activities and research accomplished, expenditures, and a compilation of technical reports produced.

  18. Annual Report of the National Advisory Committee for Aeronautics (1st). [Administrative Report Including Technical Reports Nos. 1 to 7

    NASA Technical Reports Server (NTRS)

    1916-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, Congressional report, summaries of the committee's activities and research accomplished, expenditures, problems, recommendations, and a compilation of technical reports produced.

  19. Annual report of the National Advisory Committee for Aeronautics (4th).administrative report including Technical Reports nos. 24 to 50

    NASA Technical Reports Server (NTRS)

    1920-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, Congressional report, summaries of the committee's activities and research accomplished, expenditures, problems, recommendations, and a compilation of technical reports produced.

  20. 77 FR 2343 - Eighteenth Meeting: RTCA Special Committee 216: Aeronautical Systems Security (Joint Meeting With...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-17

    ... advise the public of the eighteenth meeting of RTCA Special Committee 216: Aeronautical Systems Security... Agenda Overview and Approval Split Plenary Session (9:15 a.m.--12 p.m.) SC 216 Review of the Summary of....--12 p.m.) WG-72 Introduction, Report about publications and relations EUROCAE Document Discussions, e...

  1. Nomenclature for aeronautics

    NASA Technical Reports Server (NTRS)

    1920-01-01

    Report defines the principal terms which have come into use in the development of aeronautics. It was prepared in cooperation with a committee engaged upon a similar undertaking in Great Britain. As a result this nomenclature is in substantial agreement with the one which has been adopted by the aeronautical authorities of Great Britain.

  2. Annual report of the National Advisory Committee for Aeronautics (6th).administrative report including Technical Reports nos. 83 to 110

    NASA Technical Reports Server (NTRS)

    1921-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, Congressional report, summaries of the committee's activities and research accomplished, expenditures, House of Representatives bill 14061, a copy of the bill introduced to the House of Representatives to regulate air navigation, and a compilation of technical reports produced.

  3. NACA collections: A directory of significant collections of the documents of the National Advisory Committee for Aeronautics

    NASA Technical Reports Server (NTRS)

    Smith, Ruth S.

    1994-01-01

    An alphabetical listing is given of 42 centers that hold National Advisory Committee for Aeronautics (NACA) documents. Information is given on the number of NACA holdings in paper copy, bound volumes, and microfiche. Additional information is given on the bibliographic records and availability.

  4. Aeronautics. America in Space: The First Decade.

    ERIC Educational Resources Information Center

    Anderton, David A.

    The major research and developments in aeronautics during the late 1950's and 1960's are reviewed descriptively with a minimum of technical content. Topics covered include aeronautical research, aeronautics in NASA, The National Advisory Committee for Aeronautics, the X-15 Research Airplane, variable-sweep wing design, the Supersonic Transport…

  5. The Twenty-Foot Propeller Research Tunnel of the National Advisory Committee for Aeronautics

    NASA Technical Reports Server (NTRS)

    Weick, Fred E; Wood, Donald H

    1929-01-01

    This report describes in detail the new propeller research tunnel of the National Advisory Committee for Aeronautics at Langley Field, Va. This tunnel has an open jet air stream 20 feet in diameter in which velocities up to 110 M. P. H. Are obtained. Although the tunnel was built primarily to make possible accurate full-scale tests on aircraft propellers, it may also be used for making aerodynamic tests on full-size fuselages, landing gears, tail surfaces, and other aircraft parts, and on model wings of large size. (author)

  6. Unmanned Aircraft House Hearing

    NASA Image and Video Library

    2013-02-15

    Dr. Edgar Waggoner, Director, Integrated Systems research Program Office, National Aeronautics and Space Administration (NASA), takes notes during a House Subcommittee on Oversight hearing titled "Operating Unmanned Aircraft Systems in the National Airspace System: Assessing Research and Development Efforts to Ensure Safety" on Friday, Feb. 15, 2013 at the Rayburn House Office Building in Washington. Photo Credit: (NASA/Bill Ingalls)

  7. Aeronautics in NACA and NASA

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Initiated in 1915, the National Advisory Committee for Aeronautics/National Aeronautics and Space Administration (NACA/NASA) aeronautical programs have been the keystone of a sustained U.S. Government, industry, and university research effort which has been a primary factor in the development of our remarkable air transportation systems, the country's largest positive trade balance component, and the world's finest military Air Force. This overview summarizes the flow of events, and the major trends, that have led from the NACA origins to the present NASA Aeronautics program, and indicates some important directions for the years ahead.

  8. NASA's UAS [Unmanned Aircraft Systems] Related Activities

    NASA Technical Reports Server (NTRS)

    Bauer, Jeffrey

    2012-01-01

    NASA continues to operate all sizes of UAS in all classes of airspace both domestically and internationally. Missions range from highly complex operations in coordination with piloted aircraft, ground, and space systems in support of science objectives to single aircraft operations in support of aeronautics research. One such example is a scaled commercial transport aircraft being used to study recovery techniques due to large upsets. NASA's efforts to support routine UAS operations continued on several fronts last year. At the national level in the United States (U.S.), NASA continued its support of the UAS Executive Committee (ExCom) comprised of the Federal Aviation Administration (FAA), Department of Defense (DoD), Department of Homeland Security (DHS), and NASA. The committee was formed in recognition of the need of UAS operated by these agencies to access to the National Airspace System (NAS) to support operational, training, development and research requirements. Recommendations were received on how to operate both manned and unmanned aircraft in class D airspace and plans are being developed to validate and implement those recommendations. In addition the UAS ExCom has begun developing recommendations for how to achieve routine operations in remote areas as well as for small UAS operations in class G airspace. As well as supporting the UAS ExCom, NASA is a participant in the recently formed Aviation Rule Making Committee for UAS. This committee, established by the FAA, is intended to propose regulatory guidance which would enable routine civil UAS operations. As that effort matures NASA stands ready to supply the necessary technical expertise to help that committee achieve its objectives. By supporting both the UAS ExCom and UAS ARC, NASA is positioned to provide its technical expertise across the full spectrum of UAS airspace access related topic areas. The UAS NAS Access Project got underway this past year under the leadership of NASA s Aeronautics

  9. Bibliography of Aeronautics, 1920-1921

    NASA Technical Reports Server (NTRS)

    Brockett, Paul

    1925-01-01

    This work covers the literatme published from January 1, 1920, to December 31, 1921, and continues the work of the Smithsonian Institution issued as Volume 55 of the Smithsonian Miscellaneous Collections, which covered the material published prior to June 30, 1909, and the work of Lhe National Advisory Committee for Aeronautics as published in the Bibliography of Aeronautics for the years 1909 to 1916 and 1917 to 1919. As in the Smithsonian volume and in the Bibliography of Aeronautics for the years 1909 to 1916 and 1917 to 1919, citations of the publications of all nations have been included in the languages in which these publications originally appeared. The arrangement is in dictionary form with author and subject entry and one alphabetical arrangement. Detail in the matter of subject reference has been omitted on account of the cost of presentation, but an attempt has been made to give sufficient cross reference for research in special lines. The National Advisory Committee for Aeronautics will next present a bibliography for the year 1922.

  10. [Micron]ADS-B Detect and Avoid Flight Tests on Phantom 4 Unmanned Aircraft System

    NASA Technical Reports Server (NTRS)

    Arteaga, Ricardo; Dandachy, Mike; Truong, Hong; Aruljothi, Arun; Vedantam, Mihir; Epperson, Kraettli; McCartney, Reed

    2018-01-01

    Researchers at the National Aeronautics and Space Administration Armstrong Flight Research Center in Edwards, California and Vigilant Aerospace Systems collaborated for the flight-test demonstration of an Automatic Dependent Surveillance-Broadcast based collision avoidance technology on a small unmanned aircraft system equipped with the uAvionix Automatic Dependent Surveillance-Broadcast transponder. The purpose of the testing was to demonstrate that National Aeronautics and Space Administration / Vigilant software and algorithms, commercialized as the FlightHorizon UAS"TM", are compatible with uAvionix hardware systems and the DJI Phantom 4 small unmanned aircraft system. The testing and demonstrations were necessary for both parties to further develop and certify the technology in three key areas: flights beyond visual line of sight, collision avoidance, and autonomous operations. The National Aeronautics and Space Administration and Vigilant Aerospace Systems have developed and successfully flight-tested an Automatic Dependent Surveillance-Broadcast Detect and Avoid system on the Phantom 4 small unmanned aircraft system. The Automatic Dependent Surveillance-Broadcast Detect and Avoid system architecture is especially suited for small unmanned aircraft systems because it integrates: 1) miniaturized Automatic Dependent Surveillance-Broadcast hardware; 2) radio data-link communications; 3) software algorithms for real-time Automatic Dependent Surveillance-Broadcast data integration, conflict detection, and alerting; and 4) a synthetic vision display using a fully-integrated National Aeronautics and Space Administration geobrowser for three dimensional graphical representations for ownship and air traffic situational awareness. The flight-test objectives were to evaluate the performance of Automatic Dependent Surveillance-Broadcast Detect and Avoid collision avoidance technology as installed on two small unmanned aircraft systems. In December 2016, four flight tests

  11. 14 CFR 1203.903 - Ad hoc committees.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Ad hoc committees. 1203.903 Section 1203.903 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INFORMATION SECURITY PROGRAM NASA Information Security Program Committee § 1203.903 Ad hoc committees. The Chairperson is authorized to...

  12. 14 CFR 1203.903 - Ad hoc committees.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Ad hoc committees. 1203.903 Section 1203.903 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INFORMATION SECURITY PROGRAM NASA Information Security Program Committee § 1203.903 Ad hoc committees. The Chairperson is authorized...

  13. Bibliography of Aeronautics: 1928

    NASA Technical Reports Server (NTRS)

    Brockett, Paul

    1928-01-01

    This Bibliography of Aeronautics for 1928 covers the aeronautical literature published from January 1 to December 31, 1928. The first Bibliography of Aeronautics was published by the Smithsonian Institution as volume 55 of the Smithsonian Miscellaneous Collections and covered the material published prior to June 30, 1909. Supplementary volumes of the Bibliography of Aeronautics for the subsequent years have been published by the National Advisory Committee for Aeronautics. The last preceding volume was for the calendar year 1927. As in the previous volumes, citations of the publications of all nations are included in the languages in which these publications originally appeared. The arrangement is in dictionary form with author and subject entry, and one alphabetical arrangement. Detail in the matter of subject reference has been omitted on account of the cost of presentation, but an attempt has been made to give sufficient cross reference for research in special lines.

  14. Bibliography of Aeronautics: 1926

    NASA Technical Reports Server (NTRS)

    Brockett, Paul

    1928-01-01

    This Bibliography of Aeronautics for 1926 covers the aeronautical literature published from January 1 to December 31, 1926. The first Bibliography of Aeronautics was published by the Smithsonian Institution as volume 55 of the Smithsonian Miscellaneous Collections and covered the material published prior to June 30, 1909. Supplementary volumes of the Bibliography of Aeronautics for the subsequent years have been published by the National Advisory Committee for Aeronautics. The last preceding volume was for the calendar year 1925. As in the previous volumes, citations of the publications of all nations are included in the languages in which these publications originally appeared. The arrangement is dictionary form with author find subject entry, and one alphabetical arrangement. Detail in the matter of subject reference has been omitted on aCC01.mt of the cost of presentation, but an attempt has been made to give sufficient cross reference for research in special lines.

  15. Bibliography of Aeronautics, 1929

    NASA Technical Reports Server (NTRS)

    Brockett, Paul

    1930-01-01

    This Bibliography of Aeronautics for 1929 covers the aeronautical literature published from January 1 to December 31, 1929. The first Bibliography of Aeronautics was published by the Smithsonian Institution as Volume 55 of the Smithsonian Miscellaneous Collections and covered the material published prior to June 30, 1909. Supplementary volumes of the Bibliography of Aeronautics for the subsequent years have been published by the National Advisory Committee for Aeronautics. The last preceding volume was for the calendar year 1928. As in the previous volumes, citations of the pUblications of all nations are included in th.e languages in which. these publications originally appeared. The arrangement is in dictionary form with author and subject entry, and one alphabetical arrangement. Detail in the matter of subject reference has been omitted on account of the cost of presentation, but an attempt has been made to give sufficient cross reference for research in special lines.

  16. Bibliography of Aeronautics: 1932

    NASA Technical Reports Server (NTRS)

    1935-01-01

    This Bibliography of Aeronautics for 1932 covers the aeronautical literature published from January 1 to December 31, 1932. The first Bibliography of Aeronautics was published by the Smithsonian Institution as volume 55 of the Smithsonian Miscellaneous Collections and covered the material published prior to June 30, 1909. Supplementary volumes of the Bibliography of Aeronautics for the subsequent years have been published by the National Advisory Committee for Aeronautics. The last preceding volume was for the calendar year 1931. As in the previous volumes, citations of the publications of all nations are included in the languages in which these publications originally appeared. The arrangement is in dictionary form with author and subject entry and one alphabetical arrangement. Detail in the matter of subject reference has been omitted on account of the cost of presentation, but an attempt has been made to give sufficient cross-reference for research in special lines.

  17. Aeronautics and Space Report of the President

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The years 1989 to 1990 activities are reported including human space flight, unmanned expendable launch vehicles, space science and applications, space communications operations, space research and technology, and aeronautics research and technology. Contributions made by the 14 participating government organizations are outline. Each organization's aeronautics and/or space activities for the year are presented. The organizations involved include: (1) NASA; (2) Dept. of Defense; (3) Dept. of Commerce; (4) Dept. of Energy; (5) Dept. of the Interior; (6) Dept. of Agriculture; (7) Federal Communications Commission; (8) Dept. of Transportation; (9) Environmental Protection Agency; (10) National Science Foundation; (11) Smithsonian Institution; (12) Dept. of State; (13) Arms Control and Disarmament; and (14) United States Information Agency.

  18. Review of Aeronautical Wind Tunnel Facilities

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The nation's aeronautical wind tunnel facilities constitute a valuable technological resource and make a significant contribution to the global supremacy of U.S. aircraft, both civil and military. At the request of NASA, the National Research Council's Aeronautics and Space Engineering Board organized a commitee to review the state of repair, adequacy, and future needs of major aeronautical wind tunnel facilities in meeting national goals. The comittee identified three main areas where actions are needed to sustain the capability of NASA's aeronautical wind tunnel facilities to support the national aeronautical research and development activities: tunnel maintenance and upgrading, productivity enhancement, and accommodation of new requirements (particularly in hypersonics). Each of these areas are addressed and the committee recommendations for appropriate actions presented.

  19. Ikhana: Unmanned Aircraft System Western States Fire Missions. Monographs in Aerospace History, Number 44

    NASA Technical Reports Server (NTRS)

    Merlin, Peter W.

    2009-01-01

    In 2006, NASA Dryden Flight Research Center, Edwards, Calif., obtained a civil version of the General Atomics MQ-9 unmanned aircraft system and modified it for research purposes. Proposed missions included support of Earth science research, development of advanced aeronautical technology, and improving the utility of unmanned aerial systems in general. The project team named the aircraft Ikhana a Native American Choctaw word meaning intelligent, conscious, or aware in order to best represent NASA research goals. Building on experience with these and other unmanned aircraft, NASA scientists developed plans to use the Ikhana for a series of missions to map wildfires in the western United States and supply the resulting data to firefighters in near-real time. A team at NASA Ames Research Center, Mountain View, Calif., developed a multispectral scanner that was key to the success of what became known as the Western States Fire Missions. Carried out by team members from NASA, the U.S. Department of Agriculture Forest Service, National Interagency Fire Center, National Oceanic and Atmospheric Administration, Federal Aviation Administration, and General Atomics Aeronautical Systems Inc., these flights represented an historic achievement in the field of unmanned aircraft technology.

  20. 76 FR 40753 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-11

    ... strategy Verification and Validation of Flight Critical Systems planning update NASA Aeronautics systems analysis and strategic planning It is imperative that this meeting be held on this date to accommodate the... aeronautics community and other persons, research and technical information relevant to program planning...

  1. 76 FR 183 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-03

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-172)] NASA Advisory Council... the NASA Advisory Council. The meeting will be held for the purpose of soliciting from the aeronautics... 20546, (202) 358-0566, or [email protected]nasa.gov . SUPPLEMENTARY INFORMATION: The meeting will be open...

  2. 76 FR 64122 - NASA Advisory Committee; Renewal of NASA's International Space Station Advisory Committee Charter

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-17

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-095)] NASA Advisory Committee; Renewal of NASA's International Space Station Advisory Committee Charter AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of renewal and amendment of the Charter of the International...

  3. The Variable Density Wind Tunnel of the National Advisory Committee for Aeronautics

    NASA Technical Reports Server (NTRS)

    Munk, Max M; Miller, Elton W

    1926-01-01

    This report contains an exact description of the new wind tunnel of the National Advisory Committee for Aeronautics. This is the first american type wind tunnel. It differs from ordinary wind tunnels by its being surrounded by a strong steel shell, 35 feet long and 15 feet in diameter. A compressor system is provided to fill this shell - and hence the entire wind tunnel - with air compressed to a density up to 25 times the ordinary atmospheric density. It is demonstrated in the report that the increase of the air density makes up for a corresponding decrease in the scale of the model. Hence such american type wind tunnel is free from scale effect. The report is illustrated by many drawings and photographs. All construction details are described, and many dimensions given. The method of conducting tests is also described and some preliminary results given in the report. So far, the tests have confirmed the chief feature of this wind tunnel - absence of scale effect.

  4. Frequency Allocations for Unmanned Aircraft Systems in the National Airspace. Access 5 White Paper to the WRC Advisory Committee

    NASA Technical Reports Server (NTRS)

    2006-01-01

    A critical aspect of the Access 5 program is identifying appropriate spectrum for civil and commercial purposes. However, currently, there is no spectrum allocated for the command/control link between the aircraft control station and the unmanned aircraft. Until such frequency spectrum is allocated and approved, it will be difficult for the UAS community to obtain civil airworthiness certification and operate in the NAS on a routine basis. This document provides a perspective from the UAS community on Agenda Items being considered for the upcoming World Radiocommunication Conference 2007 (WRC 07). Primarily, it supports the proposal to add Aeronautical Mobile (Route) Services (AM(R)S) to existing bands that could be used for UAS Line-of-Sight operations. It also recommends the need to identify spectrum that could be used for an Aeronautical Mobile Satellite (Route) Service (AMS(R)S) that would allow UAS to operate Beyond Line-of-Sight. If spectrum is made available to provide these services, it will then be incumbent upon the UAS community to justify their use of this spectrum as well as the assurance that they will not interfere with other users of this newly allocated spectrum.

  5. 76 FR 41307 - NASA Advisory Council; Space Operations Committee and Exploration Committee; Joint Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ... Operations Committee and Exploration Committee; Joint Meeting AGENCY: National Aeronautics and Space... the Space Operations Committee and Exploration Committee of the NASA Advisory Council. DATES: Tuesday.../Exploration Systems Mission Directorate Merger Update. [[Page 41308

  6. The NASA Dryden Flight Research Center Unmanned Aircraft System Service Capabilities

    NASA Technical Reports Server (NTRS)

    Bauer, Jeff

    2007-01-01

    Over 60 years of Unmanned Aircraft System (UAS) expertise at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center are being leveraged to provide capability and expertise to the international UAS community. The DFRC brings together technical experts, UAS, and an operational environment to provide government and industry a broad capability to conduct research, perform operations, and mature systems, sensors, and regulation. The cornerstone of this effort is the acquisition of both a Global Hawk (Northrop Grumman Corporation, Los Angeles, California) and Predator B (General Atomics Aeronautical Systems, Inc., San Diego, California) unmanned aircraft system (UAS). In addition, a test range for small UAS will allow developers to conduct research and development flights without the need to obtain approval from civil authorities. Finally, experts are available to government and industry to provide safety assessments in support of operations in civil airspace. These services will allow developers to utilize limited resources to their maximum capability in a highly competitive environment.

  7. 75 FR 4589 - NASA Advisory Council Exploration Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-28

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-012)] NASA Advisory Council Exploration... Aeronautics and Space Administration announces a meeting of the NASA Advisory Council Exploration Committee... Parham, Exploration Committee Administrative Officer, Mail Stop 7C27, National Aeronautics and Space...

  8. Research-Airplane-Committee Report on Conference on the Progress of the X-15 Project: A Compilation of the Papers Presented, Held at Langley Aeronautical Lab., Langley Field, VA on 25-26 October 1956

    NASA Technical Reports Server (NTRS)

    1956-01-01

    This document is a compilation of papers presented at the Conference on the Progress of the X-15 project held at the Langley Aeronautical Laboratory on 25-26 October 1956. The conference was held by the Research Airplane Committee of the U. S. Air Force, the U. S. Navy, and the National Advisory Committee for Aeronautics to report on the technical status of this research airplane. The papers were presented by members of the staffs of North American Aviation, Inc., Reaction Motors, Inc., and NACA.

  9. Thirty-Ninth Annual Report of the National Advisory Committee for Aeronautics: Administrative Report Including Technical Reports Nos. 1111 to 1157

    NASA Technical Reports Server (NTRS)

    1955-01-01

    This is the fiftieth year since Wilbur and Orville Wright at Kitty Hawk N. C., made their powered flight. That airplane was a fragile and unsteady machine of no immediate utility. It flew for only a minute but it disclosed the solution of the age-old problem of human flight. The Wrights were the first in the history of man to fly. There was no one to teach them. They had to discover principles and to learn the art by cautious and methodical experimenting. From their own research they obtained the practical information needed to design their successful flying machine. The Wrights received no effective aid from the theoretical studies of flight made by the mathematicians of the nineteenth century. The science of aerodynamics was developed in response to the practical demands of aeronautics in the years to follow. In 1908, the Wrights demonstrated at Fort Myer, Va., a vastly improved flyer, the first military airplane. It carried a passenger and flew for more than an hour. Following this public demonstration, the development of the airplane was taken up vigorously. At first France and Germany took the lead, then Great Britain, but the United States lagged behind in the furthering of this greatest American development of the century. With war clouds in view in 1915, the Congress established the National Advisory Committee for Aeronautics to undertake the scientific study of the problems of fight with a view to their practical solution. President Wilson appointed the members of the first Committee, consisting of the heads of the military and civil agencies of the Government concerned with aeronautics and experts from private life.

  10. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project KDP-C Review

    NASA Technical Reports Server (NTRS)

    Grindle, Laurie; Sakahara, Robert; Hackenberg, Davis; Johnson, William

    2017-01-01

    The topics discussed are the UAS-NAS project life-cycle and ARMD thrust flow down, as well as the UAS environments and how we operate in those environments. NASA's Armstrong Flight Research Center at Edwards, CA, is leading a project designed to help integrate unmanned air vehicles into the world around us. The Unmanned Aircraft Systems Integration in the National Airspace System project, or UAS in the NAS, will contribute capabilities designed to reduce technical barriers related to safety and operational challenges associated with enabling routine UAS access to the NAS. The project falls under the Integrated Systems Research Program office managed at NASA Headquarters by the agency's Aeronautics Research Mission Directorate. NASA's four aeronautics research centers - Armstrong, Ames Research Center, Langley Research Center, and Glenn Research Center - are part of the technology development project. With the use and diversity of unmanned aircraft growing rapidly, new uses for these vehicles are constantly being considered. Unmanned aircraft promise new ways of increasing efficiency, reducing costs, enhancing safety and saving lives 460265main_ED10-0132-16_full.jpg Unmanned aircraft systems such as NASA's Global Hawks (above) and Predator B named Ikhana (below), along with numerous other unmanned aircraft systems large and small, are the prime focus of the UAS in the NAS effort to integrate them into the national airspace. Credits: NASA Photos 710580main_ED07-0243-37_full.jpg The UAS in the NAS project envisions performance-based routine access to all segments of the national airspace for all unmanned aircraft system classes, once all safety-related and technical barriers are overcome. The project will provide critical data to such key stakeholders and customers as the Federal Aviation Administration and RTCA Special Committee 203 (formerly the Radio Technical Commission for Aeronautics) by conducting integrated, relevant system-level tests to adequately address

  11. NASA Unmanned Aircraft (UA) Control and Non-Payload Communication (CNPC) System Waveform Trade Studies

    NASA Technical Reports Server (NTRS)

    Chavez, Carlos; Hammel, Bruce; Hammel, Allan; Moore, John R.

    2014-01-01

    Unmanned Aircraft Systems (UAS) represent a new capability that will provide a variety of services in the government (public) and commercial (civil) aviation sectors. The growth of this potential industry has not yet been realized due to the lack of a common understanding of what is required to safely operate UAS in the National Airspace System (NAS). To address this deficiency, NASA has established a project called UAS Integration in the NAS (UAS in the NAS), under the Integrated Systems Research Program (ISRP) of the Aeronautics Research Mission Directorate (ARMD). This project provides an opportunity to transition concepts, technology, algorithms, and knowledge to the Federal Aviation Administration (FAA) and other stakeholders to help them define the requirements, regulations, and issues for routine UAS access to the NAS. The safe, routine, and efficient integration of UAS into the NAS requires new radio frequency (RF) spectrum allocations and a new data communications system which is both secure and scalable with increasing UAS traffic without adversely impacting the Air Traffic Control (ATC) communication system. These data communications, referred to as Control and Non-Payload Communications (CNPC), whose purpose is to exchange information between the unmanned aircraft and the ground control station to ensure safe, reliable, and effective unmanned aircraft flight operation. A Communications Subproject within the UAS in the NAS Project has been established to address issues related to CNPC development, certification and fielding. The focus of the Communications Subproject is on validating and allocating new RF spectrum and data link communications to enable civil UAS integration into the NAS. The goal is to validate secure, robust data links within the allocated frequency spectrum for UAS. A vision, architectural concepts, and seed requirements for the future commercial UAS CNPC system have been developed by RTCA Special Committee 203 (SC-203) in the process

  12. DAIDALUS: Detect and Avoid Alerting Logic for Unmanned Systems

    NASA Technical Reports Server (NTRS)

    Munoz, Cesar; Narkawicz, Anthony; Hagen, George; Upchurch, Jason; Dutle, Aaron; Consiglio, Maria; Chamberlain, James

    2015-01-01

    This paper presents DAIDALUS (Detect and Avoid Alerting Logic for Unmanned Systems), a reference implementation of a detect and avoid concept intended to support the integration of Unmanned Aircraft Systems into civil airspace. DAIDALUS consists of self-separation and alerting algorithms that provide situational awareness to UAS remote pilots. These algorithms have been formally specified in a mathematical notation and verified for correctness in an interactive theorem prover. The software implementation has been verified against the formal models and validated against multiple stressing cases jointly developed by the US Air Force Research Laboratory, MIT Lincoln Laboratory, and NASA. The DAIDALUS reference implementation is currently under consideration for inclusion in the appendices to the Minimum Operational Performance Standards for Unmanned Aircraft Systems presently being developed by RTCA Special Committee 228.

  13. A Glimpse of Scientific Research on Fundamental Problems of Military and Civil Aeronautics

    NASA Technical Reports Server (NTRS)

    1939-01-01

    Among the outstanding accomplishments of the last century is man's conquest of the air. That conquest began in 1903 when the Wright brothers made the first successful flight of an airplane at Kitty Hawk, N. C. Five years later the United States Government purchased its first airplane for the use of the Army, and began the training of officers for military flying. During the years immediately preceding the outbreak of the World War the Government and a meager aircraft industry had made important progress, but the Government, practically the only customer, had purchased less than 100 airplanes. In the meantime, leading European nations, sensing acutely the potentialities of aircraft in warfare, had made greater progress and had begun laying the foundations for the new science of aeronautics. The World War gave a remarkable impetus to the development of aeronautics and emphasized the need for organized research on the fundamental problems of flight. By act of Congress approved March 3, 1915, the National Advisory Committee for Aeronautics was created and charged with the duty of supervising, directing, and conducting fundamental scientific research and experiment in aeronautics. With the farsighted support of the Congress the Committee has led the world in the development of unique aeronautical research facilities in its laboratories at Langley Field, Va. The research programs include problems initiated by the Committee and its subcommittees and also investigations requested by the Army, the Navy, and the Civil Aeronautics Authority. The results of researches conducted under one control, serve without duplication of effort, the needs of all branches of aviation, civil and military, and exert a profound influence on the progress of aeronautics by improving the performance, efficiency, and safety of aircraft. A brief description of the results of some of the committee's researches and of the equipment employed will be found in the following pages.

  14. 75 FR 57079 - NASA Advisory Council; Information Technology Infrastructure Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-17

    ...; Information Technology Infrastructure Committee; Meeting AGENCY: National Aeronautics and Space Administration... Information Technology Infrastructure Committee of the NASA Advisory Council (NAC). DATES: Tuesday, September... Information Technology Infrastructure Committee, National Aeronautics and Space Administration Headquarters...

  15. 76 FR 52016 - NASA Federal Advisory Committees; Nominations and Self-Nominations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-19

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11- 075)] NASA Federal Advisory Committees; Nominations and Self- Nominations AGENCY: National Aeronautics and Space Administration. ACTION: Public... the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space...

  16. 78 FR 59974 - Centennial Challenges 2014 Unmanned Aircraft Systems (UAS) Airspace Operations Challenge (AOC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-30

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Centennial Challenges 2014 Unmanned Aircraft Systems... wish to compete may now register. Centennial Challenges is a program of prize competitions to stimulate...: http://www.uasaoc.org For general information on the NASA Centennial Challenges Program please visit...

  17. 76 FR 40753 - NASA Advisory Council; Technology and Innovation Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-11

    ... and Innovation Committee; Meeting AGENCY: National Aeronautics and Space Administration. [[Page 40754... Technology and Innovation Committee of the NASA Advisory Council (NAC). The meeting will be held for the..., 2011. P. Diane Rausch, Advisory Committee Management Officer, National Aeronautics and Space...

  18. 78 FR 31977 - NASA Applied Sciences Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-28

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-061] NASA Applied Sciences Advisory... Aeronautics and Space Administration (NASA) announces a meeting of the Applied Sciences Advisory Committee (ASAC). This Committee functions in an advisory capacity to the Director, Earth Science Division. The...

  19. Annual report of the National Advisory Committee for Aeronautics (2nd) together with the message of the President of the United States transmitting the report for the fiscal year ending June 30, 1916. administrative report including technical report

    NASA Technical Reports Server (NTRS)

    1917-01-01

    Report includes the National Advisory Committee for Aeronautics letter of submittal to the President, Congressional report, summaries of the committee's activities and research accomplished, expenditures, problems, recommendations and a compilation of technical reports produced.

  20. 75 FR 54389 - NASA Advisory Council; Science Committee; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-07

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-103)] NASA Advisory Council; Science... National Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory Council (NAC). This Committee reports to the NAC. The Meeting will be held for the...

  1. 75 FR 14472 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-25

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-033)] NASA Advisory Council; Science...: The National Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory Council (NAC). This Committee reports to the NAC. The Meeting will be held for...

  2. 75 FR 2892 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-19

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-003)] NASA Advisory Council; Science...: The National Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory Council (NAC). This Committee reports to the NAC. The Meeting will be held for...

  3. 78 FR 66964 - International Space Station Advisory Committee; Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-07

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (13-128)] International Space Station Advisory Committee; Charter Renewal AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of renewal and amendment of the charter of the International Space Station Advisory Committee...

  4. 77 FR 67028 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-08

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-093] NASA Advisory Council; Commercial..., the National Aeronautics and Space Administration (NASA) announces a meeting of the Commercial Space Committee of the NASA Advisory Council (NAC). This Committee reports to the NAC. The [[Page 67029

  5. 78 FR 10213 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-13

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-012] NASA Advisory Council; Commercial..., the National Aeronautics and Space Administration (NASA) announces a meeting of the Commercial Space Committee of the NASA Advisory Council (NAC). This Committee reports to the NAC. The meeting will be held...

  6. 78 FR 42111 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-15

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (13-080)] NASA Advisory Council; Commercial..., the National Aeronautics and Space Administration (NASA) announces a meeting of the Commercial Space Committee of the NASA Advisory Council (NAC). This Committee reports to the NAC. The meeting will be held...

  7. 77 FR 38678 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-28

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-052)] NASA Advisory Council; Commercial..., the National Aeronautics and Space Administration (NASA) announces a meeting of the Commercial Space Committee of the NASA Advisory Council (NAC). This Committee reports to the NAC. The meeting will be held...

  8. 75 FR 16515 - NASA Advisory Council; Technology and Innovation Committee; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-01

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-037)] NASA Advisory Council; Technology and Innovation Committee; Meeting. AGENCY: National Aeronautics and Space Administration. ACTION... of the Technology and Innovation Committee of the NASA Advisory Council (NAC). The Meeting will be...

  9. 78 FR 41115 - NASA Advisory Council; Technology and Innovation Committee; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-09

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-073] NASA Advisory Council; Technology and Innovation Committee; Meeting. AGENCY: National Aeronautics and Space Administration. ACTION... of the Technology and Innovation Committee of the NASA Advisory Council (NAC). The meeting will be...

  10. Unmanned reconnaissance aircraft, Predator B in flight.

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Predator B unmanned reconnaissance aircraft, shown here, under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. ALTAIR/PREDATOR B -- General Atomics Aeronautical Systems, Inc., is developing the Altair version of its Predator B unmanned reconnaissance aircraft, shown here, under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. NASA plans to use the Altair as a technology demonstrator testbed aircraft to validate a variety of command and control technologies for unmanned aerial vehicles (UAV), as well as demonstrate the capability to perform a variety of Earth science missions. The Altair is designed to carry an 700-lb. payload of scientific instruments and imaging equipment for as long as 32 hours at up to 52,000 feet altitude. Ten-foot extensions have been added to each wing, giving the Altair an overall wingspan of 84 feet with an aspect ratio of 23. It is powered by a 700-hp. rear-mounted TPE-331-10 turboprop engine, driving a three-blade propeller. Altair is scheduled to begin flight tests in the fourth quarter of 2002, and be acquired by NASA following successful completion of those basic airworthiness tests in early 2003 for evaluation of over-the-horizon control, detect, see and avoid and other technologies required to allow UAVs to operate safely with other aircraft in the national airspace.

  11. 77 FR 9705 - NASA Advisory Council; Technology and Innovation Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-17

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-013] NASA Advisory Council; Technology and Innovation Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... and Innovation Committee of the NASA Advisory Council (NAC). DATES: Tuesday, March 6, 2012, 8 a.m. to...

  12. 14 CFR 1201.300 - Boards and committees.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Boards and committees. 1201.300 Section 1201.300 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION STATEMENT OF ORGANIZATION... texts of decisions of the Board are published by Commerce Clearing House, Inc., in Board of Contract...

  13. 14 CFR 1201.300 - Boards and committees.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Boards and committees. 1201.300 Section 1201.300 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION STATEMENT OF ORGANIZATION... texts of decisions of the Board are published by Commerce Clearing House, Inc., in Board of Contract...

  14. 14 CFR 1201.300 - Boards and committees.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Boards and committees. 1201.300 Section 1201.300 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION STATEMENT OF ORGANIZATION AND... texts of decisions of the Board are published by Commerce Clearing House, Inc., in Board of Contract...

  15. Unmanned aerial systems for photogrammetry and remote sensing: A review

    NASA Astrophysics Data System (ADS)

    Colomina, I.; Molina, P.

    2014-06-01

    We discuss the evolution and state-of-the-art of the use of Unmanned Aerial Systems (UAS) in the field of Photogrammetry and Remote Sensing (PaRS). UAS, Remotely-Piloted Aerial Systems, Unmanned Aerial Vehicles or simply, drones are a hot topic comprising a diverse array of aspects including technology, privacy rights, safety and regulations, and even war and peace. Modern photogrammetry and remote sensing identified the potential of UAS-sourced imagery more than thirty years ago. In the last five years, these two sister disciplines have developed technology and methods that challenge the current aeronautical regulatory framework and their own traditional acquisition and processing methods. Navety and ingenuity have combined off-the-shelf, low-cost equipment with sophisticated computer vision, robotics and geomatic engineering. The results are cm-level resolution and accuracy products that can be generated even with cameras costing a few-hundred euros. In this review article, following a brief historic background and regulatory status analysis, we review the recent unmanned aircraft, sensing, navigation, orientation and general data processing developments for UAS photogrammetry and remote sensing with emphasis on the nano-micro-mini UAS segment.

  16. 78 FR 54680 - NASA Federal Advisory Committees

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-05

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13-109] NASA Federal Advisory Committees... by U.S. Citizens for Service on NASA Federal Advisory Committees. SUMMARY: NASA announces its annual invitation for public nominations for service on NASA Federal advisory committees. U.S. citizens may nominate...

  17. 76 FR 50812 - Seventeenth Meeting: RTCA Special Committee 205/EUROCAE WG-71: Software Considerations in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-16

    ... Committee 205/EUROCAE WG-71: Software Considerations in Aeronautical Systems AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 205/EUROCAE WG-71 meeting: Software... of RTCA Special Committee 205/EUROCAE WG-71: Software Considerations in Aeronautical Systems Agenda...

  18. 76 FR 16469 - Sixteenth Meeting: RTCA Special Committee 205/EUROCAE WG-71: Software Considerations in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-23

    ... Committee 205/EUROCAE WG-71: Software Considerations in Aeronautical Systems AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 205/EUROCAE WG-71 meeting: Software... of RTCA Special Committee 205/EUROCAE WG-71: Software Considerations in Aeronautical Systems Agenda...

  19. 75 FR 26320 - Fourteenth Plenary Meeting, RTCA Special Committee 205/EUROCAE WG 71: Software Considerations in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-11

    ... Special Committee 205/EUROCAE WG 71: Software Considerations in Aeronautical Systems AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 205/EUROCAE WG 71: Software... meeting of RTCA Special Committee 205/EUROCAE WG 71: Software Considerations in Aeronautical Systems...

  20. 75 FR 2924 - Thirteenth Plenary Meeting, RTCA Special Committee 205/EUROCAE WG 71: Software Considerations in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-19

    ... Special Committee 205/EUROCAE WG 71: Software Considerations in Aeronautical Systems AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 205/EUROCAE WG 71: Software... meeting of RTCA Special Committee 205/EUROCAE WG 71: Software Considerations in Aeronautical Systems...

  1. 77 FR 4370 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-27

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-006)] NASA Advisory Council; Commercial Space Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of..., the National Aeronautics and Space Administration announces a meeting of the Commercial Space...

  2. 77 FR 20852 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-06

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-027)] NASA Advisory Council; Commercial Space Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of..., the National Aeronautics and Space Administration announces a meeting of the Commercial Space...

  3. 14 CFR § 1201.300 - Boards and committees.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Boards and committees. § 1201.300 Section § 1201.300 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION STATEMENT OF... texts of decisions of the Board are published by Commerce Clearing House, Inc., in Board of Contract...

  4. 75 FR 51853 - NASA Advisory Council; Space Operations Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-23

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-092)] NASA Advisory Council; Space Operations Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of..., the National Aeronautics and Space Administration announces a meeting of the NASA Advisory Council...

  5. 77 FR 2765 - NASA International Space Station Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-19

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-003)] NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of..., the National Aeronautics and Space Administration announces an open meeting of the NASA International...

  6. 78 FR 77502 - NASA International Space Station Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-23

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (13-154)] NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of..., the National Aeronautics and Space Administration announces a meeting of the NASA International Space...

  7. 77 FR 41203 - NASA International Space Station Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-12

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-057] NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of..., the National Aeronautics and Space Administration announces an open meeting of the NASA International...

  8. 77 FR 66082 - NASA International Space Station Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-01

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-090] NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of..., the National Aeronautics and Space Administration announces an open meeting of the NASA International...

  9. 75 FR 51852 - NASA International Space Station Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-23

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-090)] NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of..., the National Aeronautics and Space Administration announces an open meeting of the NASA International...

  10. 78 FR 49296 - NASA International Space Station Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-091] NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of..., the National Aeronautics and Space Administration announces a meeting of the NASA International Space...

  11. 75 FR 61778 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-06

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-118)] NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Astrophysics...

  12. 77 FR 53920 - NASA Federal Advisory Committees

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-04

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-070] NASA Federal Advisory Committees... by U.S. citizens for service on NASA Federal advisory committees. SUMMARY: In accordance with the...), Executive Office of the President, NASA announces its annual invitation for public nominations for service...

  13. 78 FR 20168 - Twenty Fourth Meeting: RTCA Special Committee 203, Unmanned Aircraft Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ... Washington, DC, on March 28, 2013. Paige Williams, Management Analyst, NextGen, Business Operations Group... Introductions Review Meeting Agenda Review/Approval of Twenty Third Plenary Meeting Summary Leadership Update... for Unmanned Aircraft Systems and Minimum Aviation System Performance Standards Other Business Adjourn...

  14. 76 FR 63663 - NASA Advisory Council; Human Exploration and Operations Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-13

    ... Exploration and Operations Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration announces a meeting of the Human Exploration... Exploration and Operations Mission Directorate, National Aeronautics and Space Administration Headquarters...

  15. 77 FR 32699 - NASA Advisory Council; Aeronautics Committee; UAS Subcommittee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-01

    ..., National Aeronautics and Space Administration Headquarters, Washington, DC 20546, (202) 358-1578, or brenda... contact Ms. Brenda L. Mulac at (202) 358-1578 for the web link, toll-free number and passcode. The agenda...

  16. 78 FR 42110 - NASA Advisory Council; Human Exploration and Operations Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-15

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (13-078)] NASA Advisory Council; Human Exploration and Operations Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Human...

  17. 77 FR 6825 - NASA Advisory Council; Information Technology Infrastructure Committee; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-09

    ...; Information Technology Infrastructure Committee; Meeting. AGENCY: National Aeronautics and Space... Information Technology Infrastructure Committee of the NASA Advisory Council. DATES: Wednesday, March 7, 2012... CONTACT: Ms. Karen Harper, Executive Secretary for the Information Technology Infrastructure Committee...

  18. Unmanned aircraft systems

    USDA-ARS?s Scientific Manuscript database

    Unmanned platforms have become increasingly more common in recent years for acquiring remotely sensed data. These aircraft are referred to as Unmanned Airborne Vehicles (UAV), Remotely Piloted Aircraft (RPA), Remotely Piloted Vehicles (RPV), or Unmanned Aircraft Systems (UAS), the official term used...

  19. 75 FR 52375 - NASA Advisory Council; Exploration Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-25

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-094)] NASA Advisory Council... National Aeronautics and Space Administration announces a meeting of the Exploration Committee of the NASA Advisory Council. DATES: Tuesday, September 21, 2010, 1 p.m.-6:30 p.m., Local Time. ADDRESSES: NASA...

  20. 75 FR 17438 - NASA Advisory Council; Education and Public Outreach Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-06

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-041)] NASA Advisory Council; Education and Public Outreach Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration announces a meeting of the Education and Public...

  1. 76 FR 21073 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-14

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-040)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  2. 75 FR 65673 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-26

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-141)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  3. 77 FR 27253 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-09

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-033)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  4. 77 FR 58412 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-075] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  5. 78 FR 52216 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-22

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13- 099] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  6. 78 FR 18373 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-031] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  7. 76 FR 49508 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-10

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 11-073] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  8. 75 FR 41899 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-19

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-082)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  9. 77 FR 12086 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-28

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-018] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  10. The NASA Dryden Flight Research Center Unmanned Aircraft System Service Capabilities

    NASA Technical Reports Server (NTRS)

    Bauer, Jeff

    2007-01-01

    Over 60 years of Unmanned Aircraft System (UAS) expertise at the NASA Dryden Flight Research Center are being leveraged to provide capability and expertise to the international UAS community. The DFRC brings together technical experts, UAS, and an operational environment to provide government and industry a broad capability to conduct research, perform operations, and mature systems, sensors, and regulation. The cornerstone of this effort is the acquisition of both a Global Hawk (Northrop Grumman Corporation, Los Angeles, California) and Predator B (General Atomics Aeronautical Systems, Inc., San Diego, California) unmanned aircraft system (UAS). In addition, a test range for small UAS will allow developers to conduct research and development flights without the need to obtain approval from civil authorities. Finally, experts are available to government and industry to provide safety assessments in support of operations in civil airspace. These services will allow developers to utilize limited resources to their maximum capability in a highly competitive environment.

  11. 78 FR 42553 - NASA Advisory Council; Information Technology Infrastructure Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-16

    ...; Information Technology Infrastructure Committee; Meeting AGENCY: National Aeronautics and Space Administration... Information Technology Infrastructure Committee (ITIC) of the NASA Advisory Council (NAC). This Committee..., DC 20546. FOR FURTHER INFORMATION CONTACT: Ms. Deborah Diaz, ITIC Executive Secretariat, NASA...

  12. 76 FR 66350 - Eighteenth Meeting: RTCA Special Committee 205/EUROCAE WG-71: Software Considerations in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-26

    ... Committee 205/EUROCAE WG-71: Software Considerations in Aeronautical Systems AGENCY: Federal Aviation.../EUROCAE WG-71 meeting: Software Considerations in Aeronautical Systems. SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 205/EUROCAE WG-71: Software...

  13. The "Apollo" of Aeronautics: NASA's Aircraft Energy Efficiency Program, 1973-1987

    NASA Technical Reports Server (NTRS)

    Bowles, Mark D.

    2010-01-01

    In fall 1975, 10 distinguished United States Senators from the Aeronautical and Space Sciences Committee summoned a group of elite aviation experts to Washington, DC. The Senators were holding hearings regarding the state of the American airline industry, which was struggling in the wake of the 1973 Arab oil embargo and the dramatically increasing cost of fuel. Providing testimony were presidents or vice presidents of United Airlines, Boeing, Pratt & Whitney, and General Electric. Other witnesses included high-ranking officials from the National Aeronautics and Space Administration (NASA), the U.S. Air Force, and the American Institute of Aeronautics and Astronautics. Their Capitol Hill testimony painted a bleak economic picture, described in phrases that included immediate crisis condition, long-range trouble, serious danger, and economic dislocation.

  14. 76 FR 52016 - NASA International Space Station Advisory Committee and the Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-19

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-074)] NASA International Space Station Advisory Committee and the Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space... meeting of the NASA International Space Station Advisory Committee and the Aerospace Safety Advisory Panel...

  15. 76 FR 65752 - International Space Station (ISS) National Laboratory Advisory Committee; Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-24

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-104)] International Space Station (ISS) National Laboratory Advisory Committee; Charter Renewal AGENCY: National Aeronautics and Space... International and Interagency Relations, (202) 358-0550, National Aeronautics and Space Administration...

  16. 77 FR 66082 - NASA Advisory Council; Education and Public Outreach Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-01

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-089] NASA Advisory Council; Education and... amended, the National Aeronautics and Space Administration announces a meeting of the Education and Public... Education and Public Outreach Committee, National Aeronautics and Space Administration, Washington, DC 20546...

  17. 76 FR 16841 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-25

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-025)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... [[Page 16842

  18. 77 FR 68152 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-15

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-086)] NASA Advisory Council; Science..., the National Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee.... Marian Norris, Science Mission Directorate, NASA Headquarters, Washington, DC 20546, (202) 358-4452, fax...

  19. 78 FR 42805 - NASA Advisory Council; Human Exploration Operations Committee; Research Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-17

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (13-082)] NASA Advisory Council; Human Exploration Operations Committee; Research Subcommittee; Meeting AGENCY: National Aeronautics and Space... Law 92-462, as amended, the National Aeronautics and Space Administration (NASA) announces a meeting...

  20. 78 FR 77502 - NASA Applied Sciences Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-23

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (13-152)] NASA Applied Sciences Advisory... Aeronautics and Space Administration (NASA) announces a meeting of the Applied Sciences Advisory Committee.... ADDRESSES: NASA Headquarters, Room 3P40, 300 E Street SW., Washington, DC 20546. FOR FURTHER INFORMATION...

  1. 78 FR 57178 - NASA Applied Sciences Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-17

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-115] NASA Applied Sciences Advisory... Aeronautics and Space Administration (NASA) announces a meeting of the Applied Sciences Advisory Committee.... ADDRESSES: NASA Headquarters, Room 1Q39, 300 E Street SW., Washington, DC 20546. FOR FURTHER INFORMATION...

  2. 75 FR 15743 - NASA Advisory Council; Exploration Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-30

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-034)] NASA Advisory Council; Exploration... Aeronautics and Space Administration announces a meeting of the Exploration Committee of the NASA Advisory...-358-1715; [email protected]nasa.gov . SUPPLEMENTARY INFORMATION: The agenda topics for the meeting will...

  3. 75 FR 4875 - NASA Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-29

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-014)] NASA Commercial Space Committee... and Space Administration announces a meeting of the Commercial Space Committee to the NASA Advisory Council. DATES: Tuesday, February 16, 2010, 10 a.m.-5 p.m., Eastern. ADDRESSES: NASA Headquarters, 300 E...

  4. 78 FR 41115 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-09

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-074] NASA Advisory Council; Science... Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory... Time. ADDRESSES: NASA Headquarters, Room 7H45, 300 E Street SW., Washington, DC 20546. FOR FURTHER...

  5. 76 FR 18800 - NASA Advisory Council; Exploration Committee; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-05

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-028)] NASA Advisory Council; Exploration... National Aeronautics and Space Administration announces a meeting of the Exploration Committee of the NASA Advisory Council. DATES: Tuesday, April 26, 2011, 1 p.m.-6 p.m., Local Time ADDRESSES: NASA Headquarters...

  6. A TMS320-based modem for the aeronautical-satellite core data service

    NASA Astrophysics Data System (ADS)

    Moher, Michael L.; Lodge, John H.

    The International Civil Aviation Organization (ICAO) Future Air Navigation Systems (FANS) committee, the Airlines Electronics Engineering Committee (AEEC), and Inmarsat have been developing standards for an aeronautical satellite communications service. These standards encompass a satellite communications system architecture to provide comprehensive aeronautical communications services. Incorporated into the architecture is a core service capability, providing only low rate data communications, which all service providers and all aircraft earth terminals are required to support. In this paper an implementation of the physical layer of this standard for the low data rate core service is described. This is a completely digital modem (up to a low intermediate frequency). The implementation uses a single TMS320C25 chip for the transmit baseband functions of scrambling, encoding, interleaving, block formatting and modulation. The receiver baseband unit uses a dual processor configuration to implement the functions of demodulation, synchronization, de-interleaving, decoding and de-scrambling. The hardware requirements, the software structure and the algorithms of this implementation are described.

  7. 75 FR 16197 - NASA Advisory Council; Space Operations Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-31

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-036)] NASA Advisory Council; Space..., the National Aeronautics and Space Administration announces a meeting of the NASA Advisory Council Space Operations Committee. DATES: Tuesday, April 13, 2010, 3-5 p.m. CDT. ADDRESSES: NASA Johnson Space...

  8. 78 FR 2293 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-10

    ... Committee; Astrophysics Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Astrophysics... meeting includes the following topics: --Astrophysics Division Update --NASA Astrophysics Roadmapping It...

  9. 78 FR 66384 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-05

    ... Committee; Astrophysics Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Astrophysics...: --Astrophysics Division Update --Presentation of Astrophysics Roadmap --Reports from Program Analysis Groups...

  10. 76 FR 41824 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-15

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-068)] NASA Advisory Council; Science... Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory..., 2011, 7:30 a.m. to 11:30 a.m., Local Time. ADDRESSES: NASA Ames Research Center, NASA Ames Conference...

  11. 78 FR 20357 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-04

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-037] NASA Advisory Council; Science... Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory...:30 a.m. to 3:00 p.m., Local Time. ADDRESSES: NASA Headquarters, 300 E Street SW., Room 6H45...

  12. 77 FR 38093 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-26

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-046] NASA Advisory Council; Science... Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory.... to 2:30 p.m., local time. ADDRESSES: NASA Goddard Space Flight Center (GSFC), Building 1, Room E100E...

  13. 78 FR 67202 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-08

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13-131] NASA Advisory Council; Science... Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory..., 2013, 8:30 a.m. to 3:00 p.m., Local Time. ADDRESSES: This meeting will take place at NASA Headquarters...

  14. 76 FR 17158 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-28

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-026)] NASA Advisory Council; Science... Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory....m. to 2 p.m., Local Time. ADDRESSES: NASA Headquarters, 300 E Street, SW., Room 5H45, Washington, DC...

  15. 77 FR 40646 - NASA Advisory Council; Technology and Innovation Committee; Meeting Amendment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-10

    ... and Innovation Committee; Meeting Amendment AGENCY: National Aeronautics and Space Administration... meeting of the Technology and Innovation Committee of the NASA Advisory Council (NAC). DATES: Tuesday... that they are attending the NAC's Technology and Innovation Committee meeting in Building 8. All U.S...

  16. 78 FR 41804 - NASA Advisory Council; Audit, Finance and Analysis Committee; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-11

    ...In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space Administration announces a meeting of the Audit, Finance and Analysis Committee of the NASA Advisory Council (NAC). This Committee reports to the NAC.

  17. 78 FR 49296 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-092] NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting. AGENCY: National Aeronautics and Space Administration. ACTION... of the Astrophysics Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the...

  18. 76 FR 59172 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-23

    ... Committee; Astrophysics Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Astrophysics... topics: --Astrophysics Division Update. --James Webb Space Telescope Follow-Up. --Wide Field Infrared...

  19. 77 FR 38090 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-26

    ... Committee; Astrophysics Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Astrophysics...: --Astrophysics Division Update --James Webb Space Telescope Update --Wide-Field Infrared Survey Telescope Report...

  20. 75 FR 55616 - NASA Advisory Council; Information Technology Infrastructure Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-13

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-110)] NASA Advisory Council...-463, as amended, the National Aeronautics and Space Administration (NASA) announce a meeting for the Information Technology Infrastructure Committee of the NASA Advisory Council (NAC). DATES: Tuesday, September...

  1. 75 FR 35091 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-21

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-068)] NASA Advisory Council; Science... Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory....m. to 1:30 p.m., e.d.t. ADDRESSES: NASA Headquarters, 300 E Street, SW., Room 3H46, Washington, DC...

  2. 77 FR 6824 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-09

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-010] NASA Advisory Council; Science... Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory....m. to 2 p.m., Local Time. ADDRESSES: NASA Headquarters, 300 E Street SW., Room 3H46 and 7H45...

  3. 76 FR 59446 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-26

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice11-084] NASA Advisory Council; Science... Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory..., 2011, 8:30 a.m. to 2 p.m., Local Time. ADDRESSES: NASA Headquarters, 300 E Street, SW., Room 3H46...

  4. 78 FR 20356 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-04

    ... Committee; Astrophysics Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Astrophysics... password [email protected] The agenda for the meeting includes the following topics: --Astrophysics Division...

  5. 76 FR 66998 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-28

    ... Committee; Astrophysics Subcommittee; Meeting. AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Astrophysics... open to the public. The agenda for the meeting includes the following topic: --Astrophysics Division...

  6. Aeronautical Research Engineer Milt Thompson computing data

    NASA Technical Reports Server (NTRS)

    1956-01-01

    Milton O. Thompson was hired as an engineer at the National Advisory Committee for Aeronautics' High-Speed Flight Station (later renamed the National Aeronautics and Space Administration's Dryden Flight Research Center) on March 19, 1956. In 1958 he became a research pilot, but in this photo Milt is working on data from another pilot's research flight. Thompson began flying with the U.S. Navy as a pilot trainee at the age of 19. He subsequently served during World War II, with duty in China and Japan. Following six years of active naval service, he entered the University of Washington, in Seattle, Washington. Milt graduated in 1953 with a Bachelor of Science degree in Engineering. He remained in the Naval Reserves during college, and continued flying--not only naval aircraft but crop dusters and forest-spraying aircraft. After college graduation, Milt became a flight test engineer for the Boeing Aircraft Company in Seattle, where he was employed for two years before coming to the High-Speed Flight Station.

  7. 76 FR 8380 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-14

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-114)] NASA Advisory Council; Science... Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory...:30 a.m. to 2 p.m., Local Time. ADDRESSES: NASA Headquarters, 300 E Street, SW., Rooms 9H40 and 3H46...

  8. 78 FR 72718 - NASA Advisory Council; Information Technology Infrastructure Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-03

    ...; Information Technology Infrastructure Committee; Meeting AGENCY: National Aeronautics and Space Administration... Information Technology Infrastructure Committee (ITIC) of the NASA Advisory Council (NAC). DATES: Tuesday... Chief Information Officer Space Launch System Kennedy Space Center Operations and Technology Issues...

  9. 77 FR 71641 - NASA Advisory Council; Science Committee; Planetary Protection Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-03

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-104)] NASA Advisory Council; Science Committee; Planetary Protection Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Protection Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the...

  10. 78 FR 66964 - International Space Station National Laboratory Advisory Committee; Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-07

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (13-129)] International Space Station National Laboratory Advisory Committee; Charter Renewal AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of renewal of the charter of the International Space Station National...

  11. 78 FR 20358 - NASA Advisory Council; Human Exploration and Operations Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-04

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-038] NASA Advisory Council; Human Exploration and Operations Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... Subcommittee --Status of Exploration Systems Development --Status of the International Space Station --Status...

  12. 76 FR 7235 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-09

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [11-013] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  13. 75 FR 2892 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-19

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-001)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... meeting of the Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee...

  14. 75 FR 12310 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-15

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-026)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... meeting of the Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee...

  15. 76 FR 14106 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-15

    ... Committee; Astrophysics Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Astrophysics...: --Astrophysics Division Update. It is imperative that the meeting be held on these dates to accommodate the...

  16. 76 FR 14433 - NASA Advisory Council; Science Committee; Heliophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-16

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-023)] NASA Advisory Council; Science... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Heliophysics Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science Committee of the NAC...

  17. 75 FR 53350 - NASA Advisory Council; Science Committee; Heliophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-096)] NASA Advisory Council; Science... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Heliophysics Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science Committee of the NAC...

  18. 76 FR 28470 - NASA Advisory Council; Science Committee; Heliophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-17

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-047)] NASA Advisory Council; Science... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Heliophysics Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science Committee of the NAC...

  19. 77 FR 38678 - NASA Advisory Council; Technology and Innovation Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-28

    ... and Innovation Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... National Aeronautics and Space Administration (NASA) announces a meeting of the Technology and Innovation... access badge to enter GSFC and must state that they are attending the NAC's Technology and Innovation...

  20. 77 FR 64561 - NASA Advisory Council; Technology and Innovation Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-22

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-083] NASA Advisory Council; Technology...: Notice of meeting. SUMMARY: The National Aeronautics and Space Administration (NASA) announces a meeting of the Technology and Innovation Committee of the NASA Advisory Council (NAC). The meeting will be...

  1. 75 FR 74089 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-30

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-149)] NASA Advisory Council; Science... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Astrophysics Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science Committee of the NAC...

  2. 77 FR 6825 - NASA Advisory Council; Human Exploration and Operations Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-09

    ... Exploration and Operations Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration announces a meeting of the Human Exploration... Roadmap Exploration Planning, Partnerships, and Prioritization Summary Status of Space Launch System...

  3. 75 FR 50783 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-17

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-088)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  4. 76 FR 75914 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-05

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-117)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  5. 75 FR 36445 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-25

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-069)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  6. 76 FR 64387 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-18

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 11-098] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  7. 76 FR 62456 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-07

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 11-089] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  8. 78 FR 64024 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (13-122)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  9. 77 FR 4837 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-31

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-007)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  10. 76 FR 10626 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-25

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-019)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  11. 78 FR 15378 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-11

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (13-022)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  12. 78 FR 56246 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-12

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13-113] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  13. 77 FR 53919 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-04

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 12-071] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  14. 75 FR 80851 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-23

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-169)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  15. 77 FR 22807 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-17

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-029] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  16. 78 FR 5242 - 32nd Meeting: RTCA Special Committee 206, Aeronautical Information and Meteorological Data Link...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-24

    ... 206, Aeronautical Information and Meteorological Data Link Services AGENCY: Federal Aviation... 206, Aeronautical Information and Meteorological Data Link Services. SUMMARY: The FAA is issuing this... Information and Meteorological Data Link Services. DATES: The meeting will be held February 11-15, 2013 from 8...

  17. Thirty-Seventh Annual Report of the National Advisory Committee for Aeronautics: Administrative Report Including Technical Report Nos. 1003 to 1958

    NASA Technical Reports Server (NTRS)

    1952-01-01

    In accordance with the act of Congress, approved March 3,1915 (U.S. C. title 50, sec. 151), which established the National Advisory Committee for Aeronautics the Committee submits its thirty-seventh annual report for the fiscal year 1951. The United States is engaged in expanding military aviation to levels never before reached except in the midst of a major war. In Korea, our military aircraft are engaged in combat with airplanes of an unfriendly nation evidently able to build military aircraft of increasing capabilities. In this environment, the NACA is responsible for conducting an adequate program of scientific research to open the way for the design of aircraft and missile of superior performance. Since World War II the pace of technical development has increased. Until then, improvement in aircraft performance as a result of the application of scientific research proceeded at what. now seems to be a relatively slow and orderly rate. Modest increases in speed, climb, range, or altitude were set as reasonable goals. Compressibility effects at high speeds were just beginning to be encountered and indicated a formidable barrier near the velocity of sound. This barrier has been found by research and experiment to be lees formidable than supposed, and we now see the possibility of radical gains in airplane performance that are of great military significance. Such gains are ak attainable by a potential enemy. The increased complexity of modern high performance

  18. 76 FR 26771 - NASA Advisory Council; Task Group of the Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-09

    ... of the Science Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... the NASA Advisory Council (NAC) Science Committee. This Task Group reports to the Science Committee of the NAC. The Meeting will be held for the purpose of soliciting from the scientific community and...

  19. 76 FR 21073 - NASA Advisory Council; Task Group of the Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-14

    ... of the Science Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... the NASA Advisory Council (NAC) Science Committee. This Task Group reports to the Science Committee of the NAC. The Meeting will be held for the purpose of soliciting from the scientific community and...

  20. 75 FR 4110 - NASA Advisory Council; Technology and Innovation Committee; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-26

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-010)] NASA Advisory Council; Technology... amended, the National Aeronautics and Space Administration (NASA) announce a meeting of the newly formed Technology and Innovation Committee of the NASA Advisory Council (NAC). This will be the first meeting of...

  1. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project

    NASA Technical Reports Server (NTRS)

    Fern, Lisa

    2017-01-01

    This presentation summarizes the simulation work conducted by the Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project. It focuses on the contribution of that research to the development of RTCA Special Committee 228's (SC-228) Minimum Operational Performance Standards (MOPS) for UAS. The research objectives and primary findings from four different human-in-the-loop simulations are discussed, along with the specific requirements these studies led to in the final MOPS document.

  2. 78 FR 20696 - NASA Advisory Council; Audit, Finance and Analysis Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-05

    ...In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space Administration announces a meeting of the Audit, Finance and Analysis Committee of the NASA Advisory Council.

  3. 75 FR 41240 - NASA Advisory Council; Audit, Finance and Analysis Committee; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-15

    ...In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space Administration announces a meeting of the Audit, Finance and Analysis Committee of the NASA Advisory Council.

  4. 76 FR 20717 - NASA Advisory Council; Audit, Finance and Analysis Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ...In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space Administration announces a meeting of the Audit, Finance and Analysis Committee of the NASA Advisory Council.

  5. 76 FR 64112 - NASA Advisory Council; Audit, Finance and Analysis Committee; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-17

    ...In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space Administration announces a meeting of the Audit, Finance and Analysis Committee of the NASA Advisory Council.

  6. 77 FR 67677 - NASA Advisory Council; Audit, Finance and Analysis Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-13

    ...In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space Administration announces a meeting of the Audit, Finance and Analysis Committee of the NASA Advisory Council.

  7. 78 FR 72718 - NASA Advisory Council; Audit, Finance and Analysis Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-03

    ...In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space Administration announces a meeting of the Audit, Finance and Analysis Committee of the NASA Advisory Council.

  8. 77 FR 9997 - NASA Advisory Council; Audit, Finance and Analysis Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-21

    ...In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space Administration announces a meeting of the Audit, Finance and Analysis Committee of the NASA Advisory Council.

  9. 75 FR 41240 - NASA Advisory Council; Technology and Innovation Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-15

    ... and Innovation Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: N... Innovation Committee of the NASA Advisory Council. It will include a joint session with the Exploration... Open Collaboration and Innovation Presentation Update on Human Exploration Framework Team (HEFT) (joint...

  10. 76 FR 64386 - NASA Advisory Council; Information Technology Infrastructure Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-18

    ..., Executive Secretary for the Information Technology Infrastructure Committee, National Aeronautics and Space... they are attending the NASA Advisory Council, Information Technology Infrastructure Committee meeting in Building 34, Room W305. All U.S. citizens desiring to attend the Information Technology...

  11. 77 FR 66082 - NASA Advisory Council; Human Exploration and Operations Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-01

    ... Exploration and Operations Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... Integration --International Space Station Status --Outreach --Human Exploration and Operations Status... Advisory Council Human Exploration and Operations Committee session in the Space Operations Center, Room...

  12. 77 FR 38679 - NASA Advisory Council; Audit, Finance and Analysis Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-28

    ...In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Audit, Finance and Analysis Committee of the NASA Advisory Council (NAC).

  13. 76 FR 19793 - NASA Advisory Council; Technology and Innovation Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-08

    ... and Innovation Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... Innovation Committee of the NASA Advisory Council. The meeting will be held for the purpose of reviewing the Space Technology programs and review knowledge management and technology transfer activities within the...

  14. 75 FR 79423 - NASA Advisory Council; Technology and Innovation Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-20

    ... and Innovation Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... Innovation Committee of the NASA Advisory Council. The meeting will be held for the purpose of reviewing the Space Technology Program planning and review innovation activities at NASA's Kennedy Space Center (KSC...

  15. 75 FR 61519 - NASA Advisory Council; Technology and Innovation Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-05

    ... and Innovation Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... Innovation Committee of the NASA Advisory Council. The meeting will be held for the purpose of reviewing the Space Technology Program planning and review innovation activities at NASA's Langley Research Center...

  16. 77 FR 62536 - Meeting of Astrophysics Subcommittee of the NASA Advisory Council Science Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-15

    ... of the NASA Advisory Council Science Committee AGENCY: National Aeronautics and Space Administration... Astrophysics Subcommittee of the NASA Advisory Council (NAC) Science Committee. This Subcommittee reports to the Science Committee of the NAC. The meeting will be held via Teleconference and WebEx for the...

  17. 77 FR 55863 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Applied Sciences Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-072)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Applied Sciences Advisory Group Meeting AGENCY: National Aeronautics... the Applied Science Advisory Group. This Subcommittee reports to the Earth Science Subcommittee...

  18. 76 FR 66997 - NASA Advisory Council; Technology and Innovation Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-28

    ... and Innovation Committee; Meeting ACTION: Notice of meeting. SUMMARY: In accordance with the Federal... (NASA) announces a meeting of the Technology and Innovation Committee of the NASA Advisory Council (NAC... Management Officer, National Aeronautics and Space Administration. [FR Doc. 2011-28005 Filed 10-27-11; 8:45...

  19. Control and Non-Payload Communications Links for Integrated Unmanned Aircraft Operations

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Griner, James H.

    2012-01-01

    Technology for unmanned aircraft has advanced so rapidly in recent years that many new applications to public and commercial use are being proposed and implemented. In many countries, emphasis is now being placed on developing the means to allow unmanned aircraft to operate within non-segregated airspace along with commercial, cargo and other piloted and passenger-carrying aircraft.In the U.S., Congress has mandated that the Federal Aviation Administration reduce and remove restrictions on unmanned aircraft operations in a relatively short time frame. To accomplish this, a number of technical and regulatory hurdles must be overcome. A key hurdle involve the communications link connecting the remote pilot located at a ground control station with the aircraft in the airspace, referred to as the Control and Non-Payload Communications (CNPC) link. This link represents a safety critical communications link, and thus requires dedicated and protected aviation spectrum as well as national and international standards defining the operational requirements the CNPC system. The CNPC link must provide line-of-site (LOS) communications, primarily through a ground-based communication system, and beyond-line-of-sight (BLOS) communication achieved using satellite communications. In the U.S., the National Aeronautics and Space Administration (NASA) is charged with providing the technical body of evidence to support spectrum allocation requirements and national and international standards development for the CNPC link. This paper provides a description of the CNPC system, an overview of NASA's CNPC project, and current results in technology assessment, air-ground propagation characterization, and supporting system studies and analyses will be presented.

  20. 78 FR 20696 - NASA Advisory Council; Human Exploration and Operations Committee; Research Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-05

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13-042] NASA Advisory Council; Human Exploration and Operations Committee; Research Subcommittee; Meeting AGENCY: National Aeronautics and Space... topics: --Overview of Research in Space Life and Physical Sciences --Space Station and Future Exploration...

  1. 77 FR 9705 - NASA Advisory Council; Education and Public Outreach Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-17

    ... Committee, National Aeronautics and Space Administration, Washington, DC, at [email protected]nasa.gov , no... email at [email protected]nasa.gov or by telephone at (202) 358-2209 or fax: (202) 358-4332. Patricia D... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-014] NASA Advisory Council; Education and...

  2. Hardware Implementation of COTS Avionics System on Unmanned Aerial Vehicle Platforms

    NASA Technical Reports Server (NTRS)

    Yeh, Yoo-Hsiu; Kumar, Parth; Ishihara, Abraham; Ippolito, Corey

    2010-01-01

    Unmanned Aerial Vehicles (UAVs) can serve as low cost and low risk platforms for flight testing in Aeronautics research. The NASA Exploration Aerial Vehicle (EAV) and Experimental Sensor-Controlled Aerial Vehicle (X-SCAV) UAVs were developed in support of control systems research at NASA Ames Research Center. The avionics hardware for both systems has been redesigned and updated, and the structure of the EAV has been further strengthened. Preliminary tests show the avionics operate properly in the new configuration. A linear model for the EAV also was estimated from flight data, and was verified in simulation. These modifications and results prepare the EAV and X-SCAV to be used in a wide variety of flight research projects.

  3. 75 FR 60484 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Applied Sciences Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-30

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-115)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Applied Sciences Advisory Group Meeting AGENCY: National Aeronautics...) announces a meeting of the Applied Science Advisory Group. This Subcommittee reports to the Earth Science...

  4. 77 FR 59020 - NASA Advisory Council; Aeronautics Committee; Unmanned Aircraft Systems Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-25

    ... and Space Administration Headquarters, Washington, DC 20546, (202) 358-1578, or [email protected] L. Mulac at (202) 358-1578 for the Web link, toll-free number and passcode. The agenda for the...

  5. Unmanned Underwater Vehicle (UUV) Information Study

    DTIC Science & Technology

    2014-11-28

    Maritime Unmanned System NATO North Atlantic Treaty Organization xi The use or disclosure of the information on this sheet is subject to the... Unmanned Aerial System UDA Underwater Domain Awareness UNISIPS Unified Sonar Image Processing System USV Unmanned Surface Vehicle UUV Unmanned Underwater...data distribution to ashore systems , such as the delay, its impact and the benefits to the overall MDA and required metadata for efficient search and

  6. The left wing of NASA's Altair unmanned aerial vehicle (UAV) rests in a jig during construction at G

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The left wing of NASA's Altair unmanned aerial vehicle (UAV) rests in a jig during construction at General Atomics Aeronautical Systems, Inc., (GA-ASI) facility at Adelanto, Calif. General Atomics Aeronautical Systems, Inc., is developing the Altair version of its Predator B unmanned reconnaissance aircraft under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. NASA plans to use the Altair as a technology demonstrator to validate a variety of command and control technologies for UAVs, as well as demonstrate the capability to perform a variety of Earth science missions. The Altair is designed to carry an 700-lb. payload of scientific instruments and imaging equipment for as long as 32 hours at up to 52,000 feet altitude. Eleven-foot extensions have been added to each wing, giving the Altair an overall wingspan of 86 feet with an aspect ratio of 23. It is powered by a 700-hp. rear-mounted TPE-331-10 turboprop engine, driving a three-blade propeller. Altair is scheduled to begin flight tests in the fourth quarter of 2002, and be acquired by NASA following successful completion of basic airworthiness tests in early 2003 for evaluation of over-the-horizon control, detect, see and avoid and other technologies required to allow UAVs to operate safely with other aircraft in the national airspace.

  7. Manned-Unmanned Teaming of Aircraft - Literature Search

    DTIC Science & Technology

    2013-12-01

    unmanned aircraft reconnaissance system MQ 8B Fire Scout vertical takeoff and landing unmanned system MQ 5B Hunter medium altitude unmanned aerial...201140, and allows their crew to view sensor data from unmanned aircraft systems (UAS) and send data from the helicopter’s sensors to the ground.35 No...Helicopter, AAI unmanned Aircraft Systems , and Textron Inc. It opened in December 2012 in Huntsville Alabama. It will enable “a software and

  8. Converting a Manned LCU into an Unmanned Surface Vehicle (USV): An Open Systems Architecture (OSA) Case Study

    DTIC Science & Technology

    2014-09-01

    pdf. Musk , Elon . 2014. Statement Of Elon Musk , Ceo & Chief Designer, Space Exploration Technologies Corp. (Spacex), Before The Committee On...every year moving forward ( Musk 2014)? These questions build the framework for executing OSA throughout an SE program. The OSA framework includes a...systems must be well maintained to the current legal environment. Maintaining this doctrine requires a continuous feedback loop from unmanned systems

  9. Computational analysis of unmanned aerial vehicle (UAV)

    NASA Astrophysics Data System (ADS)

    Abudarag, Sakhr; Yagoub, Rashid; Elfatih, Hassan; Filipovic, Zoran

    2017-01-01

    A computational analysis has been performed to verify the aerodynamics properties of Unmanned Aerial Vehicle (UAV). The UAV-SUST has been designed and fabricated at the Department of Aeronautical Engineering at Sudan University of Science and Technology in order to meet the specifications required for surveillance and reconnaissance mission. It is classified as a medium range and medium endurance UAV. A commercial CFD solver is used to simulate steady and unsteady aerodynamics characteristics of the entire UAV. In addition to Lift Coefficient (CL), Drag Coefficient (CD), Pitching Moment Coefficient (CM) and Yawing Moment Coefficient (CN), the pressure and velocity contours are illustrated. The aerodynamics parameters are represented a very good agreement with the design consideration at angle of attack ranging from zero to 26 degrees. Moreover, the visualization of the velocity field and static pressure contours is indicated a satisfactory agreement with the proposed design. The turbulence is predicted by enhancing K-ω SST turbulence model within the computational fluid dynamics code.

  10. NASA's Role in Aeronautics: A Workshop. Volume VI - Aeronautical Research.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Assembly of Engineering.

    The central task of a 1980 workshop on the role of the National Aeronautics and Space Administration (NASA) in aeronautics was to examine the relationship of NASA's research capabilities to the state of U.S. aviation and to make recommendations about NASA's future role in aeronautics. Following a brief introduction, the Overview Panel on…

  11. Accelerating the Kill Chain via Future Unmanned Aircraft

    DTIC Science & Technology

    2007-04-01

    Controller JTRS Joint Tactical Radio System Lasercom Laser communications LDHD Low Density High Demand LEO Low Earth Orbit LGB Laser Guided Bomb...published the Unmanned Aircraft Systems Roadmap 2005 that included the terms Unmanned Aircraft System (UAS) and Unmanned Aircraft (UA). This...comprehensive publication used the term Unmanned Aircraft Systems when referring to the entire system and the term Unmanned Aircraft when referring only to the

  12. Historical perspectives on thermostructural research at the NACA Langley Aeronautical Laboratory from 1948 to 1958

    NASA Technical Reports Server (NTRS)

    Heldenfels, R. R.

    1982-01-01

    Some of the early research on structural problems produced by aerodynamic heating, conducted at the Langley Aeronautical Laboratory of the National Advisory Committee for Aeronautics from 1948 to 1958 is described. That was the last decade of the NACA; in 1958 NACA became the nucleus of NASA. The NACA initially contracted for research but was aware that a well-equipped and suitably staffed laboratory was required to fulfill its obligations. Langley was established in 1920; the other listed were added during the NACA expansion in the World War II years. Some specific research activities are described, starting with calculation of the temperature of the structure.

  13. Historical perspectives on thermostructural research at the NACA Langley Aeronautical Laboratory from 1948 to 1958

    NASA Astrophysics Data System (ADS)

    Heldenfels, R. R.

    Some of the early research on structural problems produced by aerodynamic heating, conducted at the Langley Aeronautical Laboratory of the National Advisory Committee for Aeronautics from 1948 to 1958 is described. That was the last decade of the NACA; in 1958 NACA became the nucleus of NASA. The NACA initially contracted for research but was aware that a well-equipped and suitably staffed laboratory was required to fulfill its obligations. Langley was established in 1920; the other listed were added during the NACA expansion in the World War II years. Some specific research activities are described, starting with calculation of the temperature of the structure.

  14. NASA Strategic Roadmap Committees Final Roadmaps. Volumes 1 and 2

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Volume 1 contains NASA strategic roadmaps for the following Advanced Planning and Integration Office (APIO) committees: Earth Science and Applications from Space; Sun - Solar System Connection. Volume 2 contains NASA strategic roadmaps for the following APIO committees: Robotic and Human Exploration of Mars; Solar System Exploration; Search for Earth-like Planets; Universe Exploration, as well as membership rosters and charters for all APIO committees, including those above and the following: Exploration Transportation System; Nuclear Systems; Robotic and Human Lunar Exploration; Aeronautical Technologies; Space Shuttle; International Space Station; Education.

  15. Achieving Aeronautics Leadership: Aeronautics Strategic Enterprise Plan

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Today, more than ever, aggressive leadership is required to ensure that our national investments in aeronautical research, technology, and facilities are shaped into a coordinated, and high-impact, strategy. Under the auspices of the National Science and Technology Council, and in conjunction with the domestic industry, universities, the Department of Defense, and the Federal Aviation Administration - our partners in aeronautics - we propose to provide that leadership, and this document is our plan.

  16. Analysis of Unmanned Systems in Military Logistics

    DTIC Science & Technology

    2016-12-01

    opportunities to employ unmanned systems to support logistic operations. 14. SUBJECT TERMS unmanned systems, robotics , UAVs, UGVs, USVs, UUVs, military...Industrial Robots at Warehouses / Distribution Centers .............................................................................. 17 2. Unmanned...Autonomous Robot Gun Turret. Source: Blain (2010)................................................... 33 Figure 4. Robot Sentries for Base Patrol

  17. Unmanned Systems Roadmap 2007-2032

    DOT National Transportation Integrated Search

    2007-01-01

    Today's military has seen an evolution in technology that is creating an entirely new capability to project power through the use of unmanned systems while reducing the risk to human life. The contributions of unmanned systems continue to increase. A...

  18. The payload bay in the nose of NASA's Altair unmanned aerial vehicle (UAV) will be able to carry up

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The payload bay in the nose of NASA's Altair unmanned aerial vehicle (UAV), shown here during final construction at General Atomics Aeronautical Systems, Inc., (GA-ASI) facility at Adelanto, Calif., will be able to carry up to 700 lbs. of sensors, imaging equipment and other instruments for Earth science missions. General Atomics Aeronautical Systems, Inc., is developing the Altair version of its Predator B unmanned reconnaissance aircraft under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. NASA plans to use the Altair as a technology demonstrator to validate a variety of command and control technologies for UAVs, as well as demonstrate the capability to perform a variety of Earth science missions. The Altair is designed to carry an 700-lb. payload of scientific instruments and imaging equipment for as long as 32 hours at up to 52,000 feet altitude. Eleven-foot extensions have been added to each wing, giving the Altair an overall wingspan of 86 feet with an aspect ratio of 23. It is powered by a 700-hp. rear-mounted TPE-331-10 turboprop engine, driving a three-blade propeller. Altair is scheduled to begin flight tests in the fourth quarter of 2002, and be acquired by NASA following successful completion of basic airworthiness tests in early 2003 for evaluation of over-the-horizon control, detect, see and avoid and other technologies required to allow UAVs to operate safely with other aircraft in the national airspace.

  19. Natural interaction for unmanned systems

    NASA Astrophysics Data System (ADS)

    Taylor, Glenn; Purman, Ben; Schermerhorn, Paul; Garcia-Sampedro, Guillermo; Lanting, Matt; Quist, Michael; Kawatsu, Chris

    2015-05-01

    Military unmanned systems today are typically controlled by two methods: tele-operation or menu-based, search-andclick interfaces. Both approaches require the operator's constant vigilance: tele-operation requires constant input to drive the vehicle inch by inch; a menu-based interface requires eyes on the screen in order to search through alternatives and select the right menu item. In both cases, operators spend most of their time and attention driving and minding the unmanned systems rather than on being a warfighter. With these approaches, the platform and interface become more of a burden than a benefit. The availability of inexpensive sensor systems in products such as Microsoft Kinect™ or Nintendo Wii™ has resulted in new ways of interacting with computing systems, but new sensors alone are not enough. Developing useful and usable human-system interfaces requires understanding users and interaction in context: not just what new sensors afford in terms of interaction, but how users want to interact with these systems, for what purpose, and how sensors might enable those interactions. Additionally, the system needs to reliably make sense of the user's inputs in context, translate that interpretation into commands for the unmanned system, and give feedback to the user. In this paper, we describe an example natural interface for unmanned systems, called the Smart Interaction Device (SID), which enables natural two-way interaction with unmanned systems including the use of speech, sketch, and gestures. We present a few example applications SID to different types of unmanned systems and different kinds of interactions.

  20. Western Aeronautical Test Range

    NASA Technical Reports Server (NTRS)

    Sakahara, Robert D.

    2008-01-01

    This viewgraph presentation reviews the work of the Western Aeronautical Test Range (WATR). NASA's Western Aeronautical Test Range is a network of facilities used to support aeronautical research, science missions, exploration system concepts, and space operations. The WATR resides at NASA's Dryden Flight Research Center located at Edwards Air Force Base, California. The WATR is a part of NASA's Corporate Management of Aeronautical Facilities and funded by the Strategic Capability Asset Program (SCAP). Maps show the general location of the WATR area that is used for aeronautical testing and evaluation. The products, services and facilities of WATR are discussed,

  1. Unmanned Aerial Vehicle Systems for Disaster Relief: Tornado Alley

    NASA Technical Reports Server (NTRS)

    DeBusk, Wesley M.

    2009-01-01

    Unmanned aerial vehicle systems are currently in limited use for public service missions worldwide. Development of civil unmanned technology in the United States currently lags behind military unmanned technology development in part because of unresolved regulatory and technological issues. Civil unmanned aerial vehicle systems have potential to augment disaster relief and emergency response efforts. Optimal design of aerial systems for such applications will lead to unmanned vehicles which provide maximum potentiality for relief and emergency response while accounting for public safety concerns and regulatory requirements. A case study is presented that demonstrates application of a civil unmanned system to a disaster relief mission with the intent on saving lives. The concept utilizes unmanned aircraft to obtain advanced warning and damage assessments for tornados and severe thunderstorms. Overview of a tornado watch mission architecture as well as commentary on risk, cost, need for, and design tradeoffs for unmanned aerial systems are provided.

  2. 78 FR 21631 - NASA Advisory Council; Audit, Finance and Analysis Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-11

    ...This is an amended version of NASA's earlier Federal Register Notice [13-043] published on April 5, 2013 [page 20696]. The dates and agenda for the meeting of the Audit, Finance and Analysis Committee of the NASA Advisory Council have been revised. The revised date and agenda are provided below. In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space Administration announces a meeting of the Audit, Finance and Analysis Committee of the NASA Advisory Council.

  3. NASA/University Conference on Aeronautics

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The proceedings of a conference on the future of aeronautics are presented. The subjects discussed include the following: (1) aeronautics and the education of the engineer, (2) technical trends in aeronautics, and (3) the role of the university in aeronautics. The technical trends in aeronautics are concerned with aircraft noise control, the effect of the aircraft on the environment, airborne electronics for automated flight, and trends in aircraft design.

  4. Nomenclature for Aeronautics

    NASA Technical Reports Server (NTRS)

    1939-01-01

    The nomenclature for aeronautics presented in this Report No. 474 is a revision of the last previous report on this subject (i.e., Report no. 240.) This report is published for the purpose of encouraging greater uniformity and precision in the use of terms relating to aeronautics, both in official documents of the Government and in commercial publications. Terms in general use in other branches of engineering have been included only where they have some special significance in aeronautics, or form an integral part of its terminology.

  5. Development of a Geospatial Data-Sharing Method for Unmanned Vehicles Based on the Joint Architecture for Unmanned Systems (JAUS)

    DTIC Science & Technology

    2005-08-01

    the Office of the Secretary of Defense chartered the Joint Architecture for Unmanned Ground Systems ( JAUGS ) Working Group to address these concerns...The JAUGS Working Group was tasked with developing an initial standard for interoperable unmanned ground systems. In 2002, the charter of the... JAUGS Working Group was 1 2 modified such that their efforts would extend to all unmanned systems, not only ground systems. The standard was

  6. 78 FR 70963 - NASA Advisory Council; Technology and Innovation Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-27

    ... Technology Mission Directorate programs with an emphasis on Solar Electric Propulsion and Cryogenic... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13-137] NASA Advisory Council; Technology... of the Technology and Innovation Committee (TIC) of the NASA Advisory Council (NAC). The meeting will...

  7. 78 FR 20358 - NASA Advisory Council; Science Committee; Heliophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-04

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13-036] NASA Advisory Council; Science... Subcommittee (HPS) of the NASA Advisory Council (NAC). This Subcommittee reports to the Science Committee of... CONTACT: Ms. Marian Norris, Science Mission Directorate, NASA Headquarters, Washington, DC 20546, (202...

  8. Outcomes of the 2015 World Radiocommunication Conference for Aeronautical Spectrum and Applications

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Jonasson, Loftur

    2016-01-01

    At the conclusion of a nearly four year study cycle following the closing of the 2012 World Radiocommunication Conference (WRC-12), the 2015 WRC in November of 2015 considered a number of agenda items and issues relevant to systems and spectrum allocations supporting communications, navigation and surveillance for the operation of civil aviation. Among a number of WRC-15 agenda items and issues, the key agenda items affecting civil aviation included: unmanned aircraft systems use of the Fixed Satellite Service for command and control communications; global flight tracking; new allocations to International Mobile Telecommunications (IMT); and protection of the Fixed Satellite Service to support safe operation of aircraft. A number of other agenda items affecting or potentially affecting civil aviation were also addressed by WRC-15. In this paper we describe the outcomes of WRC-15 for these civil aeronautical-relevant issues. We then outline the civil aviation-related agenda items and issues that will be considered at the upcoming 2019 WRC.

  9. 75 FR 17437 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-06

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-039)] NASA Advisory Council; Commercial... Committee of the NASA Advisory Council. DATES: Monday, April 26, 2010, 1:30 p.m.-6 p.m. CDT. ADDRESSES: NASA Johnson Space Center, Gilruth Conference Center, 2101 NASA Parkway, Houston, TX 77058. FOR FURTHER...

  10. 75 FR 39974 - NASA Advisory Council; Space Operations Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-13

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-074)] NASA Advisory Council; Space... Committee of the NASA Advisory Council. DATES: Wednesday, July 28, 2010, 2-5 p.m. EDT. ADDRESSES: Doubletree..., Washington, DC 20546, 202/358-1507, [email protected]nasa.gov . SUPPLEMENTARY INFORMATION: The agenda for the...

  11. 77 FR 38092 - NASA Advisory Council; Information Technology Infrastructure Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-26

    .... The meeting will be held for the purpose of soliciting from the information technology community and... NAC Information Technology Infrastructure Committee meeting in Building 28. All U.S. citizens and... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-048] NASA Advisory Council; Information...

  12. 75 FR 2893 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-19

    ... Science Committee of the NAC. The Meeting will be held for the purpose of soliciting from the scientific... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-002)] NASA Advisory Council; Science... FURTHER INFORMATION CONTACT: Ms. Marian Norris, Science Mission Directorate, NASA Headquarters, Washington...

  13. 75 FR 13597 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ... Science Committee of the NAC. The Meeting will be held for the purpose of soliciting from the scientific... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-031)] NASA Advisory Council; Science.... FOR FURTHER INFORMATION CONTACT: Ms. Marian Norris, Science Mission Directorate, NASA Headquarters...

  14. 75 FR 30074 - NASA Advisory Council; Science Committee; Heliophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-28

    ... Science Committee of the NAC. The Meeting will be held for the purpose of soliciting from the scientific... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-061)] NASA Advisory Council; Science...: Ms. Marian Norris, Science Mission Directorate, NASA Headquarters, Washington, DC 20546, (202) 358...

  15. 76 FR 35481 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-17

    ... Update. --Research and Analysis Update. --Wide-Field Infrared Survey Telescope Science Definition Team... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 11-054] NASA Advisory Council; Science... Subcommittee of the NASA Advisory Council (NAC). This subcommittee reports to the Science Committee of the NAC...

  16. NASA Aeronautics Research: An Assessment

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The U.S. air transportation system is vital to the economic well-being and security of the United States. To support continued U.S. leadership in aviation, Congress and NASA requested that the National Research Council undertake a decadal survey of civil aeronautics research and technology (R&T) priorities that would help NASA fulfill its responsibility to preserve U.S. leadership in aeronautics technology. In 2006, the National Research Council published the Decadal Survey of Civil Aeronautics. That report presented a set of six strategic objectives for the next decade of aeronautics R&T, and it described 51 high-priority R&T challenges--characterized by five common themes--for both NASA and non-NASA researchers. The National Research Council produced the present report, which assesses NASA's Aeronautics Research Program, in response to the National Aeronautics and Space Administration Authorization Act of 2005 (Public Law 109-155). This report focuses on three sets of questions: 1. How well does NASA's research portfolio implement appropriate recommendations and address relevant high-priority research and technology challenges identified in the Decadal Survey of Civil Aeronautics? If gaps are found, what steps should be taken by the federal government to eliminate them? 2. How well does NASA's aeronautics research portfolio address the aeronautics research requirements of NASA, particularly for robotic and human space exploration? How well does NASA's aeronautics research portfolio address other federal government department/agency non-civil aeronautics research needs? If gaps are found, what steps should be taken by NASA and/or other parts of the federal government to eliminate them? 3. Will the nation have a skilled research workforce and research facilities commensurate with the requirements in (1) and (2) above? What critical improvements in workforce expertise and research facilities, if any, should NASA and the nation make to achieve the goals of NASA

  17. Large Unmanned Aircraft System Operations in the National Airspace System - the NASA 2007 Western States Fire Missions

    NASA Technical Reports Server (NTRS)

    Buoni, Gregory P.; Howell, Kathleen M.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) Dryden Flight Research Center (DFRC) Ikhana (ee-kah-nah) project executed the 2007 Western States Fire Missions over several of the western United States using an MQ-9 unmanned aircraft system (UAS) in partnership with the NASA Ames Research Center, the United States Forest Service, and the National Interagency Fire Center. The missions were intended to supply infrared imagery of wildfires to firefighters on the ground within 10 minutes of data acquisition. For each of the eight missions, the NASA DFRC notified the Federal Aviation Administration (FAA) of specific flight plans within three or fewer days of the flight. The FAA Certificate of Waiver or Authorization (commonly referred to as a COA ) process was used to obtain access to the United States National Airspace System. Significant time and resources were necessary to develop the COA application, perform mission planning, and define and approve emergency landing sites. Unique aspects of flying unmanned aircraft created challenges to mission operations. Close coordination with FAA headquarters and air traffic control resulted in safe and successful missions that assisted firefighters by providing near-real-time imagery of selected wildfires.

  18. 76 FR 72240 - Twenty-Seventh Meeting: RTCA Special Committee 206: Aeronautical Information and Meteorological...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-22

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Twenty-Seventh Meeting: RTCA Special... Administration (FAA), U.S. Department of Transportation (DOT). ACTION: Notice of RTCA Special Committee 206..., 2011 FRAC OSED [[Page 72241

  19. 76 FR 3674 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-006)] NASA Advisory Council; Commercial... Committee to the NASA Advisory Council. DATES: Tuesday, February 8, 2011, 2 p.m.-3:30 p.m., Local Time. ADDRESSES: NASA Headquarters, 300 E Street, SW., Glennan Conference Center, Room 1Q39, Washington, DC 20546...

  20. 75 FR 28821 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-24

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-060)] NASA Advisory Council; Commercial... Committee of the NASA Advisory Council. DATES: Thursday, June 17, 2010, 1 p.m.-4 p.m., EDST. ADDRESSES: NASA... Space Administration, Washington, DC 20546. Phone 202- 358-1686, fax: 202-358-3878, [email protected]nasa...

  1. 76 FR 17712 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-30

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-027)] NASA Advisory Council; Commercial... Committee of the NASA Advisory Council. DATES: April 27, 2011, 2-3:30 p.m., Local Time. ADDRESSES: NASA... Administration, Washington, DC 20546. Phone 202-358-1686, fax: 202-358-3878, [email protected]nasa.gov...

  2. 75 FR 53349 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-098)] NASA Advisory Council; Commercial... Committee of the NASA Advisory Council. DATES: Tuesday September 14, 8 a.m. to 12 noon CDT. ADDRESSES: NASA..., Washington, DC 20546. Phone 202- 358-1686, fax: 202-358-3878, [email protected]nasa.gov . SUPPLEMENTARY...

  3. 75 FR 5630 - NASA Advisory Council; Space Operations Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-03

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-017)] NASA Advisory Council; Space... Committee of the NASA Advisory Council. DATES: Wednesday, February 17, 2010, 9 a.m.-12 p.m. EST. ADDRESSES: NASA Headquarters, 300 E Street, SW., Washington, DC 20456, Room 2U22. FOR FURTHER INFORMATION CONTACT...

  4. 75 FR 39973 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-13

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-076)] NASA Advisory Council; Commercial... Committee to the NASA Advisory Council. DATES: Thursday, July 29, 2010, 9 a.m.-12 p.m., Eastern. ADDRESSES: NASA Headquarters, 300 E Street, SW., PRC/Room 9H40, Washington, DC 20546. FOR FURTHER INFORMATION...

  5. 75 FR 11200 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-025)] NASA Advisory Council; Commercial... Committee of the NASA Advisory Council. DATES: Tuesday, March 30, 2010, 1 p.m.-5 p.m., EST. ADDRESSES: NASA... Administration, Washington, DC, 20546. Phone 202-358-1686, fax: 202-358-3878, [email protected]nasa.gov...

  6. 77 FR 67028 - NASA Advisory Council; Information Technology Infrastructure Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-08

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-092] NASA Advisory Council; Information... Technology Infrastructure Committee (ITIC) of the NASA Advisory Council (NAC). DATES: Tuesday, November 27, 2012, 1:00 to 5:00 p.m., Local Time. ADDRESSES: NASA Marshall Space Flight Center, Building 4200, Room...

  7. 75 FR 2892 - NASA Advisory Council; Science Committee; Heliophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-19

    ... Science Committee of the NAC. The Meeting will be held for the purpose of soliciting from the scientific... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-004)] NASA Advisory Council; Science..., Washington, DC 20546. FOR FURTHER INFORMATION CONTACT: Ms. Marian Norris, Science Mission Directorate, NASA...

  8. Technicians at General Atomics Aeronautical Systems, Inc., (GA-ASI) facility at Adelanto, Calif., ca

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Technicians at General Atomics Aeronautical Systems, Inc., (GA-ASI) facility at Adelanto, Calif., carefully thread control lines through a bulkhead during engine installation on NASA's Altair aircraft. General Atomics Aeronautical Systems, Inc., is developing the Altair version of its Predator B unmanned reconnaissance aircraft under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. NASA plans to use the Altair as a technology demonstrator to validate a variety of command and control technologies for UAVs, as well as demonstrate the capability to perform a variety of Earth science missions. The Altair is designed to carry an 700-lb. payload of scientific instruments and imaging equipment for as long as 32 hours at up to 52,000 feet altitude. Eleven-foot extensions have been added to each wing, giving the Altair an overall wingspan of 86 feet with an aspect ratio of 23. It is powered by a 700-hp. rear-mounted TPE-331-10 turboprop engine, driving a three-blade propeller. Altair is scheduled to begin flight tests in the fourth quarter of 2002, and be acquired by NASA following successful completion of basic airworthiness tests in early 2003 for evaluation of over-the-horizon control, detect, see and avoid and other technologies required to allow UAVs to operate safely with other aircraft in the national airspace.

  9. Technicians at General Atomics Aeronautical Systems, Inc., (GA-ASI) facility at Adelanto, Calif., ca

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Technicians at General Atomics Aeronautical Systems, Inc., (GA-ASI) facility at Adelanto, Calif., carefully install a turboprop engine to the rear fuselage of NASA's Altair aircraft during final assembly operations. General Atomics Aeronautical Systems, Inc., is developing the Altair version of its Predator B unmanned reconnaissance aircraft under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. NASA plans to use the Altair as a technology demonstrator to validate a variety of command and control technologies for UAVs, as well as demonstrate the capability to perform a variety of Earth science missions. The Altair is designed to carry an 700-lb. payload of scientific instruments and imaging equipment for as long as 32 hours at up to 52,000 feet altitude. Eleven-foot extensions have been added to each wing, giving the Altair an overall wingspan of 86 feet with an aspect ratio of 23. It is powered by a 700-hp. rear-mounted TPE-331-10 turboprop engine, driving a three-blade propeller. Altair is scheduled to begin flight tests in the fourth quarter of 2002, and be acquired by NASA following successful completion of basic airworthiness tests in early 2003 for evaluation of over-the-horizon control, detect, see and avoid and other technologies required to allow UAVs to operate safely with other aircraft in the national airspace.

  10. 75 FR 17437 - NASA Advisory Council; Audit, Finance and Analysis Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-06

    ..., TX 77058. FOR FURTHER INFORMATION CONTACT: Ms. Charlene Williams, Office of the Chief Financial Officer, National Aeronautics and Space Administration Headquarters, Washington, DC 20546. Phone: 202-358... the key participants. Dated: March 31, 2010. P. Diane Rausch, Advisory Committee Management Officer...

  11. 14 CFR 61.155 - Aeronautical knowledge.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aeronautical knowledge. 61.155 Section 61.155 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED....155 Aeronautical knowledge. (a) General. The knowledge test for an airline transport pilot certificate...

  12. 14 CFR 61.155 - Aeronautical knowledge.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Aeronautical knowledge. 61.155 Section 61.155 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED....155 Aeronautical knowledge. (a) General. The knowledge test for an airline transport pilot certificate...

  13. 75 FR 26321 - Seventeenth Plenary Meeting: RTCA Special Committee 203: Unmanned Aircraft Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-11

    ... RTCA Workspace Web Tool Special Committee Status Overview Workgroup Updates WG1--Systems Engineering..., Washington, DC 20036; telephone (202) 833-9339; fax (202) 833-9434; Web site http://www.rtca.org...

  14. 14 CFR 61.125 - Aeronautical knowledge.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aeronautical knowledge. 61.125 Section 61.125 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... Aeronautical knowledge. (a) General. A person who applies for a commercial pilot certificate must receive and...

  15. 14 CFR 61.125 - Aeronautical knowledge.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Aeronautical knowledge. 61.125 Section 61.125 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... Aeronautical knowledge. (a) General. A person who applies for a commercial pilot certificate must receive and...

  16. 75 FR 19661 - NASA Advisory Council; Science Committee; Planetary Protection Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-15

    ...). This Subcommittee reports to the Science Committee of the NAC. The meeting will be held for the purpose... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-044)] NASA Advisory Council; Science... 20546. FOR FURTHER INFORMATION CONTACT: Ms. Marian Norris, Science Mission Directorate, NASA...

  17. 14 CFR 61.105 - Aeronautical knowledge.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aeronautical knowledge. 61.105 Section 61.105 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... Aeronautical knowledge. (a) General. A person who is applying for a private pilot certificate must receive and...

  18. 14 CFR 61.185 - Aeronautical knowledge.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Aeronautical knowledge. 61.185 Section 61.185 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... Flight Instructors With a Sport Pilot Rating § 61.185 Aeronautical knowledge. (a) A person who is...

  19. 14 CFR 61.185 - Aeronautical knowledge.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aeronautical knowledge. 61.185 Section 61.185 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... Flight Instructors With a Sport Pilot Rating § 61.185 Aeronautical knowledge. (a) A person who is...

  20. 14 CFR 61.105 - Aeronautical knowledge.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Aeronautical knowledge. 61.105 Section 61.105 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... Aeronautical knowledge. (a) General. A person who is applying for a private pilot certificate must receive and...

  1. NASA thesaurus aeronautics vocabulary

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The controlled vocabulary used by the NASA Scientific and Technical Information effort to index documents in the area of aeronautics is presented. The terms comprise a subset of the 1988 edition of the NASA Thesaurus and its supplements issued through the end of 1990. The Aeronautics Vocabulary contains over 4700 terms presented in a hierarchical display format. In addition to aeronautics per se, the vocabulary covers supporting terminology from areas such as fluid dynamics, propulsion engineering, and test facilities and instrumentation.

  2. Use of a Small Unmanned Aircraft System for Autonomous Fire Spotting at the Great Dismal Swamp

    NASA Technical Reports Server (NTRS)

    Logan, Michael J.; Glaab, Louis J.; Craig, Timothy

    2016-01-01

    This paper describes the results of a set of experiments and analyses conducted to evaluate the capability of small unmanned aircraft systems (sUAS) to spot nascent fires in the Great Dismal Swamp (GDS) National Wildlife Refuge. This work is the result of a partnership between the National Aeronautics and Space Administration and the US Fish and Wildlife service specifically to investigate sUAS usage for fire-spotting. The objectives of the current effort were to: 1) Determine suitability and utility of low-cost Small Unmanned Aircraft Systems (sUAS) to detect nascent fires at GDS; 2) Identify and assess the necessary National Airspace System (NAS) integration issues; and 3) Provide information to GDS and the community on system requirements and concepts-of-operation (CONOPS) for conducting fire detection/support mission in the National Airspace and (4) Identify potential applications of intelligent autonomy that would enable or benefit this high-value mission. In addition, data on the ability of various low-cost sensors to detect smoke plumes and fire hot spots was generated during the experiments as well as identifying a path towards a future practical mission utility by using sUAS in beyond visual-line-of-sight operation in the National Airspace System (NAS).

  3. 14 CFR 61.155 - Aeronautical knowledge.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Aeronautical knowledge. 61.155 Section 61....155 Aeronautical knowledge. (a) General. The knowledge test for an airline transport pilot certificate is based on the aeronautical knowledge areas listed in paragraph (c) of this section that are...

  4. 14 CFR 77.35 - Aeronautical studies.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aeronautical studies. 77.35 Section 77.35... OBJECTS AFFECTING NAVIGABLE AIRSPACE Aeronautical Studies of Effect of Proposed Construction on Navigable Airspace § 77.35 Aeronautical studies. (a) The Regional Manager, Air Traffic Division of the region in...

  5. A Historical Review of Training Requirements for Unmanned Aircraft Systems, Small Unmanned Aircraft Systems, and Manned Operations (1997-2014)

    DOT National Transportation Integrated Search

    2017-08-01

    There are several mature Unmanned Aircraft System (UAS) and Small Unmanned Aircraft System (sUAS) training programs available for analysis. Many of these programs were developed by the various branches with the U.S. Department of Defense (DoD) in con...

  6. 14 CFR 77.35 - Aeronautical studies.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Aeronautical studies. 77.35 Section 77.35... OBJECTS AFFECTING NAVIGABLE AIRSPACE (Eff. until 1-18-11) Aeronautical Studies of Effect of Proposed Construction on Navigable Airspace § 77.35 Aeronautical studies. (a) The Regional Manager, Air Traffic Division...

  7. Coexistence Analysis of Civil Unmanned Aircraft Systems at Low Altitudes

    NASA Astrophysics Data System (ADS)

    Zhou, Yuzhe

    2016-11-01

    The requirement of unmanned aircraft systems in civil areas is growing. However, provisioning of flight efficiency and safety of unmanned aircraft has critical requirements on wireless communication spectrum resources. Current researches mainly focus on spectrum availability. In this paper, the unmanned aircraft system communication models, including the coverage model and data rate model, and two coexistence analysis procedures, i. e. the interference and noise ratio criterion and frequency-distance-direction criterion, are proposed to analyze spectrum requirements and interference results of the civil unmanned aircraft systems at low altitudes. In addition, explicit explanations are provided. The proposed coexistence analysis criteria are applied to assess unmanned aircraft systems' uplink and downlink interference performances and to support corresponding spectrum planning. Numerical results demonstrate that the proposed assessments and analysis procedures satisfy requirements of flexible spectrum accessing and safe coexistence among multiple unmanned aircraft systems.

  8. Aeronautical Science Course of Study.

    ERIC Educational Resources Information Center

    Southbay Union High School District, Redondo Beach, CA.

    This revision of "Aeronautical Science Course of Study for California High Schools," first issued in 1967, is designed by and for the use of teachers of high school aeronautical courses. It differs from other aeronautical instructional materials in its emphasis on inquiry, exploration, and open-ended experimentation. The eleven units may be used…

  9. Cloud-based distributed control of unmanned systems

    NASA Astrophysics Data System (ADS)

    Nguyen, Kim B.; Powell, Darren N.; Yetman, Charles; August, Michael; Alderson, Susan L.; Raney, Christopher J.

    2015-05-01

    Enabling warfighters to efficiently and safely execute dangerous missions, unmanned systems have been an increasingly valuable component in modern warfare. The evolving use of unmanned systems leads to vast amounts of data collected from sensors placed on the remote vehicles. As a result, many command and control (C2) systems have been developed to provide the necessary tools to perform one of the following functions: controlling the unmanned vehicle or analyzing and processing the sensory data from unmanned vehicles. These C2 systems are often disparate from one another, limiting the ability to optimally distribute data among different users. The Space and Naval Warfare Systems Center Pacific (SSC Pacific) seeks to address this technology gap through the UxV to the Cloud via Widgets project. The overarching intent of this three year effort is to provide three major capabilities: 1) unmanned vehicle control using an open service oriented architecture; 2) data distribution utilizing cloud technologies; 3) a collection of web-based tools enabling analysts to better view and process data. This paper focuses on how the UxV to the Cloud via Widgets system is designed and implemented by leveraging the following technologies: Data Distribution Service (DDS), Accumulo, Hadoop, and Ozone Widget Framework (OWF).

  10. Western Aeronautical Test Range

    NASA Technical Reports Server (NTRS)

    Sakahara, Robert D.

    2008-01-01

    NASA's Western Aeronautical Test Range (WATR) is a network of facilities used to support aeronautical research, science missions, exploration system concepts, and space operations. The WATR resides at NASA's Dryden Flight Research Center located at Edwards Air Force Base, California. The WATR is a part of NASA's Corporate Management of Aeronautical Facilities and funded by the Strategic Capability Asset Program (SCAP). It is managed by the Aeronautics Test Program (ATP) of the Aeronautics Research Mission Directorate (ARMD) to provide the right facility at the right time. NASA is a tenant on Edwards Air Force Base and has an agreement with the Air Force Flight Test Center to use the land and airspace controlled by the Department of Defense (DoD). The topics include: 1) The WATR supports a variety of vehicles; 2) Dryden shares airspace with the AFFTC; 3) Restricted airspace, corridors, and special use areas are available for experimental aircraft; 4) WATR Products and Services; 5) WATR Support Configuration; 6) Telemetry Tracking; 7) Time Space Positioning; 8) Video; 9) Voice Communication; 10) Mobile Operations Facilities; 11) Data Processing; 12) Mission Control Center; 13) Real-Time Data Analysis; and 14) Range Safety.

  11. NASA's Role in Aeronautics: A Workshop. Volume 6: Aeronautical research

    NASA Technical Reports Server (NTRS)

    1981-01-01

    While each aspect of its aeronautical technology program is important to the current preeminence of the United States in aeronautics, the most essential contributions of NASA derive from its research. Successes and challenges in NASA's efforts to improve civil and military aviation are discussed for the following areas: turbulence, noise, supercritical aerodynamics, computational aerodynamics, fuels, high temperature materials, composite materials, single crystal components, powder metallurgy, and flight controls. Spin offs to engineering and other sciences explored include NASTRAN, lubricants, and composites.

  12. 75 FR 70951 - NASA Advisory Council; NASA Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-19

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-148)] NASA Advisory Council; NASA... Committee of the NASA Advisory Council. DATES: Tuesday, December 14, 2010, 1:30 p.m.-4:30 p.m., Local Time. ADDRESSES: NASA Headquarters, 300 E Street, SW., Glennan Conference Center Room 1Q39, Washington, DC 20546...

  13. 75 FR 5629 - NASA Advisory Council; Audit, Finance and Analysis Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-03

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-018)] NASA Advisory Council; Audit... Analysis Committee of the NASA Advisory Council. DATES: Wednesday, February 17, 2010, 9 a.m.-4 p.m. EST. ADDRESSES: NASA Headquarters, 300 E Street, SW., Washington, DC 20456, Conference Room 8D48. FOR FURTHER...

  14. Designing Unmanned Systems with Greater Autonomy: Using a Federated, Partially Open Systems Architecture Approach

    DTIC Science & Technology

    2014-01-01

    system UAV unmanned aircraft vehicle UCI User -Computer Interface UCS UAS control segment Abbreviations xxix UGS unmanned ground system UGV unmanned ...made substantial progress in the deployment of more capable sensors, unmanned aircraft systems (UAS), and other unmanned systems (UxS). Innovative...progress in fielding more, and more capable unmanned aircraft systems (UAS) to meet the needs of warfighters

  15. Delegation control of multiple unmanned systems

    NASA Astrophysics Data System (ADS)

    Flaherty, Susan R.; Shively, Robert J.

    2010-04-01

    Maturing technologies and complex payloads coupled with a future objective to reduce the logistics burden of current unmanned aerial systems (UAS) operations require a change to the 2-crew employment paradigm. Increased automation and operator supervisory control of unmanned systems have been advocated to meet the objective of reducing the crew requirements, while managing future technologies. Specifically, a delegation control employment strategy has resulted in reduced workload and higher situation awareness for single operators controlling multiple unmanned systems in empirical studies1,2. Delegation control is characterized by the ability for an operator to call a single "play" that initiates prescribed default actions for each vehicle and associated sensor related to a common mission goal. Based upon the effectiveness of delegation control in simulation, the U.S. Army Aeroflightdynamics Directorate (AFDD) developed a Delegation Control (DelCon) operator interface with voice recognition implementation for play selection, real-time play modification, and play status with automation transparency to enable single operator control of multiple unmanned systems in flight. AFDD successfully demonstrated delegation control in a Troops-in-Contact mission scenario at Ft. Ord in 2009. This summary showcases the effort as a beneficial advance in single operator control of multiple UAS.

  16. Coastal Survey Using Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Walker, G.

    2012-12-01

    Generating high-resolution 3-dimensional costal imagery from imagery collected on small-unmanned aircraft is opening many opportunities to study marine wildlife and its use of costal habitats as well as climate change effects on northern coasts where storm surges are radically altering the coastline. Additionally, the technology is being evaluated for oil spill response planning and preparation. The University of Alaska Fairbanks works extensively with small-unmanned aircraft and recently began evaluating the aircraft utility for generating survey grade mapping of topographic features. When generating 3-D maps of coastal regions however there are added challenges that the University have identified and are trying to address. Recent projects with Alaska fisheries and BP Exploration Alaska have demonstrated that small-unmanned aircraft can support the generation of map-based products that are nearly impossible to generate with other technologies.

  17. Manned Versus Unmanned Risk and Complexity Considerations for Future Midsized X-Planes

    NASA Technical Reports Server (NTRS)

    Lechniak, Jason A.; Melton, John E.

    2017-01-01

    The objective of this work was to identify and estimate complexity and risks associated with the development and testing of new low-cost medium-scale X-plane aircraft primarily focused on air transport operations. Piloting modes that were evaluated for this task were manned, remotely piloted, and unmanned flight research programs. This analysis was conducted early in the data collection period for X-plane concept vehicles before preliminary designs were complete. Over 50 different aircraft and system topics were used to evaluate the three piloting control modes. Expert group evaluations from a diverse set of pilots, engineers, and other experts at Aeronautics Research Mission Directorate centers within the National Aeronautics and Space Administration provided qualitative reasoning on the many issues surrounding the decisions regarding piloting modes. The group evaluations were numerically rated to evaluate each topic quantitatively and were used to provide independent criteria for vehicle complexity and risk. An Edwards Air Force Base instruction document was identified that emerged as a source of the effects found in our qualitative and quantitative data. The study showed that a manned aircraft was the best choice to align with test activities for transport aircraft flight research from a low-complexity and low-risk perspective. The study concluded that a manned aircraft option would minimize the risk and complexity to improve flight-test efficiency and bound the cost of the flight-test portion of the program. Several key findings and discriminators between the three modes are discussed in detail.

  18. 76 FR 22162 - Sixteenth Meeting: EUROCAE WG-72: RTCA Special Committee 216: Aeronautical Systems Security...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-20

    ... meeting held January 18-21, 2011. Report on the PMC/ICC Action on TOR. RTCA Specific Publication Progress... Advisory Committee. [FR Doc. 2011-9489 Filed 4-19-11; 8:45 am] BILLING CODE 4910-13-P ...

  19. 14 CFR 61.99 - Aeronautical experience.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aeronautical experience. 61.99 Section 61.99 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Recreational Pilots § 61.99...

  20. 14 CFR 61.125 - Aeronautical knowledge.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Aeronautical knowledge. 61.125 Section 61.125 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... principles of flight; (4) Meteorology to include recognition of critical weather situations, windshear...

  1. 14 CFR 61.125 - Aeronautical knowledge.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Aeronautical knowledge. 61.125 Section 61.125 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... principles of flight; (4) Meteorology to include recognition of critical weather situations, windshear...

  2. 14 CFR 61.155 - Aeronautical knowledge.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Aeronautical knowledge. 61.155 Section 61.155 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... system of weather and NOTAM collection, dissemination, interpretation, and use; (4) Interpretation and...

  3. Unmanned airship development and remote sensing applications

    NASA Astrophysics Data System (ADS)

    Boschma, James H.

    2001-10-01

    This paper discusses the development of unmanned airships for military use during the past decade, and the current status of the Small Airship Surveillance System, Low Intensity Target Exploitation (SASS LITE) platform. Topics covered will also include various missions planned and conducted, and technological advances expected to be implemented on unmanned airships in the near future.

  4. Aeronautical Engineering: 1983 cumulative index

    NASA Technical Reports Server (NTRS)

    1984-01-01

    This bibliography is a cumulative index to the abstracts contained in NASA SP-7037 (158) through NASA SP-7037 (169) of Aeronautical Engineering: A Continuing Bibliography. NASA SP-7037 and its supplements have been compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, contract, report number, and accession number indexes.

  5. 14 CFR 61.105 - Aeronautical knowledge.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Aeronautical knowledge. 61.105 Section 61.105 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED...) Recognition of critical weather situations from the ground and in flight, windshear avoidance, and the...

  6. 14 CFR 61.105 - Aeronautical knowledge.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Aeronautical knowledge. 61.105 Section 61.105 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED...) Recognition of critical weather situations from the ground and in flight, windshear avoidance, and the...

  7. 78 FR 9743 - NASA Advisory Council; Education and Public Outreach Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-11

    ... Committee, National Aeronautics and Space Administration, Washington, DC 20456, at [email protected]nasa.gov...://www.nasa.gov/offices/nac/EPO_Meetings.html . SUPPLEMENTARY INFORMATION: The agenda for the meeting... advance by contacting Erika Vick via email at [email protected]nasa.gov or by telephone at (202) 358- 2209 or...

  8. 75 FR 55847 - Fourteenth Meeting: EUROCAE WG-72: RTCA Special Committee 216: Aeronautical Systems Security...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-14

    ..., (RTCA Paper No. 137-10/SC216-029). Report on the PMC/ICC action on TOR: Publication Progress and Update... Advisory Committee. [FR Doc. 2010-22879 Filed 9-13-10; 8:45 am] BILLING CODE 4910-13-P ...

  9. NASA's aeronautics research and technology base

    NASA Technical Reports Server (NTRS)

    1979-01-01

    NASA's research technology base in aeronautics is assessed in terms of: (1) US aeronautical technology needs and requirements in the future; (2) objectives of the aeronautics program; (3) magnitude and scope of the program; and (4) research and technology performed by NASA and other research organizations.

  10. 14 CFR 61.97 - Aeronautical knowledge.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Aeronautical knowledge. 61.97 Section 61.97 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN... knowledge. (a) General. A person who applies for a recreational pilot certificate must receive and log...

  11. 14 CFR 61.97 - Aeronautical knowledge.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aeronautical knowledge. 61.97 Section 61.97 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN... knowledge. (a) General. A person who applies for a recreational pilot certificate must receive and log...

  12. 14 CFR 61.97 - Aeronautical knowledge.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Aeronautical knowledge. 61.97 Section 61.97 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN... using pilotage with the aid of a magnetic compass; (5) Recognition of critical weather situations from...

  13. Safety, Reliability, and Quality Assurance Provisions for the Office of Aeronautics, Exploration and Technology Centers

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This Handbook establishes general safety, reliability, and quality assurance (SR&QA) guidelines for use on flight and ground-based projects conducted at the Ames, Langley, and Lewis Research Centers, hereafter identified as the Office of Aeronautics, Exploration and Technology (OAET) Centers. This document is applicable to all projects and operations conducted at these Centers except for those projects covered by more restrictive provisions such as the Space Shuttle, Space Station, and unmanned spacecraft programs. This Handbook is divided into two parts. The first (Chapters 1 and 2) establishes the SR&QA guidelines applicable to the OAET Centers, and the second (Appendices A, B, C, and D) provides examples and definitions for the total SR&QA program. Each center should implement SR&QA programs using these guidelines with tailoring appropriate to the special projects conducted by each Center. This Handbook is issued in loose-leaf form and will be revised by page changes.

  14. Small unmanned aircraft and the U.S. Forest Service : benefits, costs, and recommendations for using small unmanned aircraft in Forest Service operations

    DOT National Transportation Integrated Search

    2016-08-01

    This paper provides information to Forest Service leadership about how the agency could use unmanned aircraft across different programs, especially in program areas where aircraft use is currently limited. It draws from published uses of unmanned air...

  15. Secure real-time wireless video streaming in the aeronautical telecommunications network

    NASA Astrophysics Data System (ADS)

    Czernik, Pawel; Olszyna, Jakub

    2010-09-01

    As Air Traffic Control Systems move from a voice only environment to one in which clearances are issued via data link, there is a risk that an unauthorized entity may attempt to masquerade as either the pilot or controller. In order to protect against this and related attacks, air-ground communications must be secured. The challenge is to add security in an environment in which bandwidth is limited. The Aeronautical Telecommunications Network (ATN) is an enabling digital network communications technology that addresses capacity and efficiency issues associated with current aeronautical voice communication systems. Equally important, the ATN facilitates migration to free flight, where direct computer-to-computer communication will automate air traffic management, minimize controller and pilot workload, and improve overall aircraft routing efficiency. Protecting ATN communications is critical since safety-of-flight is seriously affected if an unauthorized entity, a hacker for example, is able to penetrate an otherwise reliable communications system and accidentally or maliciously introduce erroneous information that jeopardizes the overall safety and integrity of a given airspace. However, an ATN security implementation must address the challenges associated with aircraft mobility, limited bandwidth communication channels, and uninterrupted operation across organizational and geopolitical boundaries. This paper provides a brief overview of the ATN, the ATN security concept, and begins a basic introduction to the relevant security concepts of security threats, security services and security mechanisms. Security mechanisms are further examined by presenting the fundamental building blocks of symmetric encipherment, asymmetric encipherment, and hash functions. The second part of this paper presents the project of cryptographiclly secure wireless communication between Unmanned Aerial Vehicles (UAV) and the ground station in the ATM system, based on the ARM9 processor

  16. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology Into Aeronautics Research Mission Directorate Projects at NASA Glenn Research Center for 2015

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.; Morris, Jessica R.

    2015-01-01

    This document is intended to enable the more effective transition of NASA Glenn Research Center (GRC) SBIR technologies funded by the Small Business Innovation Research (SBIR) program as well as its companion, the Small Business Technology Transfer (STTR) program into NASA Aeronautics Research Mission Directorate (ARMD) projects. Primarily, it is intended to help NASA program and project managers find useful technologies that have undergone extensive research and development (RRD), through Phase II of the SBIR program; however, it can also assist non-NASA agencies and commercial companies in this process. aviation safety, unmanned aircraft, ground and flight test technique, low emissions, quiet performance, rotorcraft

  17. Questions & Answers about Aeronautics and Space.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    Answers to 27 questions about aeronautics, space, and the National Aeronautics and Space Administration (NASA) are provided in this pamphlet. Among the topics dealt with in these questions are: costs of the space program; NASA's role in aeronautics; benefits received from the space program; why the United States hasn't developed means of rescuing…

  18. Preliminary Considerations for Classifying Hazards of Unmanned Aircraft Systems

    NASA Technical Reports Server (NTRS)

    Hayhurst, Kelly J.; Maddalon, Jeffrey M.; Miner, Paul S.; Szatkowski, George N.; Ulrey, Michael L.; DeWalt, Michael P.; Spitzer, Cary R.

    2007-01-01

    The use of unmanned aircraft in national airspace has been characterized as the next great step forward in the evolution of civil aviation. To make routine and safe operation of these aircraft a reality, a number of technological and regulatory challenges must be overcome. This report discusses some of the regulatory challenges with respect to deriving safety and reliability requirements for unmanned aircraft. In particular, definitions of hazards and their classification are discussed and applied to a preliminary functional hazard assessment of a generic unmanned system.

  19. The Use of a Satellite Communications System for Command and Control of the National Aeronautics and Space Administration Surrogate Unmanned Aerial System Research Aircraft

    NASA Technical Reports Server (NTRS)

    Howell, Charles T.; Jones, Frank; Hutchinson, Brian; Joyce, Claude; Nelson, Skip; Melum, Mike

    2017-01-01

    The NASA Langley Research Center has transformed a Cirrus Design SR22 general aviation (GA) aircraft into an Unmanned Aerial Systems (UAS) Surrogate research aircraft which has served for several years as a platform for unmanned systems research and development. The aircraft is manned with a Safety Pilot and a Research Systems Operator (RSO) that allows for flight operations almost any-where in the national airspace system (NAS) without the need for a Federal Aviation Administration (FAA) Certificate of Authorization (COA). The UAS Surrogate can be remotely controlled from a modular, transportable ground control station (GCS) like a true UAS. Ground control of the aircraft is accomplished by the use of data links that allow the two-way passage of the required data to control the aircraft and provide the GCS with situational awareness. The original UAS Surrogate data-link system was composed of redundant very high frequency (VHF) data radio modems with a maximum range of approximately 40 nautical miles. A new requirement was developed to extend this range beyond visual range (BVR). This new requirement led to the development of a satellite communications system that provided the means to command and control the UAS Surrogate at ranges beyond the limits of the VHF data links. The system makes use of the Globalstar low earth orbit (LEO) satellite communications system. This paper will provide details of the development, implementation, and flight testing of the satellite data communications system on the UAS Surrogate research aircraft.

  20. Focused Lens on Unmanned Aerial Systems: An Evaluation of Department of Defense’s Unmanned Aerial Vision 2011

    DTIC Science & Technology

    2014-06-13

    Break Free of Regulations.” 69Barbara Opall -Rome, “ Israel Tackles The Last Frontier Of UAS Technology: Israel Moves Closer Toward Flying UASs In...with the new F-35 Joint Strike Fighter once it comes online, or with helicopters aboard the Littoral Combat Ship. Unmanned mine hunters could operate...Office, 2002. ———. Unmanned Aircraft Systems Roadmap 2005-2030. Washington, DC: Government Publishing Office, 2005. Opall -Rome, Barbra. “Israel

  1. Mobile-ip Aeronautical Network Simulation Study

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Tran, Diepchi T.

    2001-01-01

    NASA is interested in applying mobile Internet protocol (mobile-ip) technologies to its space and aeronautics programs. In particular, mobile-ip will play a major role in the Advanced Aeronautic Transportation Technology (AATT), the Weather Information Communication (WINCOMM), and the Small Aircraft Transportation System (SATS) aeronautics programs. This report presents the results of a simulation study of mobile-ip for an aeronautical network. The study was performed to determine the performance of the transmission control protocol (TCP) in a mobile-ip environment and to gain an understanding of how long delays, handoffs, and noisy channels affect mobile-ip performance.

  2. Research on Aerodynamic Characteristics of Composite powered Unmanned Airship

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Wang, Yun; Wang, Lu; Ma, Chengyu; Xia, Jun

    2017-10-01

    The main structure of the composite powered unmanned airship is consists of airbags and four-rotor system, which airbag increases the available lift, and has more advantages in terms of load and flight when compared with the traditional four-rotor. In order to compare the aerodynamic performance of the composite powered unmanned airship and the traditional four-rotor, the SIMPLE algorithm and the RNG k-epsilon model method are be used. The energy consumption of the composite powered unmanned airship is lesser than the traditional four-rotor under the same load and range was found.

  3. Testing the Intelligence of Unmanned Autonomous Systems

    DTIC Science & Technology

    2008-01-01

    decisions without the operator. The term autonomous is also used interchangeably with intelligent, giving rise to the name unmanned autonomous system ( UAS ...For the purposes of this article, UAS describes an unmanned system that makes decisions based on gathered information. Because testers should not...make assumptions about the decision process within a UAS , there is a need for a methodology that completely tests this decision process without biasing

  4. Civilian Aeronautical Futures - The Responsibly Imaginable

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M.

    2006-01-01

    Since 1940 Aeronautics has had an immense impact upon Global Human lifestyles and affairs - in both the Civilian and Military arenas. During this period Long distance Train and Ship passenger transport were largely supplanted by Air Travel and Aviation assumed a dominant role in warfare. The early 1940 s to the mid 1970 s was a particularly productive period in terms of Aeronautical Technology. What is interesting is that, since the mid 1970 s, the rate of Aeronautical Technological Progress has been far slower, the basic technology in nearly all of our current Aero Systems dates from the mid 70 s or earlier. This is especially true in terms of Configuration Aerodynamics, Aeronautics appears to have "settled" on the 707, double delta and rotary wing as the approach of choice for Subsonic long haul, supersonic cruise and VTOL respectively. Obviously there have been variants and some niche digression from this/these but in the main Aeronautics, particularly civilian Aeronautics, has become a self-professed "mature", Increasingly "Commodity", Industry. The Industry is far along an existing/deployed technology curve and focused, now for decades, on incremental/evolutionary change - largely Appliers vs. developers of technology. This is, of course, in sharp contrast to the situation in the early-to-later 20th century where Aeronautics was viewed as A Major Technological Engine, much the way IT/Bio/Nano/Energetics/Quantum Technologies are viewed today. A search for Visionary Aeronautical "Futures" papers/projections indicates a decided dearth thereof over the last 20 plus years compared to the previous quarter Century. Aeronautics is part of Aerospace and Aerospace [including Aeronautics] has seen major cutbacks over the last decades. Some numbers for the U.S. Aerospace Industry serve as examples. Order of 600,000 jobs lost, with some 180,000 more on the block over the next 10 years. Approximately 25% of the Aerospace workforce is eligible to retire and the average

  5. U.S. Army unmanned aircraft systems roadmap 2010-2035

    DOT National Transportation Integrated Search

    2010-01-01

    The Unmanned Aircraft System (UAS) Roadmap outlines how the U.S. Army will develop, organize, and employ UAS from 2010 to 2035 across full spectrum operations. The Army UAS Roadmap is nested with the Unmanned Systems (UMS) Initial Capabilities Docume...

  6. Communications Technology Assessment for the Unmanned Aircraft System (UAS) Control and Non-Payload Communications (CNPC) Link

    NASA Technical Reports Server (NTRS)

    Bretmersky, Steven C.; Bishop, William D.; Dailey, Justin E.; Chevalier, Christine T.

    2014-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is performing communications systems research for the Unmanned Aircraft System (UAS) in the National Airspace System (NAS) Project. One of the goals of the communications element is to select and test a communications technology for the UAS Control and Non-Payload Communications (CNPC) link. The GRC UAS Modeling and Simulation (M/S) Sub Team will evaluate the performance of several potential technologies for the CNPC link through detailed software simulations. In parallel, an industry partner will implement a technology in hardware to be used for flight testing. The task necessitated a technical assessment of existing Radio Frequency (RF) communications technologies to identify the best candidate systems for use as the UAS CNPC link. The assessment provides a basis for selecting the technologies for the M/S effort and the hardware radio design. The process developed for the technical assessments for the Future Communications Study1 (FCS) was used as an initial starting point for this assessment. The FCS is a joint Federal Aviation Administration (FAA) and Eurocontrol study on technologies for use as a future aeronautical communications link. The FCS technology assessment process methodology can be applied to the UAS CNPC link; however the findings of the FCS are not directly applicable because of different requirements between a CNPC link and a general aeronautical data link. Additional technologies were added to the potential technologies list from the State of the Art Unmanned Aircraft System Communication Assessment developed by NASA GRC2. This document investigates the state of the art of communications as related to UAS. A portion of the document examines potential communications systems for a UAS communication architecture. Like the FCS, the state of the art assessment surveyed existing communications technologies. It did not, however, perform a detailed assessment of the

  7. Unmanned ground vehicles for integrated force protection

    NASA Astrophysics Data System (ADS)

    Carroll, Daniel M.; Mikell, Kenneth; Denewiler, Thomas

    2004-09-01

    The combination of Command and Control (C2) systems with Unmanned Ground Vehicles (UGVs) provides Integrated Force Protection from the Robotic Operation Command Center. Autonomous UGVs are directed as Force Projection units. UGV payloads and fixed sensors provide situational awareness while unattended munitions provide a less-than-lethal response capability. Remote resources serve as automated interfaces to legacy physical devices such as manned response vehicles, barrier gates, fence openings, garage doors, and remote power on/off capability for unmanned systems. The Robotic Operations Command Center executes the Multiple Resource Host Architecture (MRHA) to simultaneously control heterogeneous unmanned systems. The MRHA graphically displays video, map, and status for each resource using wireless digital communications for integrated data, video, and audio. Events are prioritized and the user is prompted with audio alerts and text instructions for alarms and warnings. A control hierarchy of missions and duty rosters support autonomous operations. This paper provides an overview of the key technology enablers for Integrated Force Protection with details on a force-on-force scenario to test and demonstrate concept of operations using Unmanned Ground Vehicles. Special attention is given to development and applications for the Remote Detection Challenge and Response (REDCAR) initiative for Integrated Base Defense.

  8. Shaping the future of naval warfare with unmanned systems

    DOT National Transportation Integrated Search

    2001-07-01

    This report presents the findings of a study conducted for the purpose of understanding how unmanned systems can enhance the readiness of U.S. Naval forces. The document presents reasons why unmanned systems should be adopted by the Navy, and makes t...

  9. Considerations for RTCA Phase 2 Low Size, Weight, and Power (SWAP) Surveillance Requirements. UAS Integration in the NAS

    NASA Technical Reports Server (NTRS)

    Santiago, Confesor

    2017-01-01

    RTCA (Radio Technical Commission for Aeronautics) Special Committee 228 has initiated a second phase for the development of minimum operational performance standards (MOPS) for UAS (Unmanned Aircraft Systems) detect and avoid (DAA) systems. Technologies to enable UAS with less available Size, Weight, and Power (SWaP) will be considered. A white paper is in development for what topics and issues need to be addressed to develop DAA requirements for low SWAP surveillance systems. This briefing will document the issues to be investigated in SC-228. It will also serve as a review with the committee to get feedback so the white paper can be written and finalized. These topics and issues are not necessarily all the things that NASA will contribute to SC-228 during Phase 2, but what the overall committee needs to accomplish. A portion of the work will be in NASA's UAS in the NAS (National Airspace System) project plan.

  10. Research-Airplane-Committee Report on Conference on the Progress of the X-15 Project : A Compilation of the Papers Presented

    NASA Technical Reports Server (NTRS)

    1958-01-01

    This document is a compilation of papers presented at the Conference on the Progress of the X-15 project held at the IAS Building, Los Angeles, California, July 28-30, 1958. The conference was held by the Research Airplane Committee of the U. S. Air Force, the U. S. Navy, and the National Advisory Committee for Aeronautics to report on the technical status of this airplane.

  11. Cooperative remote sensing and actuation using networked unmanned vehicles

    NASA Astrophysics Data System (ADS)

    Chao, Haiyang

    This dissertation focuses on how to design and employ networked unmanned vehicles for remote sensing and distributed control purposes in the current information-rich world. The target scenarios are environmental or agricultural applications such as river/reservoir surveillance, wind profiling measurement, and monitoring/control of chemical leaks, etc. AggieAir, a small and low-cost unmanned aircraft system, is designed based on the remote sensing requirements from environmental monitoring missions. The state estimation problem and the advanced lateral flight controller design problem are further attacked focusing on the small unmanned aerial vehicle (UAV) platform. Then the UAV-based remote sensing problem is focused with further flight test results. Given the measurements from unmanned vehicles, the actuation algorithms are needed for missions like the diffusion control. A consensus-based central Voronoi tessellation (CVT) algorithm is proposed for better control of the diffusion process. Finally, the dissertation conclusion and some new research suggestions are presented.

  12. Development of Autonomous Optimal Cooperative Control in Relay Rover Configured Small Unmanned Aerial Systems

    DTIC Science & Technology

    2013-03-01

    Unmanned Aircraft Systems Flight Plan that identified small unmanned aerial systems ( SUAS ) as “a profound technological...advances in small unmanned aerial systems ( SUAS ) cooperative control. The end state objective of the research effort was to flight test an autonomous...requirements were captured in the Unmanned Aircraft Systems Flight Plan . The flight plan

  13. NASA aeronautics

    NASA Technical Reports Server (NTRS)

    Anderton, D. A.

    1982-01-01

    Aeronautical research programs are discussed in relation to research methods and the status of the programs. The energy efficient aircraft, STOL aircraft and general aviation aircraft are considered. Aerodynamic concepts, rotary wing aircraft, aircraft safety, noise reduction, and aircraft configurations are among the topics included.

  14. 78 FR 12259 - Unmanned Aircraft System Test Site Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-22

    ...-0061] Unmanned Aircraft System Test Site Program AGENCY: Federal Aviation Administration (FAA), DOT... Defense, develop a test site program for the integration of unmanned aircraft systems in to the National Airspace System. The overall purpose of this test site program is to develop a body of data and operational...

  15. 14 CFR 61.97 - Aeronautical knowledge.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... “Aeronautical Information Manual” and FAA advisory circulars; (4) Use of aeronautical charts for VFR navigation using pilotage with the aid of a magnetic compass; (5) Recognition of critical weather situations from...

  16. 76 FR 65540 - NASA Advisory Council; Audit, Finance, and Analysis Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-21

    ...In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space Administration (NASA) announces that the meeting of the Audit, Finance and Analysis Committee of the NASA Advisory Council scheduled to be held at NASA Goddard Space Flight Center in Greenbelt, Maryland, on November 1-2, 2011, has been moved to a new location. It will now be held as follows: NASA Headquarters, Room 8D48, 300 E Street, SW., Washington, DC 20546, Tuesday, November 1, 2011, 2:00-5:15 p.m. and Wednesday, November 2, 2011, 9:00-9:55 a.m., Local Time.

  17. 1997 NASA Academy in Aeronautics

    NASA Technical Reports Server (NTRS)

    Andrisani, Dominick, II

    1998-01-01

    The NASA Academy in Aeronautics at the Dryden Flight Research Center (DFRC) was a ten-week summer leadership training program conducted for the first time in the summer of 1997. Funding was provided by a contract between DFRC and Purdue University. Mr. Lee Duke of DFRC was the contract monitor, and Professor Dominick Andrisani was the principal investigator. Five student research associates participated in the program. Biographies of the research associates are given in Appendix 1. Dominick Andrisani served as Dean of the NASA Academy in Aeronautics. NASA Academy in Aeronautics is a unique summer institute of higher learning that endeavors to provide insight into all of the elements that make NASA aeronautical research possible. At the same time the Academy assigns the research associate to be mentored by one of NASA!s best researchers so that they can contribute towards an active flight research program. Aeronautical research and development are an investment in the future, and NASA Academy is an investment in aeronautical leaders of the future. The Academy was run by the Indiana Space Grant Consortium at Purdue in strategic partnership with the National Space Grant College and Fellowship Program. Research associates at the Academy were selected with help from the Space Grant Consortium that sponsored the research associate. Research associate stipend and travel to DFRC were paid by the students' Space Grant Consortium. All other student expenses were paid by the Academy. Since the Academy at DFRC had only five students the opportunity for individual growth and attention was unique in the country. About 30% of the working time and most of the social time of the students were be spent as a "group" or "team." This time was devoted to exchange of ideas, on forays into the highest levels of decision making, and in executing aeronautical research. This was done by interviewing leaders throughout the aerospace industry, seminars, working dinners, and informal

  18. Quarantine provisions for unmanned extra-terrestrial missions

    NASA Technical Reports Server (NTRS)

    1976-01-01

    This document sets forth requirements applicable to unmanned planetary flight programs which are necessary to enable the Associate Administrator for Space Science to fulfill those responsibilities pertaining to planetary quarantine as stated in NPD 8020.7 and NPD 8020.10A. This document is specifically directed to the control of terrestrial microbial contamination associated with unmanned space vehicles intended to encounter, orbit, flyby, or otherwise be in the vicinity of extra-terrestrial solar system bodies. The requirements of this document apply to all unmanned planetary flight programs. This includes solar system exploratory missions to the major planets as well as missions to planet satellites, or to other solar system objects that may be of scientific interest. This document is not applicable to terrestrial (including lunar) missions and manned missions. NASA officials having cognizance of applicable flight programs will invoke these requirements in such directives or contractual instruments as may be necessary to assure their implementation.

  19. Compressibility Effects in Aeronautical Engineering

    NASA Technical Reports Server (NTRS)

    Stack, John

    1941-01-01

    Compressible-flow research, while a relatively new field in aeronautics, is very old, dating back almost to the development of the first firearm. Over the last hundred years, researches have been conducted in the ballistics field, but these results have been of practically no use in aeronautical engineering because the phenomena that have been studied have been the more or less steady supersonic condition of flow. Some work that has been done in connection with steam turbines, particularly nozzle studies, has been of value, In general, however, understanding of compressible-flow phenomena has been very incomplete and permitted no real basis for the solution of aeronautical engineering problems in which.the flow is likely to be unsteady because regions of both subsonic and supersonic speeds may occur. In the early phases of the development of the airplane, speeds were so low that the effects of compressibility could be justifiably ignored. During the last war and immediately after, however, propellers exhibited losses in efficiency as the tip speeds approached the speed of sound, and the first experiments of an aeronautical nature were therefore conducted with propellers. Results of these experiments indicated serious losses of efficiency, but aeronautical engineers were not seriously concerned at the time became it was generally possible. to design propellers with quite low tip. speeds. With the development of new engines having increased power and rotational speeds, however, the problems became of increasing importance.

  20. Intelligent autonomy for unmanned naval systems

    NASA Astrophysics Data System (ADS)

    Steinberg, Marc

    2006-05-01

    This paper provides an overview of the development and demonstration of intelligent autonomy technologies for control of heterogeneous unmanned naval air and sea vehicles and describes some of the current limitations of such technologies. The focus is on modular technologies that support highly automated retasking and fully autonomous dynamic replanning for up to ten heterogeneous unmanned systems based on high-level mission objectives, priorities, constraints, and Rules-of-Engagement. A key aspect of the demonstrations is incorporating frequent naval operator evaluations in order to gain better understanding of the integrated man/machine system and its tactical utility. These evaluations help ensure that the automation can provide information to the user in a meaningful way and that the user has a sufficient level of control and situation awareness to task the system as needed to complete complex mission tasks. Another important aspect of the program is examination of the interactions of higher-level autonomy algorithms with other relevant components that would be needed within the decision-making and control loops. Examples of these are vision and other sensor processing algorithms, sensor fusion, obstacle avoidance, and other lower level vehicle autonomous navigation, guidance, and control functions. Initial experiments have been completed using medium and high-fidelity vehicle simulations in a virtual warfare environment and inexpensive surrogate vehicles in flight and in-water demonstrations. Simulation experiments included integration of multi-vehicle task allocation, dynamic replanning under constraints, lower level autonomous vehicle control, automatic assessment of the impact of contingencies on plans, management of situation awareness data, operator alert management, and a mixed-initiative operator interface. In-water demonstrations of a maritime situation awareness capability were completed in both a river and a harbor environment using unmanned surface

  1. Simulation-Based Acceptance Testing for Unmanned Ground Vehicles

    DTIC Science & Technology

    2011-05-12

    Ground Robotic Reliability Center (GRRC) at the University of Michigan in 2010, the focus of his research has been on unmanned ground vehicles...Jong Lee is a former student of the University of Michigan’s Ground Robotics Reliability Center (GRRC). He received his Bachelor’s and Master’s degree...methods to improve reliability of Unmanned Ground Vehicle (UGV) systems. His primary research interests include robotic systems and control

  2. ACTS broadband aeronautical experiment

    NASA Technical Reports Server (NTRS)

    Abbe, Brian S.; Jedrey, Thomas C.; Estabrook, Polly; Agan, Martin J.

    1993-01-01

    In the last decade, the demand for reliable data, voice, and video satellite communication links between aircraft and ground to improve air traffic control, airline management, and to meet the growing demand for passenger communications has increased significantly. It is expected that in the near future, the spectrum required for aeronautical communication services will grow significantly beyond that currently available at L-band. In anticipation of this, JPL is developing an experimental broadband aeronautical satellite communications system that will utilize NASA's Advanced Communications Technology Satellite (ACTS) as a satellite of opportunity and the technology developed under JPL's ACTS Mobile Terminal (AMT) Task to evaluate the feasibility of using K/Ka-band for these applications. The application of K/Ka-band for aeronautical satellite communications at cruise altitudes is particularly promising for several reasons: (1) the minimal amount of signal attenuation due to rain; (2) the reduced drag due to the smaller K/Ka-band antennas (as compared to the current L-band systems); and (3) the large amount of available bandwidth. The increased bandwidth available at these frequencies is expected to lead to significantly improved passenger communications - including full-duplex compressed video and multiple channel voice. A description of the proposed broadband experimental system will be presented including: (1) applications of K/Ka-band aeronautical satellite technology to U.S. industry; (2) the experiment objectives; (3) the experiment set-up; (4) experimental equipment description; and (5) industrial participation in the experiment and the benefits.

  3. 46 CFR 151.02-5 - Design of unmanned barges.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Design of unmanned barges. 151.02-5 Section 151.02-5... CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Equivalents § 151.02-5 Design of unmanned barges. (a) In order not to inhibit design and application, the Commandant may approve vessels of novel design, both...

  4. Aeronautical Engineering: A continuing bibliography

    NASA Technical Reports Server (NTRS)

    1982-01-01

    This bibliography lists 347 reports, articles and other documents introduced into the scientific and technical information system. Documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated compounds, equipment, and systems are included. Research and development in aerodynamics, aeronautics and ground support equipment for aeronautical vehicles are also included.

  5. ARM Unmanned Aerial Systems Implementation Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmid, Beat; Ivey, Mark

    Recent advances in Unmanned Aerial Systems (UAS) coupled with changes in the regulatory environment for operations of UAS in the National Airspace increase the potential value of UAS to the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility. UAS include unmanned aerial vehicles (UAV) and tethered balloon systems (TBS). The roles UAVs and TBSs could play within the ARM Facility, particularly science questions they could help address, have been discussed in several workshops, reports, and vision documents, including: This document describes the implementation of a robust and vigorous program for use of UAV and TBS formore » the science missions ARM supports.« less

  6. Nomenclature for Aeronautics

    NASA Technical Reports Server (NTRS)

    1921-01-01

    The purpose of the Committee in the preparation and publication of this report is to secure uniformity in the official documents of the government and, as far as possible, in technical and other commercial publications. This report supersedes all previous publications of the Committee on this subject.

  7. 46 CFR 151.02-5 - Design of unmanned barges.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Design of unmanned barges. 151.02-5 Section 151.02-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Equivalents § 151.02-5 Design of unmanned barges. (a) In order not to inhibit design and application...

  8. 46 CFR 151.02-5 - Design of unmanned barges.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Design of unmanned barges. 151.02-5 Section 151.02-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Equivalents § 151.02-5 Design of unmanned barges. (a) In order not to inhibit design and application...

  9. 46 CFR 151.02-5 - Design of unmanned barges.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Design of unmanned barges. 151.02-5 Section 151.02-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Equivalents § 151.02-5 Design of unmanned barges. (a) In order not to inhibit design and application...

  10. Security Risk Assessment Process for UAS in the NAS CNPC Architecture

    NASA Technical Reports Server (NTRS)

    Iannicca, Dennis C.; Young, Dennis P.; Thadani, Suresh K.; Winter, Gilbert A.

    2013-01-01

    This informational paper discusses the risk assessment process conducted to analyze Control and Non-Payload Communications (CNPC) architectures for integrating civil Unmanned Aircraft Systems (UAS) into the National Airspace System (NAS). The assessment employs the National Institute of Standards and Technology (NIST) Risk Management framework to identify threats, vulnerabilities, and risks to these architectures and recommends corresponding mitigating security controls. This process builds upon earlier work performed by RTCA Special Committee (SC) 203 and the Federal Aviation Administration (FAA) to roadmap the risk assessment methodology and to identify categories of information security risks that pose a significant impact to aeronautical communications systems. A description of the deviations from the typical process is described in regards to this aeronautical communications system. Due to the sensitive nature of the information, data resulting from the risk assessment pertaining to threats, vulnerabilities, and risks is beyond the scope of this paper.

  11. Security Risk Assessment Process for UAS in the NAS CNPC Architecture

    NASA Technical Reports Server (NTRS)

    Iannicca, Dennis Christopher; Young, Daniel Paul; Suresh, Thadhani; Winter, Gilbert A.

    2013-01-01

    This informational paper discusses the risk assessment process conducted to analyze Control and Non-Payload Communications (CNPC) architectures for integrating civil Unmanned Aircraft Systems (UAS) into the National Airspace System (NAS). The assessment employs the National Institute of Standards and Technology (NIST) Risk Management framework to identify threats, vulnerabilities, and risks to these architectures and recommends corresponding mitigating security controls. This process builds upon earlier work performed by RTCA Special Committee (SC) 203 and the Federal Aviation Administration (FAA) to roadmap the risk assessment methodology and to identify categories of information security risks that pose a significant impact to aeronautical communications systems. A description of the deviations from the typical process is described in regards to this aeronautical communications system. Due to the sensitive nature of the information, data resulting from the risk assessment pertaining to threats, vulnerabilities, and risks is beyond the scope of this paper

  12. Ensuring US National Aeronautics Test Capabilities

    NASA Technical Reports Server (NTRS)

    Marshall, Timothy J.

    2010-01-01

    U.S. leadership in aeronautics depends on ready access to technologically advanced, efficient, and affordable aeronautics test capabilities. These systems include major wind tunnels and propulsion test facilities and flight test capabilities. The federal government owns the majority of the major aeronautics test capabilities in the United States, primarily through the National Aeronautics and Space Administration (NASA) and the Department of Defense (DoD). However, changes in the Aerospace landscape, primarily the decrease in demand for testing over the last 20 years required an overarching strategy for management of these national assets. Therefore, NASA established the Aeronautics Test Program (ATP) as a two-pronged strategic initiative to: (1) retain and invest in NASA aeronautics test capabilities considered strategically important to the agency and the nation, and (2) establish a strong, high level partnership with the DoD. Test facility utilization is a critical factor for ATP because it relies on user occupancy fees to recover a substantial part of the operations costs for its facilities. Decreasing utilization is an indicator of excess capacity and in some cases low-risk redundancy (i.e., several facilities with basically the same capability and overall low utilization). However, low utilization does not necessarily translate to lack of strategic importance. Some facilities with relatively low utilization are nonetheless vitally important because of the unique nature of the capability and the foreseeable aeronautics testing needs. Unfortunately, since its inception, the customer base for ATP has continued to shrink. Utilization of ATP wind tunnels has declined by more than 50% from the FY 2006 levels. This significant decrease in customer usage is attributable to several factors, including the overall decline in new programs and projects in the aerospace sector; the impact of computational fluid dynamics (CFD) on the design, development, and research

  13. Unmanned spacecraft for research

    NASA Technical Reports Server (NTRS)

    Graves, C. D.

    1972-01-01

    The applications of unmanned spacecraft for research purposes are discussed. Specific applications of the Communication and Navigation satellites and the Earth Observations satellites are described. Diagrams of communications on world-wide basis using synchronous satellites are developed. Photographs of earth resources and geology obtained from space vehicles are included.

  14. Unmanned Aerial Vehicles

    DTIC Science & Technology

    1994-05-31

    Project , which is part of the trol, Communications and Intelligence In response to congressional...direction in Program Executive Office, Cruise Mis- (C31), the working group includes repre- FY88 to consolidate the management of siles Project and Unmanned...34* Support test and evaluation of ated with the draw down of the Pioneer Invest selectively in safety potential UAV payloads system as it is replaced by the

  15. Flying Unmanned Aircraft: A Pilot's Perspective

    NASA Technical Reports Server (NTRS)

    Pestana, Mark E.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) is pioneering various Unmanned Aircraft System (UAS) technologies and procedures which may enable routine access to the National Airspace System (NAS), with an aim for Next Gen NAS. These tools will aid in the development of technologies and integrated capabilities that will enable high value missions for science, security, and defense, and open the door to low-cost, extreme-duration, stratospheric flight. A century of aviation evolution has resulted in accepted standards and best practices in the design of human-machine interfaces, the displays and controls of which serve to optimize safe and efficient flight operations and situational awareness. The current proliferation of non-standard, aircraft-specific flight crew interfaces in UAS, coupled with the inherent limitations of operating UAS without in-situ sensory input and feedback (aural, visual, and vestibular cues), has increased the risk of mishaps associated with the design of the "cockpit." The examples of current non- or sub- standard design features range from "annoying" and "inefficient", to those that are difficult to manipulate or interpret in a timely manner, as well as to those that are "burdensome" and "unsafe." A concerted effort is required to establish best practices and standards for the human-machine interfaces, for the pilot as well as the air traffic controller. In addition, roles, responsibilities, knowledge, and skill sets are subject to redefining the terms, "pilot" and "air traffic controller", with respect to operating UAS, especially in the Next-Gen NAS. The knowledge, skill sets, training, and qualification standards for UAS operations must be established, and reflect the aircraft-specific human-machine interfaces and control methods. NASA s recent experiences flying its MQ-9 Ikhana in the NAS for extended duration, has enabled both NASA and the FAA to realize the full potential for UAS, as well as understand the implications of

  16. Unmanned Mine of the 21st Centuries

    NASA Astrophysics Data System (ADS)

    Semykina, Irina; Grigoryev, Aleksandr; Gargayev, Andrey; Zavyalov, Valeriy

    2017-11-01

    The article is analytical. It considers the construction principles of the automation system structure which realize the concept of «unmanned mine». All of these principles intend to deal with problems caused by a continuous complication of mining-and-geological conditions at coalmine such as the labor safety and health protection, the weak integration of different mining automation subsystems and the deficiency of optimal balance between a quantity of resource and energy consumed by mining machines and their throughput. The authors describe the main problems and neck stage of mining machines autonomation and automation subsystem. The article makes a general survey of the applied «unmanned technology» in the field of mining such as the remotely operated autonomous complexes, the underground positioning systems of mining machines using infrared radiation in mine workings etc. The concept of «unmanned mine» is considered with an example of the robotic road heading machine. In the final, the authors analyze the techniques and methods that could solve the task of underground mining without human labor.

  17. ICAROUS: Integrated Configurable Architecture for Unmanned Systems

    NASA Technical Reports Server (NTRS)

    Consiglio, Maria C.

    2016-01-01

    NASA's Unmanned Aerial System (UAS) Traffic Management (UTM) project aims at enabling near-term, safe operations of small UAS vehicles in uncontrolled airspace, i.e., Class G airspace. A far-term goal of UTM research and development is to accommodate the expected rise in small UAS traffic density throughout the National Airspace System (NAS) at low altitudes for beyond visual line-of-sight operations. This video describes a new capability referred to as ICAROUS (Integrated Configurable Algorithms for Reliable Operations of Unmanned Systems), which is being developed under the auspices of the UTM project. ICAROUS is a software architecture comprised of highly assured algorithms for building safety-centric, autonomous, unmanned aircraft applications. Central to the development of the ICAROUS algorithms is the use of well-established formal methods to guarantee higher levels of safety assurance by monitoring and bounding the behavior of autonomous systems. The core autonomy-enabling capabilities in ICAROUS include constraint conformance monitoring and autonomous detect and avoid functions. ICAROUS also provides a highly configurable user interface that enables the modular integration of mission-specific software components.

  18. Unmanned planetary spacecraft chemical rocket propulsion.

    NASA Technical Reports Server (NTRS)

    Burlage, H., Jr.; Gin, W.; Riebling, R. W.

    1972-01-01

    Review of some chemical propulsion technology advances suitable for future unmanned spacecraft applications. Discussed system varieties include liquid space-storable propulsion systems, advanced liquid monopropellant systems, liquid systems for rendezvous and landing applications, and low-thrust high-performance solid-propellant systems, as well as hybrid space-storable systems. To optimize the performance and operational characteristics of an unmanned interplanetary spacecraft for a particular mission, and to achieve high cost effectiveness of the entire system, it is shown to be essential that the type of spacecraft propulsion system to be used matches, as closely as possible the various requirements and constraints. The systems discussed are deemed to be the most promising candidates for some of the anticipated interplanetary missions.

  19. Model Identification and Control System Design for the Lambda Unmanned Research Vehicle

    DTIC Science & Technology

    1991-09-01

    AD-A241 859 D T IC_ _ _ _ _ __ OCT 21921MODEL IDENTIFICATION AND CONTROL SYSTEM DESIGN FOR THE LAMBDA UNMANNED RESEARCH VEHICLE: THESIS Gerald A...23 191K MODEL IDENTIFICATION AND CONTROL SYSTEM DESIGN FOR THE LAMBDA UNMANNED RESEARCH VEHICLE THESIS Gerald A. Swift, First Lieutenant, USAF AFIT...UNMANNED RESEARCH VEHICLE THESIS Presented to the Faculty of the School of Engineering of the Air Force Institute of Technology Air University in Partial

  20. Unmanned Aerial Vehicles: Background and Issues for Congress

    DTIC Science & Technology

    2005-11-21

    services are buying million dollar UAVs using operations and maintenance funding that has never been specifically authorized for UAVs and for which...H.R. 2863, H.Rept. 109-119, H.R. 2863, S.Rept. 109-141 CRS-43 135 Peter La Franchi . “Directory: Unmanned Air Vehicles.” Flight International, June...Communications and Electronics FY2006, February 2005, TUAV (B00301), Item No. 62, p. 1 of 16. 162 Peter La Franchi . “Directory: Unmanned Air Vehicles

  1. 14 CFR 61.125 - Aeronautical knowledge.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... magnetic compass for pilotage and dead reckoning; (10) Use of air navigation facilities; (11) Aeronautical... aeronautical knowledge areas of paragraph (b) of this section that apply to the aircraft category and class... operation of aircraft; (6) Weight and balance computations; (7) Use of performance charts; (8) Significance...

  2. Unmanned Aircraft: A Pilot's Perspective

    NASA Technical Reports Server (NTRS)

    Pestana, Mark E.

    2010-01-01

    This slide presentation reviews some of the challenges of "piloting" a unmanned aircraft. The topic include the pilot-vehicle interact design, the concept of pilot/operator, and role of NASA's Ikhana UAS in the western states fire mission.

  3. Advanced imaging of transportation infrastructure using unmanned aircraft systems : final report.

    DOT National Transportation Integrated Search

    2017-01-01

    The University of Alaska Fairbanks has been conducting research into unmanned : aircraft systems (UAS) since 2000, with more missions and mission diversity than : any other university. With the creation of the Alaska Center for Unmanned Aircraft : Sy...

  4. Unmanned aircraft system bridge inspection demonstration project phase II final report.

    DOT National Transportation Integrated Search

    2017-06-01

    An Unmanned Aircraft System (UAS) is defined by the Federal Aviation Administration (FAA) as an aircraft operated without the possibility of direct human intervention from within the aircraft. Unmanned aircraft are familiarly referred to as drones, a...

  5. Aeronautics and Space Engineering Board: Aeronautics Assessment Committee

    NASA Technical Reports Server (NTRS)

    1977-01-01

    High temperature engine materials, fatigue and fracture life prediction, composite materials, propulsion noise pollution, propulsion components, full-scale engine research, V/STOL propulsion, advanced engine concepts, and advanced general aviation propulsion research were discussed.

  6. Aeronautical Engineering: A Continuing Bibliography. Supplement 421

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP#2000-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.

  7. Advancing Aeronautics: A Decision Framework for Selecting Research Agendas

    NASA Technical Reports Server (NTRS)

    Anton, Philip S.; Ecola, Liisa; Kallimani, James G.; Light, Thomas; Ohlandt, Chad J. R.; Osburg, Jan; Raman, Raj; Grammich, Clifford A.

    2011-01-01

    Publicly funded research has long played a role in the development of aeronautics, ranging from foundational research on airfoils to development of the air-traffic control system. Yet more than a century after the research and development of successful controlled, sustained, heavier-than-air flight vehicles, there are questions over the future of aeronautics research. The field of aeronautics is relatively mature, technological developments within it have become more evolutionary, and funding decisions are sometimes motivated by the continued pursuit of these evolutionary research tracks rather than by larger factors. These developments raise questions over whether public funding of aeronautics research continues to be appropriate or necessary and at what levels. Tightened federal budgets and increasing calls to address other public demands make these questions sharper still. To help it address the questions of appropriate directions for publicly funded aeronautics research, the National Aeronautics and Space Administration's (NASA's) Aeronautics Research Mission Directorate (ARMD) asked the RAND Corporation to assess the elements required to develop a strategic view of aeronautics research opportunities; identify candidate aeronautic grand challenges, paradigms, and concepts; outline a framework for evaluating them; and exercise the framework as an example of how to use it. Accordingly, this research seeks to address these questions: What aeronautics research should be supported by the U.S. government? What compelling and desirable benefits drive government-supported research? How should the government--especially NASA--make decisions about which research to support? Advancing aeronautics involves broad policy and decisionmaking challenges. Decisions involve tradeoffs among competing perspectives, uncertainties, and informed judgment.

  8. The Role of Unmanned Aerial Systems-Sensors in Air Quality Research

    EPA Science Inventory

    The use of unmanned aerial systems (UASs) and miniaturized sensors for a variety of scientific and security purposes has rapidly increased. UASs include aerostats (tethered balloons) and remotely controlled, unmanned aerial vehicles (UAVs) including lighter-than-air vessels, fix...

  9. 14 CFR 61.97 - Aeronautical knowledge.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... knowledge areas of paragraph (b) of this section that apply to the aircraft category and class rating sought... “Aeronautical Information Manual” and FAA advisory circulars; (4) Use of aeronautical charts for VFR navigation using pilotage with the aid of a magnetic compass; (5) Recognition of critical weather situations from...

  10. University/government/industry relations in aeronautics

    NASA Technical Reports Server (NTRS)

    Schairer, G. S.

    1975-01-01

    Methods for improving the relationships between universities, the aircraft industry, and the Government are proposed. The author submits nine specific recommendations aimed at more effective aeronautical engineering education and employment of graduate engineers. The need for improved communication between the organizations which influence the advancement of aeronautical sciences is stressed.

  11. Unmanned Aircraft House Hearing

    NASA Image and Video Library

    2013-02-15

    Dr. Gerald Dillingham, Director, Civil Aviation Issues, Government Accounting Office (GAO), talks during a House Subcommittee on Oversight hearing titled "Operating Unmanned Aircraft Systems in the National Airspace System: Assessing Research and Development Efforts to Ensure Safety" on Friday, Feb. 15, 2013 at the Rayburn House Office Building in Washington. Photo Credit: (NASA/Bill Ingalls)

  12. The Role of Unmanned Aerial Systems/Sensors in Air Quality Research

    EPA Science Inventory

    The use of unmanned aerial systems (UASs) for a variety of scientific and security purposes has rapidly increased. UASs include aerostats (tethered balloons) and remotely controlled, unmanned aerial vehicles (UAVs) including lighter-than-air vessels, fixed wing airplanes, and he...

  13. The Ground Control Room as an Enabling Technology in the Unmanned Aerial System

    NASA Technical Reports Server (NTRS)

    Gear, Gary; Mace, Thomas

    2007-01-01

    This viewgraph presentation reviews the development of the ground control room as an required technology for the use of an Unmanned Aerial system. The Unmanned Aerial system is a strategic component of the Global Observing System, which will serve global science needs. The unmanned aerial system will use the same airspace as manned aircraft, therefore there will be unique telemetry needs.

  14. Application of Mobile-ip to Space and Aeronautical Networks

    NASA Technical Reports Server (NTRS)

    Leung, Kent; Shell, Dan; Ivancic, William D.; Stewart, David H.; Bell, Terry L.; Kachmar, Brian A.

    2001-01-01

    The National Aeronautics and Space Administration (NASA) is interested in applying mobile Internet protocol (mobile-ip) technologies to its space and aeronautics programs. In particular, mobile-ip will play a major role in the Advanced Aeronautic Transportation Technology (AAT-F), the Weather Information Communication (WINCOMM), and the Small Aircraft Transportation System (SATS) aeronautics programs. This paper describes mobile-ip and mobile routers--in particular, the features, capabilities, and initial performance of the mobile router are presented. The application of mobile-router technology to NASA's space and aeronautics programs is also discussed.

  15. Development and prospect of unmanned aerial vehicles for agricultural production management

    USDA-ARS?s Scientific Manuscript database

    Unmanned aerial vehicles have been developed and applied to support agricultural production management. Compared to piloted aircrafts, an Unmanned Aerial Vehicle (UAV) can focus on small crop fields in lower flight altitude than regular airplanes to perform site-specific management with high precisi...

  16. Droning On: American Strategic Myopia Toward Unmanned Aerial Systems

    DTIC Science & Technology

    2013-12-01

    torpedo, nicknamed the “Bug.”3 This system consisted of pre-set pneumatic and electrical controls that stabilized and guided it toward...race their homemade drones around Mount Damavand.88 These competitions and DIY efforts provide short-term innovation of unmanned technologies. This...an even greater threat to the homeland comes from homegrown or lone wolf actor’s possession of unmanned technology. DIY kits aid in building drones

  17. A survey of unmanned ground vehicles with applications to agricultural and environmental sensing

    NASA Astrophysics Data System (ADS)

    Bonadies, Stephanie; Lefcourt, Alan; Gadsden, S. Andrew

    2016-05-01

    Unmanned ground vehicles have been utilized in the last few decades in an effort to increase the efficiency of agriculture, in particular, by reducing labor needs. Unmanned vehicles have been used for a variety of purposes including: soil sampling, irrigation management, precision spraying, mechanical weeding, and crop harvesting. In this paper, unmanned ground vehicles, implemented by researchers or commercial operations, are characterized through a comparison to other vehicles used in agriculture, namely airplanes and UAVs. An overview of different trade-offs of configurations, control schemes, and data collection technologies is provided. Emphasis is given to the use of unmanned ground vehicles in food crops, and includes a discussion of environmental impacts and economics. Factors considered regarding the future trends and potential issues of unmanned ground vehicles include development, management and performance. Also included is a strategy to demonstrate to farmers the safety and profitability of implementing the technology.

  18. TALON: a universal unmanned ground vehicle platform, enabling the mission to be the focus

    NASA Astrophysics Data System (ADS)

    Wells, Peter; Deguire, Dan

    2005-05-01

    Foster-Miller's unmanned ground vehicle, TALON, was originally developed under DARPA's Tactical Mobile Robotics (TMR) program. TALON has evolved over the years and has proven to be a robust, mobile, universal platform. As a result of the advances made in the evolution of TALON, new and far-reaching opportunities have been realized for unmanned ground vehicles. In recent conflicts such as in Afghanistan and Iraq, unmanned systems have played an important role and have extended the reach and capabilities of the War fighter. Technological advances have transformed unmanned vehicles in to useful tools and in some cases are used in lieu of sending in a soldier. Unmanned ground vehicles have seen recent and persistent success, as shown in theater, in the explosive ordinance disposal (EOD) and improvised ordinance disposal (IED) missions. Foster-Miller's TALON has experienced over ten thousand EOD and IED missions in Iraq alone. The success of the unmanned system has resulted in the doctrine "Send the robot in first". Foster-Miller has taken the role of the unmanned vehicle in yet another direction. Foster-Miller has transformed the TALON from a "practical" to "tactical" system. Through the combined efforts of Foster-Miller and the US Army, TALON has been involved in a weaponization program. To date, Foster-Miller has outfitted the TALON with 11 systems. As one can see, the unmanned ground vehicle is much more than a mobility platform.

  19. Human Factors in Aeronautics at NASA

    NASA Technical Reports Server (NTRS)

    Mogford, Richard

    2016-01-01

    This is a briefing to a regularly meeting DoD group called the Human Systems Community of Interest: Mission Effectiveness. I was asked to address human factors in aeronautics at NASA. (Exploration (space) human factors has apparently already been covered.) The briefing describes human factors organizations at NASA Ames and Langley. It then summarizes some aeronautics tasks that involve the application of human factors in the development of specific tools and capabilities. The tasks covered include aircrew checklists, dispatch operations, Playbook, Dynamic Weather Routes, Traffic Aware Strategic Aircrew Requests, and Airplane State Awareness and Prediction Technologies. I mention that most of our aeronautics work involves human factors as embedded in development tasks rather than basic research.

  20. Development of Unmanned Aerial Vehicles for Site-Specific Crop Production Management

    USDA-ARS?s Scientific Manuscript database

    Unmanned Aerial Vehicles (UAV) have been developed and applied to support the practice of precision agriculture. Compared to piloted aircrafts, an Unmanned Aerial Vehicle can focus on much smaller crop fields with much lower flight altitude than regular airplanes to perform site-specific management ...

  1. Reliability Assessment for Low-cost Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Freeman, Paul Michael

    Existing low-cost unmanned aerospace systems are unreliable, and engineers must blend reliability analysis with fault-tolerant control in novel ways. This dissertation introduces the University of Minnesota unmanned aerial vehicle flight research platform, a comprehensive simulation and flight test facility for reliability and fault-tolerance research. An industry-standard reliability assessment technique, the failure modes and effects analysis, is performed for an unmanned aircraft. Particular attention is afforded to the control surface and servo-actuation subsystem. Maintaining effector health is essential for safe flight; failures may lead to loss of control incidents. Failure likelihood, severity, and risk are qualitatively assessed for several effector failure modes. Design changes are recommended to improve aircraft reliability based on this analysis. Most notably, the control surfaces are split, providing independent actuation and dual-redundancy. The simulation models for control surface aerodynamic effects are updated to reflect the split surfaces using a first-principles geometric analysis. The failure modes and effects analysis is extended by using a high-fidelity nonlinear aircraft simulation. A trim state discovery is performed to identify the achievable steady, wings-level flight envelope of the healthy and damaged vehicle. Tolerance of elevator actuator failures is studied using familiar tools from linear systems analysis. This analysis reveals significant inherent performance limitations for candidate adaptive/reconfigurable control algorithms used for the vehicle. Moreover, it demonstrates how these tools can be applied in a design feedback loop to make safety-critical unmanned systems more reliable. Control surface impairments that do occur must be quickly and accurately detected. This dissertation also considers fault detection and identification for an unmanned aerial vehicle using model-based and model-free approaches and applies those

  2. Astronautics and Aeronautics, 1986-1990: A Chronology

    NASA Technical Reports Server (NTRS)

    Gawdiak, Ihor Y.; Miro, Ramon J.; Stueland, Sam

    1997-01-01

    This chronology of events in aeronautics, aviation, space science, and space exploration was prepared by the Federal Research Division of the LibrarY of Congress for the History Division of the National Aeronautics and Space Administration (NASA). It covers the years 1996-1990 and continues the series of annual chronologies published by NASA. The present volume returns to the format used in the Astronautics and Aeronautics, 1979-1984: A Chronology volume. It also integrates in a single table the information presented in two or three previous publications.

  3. Astronautics and Aeronautics, 1991-1995: A Chronology

    NASA Technical Reports Server (NTRS)

    Gawdiak, Ihor Y. (Compiler); Shetland, Charles (Compiler)

    2000-01-01

    This chronology of events in aeronautics, aviation, space science, and space exploration was prepared by the Federal Research Division of the Library of Congress and RSIS for the History Division of the National Aeronautics and Space Administration (NASA). It covers the years 1991-1995 and continues the series of annual chronologies published by NASA. The present volume uses the format of the previous edition of this series, Astronautics and Aeronautics, 1986-1990: A Chronology. It also integrates, in the appendices, information presented in previous publication

  4. Cadastral Audit and Assessments Using Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Cunningham, K.; Walker, G.; Stahlke, E.; Wilson, R.

    2011-09-01

    Ground surveys and remote sensing are integral to establishing fair and equitable property valuations necessary for real property taxation. The International Association of Assessing Officers (IAAO) has embraced aerial and street-view imaging as part of its standards related to property tax assessments and audits. New technologies, including unmanned aerial systems (UAS) paired with imaging sensors, will become more common as local governments work to ensure their cadastre and tax rolls are both accurate and complete. Trends in mapping technology have seen an evolution in platforms from large, expensive manned aircraft to very small, inexpensive UAS. Traditional methods of photogrammetry have also given way to new equipment and sensors: digital cameras, infrared imagers, light detection and ranging (LiDAR) laser scanners, and now synthetic aperture radar (SAR). At the University of Alaska Fairbanks (UAF), we work extensively with unmanned aerial systems equipped with each of these newer sensors. UAF has significant experience flying unmanned systems in the US National Airspace, having begun in 1969 with scientific rockets and expanded to unmanned aircraft in 2003. Ongoing field experience allows UAF to partner effectively with outside organizations to test and develop leading-edge research in UAS and remote sensing. This presentation will discuss our research related to various sensors and payloads for mapping. We will also share our experience with UAS and optical systems for creating some of the first cadastral surveys in rural Alaska.

  5. Canadian aeronautical mobile data trials

    NASA Technical Reports Server (NTRS)

    Pedersen, Allister; Pearson, Andrea

    1993-01-01

    This paper describes a series of aeronautical mobile data trials conducted on small aircraft (helicopters and fixed wing) utilizing a low-speed store-and-forward mobile data service. The paper outlines the user requirements for aeronautical mobile satellite communications. 'Flight following' and improved wide-area dispatch communications were identified as high priority requirements. A 'proof-of-concept' trial in a Cessna Skymaster aircraft is described. This trial identified certain development work as essential to the introduction of commercial service including antenna development, power supply modifications and doppler software modifications. Other improvements were also proposed. The initial aeronautical mobile data service available for pre-operational (Beta) trials is outlined. Pre-operational field trials commenced in October 1992 and consisted of installations on a Gralen Communications Inc. Cessna 177 and an Aerospatiale Astar 350 series light single engine helicopter. The paper concludes with a discussion of desirable near term mobile data service developments, commercial benefits, current safety benefits and potential future applications for improved safety.

  6. The application demand analysis of advanced photoelectric technology in the future unmanned vehicle loads

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Cao, Wei; Li, Shengcai; Lu, Peng

    2018-01-01

    Introduced some unmanned vehicles development present situation, points out that the main development trend of photoelectric technology, analyzes the basic ability requirement of unmanned vehicles, in the future war system demonstrates the photoelectric information transmission, battlefield situational awareness, photoelectric integrated optoelectronic technology such as against the application of the unmanned vehicles demand in the future.

  7. Aeronautical record : no. 1 (to June, 1923)

    NASA Technical Reports Server (NTRS)

    1923-01-01

    "...considerations have prompted us to pay special attention to the development of aeronautical industries and aerial navigation as a commercial enterprise and to publish an analytical review of events in the aeronautical world and of the attendant problems."

  8. Aeronautical Engineering: A Continuing Bibliography. Supplment 385

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-1998-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract.

  9. Unmanned Ground Systems Roadmap

    DTIC Science & Technology

    2011-07-01

    6 1.3.1 RDECOM, Academia, Industry ..................................................................................... 6 1.3.2 Rapid...for unmanned capabilities can be supported and from which PORs can be facilitated when necessary  The RS JPO formed a Government/ Industry Working...products. 1.3.1 RDECOM, Academia, Industry Given the RS JPO‟s close working relations with academia, industry partners and the RDECOM Labs, the

  10. A Queueing Model for Supervisory Control of Unmanned Autonomous Vehicles

    DTIC Science & Technology

    2013-09-01

    Autonomous Vehicles Joseph DiVita, PhD Robert L. Morris Maria Olinda Rodas SSC Pacific Approved...298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18 09–2013 Final A Queueing Model for Supervisory Control of Unmanned Autonomous Vehicles Joseph...Mission Area: Command and Control, Queueing Model; Supervisory Control; Unmanned Autonomous Vehicles M. O. Rodas U U U U 38 (619)

  11. Aeronautical facilities assessment

    NASA Technical Reports Server (NTRS)

    Penaranda, F. E. (Compiler)

    1985-01-01

    A survey of the free world's aeronautical facilities was undertaken and an evaluation made on where the relative strengths and weaknesses exist. Special emphasis is given to NASA's own capabilities and needs. The types of facilities surveyed are: Wind Tunnels; Airbreathing Propulsion Facilities; and Flight Simulators

  12. Sensor data fusion for automated threat recognition in manned-unmanned infantry platoons

    NASA Astrophysics Data System (ADS)

    Wildt, J.; Varela, M.; Ulmke, M.; Brüggermann, B.

    2017-05-01

    To support a dismounted infantry platoon during deployment we team it with several unmanned aerial and ground vehicles (UAV and UGV, respectively). The unmanned systems integrate seamlessly into the infantry platoon, providing automated reconnaissance during movement while keeping formation as well as conducting close range reconnaissance during halt. The sensor data each unmanned system provides is continuously analyzed in real time by specialized algorithms, detecting humans in live videos of UAV mounted infrared cameras as well as gunshot detection and bearing by acoustic sensors. All recognized threats are fused into a consistent situational picture in real time, available to platoon and squad leaders as well as higher level command and control (C2) systems. This gives friendly forces local information superiority and increased situational awareness without the need to constantly monitor the unmanned systems and sensor data.

  13. Tactical 3D model generation using structure-from-motion on video from unmanned systems

    NASA Astrophysics Data System (ADS)

    Harguess, Josh; Bilinski, Mark; Nguyen, Kim B.; Powell, Darren

    2015-05-01

    Unmanned systems have been cited as one of the future enablers of all the services to assist the warfighter in dominating the battlespace. The potential benefits of unmanned systems are being closely investigated -- from providing increased and potentially stealthy surveillance, removing the warfighter from harms way, to reducing the manpower required to complete a specific job. In many instances, data obtained from an unmanned system is used sparingly, being applied only to the mission at hand. Other potential benefits to be gained from the data are overlooked and, after completion of the mission, the data is often discarded or lost. However, this data can be further exploited to offer tremendous tactical, operational, and strategic value. To show the potential value of this otherwise lost data, we designed a system that persistently stores the data in its original format from the unmanned vehicle and then generates a new, innovative data medium for further analysis. The system streams imagery and video from an unmanned system (original data format) and then constructs a 3D model (new data medium) using structure-from-motion. The 3D generated model provides warfighters additional situational awareness, tactical and strategic advantages that the original video stream lacks. We present our results using simulated unmanned vehicle data with Google Earth™providing the imagery as well as real-world data, including data captured from an unmanned aerial vehicle flight.

  14. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project: Terminal Operations HITL 1: Primary Results

    NASA Technical Reports Server (NTRS)

    Rorie, Conrad; Fern, Lisa; Monk, Kevin; Roberts, Zach; Brandt, Summer

    2017-01-01

    This presentation covers the primary results of the Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project Terminal Operations Foundational Human-in-the-Loop (HITL) simulation. The study tasked 16 pilots (half with manned piloting experience, and the other half with unmanned piloting experience) with maintaining "well clear" from other traffic while performing three different types of approaches into the Santa Rosa airport. A detect and avoid (DAA) system was provided to pilots to assist their ability to manage separation. The DAA system used in this test conformed to the criteria defined by RTCA Special Committee 228 (SC-228) in their Phase 1 Minimum Operational Performance Standards (MOPS) for UAS intending to operate in the NAS. The Phase 1 system was not designed to account for terminal operations, focusing instead on en route operations. To account for this, three different alerting and guidance configurations were presently tested in order to determine their effect on pilots operating the system in the terminal area. Results indicated that pilots with the alerting and guidance condition that provided the least amount of assistance (fewer alert levels and guidance types) experienced slightly increased pilot response times and rates of losses of separation. Additional data is presented on the effects of approach type and descriptive data on pilot maneuver preferences and ATC interoperability.

  15. Breakaway: A Look at the Integration of Aerial Refueling and Unmanned Aircraft Systems in Future Operations

    DTIC Science & Technology

    2007-06-15

    possibility of air refueling unmanned platforms that will prolong their loiter time. Because of the senior leader pressure to get a persistent presence...future force of 2025 will undoubtedly include many unmanned aircraft and manned aircraft. This thesis investigates how aerial refueling and unmanned...leader pressure to get a persistent presence of unmanned aircraft through air refueling, they might have waived the “sanity check” for this, or

  16. Aeronautical engineering: A continuing bibliography with indexes (supplement 294)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This issue of Aeronautical Engineering - A Continuing Bibliography with Indexes lists 590 reports, journal articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspect of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. The bibliographic series is compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). Seven indexes are included: subject, personal author, corporate source, foreign technology, contract number, report number, and accession number.

  17. The role of human-automation consensus in multiple unmanned vehicle scheduling.

    PubMed

    Cummings, M L; Clare, Andrew; Hart, Christin

    2010-02-01

    This study examined the impact of increasing automation replanning rates on operator performance and workload when supervising a decentralized network of heterogeneous unmanned vehicles. Futuristic unmanned vehicles systems will invert the operator-to-vehicle ratio so that one operator can control multiple dissimilar vehicles connected through a decentralized network. Significant human-automation collaboration will be needed because of automation brittleness, but such collaboration could cause high workload. Three increasing levels of replanning were tested on an existing multiple unmanned vehicle simulation environment that leverages decentralized algorithms for vehicle routing and task allocation in conjunction with human supervision. Rapid replanning can cause high operator workload, ultimately resulting in poorer overall system performance. Poor performance was associated with a lack of operator consensus for when to accept the automation's suggested prompts for new plan consideration as well as negative attitudes toward unmanned aerial vehicles in general. Participants with video game experience tended to collaborate more with the automation, which resulted in better performance. In decentralized unmanned vehicle networks, operators who ignore the automation's requests for new plan consideration and impose rapid replans both increase their own workload and reduce the ability of the vehicle network to operate at its maximum capacity. These findings have implications for personnel selection and training for futuristic systems involving human collaboration with decentralized algorithms embedded in networks of autonomous systems.

  18. Journey in Aeronautical Research: A Career at NASA Langley Research Center. No. 12; Monographs in Aerospace History

    NASA Technical Reports Server (NTRS)

    Phillips, W. Hewitt

    1998-01-01

    An autobiography, of a noted aeronautical engineer, W. Hewitt Phillips, whose career spanned 58 years (1940-1998) at NASA Langley is presented. This work covers his early years to the Sputnik launch. His interests have been in research in aeronautics and in the related problems of spaceflight. After an introduction, his early life through the college years is reviewed, and his early interest in model airplanes is described. The first assignment for the National Advisory Committee for Aeronautics (NACA), which would later become NASA, was with the Flight Research Division. His early work involved "Flying Qualities", i.e., the stability and control characteristics of an airplane. The next chapter describes his early analytical studies. His work during World War II in the design of military airplanes, and the other effects of the war on research activities, is covered in the next two chapters. This research was involved in such innovations and refinements as the swept wing, the flettner tabs, servo tabs, spring tabs and whirlerons. The rest of the work covers the research which Mr. Hewitt was involved in, after the war until the Sputnik launch. These areas include unsteady lift, measurements of turbulence in the atmosphere, gust alleviation, and lateral response to random turbulence. He was also involved in several investigations of airplane accidents. The last two chapters cover the administration of the Langley Research Center, and the dawn of the Space Age. A complete bibliography of reports written by Mr. Hewitt, is included.

  19. Unmanned powered balloons

    NASA Technical Reports Server (NTRS)

    Korn, A. O.

    1975-01-01

    In the late 1960's several governmental agencies sponsored efforts to develop unmanned, powered balloon systems for scientific experimentation and military operations. Some of the programs resulted in hardware and limited flight tests; others, to date, have not progressed beyond the paper study stage. Balloon system designs, materials, propulsion units and capabilities are briefly described, and critical problem areas are pointed out which require further study in order to achieve operational powered balloon systems capable of long duration flight at high altitudes.

  20. Aeronautical Engineering: A continuing bibliography, 1982 cumulative index

    NASA Technical Reports Server (NTRS)

    1983-01-01

    This bibliography is a cumulative index to the abstracts contained in NASA SP-7037 (145) through NASA SP-7037 (156) of Aeronautical Engineering: A Continuing Bibliography. NASA SP-7037 and its supplements have been compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, contract, and report number indexes.

  1. Economic analysis of aeronautical research and technology

    NASA Technical Reports Server (NTRS)

    Gellman, A. J.

    1982-01-01

    The appropriateness of government intervention in the civilian market for aeronautics research and technology (R&T) is examined. The economic rationale for government intervention is examined. The conclusion is that the institutional role played by NASA in civilian aeronautics R&T markets is economically justified.

  2. Systems Engineering Approach to Develop Guidance, Navigation and Control Algorithms for Unmanned Ground Vehicle

    DTIC Science & Technology

    2016-09-01

    identification and tracking algorithm. 14. SUBJECT TERMS unmanned ground vehicles , pure pursuit, vector field histogram, feature recognition 15. NUMBER OF...located within the various theaters of war. The pace for the development and deployment of unmanned ground vehicles (UGV) was, however, not keeping...DEVELOPMENT OF UNMANNED GROUND VEHICLES The development and fielding of UGVs in an operational role are not a new concept in the battlefield. In

  3. Historical perspectives on thermostructural research at the NACA Langley Aeronautical Laboratory from 1948 to 1958

    NASA Technical Reports Server (NTRS)

    Heldenfels, R. R.

    1982-01-01

    Research on structural problems associated with aerodynamic heating, conducted by the National Advisory Committee for Aeronautics (NACA) during its last decade are described. The text of a special presentation given at the NASA Symposium on Computational Aspects of Heat Transfer in Structure is presented. Some early thermostructural research activities using charts is also discussed. The prinicipal message of the paper is that although vehicle oriented research programs speed development of new technology for specific missions, too much effort may be expended on developing technology which is never used because a vehicle is never built. A healthy research program must provide freedom to explore new ideas that have no obvious applications at the time to generate the technology that makes important, unanticipated flight or vehicle opportunities possible.

  4. 3D Reconfigurable MPSoC for Unmanned Spacecraft Navigation

    NASA Astrophysics Data System (ADS)

    Dekoulis, George

    2016-07-01

    This paper describes the design of a new lightweight spacecraft navigation system for unmanned space missions. The system addresses the demands for more efficient autonomous navigation in the near-Earth environment or deep space. The proposed instrumentation is directly suitable for unmanned systems operation and testing of new airborne prototypes for remote sensing applications. The system features a new sensor technology and significant improvements over existing solutions. Fluxgate type sensors have been traditionally used in unmanned defense systems such as target drones, guided missiles, rockets and satellites, however, the guidance sensors' configurations exhibit lower specifications than the presented solution. The current implementation is based on a recently developed material in a reengineered optimum sensor configuration for unprecedented low-power consumption. The new sensor's performance characteristics qualify it for spacecraft navigation applications. A major advantage of the system is the efficiency in redundancy reduction achieved in terms of both hardware and software requirements.

  5. Detail design of empennage of an unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Sarker, Md. Samad; Panday, Shoyon; Rasel, Md; Salam, Md. Abdus; Faisal, Kh. Md.; Farabi, Tanzimul Hasan

    2017-12-01

    In order to maintain the operational continuity of air defense systems, unmanned autonomous or remotely controlled unmanned aerial vehicle (UAV) plays a great role as a target for the anti-aircraft weapons. The aerial vehicle must comply with the requirements of high speed, remotely controlled tracking and navigational aids, operational sustainability and sufficient loiter time. It can also be used for aerial reconnaissance, ground surveillance and other intelligence operations. This paper aims to develop a complete tail design of an unmanned aerial vehicle using Systems Engineering approach. The design fulfils the requirements of longitudinal and directional trim, stability and control provided by the horizontal and vertical tail. Tail control surfaces are designed to provide sufficient control of the aircraft in critical conditions. Design parameters obtained from wing design are utilized in the tail design process as required. Through chronological calculations and successive iterations, optimum values of 26 tail design parameters are determined.

  6. Unmanned Aircraft Systems Roadmap 2005-2030

    DOT National Transportation Integrated Search

    2005-01-01

    This document presents the Department of Defense's (DoD) roadmap for developing and employing unmanned aircraft systems over the next 25 years (2005 to 2030). It describes the missions identified by theater warfighters to which systems could be appli...

  7. Aeronautics and Space Report of the President: 1975 Activities.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This report, submitted to the Congress by President Ford in accordance with the National Aeronautics and Space Act of 1958, summarizes the United States' space and aeronautics activities for the year 1975. Detailed summaries of the activities of the following governmental departments or agencies are provided: National Aeronautics and Space…

  8. A Discussion of Aerodynamic Control Effectors (ACEs) for Unmanned Air Vehicles (UAVs)

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.

    2002-01-01

    A Reynolds number based, unmanned air vehicle classification structure has been developed which identifies four classes of unmanned air vehicle concepts. The four unmanned air vehicle (UAV) classes are; Micro UAV, Meso UAV, Macro UAV, and Mega UAV. In a similar fashion a labeling scheme for aerodynamic control effectors (ACE) was developed and eleven types of ACE concepts were identified. These eleven types of ACEs were laid out in a five (5) layer scheme. The final section of the paper correlated the various ACE concepts to the four UAV classes and ACE recommendations are offered for future design activities.

  9. A Hybrid Satellite-Terrestrial Approach to Aeronautical Communication Networks

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Chomos, Gerald J.; Griner, James H.; Mainger, Steven W.; Martzaklis, Konstantinos S.; Kachmar, Brian A.

    2000-01-01

    Rapid growth in air travel has been projected to continue for the foreseeable future. To maintain a safe and efficient national and global aviation system, significant advances in communications systems supporting aviation are required. Satellites will increasingly play a critical role in the aeronautical communications network. At the same time, current ground-based communications links, primarily very high frequency (VHF), will continue to be employed due to cost advantages and legacy issues. Hence a hybrid satellite-terrestrial network, or group of networks, will emerge. The increased complexity of future aeronautical communications networks dictates that system-level modeling be employed to obtain an optimal system fulfilling a majority of user needs. The NASA Glenn Research Center is investigating the current and potential future state of aeronautical communications, and is developing a simulation and modeling program to research future communications architectures for national and global aeronautical needs. This paper describes the primary requirements, the current infrastructure, and emerging trends of aeronautical communications, including a growing role for satellite communications. The need for a hybrid communications system architecture approach including both satellite and ground-based communications links is explained. Future aeronautical communication network topologies and key issues in simulation and modeling of future aeronautical communications systems are described.

  10. 14 CFR 61.159 - Aeronautical experience: Airplane category rating.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aeronautical experience: Airplane category... Transport Pilots § 61.159 Aeronautical experience: Airplane category rating. (a) Except as provided in... certificate with an airplane category and class rating must have at least 1,500 hours of total time as a pilot...

  11. 14 CFR 61.159 - Aeronautical experience: Airplane category rating.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Aeronautical experience: Airplane category... Transport Pilots § 61.159 Aeronautical experience: Airplane category rating. (a) Except as provided in... certificate with an airplane category and class rating must have at least 1,500 hours of total time as a pilot...

  12. 14 CFR 61.159 - Aeronautical experience: Airplane category rating.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Aeronautical experience: Airplane category... Transport Pilots § 61.159 Aeronautical experience: Airplane category rating. (a) Except as provided in... certificate with an airplane category and class rating must have at least 1,500 hours of total time as a pilot...

  13. 14 CFR 61.159 - Aeronautical experience: Airplane category rating.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Aeronautical experience: Airplane category... Transport Pilots § 61.159 Aeronautical experience: Airplane category rating. (a) Except as provided in... certificate with an airplane category and class rating must have at least 1,500 hours of total time as a pilot...

  14. 14 CFR 61.159 - Aeronautical experience: Airplane category rating.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Aeronautical experience: Airplane category... Transport Pilots § 61.159 Aeronautical experience: Airplane category rating. (a) Except as provided in... certificate with an airplane category and class rating must have at least 1,500 hours of total time as a pilot...

  15. PEMFC for aeronautic applications: A review on the durability aspects

    NASA Astrophysics Data System (ADS)

    Dyantyi, Noluntu; Parsons, Adrian; Sita, Cordellia; Pasupathi, Sivakumar

    2017-11-01

    Proton exchange membrane fuel cells (PEMFC) not only offer more efficient electrical energy conversion, relative to on-ground/backup turbines but generate by-products useful in aircraft such as heat for ice prevention, deoxygenated air for fire retardation and drinkable water for use on-board. Consequently, several projects (e.g. DLR-H2 Antares and RAPID2000) have successfully tested PEMFC-powered auxiliary unit (APU) for manned/unmanned aircraft. Despite the progress from flying PEMFC-powered small aircraft with 20 kW power output as high as 1 000 m at 100 km/h to 33 kW at 2 558 m, 176 km/h [1, 2, 3], durability and reliability remain key challenges. This review reports on the inadequate understanding of behaviour of PEMFC under aeronautic conditions and the lack of predictive methods conducive for aircraft that provide real-time information on the State of Health of PEMFCs. To minimize performance loss due to high altitude and inclination by adjusting cathode stoichiometric ratio. To improve quality of oxygen-depleted air by controlling operating temperature and stoichiometric ratio. Need to devise real time prediction methods conducive for determining PEMFC SoH in aircraft.

  16. 14 CFR 63.37 - Aeronautical experience requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... flight training in the duties of a flight engineer. (3) A degree in aeronautical, electrical, or... (CONTINUED) AIRMEN CERTIFICATION: FLIGHT CREWMEMBERS OTHER THAN PILOTS Flight Engineers § 63.37 Aeronautical...— (1) On which a flight engineer is required by this chapter; or (2) That has at least three engines...

  17. 14 CFR 63.37 - Aeronautical experience requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... flight training in the duties of a flight engineer. (3) A degree in aeronautical, electrical, or... (CONTINUED) AIRMEN CERTIFICATION: FLIGHT CREWMEMBERS OTHER THAN PILOTS Flight Engineers § 63.37 Aeronautical...— (1) On which a flight engineer is required by this chapter; or (2) That has at least three engines...

  18. 14 CFR 63.37 - Aeronautical experience requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... flight training in the duties of a flight engineer. (3) A degree in aeronautical, electrical, or... (CONTINUED) AIRMEN CERTIFICATION: FLIGHT CREWMEMBERS OTHER THAN PILOTS Flight Engineers § 63.37 Aeronautical...— (1) On which a flight engineer is required by this chapter; or (2) That has at least three engines...

  19. 14 CFR 63.37 - Aeronautical experience requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... flight training in the duties of a flight engineer. (3) A degree in aeronautical, electrical, or... (CONTINUED) AIRMEN CERTIFICATION: FLIGHT CREWMEMBERS OTHER THAN PILOTS Flight Engineers § 63.37 Aeronautical...— (1) On which a flight engineer is required by this chapter; or (2) That has at least three engines...

  20. 14 CFR 63.37 - Aeronautical experience requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... flight training in the duties of a flight engineer. (3) A degree in aeronautical, electrical, or... (CONTINUED) AIRMEN CERTIFICATION: FLIGHT CREWMEMBERS OTHER THAN PILOTS Flight Engineers § 63.37 Aeronautical...— (1) On which a flight engineer is required by this chapter; or (2) That has at least three engines...

  1. Perspectives on Unmanned Aircraft Classification for Civil Airworthiness Standards

    NASA Technical Reports Server (NTRS)

    Maddalon, Jeffrey M.; Hayhurst, Kelly J.; Koppen, Daniel M.; Upchurch, Jason M.; Morris, A. Terry; Verstynen, Harry A.

    2013-01-01

    The use of unmanned aircraft in the National Airspace System (NAS) has been characterized as the next great step forward in the evolution of civil aviation. Although use of unmanned aircraft systems (UAS) in military and public service operations is proliferating, civil use of UAS remains limited in the United States today. This report focuses on one particular regulatory challenge: classifying UAS to assign airworthiness standards. This paper provides observations related to how the current regulations for classifying manned aircraft could apply to UAS.

  2. Swarming Unmanned Aircraft Systems

    DTIC Science & Technology

    2008-09-01

    systems may become a viable part of strategy and tactics in the future. Specific to Unmanned Aircraft Sys- tems ( UAS ). they see a strong and central...system itself. They do not want to limit direct access to only Military Occupational Specialty (MOS) trained UAS operators. Rather, they feel that...Collaborating (SASC) characteristics within swarms of UAS that support operations. Technical Approach The approach taken to model this system begins with an

  3. Aeronautical concerns and National Aeronautics and Space Administration atmospheric electricity projects

    NASA Technical Reports Server (NTRS)

    Vaughan, W. W.

    1980-01-01

    The phenomenology of lightning and lightning measurement techniques are briefly examined with a particular reference to aeronautics. Developments made in airborne and satellite detection methods are reported. NASA research efforts are outlined which cover topics including in-situ measurements, design factors and protection, remote optical and radio frequency measurements, and space vehicle design.

  4. Development of an unmanned maritime system reference architecture

    NASA Astrophysics Data System (ADS)

    Duarte, Christiane N.; Cramer, Megan A.; Stack, Jason R.

    2014-06-01

    The concept of operations (CONOPS) for unmanned maritime systems (UMS) continues to envision systems that are multi-mission, re-configurable and capable of acceptable performance over a wide range of environmental and contextual variability. Key enablers for these concepts of operation are an autonomy module which can execute different mission directives and a mission payload consisting of re-configurable sensor or effector suites. This level of modularity in mission payloads enables affordability, flexibility (i.e., more capability with future platforms) and scalability (i.e., force multiplication). The modularity in autonomy facilitates rapid technology integration, prototyping, testing and leveraging of state-of-the-art advances in autonomy research. Capability drivers imply a requirement to maintain an open architecture design for both research and acquisition programs. As the maritime platforms become more stable in their design (e.g. unmanned surface vehicles, unmanned underwater vehicles) future developments are able to focus on more capable sensors and more robust autonomy algorithms. To respond to Fleet needs, given an evolving threat, programs will want to interchange the latest sensor or a new and improved algorithm in a cost effective and efficient manner. In order to make this possible, the programs need a reference architecture that will define for technology providers where their piece fits and how to successfully integrate. With these concerns in mind, the US Navy established the Unmanned Maritime Systems Reference Architecture (UMS-RA) Working Group in August 2011. This group consists of Department of Defense and industry participants working the problem of defining reference architecture for autonomous operations of maritime systems. This paper summarizes its efforts to date.

  5. Reducing environmental damage through the use of unmanned aerial vehicles as the best available technology

    NASA Astrophysics Data System (ADS)

    Fedulova, E. A.; Akulov, A. O.; Rada, A. O.; Alabina, T. A.; Savina, Ju Ju

    2018-01-01

    The article examines the possibilities of using unmanned aerial vehicles as the best available technologies in the field of agriculture and mining. The object of the study is the use of unmanned aerial vehicles as the best available technology. The main areas of application of this technology are identified: agro technical operations, aerial photography of mining operations. The technology of unmanned aerial vehicles is compared with the technologies of ground agricultural machinery. The research methodology includes an expert evaluation of the unmanned aerial vehicle technology belonging to the class of the best available technologies by the criteria: the level of environmental impact, resource saving, the use of low-waste, non-waste processes, the existence of at least two objects, economic efficiency. Expert evaluations were processed using the apparatus of fuzzy sets, which make it possible to construct membership functions. This allowed us to prove that the technology of unmanned aerial vehicles belongs to a fuzzy set of the best available technologies. The results of the research show that the use of unmanned aerial vehicles provides a saving of resources, especially non-renewable combustible minerals, reduces emissions and discharges of pollutants into the atmosphere, and also reduces soil erosion. Unmanned aerial vehicles should be included in the national directories of the best available technologies for the mining industry and agriculture.

  6. Sense-and-Avoid Equivalent Level of Safety Definition for Unmanned Aircraft Systems. Revision 9

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Since unmanned aircraft do not have a pilot on-board the aircraft, they cannot literally comply with the "see and avoid" requirement beyond a short distance from the location of the unmanned pilot. No performance standards are presently defined for unmanned Sense and Avoid systems, and the FAA has no published approval criteria for a collision avoidance system. Before the FAA can develop the necessary guidance (rules / regulations / policy) regarding the see-and-avoid requirements for Unmanned Aircraft Systems (UAS), a concise understanding of the term "equivalent level of safety" must be attained. Since this term is open to interpretation, the UAS industry and FAA need to come to an agreement on how this term can be defined and applied for a safe and acceptable collision avoidance capability for unmanned aircraft. Defining an equivalent level of safety (ELOS) for sense and avoid is one of the first steps in understanding the requirement and developing a collision avoidance capability. This document provides a functional level definition of see-and-avoid as it applies to unmanned aircraft. The sense and avoid ELOS definition is intended as a bridge between the see and avoid requirement and the system level requirements for unmanned aircraft sense and avoid systems. Sense and avoid ELOS is defined in a rather abstract way, meaning that it is not technology or system specific, and the definition provides key parameters (and a context for those parameters) to focus the development of cooperative and non-cooperative sense and avoid system requirements.

  7. Conversion of the Aeronautics Interactive Workstation

    NASA Technical Reports Server (NTRS)

    Riveras, Nykkita L.

    2004-01-01

    This summer I am working in the Educational Programs Office. My task is to convert the Aeronautics Interactive Workstation from a Macintosh (Mac) platform to a Personal Computer (PC) platform. The Aeronautics Interactive Workstation is a workstation in the Aerospace Educational Laboratory (AEL), which is one of the three components of the Science, Engineering, Mathematics, and Aerospace Academy (SEMAA). The AEL is a state-of-the-art, electronically enhanced, computerized classroom that puts cutting-edge technology at the fingertips of participating students. It provides a unique learning experience regarding aerospace technology that features activities equipped with aerospace hardware and software that model real-world challenges. The Aeronautics Interactive Workstation, in particular, offers a variety of activities pertaining to the history of aeronautics. When the Aeronautics Interactive Workstation was first implemented into the AEL it was designed with Macromedia Director 4 for a Mac. Today it is being converted to Macromedia DirectorMX2004 for a PC. Macromedia Director is the proven multimedia tool for building rich content and applications for CDs, DVDs, kiosks, and the Internet. It handles the widest variety of media and offers powerful features for building rich content that delivers red results, integrating interactive audio, video, bitmaps, vectors, text, fonts, and more. Macromedia Director currently offers two programmingkripting languages: Lingo, which is Director's own programmingkripting language and JavaScript. In the workstation, Lingo is used in the programming/scripting since it was the only language in use when the workstation was created. Since the workstation was created with an older version of Macromedia Director it hosted significantly different programming/scripting protocols. In order to successfully accomplish my task, the final product required correction of Xtra and programming/scripting errors. I also had to convert the Mac platform

  8. Aeronautical Engineering: A Continuing Bibliography with Indexes

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This supplemental issue of Aeronautical Engineering: A Continuing Bibliography with Indexes lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes-subject and author are included after the abstract section.

  9. Multibeam satellite EIRP adaptability for aeronautical communications.

    NASA Technical Reports Server (NTRS)

    Kinal, G. V.; Bisaga, J. J.

    1973-01-01

    EIRP enhancement and management techniques, emphasizing aeronautical communications and adaptable multibeam concepts, are classified and characterized. User requirement and demand characteristics that exploit the improvement available from each technique are identified, and the relative performance improvement of each is discussed. It is concluded that aeronautical satellite communications could benefit greatly by the employment of these techniques.

  10. Unmanned Systems in Perspective

    DTIC Science & Technology

    2014-05-22

    sized warhead designed for precision engagement of small targets.56 Medea Benjamin of Code Pink calls it a “robotic suicide bomber . . . an unmanned...Other writers decry a coming age of “ suicide drones,” evidently unaware of the irony of the phrase.125 Admiral Dennis Blair, former US Director of... temptation to meddle, but instant responsiveness, in most cases, is an illusion. The exception to the myth of the “instant kill” further strengthens

  11. Aeronautical Engineering: A Continuing Bibliography with Indexes

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-1999-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes-subject and author are included after the abstract section.

  12. 14 CFR 61.160 - Aeronautical experience-airplane category restricted privileges.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Aeronautical experience-airplane category... INSTRUCTORS Airline Transport Pilots § 61.160 Aeronautical experience—airplane category restricted privileges... pilot may apply for an airline transport pilot certificate with an airplane category multiengine class...

  13. Fuel-cell powered unmanned ground vehicle

    NASA Astrophysics Data System (ADS)

    Meldrum, Jay S.; Green, Christopher A.; Gwaltney, Geoffrey D.; Bradley, Scott A.; Keith, Jason M.; Podlesak, Thomas F.

    2007-04-01

    The use of alternative energy technology for vehicle propulsion and auxiliary power is becoming more important. Work is being performed at Michigan Technological University's Keweenaw Research Center on an Army Research Laboratory cooperative agreement to develop two unmanned ground vehicles for military applications. A wide range of alternative energy technologies were investigated, and hydrogen-powered proton exchange membrane fuel cells were identified as the most appropriate alternative energy source. This is due to some development and commercialization which makes the technology "drop-in plug-in" for immediate use. We present research work on a small unmanned ground vehicle demonstration platform where the fuel cell is the only power source. We also present research work on the integration of a fuel cell onto a large existing platform. The dual-power capability of this vehicle can provide a modest level of propulsion in "engine-off mode" and may also be used to power directed energy devices which have applications in countermine and similar threat technologies.

  14. A survey of unmanned ground vehicles with applications to agricultural and environmental sensing

    USDA-ARS?s Scientific Manuscript database

    Unmanned ground vehicles have been utilized in the last few decades in an effort to increase the efficiency of agriculture, in particular, by reducing labor needs. Unmanned vehicles have been used for a variety of purposes including: soil sampling, irrigation management, precision spraying, mechanic...

  15. A cumulative index to Aeronautical Engineering: A continuing bibliography

    NASA Technical Reports Server (NTRS)

    1982-01-01

    This bibliography is a cumulated index to the abstracts contained in NASA SP-7037(132) through NASA SP-7037(143) of Aeronautical Engineering: A continuing bibliography. NASA SP-7037 and its supplements have been compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, contract, and report number indexes.

  16. Arctic Oil Spill Mapping and Response Using Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Cunningham, K. W.

    2011-12-01

    The University of Alaska Fairbanks works extensively with unmanned aerial systems and various sensor payloads used in mapping. Recent projects with Royal Dutch Shell and British Petroleum have demonstrated that unmanned aerial systems, including fixed and rotary winged platforms, can provide quick response to oil spill mapping in a variety of flight conditions, including those not well suited for manned aerial systems. We describe this collaborative research between the University and oil companies exploring and developing oil resources in Alaska and the Arctic.

  17. Progress Toward National Aeronautics Goals

    NASA Technical Reports Server (NTRS)

    Russo, Carlo J.; Sehra, Arun K.

    1999-01-01

    NASA has made definitive progress towards achieving several bold U.S. goals in aeronautics related to air breathing engines. The advanced technologies developed towards these goals span applications from general aviation to large subsonic and supersonic aircraft. The proof of successful technology development is demonstrated through successful technology transfer to U.S. industry and projected fleet impact. Specific examples of progress are discussed that quantifies the achievement towards these goals. In addition, a more detailed vision for NASA aeronautics is defined and key strategic issues are explored which invite international and national debate and involvement especially in reduced environmental impact for subsonic and supersonic aircraft, dramatic new capabilities in general aviation engines, and reduced development cycle time and costs.

  18. Unmanned aircraft systems for transportation decision support.

    DOT National Transportation Integrated Search

    2016-11-30

    Our nation relies on accurate geospatial information to map, measure, and monitor transportation infrastructure and the surrounding landscapes. This project focused on the application of Unmanned Aircraft systems (UAS) as a novel tool for improving e...

  19. Supporting Remote Sensing Research with Small Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Anderson, R. C.; Shanks, P. C.; Kritis, L. A.; Trani, M. G.

    2014-11-01

    We describe several remote sensing research projects supported with small Unmanned Aerial Systems (sUAS) operated by the NGA Basic and Applied Research Office. These sUAS collections provide data supporting Small Business Innovative Research (SBIR), NGA University Research Initiative (NURI), and Cooperative Research And Development Agreements (CRADA) efforts in addition to inhouse research. Some preliminary results related to 3D electro-optical point clouds are presented, and some research goals discussed. Additional details related to the autonomous operational mode of both our multi-rotor and fixed wing small Unmanned Aerial System (sUAS) platforms are presented.

  20. Applying Lessons Learned from Space Safety to Unmanned Aerial Vehicle Risk Assessments

    NASA Astrophysics Data System (ADS)

    Devoid, Wayne E.

    2013-09-01

    This paper will examine the application of current orbital launch risk methodology to assessing risk for unmanned aerial vehicle flights over populated areas. Major differences, such as the added complexity of lifting bodies, accounting for pilots-in-the-loop, and the complexity of using current population data to estimate risk for unmanned aerial vehicles, will be highlighted.

  1. 14 CFR 61.163 - Aeronautical experience: Powered-lift category rating.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aeronautical experience: Powered-lift... Transport Pilots § 61.163 Aeronautical experience: Powered-lift category rating. (a) A person who is applying for an airline transport pilot certificate with a powered-lift category rating must have at least...

  2. 14 CFR 61.163 - Aeronautical experience: Powered-lift category rating.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Aeronautical experience: Powered-lift... Transport Pilots § 61.163 Aeronautical experience: Powered-lift category rating. (a) A person who is applying for an airline transport pilot certificate with a powered-lift category rating must have at least...

  3. Aeronautical Engineering: A Continuing Bibliography with Indexes

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This bibliography lists 193 reports, journal articles, and other documents introduced in the NASA scientific and technical system in Aug. 1995. Subject coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles

  4. Intelligent unmanned vehicle systems suitable for individual or cooperative missions

    NASA Astrophysics Data System (ADS)

    Anderson, Matthew O.; McKay, Mark D.; Wadsworth, Derek C.

    2007-04-01

    The Department of Energy's Idaho National Laboratory (INL) has been researching autonomous unmanned vehicle systems for over fifteen years. Areas of research have included unmanned ground and aerial vehicles used for hazardous and remote operations as well as teamed together for advanced payloads and mission execution. Areas of application include aerial particulate sampling, cooperative remote radiological sampling, and persistent surveillance including real-time mosaic and geo-referenced imagery in addition to high-resolution still imagery. Both fixed-wing and rotary airframes are used possessing capabilities spanning remote control to fully autonomous operation. Patented INL-developed auto steering technology is taken advantage of to provide autonomous parallel path swathing with either manned or unmanned ground vehicles. Aerial look-ahead imagery is utilized to provide a common operating picture for the ground and air vehicles during cooperative missions. This paper will discuss the various robotic vehicles, including sensor integration, used to achieve these missions and anticipated cost and labor savings.

  5. Shaping future Naval warfare with unmanned systems, the impact across the fleet, and joint considerations

    NASA Astrophysics Data System (ADS)

    Hudson, E. C.; Johnson, Gordon; Summey, Delbert C.; Portmann, Helmut H., Jr.

    2004-09-01

    This paper discusses a comprehensive vision for unmanned systems that will shape the future of Naval Warfare within a larger Joint Force concept, and examines the broad impact that can be anticipated across the Fleet. The vision has been articulated from a Naval perspective in NAVSEA technical report CSS/TR-01/09, Shaping the Future of Naval Warfare with Unmanned Systems, and from a Joint perspective in USJFCOM Rapid Assessment Process (RAP) Report #03-10 (Unmanned Effects (UFX): Taking the Human Out of the Loop). Here, the authors build on this foundation by reviewing the major findings and laying out the roadmap for achieving the vision and truly transforming how we fight wars. The focus is on broad impact across the Fleet - but the implications reach across all Joint forces. The term "Unmanned System" means different things to different people. Most think of vehicles that are remotely teleoperated that perform tasks under remote human control. Actually, unmanned systems are stand-alone systems that can execute missions and tasks without direct physical manned presence under varying levels of human control - from teleoperation to full autonomy. It is important to note that an unmanned system comprises a lot more than just a vehicle - it includes payloads, command and control, and communications and information processing.

  6. Unmanned Aircraft System Applications in International Railroads

    DOT National Transportation Integrated Search

    2018-02-01

    This report summarizes the current uses and issues associated with Unmanned Aircraft Systems (UAS) in railroad applications, and provides the use cases employed by railroads. The report highlights global UAS market outlooks as well as regulations tha...

  7. 77 FR 13683 - Government/Industry Aeronautical Charting Forum Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    .... Watson, FAA, National Aeronautical Navigation Products (AeroNav Products), Quality Assurance & Regulatory..., on February 28, 2012. Valerie S. Watson, Co-Chair, Aeronautical Charting Forum. [FR Doc. 2012-5293...

  8. Aeronautics and space report of the President: 1981 activities

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Achievements in the aeronautics and space program by function are summarized. Activities in communications, Earth's resources and environment, space science, space transportation, international activities, and aeronautics are included.

  9. Aeronautical engineering: A cumulative index to a continuing bibliography

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This bibliography is a cumulative index to the abstracts contained in NASA SP-7037 (197) through NASA SP-7037 (208) of Aeronautical Engineering: A Continuing Bibliography. NASA SP-7037 and its supplements have been compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, foreign technology, contract, report number, and accession number indexes.

  10. Aeronautical engineering: A cumulative index to a continuing bibliography

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This bibliography is a cumulative index to the abstracts contained in NASA SP-7037(210) through NASA SP-7037(221) of Aeronautical Engineering: A Continuing Bibliography. NASA SP-7037 and its supplements have been compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, foreign technology, contract number, report number, and accession number indexes.

  11. An Overview of the NASA Aeronautics Test Program Strategic Plan

    NASA Technical Reports Server (NTRS)

    Marshall, Timothy J.

    2010-01-01

    U.S. leadership in aeronautics depends on ready access to technologically advanced, efficient, and affordable aeronautics test capabilities. These systems include major wind tunnels and propulsion test facilities and flight test capabilities. The federal government owns the majority of the major aeronautics test capabilities in the United States, primarily through the National Aeronautics and Space Administration (NASA) and the Department of Defense (DoD), however an overarching strategy for management of these national assets was needed. Therefore, in Fiscal Year (FY) 2006 NASA established the Aeronautics Test Program (ATP) as a two-pronged strategic initiative to: (1) retain and invest in NASA aeronautics test capabilities considered strategically important to the agency and the nation, and (2) establish a strong, high level partnership with the DoD Test Resources Management Center (TRMC), stewards of the DoD test and evaluation infrastructure. Since then, approximately seventy percent of the ATP budget has been directed to underpin fixed and variable costs of facility operations within its portfolio and the balance towards strategic investments in its test facilities, including maintenance and capability upgrades. Also, a strong guiding coalition was established through the National Partnership for Aeronautics Testing (NPAT), with governance by the senior leadership of NASA s Aeronautics Research Mission Directorate (ARMD) and the DoD's TRMC. As part of its strategic planning, ATP has performed or participated in many studies and analyses, including assessments of major NASA and DoD aeronautics test capabilities, test facility condition evaluations and market research. The ATP strategy has also benefitted from unpublished RAND research and analysis by Ant n et al. (2009). Together, these various studies, reports and assessments serve as a foundation for a new, five year strategic plan that will guide ATP through FY 2014. Our vision for the future is a balanced

  12. Emerging Options and Opportunities in Civilian Aeronautics

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M.

    2012-01-01

    This paper addresses the major problems/issues with civilian aeronautics going forward, the contextual ongoing technology revolutions, the several emerging civilian aeronautical "Big Ideas" and associated enabling technological approaches. The ongoing IT Revolution is increasingly providing, as 5 senses virtual presence/reality becomes available, along with Nano/Molecular Manufacturing, virtual alternatives to Physical transportation for both people and goods. Paper examines the potential options available to aeronautics to maintain and perhaps grow "market share" in the context of this evolving competition. Many of these concepts are not new, but the emerging technology landscape is enhancing their viability and marketability. The concepts vary from the "interesting" to the truly revolutionary and all require considerable research. Paper considers the speed range from personal/general aviation to supersonic transports and technologies from energetics to fabrication.

  13. 78 FR 12415 - Government/Industry Aeronautical Charting Forum Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-22

    ... Valerie S. Watson, FAA, National Aeronautical Navigation Products (AeroNav Products), Quality Assurance.... Issued in Washington, DC, on February 19, 2013. Valerie S. Watson, Co-Chair, Aeronautical Charting Forum...

  14. Unmanned vehicles for maritime spill response case study: Exercise Cathach.

    PubMed

    Dooly, Gerard; Omerdic, Edin; Coleman, Joseph; Miller, Liam; Kaknjo, Admir; Hayes, James; Braga, Jóse; Ferreira, Filipe; Conlon, Hugh; Barry, Hugh; Marcos-Olaya, Jesús; Tuohy, Thomas; Sousa, João; Toal, Dan

    2016-09-15

    This paper deals with two aspects, namely a historical analysis of the use of unmanned vehicles (UAVs ROVs, AUVs) in maritime spill incidents and a detailed description of a multi-agency oil and HNS incident response exercise involving the integration and analysis of unmanned vehicles environmental sensing equipment. The exercise was a first in terms of the level of robotic systems deployed to assist in survey, surveillance and inspection roles for oil spills and harmful and noxious substances. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. 78 FR 18932 - Public Meeting: Unmanned Aircraft Systems Test Site Program; Privacy Approach

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ... operation of the UAS Test Sites. They are not intended to pre-determine the long- term policy and regulatory...-0061] Public Meeting: Unmanned Aircraft Systems Test Site Program; Privacy Approach AGENCY: Federal... the unmanned aircraft systems (UAS) test site program. The FAA is seeking the views from the public...

  16. Apollo 6 unmanned space mission launch

    NASA Image and Video Library

    1968-04-04

    S68-27364 (4 April 1968) --- The Apollo 6 (Spacecraft 020/Saturn 502) unmanned space mission was launched from Pad A, Launch Complex 39, Kennedy Space Center (KSC), Florida. The liftoff of the huge Apollo/Saturn V space vehicle occurred at 7:00:01.5 a.m. (EST), April 4, 1968.

  17. Tip-over Prevention Through Heuristic Reactive Behaviors for Unmanned Ground Vehicles

    DTIC Science & Technology

    2014-05-01

    Systems Center Pacific Unmanned Systems Group 53406 Woodward Road San Diego, CA 92152 ABSTRACT Skid-steer teleoperated robots are commonly used by...Reactive Behaviors Further author information: (Send correspondence to K.T.) K.T.: E-mail: kurt.talke@navy.mil, SPIE Proc. 9084: Unmanned Systems ...5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Space and Naval Warfare Systems Center

  18. U.S. Geological Survey Emerging Applications of Unmanned Aircraft Systems

    NASA Astrophysics Data System (ADS)

    Hutt, M. E.

    2012-12-01

    In anticipation of transforming the research methods and resource management techniques employed across the Department of the Interior, the U.S. Geological Survey (USGS) Unmanned Aircraft Systems (UAS) Project Office is conducting missions using small UAS- sUAS platforms (<20 lbs.). The USGS is dedicated to expanding the use of sUAS technology in support of scientific, resource and land management missions. UAS technology is currently being used by USGS and our partners to monitor environmental conditions, analyze the impacts of climate change, respond to natural hazards, understand landscape change rates and consequences, conduct wildlife inventories and support related land management and law enforcement missions. Our ultimate goal is to support informed decision making by creating the opportunity, via UAS technology, to gain access to an increased level of persistent monitoring of earth surface processes (forest health conditions, wildfires, earthquake zones, invasive species, etc.) in areas that have been logistically difficult, cost prohibitive or technically impossible to obtain consistent, reliable, timely information. USGS is teaming with the Department of the Interior Aviation Management Directorate to ensure the safe and cost effective adoption of UAS technology. While the USGS is concentrating on operating sUAS, the immense value of increased flight time and more robust sensor capabilities available on larger platforms cannot be ignored. We are partnering with several groups including the Department of Homeland Security, National Aeronautics and Space Administration, Department of Defense, and National Oceanic and Atmospheric Administration for access to data collected from their fleet of high altitude, long endurance (HALE) UAS. The HALE systems include state of the art sensors including Electro-Optical, Thermal Infrared and Synthetic Aperture Radar (SAR). The data being collected by High Altitude, Long Endurance (HALE) systems is can be routinely

  19. NASA's Role in Aeronautics: A Workshop. Volume II - Military Aviation.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Assembly of Engineering.

    The central task of a 1980 workshop on the role of the National Aeronautics and Space Administration (NASA) in aeronautics was to examine the relationship of NASA's research capabilities to the state of U.S. aviation and to make recommendations about NASA's future role in aeronautics. The findings and recommendations of the Panel on Military…

  20. NASA's Role in Aeronautics: A Workshop. Volume III - Transport Aircraft.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Assembly of Engineering.

    The central task of a 1980 workshop on the role of the National Aeronautics and Space Administration (NASA) in aeronautics was to examine the relationship of NASA's research capabilities to the state of U.S. aviation and to make recommendations about NASA's future role in aeronautics. The specific task of the Panel on Transport Aircraft was to…