Science.gov

Sample records for aeronautics earth technology

  1. NASA's aeronautics research and technology base

    NASA Technical Reports Server (NTRS)

    1979-01-01

    NASA's research technology base in aeronautics is assessed in terms of: (1) US aeronautical technology needs and requirements in the future; (2) objectives of the aeronautics program; (3) magnitude and scope of the program; and (4) research and technology performed by NASA and other research organizations.

  2. Economic analysis of aeronautical research and technology

    NASA Technical Reports Server (NTRS)

    Gellman, A. J.

    1982-01-01

    The appropriateness of government intervention in the civilian market for aeronautics research and technology (R&T) is examined. The economic rationale for government intervention is examined. The conclusion is that the institutional role played by NASA in civilian aeronautics R&T markets is economically justified.

  3. Exploring Aeronautics and Space Technology. Teacher Edition.

    ERIC Educational Resources Information Center

    Buck, Sue; And Others

    This curriculum guide contains six units of instruction for an introduction to the technology systems in the National Aeronautics and Space Administration (NASA). Designed to be used either as a stand-alone publication or to be infused into the instruction and activities of an existing technology education program, this publication describes the…

  4. Future Aeronautical Communication Infrastructure Technology Investigation

    NASA Technical Reports Server (NTRS)

    Gilbert, Tricia; Jin, Jenny; Bergerm Jason; Henriksen, Steven

    2008-01-01

    This National Aeronautics and Space Administration (NASA) Contractor Report summarizes and documents the work performed to investigate technologies that could support long-term aeronautical mobile communications operating concepts for air traffic management (ATM) in the timeframe of 2020 and beyond, and includes the associated findings and recommendations made by ITT Corporation and NASA Glenn Research Center to the Federal Aviation Administration (FAA). The work was completed as the final phase of a multiyear NASA contract in support of the Future Communication Study (FCS), a cooperative research and development program of the United States FAA, NASA, and EUROCONTROL. This final report focuses on an assessment of final five candidate technologies, and also provides an overview of the entire technology assessment process, including final recommendations.

  5. The revolutionary impact of evolving aeronautical technologies

    NASA Technical Reports Server (NTRS)

    Kayten, G. G.; Driver, C.; Maglieri, D. J.

    1984-01-01

    Recent advances in aeronautical technologies which could produce revolutionary changes in transport aircraft if fully implemented are delineated. Laminar flow control offers a L/D improvement from the current 18 to 22 if used with a 767 configuration. Higher aspect and thickness/chord ratios could yield more efficient structural designs and further drag reduction. High-strength, fiber-reinforced composite structures can reduce structural weight by 10-30 percent. Improved engine cooling methods, higher stage loadings and exhaust temperatures can lower the SFC by 15 percent, engine weight by 15 percent, and the parts count by 50 percent. Aft-mounted counterrotating propellers can potentially decrease the SFC an additional 15-20 percent. Supersonic transport aircraft with L/D ratios of 18 and 70 seat miles/gal fuel efficiency can now be built that weigh half as much as the Concorde and carry the same load. The new SST would have superplastic-molded Al alloy structures.

  6. Life prediction technologies for aeronautical propulsion systems

    NASA Technical Reports Server (NTRS)

    Mcgaw, Michael A.

    1990-01-01

    Fatigue and fracture problems continue to occur in aeronautical gas turbine engines. Components whose useful life is limited by these failure modes include turbine hot-section blades, vanes, and disks. Safety considerations dictate that catastrophic failures be avoided, while economic considerations dictate that catastrophic failures be avoided, while economic considerations dictate that noncatastrophic failures occur as infrequently as possible. Therefore, the decision in design is making the tradeoff between engine performance and durability. LeRC has contributed to the aeropropulsion industry in the area of life prediction technology for over 30 years, developing creep and fatigue life prediction methodologies for hot-section materials. At the present time, emphasis is being placed on the development of methods capable of handling both thermal and mechanical fatigue under severe environments. Recent accomplishments include the development of more accurate creep-fatigue life prediction methods such as the total strain version of LeRC's strain-range partitioning (SRP) and the HOST-developed cyclic damage accumulation (CDA) model. Other examples include the development of a more accurate cumulative fatigue damage rule - the double damage curve approach (DDCA), which provides greatly improved accuracy in comparison with usual cumulative fatigue design rules. Other accomplishments in the area of high-temperature fatigue crack growth may also be mentioned. Finally, we are looking to the future and are beginning to do research on the advanced methods which will be required for development of advanced materials and propulsion systems over the next 10-20 years.

  7. Life prediction technologies for aeronautical propulsion systems

    NASA Technical Reports Server (NTRS)

    Mcgaw, Michael A.

    1987-01-01

    Fatigue and fracture problems continue to occur in aeronautical gas turbine engines. Components whose useful life is limited by these failure modes include turbine hot-section blades, vanes and disks. Safety considerations dictate that catastrophic failures be avoided, while economic considerations dictate that noncatastrophic failures occur as infrequently as possible. The design decision is therefore in making the tradeoff between engine performance and durability. The NASA Lewis Research Center has contributed to the aeropropulsion industry in the areas of life prediction technology for 30 years, developing creep and fatigue life prediction methodologies for hot-section materials. Emphasis is placed on the development of methods capable of handling both thermal and mechanical fatigue under severe environments. Recent accomplishments include the development of more accurate creep-fatigue life prediction methods such as the total strain version of Lewis' Strainrange Partitioning (SRP) and the HOST-developed Cyclic Damage Accumulation (CDA) model. Other examples include the Double Damage Curve Approach (DDCA), which provides greatly improved accuracy for cumulative fatigue design rules.

  8. Cyber Technology for Materials and Structures in Aeronautics and Aerospace

    NASA Technical Reports Server (NTRS)

    Pipes, R. Byron

    2002-01-01

    The evolution of composites applications in aeronautics from 1970 to the present is discussed. The barriers and challenges to economic application and to certification are presented and recommendations for accelerated development are outlined. The potential benefits of emerging technologies to aeronautics and their foundation in composite materials are described and the resulting benefits in vehicle take off gross weight are quantified. Finally, a 21st century vision for aeronautics in which human mobility is increased by an order of magnitude is articulated.

  9. NASA Aeronautics: Research and Technology Program Highlights

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This report contains numerous color illustrations to describe the NASA programs in aeronautics. The basic ideas involved are explained in brief paragraphs. The seven chapters deal with Subsonic aircraft, High-speed transport, High-performance military aircraft, Hypersonic/Transatmospheric vehicles, Critical disciplines, National facilities and Organizations & installations. Some individual aircraft discussed are : the SR-71 aircraft, aerospace planes, the high-speed civil transport (HSCT), the X-29 forward-swept wing research aircraft, and the X-31 aircraft. Critical disciplines discussed are numerical aerodynamic simulation, computational fluid dynamics, computational structural dynamics and new experimental testing techniques.

  10. National Aeronautics and Space Administration technology application team program

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Contracts are reported between the RTI TATeam and the National Aeronautics and Space Administration (NASA), the Environmental Protection Agency (EPA), and other governmental, educational, and industrial organizations participating in NASA's Technology Utilization Program.

  11. Test devices for aeronautical research and technology

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The objectives of the DFVLR in six areas are described: (1) transportation and communication systems; (2) aircraft, space technology, (4) remote sensing, (5) energy and propulsion technology; and (6) research and development. A detailed description of testing devices and other facilities required to carry out the research program is given.

  12. Aeronautics Technology Possibilities for 2000: Report of a workshop

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The potential of aeronautical research and technology (R&T) development, which could provide the basis for facility planning and long range guidance of R&T programs and could establish justification for support of aeronautical research and technology was studied. The projections served specific purposes: (1) to provide a base for research and future facilities needed to support the projected technologies, and development advanced vehicles; (2) to provide insight on the possible state of the art in aeronautical technology by the year 2000 for civil and military planners of air vehicles and systems. Topics discussed include: aerodynamics; propulsion; structures; materials; guidance, navigation and control; computer and information technology; human factors; and systems integration.

  13. 75 FR 81678 - Aeronautics Science and Technology Subcommittee; Committee on Technology; National Science and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-28

    ... TECHNOLOGY POLICY Aeronautics Science and Technology Subcommittee; Committee on Technology; National Science and Technology Council ACTION: Notice of Meeting--Public input is requested on the National... Science and Technology Subcommittee (ASTS) of the National Science and Technology Council's...

  14. Aeronautics research and technology program and specific objectives

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Aeronautics research and technology program objectives in fluid and thermal physics, materials and structures, controls and guidance, human factors, multidisciplinary activities, computer science and applications, propulsion, rotorcraft, high speed aircraft, subsonic aircraft, and rotorcraft and high speed aircraft systems technology are addressed.

  15. Aeronautical Envineering at Technion - Israel Institute of Technology.

    ERIC Educational Resources Information Center

    Mathieu, Richard D.

    The shortage of engineers in Israel and the role that the Technion - Israel Institute of Technology plays in the education of engineers is discussed. Emphasis is placed on the academic program, research, and related activities in the Department of Aeronautical Engineering. A brief description of the development of the institute and its…

  16. FY 1978 aeronautics and space technology program summary

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Highlights of the aeronautics program include research on aircraft energy efficiency, supersonic cruise aircraft, vertical takeoff and landing aircraft, short haul/short takeoff and landing aircraft, and general aviation aircraft. The space technology program includes work on space structures, propulsion systems, power systems, materials, and electronics.

  17. The application of artificial intelligence technology to aeronautical system design

    NASA Technical Reports Server (NTRS)

    Bouchard, E. E.; Kidwell, G. H.; Rogan, J. E.

    1988-01-01

    This paper describes the automation of one class of aeronautical design activity using artificial intelligence and advanced software techniques. Its purpose is to suggest concepts, terminology, and approaches that may be useful in enhancing design automation. By understanding the basic concepts and tasks in design, and the technologies that are available, it will be possible to produce, in the future, systems whose capabilities far exceed those of today's methods. Some of the tasks that will be discussed have already been automated and are in production use, resulting in significant productivity benefits. The concepts and techniques discussed are applicable to all design activity, though aeronautical applications are specifically presented.

  18. Aeronautical technologies for the twenty-first century

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This study gives an overview of the future technologies in aeronautics. This collaborative effort relies upon the input of numerous experts from around the country. Specific issues covered include subsonic transport aircraft, high-speed civil transport aircraft short-haul aircraft, environmental issues, operational issues, aerodynamics, propulsion, materials and structures, avionics and control, and cognitive engineering. The appendices include bibliography, abbreviations and acronyms, and NASA fiscal year 1992 aeronautics funding (table) and participants. The forward states that over the last decade, foreign aircraft manufacturers have made significant inroads into the global aircraft market, to the detriment of U.S. interests. Recommendations are made to counter that trend.

  19. Aeronautical technology 2000: A projection of advanced vehicle concepts

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The Aeronautics and Space Engineering Board (ASEB) of the National Research Council conducted a Workshop on Aeronautical Technology: a Projection to the Year 2000 (Aerotech 2000 Workshop). The panels were asked to project advances in aeronautical technologies that could be available by the year 2000. As the workshop was drawing to a close, it became evident that a more comprehensive investigation of advanced air vehicle concepts than was possible in the limited time available at the workshop would be valuable. Thus, a special panel on vehicle applications was organized. In the course of two meetings, the panel identified and described representative types of aircraft judged possible with the workshop's technology projections. These representative aircraft types include: military aircraft; transport aircraft; rotorcraft; extremely high altitude aircraft; and transatmospheric aircraft. Improvements in performance, efficiency, and operational characteristics possible through the application of the workshop's year 2000 technology projections were discussed. The subgroups also identified the technologies considered essential and enhancing or supporting to achieve the projected aircraft improvements.

  20. Advanced technologies to support earth orbiting systems

    NASA Technical Reports Server (NTRS)

    Rosen, Robert; Johnston, Gordon I.

    1992-01-01

    Within NASA, the Office of Aeronautics and Space Technology (OAST) is conducting a major, ongoing engineering research and technology program directed toward the support of future programs, with a major focus on technology for future space science missions. OAST is conducting a substantial effort to identify the technologies required to support the evolution of Mission to Planet Earth. The effort consists of studies, workshops, and technology research programs to explore: (1) new concepts for multisatellite, earth-observing instrumentation and sensor sets; (2) information system advances for continuous and reliable processing of terabit per day data streams; and (3) infrastructure development, including spacecraft bus technology and operations for substantial performance, cost, and reliabiltiy gains. This paper discusses the technological needs of future earth science systems, reviews current and planned activities, and highlights significant achievements in the research and technology program.

  1. Additional Technologies and Investigations for Provision of Future Aeronautical Communications

    NASA Technical Reports Server (NTRS)

    Gilbert, Tricia; Jin, Jenny; Berger, Jason; Henriksen, Steve

    2008-01-01

    The following NASA Contractor Report documents the in-depth studies on select technologies that could support long-term aeronautical mobile communications operating concepts. This work was performed during the third and final phase of NASA s Technology Assessment for the Federal Aviation Administration (FAA)/EUROCONTROL Future Communications Study (FCS) under a multiyear NASA contract. It includes the associated findings of ITT Corporation and NASA Glenn Research Center to the FAA as of the end of May 2007. The activities documented in this report focus on three final technology candidates identified by the United States, and were completed before sufficient information about two additional technology candidates proposed by EUROCONTROL was made available. A separate report to be published by NASA/CR-2008-215144, entitled Final Report on Technology Investigations for Provision of Future Aeronautical Communications will include an assessment of all five final candidate technologies considered by the U.S. agencies (FAA and NASA) and EUROCONTROL. It will also provide an overview of the entire technology assessment process, including final recommendations. All three phases of this work were performed in compliance with the Terms of Reference for the Action Plan number 17 (AP-17) cooperative research agreement among EUROCONTROL, FAA, and NASA along with the general guidance of the FAA and EUROCONTROL available throughout this study.

  2. Technology Assessment for the Future Aeronautical Communications System

    NASA Technical Reports Server (NTRS)

    Budinger, James M. (Technical Monitor)

    2005-01-01

    To address emerging saturation in the VHF aeronautical bands allocated internationally for air traffic management communications, the International Civil Aviation Organization (ICAO) has requested development of a common global solution through its Aeronautical Communications Panel (ACP). In response, the Federal Aviation Administration (FAA) and Eurocontrol initiated a joint study, with the support of NASA and U.S. and European contractors, to provide major findings on alternatives and recommendations to the ICAO ACP Working Group C (WG-C). Under an FAA/Eurocontrol cooperative research and development agreement, ACP WG-C Action Plan 17 (AP-17), commonly referred to as the Future Communications Study (FCS), NASA Glenn Research Center is responsible for the investigation of potential communications technologies that support the long-term mobile communication operational concepts of the FCS. This report documents the results of the first phase of the technology assessment and recommendations referred to in the Technology Pre-Screening Task 3.1 of AP-17. The prescreening identifies potential technologies that are under development in the industry and provides an initial assessment against a harmonized set of evaluation criteria that address high level capabilities, projected maturity for the time frame for usage in aviation, and potential applicability to aviation. A wide variety of candidate technologies were evaluated from several communications service categories including: cellular telephony; IEEE-802.xx standards; public safety radio; satellite and over-the-horizon communications; custom narrowband VHF; custom wideband; and military communications.

  3. Satellite Communications for Aeronautics Applications: Technology Development and Demonstration

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Hoder, Douglas J.; Zakrajsek, Robert J.

    2001-01-01

    The National Aeronautics and Space Administration (NASA) is performing research and development to improve the safety and increase the capacity of the National Airspace System (NAS). Improved communications, especially to and from the aircraft flight deck, has been identified as an essential enabling technology for future improvements to the air traffic management system and aviation safety. NASA's Glenn Research Center is engaged in research and development of satellite communications technologies for aeronautical applications. A mobile aero terminal has been developed for use with Ku band commercial communications satellites. This experimental terminal will be used in mobile ground and air-based tests and demonstrations during 2000-2004. This paper will describe the basic operational parameters of the Ku Band aero terminal, the communications architecture it is intended to demonstrate, and the key technology issues being addressed in the tests and demonstrations. The design of the Ku Band aero terminal and associated ground testbed, planned tests and demonstrations, and results to date will be presented.

  4. Identification of Technologies for Provision of Future Aeronautical Communications

    NASA Technical Reports Server (NTRS)

    Gilbert, Tricia; Dyer, Glen; Henriksen, Steve; Berger, Jason; Jin, Jenny; Boci, Tony

    2006-01-01

    This report describes the process, findings, and recommendations of the second of three phases of the Future Communications Study (FCS) technology investigation conducted by NASA Glenn Research Center and ITT Advanced Engineering & Sciences Division for the Federal Aviation Administration (FAA). The FCS is a collaborative research effort between the FAA and Eurocontrol to address frequency congestion and spectrum depletion for safety critical airground communications. The goal of the technology investigation is to identify technologies that can support the longterm aeronautical mobile communication operating concept. A derived set of evaluation criteria traceable to the operating concept document is presented. An adaptation of the analytical hierarchy process is described and recommended for selecting candidates for detailed evaluation. Evaluations of a subset of technologies brought forward from the prescreening process are provided. Five of those are identified as candidates with the highest potential for continental airspace solutions in L-band (P-34, W-CDMA, LDL, B-VHF, and E-TDMA). Additional technologies are identified as best performers in the unique environments of remote/oceanic airspace in the satellite bands (Inmarsat SBB and a custom satellite solution) and the airport flight domain in C-band (802.16e). Details of the evaluation criteria, channel models, and the technology evaluations are provided in appendixes.

  5. The National Aeronautics and Space Administration interdisciplinary studies in space technology at the University of Kansas

    NASA Technical Reports Server (NTRS)

    Barr, B. G.

    1974-01-01

    A broad range of research projects contained in a cooperative space technology program at the University of Kansas are reported as they relate to the following three areas of interdisciplinary interest: (1) remote sensing of earth resources; (2) stability and control of light and general aviation aircraft; and (3) the vibrational response characteristics of aeronautical and space vehicles. Details of specific research efforts are given under their appropriate departments, among which are aerospace engineering, chemical and petroleum engineering, environmental health, water resources, the remote sensing laboratory, and geoscience applications studies.

  6. The National Aeronautics and Space Administration's Earth Science Applications Program: Exploring Partnerships to Enhance Decision Making in Public Health Practice

    NASA Technical Reports Server (NTRS)

    Vann, Timi S.; Venezia, Robert A.

    2002-01-01

    The National Aeronautics and Space Administration (NASA), Earth Science Enterprise is engaged in applications of NASA Earth science and remote sensing technologies for public health. Efforts are focused on establishing partnerships with those agencies and organizations that have responsibility for protecting the Nation's Health. The program's goal is the integration of NASA's advanced data and technology for enhanced decision support in the areas of disease surveillance and environmental health. A focused applications program, based on understanding partner issues and requirements, has the potential to significantly contribute to more informed decision making in public health practice. This paper intends to provide background information on NASA's investment in public health and is a call for partnership with the larger practice community.

  7. Budget estimates, fiscal year 1995. Volume 1: Agency summary, human space flight, and science, aeronautics and technology

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The NASA budget request has been restructured in FY 1995 into four appropriations: human space flight; science, aeronautics, and technology; mission support; and inspector general. The human space flight appropriations provides funding for NASA's human space flight activities. This includes the on-orbit infrastructure (space station and Spacelab), transportation capability (space shuttle program, including operations, program support, and performance and safety upgrades), and the Russian cooperation program, which includes the flight activities associated with the cooperative research flights to the Russian Mir space station. These activities are funded in the following budget line items: space station, Russian cooperation, space shuttle, and payload utilization and operations. The science, aeronautics, and technology appropriations provides funding for the research and development activities of NASA. This includes funds to extend our knowledge of the earth, its space environment, and the universe and to invest in new technologies, particularly in aeronautics, to ensure the future competitiveness of the nation. These objectives are achieved through the following elements: space science, life and microgravity sciences and applications, mission to planet earth, aeronautical research and technology, advanced concepts and technology, launch services, mission communication services, and academic programs.

  8. Earth Science Geostationary Platform Technology

    NASA Technical Reports Server (NTRS)

    Wright, Robert L. (Editor); Campbell, Thomas G. (Editor)

    1989-01-01

    The objective of the workshop was to address problems in science and in four technology areas (large space antenna technology, microwave sensor technology, electromagnetics-phased array adaptive systems technology, and optical metrology technology) related to Earth Science Geostationary Platform missions.

  9. Technology for the Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Graham, Amy (Editor)

    1989-01-01

    Mission to Planet Earth is a concept referring to the endeavor of making long term, space based global observations for the purpose of understanding earth system processes. The Ad Hoc Review Team on Space Technology was formed to determine what technologies must be developed in the near term to support this endeavor. The review team's central finding is that the Office of Aeronautics and Space Technology has identified all the correct technologies to pursue, but that the mission and system architecture has not been developed sufficiently to permit determination of meaningful priorities. Some of the specific recommendations of the review team are as follows: (1) long term, space based investigation of global changes and the earth's systems; (2) studies should begin that include the performance of relative cost-benefit trade-off analyses and development of operations concepts; (3) funding should be increased, especially in research and development; (4) pursue new technology in information processing; (5) improve interagency integration and coordination; and (6) after architecture studies are complete, another team should meet to consider questions of technology priorities, development schedules, and funding allocation.

  10. Aeronautics Learning Laboratory for Science, Technology, and Research (ALLSTAR)

    NASA Technical Reports Server (NTRS)

    Levy, Cesar; Ebadian, M. A.

    1998-01-01

    We finished the material development of Level 1, Level 2 and most of Level 3. We created three new galleries, one of streaming videos enabling the user to select his/her appropriate speed of Internet connectivity for better performance. The second gallery on NASA's X-series aircraft and the third is on F-series aircraft. We also completed the placement and activation of all thirteen kiosks. We added one more kiosk over the number suggested in the proposal at Baker Aviation High School - a Dade County Public School for special aviation programs. We felt that the goals of this school matched ALLSTAR's goals and that the placement of the kiosk would better help the local students become interested in the Aviation and Aeronautics field. We continue to work on the development of our "Teacher Resource Guide to ALLSTAR material" in which we tied our material into the national and Florida State standards. We finished the Florida Sunshine State standards, getting positive feedback from local and other educators who use the material on a regular basis. We had another successful workshop on October 29 th, 1997. We introduced the ALLSTAR website and kiosk to about twenty science and history teachers from Dade County Public Schools (DCPS). Most teachers were from middle schools, although we had some from elementary schools also. We provided several demonstrations of the ALLSTAR material to local schools in the Dade County Public Schools (DCPS) system. We used the ALLSTAR material with FIU's summer immersion program for FLAME students. This program includes a high number of minority students interested in science and engineering. We also presented the material at National Science Teachers Association (NSTA) and National Congress on Aviation and Space Education (NCASE) conferences and will be presenting the material at the Southeast Florida Aviation Consortium (SEFAC). We provided two on-site workshops in the NSTA conference with total attended of about 70 teachers. The BBS was

  11. Implementation of aeronautic image compression technology on DSP

    NASA Astrophysics Data System (ADS)

    Wang, Yujing; Gao, Xueqiang; Wang, Mei

    2007-11-01

    According to the designed characteristics and demands of aeronautic image compression system, lifting scheme wavelet and SPIHT algorithm was selected as the key part of software implementation, which was introduced with details. In order to improve execution efficiency, border processing was simplified reasonably and SPIHT (Set Partitioning in Hierarchical Trees) algorithm was also modified partly. The results showed that the selected scheme has a 0.4dB improvement in PSNR(peak-peak-ratio) compared with classical Shaprio's scheme. To improve the operating speed, the hardware system was then designed based on DSP and many optimization measures were then applied successfully. Practical test showed that the system can meet the real-time demand with good quality of reconstruct image, which has been used in an aeronautic image compression system practically.

  12. Aeronautics Technology Possibilities for 2000: Report of a Workshop (January 1984).

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Commission on Engineering and Technical Systems.

    The National Research Council's Aeronautics and Space Engineering Board conducted a workshop in January 1984 to project what the state of knowledge of aeronautical technology could be in the year 2000 if necessary supporting resources were made available. Eight panels were organized to assess possibilities in the areas of: (1) aerodynamics; (2)…

  13. Earth Science Enterprise Technology Strategy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA's Earth Science Enterprise (ESE) is dedicated to understanding the total Earth system and the effects of natural and human-induced changes on the global environment. The goals of ESE are: (1) Expand scientific knowledge of the Earth system using NASA's unique vantage points of space, aircraft, and in situ platforms; (2) Disseminate information about the Earth system; and (3) Enable the productive use of ESE science and technology in the public and private sectors. ESE has embraced the NASA Administrator's better, faster, cheaper paradigm for Earth observing missions. We are committed to launch the next generation of Earth Observing System (EOS) missions at a substantially lower cost than the EOS first series. Strategic investment in advanced instrument, spacecraft, and information system technologies is essential to accomplishing ESE's research goals in the coming decades. Advanced technology will play a major role in shaping the ESE fundamental and applied research program of the future. ESE has established an Earth science technology development program with the following objectives: (1) To accomplish ESE space-based and land-based program elements effectively and efficiently; and (2) To enable ESE's fundamental and applied research programs goals as stated in the NASA Strategic Plan.

  14. Progress in aeronautical research and technology applicable to civil air transports

    NASA Technical Reports Server (NTRS)

    Bower, R. E.

    1981-01-01

    Recent progress in the aeronautical research and technology program being conducted by the United States National Aeronautics and Space Administration is discussed. Emphasis is on computational capability, new testing facilities, drag reduction, turbofan and turboprop propulsion, noise, composite materials, active controls, integrated avionics, cockpit displays, flight management, and operating problems. It is shown that this technology is significantly impacting the efficiency of the new civil air transports. The excitement of emerging research promises even greater benefits to future aircraft developments.

  15. Aeronautics Technology Possibilities for 2000: Report of a Workshop

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Topics discussed include: Aerodynamics; Propulsion; Structural Analysis and Design Technology; Materials for Structural Members, Propulsion Systems, and Subsystems; Guidance, Navigation, and Control; Computer and Information Technology; Human Factors Engineering; Systems Integration.

  16. Aeronautical Satellite-Assisted Process for Information Exchange Through Network Technologies (Aero-SAPIENT) Conducted

    NASA Technical Reports Server (NTRS)

    Zernic, Michael J.

    2002-01-01

    Broadband satellite communications for aeronautics marries communication and network technologies to address NASA's goals in information technology base research and development, thereby serving the safety and capacity needs of the National Airspace System. This marriage of technology increases the interactivity between airborne vehicles and ground systems. It improves decision-making and efficiency, reduces operation costs, and improves the safety and capacity of the National Airspace System. To this end, a collaborative project called the Aeronautical Satellite Assisted Process for Information Exchange through Network Technologies, or Aero-SAPIENT, was conducted out of Tinker AFB, Oklahoma, during November and December 2000.

  17. Aeronautics Research and Technology Program and specific objectives, fiscal year 1982

    NASA Technical Reports Server (NTRS)

    Olstad, W. B.

    1981-01-01

    The Aeronautics Research and Technology program is broken down into two program areas (research and technology base, and systems technology programs) which are further broken down into succeedingly more detailed activities to form a work breakdown structure for the aeronautics program: program area, program/discipline objective, specific objective, and research and technology objective and plan (RTOP). A detailed view of this work breakdown structure down to the specific objective level is provided, and goals or objectives at each of these levels are set forth. What is to be accomplished and why are addressed, but not how. The letter falls within the domain of the RTOP.

  18. Down to earth technology.

    PubMed

    Pepall, J

    1993-01-01

    There are constant problems with the water supply in northern Cote d'Ivoire. For example, wells have been abandoned because the pump stands are damaged and the wells contain no water during the dry season. Rural women usually can collect enough surface water during the rainy season, but during the dry season, they dig shallow wells for groundwater. Regardless of the water source, the water tends to be contaminated, resulting in diarrhea, schistosomiasis, and dysentery. Failed attempts in the past to drill productive wells (e.g, 50-60% of wells dug between 1973-1985 are inoperable) and the needs to find water sources have led researchers from Canada and the Cote d'Ivoire to develop a geographic information system (GIS) for the Marahoue River basin (12,000 square km). This basin receives little precipitation and the pre-Cambrian bedrock does not hold much water. This GIS system contains hydrological, geological, and geophysical data and remote sensing data collected from satellite. It can locate the best possible sites for drilling wells based on an analysis of fractures in the bedrock (the greater the density of clusters of fractures, the greater the probability of pinpointing productive water sources). Now GIS specialists can site 100 to 200 wells daily in the northern Cote d'Ivoire. This system is also capable of finding mineral deposits (e.g. diamonds are common in the Marahoue River basin). Despite the capabilities of this GIS system, water quality differs and pumping mechanisms still can become damaged. Nevertheless, this technology can be used to identify water sources in other developing countries, including countries in Africa, such as Burkina Faso, Ghana, Mali, Niger, Senegal, and Togo.

  19. National Aeronautics and Space Administration plans for space communication technology

    NASA Technical Reports Server (NTRS)

    Alexovich, R. E.

    1979-01-01

    A program plan is presented for a space communications application utilizing the 30/20 GHz frequency bands (30 GHz uplink and 20 GHz downlink). Results of market demand studies and spacecraft systems studies which significantly affect the supporting research and technology program are also presented, along with the scheduled activities of the program plan.

  20. Cyber Technology for Materials and Structures in Aeronautics and Aerospace

    NASA Technical Reports Server (NTRS)

    Pipes, R. Byron

    1999-01-01

    This report summarizes efforts undertaken during the 1998-99 program year and includes a survey of the field of computational mechanics, a discussion of biomimetics and intelligent simulation, a survey of the field of biomimetics, an illustration of biomimetics and computational mechanics through the example of the high performance composite tensile structure. In addition, the preliminary results of a state-of-the art survey of composite materials technology is presented.

  1. 75 FR 36722 - Aeronautics Science and Technology Subcommittee; Committee on Technology; National Science and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-28

    ... development of the draft National Aeronautics Research, Development, Test and Evaluation (RDT&E... Development Plan. The proposed structure and draft content (to date) of the National Aeronautics RDT&E... further development of the draft National Aeronautics RDT&E Infrastructure Plan. Dates and Addresses:...

  2. NASA Office of Aeronautics and Space Technology Summer Workshop. Volume 5: Propulsion technology panel, part 1

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Payload experiments which could be carried out in near earth space using the shuttle orbiter, its payload bay, the Spacelab, and/or some free-flying device that might be used for long duration testing were identified. Specific areas examined in terms of user requirements include: chemical propulsion, nuclear propulsion (fission, fussion, radioisotopes), and collected energy (coherent energy and solar electromagnetic energy). Cost reduction objectives for advanced propulsion technology development were also developed.

  3. [Earth Science Technology Office's Computational Technologies Project

    NASA Technical Reports Server (NTRS)

    Fischer, James (Technical Monitor); Merkey, Phillip

    2005-01-01

    This grant supported the effort to characterize the problem domain of the Earth Science Technology Office's Computational Technologies Project, to engage the Beowulf Cluster Computing Community as well as the High Performance Computing Research Community so that we can predict the applicability of said technologies to the scientific community represented by the CT project and formulate long term strategies to provide the computational resources necessary to attain the anticipated scientific objectives of the CT project. Specifically, the goal of the evaluation effort is to use the information gathered over the course of the Round-3 investigations to quantify the trends in scientific expectations, the algorithmic requirements and capabilities of high-performance computers to satisfy this anticipated need.

  4. NASA Programs in Advanced Sensors and Measurement Technology for Aeronautical Applications

    NASA Technical Reports Server (NTRS)

    Conway, Bruce A.

    2004-01-01

    There are many challenges facing designers and operators of our next-generation aircraft in meeting the demands for efficiency, safety, and reliability which are will be imposed. This paper discusses aeronautical sensor requirements for a number of research and applications areas pertinent to the demands listed above. A brief overview will be given of aeronautical research measurements, along with a discussion of requirements for advanced technology. Also included will be descriptions of emerging sensors and instrumentation technology which may be exploited for enhanced research and operational capabilities. Finally, renewed emphasis of the National Aeronautics and Space Administration in advanced sensor and instrumentation technology development will be discussed, including project of technology advances over the next 5 years. Emphasis on NASA efforts to more actively advance the state-of-the-art in sensors and measurement techniques is timely in light of exciting new opportunities in airspace development and operation. An up-to-date summary of the measurement technology programs being established to respond to these opportunities is provided.

  5. Aeronautics. An Educator's Guide with Activities in Science, Mathematics, and Technology Education: What Pilot, Astronaut, or Aeronautical Engineer didn't Start out with a Toy Glider?

    NASA Technical Reports Server (NTRS)

    Biggs, Pat (Editor); Huetter, Ted (Editor)

    1998-01-01

    Welcome to the exciting world of aeronautics. The term aeronautics originated in France, and was derived from the Greek words for "air" and "to sail." It is the study of flight and the operation of aircraft. This educator guide explains basic aeronautical concepts, provides a background in the history of aviation, and sets them within the context of the flight environment (atmosphere, airports, and navigation). The activities in this guide are designed to be uncomplicated and fun. They have been developed by NASA Aerospace Education Services Program specialists, who have successfully used them in countless workshops and student programs around the United States. The activities encourage students to explore the nature of flight, and experience some real-life applications of mathematics, science, and technology. The subject of flight has a wonderful power to inspire learning.

  6. NASA Office of Aeronautics and Space Technology Summer Workshop. Volume 2: Sensing and data acquisitions panel

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Advanced technology requirements associated with sensing and data acquisition systems were assessed for future space missions. Sensing and data acquisition system payloads which would benefit from the use of the space shuttle in demonstrating technology readiness are identified. Topics covered include: atmospheric sensing payloads, earth resources sensing payloads, microwave systems sensing payloads, technology development/evaluation payloads, and astronomy/planetary payloads.

  7. A method for the analysis of the benefits and costs for aeronautical research and technology

    NASA Technical Reports Server (NTRS)

    Williams, L. J.; Hoy, H. H.; Anderson, J. L.

    1978-01-01

    A relatively simple, consistent, and reasonable methodology for performing cost-benefit analyses which can be used to guide, justify, and explain investments in aeronautical research and technology is presented. The elements of this methodology (labeled ABC-ART for the Analysis of the Benefits and Costs of Aeronautical Research and Technology) include estimation of aircraft markets; manufacturer costs and return on investment versus aircraft price; airline costs and return on investment versus aircraft price and passenger yield; and potential system benefits--fuel savings, cost savings, and noise reduction. The application of this methodology is explained using the introduction of an advanced turboprop powered transport aircraft in the medium range market in 1978 as an example.

  8. Technologic Papers of the Bureau of Standards. Number 237. Aeronautic Instruments,

    DTIC Science & Technology

    2007-11-02

    astronomical methods are employed, the requisite observations are almost always made with sextants (see Figs. 45 to 48) which the observer uses to determine...time equation and declination, as determined from the Nautical Almanac, the position can be determined. The sextants used differ from marine sextants ...8217 Hlunt Aeronautic Instrumen~ts. 495 496 Technologic Papers of the Bureau of Standards. [Vol.1 7 on which the instrument is set. Sextants have also been

  9. NASA programs in advanced sensors and measurement technology for aeronautical applications

    NASA Technical Reports Server (NTRS)

    Conway, Bruce A.

    1990-01-01

    NASA involvement in the development, implementation, and experimental use of advanced aeronautical sensors and measurement technologies is presently discussed within the framework of specific NASA research centers' activities. The technology thrusts are in the fields of high temperature strain gages and microphones, laser light-sheet flow visualization, LTA, LDV, and LDA, tunable laser-based aviation meteorology, and fiber-optic CARS measurements. IR thermography and close-range photogrammetry are undergoing substantial updating and application. It is expected that 'smart' sensors will be increasingly widely used, especially in conjunction with smart structures in aircraft and spacecraft.

  10. Aeronautics research and technology. A review of proposed reductions in the FY 1983 NASA program

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Reductions in the Fiscal Year 1983 program from the original proposal to the levels of the appropriation request submitted to Congress are reviewed. The request asked for an assessment of the national criticality of the excluded programs and, for each one, the risk (probability of success) associated with achieving the objectives sought and the degree to which it might be assumed by the private sector. Based on this request, a charge comprising an assessment of those aeronautics projects excluded from the FY 1983 budget request to Congress, the likelihood that industry would undertake them, the impact of their not being done, and the more general question of the need for government to bridge the gap between the aeronautics research and technology base and early application was developed. The charge further specifies that the assessment is to encompass considerations of safety, national defense, efficient transport, and the national economy.

  11. Earth science vision: Platform technology challenges

    NASA Technical Reports Server (NTRS)

    Lemmerman, L.; Delin, K.; Hadaegh, F.; Lou, M.; Bhasin, K.; Bristow, J.; Connerton, R.; Pasciuto, M.

    2001-01-01

    Advanced new platform technologies are critical to the realization of the Earth Science Vision in the 2020 timeframe. Examples of the platform technology challenges and current state-of-the-art capabilities are present.

  12. The impact of active controls technology on the structural integrity of aeronautical vehicles

    NASA Technical Reports Server (NTRS)

    Noll, Thomas E.; Austin, Edward; Donley, Shawn; Graham, George; Harris, Terry; Kaynes, Ian; Lee, Ben; Sparrow, James

    1993-01-01

    The findings of an investigation conducted under the auspices of The Technical Cooperation Program (TTCP) to assess the impact of active controls technology on the structural integrity of aeronautical vehicles and to evaluate the present state-of-the-art for predicting loads caused by a flight-control system modification and the resulting change in the fatigue life of the flight vehicle are summarized. Important points concerning structural technology considerations implicit in applying active controls technology in new aircraft are summarized. These points are well founded and based upon information received from within the aerospace industry and government laboratories, acquired by sponsoring workshops which brought together experts from contributing and interacting technical disciplines, and obtained by conducting a case study to independently assess the state of the technology. The paper concludes that communication between technical disciplines is absolutely essential in the design of future high performance aircraft.

  13. Aeronautics: An Educator's Guide with Activities in Science, Mathematics, and Technology Education.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This educator's guide, developed for students in grades 2-4, discusses the field of aeronautics. It begins with education standards and skill matrices for the classroom activities, a description of the National Aeronautics and Space Administration (NASA) aeronautics mission, and a brief history of aeronautics. Activities are written for the…

  14. Sun-Earth Day - Teaching Heliophysics Through Education Technology

    NASA Technical Reports Server (NTRS)

    Thieman, J.; Cline, T.; Lewis, E.

    2010-01-01

    Sun-Earth Day (SED) is an Education and Outreach program supported by the U.S, National Aeronautics and Space Administration (NASA). The intent of the program is to teach students and the general public about Heliophysics (the science of the study of the Sun, how it varies, and how solar dynamics affect the rest of the solar system, especially the Earth). The program was begun ten years ago. Each year since that time a particular day has been designated as "Sun-Earth Day ,,. Usually the day of the spring equinox (March 20 or 21) is Sun-Earth Day, but other days have been used as well. Each year a theme is chosen relating to Heliophysics and events reflecting that theme are planned not only for Sun-Earth Day, but for the entire year. From the very beginning educational technology was emphasized in the events in order to effectively reach wide audiences with the SED message. The main approach has been to have a "webcast" related to each year's theme, often from a location that supports the theme as well. For example, a webcast took place from the Mayan pyramids at Chichen Itza, Mexico to highlight the theme of "Ancient Observatories, Timeless Knowledge". Webcasts were not the only technology employed, however. Many of the themes centered on the dynamic nature of the Sun and the effects that solar storms can have on interplanetary space and in our day-to-day life on Earth. Activities for tracking when solar storms happen and how they affect the Earth were developed and brought together in an educational package called Space Weather Action Centers. This project is explained in more detail in another presentation in this session being given by Norma Teresinha Oliveira Reis. Recent Sun-Earth Days have utilized "social networking" technologies to reach widespread groups on the internet. Podcasts, Vodcasts, Facebook, Twitter, and Second Life are the types of network technologies being employed now. The NASA Distance learning Network is another method for bringing Sun-Earth

  15. Fundamental Aeronautics Program

    NASA Technical Reports Server (NTRS)

    Misra, Ajay

    2009-01-01

    The Overarching Mission of NASA's Aeronautics Research Mission Directorate (ARMD) is: To advance U.S. technological leadership in aeronautics in partnership with industry, academia, and other government agencies that conduct aeronautics-related research. ARMD supports the Agency's goal of developing a balanced overall program of science, exploration, and aeronautics, and ARMD's research plans also directly support the National Aeronautics R&D Policy and accompanying Executive Order 131419.

  16. Aeronautical-Satellite-Assisted Process Being Developed for Information Exchange Through Network Technologies (Aero-SAPIENT)

    NASA Technical Reports Server (NTRS)

    Zernic, Michael J.

    2001-01-01

    Communications technologies are being developed to address safety issues during aviation travel. Some of these technologies enable the aircraft to be in constant bidirectional communications with necessary systems, people, and other aircraft that are not currently in place today. Networking technologies, wireless datalinks, and advanced avionics techniques are areas of particular importance that the NASA Glenn Research Center has contributed. Glenn, in conjunction with the NASA Ames Research Center, NASA Dryden Flight Research Center, and NASA Langley Research Center, is investigating methods and applications that would utilize these communications technologies. In mid-June 2000, the flight readiness of the network and communications technologies were demonstrated via a simulated aircraft. A van simulating an aircraft was equipped with advanced phased-array antennas (Advanced Communications/Air Traffic Management (AC/ATM) Advanced Air Transportation Technologies (AATT) project) that used commercial Ku-band satellite communications to connect Glenn, Dryden, and Ames in a combined system ground test. This test simulated air-ground bidirectional transport of real-time digital audio, text, and video data via a hybrid network configuration that demonstrated the flight readiness of the network and communications technologies. Specifically, a Controller Pilot Data Link Communications application was used with other applications to demonstrate a multiprotocol capability via Internet-protocol encapsulated ATN (Aeronautical Telecommunications Network) data packets. The significance of this combined ground test is its contribution to the Aero Information Technology Base Program Level I milestone (Software Technology investment area) of a real-time data link for the National Airspace System. The objective of this milestone was to address multiprotocol technology applicable for real-time data links between aircraft, a satellite, and the ground as well as the ability to

  17. Earth Resources Laboratory research and technology

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The accomplishments of the Earth Resources Laboratory's research and technology program are reported. Sensors and data systems, the AGRISTARS project, applied research and data analysis, joint research projects, test and evaluation studies, and space station support activities are addressed.

  18. NASA University Research Centers Technical Advances in Education, Aeronautics, Space, Autonomy, Earth and Environment

    NASA Technical Reports Server (NTRS)

    Jamshidi, M. (Editor); Lumia, R. (Editor); Tunstel, E., Jr. (Editor); White, B. (Editor); Malone, J. (Editor); Sakimoto, P. (Editor)

    1997-01-01

    This first volume of the Autonomous Control Engineering (ACE) Center Press Series on NASA University Research Center's (URC's) Advanced Technologies on Space Exploration and National Service constitute a report on the research papers and presentations delivered by NASA Installations and industry and Report of the NASA's fourteen URC's held at the First National Conference in Albuquerque, New Mexico from February 16-19, 1997.

  19. Safety, Reliability, and Quality Assurance Provisions for the Office of Aeronautics, Exploration and Technology Centers

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This Handbook establishes general safety, reliability, and quality assurance (SR&QA) guidelines for use on flight and ground-based projects conducted at the Ames, Langley, and Lewis Research Centers, hereafter identified as the Office of Aeronautics, Exploration and Technology (OAET) Centers. This document is applicable to all projects and operations conducted at these Centers except for those projects covered by more restrictive provisions such as the Space Shuttle, Space Station, and unmanned spacecraft programs. This Handbook is divided into two parts. The first (Chapters 1 and 2) establishes the SR&QA guidelines applicable to the OAET Centers, and the second (Appendices A, B, C, and D) provides examples and definitions for the total SR&QA program. Each center should implement SR&QA programs using these guidelines with tailoring appropriate to the special projects conducted by each Center. This Handbook is issued in loose-leaf form and will be revised by page changes.

  20. Earth feature identification and tracking technology development

    NASA Technical Reports Server (NTRS)

    Wilson, R. G.; Sivertson, W. E., Jr.

    1979-01-01

    The paper discusses needs for smart sensing in terrestrial and atmospheric remote sensing as related to current technology and a scheduled Shuttle experiment. An approach is outlined involving Shuttle-borne experiments to develop earth feature identification and tracking technology including a Feature Identification and Location Experiment (FILE) scheduled for flight on the NASA Shuttle with an objective of classifying earth features into categories of bare land, water, vegetation, and clouds, snow, and ice. The plan for evolution of the FILE-related technology leads to capabilities for pointing instruments to predetermined sites, reacquiring earth features or landmarks, and tracking features such as coastlines and rivers. Technology concepts relative to an overall system transfer function is discussed, and the development status outlined.

  1. NASA Office of Aeronautics and Space Technology Summer Workshop. Volume 4: Power technology panel

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Technology requirements in the areas of energy sources and conversion, power processing, distribution, conversion, and transmission, and energy storage are identified for space shuttle payloads. It is concluded that the power system technology currently available is adequate to accomplish all missions in the 1973 Mission Model, but that further development is needed to support space opportunities of the future as identified by users. Space experiments are proposed in the following areas: power generation in space, advanced photovoltaic energy converters, solar and nuclear thermoelectric technology, nickel-cadmium batteries, flywheels (mechanical storage), satellite-to-ground transmission and reconversion systems, and regenerative fuel cells.

  2. Aeronautics and space report of the President

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This report describes the activities and accomplishments of all agencies of the United States in the fields of aeronautics and space science during FY 1994. Activity summaries are presented for the following areas: space launch activities, space science, space flight and space technology, space communications, aeronuatics, and studies of the planet Earth. Several appendices providing data on U.S. launch activities, the Federal budget for space and aeronautics, remote sensing capabilities, and space policy are included.

  3. Activities involving aeronautical, space science, and technology support for minority institutions

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Final Report addressed the activities with which the Interracial Council for Business Opportunity (ICBO) was involved over the past 12 months. ICBO was involved in the design and development of a CARES Student Tracking System Software (CARES). Cares is intended to provide an effective means of maintaining relevant current and historical information on NASA-funded students through a range of educational program initiatives. ICBP was extensively involved in the formation of a minority university consortium amd implementation of collaborative research activities by the consortium as part of NASA's Mission to Planet Earth/Earth Observing System. ICBO was involved in the formation of an HBCU/MI Consortium to facilitate technology transfer efforts to the small and minority business community in their respective regions.

  4. Shuttle Technology for Earth Laboratories

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Pyran System represents a major advancement in control of pyrolysis, the technology of subjecting organic material to selected temperatures to break them down into their component parts, and that the system offers capabilities unavailable. Pyran System is designed for rapid automated analysis of the composition of organic matter. It is capable of heating samples to 1,130 degrees fahrenheit with infrared heat at a precisely controlled atmosphere. In order to do this with the degree of control and repeatability desired, the developers of the Pyran system decided they would need a special type of material to insulate the heating chambers. They adopted the shuttle tiles for the difficult insulating job. The tiles provide superior insulating characteristics needed, and they can be readily cut and formed to fit the heating chambers.

  5. Goddard Earth Sciences and Technology Center (GEST)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This document summarizes the activities of the Goddard Earth Sciences and Technology Center (GEST), a consortium of scientists and engineers led by the University of Maryland, Baltimore County (UMBC), during the contract reporting period. Topics covered include: new programs, eligibility and selection criteria, Goddard Coastal Research Graduate Fellowship Program and staffing changes.

  6. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology into Aeronautics Research Mission Directorate Projects for 2016

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2017-01-01

    This report is intended to help NASA program and project managers incorporate Small Business Innovation Research (SBIR) technologies into NASA Aeronautics Research Mission Directorate (ARMD) projects. Other Government and commercial project managers interested in ARMD funding opportunities through NASA's SBIR program will find this report useful as well.

  7. Immersive Earth: Teaching Earth and Space with inexpensive immersive technology

    NASA Astrophysics Data System (ADS)

    Reiff, P. H.; Sumners, C.; Law, C. C.; Handron, K.

    2003-12-01

    In 1995 we pioneered "Space Update", the Digital Library for the rest of us", software that was so simple that a child could use it without a keyboard and yet would allow one-click updating of the daily earth and space science images without the dangers of having an open web browser on display. Thanks to NASA support, it allowed museums and schools to have a powerful exhibit for a tiny price. Over 40,000 disks in our series have been distributed so far to educators and the public. In 2003, with our partners we are again revolutionizing educational technology with a low-cost hardware and software solution to creating and displaying immersive content. Recently selected for funding as part of the REASoN competition, Immersive Earth is a partnership of scientists, museums, educators, and content providers. The hardware consists of a modest projector with a special fisheye lens to be used in an inflatable dome which many schools already have. This, coupled with a modest personal computer, can now easily project images and movies of earth and space, allows training students in 3-D content at a tiny fraction of the cost of a cave or fullscale dome theater. Another low-cost solution is the "Imove" system, where spherical movies can play on a personal computer, with the user changing the viewing direction with a joystick. We were the first to create immersive earth science shows, remain the leader in creating educational content that people want to see. We encourage people with "allsky" images or movies to bring it and see what it looks like inside a dome! Your content could be in our next show!

  8. Networking Technologies Enable Advances in Earth Science

    NASA Technical Reports Server (NTRS)

    Johnson, Marjory; Freeman, Kenneth; Gilstrap, Raymond; Beck, Richard

    2004-01-01

    This paper describes an experiment to prototype a new way of conducting science by applying networking and distributed computing technologies to an Earth Science application. A combination of satellite, wireless, and terrestrial networking provided geologists at a remote field site with interactive access to supercomputer facilities at two NASA centers, thus enabling them to validate and calibrate remotely sensed geological data in near-real time. This represents a fundamental shift in the way that Earth scientists analyze remotely sensed data. In this paper we describe the experiment and the network infrastructure that enabled it, analyze the data flow during the experiment, and discuss the scientific impact of the results.

  9. Technology Thrusts for Future Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Habib, Shahid

    2001-01-01

    This paper presents NASA's recent direction to invest in the critical science instrument and platform technologies in order to realize more reliable, frequent and versatile missions for future Earth Science measurements. Historically, NASA's Earth Science Enterprise has developed and flown science missions that have been large in size, mass and volume. These missions have taken much longer to implement due to technology development time, and have carried a large suite of instruments on a large spacecraft. NASA is now facing an era where the budget for the future years is more or less flat and the possibility for any major new start does not vividly appear on the horizon. Unfortunately, the scientific measurement needs for remote sensing have not shrunk to commensurate with the budget constraints. In fact, the challenges and scientific appetite in search of answers to a score of outstanding questions have been gradually expanding. With these factors in mind, for the last three years NASA has been changing its focus to concentrate on how to take advantage of smaller missions by relying on industry, and minimizing the overall mission life cycle by developing technologies that are independent of the mission implementation cycle. The major redirection of early investment in the critical technologies should eventually have its rewards and significantly reduce the mission development period. Needless to say, in the long run this approach should save money, minimize risk, promote or encourage partnering, allow for a rapid response to measurement needs, and enable frequent missions making a wider variety of earth science measurements. This paper gives an overview of some of the identified crucial technologies and their intended applications for meeting the future Earth Science challenges.

  10. Technology Thrust for Future Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Habib, Shahid

    2000-01-01

    This paper presents NASA's recent direction to invest in the critical science instrument and platform technologies in order to realize more reliable, frequent and versatile missions for future Earth Science measurements. Traditionally, NASA's Earth Science Enterprise has developed and flown science missions that have been large in size, weight and volume. These missions have taken much longer implementation due to technology development time and have carried a large suite of instruments on a large-size spacecraft. NASA is also facing an era where the budget for the future years is more or less flat and the possibility for any major new start does not vividly appear on the horizon. Unfortunately, the scientific goals have not shrunk to commensurate with the budget constraints. In fact, the challenges and scientific appetite in search of answers to a score of outstanding questions have been gradually expanding. With these factors in mind, for the last three years NASA has been changing its focus to concentrate on how to take advantage of smaller missions by relying on industry, and minimizing the overall life cycle by infusing technologies that are being developed independently of any planned mission's implementation cycle. The major redirection of early investment in the critical technologies should have its rewards and significantly reduce the mission development period. Needless to say, in the long run this approach should save money, minimize risk, promote or encourage partnering, and allow for more frequent missions or earth science measurements to occur. This paper gives an overview of some of the identified crucial technologies and their intended applications for meeting the future Earth Science challenges.

  11. Achieving Aeronautics Leadership: Aeronautics Strategic Enterprise Plan

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Today, more than ever, aggressive leadership is required to ensure that our national investments in aeronautical research, technology, and facilities are shaped into a coordinated, and high-impact, strategy. Under the auspices of the National Science and Technology Council, and in conjunction with the domestic industry, universities, the Department of Defense, and the Federal Aviation Administration - our partners in aeronautics - we propose to provide that leadership, and this document is our plan.

  12. Earth orbiting technologies for understanding global change

    NASA Astrophysics Data System (ADS)

    Harris, Leonard A.; Johnston, Gordon I.; Hudson, Wayne R.; Couch, Lana M.

    We are all becoming more aware of concerns such as the ozone hole and ozone layer depletion, the build-up of greenhouse gasses and the potential for global climate change, the damage to our lakes and forests from acid rain, and the loss of species and genetic diversity. These are not only of scientific interest, but are of growing public media, federal governmental, and international concern, with the potential for major impacts on the international economy, potential for future development, and global standard of living. Yet our current understanding of how our global environment behaves is embryonic, and does not allow us to predict with confidence the consequences or long term significance of these phenomena. NASA has a significant national responsibility in Global Change research, which will require a major agency investment over the next few decades in obtaining the science data associated with understanding the Earth as a total system. Technology research and development is a natural complement to this national scientific program. In her report to the NASA Administrator, Dr. Sally K. Ride states that Mission to Planet Earth "requires advances in technology to enhance observations, to handle and deliver the enormous quantities of data, and to ensure a long operating life." These three themes (1) space-based observation technologies, (2) data/information technologies, and (3) spacecraft/operations technologies form the basis for NASA's efforts to identify the technologies needed to support the Mission to Planet Earth. In the observation area, developments in spacecraft and space-based instrument technologies are required to enable the accurate measurement of key parameters crucial to the understanding of global change. In the data/information area, developments in technologies are required to enable the long-term documentation of these parameters and the timely understanding of the data. And in the spacecraft/operations area, developments in spacecraft

  13. NASA Allstar Project Aeronautics Learning Laboratory for Science,Technology, and Research (Allstar)

    NASA Technical Reports Server (NTRS)

    Levy, Cesar; Ebadian M. A.

    1998-01-01

    We finished the material development of Level 1, Level 2 and most of Level 3. We created three new galleries, one of streaming videos enabling the user to select his/her appropriate speed of Internet connectivity for better performance. The second gallery on NASA's X-series aircraft and the third is on F-series aircraft. We also completed the placement and activation of all thirteen kiosks. We added one more kiosk over the number suggested in the proposal at Baker Aviation High School - a Dade County Public School for special aviation programs. We felt that the goals of this school matched ALLSTAR's goals and that the placement of the kiosk would better help the local students become interested in the Aviation and Aeronautics field. We continue to work on the development of our "Teacher Resource Guide to ALLSTAR material" in which we tied our material into the national and Florida State standards. We finished the Florida Sunshine State standards, getting positive feedback from local and other educators who use the material on a regular basis. We had another successful workshop on October 29', 1997. We introduced the ALLSTAR website and kiosk to about twenty science and history teachers from Dade County Public Schools (DCPS). Most teachers were from middle schools, although we had some from elementary schools also. We provided several demonstrations of the ALLSTAR material to local schools in the Dade County Public Schools (DCPS) system. We used the ALLSTAR material with FIU's summer immersion program for FLAME students. This program includes a high number of minority students interested in science and engineering. We also presented the material at National Science Teachers Association (NSTA) and National Congress on Aviation and Space Education (NCASE) conferences and will be presenting the material at the Southeast Florida Aviation Consortium (SEFAC). We provided two on-site workshops in the NSTA conference with total attended of about 70 teachers. The BBS was

  14. Aeronautics: An Educator's Guide with Activities in Science, Mathematics, and Technology Education.

    ERIC Educational Resources Information Center

    Anderson, Charles; Biggs, Pat; Brown, Deborah; Culivan, Steve; Ellis, Sue; Gerard, James; Hardwick, Ellen; Poff, Norm; Rosenberg, Carla; Shearer, Deborah; Tripp, Octavia; Ernst, Ron

    This educator's guide explains basic aeronautical concepts and provides a background in the history of aviation within the context of flight environment (atmosphere, airports, and navigation). The activities in this guide are designed to be uncomplicated and fun. They were developed by NASA Aerospace Education Services Program specialists who have…

  15. Earth to space power beaming: A new NASA technology initiative

    NASA Astrophysics Data System (ADS)

    Rather, John D. G.

    1992-02-01

    Laser power beaming from the Earth's surface is an innovative and potentially cost-effective option for reliably providing electrical power for applications such as space transportation, Earth-orbiting satellites, and lunar development. The maturation of laser power beaming technology can support low power applications such as upgraded conventional communications satellites in the present decade. Power beaming systems to support extensive lunar base operations that may consume extremely large amounts of power can be implemented early in the 21st century. The synergistic advantages of high-thrust, high specific-impulse electric propulsion may make enhanced, low cost space logistics an area of unique significance for laser power beaming. Economic forces will continue as a driving factor in the selection of major system elements for both commercial applications as well as the avant-garde national space missions envisioned for the 21st century. As a result, the implementation of laser power beaming systems will only take place if they can demonstrate clear economic benefits without sacrificing performance, personnel safety, or the environment. Similarly, the development activities that are a necessary precursor to any operational system will take place only if key industry and government leaders perceive laser power beaming systems as an achievable goal with realistic payoffs in comparison to competing energy options. This paper summarizes NASA's current research to evaluate laser power beaming systems as they apply to applications of greatest interest, and it includes a summary of the current laser power beaming program within the NASA Headquarters Office of Aeronautics and Space Technology. This research effort will quantify some key technical certainties and uncertainties pertaining to laser power beaming systems appropriate for space applications as well as establish a path of development that includes maturation of key technology components for reliable laser and

  16. Earth Resources Laboratory technology transfer program

    NASA Technical Reports Server (NTRS)

    Estess, R. S.

    1981-01-01

    The approach to the transfer of satellite remote sensing technology used at the National Space Technology Laboratories'/Earth Resources Laboratory represents an effective program for the assigned area and is composed of demonstrations; a comprehensive in-house training program; user awareness activities (brochures, slide sets, and documentation); university short courses to stimulate university capabilities; and a technical awareness effort aimed at providing the states with consultation in the areas of hardware/software systems and advice on specific applications. Particular focus is on the transfer of LANDSAT technology in the context of geobased information system development, as well as on how the states approach the problem of institutionalizing the capabilities. The status of demonstration projects and of the state LANDSAT geographic information systems is examined.

  17. State of the art survey of technologies applicable to NASA's aeronautics, avionics and controls program

    NASA Technical Reports Server (NTRS)

    Smyth, R. K. (Editor)

    1979-01-01

    The state of the art survey (SOAS) covers six technology areas including flightpath management, aircraft control system, crew station technology, interface & integration technology, military technology, and fundamental technology. The SOAS included contributions from over 70 individuals in industry, government, and the universities.

  18. Aeronautics and space report of the president, 1974 activities

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The U.S. Government activities for 1974 in aeronautics and space are presented. Significant contributions toward the fulfillment of the nation's goals in space and aeronautics are covered, including application of space systems and technology to beneficial uses on earth, exploration of space and increase of scientific knowledge, development of improved space systems and technology, international cooperation, and advancement of civil and military aeronautics. Also in 1974, space activities in the private sector expanded to provide additional services to the public. The accomplishments are summarized.

  19. Documentation of the analysis of the benefits and costs of aeronautical research and technology models, volume 1

    NASA Technical Reports Server (NTRS)

    Bobick, J. C.; Braun, R. L.; Denny, R. E.

    1979-01-01

    The analysis of the benefits and costs of aeronautical research and technology (ABC-ART) models are documented. These models were developed by NASA for use in analyzing the economic feasibility of applying advanced aeronautical technology to future civil aircraft. The methodology is composed of three major modules: fleet accounting module, airframe manufacturing module, and air carrier module. The fleet accounting module is used to estimate the number of new aircraft required as a function of time to meet demand. This estimation is based primarily upon the expected retirement age of existing aircraft and the expected change in revenue passenger miles demanded. Fuel consumption estimates are also generated by this module. The airframe manufacturer module is used to analyze the feasibility of the manufacturing the new aircraft demanded. The module includes logic for production scheduling and estimating manufacturing costs. For a series of aircraft selling prices, a cash flow analysis is performed and a rate of return on investment is calculated. The air carrier module provides a tool for analyzing the financial feasibility of an airline purchasing and operating the new aircraft. This module includes a methodology for computing the air carrier direct and indirect operating costs, performing a cash flow analysis, and estimating the internal rate of return on investment for a set of aircraft purchase prices.

  20. 47 CFR 25.216 - Limits on emissions from mobile earth stations for protection of aeronautical radionavigation...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... any 2 millisecond active transmission interval. (h) Mobile earth stations manufactured more than six... not exceed −70 dBW/MHz, averaged over any 2 millisecond active transmission interval, in the band 1559... stations shall not exceed −80 dBW, averaged over any 2 millisecond active transmission interval, in...

  1. 47 CFR 25.216 - Limits on emissions from mobile earth stations for protection of aeronautical radionavigation...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... any 2 millisecond active transmission interval. (h) Mobile earth stations manufactured more than six... not exceed −70 dBW/MHz, averaged over any 2 millisecond active transmission interval, in the band 1559... stations shall not exceed −80 dBW, averaged over any 2 millisecond active transmission interval, in...

  2. 47 CFR 25.216 - Limits on emissions from mobile earth stations for protection of aeronautical radionavigation...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... any 2 millisecond active transmission interval. (h) Mobile earth stations manufactured more than six... not exceed −70 dBW/MHz, averaged over any 2 millisecond active transmission interval, in the band 1559... stations shall not exceed −80 dBW, averaged over any 2 millisecond active transmission interval, in...

  3. 47 CFR 25.216 - Limits on emissions from mobile earth stations for protection of aeronautical radionavigation...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... any 2 millisecond active transmission interval. (h) Mobile earth stations manufactured more than six... not exceed −70 dBW/MHz, averaged over any 2 millisecond active transmission interval, in the band 1559... stations shall not exceed −80 dBW, averaged over any 2 millisecond active transmission interval, in...

  4. 47 CFR 25.216 - Limits on emissions from mobile earth stations for protection of aeronautical radionavigation...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... any 2 millisecond active transmission interval. (h) Mobile earth stations manufactured more than six... not exceed −70 dBW/MHz, averaged over any 2 millisecond active transmission interval, in the band 1559... stations shall not exceed −80 dBW, averaged over any 2 millisecond active transmission interval, in...

  5. An active interface between medical science and aeronautical technology: the physiological investigations for the XC-35.

    PubMed

    Chapin, S L

    1991-01-01

    Although the advantages of flight at high altitude were early recognized, so also were the physiological problems standing in the way of its realization. The idea of surmounting such problems by means of a pressurized cabin was advocated as early as 1909, while the first attempt to translate the concept into actuality occurred in 1921. Neither it nor several successive attempts enjoyed any real success until a project launched by the U. S. Air Corps in 1935 produced a breakthrough aircraft designated the XC-35. The major reason for the favorable termination of that venture was the thoroughness of the engineering involved. But it is equally notable that this was the first instance in the age of powered flight where there was an active collaboration between the scientists and engineers, a rather curious circumstance in view of the fact that the achievement of altitude record-setting balloon flights in the nineteenth century had owed a great deal to an interconnection of aeronauts and scientists' laboratories. This paper focuses on the physiological investigations which informed the XC-35 engineers while at the same time bringing into being a new aeromedical laboratory taking the first small step toward turning aeromedicine into space medicine.

  6. NASA Ames and Future of Space Exploration, Science, and Aeronautics

    NASA Technical Reports Server (NTRS)

    Cohen, Jacob

    2015-01-01

    Pushing the frontiers of aeronautics and space exploration presents multiple challenges. NASA Ames Research Center is at the forefront of tackling these issues, conducting cutting edge research in the fields of air traffic management, entry systems, advanced information technology, intelligent human and robotic systems, astrobiology, aeronautics, space, earth and life sciences and small satellites. Knowledge gained from this research helps ensure the success of NASA's missions, leading us closer to a world that was only imagined as science fiction just decades ago.

  7. NASA Office of Aeronautics and Space Technology Summer Workshop. Volume 8: Thermal control panel

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Technology deficiencies in the area of thermal control for future space missions are identified with emphasis on large space structures and cold controlled environments. Thermal control surfaces, heat pipes, and contamination are considered along with cryogenics, insulation, and design techniques. Major directions forecast for thermal control technology development and space experiments are: (1) extend the useful lifetime of cryogenic systems for space, (2) reduce temperature gradients, and (3) improve temperature stability.

  8. NASA Office of Aeronautics and Space Technology Summer Workshop. Volume 3: Navigation, guidance and control panel

    NASA Technical Reports Server (NTRS)

    1975-01-01

    User technology requirements are identified in relation to needed technology advancement for future space missions in the areas of navigation, guidance, and control. Emphasis is placed on: reduction of mission support cost by 50% through autonomous operation, a ten-fold increase in mission output through improved pointing and control, and a hundred-fold increase in human productivity in space through large-scale teleoperator applications.

  9. NASA Office of Aeronautics and Space Technology Summer Workshop. Volume 1: Data processing and transfer panel

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The data processing and transfer technology areas that need to be developed and that could benefit from space flight experiments are identified. Factors considered include: user requirements, concepts in 'Outlook for Space', and cost reduction. Major program thrusts formulated are an increase in end-to-end information handling and a reduction in life cycle costs.

  10. NASA Office of Aeronautics and Space Technology Summer Workshop. Volume 10: Basic research panel

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Possible research experiments using the space transportation system are identified based on user requirements. Opportunity driven research areas include quantum electronics, cryogenics system technology, superconducting devices and detectors, and photo-induced reactions. Mission driven research requirements were examined and ranked based on inputs from the user group.

  11. Aeronautic instruments

    NASA Technical Reports Server (NTRS)

    Everling, E; Koppe, H

    1924-01-01

    The development of aeronautic instruments. Vibrations, rapid changes of the conditions of flight and of atmospheric conditions, influence of the air stream all call for particular design and construction of the individual instruments. This is shown by certain examples of individual instruments and of various classes of instruments for measuring pressure, change of altitude, temperature, velocity, inclination and turning or combinations of these.

  12. Aeronautics and space report of the President: 1981 activities

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Achievements in the aeronautics and space program by function are summarized. Activities in communications, Earth's resources and environment, space science, space transportation, international activities, and aeronautics are included.

  13. NASA Office of Aeronautical and Space Technology Summer Workshop. Volume 6: Structures and dynamics panel

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Structural requirements for future space missions were defined in relation to technology needs and payloads. Specific areas examined include: large area space structures (antennas, solar array structures, and platforms); a long, slender structure or boom used to support large objects from the shuttle or hold two bodies apart in space; and advanced composite structures for cost effective weight reductions. Other topics discussed include: minimum gage concepts, high temperature components, load and response determination and control, and reliability and life prediction.

  14. Identification and Analysis of Future Aeronautical Communications Candidates: A Study of Concepts and Technologies to Support the Aeronautical Communications Needs in the NextGen and Beyond National Airspace System

    NASA Technical Reports Server (NTRS)

    Wichgers, Joel M.; Mitchell, James P.

    2015-01-01

    This report describes the results of future aeronautical communications research conducted by Rockwell Collins employees under NRA contract to NASA. The overall goal of this research was to identify and begin to evaluate communication technology candidates expected to meet the long-term aircraft-to-aircraft and aircraft-to-ground data communications needs of Air Traffic Management in the NextGen and beyond National Airspace System (NAS), considering how the NAS and communications technologies will evolve during a 50-year modernization time horizon.

  15. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology into NASA Programs Associated with the Aeronautics Research Mission Directorate

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2015-01-01

    This report is intended to help NASA program and project managers incorporate Small Business Innovation Research/Small Business Technology Transfer (SBIR/STTR) technologies that have gone through Phase II of the SBIR program into NASA Aeronautics and Mission Directorate (ARMD) programs. Other Government and commercial program managers can also find this information useful.

  16. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology Into Aeronautics Research Mission Directorate Programs and Projects for 2015

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2016-01-01

    This report is intended to help NASA program and project managers incorporate Small Business Innovation Research/Small Business Technology Transfer (SBIR)/(STTR) technologies into NASA Aeronautics Research Mission Directorate (ARMD) projects. Other Government and commercial projects managers can also find this useful.

  17. Space Transportation Systems, Aeronautics and Space Technology, Space and Terrestrial Applications, and Space Sciences

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This report is prepared on an annual basis for the purposes of highlighting the fiscal year research and technology (R&T) activities. Its intent is to better inform the R&T Program Managers of significant accomplishments that promise practical and beneficial program application. The report is not inclusive of all R&T activities. The document is organized into two distinct sections: (1) a general summary of the major R&T activities in each program area, and (2) a description of significant individual completed activities and their results. This document will be updated November 1 of each year.

  18. NASA Office of Aeronautical and Space Technology Summer Workshop. Volume 7: Materials panel

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Materials technology requirements pertinent to structures, power, and propulsion for future space missions are identified along with candidate space flight experiments. Most requirements are mission driven, only four (all relating to space processing of materials) are considered to be opportunity driven. Exploitation of the space environment in performing basic research to improve the understanding of materials phenomena (such as solidification) and manufacturing and assembly in space to support missions such as solar energy stations which require the forming, erection, joining, and repair of structures in space are among the topics discussed.

  19. New technologies for advanced three-dimensional optimum shape design in aeronautics

    NASA Astrophysics Data System (ADS)

    Dervieux, Alain; Lanteri, Stéphane; Malé, Jean-Michel; Marco, Nathalie; Rostaing-Schmidt, Nicole; Stoufflet, Bruno

    1999-05-01

    The analysis of complex flows around realistic aircraft geometries is becoming more and more predictive. In order to obtain this result, the complexity of flow analysis codes has been constantly increasing, involving more refined fluid models and sophisticated numerical methods. These codes can only run on top computers, exhausting their memory and CPU capabilities. It is, therefore, difficult to introduce best analysis codes in a shape optimization loop: most previous works in the optimum shape design field used only simplified analysis codes. Moreover, as the most popular optimization methods are the gradient-based ones, the more complex the flow solver, the more difficult it is to compute the sensitivity code. However, emerging technologies are contributing to make such an ambitious project, of including a state-of-the-art flow analysis code into an optimisation loop, feasible. Among those technologies, there are three important issues that this paper wishes to address: shape parametrization, automated differentiation and parallel computing. Shape parametrization allows faster optimization by reducing the number of design variable; in this work, it relies on a hierarchical multilevel approach. The sensitivity code can be obtained using automated differentiation. The automated approach is based on software manipulation tools, which allow the differentiation to be quick and the resulting differentiated code to be rather fast and reliable. In addition, the parallel algorithms implemented in this work allow the resulting optimization software to run on increasingly larger geometries. Copyright

  20. Waste Management with Earth Observation Technologies

    NASA Astrophysics Data System (ADS)

    Margarit, Gerard; Tabasco, A.

    2010-05-01

    The range of applications where Earth Observation (EO) can be useful has been notably increased due to the maturity reached in the adopted technology and techniques. In most of the cases, EO provides a manner to remotely monitor particular variables and parameters with a more efficient usage of the available resources. Typical examples are environmental (forest, marine, resources…) monitoring, precision farming, security and surveillance (land, maritime…) and risk / disaster management (subsidence, volcanoes…). In this context, this paper presents a methodology to monitor waste disposal sites with EO. In particular, the explored technology is Interferometric Synthetic Aperture Radar (InSAR), which applies the interferometric concept to SAR images. SAR is an advanced radar concept able to acquire 2D coherent microwave reflectivity images for large scenes (tens of thousands kilometres) with fine resolution (< 1 m). The main product of InSAR is Digital Elevation Models (DEM) that provide key information about the tri-dimensional configuration of a scene, that is, a height map of the scene. In practice, this represents an alternative way to obtain the same information than in-situ altimetry can provide. In the case of waste management, InSAR has been used to evaluate the potentiality of EO to monitor the disposed volume along a specific range of time. This activity has been developed in collaboration with the Agència de Resídus de Catalunya (ARC) (The Waste Agency of Catalonia), Spain, in the framework of a pilot project. The motivation comes from the new law promoted by the regional Government that taxes the volume of disposed waste. This law put ARC in duty to control that the real volume matches the numbers provided by the waste processing firms so that they can not commit illegal actions. Right now, this task is performed with in-situ altimetry. But despite of the accurate results, this option is completely inefficient and limits the numbers of polls that

  1. NASA Earth Science Update with Information Science Technology

    NASA Technical Reports Server (NTRS)

    Halem, Milton

    2000-01-01

    This viewgraph presentation gives an overview of NASA earth science updates with information science technology. Details are given on NASA/Earth Science Enterprise (ESE)/Goddard Space Flight Center strategic plans, ESE missions and flight programs, roles of information science, ESE goals related to the Minority University-Space Interdisciplinary Network, and future plans.

  2. National Aeronautics and Space Administration Scientific and Technical Information Programs.

    ERIC Educational Resources Information Center

    Pinelli, Thomas E., Ed.

    1990-01-01

    Eleven articles discuss informational and educational programs of the National Aeronautics and Space Administration (NASA). Some of the areas discussed include scientific and technical information management, the new Space and Earth Science Information Systems, transfer of technology to other industries, intellectual property issues, and the…

  3. JPRS Report Science & Technology USSR: Earth Sciences

    DTIC Science & Technology

    1989-06-19

    Earth Sciences New Settler in Black Sea: Ctenophore Mnemiopsis Leidyi (A. Agassiz) ( Ctenophora : Lobata) [M. Ye. Vinogradov, E. A. Shushkina, et al...Leidyi (A. Agassiz) ( Ctenophora : Lobata) 18650134g Moscow OKEANOLOGIYA in Russian Vol 29 No 2, Mar-Apr 89 (manuscript received 5 Dec 88) pp 293-299

  4. Cloud Computing Technologies Facilitate Earth Research

    NASA Technical Reports Server (NTRS)

    2015-01-01

    Under a Space Act Agreement, NASA partnered with Seattle-based Amazon Web Services to make the agency's climate and Earth science satellite data publicly available on the company's servers. Users can access the data for free, but they can also pay to use Amazon's computing services to analyze and visualize information using the same software available to NASA researchers.

  5. [Activities of Goddard Earth Sciences and Technology Center, Maryland University

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Goddard Space Flight Center (GSFC) is recognized as a world leader in the application of remote sensing and modeling aimed at improving knowledge of the Earth system. The Goddard Earth Sciences Directorate plays a central role in NASA's Earth Observing System and the U.S. Global Change Research Program. Goddard Earth Sciences and Technology (GEST) is organized as a cooperative agreement with the GSFC to promote excellence in the Earth sciences, and is a consortium of universities and corporations (University of Maryland Baltimore County, Howard University, Hampton University, Caelum Research Corporation and Northrop Grumman Corporation). The aim of this new program is to attract and introduce promising students in their first or second year of graduate studies to Oceanography and Earth system science career options through hands-on instrumentation research experiences on coastal processes at NASA's Wallops Flight Facility on the Eastern Shore of Virginia.

  6. Technologies for global change earth observations

    NASA Technical Reports Server (NTRS)

    Johnston, Gordon I.; Hudson, Wayne R.

    1990-01-01

    Advances in the areas of space-based observations, data/information analysis, and spacecraft/operations for the studying of global changes are discussed. Research involving systems analysis, observation technologies, information technologies, and spacecraft technologies is examined. Consideration is given to cryogenic coolers, IR arrays, laser and submillimeter sensing, large array CCD, information visualization, design knowledge capture, optical communications, multiinstrument pointing, propulsion, space environmental effects, and platform thermal systems.

  7. Bringing space technology down to earth

    NASA Technical Reports Server (NTRS)

    Gray, E. Z.

    1974-01-01

    The direct transfer of space technology to terrestial applications is demonstrated by the use of fuel cells to augment existing electric power-generation facilities. The role of NASA's Technology Utilization Program is discussed in regard to indirect transfer of technology. The Tech Brief program for identifying and reporting innovations, the regional dissemination centers, and the Applications Teams working with other government agencies and the medical community are described. Projects discussed include the development of a lightweight breathing apparatus for firemen, a practical method for separating nonferrous metals from automobile scrap, and a rechargeable heart pacemaker.

  8. ACTS broadband aeronautical experiment

    NASA Technical Reports Server (NTRS)

    Abbe, Brian S.; Jedrey, Thomas C.; Estabrook, Polly; Agan, Martin J.

    1993-01-01

    In the last decade, the demand for reliable data, voice, and video satellite communication links between aircraft and ground to improve air traffic control, airline management, and to meet the growing demand for passenger communications has increased significantly. It is expected that in the near future, the spectrum required for aeronautical communication services will grow significantly beyond that currently available at L-band. In anticipation of this, JPL is developing an experimental broadband aeronautical satellite communications system that will utilize NASA's Advanced Communications Technology Satellite (ACTS) as a satellite of opportunity and the technology developed under JPL's ACTS Mobile Terminal (AMT) Task to evaluate the feasibility of using K/Ka-band for these applications. The application of K/Ka-band for aeronautical satellite communications at cruise altitudes is particularly promising for several reasons: (1) the minimal amount of signal attenuation due to rain; (2) the reduced drag due to the smaller K/Ka-band antennas (as compared to the current L-band systems); and (3) the large amount of available bandwidth. The increased bandwidth available at these frequencies is expected to lead to significantly improved passenger communications - including full-duplex compressed video and multiple channel voice. A description of the proposed broadband experimental system will be presented including: (1) applications of K/Ka-band aeronautical satellite technology to U.S. industry; (2) the experiment objectives; (3) the experiment set-up; (4) experimental equipment description; and (5) industrial participation in the experiment and the benefits.

  9. Autonomous scheduling technology for Earth orbital missions

    NASA Technical Reports Server (NTRS)

    Srivastava, S.

    1982-01-01

    The development of a dynamic autonomous system (DYASS) of resources for the mission support of near-Earth NASA spacecraft is discussed and the current NASA space data system is described from a functional perspective. The future (late 80's and early 90's) NASA space data system is discussed. The DYASS concept, the autonomous process control, and the NASA space data system are introduced. Scheduling and related disciplines are surveyed. DYASS as a scheduling problem is also discussed. Artificial intelligence and knowledge representation is considered as well as the NUDGE system and the I-Space system.

  10. Bringing robotics technology down to Earth

    SciTech Connect

    Fuller, B.R.

    1997-03-01

    Robotics technology is successfully being transitioned from space to terrestrial applications. It is being modified and enhanced to help in the US DOE`s Environmental Restoration and Waste Management Program. Some examples of these applications, ranging from large multijointed manipulators to autonomously navigated remote vehicles, are outlined in this article. They include the following: underground storage tank technology demonstration; light-duty utility arm system; remotely controlled material-handling system; remotely operated excavator; self-guided transfer vehicle. 10 figs.

  11. [Exploring Aeronautics

    NASA Technical Reports Server (NTRS)

    Robinson, Brandi

    2004-01-01

    This summer I have been working with the N.A.S.A. Project at Cuyahoga Community College (Tri-C) under the title of Exploring Aeronautics Project Leader. The class that I have worked with is comprised of students that will enter the eighth grade in the fall of 2004. The program primarily focuses upon math proficiency and individualized class projects. My duties have encompassed both realms. During the first 2-3 weeks of my internship, I worked at NASA Glenn Research Center (GRC) researching, organizing, and compiling information for weekly Scholastic Challenges and the Super Scholastic Challenge. I was able to complete an overview of Scholastic Challenge and staff responsibilities regarding the competition; a proposal for an interactive learning system, Quizdom; a schedule for challenge equipment, as well as a schedule listing submission deadlines for the staff. Also included in my tasks, during these first 2-3 weeks, were assisting Tammy Allen and Candice Thomas with the student application review and interview processes for student applicants. For the student and parent orientation, I was assigned publications and other varying tasks to complete before the start of the program. Upon the commencement of the program, I changed location from NASA GRC to Tri-C Metro Campus, where student classes for the Cleveland site are held. During the duration of the program, I work with the instructor for the Exploring Aeronautics class, kkkk, assisting in classroom management, daily attendance, curriculum, project building, and other tasks as needed. These tasks include the conducting of the weekly competition, known as Scholastic Challenge. As a Project Leader, I am also responsible for one subject area of the Scholastic Challenge aspect of the N.A.S.A. Project curriculum. Each week I have to prepare a mission that the participants will take home the following Monday and at least 10 questions that will be included in the pool of questions used for the Scholastic Challenge

  12. Aeronautics and Space Report of the President: Fiscal Year 1996 Activities

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Topics considered include: (1) Space launch activities: space shuttle missions; expendable launch vehicles. (2) Space science: astronomy and space physics; solar system exploration. (3) Space flight and technology: life and microgravity sciences; space shuttle technology; reuseable launch vehicles; international space station; energy; safety and mission assurance; commercial development and regulation of space; surveillance. (4) Space communications: communications satellites; space network; ground networks; mission control and data systems. (5) Aeronautical activities: technology developments; air traffic control and navigation; weather-related aeronautical activities; flight safety and security; aviation medicine and human factors. (6) Studies of the planet earth: terrestrial studies and applications: atmospheric studies: oceanographic studies; international aeronautical and space activities; and appendices.

  13. Earth benefits from NASA research and technology. Life sciences applications

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This document provides a representative sampling of examples of Earth benefits in life-sciences-related applications, primarily in the area of medicine and health care, but also in agricultural productivity, environmental monitoring and safety, and the environment. This brochure is not intended as an exhaustive listing, but as an overview to acquaint the reader with the breadth of areas in which the space life sciences have, in one way or another, contributed a unique perspective to the solution of problems on Earth. Most of the examples cited were derived directly from space life sciences research and technology. Some examples resulted from other space technologies, but have found important life sciences applications on Earth. And, finally, we have included several areas in which Earth benefits are anticipated from biomedical and biological research conducted in support of future human exploration missions.

  14. The first Earth Resources Technology Satellite (ERTS-1)

    NASA Technical Reports Server (NTRS)

    Nordberg, W.

    1973-01-01

    The first Earth Resources Technology Satellite (ERTS-1) makes images of the earth's surface in four portions of the electromagnetic spectrum with sufficient spatial resolution and with a minimum of geometric distortions, so that these images may be applied experimentally to the study of geophysical processes relating to earth resources, to the exploration and conservation of these resources, and to the assessments of environmental stresses. During the first six months of operation, ERTS-1 has imaged 6.5 million square kilometers of the earth's surface every day, covering most major land masses and coastal zones as well as both polar regions of this planet. These images as well as the results of their analyses are available to all people throughout the world. Scientific investigators of all countries have been invited to participate in the utilization of ERTS-1 observations. Many of them have already demonstrated the great efficiency, economy, and reliability of making earth surveys from space.

  15. Grid Technology as a Cyber Infrastructure for Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Hinke, Thomas H.

    2004-01-01

    This paper describes how grids and grid service technologies can be used to develop an infrastructure for the Earth Science community. This cyberinfrastructure would be populated with a hierarchy of services, including discipline specific services such those needed by the Earth Science community as well as a set of core services that are needed by most applications. This core would include data-oriented services used for accessing and moving data as well as computer-oriented services used to broker access to resources and control the execution of tasks on the grid. The availability of such an Earth Science cyberinfrastructure would ease the development of Earth Science applications. With such a cyberinfrastructure, application work flows could be created to extract data from one or more of the Earth Science archives and then process it by passing it through various persistent services that are part of the persistent cyberinfrastructure, such as services to perform subsetting, reformatting, data mining and map projections.

  16. Current Status on Resource and Recycling Technology for Rare Earths

    NASA Astrophysics Data System (ADS)

    Takeda, Osamu; Okabe, Toru H.

    2014-06-01

    The development of recycling technologies for rare earths is essential for resource security and supply stability because high-quality rare earth mines are concentrated in China and the demand for rare earth metals such as neodymium and dysprosium, used as raw materials in permanent magnets (neodymium magnet), is expected to increase rapidly in the near future. It is also important to establish a recycling-based society from the perspective of the conservation of finite and valuable mineral resources and the reduction of the environmental load associated with mining and smelting. In this article, the current status of rare earth resource as well as that of recycling technology for the magnets is reviewed. The importance of establishing an efficient recycling process for rare earths is discussed from the characteristics of supply chain of rare earths, and the technological bases of the recycling processes for the magnet are introduced. Further, some fundamental researches on the development of new recycling processes based on pyrometallurgical process are introduced, and the features of the recycling processes are evaluated.

  17. The Goddard Earth Sciences and Technology Center (GEST Center)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The following is a technical report of the progress made under Cooperative Agreement NCC5494, the Goddard Earth Sciences and Technology Center (GEST). The period covered by this report is October 1, 2001 through December 31, 2001. GEST is a consortium of scientists and engineers, led by the University of Maryland, Baltimore County (UMBC), to conduct scientific research in Earth and information sciences and related technologies in collaboration with the NASA Goddard Space Flight Center (GSFC). GEST was established through a cooperative agreement signed May 11, 2000, following a competitive procurement process initiated by GSFC.

  18. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology Into Aeronautics Research Mission Directorate Projects at NASA Glenn Research Center for 2015

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.; Morris, Jessica R.

    2015-01-01

    This document is intended to enable the more effective transition of NASA Glenn Research Center (GRC) SBIR technologies funded by the Small Business Innovation Research (SBIR) program as well as its companion, the Small Business Technology Transfer (STTR) program into NASA Aeronautics Research Mission Directorate (ARMD) projects. Primarily, it is intended to help NASA program and project managers find useful technologies that have undergone extensive research and development (RRD), through Phase II of the SBIR program; however, it can also assist non-NASA agencies and commercial companies in this process. aviation safety, unmanned aircraft, ground and flight test technique, low emissions, quiet performance, rotorcraft

  19. An Overview of Rare Earth Science and Technology

    NASA Astrophysics Data System (ADS)

    Gschneidner, Karl, Jr.

    2012-02-01

    Currently rare earth science and technology is robust: this includes all the major branches of science -- biochemistry, chemistry, materials and physics. There are, however, currently some anomalies and distortions especially in the technology and applications sector of the rare earth field, which is caused by the dominance of China on the sales of rare earths and rare earth containing products. For the past 5 to 10 years ˜95% of rare earths utilized in commerce came from China. Although Chinese actions have lead to sudden and large price spikes and export embargoes, the rare earths are still available but at a higher cost. The start up of production in 2011 at mines in the USA and Australia will alleviate this situation in about two years. Basic and applied research on the condensed matter physics/materials science has hardly been impacted by these events, but new research opportunities are opening up especially with regard to the USA's military and energy security. Magnets seems to be the hottest topic, but research on battery materials, phosphors and catalysts are also (or should be) strongly considered.

  20. Status of NASA's Earth-to-Orbit Propulsion Technology program

    NASA Technical Reports Server (NTRS)

    Escher, W. J. D.; Moses, J. L.; Gorland, S. H.; Stephenson, F. W.

    1991-01-01

    Earth-to-Orbit Propulsion Technology program is considered. The program's three major technical areas include combustion devices, turbomachinery, and controls and monitoring. Directed toward reducing acquisition and operations risk and cost the ETO program is conducted in two serially-performed categories: technology acquisition and technology validation. The former is constituted of studies, tool building, and bench-scale experimentation. The latter involves next-step verification of the acquisition results and findings, usually leading to a test-bed validated technology 'product'.

  1. Aeronautical Knowledge (Selected Articles),

    DTIC Science & Technology

    1981-01-14

    UNCLASSIFIED FTD-ID RSN -12348 Nm m ED I FTD-ID(RS)T-1234-80-- FOREIGN TECHNOLOGY DIVISION AERONAUTICAL KNOWLEDGE (Selected Articles) * DTIC cm. ’- D...of the spacecraft cabin, went through the structure of the eyes of the astronauts, and caused them to see flahig-. The frequency of the flashing was...to tell space travelers of the existence of belts of high radiation end alert them to the danger. Present and future missins must clarify the

  2. National Aeronautics and Space Administration (NASA) Earth Science Research for Energy Management. Part 1; Overview of Energy Issues and an Assessment of the Potential for Application of NASA Earth Science Research

    NASA Technical Reports Server (NTRS)

    Zell, E.; Engel-Cox, J.

    2005-01-01

    Effective management of energy resources is critical for the U.S. economy, the environment, and, more broadly, for sustainable development and alleviating poverty worldwide. The scope of energy management is broad, ranging from energy production and end use to emissions monitoring and mitigation and long-term planning. Given the extensive NASA Earth science research on energy and related weather and climate-related parameters, and rapidly advancing energy technologies and applications, there is great potential for increased application of NASA Earth science research to selected energy management issues and decision support tools. The NASA Energy Management Program Element is already involved in a number of projects applying NASA Earth science research to energy management issues, with a focus on solar and wind renewable energy and developing interests in energy modeling, short-term load forecasting, energy efficient building design, and biomass production.

  3. Aeronautics and space report of the President, 1982 activities

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Achievements of the space program are summerized in the area of communication, Earth resources, environment, space sciences, transportation, aeronautics, and space energy. Space program activities of the various deprtments and agencies of the Federal Government are discussed in relation to the agencies' goals and policies. Records of U.S. and world spacecraft launchings, successful U.S. launches for 1982, U.S. launched applications and scientific satellites and space probes since 1975, U.S. and Soviet manned spaceflights since 1961, data on U.S. space launch vehicles, and budget summaries are provided. The national space policy and the aeronautical research and technology policy statements are included.

  4. NASA Earth Science Mission Control Center Enterprise Emerging Technology Study Study (MCC Technology Study)

    NASA Technical Reports Server (NTRS)

    Smith, Dan; Horan, Stephen; Royer, Don; Sullivan, Don; Moe, Karen

    2015-01-01

    This paper reports on the results of the study to identify technologies that could have a significant impact on Earth Science mission operations when looking out at the 5-15 year horizon (through 2025). The potential benefits of the new technologies will be discussed, as well as recommendations for early research and development, prototyping, or analysis for these technologies.

  5. Technology requirements for advanced earth-orbital transportation systems

    NASA Technical Reports Server (NTRS)

    Haefeli, R. C.; Littler, E. G.; Hurley, J. B.; Winter, M. G.

    1977-01-01

    Areas of advanced technology that are either critical or offer significant benefits to the development of future Earth-orbit transportation systems were identified. Technology assessment was based on the application of these technologies to fully reusable, single-stage-to-orbit (SSTO) vehicle concepts with horizontal landing capability. Study guidelines included mission requirements similar to space shuttle, an operational capability begining in 1995, and main propulsion to be advanced hydrogen-fueled rocket engines. Also evaluated was the technical and economic feasibility of this class of SSTO concepts and the comparative features of three operational take-off modes, which were vertical boost, horizontal sled launch, and horizontal take-off with subsequent inflight fueling. Projections of both normal and accelerated technology growth were made. Figures of merit were derived to provide relative rankings of technology areas. The influence of selected accelerated areas on vehicle design and program costs was analyzed by developing near-optimum point designs.

  6. NASA's Role in Aeronautics: A Workshop. Volume 6: Aeronautical research

    NASA Technical Reports Server (NTRS)

    1981-01-01

    While each aspect of its aeronautical technology program is important to the current preeminence of the United States in aeronautics, the most essential contributions of NASA derive from its research. Successes and challenges in NASA's efforts to improve civil and military aviation are discussed for the following areas: turbulence, noise, supercritical aerodynamics, computational aerodynamics, fuels, high temperature materials, composite materials, single crystal components, powder metallurgy, and flight controls. Spin offs to engineering and other sciences explored include NASTRAN, lubricants, and composites.

  7. NASA Aeronautics Research: An Assessment

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The U.S. air transportation system is vital to the economic well-being and security of the United States. To support continued U.S. leadership in aviation, Congress and NASA requested that the National Research Council undertake a decadal survey of civil aeronautics research and technology (R&T) priorities that would help NASA fulfill its responsibility to preserve U.S. leadership in aeronautics technology. In 2006, the National Research Council published the Decadal Survey of Civil Aeronautics. That report presented a set of six strategic objectives for the next decade of aeronautics R&T, and it described 51 high-priority R&T challenges--characterized by five common themes--for both NASA and non-NASA researchers. The National Research Council produced the present report, which assesses NASA's Aeronautics Research Program, in response to the National Aeronautics and Space Administration Authorization Act of 2005 (Public Law 109-155). This report focuses on three sets of questions: 1. How well does NASA's research portfolio implement appropriate recommendations and address relevant high-priority research and technology challenges identified in the Decadal Survey of Civil Aeronautics? If gaps are found, what steps should be taken by the federal government to eliminate them? 2. How well does NASA's aeronautics research portfolio address the aeronautics research requirements of NASA, particularly for robotic and human space exploration? How well does NASA's aeronautics research portfolio address other federal government department/agency non-civil aeronautics research needs? If gaps are found, what steps should be taken by NASA and/or other parts of the federal government to eliminate them? 3. Will the nation have a skilled research workforce and research facilities commensurate with the requirements in (1) and (2) above? What critical improvements in workforce expertise and research facilities, if any, should NASA and the nation make to achieve the goals of NASA

  8. The Earth Science Vision: Space Technology to Meet Human Needs

    NASA Astrophysics Data System (ADS)

    Paules, Granville; Kaye, Jack

    because accommodations can usually be found that will mitigate or ameliorate the effects of natural disaster, either through local or international means, provided sufficient warning time is given. The Earth Sciences Vision initiative therefore seeks to identify critical Earth processes, to define the science questions necessary to understand and predict future changes in these Earth processes, to detail the areas for new technology development and international cooperation needed to implement the needed science and technology development activities.

  9. Technology transfer in digital mammography. Report of the Joint National Cancer Institute-National Aeronautics and Space Administration workshop of May 19-20, 1993.

    PubMed

    Winfield, D; Silbiger, M; Brown, G S; Clarke, L; Dwyer, S; Yaffe, M; Shtern, F

    1994-04-01

    Digital mammography is one of the most promising novel technologies for further improvement of early detection of breast cancer, offering important potential advantages: 1) improved image quality; 2) digital image processing for improved lesion contrast; 3) computer-aided diagnosis for enhanced radiologic interpretation; and 4) teleradiology for facilitated radiologic consultation. The Diagnostic Imaging Research Branch of the National Cancer Institute (NCI) recently funded an international, multidisciplinary, multi-institutional Digital Mammography Development Group for collaborations between NCI, the academic community, and industry to facilitate the integrated development and implementation of digital mammographic systems. Currently, however, digital mammography faces a number of fundamental technological roadblocks: 1) cost-effective digital detectors and displays for imaging systems; 2) the need for novel algorithms for image processing and computer-aided diagnosis; and 3) high performance, low cost digital networks to provide an "information superhighway" for teleradiology. To solve some of these technological problems, the Diagnostic Imaging Research Branch of NCI joined efforts with the Technology Transfer Division of the National Aeronautics and Space Administration to pursue a federal technology transfer program in digital mammography. The authors discuss the findings and recommendations of the workshop entitled "Technology Transfer in Digital Mammography," which was organized and held jointly by the NCI and the National Aeronautics and Space Administration in May, 1993. Numerous innovative technologies of varying degree of promise for digital mammography were presented at the conference. In this article, specific technologies presented at the workshop by the federal and federally-supported laboratories are described, and critiques of these technologies by the leaders of the medical imaging community are presented.

  10. A Minimized Technological Approach towards Human Self Sufficiency off Earth

    NASA Astrophysics Data System (ADS)

    Curreri, Peter A.

    2007-01-01

    Since the early 1970's it has been known that it is technically feasible to build large habitats in space where many people could live, more or less, independently off Earth. These large habitats would require decades of Apollo level expenditures to build. The objective of this paper is to begin the study of the minimum technological system that will enable the historic shift from the state where all of humanity is dependent on Earth to the state where an independent human community can exist off Earth. It is suggested that such a system is more on the order of a homestead than a city. A minimum technical system is described that could support one human reproductive unit (family) in free space or on a planetary or lunar surface. The system consists of life support, materials extraction, mobility, and power production. Once the technology is developed for the single unit, many could be deployed. They could reproduce themselves at an exponential rate using space resources and energy. One would imagine cooperation of these units to build any combination of towns, cities and nations in space to extend human life beyond Earth.

  11. A Minimized Technological Approach towards Human Self Sufficiency off Earth

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A.

    2007-01-01

    Since the early 1970's it has been known that it is technically feasible to build large habitats in space where many people could live, more or less, independently off Earth. These large habitats would require decades of Apollo level expenditures to build. The objective of this paper is to begin the study of the minimum technological system that wi11 enable the historic shift from the state where all of humanity is dependent on Earth to the state where an independent human community can exist off Earth. It is suggested that such a system is more on the order of a homestead than a city. A minimum technical system is described that could support one human reproductive unit (family) in free space or on a planetary or lunar surface. The system consists of life support, materials extraction, mobility, and power production. Once the technology is developed for the single unit, many could be deployed. They could reproduce themselves at an exponential rate using space resources and energy. One would imagine cooperation of these units to build any combination of towns, cities and nations in space to extend human life beyond Earth.

  12. Advanced Information Technology Investments at the NASA Earth Science Technology Office

    NASA Astrophysics Data System (ADS)

    Clune, T.; Seablom, M. S.; Moe, K.

    2012-12-01

    The NASA Earth Science Technology Office (ESTO) regularly makes investments for nurturing advanced concepts in information technology to enable rapid, low-cost acquisition, processing and visualization of Earth science data in support of future NASA missions and climate change research. In 2012, the National Research Council published a mid-term assessment of the 2007 decadal survey for future spacemissions supporting Earth science and applications [1]. The report stated, "Earth sciences have advanced significantly because of existing observational capabilities and the fruit of past investments, along with advances in data and information systems, computer science, and enabling technologies." The report found that NASA had responded favorably and aggressively to the decadal survey and noted the role of the recent ESTO solicitation for information systems technologies that partnered with the NASA Applied Sciences Program to support the transition into operations. NASA's future missions are key stakeholders for the ESTO technology investments. Also driving these investments is the need for the Agency to properly address questions regarding the prediction, adaptation, and eventual mitigation of climate change. The Earth Science Division has championed interdisciplinary research, recognizing that the Earth must be studied as a complete system in order toaddress key science questions [2]. Information technology investments in the low-mid technology readiness level (TRL) range play a key role in meeting these challenges. ESTO's Advanced Information Systems Technology (AIST) program invests in higher risk / higher reward technologies that solve the most challenging problems of the information processing chain. This includes the space segment, where the information pipeline begins, to the end user, where knowledge is ultimatelyadvanced. The objectives of the program are to reduce the risk, cost, size, and development time of Earth Science space-based and ground

  13. Diffractive optics technology and the NASA Geostationary Earth Observatory (GEO)

    NASA Technical Reports Server (NTRS)

    Morris, G. Michael; Michaels, Robert L.; Faklis, Dean

    1992-01-01

    Diffractive (or binary) optics offers unique capabilities for the development of large-aperture, high-performance, light-weight optical systems. The Geostationary Earth Observatory (GEO) will consist of a variety of instruments to monitor the environmental conditions of the earth and its atmosphere. The aim of this investigation is to analyze the design of the GEO instrument that is being proposed and to identify the areas in which diffractive (or binary) optics technology can make a significant impact in GEO sensor design. Several potential applications where diffractive optics may indeed serve as a key technology for improving the performance and reducing the weight and cost of the GEO sensors have been identified. Applications include the use of diffractive/refractive hybrid lenses for aft-optic imagers, diffractive telescopes for narrowband imaging, subwavelength structured surfaces for anti-reflection and polarization control, and aberration compensation for reflective imaging systems and grating spectrometers.

  14. Using immersive media and digital technology to communicate Earth Science

    NASA Astrophysics Data System (ADS)

    Kapur, Ravi

    2016-04-01

    A number of technologies in digital media and interactivity have rapidly advanced and are now converging to enable rich, multi-sensoral experiences which create opportunities for both digital art and science communication. Techniques used in full-dome film-making can now be deployed in virtual reality experiences; gaming technologies can be utilised to explore real data sets; and collaborative interactivity enable new forms of public artwork. This session will explore these converging trends through a number of emerging and forthcoming projects dealing with Earth science, climate change and planetary science.

  15. Policy for Robust Space-based Earth Science, Technology and Applications

    NASA Technical Reports Server (NTRS)

    Brown, Molly E.; Escobar, Vanessa M.; Macauley, Molly; Aschbacher, Josef; Milagro-Perez, Maria Pilar; Doorn, Bradley; Friedl, Lawrence

    2012-01-01

    Over the past six decades, satellite remote sensing technology has contributed to the transformation of using earth science not only to advance science, but to improve quality of life. With satellite missions launched almost every year, new types of earth science data are being incorporated into science, models and decision-making systems in a broad array of organizations. A challenge for space agencies has been ensuring that satellite missions serve both the scientific community and the applied community of decision makers without the missions becoming unfocused and overly expensive. By understanding and considering the needs of the environmental data and applied research user community early on in the mission-design process, agencies can ensure that satellites meet the needs of multiple constituencies. This paper describes the mission development process in the European Space Agency and the National Aeronautics and Space Administration and compares and contrasts the successes of and challenges faced by these agencies in balancing science and applications within their missions.

  16. The Importance of Technology Readiness in NASA Earth Venture Missions

    NASA Technical Reports Server (NTRS)

    Wells, James E.; Komar, George J.

    2009-01-01

    The first set of Venture-class investigations share the characteristic that the technology should be mature and all investigations must use mature technology that has been modeled or demonstrated in a relevant environment (Technology Readiness Level (TRL) >5). Technology Readiness Levels are a systematic metric/measurement system that supports assessments of the maturity of a particular technology and the consistent comparison of maturity between different types of technology. The TRL is used in NASA technology planning. A major step in the level of fidelity of the technology demonstration follows the completion of TRL 5. At TRL 6, a system or subsystem model or prototype must be demonstrated in a relevant environment (ground or space) representative model or prototype system or system, which would go well beyond ad hoc, "patch-cord," or discrete component level breadboarding. These TRL levels are chosen as target objectives for the Program. The challenge for offerors is that they must identify key aspects (uncertainty, multi subsystem complexity, etc) of the TRL estimate that should be properly explained in a submitted proposal. Risk minimization is a key component of the Earth Venture missions. Experiences of prior airborne missions will be shared. The discussion will address aspects of uncertainty and issues surrounding three areas of airborne earth science missions: (1) Aircraft or proposed flight platform -- Expressing the capability of the aircraft in terms of the supporting mission requirements. These issues include airplane performance characteristics (duration, range, altitude, among others) and multiship complexities. (2) Instruments -- Establishing that the instruments have been demonstrated in a relevant environment. Instruments with heritage in prior space missions meet this requirement, as do instruments tested on the ground. Evidence that the instruments have demonstrated the ability to collect data as advertised will be described. The complexity of

  17. NASA Office of Aeronautics and Space Technology Summer Workshop. Executive summary. [in-space research using the Space Transportation System

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Research and technology investigations are identified in eleven discipline technologies which require or which could significantly benefit from an in-space experiment, systems demonstrations, or component test using the Space Transportation System. Synopses of the eleven technology panels reports are presented.

  18. Time to reorganize federal Earth system science and technology?

    NASA Astrophysics Data System (ADS)

    Kisslinger, Carl

    My usual reaction to plans to reorganize activities in the federal government is that these are the last resort of a bureaucrat who is faced with a tough problem and has no idea how to solve it. However, this may be the time to consider seriously a reorganization that would assemble key elements of Earth-oriented science and technology into a single federal agency. This is not a new idea, as proposals to achieve this goal have been formulated in the past and wiring diagrams for a new agency have been developed. These proposals have faded away in the face of resistance to substantial structural change that characterizes the federal bureaucracy.

  19. Application of visible linear array technology to earth observation sensors

    NASA Technical Reports Server (NTRS)

    Noll, R. E.; Tracy, R. A.

    1975-01-01

    The present paper identifies the systems engineering aspects of applying solid-state technology to earth observations applications being traditionally performed by point (or multiple-point) detector line scanned mechanisms. It is shown that the translation from a basically serial data flow point-detector mechanically-scanned sensor to a solid state highly parallel linear-array pushbroom sensor results in minimizing mechanical complexity and maximizing electronics complexity, with increased demands upon optical performance in some applications. Technical aspects relevant to highly parallel photodiode linear-array pushbroom applications are discussed. Examples of systems engineering applications are provided.

  20. Intelligent Systems Technologies and Utilization of Earth Observation Data

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.; McConaughy, G. R.; Morse, H. S.

    2004-01-01

    The addition of raw data and derived geophysical parameters from several Earth observing satellites over the last decade to the data held by NASA data centers has created a data rich environment for the Earth science research and applications communities. The data products are being distributed to a large and diverse community of users. Due to advances in computational hardware, networks and communications, information management and software technologies, significant progress has been made in the last decade in archiving and providing data to users. However, to realize the full potential of the growing data archives, further progress is necessary in the transformation of data into information, and information into knowledge that can be used in particular applications. Sponsored by NASA s Intelligent Systems Project within the Computing, Information and Communication Technology (CICT) Program, a conceptual architecture study has been conducted to examine ideas to improve data utilization through the addition of intelligence into the archives in the context of an overall knowledge building system (KBS). Potential Intelligent Archive concepts include: 1) Mining archived data holdings to improve metadata to facilitate data access and usability; 2) Building intelligence about transformations on data, information, knowledge, and accompanying services; 3) Recognizing the value of results, indexing and formatting them for easy access; 4) Interacting as a cooperative node in a web of distributed systems to perform knowledge building; and 5) Being aware of other nodes in the KBS, participating in open systems interfaces and protocols for virtualization, and achieving collaborative interoperability.

  1. The impact of earth resources exploration from space. [technology assessment/LANDSAT satellites -technological forecasting

    NASA Technical Reports Server (NTRS)

    Nordberg, W.

    1975-01-01

    The use of Earth Resources Technology Satellites in solving global problems is examined. Topics discussed are: (1) management of food, water, and fiber resources; (2) exploration and management of energy and mineral resources; (3) protection of the environment; (4) protection of life and property; and (5) improvements in shipping and navigation.

  2. Mobile-ip Aeronautical Network Simulation Study

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Tran, Diepchi T.

    2001-01-01

    NASA is interested in applying mobile Internet protocol (mobile-ip) technologies to its space and aeronautics programs. In particular, mobile-ip will play a major role in the Advanced Aeronautic Transportation Technology (AATT), the Weather Information Communication (WINCOMM), and the Small Aircraft Transportation System (SATS) aeronautics programs. This report presents the results of a simulation study of mobile-ip for an aeronautical network. The study was performed to determine the performance of the transmission control protocol (TCP) in a mobile-ip environment and to gain an understanding of how long delays, handoffs, and noisy channels affect mobile-ip performance.

  3. Western Aeronautical Test Range

    NASA Technical Reports Server (NTRS)

    Sakahara, Robert D.

    2008-01-01

    This viewgraph presentation reviews the work of the Western Aeronautical Test Range (WATR). NASA's Western Aeronautical Test Range is a network of facilities used to support aeronautical research, science missions, exploration system concepts, and space operations. The WATR resides at NASA's Dryden Flight Research Center located at Edwards Air Force Base, California. The WATR is a part of NASA's Corporate Management of Aeronautical Facilities and funded by the Strategic Capability Asset Program (SCAP). Maps show the general location of the WATR area that is used for aeronautical testing and evaluation. The products, services and facilities of WATR are discussed,

  4. Earth abundant thin film technology for next generation photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Alapatt, Githin Francis

    With a cumulative generation capacity of over 100 GW, Photovoltaics (PV) technology is uniquely poised to become increasingly popular in the coming decades. Although, several breakthroughs have propelled PV technology, it accounts for only less than 1% of the energy produced worldwide. This aspect of the PV technology is primarily due to the somewhat high cost per watt, which is dependent on the efficiency of the PV cells as well as the cost of manufacturing and installing them. Currently, the efficiency of the PV conversion process is limited to about 25% for commercial terrestrial cells; improving this efficiency can increase the penetration of PV worldwide rapidly. A critical review of all possibilities pursued in the public domain reveals serious shortcomings and manufacturing issues. To make PV generated power a reality in every home, a Multi-Junction Multi-Terminal (MJMT) PV architecture can be employed combining silicon and another earth abundant material. However, forming electronic grade thin films of earth abundant materials is a non-trivial challenge; without solving this, it is impossible to increase the overall PV efficiency. Deposition of Copper (I) Oxide, an earth abundant semiconducting material, was conducted using an optimized Photo assisted Chemical Vapor Deposition process. X-Ray Diffraction, Ellipsometry, Transmission Electron Microscopy, and Profilometry revealed that the films composed of Cu2O of about 90 nm thickness and the grain size was as large as 600 nm. This result shows an improvement in material properties over previously grown thin films of Cu2O. Measurement of I-V characteristics of a diode structure composed of the Cu2O indicates an increase in On/Off ratio to 17,000 from the previous best value of 800. These results suggest that the electronic quality of the thin films deposited using our optimized process to be better than the results reported elsewhere. Using this optimized thin film forming technique, it is now possible to

  5. NASA Historical Data Book. Volume 6; NASA Space Applications, Aeronautics and Space Research and Technology, Tracking and Data Acquisition/Support Operations, Commercial Programs and

    NASA Technical Reports Server (NTRS)

    Rumerman, Judy A.

    2000-01-01

    This sixth volume of the NASA Historical Data Book is a continuation of those earlier efforts. This fundamental reference tool presents information, much of it statistical, documenting the development of several critical areas of NASA responsibility for the period between 1979 and 1988. This volume includes detailed information on the space applications effort, the development and operation of aeronautics and space research and technology programs, tracking and data acquisition/space operations, commercial programs, facilities and installations, personnel, and finances and procurement during this era. Special thanks are owed to the student research assistants who gathered and input much of the tabular material-a particularly tedious undertaking. There are numerous people at NASA associated with historical study, technical information, and the mechanics of publishing who helped in myriad ways in the preparation of this historical data book.

  6. [Application of digital earth technology in research of traditional Chinese medicine resources].

    PubMed

    Liu, Jinxin; Liu, Xinxin; Gao, Lu; Wei, Yingqin; Meng, Fanyun; Wang, Yongyan

    2011-02-01

    This paper describes the digital earth technology and its core technology-"3S" integration technology. The advance and promotion of the "3S" technology provide more favorable means and technical support for Chinese medicine resources survey, evaluation and appropriate zoning. Grid is a mature and popular technology that can connect all kinds of information resources. The author sums up the application of digital earth technology in the research of traditional Chinese medicine resources in recent years, and proposes the new method and technical route of investigation in traditional Chinese medicine resources, traditional Chinese medicine zoning and suitability assessment by combining the digital earth technology and grid.

  7. Earth Resources Technology Satellite: US standard catalog No. U-12

    NASA Technical Reports Server (NTRS)

    1973-01-01

    To provide dissemination of information regarding the availability of Earth Resources Technology Satellite (ERTS) imagery, a U.S. Standard Catalog is published on a monthly schedule. The catalogs identify imagery which has been processed and input to the data files during the preceding month. The U.S. Standard Catalog includes imagery covering the Continental United States, Alaska, and Hawaii. As a supplement to these catalogs, an inventory of ERTS imagery on 16 millimeter microfilm is available. The catalogs consist of four parts: (1) annotated maps which graphically depict the geographic areas covered by the imagery listed in the current catalog, (2) a computer-generated listing organized by observation identification number (D) with pertinent information on each image, (3) a computer listing of observations organized by longitude and latitude, and (4) observations which have had changes made in their catalog information since the original entry in the data base.

  8. Technologies for automating rotorcraft nap-of-the-earth flight

    NASA Technical Reports Server (NTRS)

    Cheng, Victor H. L.; Sridhar, Banavar

    1992-01-01

    This paper discusses the technologies required for automating rotorcraft nap-of-the-earth flight, where the use of natural obstacles for masking from the enemy is intentional and the danger of undesirable obstacles such as enemy traps is real. Specifically, the automatic guidance structure is modeled by three decision-making levels: the far-field mission planning and the mid-field terrain-masking trajectory shaping are both driven by prestored terrain data, whereas the nearfield obstacle detection/avoidance is driven by real-time on-board sensor data. This paper summarizes the far-field and mid-field accomplishments, and reports on the status of the more-recent efforts in obstacle detection and avoidance development. Obstacle detection is based primarily on passive imaging sensors for the desirable properties of covertness and wide field of view, although active sensors are included in the structure to provide the much needed high resolution for thin-wire detection.

  9. Advanced Energy Conversion Technologies and Architectures for Earth and Beyond

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; Fikes, John C.; Phillips, Dane J.; Laycock, Rustin L.; ONeill, Mark; Henley, Mark W.; Fork, Richard L.

    2006-01-01

    Research, development and studies of novel space-based solar power systems, technologies and architectures for Earth and beyond are needed to reduce the cost of clean electrical power for terrestrial use and to provide a stepping stone for providing an abundance of power in space, i.e., manufacturing facilities, tourist facilities, delivery of power between objects in space, and between space and surface sites. The architectures, technologies and systems needed for space to Earth applications may also be used for in-space applications. Advances in key technologies, i.e., power generation, power management and distribution, power beaming and conversion of beamed power are needed to achieve the objectives of both terrestrial and extraterrestrial applications. There is a need to produce "proof-ofconcept" validation of critical WPT technologies for both the near-term, as well as far-term applications. Investments may be harvested in near-term beam safe demonstrations of commercial WPT applications. Receiving sites (users) include ground-based stations for terrestrial electrical power, orbital sites to provide power for satellites and other platforms, future space elevator systems, space vehicle propulsion, and space surface sites. Space surface receiving sites of particular interest include the areas of permanent shadow near the moon s North and South poles, where WPT technologies could enable access to ice and other useful resources for human exploration. This paper discusses work addressing a promising approach to solar power generation and beamed power conversion. The approach is based on a unique high-power solar concentrator array called Stretched Lens Array (SLA) applied to both solar power generation and beamed power conversion. Since both versions (solar and laser) of SLA use many identical components (only the photovoltaic cells need to be different), economies of manufacturing and scale may be realized by using SLA on both ends of the laser power beaming

  10. Swamp Works: A New Approach to Develop Space Mining and Resource Extraction Technologies at the National Aeronautics Space Administration (NASA) Kennedy Space Center (KSC)

    NASA Technical Reports Server (NTRS)

    Mueller, R. P.; Sibille, L.; Leucht, K.; Smith, J. D.; Townsend, I. I.; Nick, A. J.; Schuler, J. M.

    2015-01-01

    The first steps for In Situ Resource Utilization (ISRU) on target bodies such as the Moon, Mars and Near Earth Asteroids (NEA), and even comets, involve the same sequence of steps as in the terrestrial mining of resources. First exploration including prospecting must occur, and then the resource must be acquired through excavation methods if it is of value. Subsequently a load, haul and dump sequence of events occurs, followed by processing of the resource in an ISRU plant, to produce useful commodities. While these technologies and related supporting operations are mature in terrestrial applications, they will be different in space since the environment and indigenous materials are different than on Earth. In addition, the equipment must be highly automated, since for the majority of the production cycle time, there will be no humans present to assist or intervene. This space mining equipment must withstand a harsh environment which includes vacuum, radical temperature swing cycles, highly abrasive lofted dust, electrostatic effects, van der Waals forces effects, galactic cosmic radiation, solar particle events, high thermal gradients when spanning sunlight terminators, steep slopes into craters / lava tubes and cryogenic temperatures as low as 40 K in permanently shadowed regions. In addition the equipment must be tele-operated from Earth or a local base where the crew is sheltered. If the tele-operation occurs from Earth then significant communications latency effects mandate the use of autonomous control systems in the mining equipment. While this is an extremely challenging engineering design scenario, it is also an opportunity, since the technologies developed in this endeavor could be used in the next generations of terrestrial mining equipment, in order to mine deeper, safer, more economical and with a higher degree of flexibility. New space technologies could precipitate new mining solutions here on Earth. The NASA KSC Swamp Works is an innovation

  11. NASA Laser Remote Sensing Technology Needs for Earth Science in the Next Decade and Beyond

    NASA Technical Reports Server (NTRS)

    Trait, David M.; Neff, Jon M.; Valinia, Azita

    2007-01-01

    In late 2005 the NASA Earth Science Technology Office convened a working group to review decadal-term technology needs for Earth science active optical remote sensing objectives. The outcome from this effort is intended to guide future NASA investments in laser remote sensing technologies. This paper summarizes the working group findings and places them in context with the conclusions of the National Research Council assessment of Earth science needs, completed in 2007.

  12. [Production technology and use of composite materials in the aeronautics industry, risks and pathology in the manufacturing workers].

    PubMed

    Franco, G; Candura, F

    1985-01-01

    The type and applications of composite materials have increased greatly during the last forty years, particularly in the aircraft and aerospace industries. The foreseeable increase of the employment of composite materials in future needs an adequate engagement in finding out health risks involved with technological processes. Composite materials - considered as a close union between a continuous glass, aramid or carbon reinforcing fibre and a epoxy matrix - present several advantages over traditional materials. Structural epoxy adhesives are defined as complex formulated systems. By mixing a large number of ingredients a formulated resin is obtained, which represents the start of the production process for adhesive manufacture. The most important ingredients such as catalysts, accelerators, the groups of epoxy monomers and oligomers, additives most used and their role into the epoxy matrices are illustrated. Of the various technologies existing for the fabrication of aircraft structures the one so called "vacuum bag" is described. The knowledge of the chemical composition of the substances used in the production of composite materials and epoxy adhesives allows to verify the possible existence of hazard for workers health. Among the potentially dangerous chemicals, epoxy monomers and oligomers, catalysts, accelerators are to be considered. The metabolism and the mechanisms of toxicity of epoxides are summarized. However the toxic effects of most epoxides are far from being wholly investigated. In man epoxides ingestion, inhalation or absorption through the skin can lead to several toxic effects: irritation and sensitisation, alterations of liver and nervous function. Finally some epoxides are considered to be carcinogenic in animals and in man; however for many compounds, the results are not yet conclusive. From what it is said above come out the necessity of a careful sanitary control of the workers exposed to these hazards, control that is made difficult by the

  13. Near Earth Object (NEO) Mitigation Options Using Exploration Technologies

    NASA Technical Reports Server (NTRS)

    Arnold William; Baysinger, Mike; Crane, Tracie; Capizzo, Pete; Sutherlin, Steven; Dankanich, John; Woodcock, Gordon; Edlin, George; Rushing, Johnny; Fabisinski, Leo; Jones, David; McKamey, Steve; Thomas, Scott; Maccone, Claudio; Matloff, Greg; Remo, John

    2007-01-01

    This work documents the advancements in MSFC threat modeling and mitigation technology research completed since our last major publication in this field. Most of the work enclosed here are refinements of our work documented in NASA TP-2004-213089. Very long development times from start of funding (10-20 years) can be expected for any mitigation system which suggests that delaying consideration of mitigation technologies could leave the Earth in an unprotected state for a significant period of time. Fortunately there is the potential for strong synergy between architecture requirements for some threat mitigators and crewed deep space exploration. Thus planetary defense has the potential to be integrated into the current U.S. space exploration effort. The number of possible options available for protection against the NEO threat was too numerous for them to all be addressed within the study; instead, a representative selection were modeled and evaluated. A summary of the major lessons learned during this study is presented, as are recommendations for future work.

  14. Nomenclature for Aeronautics

    NASA Technical Reports Server (NTRS)

    1927-01-01

    This nomenclature for aeronautics was prepared by a Special Conference on Aeronautical Nomenclature by the executive committee of the National Advisory Committee for Aeronautics at a meeting held on August 19, 1924, at which meeting Dr. Joseph S. Ames was appointed chairman of the conference. The conference was composed of representatives of the National Advisory Committee for Aeronautics and specially appointed representatives officially designated by the Army Air Service, the Bureau of Aeronautics of the Navy Department, the Bureau of Standards, the American Society of Mechanical Engineers, the Society of Automotive Engineers, and the Aeronautical Chamber of Commerce. The purpose of the committee in the preparation and publication of this report is to secure uniformity in the official documents of the government and, as far as possible, in technical and other commercial publications

  15. Progress Toward National Aeronautics Goals

    NASA Technical Reports Server (NTRS)

    Russo, Carlo J.; Sehra, Arun K.

    1999-01-01

    NASA has made definitive progress towards achieving several bold U.S. goals in aeronautics related to air breathing engines. The advanced technologies developed towards these goals span applications from general aviation to large subsonic and supersonic aircraft. The proof of successful technology development is demonstrated through successful technology transfer to U.S. industry and projected fleet impact. Specific examples of progress are discussed that quantifies the achievement towards these goals. In addition, a more detailed vision for NASA aeronautics is defined and key strategic issues are explored which invite international and national debate and involvement especially in reduced environmental impact for subsonic and supersonic aircraft, dramatic new capabilities in general aviation engines, and reduced development cycle time and costs.

  16. NASA thesaurus aeronautics vocabulary

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The controlled vocabulary used by the NASA Scientific and Technical Information effort to index documents in the area of aeronautics is presented. The terms comprise a subset of the 1988 edition of the NASA Thesaurus and its supplements issued through the end of 1990. The Aeronautics Vocabulary contains over 4700 terms presented in a hierarchical display format. In addition to aeronautics per se, the vocabulary covers supporting terminology from areas such as fluid dynamics, propulsion engineering, and test facilities and instrumentation.

  17. Nomenclature for Aeronautics

    NASA Technical Reports Server (NTRS)

    1923-01-01

    This nomenclature for aeronautics was prepared by a special conference on aeronautical nomenclature, composed of representatives of the Army and Navy Air Services, the Air Mail Service, the Bureau of Standards, the National Advisory Committee for Aeronautics, and private life. This report supersedes all previous publications of the committee on this subject. It is published with the intention of securing greater uniformity and accuracy in official documents of the government, and, as far as possible, in technical and other commercial publications. (author)

  18. Nomenclature for Aeronautics

    NASA Technical Reports Server (NTRS)

    1924-01-01

    This nomenclature for aeronautics was prepared by a special conference on aeronautical nomenclature by the Executive Committee of the National Advisory Committee for Aeronautics at a meeting held August 11, 1933. This publication supersedes all previous publications of the committee on this subject. The purpose of the committee in the preparation and publication of this report is to secure uniformity in the official documents of the government and, as far as possible, in technical and other commercial publications.

  19. Nomenclature for aeronautics

    NASA Technical Reports Server (NTRS)

    1920-01-01

    Report defines the principal terms which have come into use in the development of aeronautics. It was prepared in cooperation with a committee engaged upon a similar undertaking in Great Britain. As a result this nomenclature is in substantial agreement with the one which has been adopted by the aeronautical authorities of Great Britain.

  20. Looking at Earth from Space: Teacher's Guide with Activities for Earth and Space Science.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The Maryland Pilot Earth Science and Technology Education Network (MAPS-NET) project was sponsored by the National Aeronautics and Space Administration (NASA) to enrich teacher preparation and classroom learning in the area of Earth system science. This publication includes a teacher's guide that replicates material taught during a graduate-level…

  1. Bibliography of Aeronautics: 1926

    NASA Technical Reports Server (NTRS)

    Brockett, Paul

    1928-01-01

    This Bibliography of Aeronautics for 1926 covers the aeronautical literature published from January 1 to December 31, 1926. The first Bibliography of Aeronautics was published by the Smithsonian Institution as volume 55 of the Smithsonian Miscellaneous Collections and covered the material published prior to June 30, 1909. Supplementary volumes of the Bibliography of Aeronautics for the subsequent years have been published by the National Advisory Committee for Aeronautics. The last preceding volume was for the calendar year 1925. As in the previous volumes, citations of the publications of all nations are included in the languages in which these publications originally appeared. The arrangement is dictionary form with author find subject entry, and one alphabetical arrangement. Detail in the matter of subject reference has been omitted on aCC01.mt of the cost of presentation, but an attempt has been made to give sufficient cross reference for research in special lines.

  2. Bibliography of Aeronautics: 1932

    NASA Technical Reports Server (NTRS)

    1935-01-01

    This Bibliography of Aeronautics for 1932 covers the aeronautical literature published from January 1 to December 31, 1932. The first Bibliography of Aeronautics was published by the Smithsonian Institution as volume 55 of the Smithsonian Miscellaneous Collections and covered the material published prior to June 30, 1909. Supplementary volumes of the Bibliography of Aeronautics for the subsequent years have been published by the National Advisory Committee for Aeronautics. The last preceding volume was for the calendar year 1931. As in the previous volumes, citations of the publications of all nations are included in the languages in which these publications originally appeared. The arrangement is in dictionary form with author and subject entry and one alphabetical arrangement. Detail in the matter of subject reference has been omitted on account of the cost of presentation, but an attempt has been made to give sufficient cross-reference for research in special lines.

  3. Bibliography of Aeronautics: 1928

    NASA Technical Reports Server (NTRS)

    Brockett, Paul

    1928-01-01

    This Bibliography of Aeronautics for 1928 covers the aeronautical literature published from January 1 to December 31, 1928. The first Bibliography of Aeronautics was published by the Smithsonian Institution as volume 55 of the Smithsonian Miscellaneous Collections and covered the material published prior to June 30, 1909. Supplementary volumes of the Bibliography of Aeronautics for the subsequent years have been published by the National Advisory Committee for Aeronautics. The last preceding volume was for the calendar year 1927. As in the previous volumes, citations of the publications of all nations are included in the languages in which these publications originally appeared. The arrangement is in dictionary form with author and subject entry, and one alphabetical arrangement. Detail in the matter of subject reference has been omitted on account of the cost of presentation, but an attempt has been made to give sufficient cross reference for research in special lines.

  4. Bibliography of Aeronautics, 1929

    NASA Technical Reports Server (NTRS)

    Brockett, Paul

    1930-01-01

    This Bibliography of Aeronautics for 1929 covers the aeronautical literature published from January 1 to December 31, 1929. The first Bibliography of Aeronautics was published by the Smithsonian Institution as Volume 55 of the Smithsonian Miscellaneous Collections and covered the material published prior to June 30, 1909. Supplementary volumes of the Bibliography of Aeronautics for the subsequent years have been published by the National Advisory Committee for Aeronautics. The last preceding volume was for the calendar year 1928. As in the previous volumes, citations of the pUblications of all nations are included in th.e languages in which. these publications originally appeared. The arrangement is in dictionary form with author and subject entry, and one alphabetical arrangement. Detail in the matter of subject reference has been omitted on account of the cost of presentation, but an attempt has been made to give sufficient cross reference for research in special lines.

  5. Inmarsat aeronautical mobile satellite system: Internetworking issues

    NASA Technical Reports Server (NTRS)

    Sengupta, Jay R.

    1990-01-01

    The Inmarsat Aeronautical Mobile Satellite System (AMSS) provides air-ground and air-air communications services to aero-mobile users on a global basis. Communicating parties may be connected either directly, or more commonly, via interconnecting networks to the Inmarsat AMSS, in order to construct end-to-end communications circuits. The aircraft earth station (AES) and the aeronautical ground earth station (GES) are the points of interconnection of the Inmarsat AMSS to users, as well as to interconnecting networks. This paper reviews the internetworking aspects of the Inmarsat AMSS, by introducing the Inmarsat AMSS network architecture and services concepts and then discussing the internetwork address/numbering and routing techniques.

  6. Nomenclature for Aeronautics

    NASA Technical Reports Server (NTRS)

    1939-01-01

    The nomenclature for aeronautics presented in this Report No. 474 is a revision of the last previous report on this subject (i.e., Report no. 240.) This report is published for the purpose of encouraging greater uniformity and precision in the use of terms relating to aeronautics, both in official documents of the Government and in commercial publications. Terms in general use in other branches of engineering have been included only where they have some special significance in aeronautics, or form an integral part of its terminology.

  7. Real World of Industrial Chemistry: Technology of the Rare Earths.

    ERIC Educational Resources Information Center

    Kremers, Howard E.

    1985-01-01

    The 17 rare earth elements account for one-fifth of the 83 naturally occurring elements and collectively rank as the 22nd most abundant "element." Properties of these elements (including their chemical similarity), their extraction from the earth, and their uses are discussed. (JN)

  8. Aeronautics and Space Report of the President

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Fiscal Year (FY) 2002 brought advances on many fronts in support of NASA's new vision, announced by Administrator Sean O Keefe on April 12, "to improve life here, to extend life to there, to find life beyond." NASA successfully carried out four Space Shuttle missions, including three to the International Space Station (ISS) and one servicing mission to the Hubble Space Telescope (HST). By the end of the fiscal year, humans had occupied the ISS continuously for 2 years. NASA also managed five expendable launch vehicle (ELV) missions and participated in eight international cooperative ELV launches. In the area of space science, two of the Great Observatories, the Hubble Space Telescope and the Chandra X-Ray Observatory, continued to make spectacular observations. The Mars Global Surveyor and Mars Odyssey carried out their mapping missions of the red planet in unprecedented detail. Among other achievements, the Near Earth Asteroid Rendezvous (NEAR) Shoemaker spacecraft made the first soft landing on an asteroid, and the Solar and Heliospheric Observatory (SOHO) monitored a variety of solar activity, including the largest sunspot observed in 10 years. The education and public outreach program stemming from NASA's space science missions continues to grow. In the area of Earth science, attention focused on completing the first Earth Observing Satellite series. Four spacecraft were successfully launched. The goal is to understand our home planet as a system, as well as how the global environment responds to change. In aerospace technology, NASA conducted studies to improve aviation safety and environmental friendliness, progressed with its Space Launch Initiative Program, and explored a variety of pioneering technologies, including nanotechnology, for their application to aeronautics and aerospace. NASA remained broadly engaged in the international arena and concluded over 60 international cooperative and reimbursable international agreements during FY 2002.

  9. Curriculum for modern aeronautics

    NASA Technical Reports Server (NTRS)

    Roberts, L.

    1975-01-01

    Methods for improving the university training of aeronautical engineering students are discussed. Specific topics considered are: (1) the kind of students which should be developed through aeronautical engineering education, (2) to what extent should aerospace engineering be prepared for diversity and change, (3) to what extent should theory be emphasized as compared with practical engineering and design, and (4) a suggestion for NASA/Industry/University collaboration.

  10. Application of Mobile-ip to Space and Aeronautical Networks

    NASA Technical Reports Server (NTRS)

    Leung, Kent; Shell, Dan; Ivancic, William D.; Stewart, David H.; Bell, Terry L.; Kachmar, Brian A.

    2001-01-01

    The National Aeronautics and Space Administration (NASA) is interested in applying mobile Internet protocol (mobile-ip) technologies to its space and aeronautics programs. In particular, mobile-ip will play a major role in the Advanced Aeronautic Transportation Technology (AAT-F), the Weather Information Communication (WINCOMM), and the Small Aircraft Transportation System (SATS) aeronautics programs. This paper describes mobile-ip and mobile routers--in particular, the features, capabilities, and initial performance of the mobile router are presented. The application of mobile-router technology to NASA's space and aeronautics programs is also discussed.

  11. The Earth System Grid Center for Enabling Technologies: Focusing Technologies on Climate Datasets and Resource Needs

    SciTech Connect

    Williams, Dean N.

    2007-09-26

    This report discusses a project that used prototyping technology to access and analyze climate data. This project was initially funded under the DOE’s Next Generation Internet (NGI) program, with follow-on support from BER and the Mathematical, Information, and Computational Sciences (MICS) office. In this prototype, we developed Data Grid technologies for managing the movement and replication of large datasets, and applied these technologies in a practical setting (i.e., an ESG-enabled data browser based on current climate data analysis tools), achieving cross-country transfer rates of more than 500 Mb/s. Having demonstrated the potential for remotely accessing and analyzing climate data located at sites across the U.S., we won the “Hottest Infrastructure” award in the Network Challenge event. While the ESG I prototype project substantiated a proof of concept (“Turning Climate Datasets into Community Resources”), the SciDAC Earth System Grid (ESG) II project made this a reality. Our efforts targeted the development of metadata technologies (standard schema, XML metadata extraction based on netCDF, and a Metadata Catalog Service), security technologies (Web-based user registration and authentication, and community authorization), data transport technologies (GridFTPenabled OPeNDAP-G for high-performance access, robust multiple file transport and integration with mass storage systems, and support for dataset aggregation and subsetting), as well as web portal technologies to provide interactive access to climate data holdings. At this point, the technology was in place and assembled, and ESG II was poised to make a substantial impact on the climate modelling community.

  12. Review of Aeronautical Wind Tunnel Facilities

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The nation's aeronautical wind tunnel facilities constitute a valuable technological resource and make a significant contribution to the global supremacy of U.S. aircraft, both civil and military. At the request of NASA, the National Research Council's Aeronautics and Space Engineering Board organized a commitee to review the state of repair, adequacy, and future needs of major aeronautical wind tunnel facilities in meeting national goals. The comittee identified three main areas where actions are needed to sustain the capability of NASA's aeronautical wind tunnel facilities to support the national aeronautical research and development activities: tunnel maintenance and upgrading, productivity enhancement, and accommodation of new requirements (particularly in hypersonics). Each of these areas are addressed and the committee recommendations for appropriate actions presented.

  13. Emerging Geospatial Sharing Technologies in Earth and Space Science Informatics

    NASA Astrophysics Data System (ADS)

    Singh, R.; Bermudez, L. E.

    2013-12-01

    Emerging Geospatial Sharing Technologies in Earth and Space Science Informatics The Open Geospatial Consortium (OGC) mission is to serve as a global forum for the collaboration of developers and users of spatial data products and services, and to advance the development of international standards for geospatial interoperability. The OGC coordinates with over 400 institutions in the development of geospatial standards. In the last years two main trends are making disruptions in geospatial applications: mobile and context sharing. People now have more and more mobile devices to support their work and personal life. Mobile devices are intermittently connected to the internet and have smaller computing capacity than a desktop computer. Based on this trend a new OGC file format standard called GeoPackage will enable greater geospatial data sharing on mobile devices. GeoPackage is perhaps best understood as the natural evolution of Shapefiles, which have been the predominant lightweight geodata sharing format for two decades. However the format is extremely limited. Four major shortcomings are that only vector points, lines, and polygons are supported; property names are constrained by the dBASE format; multiple files are required to encode a single data set; and multiple Shapefiles are required to encode multiple data sets. A more modern lingua franca for geospatial data is long overdue. GeoPackage fills this need with support for vector data, image tile matrices, and raster data. And it builds upon a database container - SQLite - that's self-contained, single-file, cross-platform, serverless, transactional, and open source. A GeoPackage, in essence, is a set of SQLite database tables whose content and layout is described in the candidate GeoPackage Implementation Specification available at https://portal.opengeospatial.org/files/?artifact_id=54838&version=1. The second trend is sharing client 'contexts'. When a user is looking into an article or a product on the web

  14. A layered approach to technology transfer of AVIRIS between Earth Search Sciences, Inc. and the Idaho National Engineering Laboratory

    NASA Technical Reports Server (NTRS)

    Ferguson, James S.; Ferguson, Joanne E.; Peel, John, III; Vance, Larry

    1995-01-01

    Since initial contact between Earth Search Sciences, Inc. (ESSI) and the Idaho National Engineering Laboratory (INEL) in February, 1994, at least seven proposals have been submitted in response to a variety of solicitations to commercialize and improve the AVIRIS instrument. These proposals, matching ESSI's unique position with respect to agreements with the National Aeronautics and Space Administration (NASA) and the Jet Propulsion Laboratory (JPL) to utilize, miniaturize, and commercialize the AVIRIS instrument and platform, are combined with the applied engineering of the INEL. Teaming ESSI, NASA/JPL, and INEL with diverse industrial partners has strengthened the respective proposals. These efforts carefully structure the overall project plans to ensure the development, demonstration, and deployment of this concept to the national and international arenas. The objectives of these efforts include: (1) developing a miniaturized commercial, real-time, cost effective version of the AVIRIS instrument; (2) identifying multiple users for AVIRIS; (3) integrating the AVIRIS technology with other technologies; (4) gaining the confidence/acceptance of other government agencies and private industry in AVIRIS; and (5) increasing the technology base of U.S. industry.

  15. Enabling Communication and Navigation Technologies for Future Near Earth Science Missions

    NASA Technical Reports Server (NTRS)

    Israel, David J.; Heckler, Gregory; Menrad, Robert; Hudiburg, John; Boroson, Don; Robinson, Bryan; Cornwell, Donald

    2016-01-01

    In 2015, the Earth Regimes Network Evolution Study (ERNESt) proposed an architectural concept and technologies that evolve to enable space science and exploration missions out to the 2040 timeframe. The architectural concept evolves the current instantiations of the Near Earth Network and Space Network with new technologies to provide a global communication and navigation network that provides communication and navigation services to a wide range of space users in the near Earth domain. The technologies included High Rate Optical Communications, Optical Multiple Access (OMA), Delay Tolerant Networking (DTN), User Initiated Services (UIS), and advanced Position, Navigation, and Timing technology. This paper describes the key technologies and their current technology readiness levels. Examples of science missions that could be enabled by the technologies and the projected operational benefits of the architecture concept to missions are also described.

  16. Solid Earth science in the 1990s. Volume 3: Measurement techniques and technology

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Reports are contained from the NASA Workshop on Solid Earth Science in the 1990s. The techniques and technologies needed to address the program objectives are discussed. The Measurement Technique and Technology Panel identified (1) candidate measurement systems for each of the measurements required for the Solid Earth Science Program that would fall under the NASA purview; (2) the capabilities and limitations of each technique; and (3) the developments necessary for each technique to meet the science panel requirements. In nearly all cases, current technology or a development path with existing technology was identified as capable of meeting the requirements of the science panels. These technologies and development paths are discussed.

  17. An engineering research and technology program for an evolving, multi-decade Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Sadin, Stanley R.; Johnston, Gordon I.; Hudson, Wayne R.

    1991-01-01

    A study is presented that examines the technological needs of future systems, surveys current and planned activities and highlights significant accomplishments in the research and technology program of the multidecade Mission to Planet Earth (MTPE). Consideration is given to recent program redirection in MTPE, the initiation of the high performance computing and communications program and the potential impact on the technology programs. The technology set is divided into three subsets covering information, observation, and infrastructure technologies.

  18. Information Technology Infusion Case Study: Integrating Google Earth into the A-Train Data Depot

    NASA Astrophysics Data System (ADS)

    Smith, P. M.; Kempler, S. J.; Leptoukh, G. G.; Chen, A.

    2010-12-01

    The purpose of the NASA funded project, ‘Utilizing 3 Dimensional Data Views to Access Data and Discover Relationships Between Multiple Heterogeneous Data Sets Along the A-Train Tracks’ (Kempler, PI, NASA ROSES NNH07ZDA001N ACCESS Proposal) was to employ the latest 3 dimensional visualization technology to explore and provide direct data access to heterogeneous A-Train datasets, ‘operationally’, along, and on either side of the A-Train tracks. Google Earth (tm) provides the foundation for organizing, visualizing, publishing, and synergizing Earth science data in virtual 3 dimensions, for this project. Successful integration of Google Earth (tm) into the A-Train Data Depot (ATDD), resulted in: a) visualizing two-, three- and four-dimensional Earth science data on Google Earth (tm); b) visualizing and synergizing analyzed results derived from the Giovanni online analysis system; and c) visualizing results derived from other standard web services (e.g. OGC WMS). These implementations produce KMZ files that can be opened and visualized via a Google Earth (tm). Integrating A-Train data on Google Earth (tm) through ATDD (http://disc.gsfc.nasa.gov/atdd) affords users the ability to more efficiently discover, access, manipulate and analyze A-Train atmospheric data. The integration of Google Earth (tm) into the ATDD came with anticipated and unanticipated challenges, and solutions, insulated far beneath the easily obtainable ATDD Google Earth (tm) images and data downloads. In addition, some components of integration went rather smoothly. This presentation will discuss the challenges and non-challenges encountered and innovative solutions implemented to enable displaying NASA vertical and horizontal Earth science data within Google Earth (tm) technology. Findings discussed, include: - Interoperability between ATDD and Google Earth (tm) - Required enhancements to existing systems - Reuse of infused technology - Making the total greater than the some of the parts It is

  19. An Effect of Technology Based Inquiry Approach on the Learning of "Earth, Sun, & Moon" Subject

    ERIC Educational Resources Information Center

    Turkmen, Hakan

    2009-01-01

    The purpose of this study was to investigate what affect a technology based inquiry approach (TBIA) had on 5th grade primary students' understanding of earth, sun, and moon concept in a science and technology course and how this changed their academic achievements. This study was carried out in a 5th grade elementary science and technology course…

  20. Technologies and practices for maintaining and publishing earth science vocabularies

    NASA Astrophysics Data System (ADS)

    Cox, Simon; Yu, Jonathan; Williams, Megan; Giabardo, Fabrizio; Lowe, Dominic

    2015-04-01

    Shared vocabularies are a key element in geoscience data interoperability. Many organizations curate vocabularies, with most Geologic Surveys having a long history of development of lexicons and authority tables. However, their mode of publication is heterogeneous, ranging from PDFs and HTML web pages, spreadsheets and CSV, through various user-interfaces, and public and private APIs. Content maintenance ranges from tightly-governed and externally opaque, through various community processes, all the way to crowd-sourcing ('folksonomies'). Meanwhile, there is an increasing expectation of greater harmonization and vocabulary re-use, which create requirements for standardized content formalization and APIs, along with transparent content maintenance and versioning. We have been trialling a combination of processes and software dealing with vocabulary formalization, registration, search and linking. We use the Simplified Knowledge Organization System (SKOS) to provide a generic interface to content. SKOS is an RDF technology for multi-lingual, hierarchical vocabularies, oriented around 'concepts' denoted by URIs, and thus consistent with Linked Open Data. SKOS may be mixed in with classes and properties from specialized ontologies which provide a more specific interface when required. We have developed a suite of practices and techniques for conversion of content from the source technologies and styles into SKOS, largely based on spreadsheet manipulation before RDF conversion, and SPARQL afterwards. The workflow for each vocabulary must be adapted to match the specific inputs. In linked data applications, two requirements are paramount for user confidence: (i) the URI that denotes a vocabulary item is persistent, and should be dereferenceable indefinitely; (ii) the history and status of the resource denoted by a URI must be available. This is implemented by the Linked Data Registry (LDR), originally developed for the World Meteorological Organization and the UK

  1. Western Aeronautical Test Range

    NASA Technical Reports Server (NTRS)

    Sakahara, Robert D.

    2008-01-01

    NASA's Western Aeronautical Test Range (WATR) is a network of facilities used to support aeronautical research, science missions, exploration system concepts, and space operations. The WATR resides at NASA's Dryden Flight Research Center located at Edwards Air Force Base, California. The WATR is a part of NASA's Corporate Management of Aeronautical Facilities and funded by the Strategic Capability Asset Program (SCAP). It is managed by the Aeronautics Test Program (ATP) of the Aeronautics Research Mission Directorate (ARMD) to provide the right facility at the right time. NASA is a tenant on Edwards Air Force Base and has an agreement with the Air Force Flight Test Center to use the land and airspace controlled by the Department of Defense (DoD). The topics include: 1) The WATR supports a variety of vehicles; 2) Dryden shares airspace with the AFFTC; 3) Restricted airspace, corridors, and special use areas are available for experimental aircraft; 4) WATR Products and Services; 5) WATR Support Configuration; 6) Telemetry Tracking; 7) Time Space Positioning; 8) Video; 9) Voice Communication; 10) Mobile Operations Facilities; 11) Data Processing; 12) Mission Control Center; 13) Real-Time Data Analysis; and 14) Range Safety.

  2. NASA’s Space Technology Investments for Mars Benefitting Life on Earth

    NASA Video Gallery

    NASA's technology investments enable the nation to achieve its space exploration and discovery goals, but the innovations also benefit the public here on earth. The commercialization of NASA techno...

  3. Advanced Earth-to-orbit propulsion technology information, dissemination and research

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1995-01-01

    In this period of performance a conference (The 1994 Conference on Advanced Earth-to-Orbit Propulsion Technology) was organized and implemented by the University of Alabama in Huntsville and held May 15-17 to assemble and disseminate the current information on Advanced Earth-to-Orbit Propulsion Technology. The results were assembled for publication as NASA-CP-3282, Volume 1 and 2 and NASA-CP-3287.

  4. Information Systems for NASA's Aeronautics and Space Enterprises

    NASA Technical Reports Server (NTRS)

    Kutler, Paul

    1998-01-01

    effort in pursuit of revolutionary, IT-based approaches to satisfying NASA's aeronautics and space requirements. The objective of the effort is to incorporate information technologies within each of the Agency's four Enterprises, i.e., Aeronautics and Space Transportation Technology, Earth, Science, Human Exploration and Development of Space and Space Sciences. The end results of these efforts for Enterprise programs and projects should be reduced cost, enhanced mission capability and expedited mission completion.

  5. Diaphragms for Aeronautic Instruments

    NASA Technical Reports Server (NTRS)

    Hersey, M D

    1924-01-01

    This investigation was carried out at the request of the National Advisory Committee for Aeronautics and comprises an outline of historical developments and theoretical principles, together with a discussion of expedients for making the most effective use of existing diaphragms actuated by the hydrostatic pressure form an essential element of a great variety instruments for aeronautic and other technical purposes. The various physical data needed as a foundation for rational methods of diaphragm design have not, however, been available hitherto except in the most fragmentary form.

  6. Applications of earth resources technology to human needs

    NASA Technical Reports Server (NTRS)

    Weinberger, C.

    1975-01-01

    The application of remote sensing technology in the fields of health and education is examined. The technology and accomplishments of ATS 6 and the development of a nationwide telecommunications system to meet the varied needs of the health and education communities are among the topics discussed. The economic and social aspects of utilizing and benefiting from remote sensing technology are stressed.

  7. Propulsion Technology Demonstrator. [Demonstrating Novel CubeSat Technologies in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Marmie, John; Martinez, Andres; Petro, Andrew

    2015-01-01

    NASA's Pathfinder Technology Demonstrator (PTD) project will test the operation of a variety of novel CubeSat technologies in low- Earth orbit, providing significant enhancements to the performance of these small and effective spacecraft. Each Pathfinder Technology Demonstrator mission consists of a 6-unit (6U) CubeSat weighing approximately 26 pounds (12 kilograms) and measuring 12 inches x 10 inches x 4 inches (30 centimeters x 25 centimeters x 10 centimeters), comparable in size to a common shoebox. CubeSats are a class of nanosatellites that use a standard size and form factor. The standard Cube- Sat size uses a "one unit" or "1U" measuring 4 inches x 4 inches x 4 inches (10x10x10 centimeters) and is extendable to larger sizes by "stacking" a number of the 1U blocks to form a larger spacecraft. Each PTD spacecraft will also be equipped with deployable solar arrays that provide an average of 44 watts of power while in orbit.

  8. Advanced Earth-to-orbit propulsion technology program overview: Impact of civil space technology initiative

    NASA Technical Reports Server (NTRS)

    Stephenson, Frank W., Jr.

    1988-01-01

    The NASA Earth-to-Orbit (ETO) Propulsion Technology Program is dedicated to advancing rocket engine technologies for the development of fully reusable engine systems that will enable space transportation systems to achieve low cost, routine access to space. The program addresses technology advancements in the areas of engine life extension/prediction, performance enhancements, reduced ground operations costs, and in-flight fault tolerant engine operations. The primary objective is to acquire increased knowledge and understanding of rocket engine chemical and physical processes in order to evolve more realistic analytical simulations of engine internal environments, to derive more accurate predictions of steady and unsteady loads, and using improved structural analyses, to more accurately predict component life and performance, and finally to identify and verify more durable advanced design concepts. In addition, efforts were focused on engine diagnostic needs and advances that would allow integrated health monitoring systems to be developed for enhanced maintainability, automated servicing, inspection, and checkout, and ultimately, in-flight fault tolerant engine operations.

  9. Civilian Aeronautical Futures - The Responsibly Imaginable

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M.

    2006-01-01

    Since 1940 Aeronautics has had an immense impact upon Global Human lifestyles and affairs - in both the Civilian and Military arenas. During this period Long distance Train and Ship passenger transport were largely supplanted by Air Travel and Aviation assumed a dominant role in warfare. The early 1940 s to the mid 1970 s was a particularly productive period in terms of Aeronautical Technology. What is interesting is that, since the mid 1970 s, the rate of Aeronautical Technological Progress has been far slower, the basic technology in nearly all of our current Aero Systems dates from the mid 70 s or earlier. This is especially true in terms of Configuration Aerodynamics, Aeronautics appears to have "settled" on the 707, double delta and rotary wing as the approach of choice for Subsonic long haul, supersonic cruise and VTOL respectively. Obviously there have been variants and some niche digression from this/these but in the main Aeronautics, particularly civilian Aeronautics, has become a self-professed "mature", Increasingly "Commodity", Industry. The Industry is far along an existing/deployed technology curve and focused, now for decades, on incremental/evolutionary change - largely Appliers vs. developers of technology. This is, of course, in sharp contrast to the situation in the early-to-later 20th century where Aeronautics was viewed as A Major Technological Engine, much the way IT/Bio/Nano/Energetics/Quantum Technologies are viewed today. A search for Visionary Aeronautical "Futures" papers/projections indicates a decided dearth thereof over the last 20 plus years compared to the previous quarter Century. Aeronautics is part of Aerospace and Aerospace [including Aeronautics] has seen major cutbacks over the last decades. Some numbers for the U.S. Aerospace Industry serve as examples. Order of 600,000 jobs lost, with some 180,000 more on the block over the next 10 years. Approximately 25% of the Aerospace workforce is eligible to retire and the average

  10. JPRS Report: Science and Technology, Central Eurasia: Earth Sciences

    DTIC Science & Technology

    1993-05-11

    F. Dotsenko ; IZVESTIYA AKADEMII NA UK: FIZIKA ATMOSFER Y I OKEANA, Vol 29 No 1, Feb 93] 5 Fractal Structure of Ozonometric Network [ A . N. Gruzdev...Earth Sciences JPRS- UES-93-002 CONTENTS 11 MAY 1993 ARCTIC, ANTARCTIC RESEARCH Antarctic Monitoring [ A . N. Rogovtsev; IZVESTIYA RUSSKOGO...GEOGRAFICHESKOGO OBSHCHESTVA, Vol 124 No 4, Jul- A ug 92

  11. Emerging Options and Opportunities in Civilian Aeronautics

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M.

    2012-01-01

    This paper addresses the major problems/issues with civilian aeronautics going forward, the contextual ongoing technology revolutions, the several emerging civilian aeronautical "Big Ideas" and associated enabling technological approaches. The ongoing IT Revolution is increasingly providing, as 5 senses virtual presence/reality becomes available, along with Nano/Molecular Manufacturing, virtual alternatives to Physical transportation for both people and goods. Paper examines the potential options available to aeronautics to maintain and perhaps grow "market share" in the context of this evolving competition. Many of these concepts are not new, but the emerging technology landscape is enhancing their viability and marketability. The concepts vary from the "interesting" to the truly revolutionary and all require considerable research. Paper considers the speed range from personal/general aviation to supersonic transports and technologies from energetics to fabrication.

  12. An aeronautical mobile satellite experiment

    NASA Technical Reports Server (NTRS)

    Jedrey, T. C.; Dessouky, K. I.; Lay, N. E.

    1990-01-01

    The various activities and findings of a NASA/FAA/COMSAT/INMARSAT collaborative aeronautical mobile satellite experiment are detailed. The primary objective of the experiment was to demonstrate and evaluate an advanced digital mobile satellite terminal developed at the Jet Propulsion Laboratory under the NASA Mobile Satellite Program. The experiment was a significant milestone for NASA/JPL, since it was the first test of the mobile terminal in a true mobile satellite environment. The results were also of interest to the general mobile satellite community because of the advanced nature of the technologies employed in the terminal.

  13. University research in aeronautics

    NASA Technical Reports Server (NTRS)

    Duberg, J. E.

    1975-01-01

    The contributions which universities can make to aeronautical research projects are discussed. The activities of several facilities are presented to show the effectiveness of the educational and research programs. Reference is made to the Intergovernmental Personnel Act of 1970 which permits an exchange of federal agency personnel with state and local governments and with public and private higher education schools.

  14. Aeronautical facilities assessment

    NASA Technical Reports Server (NTRS)

    Penaranda, F. E. (Compiler)

    1985-01-01

    A survey of the free world's aeronautical facilities was undertaken and an evaluation made on where the relative strengths and weaknesses exist. Special emphasis is given to NASA's own capabilities and needs. The types of facilities surveyed are: Wind Tunnels; Airbreathing Propulsion Facilities; and Flight Simulators

  15. ARMD Fundamental Aeronautics Program

    NASA Technical Reports Server (NTRS)

    Dryer, Jay; DelRosario, Ruben

    2010-01-01

    This slide presentation focuses work of the Aeronautics Research Mission Directorate (ARMD) with particular interest on the work being done to address the environmental and energy efficiency challenges. Particular interest is on the Subsonic Fixed Wing (SFW) project, though there is discussion of the rotorcraft and the supersonics environmental challenges.

  16. Advanced Civilian Aeronautical Concepts

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M.

    1996-01-01

    Paper discusses alternatives to currently deployed systems which could provide revolutionary improvements in metrics applicable to civilian aeronautics. Specific missions addressed include subsonic transports, supersonic transports and personal aircraft. These alternative systems and concepts are enabled by recent and envisaged advancements in electronics, communications, computing and Designer Fluid Mechanics in conjunction with a design approach employing extensive synergistic interactions between propulsion, aerodynamics and structures.

  17. Aeronautics and Space Report of the President: 1977 Activities.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The national programs in aeronautics and space made steady progress in 1977 toward their long-term objectives. In aeronautics the goals were improved performance, energy efficiency, and safety in aircraft. In space the goals were: (1) better remote sensing systems to generate more sophisticated information about the Earth's environment; (2)…

  18. 1971 Aeronautics and Space Highlights. [NASA programs and research

    NASA Technical Reports Server (NTRS)

    1971-01-01

    These highlights include Mariner orbit of Mars, Interplanetary Monitoring Platform, Orbiting Solar Observatory, small scientific satellite, sounding rockets, Stratoscope 11, earth resources, aeronautics, jet noise abatement, airport runway safety, Apollo 14 and 15, and Skylab.

  19. Technology requirements for advanced earth orbital transportation systems. Volume 2: Summary report

    NASA Technical Reports Server (NTRS)

    Hepler, A. K.; Bangsund, E. L.

    1978-01-01

    The results of efforts to identify the technology requirements for advanced earth orbital transportation systems are reported. Topics discussed include: (1) design and definition of performance potential of vehicle systems, (2) advanced technology assessment, and (3) extended performance. It is concluded that the horizontal take-off concept is the most feasible system considered.

  20. Advanced Earth-to-Orbit Propulsion Technology 1986, volume 2

    NASA Technical Reports Server (NTRS)

    Richmond, R. J.; Wu, S. T.

    1986-01-01

    Technology issues related to oxygen/hydrogen and oxygen/hydrocarbon propulsion are addressed. Specific topics addressed include: rotor dynamics; fatigue/fracture and life; bearings; combustion and cooling processes; and hydrogen environment embrittlement in advanced propulsion systems.

  1. New Technologies for Improving Earth Science Data Usability

    NASA Astrophysics Data System (ADS)

    Conover, H.; Graves, S. J.; Ramachandran, R.; Redman, S.; Rushing, J.; Tanner, S.

    2003-12-01

    The Information Technology and Systems Center (ITSC) at the University of Alabama in Huntsville (UAH) is performing research in advanced applications with the goal of improving data usability in the next generation of distributed science data and information systems. These research areas include: data mining and subsetting in real time and for post-run analysis, interchange technologies for improved data exploitation, and the use of semantics to transform data exploitation via intelligent automated processing. Taken together, these technologies will be an important contribution to an evolving standards-based network of interoperable data and services. In addition, ITSC is investigating the role of a variety of infrastructure improvements for improved data usability, such as grid technologies for seamless access to multiple computational and data resources in a virtual computing environment; cluster technologies for high-speed parallel computation, multi-agent computations, and other applications; high-performance networking for high-speed connectivity among advanced applications; and next generation technologies in videoconferencing and electronic collaboration. This presentation will highlight several current ITSC research projects and collaborations which focus on advanced tools and services for such high-performance infrastructures, and which illustrate new approaches to improving data usability.

  2. Enabling Communication and Navigation Technologies for Future Near Earth Science Missions

    NASA Technical Reports Server (NTRS)

    Israel, David J.; Heckler, Greg; Menrad, Robert J.; Hudiburg, John J.; Boroson, Don M.; Robinson, Bryan S.; Cornwell, Donald M.

    2016-01-01

    In 2015, the Earth Regimes Network Evolution Study (ERNESt) Team proposed a fundamentally new architectural concept, with enabling technologies, that defines an evolutionary pathway out to the 2040 timeframe in which an increasing user community comprised of more diverse space science and exploration missions can be supported. The architectural concept evolves the current instantiations of the Near Earth Network and Space Network through implementation of select technologies resulting in a global communication and navigation network that provides communication and navigation services to a wide range of space users in the Near Earth regime, defined as an Earth-centered sphere with radius of 2M Km. The enabling technologies include: High Rate Optical Communications, Optical Multiple Access (OMA), Delay Tolerant Networking (DTN), User Initiated Services (UIS), and advanced Position, Navigation, and Timing technology (PNT). This paper describes this new architecture, the key technologies that enable it and their current technology readiness levels. Examples of science missions that could be enabled by the technologies and the projected operational benefits of the architecture concept to missions are also described.

  3. Langley aeronautics and space test highlights, 1984

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests which were performed during calendar year 1984 in Langley test facilities are highlighted. The broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research are illustrated.

  4. National Aeronautics and Space Administration Twenty-Fifth Anniversary, 1958-1983

    NASA Technical Reports Server (NTRS)

    1983-01-01

    This year marks a major milestone for the National Aeronautics and Space Administration: its silver anniversary. It seems appropriate, on this occasion, to sum up how NASA has responded to the legislative charter that established the agency. Among the responsibilities the Congress assigned NASA in the National Aeronautics and Space Act of 1958 were these: preservation of U.S. leadership in aerospace science and technology; cooperation with other nations in the peaceful application of technology; expansion of human knowledge of phenomena in the atmosphere and in space; pursuit of the practical benefits to be gained from aeronautical and space activities. There can be no doubt that NASA's quarter century of effort has preserved the nation's leadership role and strengthened its posture in aerospace science and technology. As for international cooperation. NASA has - since its inception - fostered the concept that the fruits of civil space research are to be shared with all mankind. The agency has provided technical assistance to scores of nations and has actively promoted cooperative ventures; indeed, virtually every major NASA space project today boasts some degree of foreign participation. In the last 25 years, man has teamed more about his planet, the near-Earth environment, and the universe than in all the prior years of history. NASA's space science program has spearheaded this great expansion of human knowledge. And, from the beginning, NASA has vigorously pursued the practical benefits that aerospace research offers. The agency pioneered in weather, communications and Earth resources survey satellites, the prime examples of space technology applied for Earth benefit, and it has built a broad base for expanding into new applications, some of which promise direct benefits of exceptional order. In aeronautical research, NASA has contributed in substantial degree to safer, better performing, more efficient, more environmentally acceptable aircraft.

  5. Monolithic integration of rare-earth oxides and semiconductors for on-silicon technology

    SciTech Connect

    Dargis, Rytis Clark, Andrew; Erdem Arkun, Fevzi; Grinys, Tomas; Tomasiunas, Rolandas; O'Hara, Andy; Demkov, Alexander A.

    2014-07-01

    Several concepts of integration of the epitaxial rare-earth oxides into the emerging advanced semiconductor on silicon technology are presented. Germanium grows epitaxially on gadolinium oxide despite lattice mismatch of more than 4%. Additionally, polymorphism of some of the rare-earth oxides allows engineering of their crystal structure from hexagonal to cubic and formation of buffer layers that can be used for growth of germanium on a lattice matched oxide layer. Molecular beam epitaxy and metal organic chemical vapor deposition of gallium nitride on the rare-earth oxide buffer layers on silicon is discussed.

  6. NASA's Role in Aeronautics: A Workshop. Volume VI - Aeronautical Research.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Assembly of Engineering.

    The central task of a 1980 workshop on the role of the National Aeronautics and Space Administration (NASA) in aeronautics was to examine the relationship of NASA's research capabilities to the state of U.S. aviation and to make recommendations about NASA's future role in aeronautics. Following a brief introduction, the Overview Panel on…

  7. Near Earth Object (NEO) Mitigation Options Using Exploration Technologies

    NASA Technical Reports Server (NTRS)

    Adams, Robert B.

    2008-01-01

    This presentation considers the use of new launch vehicles in defense against near-Earth objects, building upon expertise in launch vehicle and spacecraft design, astronomy and planetary science and missile defense. This work also seeks to demonstrate the synergy needed between architectures for human/robotic exploration initiatives and planetary defense. Three different mitigation operations were baselined for this study--nuclear standoff explosion, kinetic interceptor, and solar collector--however, these are not the only viable options. The design and predicted performance of each of these methods is discussed and compared. It is determined that the nuclear interceptor option can deflect NEOs of smaller size (100-500 m) with 2 years or more time before impact, and larger NEOs with 5 or more years warning; kinetic interceptors may be effective for deflection of asteroids up to 300-400 m but require 8-10 years warning time; and, solar collectors may be able to deflect NEOs up to 1 km if issues pertaining to long operation can be overcome. Ares I and Ares V vehicles show sufficient performance to enable the development of a near-term categorization and mitigation architecture.

  8. Interactions of microorganisms with rare earth ions and their utilization for separation and environmental technology.

    PubMed

    Moriwaki, Hiroshi; Yamamoto, Hiroki

    2013-01-01

    In recent years, rare earth elements (REEs) have been widely used in various modern technological devices and the global demand for REE has been increasing. The increased demand for REEs has led to environmental exposure or water pollution from rare earth metal mines and various commercial products. Therefore, the development of a safe technology for the separation and adsorption of REEs is very important from the perspective of green chemistry and environmental pollution. In this review, the application and mechanisms of microorganisms for the removal and extraction of REEs from aqueous solutions are described. In addition, the advantages in using microorganisms for REE adsorption and future studies on this topic are discussed.

  9. CSTI Earth-to-orbit propulsion research and technology program overview

    NASA Technical Reports Server (NTRS)

    Gentz, Steven J.

    1993-01-01

    NASA supports a vigorous Earth-to-orbit (ETO) research and technology program as part of its Civil Space Technology Initiative. The purpose of this program is to provide an up-to-date technology base to support future space transportation needs for a new generation of lower cost, operationally efficient, long-lived and highly reliable ETO propulsion systems by enhancing the knowledge, understanding and design methodology applicable to advanced oxygen/hydrogen and oxygen/hydrocarbon ETO propulsion systems. Program areas of interest include analytical models, advanced component technology, instrumentation, and validation/verification testing. Organizationally, the program is divided between technology acquisition and technology verification as follows: (1) technology acquisition; and (2) technology verification.

  10. Advanced modulation technology development for earth station demodulator applications

    NASA Technical Reports Server (NTRS)

    Davis, R. C.; Wernlund, J. V.; Gann, J. A.; Roesch, J. F.; Wright, T.; Crowley, R. D.

    1989-01-01

    The purpose of this contract was to develop a high rate (200 Mbps), bandwidth efficient, modulation format using low cost hardware, in 1990's technology. The modulation format chosen is 16-ary continuous phase frequency shift keying (CPFSK). The implementation of the modulation format uses a unique combination of a limiter/discriminator followed by an accumulator to determine transmitted phase. An important feature of the modulation scheme is the way coding is applied to efficiently gain back the performance lost by the close spacing of the phase points.

  11. EarthCube Integration and Test Environment (ECITE) : An environment to verify, validate, integrate and demonstrate EarthCube technology components

    NASA Astrophysics Data System (ADS)

    Fils, D.; Law, E.; Keiser, K.; Middleton, D.; Pearlman, J.; Stults, M.; MacDermaid, C.; Yang, C. P.

    2015-12-01

    NSF EarthCube is building a community-driven cyberinfrastructure that supports standards for interoperability, infuses advanced technologies to improve and facilitate interdisciplinary research, and helps educate scientists in the emerging practices of digital scholarship, data and software stewardship, and open science. A Testbed Working Group (TWG) was formed by the EarthCube's Technology and Architecture Committee, and is working with the EarthCube and user communities to define and design a testbed that will facilitate the integration of separately funded EarthCube components and promote collaborative planning, testing and integration of technologies. Specifically, the testbed seeks to: Serve as a common ground for prototyping, testing,integration and preservation of EarthCube components and products; Facilitate verification and validation of technologies, use cases, architecture design, components, scalability, interface specifications and standards; Provide a platform for demonstration and showcasing of EarthCube technologies for science users, technologists and the broader geosciences community. This talk gives a brief overview of the role, activities and accomplished achieved by the TWG, as well as the requirements and design developed to drive the implementation of a sustainable EarthCube testbed.

  12. Technologies Render Views of Earth for Virtual Navigation

    NASA Technical Reports Server (NTRS)

    2012-01-01

    On a December night in 1995, 159 passengers and crewmembers died when American Airlines Flight 965 flew into the side of a mountain while in route to Cali, Colombia. A key factor in the tragedy: The pilots had lost situational awareness in the dark, unfamiliar terrain. They had no idea the plane was approaching a mountain until the ground proximity warning system sounded an alarm only seconds before impact. The accident was of the kind most common at the time CFIT, or controlled flight into terrain says Trey Arthur, research aerospace engineer in the Crew Systems and Aviation Operations Branch at NASA s Langley Research Center. In situations such as bad weather, fog, or nighttime flights, pilots would rely on airspeed, altitude, and other readings to get an accurate sense of location. Miscalculations and rapidly changing conditions could contribute to a fully functioning, in-control airplane flying into the ground. To improve aviation safety by enhancing pilots situational awareness even in poor visibility, NASA began exploring the possibilities of synthetic vision creating a graphical display of the outside terrain on a screen inside the cockpit. How do you display a mountain in the cockpit? You have to have a graphics-powered computer, a terrain database you can render, and an accurate navigation solution, says Arthur. In the mid-1990s, developing GPS technology offered a means for determining an aircraft s position in space with high accuracy, Arthur explains. As the necessary technologies to enable synthetic vision emerged, NASA turned to an industry partner to develop the terrain graphical engine and database for creating the virtual rendering of the outside environment.

  13. Independent Technology Assessment within the Federation of Earth Science Information Partners (ESIP) Testbed

    NASA Astrophysics Data System (ADS)

    Burgess, A. B.; Robinson, E.; Graybeal, J.

    2015-12-01

    The Federation of Earth Science Information Partners (ESIP) is a community of science, data and information technology practitioners. ESIP's mission is to support the networking and data dissemination needs of our members and the global community. We do this by linking the functional sectors of education, observation, research and application with the ultimate use of Earth science. Amongst the services provided to ESIP members is the Testbed; a collaborative forum for the development of technology standards, services, protocols and best practices. ESIP has partnered with the NASA Advanced Information Systems Technology (AIST) program to integrate independent assessment of Testing Readiness Level (TRL) into the ESIP Testbed. In this presentation we will 1) demonstrate TRL assessment in the ESIP Testbed using three AIST projects, 2) discuss challenges and insights into creating an independent validation/verification framework and 3) outline the versatility of the ESIP Testbed as applied to other technology projects.

  14. Bridging the Gap: Use of Spaceflight Technologies for Earth-Based Problems

    NASA Technical Reports Server (NTRS)

    Brinley, Alaina; Vidlak, Carissa; Davis, Jeffrey R.

    2012-01-01

    Spaceflight is colloquially deemed, the final frontier, or the last area which humans have not yet explored in great depth. While this is true, there are still many regions on Earth that remain isolated from the urban, socially and electronically connected world. Because travelling to space requires a great deal of foresight, engineers are required to think creatively in order to invent technologies that are durable enough to withstand the rigors of the unique and often treacherous environment of outer space. The innovations that are a result of spaceflight designs can often be applied to life on Earth, particularly in the rural, isolated communities found throughout the world. The NASA Human Health and Performance Center (NHHPC) is a collaborative, virtual forum that connects businesses, non-profit organizations, academia, and government agencies to allow for better distribution of ideas and technology between these entities (http://www.nasa.gov/offices/NHHPC). There are many technologies that have been developed for spaceflight that can be readily applied to rural communities on Earth. For example, water filtration systems designed for spaceflight must be robust and easily repaired; therefore, a system with these qualifications may be used in rural areas on Earth. This particular initiative seeks to connect established, non-profit organizations working in isolated communities throughout the world with NASA technologies devised for spaceflight. These technologies could include water purification systems, solar power generators, or telemedicine techniques. Applying innovative, spaceflight technologies to isolated communities on Earth provides greater benefits from the same research dollars, thus fulfilling the Space Life Science motto at Johnson Space Center: Exploring Space and Enhancing Life. This paper will discuss this NHHPC global outreach initiative and give examples based on the recent work of the organization.

  15. Civil space technology initiative

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Civil Space Technology Initiative (CSTI) is a major, focused, space technology program of the Office of Aeronautics, Exploration and Technology (OAET) of NASA. The program was initiated to advance technology beyond basic research in order to expand and enhance system and vehicle capabilities for near-term missions. CSTI takes critical technologies to the point at which a user can confidently incorporate the new or expanded capabilities into relatively near-term, high-priority NASA missions. In particular, the CSTI program emphasizes technologies necessary for reliable and efficient access to and operation in Earth orbit as well as for support of scientific missions from Earth orbit.

  16. Sensor Web Technology Challenges and Advancements for the Earth Science Decadal Survey Era

    NASA Technical Reports Server (NTRS)

    Norton, Charles D.; Moe, Karen

    2011-01-01

    This paper examines the Earth science decadal survey era and the role ESTO developed sensor web technologies can contribute to the scientific observations. This includes hardware and software technology advances for in-situ and in-space measurements. Also discussed are emerging areas of importance such as the potential of small satellites for sensor web based observations as well as advances in data fusion critical to the science and societal benefits of future missions, and the challenges ahead.

  17. DOE SciDAC's Earth System Grid Center for Enabling Technologies Final Report

    SciTech Connect

    Williams, Dean N.

    2011-09-27

    The mission of the Earth System Grid Federation (ESGF) is to provide the worldwide climate-research community with access to the data, information, model codes, analysis tools, and intercomparison capabilities required to make sense of enormous climate data sets. Its specific goals are to (1) provide an easy-to-use and secure web-based data access environment for data sets; (2) add value to individual data sets by presenting them in the context of other data sets and tools for comparative analysis; (3) address the specific requirements of participating organizations with respect to bandwidth, access restrictions, and replication; (4) ensure that the data are readily accessible through the analysis and visualization tools used by the climate research community; and (5) transfer infrastructure advances to other domain areas. For the ESGF, the U.S. Department of Energy's (DOE's) Earth System Grid Center for Enabling Technologies (ESG-CET) team has led international development and delivered a production environment for managing and accessing ultra-scale climate data. This production environment includes multiple national and international climate projects (such as the Community Earth System Model and the Coupled Model Intercomparison Project), ocean model data (such as the Parallel Ocean Program), observation data (Atmospheric Radiation Measurement Best Estimate, Carbon Dioxide Information and Analysis Center, Atmospheric Infrared Sounder, etc.), and analysis and visualization tools, all serving a diverse user community. These data holdings and services are distributed across multiple ESG-CET sites (such as ANL, LANL, LBNL/NERSC, LLNL/PCMDI, NCAR, and ORNL) and at unfunded partner sites, such as the Australian National University National Computational Infrastructure, the British Atmospheric Data Centre, the National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory, the Max Planck Institute for Meteorology, the German Climate Computing

  18. Wireless Sensor Applications in Extreme Aeronautical Environments

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Atkinson, Gary M.

    2013-01-01

    NASA aeronautical programs require rigorous ground and flight testing. Many of the testing environments can be extremely harsh. These environments include cryogenic temperatures and high temperatures (greater than 1500 C). Temperature, pressure, vibration, ionizing radiation, and chemical exposure may all be part of the harsh environment found in testing. This paper presents a survey of research opportunities for universities and industry to develop new wireless sensors that address anticipated structural health monitoring (SHM) and testing needs for aeronautical vehicles. Potential applications of passive wireless sensors for ground testing and high altitude aircraft operations are presented. Some of the challenges and issues of the technology are also presented.

  19. EARTH TECH INC.'S ENHANCED IN-SITU BIOREMEDIATION PROCESS; INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    The USEPA conducted an evaluation of the Enhanced In-situ Bioremediation process, a biostimulation technology developed by the USDOE at the Westinghouse Savannah River Plant site in Aiken, SC. DOE has licensed the process to Earth Tech, Inc. The evaluation described in this bulle...

  20. Third Earth Resources Technology Satellite-1 Symposium. Volume 1: Technical Presentations, section A

    NASA Technical Reports Server (NTRS)

    Freden, S. C. (Compiler); Mercanti, E. P. (Compiler); Becker, M. A. (Compiler)

    1974-01-01

    Papers presented at the Third Symposium on Significant Results Obtained from the first Earth Resources Technology Satellite covered the areas of: agriculture, forestry, range resources, land use, mapping, mineral resources, geological structure, landform surveys, water resources, marine resources, environment surveys, and interpretation techniques.

  1. A Demonstration of Big Data Technology for Data Intensive Earth Science (Invited)

    NASA Astrophysics Data System (ADS)

    Kuo, K.; Clune, T.; Ramachandran, R.; Rushing, J.; Fekete, G.; Lin, A.; Doan, K.; Oloso, A. O.; Duffy, D.

    2013-12-01

    Big Data technologies exhibit great potential to change the way we conduct scientific investigations, especially analysis of voluminous and diverse data sets. Obviously, not all Big Data technologies are applicable to all aspects of scientific data analysis. Our NASA Earth Science Technology Office (ESTO) Advanced Information Systems Technology (AIST) project, Automated Event Service (AES), pioneers the exploration of Big Data technologies for data intensive Earth science. Since Earth science data are largely stored and manipulated in the form of multidimensional arrays, the project first evaluates array performance of several candidate Big Data technologies, including MapReduce (Hadoop), SciDB, and a custom-built Polaris system, which have one important feature in common: shared nothing architecture. The evaluation finds SicDB to be the most promising. In this presentation, we demonstrate SciDB using a couple of use cases, each operating on a distinct data set in the regular latitude-longitude grid. The first use case is the discovery and identification of blizzards using NASA's Modern Era Retrospective-analysis for Research and Application (MERRA) data sets. The other finds diurnal signals in the same 8-year period using SSMI data from three different instruments with different equator crossing times by correlating their retrieved parameters. In addition, the AES project is also developing a collaborative component to enable the sharing of event queries and results. Preliminary capabilities will be presented as well.

  2. Aeronautical engineering: A cumulative index to a continuing bibliography

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This bibliography is a cumulative index to the abstracts contained in NASA SP-7037 (197) through NASA SP-7037 (208) of Aeronautical Engineering: A Continuing Bibliography. NASA SP-7037 and its supplements have been compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, foreign technology, contract, report number, and accession number indexes.

  3. Aeronautical engineering: A cumulative index to a continuing bibliography

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This bibliography is a cumulative index to the abstracts contained in NASA SP-7037(210) through NASA SP-7037(221) of Aeronautical Engineering: A Continuing Bibliography. NASA SP-7037 and its supplements have been compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, foreign technology, contract number, report number, and accession number indexes.

  4. A cumulative index to a continuing bibliography on aeronautical engineering

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This bibliography is a cumulative index to the abstracts contained in NASA-SP-7037(184) through NASA-SP-7037(195) of Aeronautical Engineering: A Continuing Bibliography. NASA SP-7037 and its supplements have been compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, foreign technology, contract, report number, and accession number indexes.

  5. A Synergy Framework for the integration of Earth Observation technologies into Disaster Risk Reduction

    NASA Astrophysics Data System (ADS)

    Gaetani, Francesco; Petiteville, Ivan; Pisano, Francesco; Rudari, Roberto; St Pierre, Luc

    2015-04-01

    Earth observations and space-based applications have seen a considerable advance in the last decade, and such advances should find their way in applications related to DRR, climate change and sustainable development, including in the indicators to monitor advances in these areas. The post-2015 framework for disaster risk reduction, as adopted by the 3rd WCDRR is a action-oriented framework for disaster risk reduction that builds on modalities of cooperation linking local, national, regional and global efforts. Earth observations from ground and space platforms and related applications will play a key role in facilitating the implementation of the HFA2 and represent a unique platform to observe and assess how risks have changed in recent years, as well as to track the reduction in the level of exposure of communities. The proposed white paper focuses mainly on Earth Observation from space but it also addresses the use of other sources of data ( airborne, marine, in-situ, socio-economic and model outputs) in combination to remote sensing data. Earth observations (EO) and Space-based technologies can play a crucial role in contributing to the generation of relevant information to support informed decision-making regarding risk and vulnerability reduction and to address the underlying factors of disaster risk. For example, long series of Earth observation data collected over more than 30 years already contribute to track changes in the environment and in particular, environmental degradation around the world. Earth observation data is key to the work of the scientific community. Whether due to inadequate land-use policies, lack of awareness or understanding regarding such degradation, or inadequate use of natural resources including water and the oceans; Earth observation technologies are now routinely employed by many Ministries of Environment and Natural Resources worldwide to monitor the extent of degradation and a basis to design and enact new environmental

  6. Advance the Earth Science Education in China by Using New Technology

    NASA Astrophysics Data System (ADS)

    Qian, R.; Wang, X.; Sun, L.

    2013-12-01

    With the development of Chinese economy, science and technology, as well as the increasing demand of the persons with knowledge and experience in earth science and geological exploration, the higher education of earth science has been boosted in recent years. There are 2,000 to 3,000 students studying earth science every year and many of them will take part in scientific research and engineering technology work around the world after graduation, which increased the demand of educators, both in quantity and quality. However, the fact is that there is a huge gap between the demand and the current number of educators due to the explosion of students, which makes the reform of traditional education methods inevitable. There is great significance in doing research on the teaching methods catering to a large number of students. Some research contents and result based on the reform of education methods has been conducted. We integrate the teaching contents with the cutting-edge research projects and stress significance of earth science, which will greatly enhance the student's enthusiasm of it. Moreover. New technology will be applied to solve the problem that every teacher are responsible for 100~150 students in one courses. For instance, building the Internet platform where teachers and the students can discuss the courses contents, read the latest scientific articles. With the numerical simulation technology, the internal structure of the Earth, geological phenomena, characteristics of ore body, geophysical and hydrological fields, etc. can be simulated and the experiments and teaching practice can be demonstrated via video technology. It can also be used to design algorithm statistics and assessment and monitor teaching effect. Students are separated into small groups to take research training with their personal tutor at the beginning of the first semester, which will increase the opportunities for students to communicate with educators and solve the problem that the

  7. Human Factors in Aeronautics at NASA

    NASA Technical Reports Server (NTRS)

    Mogford, Richard

    2016-01-01

    This is a briefing to a regularly meeting DoD group called the Human Systems Community of Interest: Mission Effectiveness. I was asked to address human factors in aeronautics at NASA. (Exploration (space) human factors has apparently already been covered.) The briefing describes human factors organizations at NASA Ames and Langley. It then summarizes some aeronautics tasks that involve the application of human factors in the development of specific tools and capabilities. The tasks covered include aircrew checklists, dispatch operations, Playbook, Dynamic Weather Routes, Traffic Aware Strategic Aircrew Requests, and Airplane State Awareness and Prediction Technologies. I mention that most of our aeronautics work involves human factors as embedded in development tasks rather than basic research.

  8. Technology for monitoring global change. [NASA Technology Initiative for space based observations of Earth

    NASA Technical Reports Server (NTRS)

    Johnston, Gordon I.; Hudson, Wayne R.

    1989-01-01

    Multiinstrumented earth-science platforms currently being planned for both LEO and GEO positions will furnish data for the compilation of systematic and intercorrelated information that is suitable for the treatment of interdisciplinary questions concerning atmospheric, oceanic, hydrological, geological, and biological changes of an either natural or anthropogenic nature. Attention will be given in these observational campaigns to such essential earth variables as atmospheric pressure, rainfall/snowfall, vegetation cover, soil nutrient cycles, sea surface temperatures, ocean circulation, and ocean biological productivity.

  9. NASA to Survey Earth's Resources

    NASA Technical Reports Server (NTRS)

    Mittauer, R. T.

    1971-01-01

    A wide variety of the natural resources of earth and man's management of them will be studied by an initial group of foreign and domestic scientists tentatively chosen by the National Aeronautics and Space Administration to analyze data to be gathered by two earth-orbiting spacecraft. The spacecraft are the first Earth Resources Technology Satellite (ERTS-A) and the manned Skylab which will carry an Earth Resources Experiment Package (EREP). In the United States, the initial experiments will study the feasibility of remote sensing from a satellite in gathering information on ecological problems. The objective of both ERTS and EREP aboard Skylab is to obtain multispectral images of the surface of the earth with high resolution remote sensors and to process and distribute the images to scientific users in a wide variety of disciplines. The ERTS-A, EREP, and Skylab systems are described and their operation is discussed.

  10. High End Computing Technologies for Earth Science Applications: Trends, Challenges, and Innovations

    NASA Technical Reports Server (NTRS)

    Parks, John (Technical Monitor); Biswas, Rupak; Yan, Jerry C.; Brooks, Walter F.; Sterling, Thomas L.

    2003-01-01

    Earth science applications of the future will stress the capabilities of even the highest performance supercomputers in the areas of raw compute power, mass storage management, and software environments. These NASA mission critical problems demand usable multi-petaflops and exabyte-scale systems to fully realize their science goals. With an exciting vision of the technologies needed, NASA has established a comprehensive program of advanced research in computer architecture, software tools, and device technology to ensure that, in partnership with US industry, it can meet these demanding requirements with reliable, cost effective, and usable ultra-scale systems. NASA will exploit, explore, and influence emerging high end computing architectures and technologies to accelerate the next generation of engineering, operations, and discovery processes for NASA Enterprises. This article captures this vision and describes the concepts, accomplishments, and the potential payoff of the key thrusts that will help meet the computational challenges in Earth science applications.

  11. Technology requirements for advanced earth-orbital transportation systems, dual-mode propulsion

    NASA Technical Reports Server (NTRS)

    Haefeli, R. C.; Littler, E. G.; Hurley, J. B.; Winter, M. G.

    1977-01-01

    The application of dual-mode propulsion concepts to fully reusable single-stage-to-orbit (SSTO) vehicles is discussed. Dual-mode propulsion uses main rocket engines that consume hydrocarbon fuels as well as liquid hydrogen fuel. Liquid oxygen is used as the oxidizer. These engine concepts were integrated into transportation vehicle designs capable of vertical takeoff, delivering a payload to earth orbit, and return to earth with a horizontal landing. Benefits of these vehicles were assessed and compared with vehicles using single-mode propulsion (liquid hydrogen and oxygen engines). Technology requirements for such advanced transportation systems were identified. Figures of merit, including life-cycle cost savings and research costs, were derived for dual-mode technology programs, and were used for assessments of potential benefits of proposed technology activities. Dual-mode propulsion concepts display potential for significant cost and performance benefits when applied to SSTO vehicles.

  12. Spacecraft systems design trade-offs for the Earth Resources Technology Satellite.

    NASA Technical Reports Server (NTRS)

    Branchflower, G. A.

    1973-01-01

    The Earth Resources Technology Satellite Program's use of flight proven hardware in the design of a satellite for earth sensor payload support and data handling is discussed. The use of an existing satellite as the building block around which additional support systems such as the orbit adjust system, the redundant wideband telemetry systems, the second regulated power system, and the quad redundant command system is analyzed. System performance seen in orbit vs design objectives are discussed to point up the success of the design approach chosen. Also discussed are the schedule and cost benefits derived from the use of previously developed hardware with additional subsystems as required to meet program requirements.

  13. Aeronautical Engineering: 1983 cumulative index

    NASA Technical Reports Server (NTRS)

    1984-01-01

    This bibliography is a cumulative index to the abstracts contained in NASA SP-7037 (158) through NASA SP-7037 (169) of Aeronautical Engineering: A Continuing Bibliography. NASA SP-7037 and its supplements have been compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, contract, report number, and accession number indexes.

  14. Earth remote sensing as an effective tool for the development of advanced innovative educational technologies

    NASA Astrophysics Data System (ADS)

    Mayorova, Vera; Mayorov, Kirill

    2009-11-01

    Current educational system is facing a contradiction between the fundamentality of engineering education and the necessity of applied learning extension, which requires new methods of training to combine both academic and practical knowledge in balance. As a result there are a number of innovations being developed and implemented into the process of education aimed at optimizing the quality of the entire educational system. Among a wide range of innovative educational technologies there is an especially important subset of educational technologies which involve learning through hands-on scientific and technical projects. The purpose of this paper is to describe the implementation of educational technologies based on small satellites development as well as the usage of Earth remote sensing data acquired from these satellites. The increase in public attention to the education through Earth remote sensing is based on the concern that although there is a great progress in the development of new methods of Earth imagery and remote sensing data acquisition there is still a big question remaining open on practical applications of this kind of data. It is important to develop the new way of thinking for the new generation of people so they understand that they are the masters of their own planet and they are responsible for its state. They should desire and should be able to use a powerful set of tools based on modern and perspective Earth remote sensing. For example NASA sponsors "Classroom of the Future" project. The Universities Space Research Association in United States provides a mechanism through which US universities can cooperate effectively with one another, with the government, and with other organizations to further space science and technology, and to promote education in these areas. It also aims at understanding the Earth as a system and promoting the role of humankind in the destiny of their own planet. The Association has founded a Journal of Earth System

  15. Aeronautics in NACA and NASA

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Initiated in 1915, the National Advisory Committee for Aeronautics/National Aeronautics and Space Administration (NACA/NASA) aeronautical programs have been the keystone of a sustained U.S. Government, industry, and university research effort which has been a primary factor in the development of our remarkable air transportation systems, the country's largest positive trade balance component, and the world's finest military Air Force. This overview summarizes the flow of events, and the major trends, that have led from the NACA origins to the present NASA Aeronautics program, and indicates some important directions for the years ahead.

  16. World-wide aeronautical satellite communications

    NASA Technical Reports Server (NTRS)

    Wood, Peter; Smith, Keith

    1988-01-01

    INMARSAT decided to expand the spectrum covered by its new generation of satellites, INMARSAT-2, to include 1 MHz (subsequently increased to 3 MHz) of the spectrum designed for aeronautical use. It began a design study that led to the specifications for the system that is now being implemented. Subsequently, INMARSAT awarded contracts for the design of avionics and high gain antennas to a number of manufactures, while several of the signatories that provide ground equipment for communicating with the INMARSAT satellites are modifying their earth stations to work with the avionic equipment. As a resullt of these activities, a world-wide aeronautical satellite system supporting both voice and data will become operational in 1989.

  17. First Semiannual Report of the National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    Glennan, T. Keith

    1959-01-01

    The First Semiannual Report of the National Aeronautics and Space Administration (NASA) is submitted to Congress pursuant to section 206 (a) of the National Aeronautics and Space Act of 1958 (Public Law 85-568) to provide for research into problems of flight within and outside the Earth's atmosphere, which states: The Administration shall submit to the President for transmittal to Congress, semiannually and at such other times as it deems desirable, a report on its activities and accomplishments.

  18. Technologies Required to Image Earth 2.0 with a Space Coronagraph

    NASA Astrophysics Data System (ADS)

    Siegler, Nicholas

    2017-01-01

    NASA's Exoplanet Exploration Program (ExEP) guides the development of technology that enables the direct imaging and characterization of exo-Earths in the habitable zone of their stars for future space observatories. Here we present the coronagraph portion of the 2017 ExEP Technology Gap List, an annual update to ExEP's list of of technologies, to be advanced in the next 1-5 years. A coronagraph is an internal occulter that allows a space telescope to achieve exo-Earth imaging contrast requirements (more than 10 billion) by blocking on-axis starlight while allowing the reflected light of off-axis exoplanets be detected. Building and operating a space coronagraph capable of imaging an exo-Earth will require new technologies beyond those of WFIRST, the first high-contrast conronagraph in space. We review the current state-of-the-art performance of space coronagraphs and the performance level that must be achieved for a coronagraph..

  19. Integrating emerging earth science technologies into disaster risk management: an enterprise architecture approach

    NASA Astrophysics Data System (ADS)

    Evans, J. D.; Hao, W.; Chettri, S. R.

    2014-12-01

    Disaster risk management has grown to rely on earth observations, multi-source data analysis, numerical modeling, and interagency information sharing. The practice and outcomes of disaster risk management will likely undergo further change as several emerging earth science technologies come of age: mobile devices; location-based services; ubiquitous sensors; drones; small satellites; satellite direct readout; Big Data analytics; cloud computing; Web services for predictive modeling, semantic reconciliation, and collaboration; and many others. Integrating these new technologies well requires developing and adapting them to meet current needs; but also rethinking current practice to draw on new capabilities to reach additional objectives. This requires a holistic view of the disaster risk management enterprise and of the analytical or operational capabilities afforded by these technologies. One helpful tool for this assessment, the GEOSS Architecture for the Use of Remote Sensing Products in Disaster Management and Risk Assessment (Evans & Moe, 2013), considers all phases of the disaster risk management lifecycle for a comprehensive set of natural hazard types, and outlines common clusters of activities and their use of information and computation resources. We are using these architectural views, together with insights from current practice, to highlight effective, interrelated roles for emerging earth science technologies in disaster risk management. These roles may be helpful in creating roadmaps for research and development investment at national and international levels.

  20. Technology Readiness Level Assessment Process as Applied to NASA Earth Science Missions

    NASA Technical Reports Server (NTRS)

    Leete, Stephen J.; Romero, Raul A.; Dempsey, James A.; Carey, John P.; Cline, Helmut P.; Lively, Carey F.

    2015-01-01

    Technology assessments of fourteen science instruments were conducted within NASA using the NASA Technology Readiness Level (TRL) Metric. The instruments were part of three NASA Earth Science Decadal Survey missions in pre-formulation. The Earth Systematic Missions Program (ESMP) Systems Engineering Working Group (SEWG), composed of members of three NASA Centers, provided a newly modified electronic workbook to be completed, with instructions. Each instrument development team performed an internal assessment of its technology status, prepared an overview of its instrument, and completed the workbook with the results of its assessment. A team from the ESMP SEWG met with each instrument team and provided feedback. The instrument teams then reported through the Program Scientist for their respective missions to NASA's Earth Science Division (ESD) on technology readiness, taking the SEWG input into account. The instruments were found to have a range of TRL from 4 to 7. Lessons Learned are presented; however, due to the competition-sensitive nature of the assessments, the results for specific missions are not presented. The assessments were generally successful, and produced useful results for the agency. The SEWG team identified a number of potential improvements to the process. Particular focus was on ensuring traceability to guiding NASA documents, including the NASA Systems Engineering Handbook. The TRL Workbook has been substantially modified, and the revised workbook is described.

  1. Policy for Robust Space-based Earth Science, Technology and Applications

    NASA Technical Reports Server (NTRS)

    Brown, Molly Elizabeth; Escobar, Vanessa Marie; Aschbacher, Josef; Milagro-Pérez, Maria Pilar; Doorn, Bradley; Macauley, Molly K.; Friedl, Lawrence

    2013-01-01

    Satellite remote sensing technology has contributed to the transformation of multiple earth science domains, putting space observations at the forefront of innovation in earth science. With new satellite missions being launched every year, new types of earth science data are being incorporated into science models and decision-making systems in a broad array of organizations. Policy guidance can influence the degree to which user needs influence mission design and when, and ensure that satellite missions serve both the scientific and user communities without becoming unfocused and overly expensive. By considering the needs of the user community early on in the mission-design process, agencies can ensure that satellites meet the needs of multiple constituencies. This paper describes the mission development process in NASA and ESA and compares and contrasts the successes and challenges faced by these agencies as they try to balance science and applications within their missions.

  2. Dividends from Technology Applied.

    ERIC Educational Resources Information Center

    Aviation/Space, 1982

    1982-01-01

    National Aeronautics and Space Administration's (NASA) Applications Program employs aerospace science/technology to provide direct public benefit. Topics related to this program discussed include: Landsat, earth crustal study (plate tectonics), search and rescue systems, radiation measurement, upper atmosphere research, space materials processing,…

  3. Aeronautical Engineering: A continuing bibliography

    NASA Technical Reports Server (NTRS)

    1982-01-01

    This bibliography lists 347 reports, articles and other documents introduced into the scientific and technical information system. Documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated compounds, equipment, and systems are included. Research and development in aerodynamics, aeronautics and ground support equipment for aeronautical vehicles are also included.

  4. New technology of extracting the amount of rare earth metals from the red mud

    NASA Astrophysics Data System (ADS)

    Martoyan, G. A.; Karamyan, G. G.; Vardan, G. A.

    2016-01-01

    The paper outlined the environmental and economic problems associated with red mud - the waste generated in processing of bauxite ore for aluminum production. The chemical analysis of red mud has identified a number of useful elements including rare earth metals. The electromembrane technology of red mud processing with extraction of valuable elements is described. A possible scheme of separation of these metals through electrolysis is also given.

  5. Advanced Earth-to-orbit propulsion technology information, dissemination and research

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1993-01-01

    A conference was held at MSFC in May 1992 describing the research achievements of the NASA-wide research and technology programs dealing with advanced oxygen/hydrogen and oxygen/hydrocarbon earth-to-orbit propulsion. The purpose of this conference was to provide a forum for the timely dissemination to the propulsion community of the results emerging from this program with particular emphasis on the transfer of information from the scientific/research to the designer.

  6. Technical needs and research opportunities provided by projected aeronautical and space systems

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.

    1992-01-01

    The overall goal of the present task is to identify the enabling and supporting technologies for projected aeronautical and space systems. A detailed examination was made of the technical needs in the structures, dynamics and materials areas required for the realization of these systems. Also, the level of integration required with other disciplines was identified. The aeronautical systems considered cover the broad spectrum of rotorcraft; subsonic, supersonic and hypersonic aircraft; extremely high-altitude aircraft; and transatmospheric vehicles. The space systems considered include space transportation systems; spacecrafts for near-earth observation; spacecrafts for planetary and solar exploration; and large space systems. A monograph is being compiled which summarizes the results of this study. The different chapters of the monograph are being written by leading experts from governmental laboratories, industry and universities.

  7. Evolution of Satellite Imagers and Sounders for Low Earth Orbit and Technology Directions at NASA

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; McClain, Charles R.

    2010-01-01

    Imagers and Sounders for Low Earth Orbit (LEO) provide fundamental global daily observations of the Earth System for scientists, researchers, and operational weather agencies. The imager provides the nominal 1-2 km spatial resolution images with global coverage in multiple spectral bands for a wide range of uses including ocean color, vegetation indices, aerosol, snow and cloud properties, and sea surface temperature. The sounder provides vertical profiles of atmospheric temperature, water vapor cloud properties, and trace gases including ozone, carbon monoxide, methane and carbon dioxide. Performance capabilities of these systems has evolved with the optical and sensing technologies of the decade. Individual detectors were incorporated on some of the first imagers and sounders that evolved to linear array technology in the '80's. Signal-to-noise constraints limited these systems to either broad spectral resolution as in the case of the imager, or low spatial resolution as in the case of the sounder. Today's area 2-dimensional large format array technology enables high spatial and high spectral resolution to be incorporated into a single instrument. This places new constraints on the design of these systems and enables new capabilities for scientists to examine the complex processes governing the Earth System.

  8. Space Communications and Data Systems Technologies for Next Generation Earth Science Measurements

    NASA Technical Reports Server (NTRS)

    Bauer, Robert A.; Reinhart, Richard C.; Hilderman, Don R.; Paulsen, Phillip E.

    2003-01-01

    The next generation of Earth observing satellites and sensor networks will face challenges in supporting robust high rate communications links from the increasingly sophisticated onboard instruments. Emerging applications will need data rates forecast to be in the 100's to 1000's of Mbps. As mission designers seek smaller spacecraft, challenges exist in reducing the size and power requirements while increasing the capacity of the spacecraft's communications technologies. To meet these challenges, this work looks at three areas of selected space communications and data services technologies, specifically in the development of reflectarray antennas, demonstration of space Internet concepts, and measurement of atmospheric propagation effects on Ka-band signal transmitted from LEO.

  9. Beyond Moore's Law: Harnessing spatial-digital disruptive technologies for Digital Earth

    NASA Astrophysics Data System (ADS)

    Foresman, Timothy W.

    2016-11-01

    Moore's law will reach its plateau by 2020. Big data, however, will continue to increase as the Internet of Things and social media converge into the new era of ‘huge data’. Disruptive technologies, including big data and cloud computing are forces impacting business and government communities. The truth of our collective future is suggested to align with the Digital Earth (DE) vision. Benefits of technological advances will be manifested from business performance improvements based on capitalizing the locational attributes of corporate and government assets - the foundation of big data. Better governance and better business represents a key foundation for sustainability and therefore should be explicit DE guiding principles.

  10. Cost-effective technology advancement directions for electric propulsion transportation systems in earth-orbital missions

    NASA Technical Reports Server (NTRS)

    Regetz, J. D., Jr.; Terwilliger, C. H.

    1979-01-01

    The directions that electric propulsion technology should take to meet the primary propulsion requirements for earth-orbital missions in the most cost effective manner are determined. The mission set requirements, state of the art electric propulsion technology and the baseline system characterized by it, adequacy of the baseline system to meet the mission set requirements, cost optimum electric propulsion system characteristics for the mission set, and sensitivities of mission costs and design points to system level electric propulsion parameters are discussed. The impact on overall costs than specific masses or costs of propulsion and power systems is evaluated.

  11. Conversion of the Aeronautics Interactive Workstation

    NASA Technical Reports Server (NTRS)

    Riveras, Nykkita L.

    2004-01-01

    This summer I am working in the Educational Programs Office. My task is to convert the Aeronautics Interactive Workstation from a Macintosh (Mac) platform to a Personal Computer (PC) platform. The Aeronautics Interactive Workstation is a workstation in the Aerospace Educational Laboratory (AEL), which is one of the three components of the Science, Engineering, Mathematics, and Aerospace Academy (SEMAA). The AEL is a state-of-the-art, electronically enhanced, computerized classroom that puts cutting-edge technology at the fingertips of participating students. It provides a unique learning experience regarding aerospace technology that features activities equipped with aerospace hardware and software that model real-world challenges. The Aeronautics Interactive Workstation, in particular, offers a variety of activities pertaining to the history of aeronautics. When the Aeronautics Interactive Workstation was first implemented into the AEL it was designed with Macromedia Director 4 for a Mac. Today it is being converted to Macromedia DirectorMX2004 for a PC. Macromedia Director is the proven multimedia tool for building rich content and applications for CDs, DVDs, kiosks, and the Internet. It handles the widest variety of media and offers powerful features for building rich content that delivers red results, integrating interactive audio, video, bitmaps, vectors, text, fonts, and more. Macromedia Director currently offers two programmingkripting languages: Lingo, which is Director's own programmingkripting language and JavaScript. In the workstation, Lingo is used in the programming/scripting since it was the only language in use when the workstation was created. Since the workstation was created with an older version of Macromedia Director it hosted significantly different programming/scripting protocols. In order to successfully accomplish my task, the final product required correction of Xtra and programming/scripting errors. I also had to convert the Mac platform

  12. Aeronautics and Space Report of the President

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The years 1989 to 1990 activities are reported including human space flight, unmanned expendable launch vehicles, space science and applications, space communications operations, space research and technology, and aeronautics research and technology. Contributions made by the 14 participating government organizations are outline. Each organization's aeronautics and/or space activities for the year are presented. The organizations involved include: (1) NASA; (2) Dept. of Defense; (3) Dept. of Commerce; (4) Dept. of Energy; (5) Dept. of the Interior; (6) Dept. of Agriculture; (7) Federal Communications Commission; (8) Dept. of Transportation; (9) Environmental Protection Agency; (10) National Science Foundation; (11) Smithsonian Institution; (12) Dept. of State; (13) Arms Control and Disarmament; and (14) United States Information Agency.

  13. Langley aeronautics and space test highlights, 1983

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests which were performed during calendar year 1983 in Langley test facilities, a number of which are unique in the world are highlighted. Both the broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research are illustrated.

  14. Graduate engineering research participation in aeronautics

    NASA Technical Reports Server (NTRS)

    Roberts, A. S., Jr.

    1984-01-01

    Graduate student engineering research in aeronautics at Old Dominion University is surveyed. Student participation was facilitated through a NASA sponsored university program which enabled the students to complete degrees. Research summaries are provided and plans for the termination of the grant program are outlined. Project topics include: Failure modes for mechanically fastened joints in composite materials; The dynamic stability of an earth orbiting satellite deploying hinged appendages; The analysis of the Losipescu shear test for composite materials; and the effect of boundary layer structure on wing tip vortex formation and decay.

  15. Graduate engineering research participation in aeronautics

    NASA Technical Reports Server (NTRS)

    Roberts, A. S., Jr.

    1986-01-01

    The Aeronautics Graduate Research Program commenced in 1971, with the primary goal of engaging students who qualified for regular admission to the Graduate School of Engineering at Old Dominion University in a graduate engineering research and study program in collaboration with NASA Langley Research Center, Hampton, Virginia. The format and purposes of this program are discussed. Student selection and program statistics are summarized. Abstracts are presented in the folowing areas: aircraft design, aerodynamics, lift/drag characteristics; avionics; fluid mechanics; solid mechanics; instrumentation and measurement techniques; thermophysical properties experiments; large space structures; earth orbital dynamics; and environmental engineering.

  16. The Teaching of Anthropogenic Climate Change and Earth Science via Technology-Enabled Inquiry Education

    NASA Technical Reports Server (NTRS)

    Bush, Drew; Sieber, Renee; Seiler, Gale; Chandler, Mark

    2016-01-01

    A gap has existed between the tools and processes of scientists working on anthropogenic global climate change (AGCC) and the technologies and curricula available to educators teaching the subject through student inquiry. Designing realistic scientific inquiry into AGCC poses a challenge because research on it relies on complex computer models, globally distributed data sets, and complex laboratory and data collection procedures. Here we examine efforts by the scientific community and educational researchers to design new curricula and technology that close this gap and impart robust AGCC and Earth Science understanding. We find technology-based teaching shows promise in promoting robust AGCC understandings if associated curricula address mitigating factors such as time constraints in incorporating technology and the need to support teachers implementing AGCC and Earth Science inquiry. We recommend the scientific community continue to collaborate with educational researchers to focus on developing those inquiry technologies and curricula that use realistic scientific processes from AGCC research and/or the methods for determining how human society should respond to global change.

  17. The role of Earth Observation (EO) technologies in supporting implementation of the Ramsar Convention on Wetlands.

    PubMed

    MacKay, H; Finlayson, C M; Fernández-Prieto, D; Davidson, N; Pritchard, D; Rebelo, L-M

    2009-05-01

    Over one hundred wetland specialists and Earth Observation experts from around the world gathered at the European Space Agency's 'GlobWetland Symposium: Looking at wetlands from space' in Frascati, Italy, from 19 to 20 October, 2006. The aim of the Symposium was to stimulate discussion between the two communities by reviewing the latest developments in Earth Observation (EO) for the inventory, assessment and monitoring of wetlands and identify key scientific, technical and policy-relevant challenges for the future. The results provide an overview of the key areas of current research in the use of EO for mapping and managing wetlands, while also pointing out gaps that could hinder global inventory, assessment and monitoring of wetlands. This paper provides a summary of the main outputs with a focus on the role of EO technologies in supporting the implementation of the Ramsar Convention on Wetlands. The summary contains a qualitative analysis of the state of the art and considers possible directions and priorities for future research, development and application of EO-based technologies in wetland management. In this context we: 1) highlight those applications where EO technologies are ready for wider uptake by wetland managers, and provide suggestions for supporting such uptake; 2) indicate where EO technologies and applications currently in the research and development stages could potentially be useful in wetland management; and 3) provide recommendations for new research and development of EO technologies, that can be utilized to address aspects of wetland management not covered by the range of current EO applications.

  18. NASA's Aeronautics Vision

    NASA Technical Reports Server (NTRS)

    Tenney, Darrel R.

    2004-01-01

    Six long-term technology focus areas are: 1. Environmentally Friendly, Clean Burning Engines. Focus: Develop innovative technologies to enable intelligent turbine engines that significantly reduce harmful emissions while maintaining high performance and increasing reliability. 2. New Aircraft Energy Sources and Management. Focus: Discover new energy sources and intelligent management techniques directed towards zero emissions and enable new vehicle concepts for public mobility and new science missions. 3. Quiet Aircraft for Community Friendly Service. Focus: Develop and integrate noise reduction technology to enable unrestricted air transportation service to all communities. 4. Aerodynamic Performance for Fuel Efficiency. Focus: Improve aerodynamic efficiency,structures and materials technologies, and design tools and methodologies to reduce fuel burn and minimize environmental impact and enable new vehicle concepts and capabilities for public mobility and new science missions. 5. Aircraft Weight Reduction and Community Access. Focus: Develop ultralight smart materials and structures, aerodynamic concepts, and lightweight subsystems to increase vehicle efficiency, leading to high altitude long endurance vehicles, planetary aircraft, advanced vertical and short takeoff and landing vehicles and beyond. 6. Smart Aircraft and Autonomous Control. Focus: Enable aircraft to fly with reduced or no human intervention, to optimize flight over multiple regimes, and to provide maintenance on demand towards the goal of a feeling, seeing, sensing, sentient air vehicle.

  19. NASA University Research Centers Technical Advances in Aeronautics, Space Sciences and Technology, Earth Systems Sciences, Global Hydrology, and Education. Volumes 2 and 3

    NASA Technical Reports Server (NTRS)

    Coleman, Tommy L. (Editor); White, Bettie (Editor); Goodman, Steven (Editor); Sakimoto, P. (Editor); Randolph, Lynwood (Editor); Rickman, Doug (Editor)

    1998-01-01

    This volume chronicles the proceedings of the 1998 NASA University Research Centers Technical Conference (URC-TC '98), held on February 22-25, 1998, in Huntsville, Alabama. The University Research Centers (URCS) are multidisciplinary research units established by NASA at 11 Historically Black Colleges or Universities (HBCU's) and 3 Other Minority Universities (OMU's) to conduct research work in areas of interest to NASA. The URC Technical Conferences bring together the faculty members and students from the URC's with representatives from other universities, NASA, and the aerospace industry to discuss recent advances in their fields.

  20. Petroleum Science and Technology Institute with the TeXas Earth and Space Science (TXESS) Revolution

    NASA Astrophysics Data System (ADS)

    Olson, H. C.; Olson, J. E.; Bryant, S. L.; Lake, L. W.; Bommer, P.; Torres-Verdin, C.; Jablonowski, C.; Willis, M.

    2009-12-01

    The TeXas Earth and Space Science (TXESS) Revolution, a professional development program for 8th- thru 12th-grade Earth Science teachers, presented a one-week Petroleum Science and Technology Institute at The University of Texas at Austin campus. The summer program was a joint effort between the Jackson School of Geosciences and the Department of Petroleum and Geosystems Engineering. The goal of the institute was to focus on the STEM components involved in the petroleum industry and to introduce teachers to the larger energy resources theme. The institute kicked off with a welcoming event and tour of a green, energy-efficient home (LEED Platinum certified) owned by one of the petroleum engineering faculty. Tours of the home included an introduction to rainwater harvesting, solar energy, sustainable building materials and other topics on energy efficiency. Classroom topics included drilling technology (including a simulator lab and an overview of the history of the technology), energy use and petroleum geology, well-logging technology and interpretation, reservoir engineering and volumetrics (including numerous labs combining chemistry and physics), risk assessment and economics, carbon capture and storage (CO2 sequestration technology) and hydraulic fracturing. A mid-week field trip included visiting the Ocean Star offshore platform in Galveston, the Weiss Energy Hall at the Houston Museum of Science and Schlumberger (to view 3-D visualization technology) in Houston. Teachers remarked that they really appreciated the focused nature of the institute and especially found the increased use of mathematics both a tool for professional growth, as well as a challenge for them to use more math in their science classes. STEM integration was an important feature of the summer institute, and teachers found the integration of science (earth sciences, geophysics), technology, engineering (petroleum, chemical and reservoir) and mathematics particularly valuable. Pre

  1. Advanced Concepts, Technologies and Flight Experiments for NASA's Earth Science Enterprise

    NASA Technical Reports Server (NTRS)

    Meredith, Barry D.

    2000-01-01

    Over the last 25 years, NASA Langley Research Center (LaRC) has established a tradition of excellence in scientific research and leading-edge system developments, which have contributed to improved scientific understanding of our Earth system. Specifically, LaRC advances knowledge of atmospheric processes to enable proactive climate prediction and, in that role, develops first-of-a-kind atmospheric sensing capabilities that permit a variety of new measurements to be made within a constrained enterprise budget. These advances are enabled by the timely development and infusion of new, state-of-the-art (SOA), active and passive instrument and sensor technologies. In addition, LaRC's center-of-excellence in structures and materials is being applied to the technological challenges of reducing measurement system size, mass, and cost through the development and use of space-durable materials; lightweight, multi-functional structures; and large deployable/inflatable structures. NASA Langley is engaged in advancing these technologies across the full range of readiness levels from concept, to components, to prototypes, to flight experiments, and on to actual science mission infusion. The purpose of this paper is to describe current activities and capabilities, recent achievements, and future plans of the integrated science, engineering, and technology team at Langley Research Center who are working to enable the future of NASA's Earth Science Enterprise.

  2. To a Question About Orientation of Search Technological Disasters at Global Earth Observation

    NASA Astrophysics Data System (ADS)

    Prisniakov, V.; Prisniakova, L.

    Technological activity of the human being unreasonable consumption to the detriment of the nature have brought mankind to a point of bifurcation from which any evolution is possible even to become extinct as biological species in connection with obvious loss of stability of biosphere and with an opportunity of its transition in a new condition which can appear unsuitable for a life Global Earth Observation supposes passive recording a condition of the Earth s atmosphere ocean and land surface with a view to improving the well-being of mankind Active supervision are demanding the scientific substantiated knowledge of dangerous places on the Earth not only from point of view technological of pollution but also in view of the humanistic relation of people living in these places to the Nature The mathematical model which allows predict evolution of universum with consideration of intellectual world and an spiritual world of mankind is offered in the report It threeunity has something in common with unity of three worlds -- physical mental and Plato s world of ideas which has presented Roger Penrose Developing ideas of Roger Penrose E Popper I Ostrezov we have constructed model of the relation between the parameters describing these worlds - rational R-- the empirical information on the physical world irrational I - the information received by the intellectual world from input medium - transcendental mental spiritual T including creativity

  3. Information Technology Infusion Case Study: Integrating Google Earth(Trademark) into the A-Train Data Depot

    NASA Technical Reports Server (NTRS)

    Smith, Peter; Kempler, Steven; Leptoukh, Gregory; Chen, Aijun

    2010-01-01

    This poster paper represents the NASA funded project that was to employ the latest three dimensional visualization technology to explore and provide direct data access to heterogeneous A-Train datasets. Google Earth (tm) provides foundation for organizing, visualizing, publishing and synergizing Earth science data .

  4. 1978 Aeronautics and Space Highlights

    NASA Technical Reports Server (NTRS)

    1978-01-01

    These highlights include the space shuttle, new astronauts, Pioneers to Venus, Voyagers to Jupiter and Saturn, High Energy Astronomy Observatories Space Telescope, Landsat/Seasat, space applications, wind energy research, and aeronautics.

  5. [Burns in an aeronautic environment].

    PubMed

    Rigotti, G

    1979-10-27

    Following an examination of the aetiology of burns in aeronautic environments, the physiopathology, classification and general and local treatment of the burn case is discussed. Special mention is then made of aircraft as an extremely useful means of transport.

  6. Technology requirements for future Earth-to-geosynchronous orbit transportation systems. Volume 2: Technical results

    NASA Technical Reports Server (NTRS)

    Caluori, V. A.

    1980-01-01

    Technologies either critical to performance of offering cost advantages compared to the investment required to bring them to usable confidence levels are identified. A total transportation system is used as an evaluation yardstick. Vehicles included in the system are a single stage to orbit launch vehicle used in a priority cargo role, a matching orbit transfer vehicle, a heavy lift launch vehicle with a low Earth orbit delivery capability of 226, 575 kg, and a matching solar electric cargo orbit transfer vehicle. The system and its reference technology level are consistent with an initial operational capability in 1990. The 15 year mission scenario is based on early space industrialization leading to the deployment of large systems such as power satellites. Life cycle cost benefits in discounted and undiscounted dollars for each vehicle, technology advancement, and the integrated transportation system are calculated. A preliminary functional analysis was made of the operational support requirements for ground based and space based chemical propulsion orbit transfer vehicles.

  7. NASA's Role in Aeronautics: A Workshop. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The state of the U.S. aeronautic industry and progressive changes in national priorities as reflected in federal unified budget outlays are reviewed as well as the contribution of NACA and the character and substance of U.S. aeronautical research under NASA. Eight possible roles for the future defined by NASA are examined and the extent to which the agency should carry out these activities is considered. The roles include: (1) national facilities expertise; (2) flight sciences research; (3) generic technology evolution; (4) vehicle class evolution; (5) technology demonstration; (6) prototype development; (7) technology validation; and (8) operations feasibility; How NASA's roles varies in the areas of military aviation, general aviation, transport aircraft aeronautics, rotorcraft aeronautics, engineering education, information dissemination, and cooperation with other organizations and agencies is discussed with regard to research in aerodynamics; structures and materials; propulsion; electronics and avionics; vehicle operations; and human engineering.

  8. Air Force Academy Aeronautics Digest.

    DTIC Science & Technology

    1984-03-01

    map the external flow field on the upper surface of the wing and fuselage, *Major, USAF, Associate Professor of Aeronautics, DFAN 2 7...research effort at the USAF Academy to establish the capabilities and limitations of the seven-hole pressure probe in mapping unknown flow fields. The ... map their locations. III. Apparatus A. Wind Tunnel The Subsonic Wind Tunnel in the Aeronautics Laboratory of

  9. Aeronautical engineering: A continuing bibliography with indexes (supplement 294)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This issue of Aeronautical Engineering - A Continuing Bibliography with Indexes lists 590 reports, journal articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspect of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. The bibliographic series is compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). Seven indexes are included: subject, personal author, corporate source, foreign technology, contract number, report number, and accession number.

  10. Inquiry-Based Science and Technology Enrichment Program: Green Earth Enhanced with Inquiry and Technology

    ERIC Educational Resources Information Center

    Kim, Hanna

    2011-01-01

    This study investigated the effectiveness of a guided inquiry integrated with technology, in terms of female middle-school students' attitudes toward science/scientists and content knowledge regarding selective science concepts (e.g., Greenhouse Effect, Air/Water Quality, Alternative Energy, and Human Health). Thirty-five female students who were…

  11. Enabling Spacecraft Formation Flying in Any Earth Orbit Through Spaceborne GPS and Enhanced Autonomy Technologies

    NASA Technical Reports Server (NTRS)

    Bauer, F. H.; Bristow, J. O.; Carpenter, J. R.; Garrison, J. L.; Hartman, K. R.; Lee, T.; Long, A. C.; Kelbel, D.; Lu, V.; How, J. P.; Busse, F.

    2000-01-01

    Formation flying is quickly revolutionizing the way the space community conducts autonomous science missions around the Earth and in space. This technological revolution will provide new, innovative ways for this community to gather scientific information, share this information between space vehicles and the ground, and expedite the human exploration of space. Once fully matured, this technology will result in swarms of space vehicles flying as a virtual platform and gathering significantly more and better science data than is possible today. Formation flying will be enabled through the development and deployment of spaceborne differential Global Positioning System (GPS) technology and through innovative spacecraft autonomy techniques, This paper provides an overview of the current status of NASA/DoD/Industry/University partnership to bring formation flying technology to the forefront as quickly as possible, the hurdles that need to be overcome to achieve the formation flying vision, and the team's approach to transfer this technology to space. It will also describe some of the formation flying testbeds, such as Orion, that are being developed to demonstrate and validate these innovative GPS sensing and formation control technologies.

  12. Advancing Aeronautics: A Decision Framework for Selecting Research Agendas

    NASA Technical Reports Server (NTRS)

    Anton, Philip S.; Ecola, Liisa; Kallimani, James G.; Light, Thomas; Ohlandt, Chad J. R.; Osburg, Jan; Raman, Raj; Grammich, Clifford A.

    2011-01-01

    Publicly funded research has long played a role in the development of aeronautics, ranging from foundational research on airfoils to development of the air-traffic control system. Yet more than a century after the research and development of successful controlled, sustained, heavier-than-air flight vehicles, there are questions over the future of aeronautics research. The field of aeronautics is relatively mature, technological developments within it have become more evolutionary, and funding decisions are sometimes motivated by the continued pursuit of these evolutionary research tracks rather than by larger factors. These developments raise questions over whether public funding of aeronautics research continues to be appropriate or necessary and at what levels. Tightened federal budgets and increasing calls to address other public demands make these questions sharper still. To help it address the questions of appropriate directions for publicly funded aeronautics research, the National Aeronautics and Space Administration's (NASA's) Aeronautics Research Mission Directorate (ARMD) asked the RAND Corporation to assess the elements required to develop a strategic view of aeronautics research opportunities; identify candidate aeronautic grand challenges, paradigms, and concepts; outline a framework for evaluating them; and exercise the framework as an example of how to use it. Accordingly, this research seeks to address these questions: What aeronautics research should be supported by the U.S. government? What compelling and desirable benefits drive government-supported research? How should the government--especially NASA--make decisions about which research to support? Advancing aeronautics involves broad policy and decisionmaking challenges. Decisions involve tradeoffs among competing perspectives, uncertainties, and informed judgment.

  13. Ensuring US National Aeronautics Test Capabilities

    NASA Technical Reports Server (NTRS)

    Marshall, Timothy J.

    2010-01-01

    U.S. leadership in aeronautics depends on ready access to technologically advanced, efficient, and affordable aeronautics test capabilities. These systems include major wind tunnels and propulsion test facilities and flight test capabilities. The federal government owns the majority of the major aeronautics test capabilities in the United States, primarily through the National Aeronautics and Space Administration (NASA) and the Department of Defense (DoD). However, changes in the Aerospace landscape, primarily the decrease in demand for testing over the last 20 years required an overarching strategy for management of these national assets. Therefore, NASA established the Aeronautics Test Program (ATP) as a two-pronged strategic initiative to: (1) retain and invest in NASA aeronautics test capabilities considered strategically important to the agency and the nation, and (2) establish a strong, high level partnership with the DoD. Test facility utilization is a critical factor for ATP because it relies on user occupancy fees to recover a substantial part of the operations costs for its facilities. Decreasing utilization is an indicator of excess capacity and in some cases low-risk redundancy (i.e., several facilities with basically the same capability and overall low utilization). However, low utilization does not necessarily translate to lack of strategic importance. Some facilities with relatively low utilization are nonetheless vitally important because of the unique nature of the capability and the foreseeable aeronautics testing needs. Unfortunately, since its inception, the customer base for ATP has continued to shrink. Utilization of ATP wind tunnels has declined by more than 50% from the FY 2006 levels. This significant decrease in customer usage is attributable to several factors, including the overall decline in new programs and projects in the aerospace sector; the impact of computational fluid dynamics (CFD) on the design, development, and research

  14. Technology and human purpose: the problem of solids transport on the Earth's surface

    NASA Astrophysics Data System (ADS)

    Haff, P. K.

    2012-11-01

    Displacement of mass of limited deformability ("solids") on the Earth's surface is opposed by friction and (the analog of) form resistance - impediments relaxed by rotational motion, self-powering of mass units, and transport infrastructure. These features of solids transport first evolved in the biosphere prior to the emergence of technology, allowing slope-independent, diffusion-like motion of discrete objects as massive as several tons, as illustrated by animal foraging and movement along game trails. However, high-energy-consumption technology powered by fossil fuels required a mechanism that could support fast advective transport of solids, i.e., long-distance, high-volume, high-speed, unidirectional, slope-independent transport across the land surface of materials like coal, containerized fluids, minerals, and economic goods. Pre-technology nature was able to sustain regional- and global-scale advection only in the limited form of piggybacking on geophysical flows of water (river sediment) and air (dust). The appearance of a mechanism for sustained advection of solids independent of fluid flows and gravity appeared only upon the emergence of human purpose. Purpose enables solids advection by, in effect, simulating a continuous potential gradient, otherwise lacking, between discrete and widely separated fossil-fuel energy sources and sinks. Invoking purpose as a mechanism in solids advection is an example of the need to import anthropic principles and concepts into the language and methodology of modern Earth system dynamics. As part of the emergence of a generalized solids advection mechanism, several additional transport requirements necessary to the function of modern large-scale technological systems were also satisfied. These include spatially accurate delivery of advected payload, targetability to essentially arbitrarily located destinations (such as cities), and independence of structure of advected payload from transport mechanism. The latter property

  15. Technology and human purpose: the problem of solids transport on the earth's surface

    NASA Astrophysics Data System (ADS)

    Haff, P. K.

    2012-05-01

    Displacement of mass of limited deformability ("solids") on the Earth's surface is opposed by friction and (the analog of) form resistance - impediments relaxed by rotational motion, self-powering of mass units, and transport infrastructure. These features of solids transport first evolved in the biosphere prior to the emergence of technology, allowing slope-independent, diffusion-like motion of discrete objects as massive as several tons, as illustrated by animal foraging and movement along game trails. However, high-energy-consumption technology powered by fossil fuels required a mechanism that could support advective transport of solids, i.e., long-distance, high-volume, high-speed, unidirectional, slope independent transport across the land surface of materials like coal, containerized fluids, and minerals. Pre-technology nature was able to sustain large-scale, long-distance solids advection only in the limited form of piggybacking on geophysical flows of water (river sediment) and air (dust). The appearance of a generalized mechanism for advection of solids independent of fluid flows and gravity appeared only upon the emergence of human purpose. Purpose enables solids advection by, in effect, enabling a simulated continuous potential gradient, otherwise lacking, between discrete and widely separated fossil-fuel energy sources and sinks. Invoking purpose as a mechanism in solids advection is an example of the need to import anthropic principles and concepts into the language and methodology of modern Earth system dynamics. As part of the emergence of a generalized solids advection mechanism, several additional transport requirements necessary to the function of modern large-scale technological systems were also satisfied. These include spatially accurate delivery of advected payload, targetability to essentially arbitrarily located destinations (such as cities), and independence of structure of advected payload from transport mechanism. The latter property

  16. Globalization and Mobilization of Earth Science Education with GeoBrain Geospatial Web Service Technology

    NASA Astrophysics Data System (ADS)

    Deng, M.; di, L.

    2005-12-01

    The needs for Earth science education to prepare students as globally-trained geoscience workforce increase tremendously with globalization of the economy. However, current academic programs often have difficulties in providing students world-view training or experiences with global context due to lack of resources and suitable teaching technology. This paper presents a NASA funded project with insights and solutions to this problem. The project aims to establish a geospatial data-rich learning and research environment that enable the students, faculty and researchers from institutes all over the world easily accessing, analyzing and modeling with the huge amount of NASA EOS data just like they possess those vast resources locally at their desktops. With the environment, classroom demonstration and training for students to deal with global climate and environment issues for any part of the world are possible in any classroom with Internet connection. Globalization and mobilization of Earth science education can be truly realized through the environment. This project, named as NASA EOS Higher Education Alliance: Mobilization of NASA EOS Data and Information through Web Services and Knowledge Management Technologies for Higher Education Teaching and Research, is built on profound technology and infrastructure foundations including web service technology, NASA EOS data resources, and open interoperability standards. An open, distributed, standard compliant, interoperable web-based system, called GeoBrain, is being developed by this project to provide a data-rich on-line learning and research environment. The system allows users to dynamically and collaboratively develop interoperable, web-executable geospatial process and analysis modules and models, and run them on-line against any part of the peta-byte archives for getting back the customized information products rather than raw data. The system makes a data-rich globally-capable Earth science learning and research

  17. Earth resources technology system standalone software package: Description and user's guide

    NASA Technical Reports Server (NTRS)

    Chu, W. W.

    1975-01-01

    A user's guide and program description for the ERTS-B Stand-Alone Software Package is presented. This package was developed to compute the Keplerian elements at the descending node, the Brouwer mean elements at the node, the averaged Brouwer Mean Elements, and other orbital parameters for the orbits of the Earth Resources Technology Satellite (ERTS). The typical input for the program is an ephemeris file which resulted from a definitive orbit generated over a two day arc using the Cowell option in the Definitive Orbit Determination System (DODS) or the Goddard Trajectory Determination System (GTDS).

  18. Technology requirements for future Earth-to-geosynchronous orbit transportation systems. Volume 3: Appendices

    NASA Technical Reports Server (NTRS)

    Caluori, V. A.; Conrad, R. T.; Jenkins, J. C.

    1980-01-01

    Technological requirements and forecasts of rocket engine parameters and launch vehicles for future Earth to geosynchronous orbit transportation systems are presented. The parametric performance, weight, and envelope data for the LOX/CH4, fuel cooled, staged combustion cycle and the hydrogen cooled, expander bleed cycle engine concepts are discussed. The costing methodology and ground rules used to develop the engine study are summarized. The weight estimating methodology for winged launched vehicles is described and summary data, used to evaluate and compare weight data for dedicated and integrated O2/H2 subsystems for the SSTO, HLLV and POTV are presented. Detail weights, comparisons, and weight scaling equations are provided.

  19. High Pressure Earth Storable Rocket Technology Program-Hipes Options 1/2 Report

    NASA Technical Reports Server (NTRS)

    Chazen, M. L.; Sicher, D.; Calvignac, J.; Ono, D.

    1999-01-01

    Under the High Pressure Earth Storable Rocket Technology (HIPES) Program, TRW successfully completed testing of two 100 lbf thrust class rhenium chambers using N204-MMH. The first chamber was successfully fired for 4789 seconds of operating time with a maximum duration of 700 seconds. This chamber had been previously fired for 5230 seconds with N2O4-N2H4. The second chamber was successfully fired for 8085 seconds with a maximum firing duration of 1200 seconds. The Isp (specific impulse) for both chambers ranged from 323 lbf-sec/lbm to 330 lbf-sec/lbm.

  20. Cryogenic Propellant Storage and Transfer Technology Demonstration: Advancing Technologies for Future Mission Architectures Beyond Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Chojnacki, Kent T.; Crane, Deborah J.; Motil, Susan M.; Ginty, Carol A.; Tofil, Todd A.

    2014-01-01

    As part of U.S. National Space Policy, NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. NASA is laying the groundwork to enable humans to safely reach multiple potential destinations, including the Moon, asteroids, Lagrange points, and Mars and its environs. In support of this, NASA is embarking on the Technology Demonstration Mission Cryogenic Propellant Storage and Transfer (TDM CPST) Project to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large cryogenic propulsion stages and propellant depots. The TDM CPST will provide an on-orbit demonstration of the capability to store, transfer, and measure cryogenic propellants for a duration that enables long term human space exploration missions beyond low Earth orbit. This paper will present a summary of the cryogenic fluid management technology maturation effort, infusion of those technologies into flight hardware development, and a summary of the CPST preliminary design.

  1. Prospective new transportation application initiatives in NASA's earth-to-orbit propulsion technology program

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.

    1992-01-01

    NASA's Earth-to-Orbit (ETO) Propulsion Technology Program, a multi-year/multi-task focused technology effort is, today, highly focused on conventional high-thrust cryogenic liquid chemical rocket engines and their envisioned future technology needs. But as highlighted in the U.S. National Ten-Year Space Launch Technology Plan, a set of less-conventional propulsion subjects, ones which offer significant promise for both, improving the state of the art and opening up new propulsion-capability possibilities, is now directed to the space propulsion planning community's attention. In conducting its forward-planning activities, it is highly appropriate that the ETO Program (and other programs as well) carefully consider integrating these "new initiative" subjects into the taskwork of future years. After an introductory consideration of the National Plan's propulsion-related directives, followed by a brief background overview of the ETO Program, the following specific new-initiative candidates are discussed from the standpoint of technology-program planning: operationally efficient propulsion systems; high-thrust hybrid rocket propulsion; low-cost, low-pressure expendable propulsion subsystems; advanced cryogenic in-space propulsion systems; integrated modular engine (IME) configured propulsion systems, and combined-cycle airbreathing/rocket propulsion systems.

  2. ECHO - Leveraging Web Service Technologies to support a net-centric Earth Science Enterprise

    NASA Astrophysics Data System (ADS)

    Burnett, M. T.; Wichmann, K.

    2005-12-01

    Today's world of Earth Science has several challenges beyond that of just increasing our understanding of Planet Earth. Fundamentally, innovative research is being conducted in a widely distributed and dynamic environment, producing an ever growing set of resources (data, services and clients). Beyond that, the need and value of integrating or interoperating these resources is growing as the resource providers are increasingly diverse. In order to support the emerging 21st century science model, a more mature, fluid and extensible cyber-infrastructure must emerge. A well coordinated use of web service technologies (XML, WSDL, SOAP, UDDI) can play a foundational part of the fabric of that enabling fabric. ECHO, a solution developed by NASA, provides a set of interoperable registries that supports this enterprise fabric. ECHO is comprised of a set of infrastructure services that allow the publication, discovery, understanding and access to earth science resources, all based on a web services model. ECHO services support both data and service registries. These registries are interoperable and based on industry and community standards.

  3. SciDAC's Earth System Grid Center for Enabling Technologies Semiannual Progress Report October 1, 2010 through March 31, 2011

    SciTech Connect

    Williams, Dean N.

    2011-04-02

    This report summarizes work carried out by the Earth System Grid Center for Enabling Technologies (ESG-CET) from October 1, 2010 through March 31, 2011. It discusses ESG-CET highlights for the reporting period, overall progress, period goals, and collaborations, and lists papers and presentations. To learn more about our project and to find previous reports, please visit the ESG-CET Web sites: http://esg-pcmdi.llnl.gov/ and/or https://wiki.ucar.edu/display/esgcet/Home. This report will be forwarded to managers in the Department of Energy (DOE) Scientific Discovery through Advanced Computing (SciDAC) program and the Office of Biological and Environmental Research (OBER), as well as national and international collaborators and stakeholders (e.g., those involved in the Coupled Model Intercomparison Project, phase 5 (CMIP5) for the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5); the Community Earth System Model (CESM); the Climate Science Computational End Station (CCES); SciDAC II: A Scalable and Extensible Earth System Model for Climate Change Science; the North American Regional Climate Change Assessment Program (NARCCAP); the Atmospheric Radiation Measurement (ARM) program; the National Aeronautics and Space Administration (NASA), the National Oceanic and Atmospheric Administration (NOAA)), and also to researchers working on a variety of other climate model and observation evaluation activities. The ESG-CET executive committee consists of Dean N. Williams, Lawrence Livermore National Laboratory (LLNL); Ian Foster, Argonne National Laboratory (ANL); and Don Middleton, National Center for Atmospheric Research (NCAR). The ESG-CET team is a group of researchers and scientists with diverse domain knowledge, whose home institutions include eight laboratories and two universities: ANL, Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), LLNL, NASA/Jet Propulsion Laboratory (JPL), NCAR, Oak Ridge National

  4. Compressibility Effects in Aeronautical Engineering

    NASA Technical Reports Server (NTRS)

    Stack, John

    1941-01-01

    Compressible-flow research, while a relatively new field in aeronautics, is very old, dating back almost to the development of the first firearm. Over the last hundred years, researches have been conducted in the ballistics field, but these results have been of practically no use in aeronautical engineering because the phenomena that have been studied have been the more or less steady supersonic condition of flow. Some work that has been done in connection with steam turbines, particularly nozzle studies, has been of value, In general, however, understanding of compressible-flow phenomena has been very incomplete and permitted no real basis for the solution of aeronautical engineering problems in which.the flow is likely to be unsteady because regions of both subsonic and supersonic speeds may occur. In the early phases of the development of the airplane, speeds were so low that the effects of compressibility could be justifiably ignored. During the last war and immediately after, however, propellers exhibited losses in efficiency as the tip speeds approached the speed of sound, and the first experiments of an aeronautical nature were therefore conducted with propellers. Results of these experiments indicated serious losses of efficiency, but aeronautical engineers were not seriously concerned at the time became it was generally possible. to design propellers with quite low tip. speeds. With the development of new engines having increased power and rotational speeds, however, the problems became of increasing importance.

  5. How to rediscover Nature in the Digital Era: Earth sciences, Art and Technology

    NASA Astrophysics Data System (ADS)

    Lanza, Tiziana

    2016-04-01

    How much time spend in Nature the average man? And how much time men spend in the virtual world? Can we consider this one of the main issues when mourning the growing devastating input coming from human activities on the environment? This preliminary work on the theme collect some ideas on the issue and prospect some solution to the light of the work already done in the past. Starting from data collected from the web describing the impact of technology on everyday life, and passing through some studies concerning the impact of technology on the human brain, a new way of conceiving Earth education takes inspiration from a cross cutting of ideas and results coming from different disciplines describing the contemporary world.

  6. NSSDC Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications, volume 2

    NASA Technical Reports Server (NTRS)

    Kobler, Ben (Editor); Hariharan, P. C. (Editor); Blasso, L. G. (Editor)

    1992-01-01

    This report contains copies of nearly all of the technical papers and viewgraphs presented at the NSSDC Conference on Mass Storage Systems and Technologies for Space and Earth Science Application. This conference served as a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include the following: magnetic disk and tape technologies; optical disk and tape; software storage and file management systems; and experiences with the use of a large, distributed storage system. The technical presentations describe, among other things, integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990's.

  7. The earth-coupled heat pump: Utilizing innovative technology in single family rehabilitation strategies

    SciTech Connect

    Not Available

    1989-11-01

    The study examines the feasibility of incorporating the use of earth-coupled heat pump technology in single-family housing rehabilitation projects, based on energy conservation attributes and financial considerations. Following evaluation of a theoretical model which indicated that installations of the heat pumps were feasible, the heat pumps were tested under actual conditions in five single family housing units which were part of the Urban Homesteading Program, and were matched with comparable units which did not receive special treatment. Energy consumption information was collected for all units for twelve months. Variables were identified, and the data was analyzed for individual housing units and compared with the results predicted by the theoretical model to determine the practicality of incorporating such technology in large scale rehabilitation projects. 14 refs., 14 figs., 3 tabs.

  8. The NASA-OAST earth-to-orbit propulsion technology program - The action plan

    NASA Technical Reports Server (NTRS)

    Escher, W. J. D.; Moses, J. L.; Liang, A. D.; Stephenson, F. W.

    1992-01-01

    The paper discusses the primary objective of the NASA-OAST earth-to-orbit (ETO) propulsion technology program, namely, to completely overhaul the nation's liquid rocket design and analysis capabilities which were found to be severely limited when used for the design and development of the Space Shuttle Main Engine (SSME). Meeting this objective is to provide a much sounder, very comprehensive technology base that will enable the cost-effective low-risk development, acquisition, and operation of high-performance, expendable, or reusable ETO propulsion systems. This in turn will enable the future development of space transportation system launch vehicles with greatly reduced life-cycle costs. Work is carried out in three major areas: combustion devices, turbomachinery, and controls and health management.

  9. NSSDC Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications, volume 3

    NASA Technical Reports Server (NTRS)

    Kobler, Ben (Editor); Hariharan, P. C. (Editor); Blasso, L. G. (Editor)

    1992-01-01

    This report contains copies of nearly all of the technical papers and viewgraphs presented at the National Space Science Data Center (NSSDC) Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications. This conference served as a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include magnetic disk and tape technologies, optical disk and tape, software storage and file management systems, and experiences with the use of a large, distributed storage system. The technical presentations describe, among other things, integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990s.

  10. NASA Ames Sustainability Initiatives: Aeronautics, Space Exploration, and Sustainable Futures

    NASA Technical Reports Server (NTRS)

    Grymes, Rosalind A.

    2015-01-01

    In support of the mission-specific challenges of aeronautics and space exploration, NASA Ames produces a wealth of research and technology advancements with significant relevance to larger issues of planetary sustainability. NASA research on NexGen airspace solutions and its development of autonomous and intelligent technologies will revolutionize both the nation's air transporation systems and have applicability to the low altitude flight economy and to both air and ground transporation, more generally. NASA's understanding of the Earth as a complex of integrated systems contributes to humanity's perception of the sustainability of our home planet. Research at NASA Ames on closed environment life support systems produces directly applicable lessons on energy, water, and resource management in ground-based infrastructure. Moreover, every NASA campus is a 'city'; including an urbanscape and a workplace including scientists, human relations specialists, plumbers, engineers, facility managers, construction trades, transportation managers, software developers, leaders, financial planners, technologists, electricians, students, accountants, and even lawyers. NASA is applying the lessons of our mission-related activities to our urbanscapes and infrastructure, and also anticipates a leadership role in developing future environments for living and working in space.

  11. Technology Development to Support Human Health and Performance in Exploration Beyond Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Kundrot, C.E.; Steinberg, S. L.; Charles, J. B.

    2011-01-01

    In the course of defining the level of risks and mitigating the risks for exploration missions beyond low Earth orbit, NASA s Human Research Program (HRP) has identified the need for technology development in several areas. Long duration missions increase the risk of serious medical conditions due to limited options for return to Earth; no resupply; highly limited mass, power, volume; and communication delays. New space flight compatible medical capabilities required include: diagnostic imaging, oxygen concentrator, ventilator, laboratory analysis (saliva, blood, urine), kidney stone diagnosis & treatment, IV solution preparation and delivery. Maintenance of behavioral health in such an isolated, confined and extreme environment requires new sensory stimulation (e.g., virtual reality) technology. Unobtrusive monitoring of behavioral health and treatment methods are also required. Prolonged exposure to weightlessness deconditions bone, muscle, and the cardiovascular system. Novel exercise equipment or artificial gravity are necessary to prevent deconditioning. Monitoring of the degree of deconditioning is required to ensure that countermeasures are effective. New technologies are required in all the habitable volumes (e.g., suit, capsule, habitat, exploration vehicle, lander) to provide an adequate food system, and to meet human environmental standards for air, water, and surface contamination. Communication delays require the crew to be more autonomous. Onboard decision support tools that assist crew with real-time detection and diagnosis of vehicle and habitat operational anomalies will enable greater autonomy. Multi-use shield systems are required to provide shielding from solar particle events. The HRP is pursuing the development of these technologies in laboratories, flight analog environments and the ISS so that the human health and performance risks will be acceptable with the available resources.

  12. Combining Google Earth and GIS mapping technologies in a dengue surveillance system for developing countries

    PubMed Central

    Chang, Aileen Y; Parrales, Maria E; Jimenez, Javier; Sobieszczyk, Magdalena E; Hammer, Scott M; Copenhaver, David J; Kulkarni, Rajan P

    2009-01-01

    Background Dengue fever is a mosquito-borne illness that places significant burden on tropical developing countries with unplanned urbanization. A surveillance system using Google Earth and GIS mapping technologies was developed in Nicaragua as a management tool. Methods and Results Satellite imagery of the town of Bluefields, Nicaragua captured from Google Earth was used to create a base-map in ArcGIS 9. Indices of larval infestation, locations of tire dumps, cemeteries, large areas of standing water, etc. that may act as larval development sites, and locations of the homes of dengue cases collected during routine epidemiologic surveying were overlaid onto this map. Visual imagery of the location of dengue cases, larval infestation, and locations of potential larval development sites were used by dengue control specialists to prioritize specific neighborhoods for targeted control interventions. Conclusion This dengue surveillance program allows public health workers in resource-limited settings to accurately identify areas with high indices of mosquito infestation and interpret the spatial relationship of these areas with potential larval development sites such as garbage piles and large pools of standing water. As a result, it is possible to prioritize control strategies and to target interventions to highest risk areas in order to eliminate the likely origin of the mosquito vector. This program is well-suited for resource-limited settings since it utilizes readily available technologies that do not rely on Internet access for daily use and can easily be implemented in many developing countries for very little cost. PMID:19627614

  13. Modeling and Analysis Compute Environments, Utilizing Virtualization Technology in the Climate and Earth Systems Science domain

    NASA Astrophysics Data System (ADS)

    Michaelis, A.; Nemani, R. R.; Wang, W.; Votava, P.; Hashimoto, H.

    2010-12-01

    Given the increasing complexity of climate modeling and analysis tools, it is often difficult and expensive to build or recreate an exact replica of the software compute environment used in past experiments. With the recent development of new technologies for hardware virtualization, an opportunity exists to create full modeling, analysis and compute environments that are “archiveable”, transferable and may be easily shared amongst a scientific community or presented to a bureaucratic body if the need arises. By encapsulating and entire modeling and analysis environment in a virtual machine image, others may quickly gain access to the fully built system used in past experiments, potentially easing the task and reducing the costs of reproducing and verify past results produced by other researchers. Moreover, these virtual machine images may be used as a pedagogical tool for others that are interested in performing an academic exercise but don't yet possess the broad expertise required. We built two virtual machine images, one with the Community Earth System Model (CESM) and one with Weather Research Forecast Model (WRF), then ran several small experiments to assess the feasibility, performance overheads costs, reusability, and transferability. We present a list of the pros and cons as well as lessoned learned from utilizing virtualization technology in the climate and earth systems modeling domain.

  14. ACTS Ka-Band Earth Stations: Technology, Performance, and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Struharik, Steven J.; Diamond, John J.; Stewart, David

    2000-01-01

    The Advanced Communications Technology Satellite (ACTS) Project invested heavily in prototype Ka-band satellite ground terminals to conduct an experiments program with the ACTS satellite. The ACTS experiment's program proposed to validate Ka-band satellite and ground station technology. demonstrate future telecommunication services. demonstrate commercial viability and market acceptability of these new services, evaluate system networking and processing technology, and characterize Ka-band propagation effects, including development of techniques to mitigate signal fading. This paper will present a summary of the fixed ground terminals developed by the NASA Glenn Research Center and its industry partners, emphasizing the technology and performance of the terminals (Part 1) and the lessons learned throughout their six year operation including the inclined orbit phase of operations (Full Report). An overview of the Ka-band technology and components developed for the ACTS ground stations is presented. Next. the performance of the ground station technology and its evolution during the ACTS campaign are discussed to illustrate the technical tradeoffs made during the program and highlight technical advances by industry to support the ACTS experiments program and terminal operations. Finally. lessons learned during development and operation of the user terminals are discussed for consideration of commercial adoption into future Ka-band systems. The fixed ground stations used for experiments by government, academic, and commercial entities used reflector based offset-fed antenna systems ranging in size from 0.35m to 3.4m antenna diameter. Gateway earth stations included two systems, referred to as the NASA Ground Station (NGS) and the Link Evaluation Terminal (LET). The NGS provides tracking, telemetry, and control (TT&C) and Time Division Multiple Access (TDMA) network control functions. The LET supports technology verification and high data rate experiments. The ground

  15. Smart Aeronautical Chart Management System Design

    NASA Astrophysics Data System (ADS)

    Pakdil, M. E.; Celik, R. N.; Kaya, Ö.; Konak, Y. C.; Guney, C.

    2015-10-01

    Civil aviation is developing rapidly, and the number of domestic and international operations is increasing exponentially every year than the previous one. Airline companies with increased air traffic and the number of passengers increase the demand of new aircrafts. An aircraft needs not only fuel but also pilot and aeronautical information (charts, digital navigation information, flight plan, and etc.) to perform flight operation. One of the most important components in aeronautical information is the terminal chart. Authorized institution in every state is responsible to publish their terminal charts for certain periods. Although these charts are produced in accordance with ICAO's Annex 4 and Annex 15, cartographic representation and page layout differs in each state's publication. This situation makes difficult to read them by pilots. In this paper, standard instrument departure (SID) charts are analysed to produce by use of cutting-edge and competitive technologies instead of classical computer-aided drawing and vector based graphic applications that are currently used by main chart producers. The goal is to design efficient and commercial chart management system that is able to produce aeronautical charts with same cartographic representation for all states.

  16. National Advisory Committee for Aeronautics

    NASA Technical Reports Server (NTRS)

    1938-01-01

    NASA was created from the National Advisory Committee on Aeronautics in 1958. This is a photo of the members of the advisory board of NACA in 1938. NACA was the governmental organization charged with the supervision and conduct of scientific laboratory research in aeronautics. Its laboratories located at Langley Field, Virginia, provide new knowledge underlying the continuous improvement in the performance, efficiency, and safety of American aircraft. At this meeting Dr. Joesph S. Ames, President Emeritus of John Hopkins University, was re-elected Chairman, and Dr. Vannevar Bush, President- elect of the Carnegie Institution of Washington, was elected Vice Chairman. Dr. Ames' re-election as chairman was a recognition of his outstanding contributions to the science of aeronautics. He has been the leading scientific member of the Committee for over twenty-three years and chairman for eleven years. Under his visionary leadership the great laboratories of the N.A.C.A. at Langley Field have been developed. Left to Right: Hon. C. M. Hester, Administrator, Civil Aeronautics Authority Captain S. M. Kraus, U.S.N. Brig. General A. W. Robins, Chief, Materiel Division, Army Air Corps. Dr. L.J. Biggs, Director, National Bureau of Standards Dr. E.P. Warner Dr. Orville Wright Dr. Joesph S. Ames, Chairman Dr. C.J. Abbot, Secretary, Smithsonian Institution J.F. Victory, Secretary Rear Adm. A.B. Cook, U.S.N., Chief, Bureau Aeronautics Authority Dr. Vannevar Bush Dr. J.C. Hunsaker Dr. G.W. Lewis, Director of Aeronautical Research. Absent: Col. Charles A. Lindbergh and Maj. Gen. H. 'Hap' Arnold, Chief, Army Air Corps. One Vacany: U.S. Weather Bureau.

  17. Kennedy Educate to Innovate (KETI) Aeronautics PowerPoint Presentation

    NASA Technical Reports Server (NTRS)

    Davila, Dina

    2010-01-01

    This slide presentation reviews some fundamental features of aeronautics. It is designed to introduce students to aeronautics and to engage them in Science Technology Education and Mathematics (STEM). It reviews the history of airflight, the aircraft components and their interaction with the forces that make flight possible (i.e. lift, weight drag and thrust), and the interaction of the components that create aircraft movements (roll, pitch and yaw)

  18. A Vision in Aeronautics: The K-12 Wind Tunnel Project

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A Vision in Aeronautics, a project within the NASA Lewis Research Center's Information Infrastructure Technologies and Applications (IITA) K-12 Program, employs small-scale, subsonic wind tunnels to inspire students to explore the world of aeronautics and computers. Recently, two educational K-12 wind tunnels were built in the Cleveland area. During the 1995-1996 school year, preliminary testing occurred in both tunnels.

  19. Novel Space-based Solar Power Technologies and Architectures for Earth and Beyond

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; Fikes, John C.; O'Neill, Mark J.

    2005-01-01

    Research, development and studies of novel space-based solar power systems, technologies and architectures for Earth and beyond are needed to reduce the cost of clean electrical power for terrestrial use and to provide a stepping stone for providing an abundance of power in space, i.e., manufacturing facilities, tourist facilities, delivery of power between objects in space, and between space and surface sites. The architectures, technologies and systems needed for space to Earth applications may also be used for in-space applications. Advances in key technologies, i.e., power generation, power management and distribution, power beaming and conversion of beamed power are needed to achieve the objectives of both terrestrial and extraterrestrial applications. Power beaming or wireless power transmission (WPT) can involve lasers or microwaves along with the associated power interfaces. Microwave and laser transmission techniques have been studied with several promising approaches to safe and efficient WPT identified. These investigations have included microwave phased array transmitters, as well as laser transmission and associated optics. There is a need to produce "proof-of-concept" validation of critical WPT technologies for both the near-term, as well as far-term applications. Investments may be harvested in near-term beam safe demonstrations of commercial WPT applications. Receiving sites (users) include ground-based stations for terrestrial electrical power, orbital sites to provide power for satellites and other platforms, future space elevator systems, space vehicle propulsion, and space to surface sites. This paper briefly discusses achieving a promising approach to the solar power generation and beamed power conversion. The approach is based on a unique high-power solar concentrator array called Stretched Lens Array (SLA) for both solar power generation and beamed power conversion. Since both versions (solar and laser) of SLA use many identical components

  20. Technology and science from Earth to Moon: SMART-1 experiments and their operations

    NASA Astrophysics Data System (ADS)

    Marini, A. E.; Lumb, R.; Racca, G. D.; Foing, B. H.; Dias-Almeida, M.

    2002-10-01

    SMART-1, the first European mission to the Moon aimed at demonstrating the Solar Electric propulsion hosts 10 Technology and Science experiments. The monitoring of the spacecraft plasma environment and the thruster contamination produced by thruster is carried out by SPEDE (Spacecraft Potential, Electron and Dust Experiment) and EPDP (Electric Propulsion Diagnostic Package). The miniaturised remote sensing instruments on-board SMART-1 are: AMIE (Advanced Moon micro-Imager Experiment), D-CIXS (Demonstration of a Compact Imaging X-ray Spectrometer), supported in its operation by XSM (X-ray Solar Monitor), and SIR (SMART-1 Infrared Spectrometer). Technology experiments for deep-space communications and navigation are: KATE (Ka-Band TT&C Experiment), based on X/Kaband transponder which also supports RSIS (Radio-Science Investigations for SMART-1), Laser-link, demonstrating a deep-space laser communication link and OBAN (On-Board Autonomous Navigation experiment). The Experiments will be performed during two distinct phases of the SMART-1 mission, including 17-month Earth escape phase and a nominal 6-month operational phase in elliptical Moon orbit. The SMART-1 STOC (Science and Technology Operations Co-ordination) carries out the planning and co-ordination of the Technology and science experiments.

  1. ACTS Ka-Band Earth Stations: Technology, Performance, and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Struharik, Steven J.; Diamond, John J.; Stewart, David

    2000-01-01

    The Advanced Communications Technology Satellite (ACTS) Project invested heavily in prototype Ka-band satellite ground terminals to conduct an experiments program with ACTS. The ACTS experiments program proposed to validate Ka-band satellite and ground-station technology, demonstrate future telecommunication services, demonstrate commercial viability and market acceptability of these new services, evaluate system networking and processing technology, and characterize Ka-band propagation effects, including development of techniques to mitigate signal fading. This paper will present a summary of the fixed ground terminals developed by the NASA Glenn Research Center and its industry partners, emphasizing the technology and performance of the terminals and the lessons learned throughout their 6-year operation, including the inclined orbit phase-of-operations. The fixed ground stations used for experiments by government, academic, and commercial entities used reflector-based offset-fed antenna systems with antennas ranging in size from 0.35 to 3.4 in. in diameter. Gateway earth stations included two systems referred to as the NASA Ground Station (NGS) and the Link Evaluation Terminal (LET).

  2. ldentifying Episodes of Earth Science Phenomena Using a Big-Data Technology

    NASA Technical Reports Server (NTRS)

    Kuo, Kwo-Sen; Oloso, Amidu; Rushing, John; Lin, Amy; Fekete, Gyorgy; Ramachandran, Rahul; Clune, Thomas; Dunny, Daniel

    2014-01-01

    's intricate dynamics, we are continuously discovering novel ES phenomena. We generally gain understanding of a given phenomenon by observing and studying individual events. This process usually begins by identifying the occurrences of these events. Once representative events are identified or found, we must locate associated observed or simulated data prior to commencing analysis and concerted studies of the phenomenon. Knowledge concerning the phenomenon can accumulate only after analysis has started. However, as mentioned previously, comprehensive records only exist for a very limited set of high-impact phenomena; aside from these, finding events and locating associated data currently may take a prohibitive amount of time and effort on the part of an individual investigator. The reason for the lack of comprehensive records for most of the ES phenomena is mainly due to the perception that they do not pose immediate and/or severe threat to life and property. Thus they are not consistently tracked, monitored, and catalogued. Many phenomena even lack precise and/or commonly accepted criteria for definitions. Moreover, various Earth Science observations and data have accumulated to a previously unfathomable volume; NASA Earth Observing System Data Information System (EOSDIS) alone archives several petabytes (PB) of satellite remote sensing data, which are steadily increasing. All of these factors contribute to the difficulty of methodically identifying events corresponding to a given phenomenon and significantly impede systematic investigations. We have not only envisioned AES as an environment for identifying customdefined events but also aspired for it to be an interactive environment with quick turnaround time for revisions of query criteria and results, as well as a collaborative environment where geographically distributed experts may work together on the same phenomena. A Big Data technology is thus required for the realization of such a system. In the following, we first

  3. Technological requirements of nuclear electric propulsion systems for fast Earth-Mars transfers

    NASA Astrophysics Data System (ADS)

    Bérend, N.; Epenoy, R.; Cliquet, E.; Laurent-Varin, J.; Avril, S.

    2013-03-01

    Recent advances in electric propulsion technologies such as magnetoplasma rockets gave a new momentum to the study of nuclear electric propulsion concepts for Mars missions. Some recent works have been focused on very short Earth-to-Mars transfers of about 40 days with high-power, variable specific impulse propulsion systems [1]. While the interest of nuclear electric propulsion appears clearly with regard to the payload mass ratio (due to a high level of specific impulse), its interest with regard to the transfer time is more complex to define, as it depends on many design parameters. In this paper, a general analysis of the capability of nuclear electric propulsion systems considering both criteria (the payload mass ratio and the transfer time) is performed, and the technological requirements for fast Earth-Mars transfers are studied. This analysis has been performed in two steps. First, complete trajectory optimizations have been performed by CNES-DCT in order to obtain the propulsion requirements of the mission for different technological hypotheses regarding the engine technology (specific impulse levels and the throttling capability) and different mission requirements. The methodology used for designing fuel-optimal heliocentric trajectories, based on the Pontryagin's Maximum Principle will be presented. Trajectories have been computed for various power levels combined with either variable or fixed Isp. The second step consisted in evaluating a simpler method that could easily link the main mission requirements (the transfer time and the payload fraction) to the main technological requirements (the specific mass of the power generation system and the structure mass ratio of the whole vehicle, excluding the power generation system). Indeed, for power-limited systems, propulsion requirements can be characterized through the "trajectory characteristic" parameter, defined as the integral over time of the squared thrust acceleration. Technological requirements for

  4. Technicians at General Atomics Aeronautical Systems, Inc., (GA-ASI) facility at Adelanto, Calif., ca

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Technicians at General Atomics Aeronautical Systems, Inc., (GA-ASI) facility at Adelanto, Calif., carefully thread control lines through a bulkhead during engine installation on NASA's Altair aircraft. General Atomics Aeronautical Systems, Inc., is developing the Altair version of its Predator B unmanned reconnaissance aircraft under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. NASA plans to use the Altair as a technology demonstrator to validate a variety of command and control technologies for UAVs, as well as demonstrate the capability to perform a variety of Earth science missions. The Altair is designed to carry an 700-lb. payload of scientific instruments and imaging equipment for as long as 32 hours at up to 52,000 feet altitude. Eleven-foot extensions have been added to each wing, giving the Altair an overall wingspan of 86 feet with an aspect ratio of 23. It is powered by a 700-hp. rear-mounted TPE-331-10 turboprop engine, driving a three-blade propeller. Altair is scheduled to begin flight tests in the fourth quarter of 2002, and be acquired by NASA following successful completion of basic airworthiness tests in early 2003 for evaluation of over-the-horizon control, detect, see and avoid and other technologies required to allow UAVs to operate safely with other aircraft in the national airspace.

  5. Technicians at General Atomics Aeronautical Systems, Inc., (GA-ASI) facility at Adelanto, Calif., ca

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Technicians at General Atomics Aeronautical Systems, Inc., (GA-ASI) facility at Adelanto, Calif., carefully install a turboprop engine to the rear fuselage of NASA's Altair aircraft during final assembly operations. General Atomics Aeronautical Systems, Inc., is developing the Altair version of its Predator B unmanned reconnaissance aircraft under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. NASA plans to use the Altair as a technology demonstrator to validate a variety of command and control technologies for UAVs, as well as demonstrate the capability to perform a variety of Earth science missions. The Altair is designed to carry an 700-lb. payload of scientific instruments and imaging equipment for as long as 32 hours at up to 52,000 feet altitude. Eleven-foot extensions have been added to each wing, giving the Altair an overall wingspan of 86 feet with an aspect ratio of 23. It is powered by a 700-hp. rear-mounted TPE-331-10 turboprop engine, driving a three-blade propeller. Altair is scheduled to begin flight tests in the fourth quarter of 2002, and be acquired by NASA following successful completion of basic airworthiness tests in early 2003 for evaluation of over-the-horizon control, detect, see and avoid and other technologies required to allow UAVs to operate safely with other aircraft in the national airspace.

  6. An aeronautical-mobile satellite experiment

    NASA Technical Reports Server (NTRS)

    Jedrey, Thomas C.; Dessouky, Khaled I.; Lay, Norman E.

    1991-01-01

    The various activities and findings of a NASA/FAA/COMSAT/INMARSAT collaborative aeronautical mobile-satellite experiment are detailed. The primary objective of the experiment was to demonstrate and evaluate an advanced digital mobile-satellite terminal developed at the Jet Propulsion Laboratory under the NASA Mobile Satellite Program. The experiment was a significant milestone for NASA/JPL, since it was the first test of the mobile terminal in a true mobile-satellite environment. The results were also of interest to the general mobile-satellite community because of the advanced nature of the technologies employed in the terminal.

  7. The K-8 Aeronautics Internet Textbook

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Efforts were focused on web site migration, from UC (University of California) Davis to the National Business Aviation Association's (NBAA) web site. K8AIT (K-8 Aeronautics Internet Textbook), which has remained an unadvertised web site, receives almost two million hits per month. Project continuation funding with the National Business Aviation Association is being pursued. A Memorandum of Understanding (MOU) between NASA Ames LTP (Learning Technologies Project) and Cislunar has been drafted and approved by NASA's legal department. Additional web content on space flight and the Wright brothers has been added in English and Spanish.

  8. 77 FR 33254 - Expediting Transition of Government Performed and Sponsored Aeronautics Research and Development

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-05

    .../national_aeronautics_rd_policy_dec_2006.pdf ), marking the first time that a national policy for government... TECHNOLOGY POLICY Expediting Transition of Government Performed and Sponsored Aeronautics Research and Development AGENCY: National Science and Technology Council, Office of Science and Technology Policy....

  9. Information Technology Infrastructure for the NASA Earth Science Enterprise Solutions Network

    NASA Astrophysics Data System (ADS)

    Aanstoos, J. V.; Shaw, D. R.; O'Hara, C. G.; Frisbie, T. E.

    2006-12-01

    The NASA Applied Sciences Program uses the term Solutions Network in the context of its Enterprise Architecture to describe the ability of different components of the enterprise to generate ideas for new ways to use NASA missions, research, and/or models in conjunction with operational decision-making processes (or decision support systems) to achieve a particular benefit to society. In this paper, we describe the development of an information technology infrastructure that will facilitate that ability. The two main components of this infrastructure are: the Research Projects Knowledge Base (RPKB); and the Partner Network Knowledge Base (PNKB). The RPKB aims to index all relevant NASA research result publications in a database that will be interoperable with the evolving NASA enterprise architecture system and will share relevant table space with it. In particular, fields from this system identifying relevant NASA missions, models, and data products will be used to cross-index the data collected on published results of research projects. Fields characterizing the research results based on the seven Earth-Sun system science focus areas and the twelve applications of national priority are included. In the course of developing the RPKB, novel uses of existing online databases and search tools have been developed. In addition, data mining tools are being developed for facilitating the location of candidate results and the indexing of relevant matches. The PNKB database will characterize the current network of NASA Earth-Sun system partners. This includes information on organizations and agencies funded by or partnered with NASA to conduct Earth-Sun system scientific research, technology, and applications projects. The relationships between NASA programs and project sponsors are also captured in this database. Both the PNKB and the RPKB will be integrated with an existing, evolving model of the NASA Earth Science Enterprise using an enterprise architecture modeling and

  10. 1997 NASA Academy in Aeronautics

    NASA Technical Reports Server (NTRS)

    Andrisani, Dominick, II

    1998-01-01

    The NASA Academy in Aeronautics at the Dryden Flight Research Center (DFRC) was a ten-week summer leadership training program conducted for the first time in the summer of 1997. Funding was provided by a contract between DFRC and Purdue University. Mr. Lee Duke of DFRC was the contract monitor, and Professor Dominick Andrisani was the principal investigator. Five student research associates participated in the program. Biographies of the research associates are given in Appendix 1. Dominick Andrisani served as Dean of the NASA Academy in Aeronautics. NASA Academy in Aeronautics is a unique summer institute of higher learning that endeavors to provide insight into all of the elements that make NASA aeronautical research possible. At the same time the Academy assigns the research associate to be mentored by one of NASA!s best researchers so that they can contribute towards an active flight research program. Aeronautical research and development are an investment in the future, and NASA Academy is an investment in aeronautical leaders of the future. The Academy was run by the Indiana Space Grant Consortium at Purdue in strategic partnership with the National Space Grant College and Fellowship Program. Research associates at the Academy were selected with help from the Space Grant Consortium that sponsored the research associate. Research associate stipend and travel to DFRC were paid by the students' Space Grant Consortium. All other student expenses were paid by the Academy. Since the Academy at DFRC had only five students the opportunity for individual growth and attention was unique in the country. About 30% of the working time and most of the social time of the students were be spent as a "group" or "team." This time was devoted to exchange of ideas, on forays into the highest levels of decision making, and in executing aeronautical research. This was done by interviewing leaders throughout the aerospace industry, seminars, working dinners, and informal

  11. Aeronautics. America in Space: The First Decade.

    ERIC Educational Resources Information Center

    Anderton, David A.

    The major research and developments in aeronautics during the late 1950's and 1960's are reviewed descriptively with a minimum of technical content. Topics covered include aeronautical research, aeronautics in NASA, The National Advisory Committee for Aeronautics, the X-15 Research Airplane, variable-sweep wing design, the Supersonic Transport…

  12. 14 CFR 77.35 - Aeronautical studies.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Aeronautical studies. 77.35 Section 77.35 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRSPACE OBJECTS AFFECTING NAVIGABLE AIRSPACE (Eff. until 1-18-11) Aeronautical Studies of Effect of...

  13. 14 CFR 77.35 - Aeronautical studies.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aeronautical studies. 77.35 Section 77.35 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRSPACE OBJECTS AFFECTING NAVIGABLE AIRSPACE Aeronautical Studies of Effect of Proposed Construction on...

  14. Technology.

    ERIC Educational Resources Information Center

    Online-Offline, 1998

    1998-01-01

    Focuses on technology, on advances in such areas as aeronautics, electronics, physics, the space sciences, as well as computers and the attendant progress in medicine, robotics, and artificial intelligence. Describes educational resources for elementary and middle school students, including Web sites, CD-ROMs and software, videotapes, books,…

  15. NASA's CSTI Earth-to-Orbit Propulsion Program - On-target technology transfer to advanced space flight programs

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.; Herr, Paul N.; Stephenson, Frank W., Jr.

    1990-01-01

    NASA's Civil Space Technology Initiative encompasses among its major elements the Earth-to-Orbit Propulsion Program (ETOPP) for future launch vehicles, which is budgeted to the extent of $20-30 million/year for the development of essential technologies. ETOPP technologies include, in addition to advanced materials and processes and design/analysis computational tools, the advanced systems-synthesis technologies required for definition of highly reliable LH2 and hydrocarbon fueled rocket engines to be operated at significantly reduced levels of risk and cost relative to the SSME. Attention is given to the technology-transfer services of ETOPP.

  16. NASA/University Conference on Aeronautics

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The proceedings of a conference on the future of aeronautics are presented. The subjects discussed include the following: (1) aeronautics and the education of the engineer, (2) technical trends in aeronautics, and (3) the role of the university in aeronautics. The technical trends in aeronautics are concerned with aircraft noise control, the effect of the aircraft on the environment, airborne electronics for automated flight, and trends in aircraft design.

  17. Earth Radiation Imbalance from a Constellation of 66 Iridium Satellites: Technological Aspects

    NASA Technical Reports Server (NTRS)

    Wiscombe, W.; Chiu, C. J-Y.

    2012-01-01

    Iridium Communications Inc. is launching a new generation of polar orbiting communication satellites in 2015-2017. Iridium will provide a hosted payload bay on each of the 66 satellites (plus 6 in-space spares). This offers the potential for a paradigm shift in the way we measure Earth radiation imbalance from space, as well as massive cost savings. Because the constellation provides 24/7 global coverage, there is no need to account for diurnal cycle via extrapolations from uncalibrated narrowband geostationary imagers. And the spares can be rolled over to view the Sun and deep space, then transfer their calibration to the other members of the constellation during the frequent cross-overs. In part using simulations of the constellation viewing realistic Earth scenes, this presentation will address the technological aspects of such a constellation: (1) the calibration strategy; (2) the highly-accurate and stable radiometers for measuring outgoing flux; and (3) the GRACE-inspired algorithms for representing the outgoing flux field in spherical harmonics and thus achieving rv500-km spatial resolution and two-hour temporal resolution.

  18. Space Technology 5 Multi-point Measurements of Near-Earth Magnetic Fields: Initial Results

    NASA Technical Reports Server (NTRS)

    Slavin, James A.; Le, G.; Strangeway, R. L.; Wang, Y.; Boardsen, S.A.; Moldwin, M. B.; Spence, H. E.

    2007-01-01

    The Space Technology 5 (ST-5) mission successfully placed three micro-satellites in a 300 x 4500 km dawn-dusk orbit on 22 March 2006. Each spacecraft carried a boom-mounted vector fluxgate magnetometer that returned highly sensitive and accurate measurements of the geomagnetic field. These data allow, for the first time, the separation of temporal and spatial variations in field-aligned current (FAC) perturbations measured in low-Earth orbit on time scales of approximately 10 sec to 10 min. The constellation measurements are used to directly determine field-aligned current sheet motion, thickness and current density. In doing so, we demonstrate two multi-point methods for the inference of FAC current density that have not previously been possible in low-Earth orbit; 1) the "standard method," based upon s/c velocity, but corrected for FAC current sheet motion, and 2) the "gradiometer method" which uses simultaneous magnetic field measurements at two points with known separation. Future studies will apply these methods to the entire ST-5 data set and expand to include geomagnetic field gradient analyses as well as field-aligned and ionospheric currents.

  19. Mass estimating techniques for earth-to-orbit transports with various configuration factors and technologies applied

    NASA Technical Reports Server (NTRS)

    Klich, P. J.; Macconochie, I. O.

    1979-01-01

    A study of an array of advanced earth-to-orbit space transportation systems with a focus on mass properties and technology requirements is presented. Methods of estimating weights of these vehicles differ from those used for commercial and military aircraft; the new techniques emphasizing winged horizontal and vertical takeoff advanced systems are described utilizing the space shuttle subsystem data base for the weight estimating equations. The weight equations require information on mission profile, the structural materials, the thermal protection system, and the ascent propulsion system, allowing for the type of construction and various propellant tank shapes. The overall system weights are calculated using this information and incorporated into the Systems Engineering Mass Properties Computer Program.

  20. Earth Resources Technology Satellite data collection project, ERTS - Bolivia. [thematic mapping

    NASA Technical Reports Server (NTRS)

    Brockmann, C. E.

    1974-01-01

    The Earth Resources Technology Satellite program of Bolivia has developed a multidisciplinary project to carry out investigations in cartography and to prepare various thematic maps. In cartography, investigations are being carried out with the ERTS-1 images and with existing maps, to determine their application to the preparation of new cartographic products on one hand and on the other to map those regions where the cartography is still deficient. The application of the MSS images to the geological mapping has given more than satisfactory results. Working with conventional photointerpretation, it has been possible to prepare regional geological maps, tectonic maps, studies relative to mining, geomorphological maps, studies relative to petroleum exploration, volcanological maps and maps of hydrologic basins. In agriculture, the ERTS images are used to study land classification and forest and soils mapping.

  1. Sunsynchronous low Earth orbit spacecraft concepts and technology requirements for global change monitoring

    NASA Technical Reports Server (NTRS)

    Garrett, L. Bernard; Butterfield, Ansel J.; Taback, Israel; Garn, Paul A.; Burrowbridge, Donald R., Jr.

    1991-01-01

    The Global Change Technology Initiative listing of instruments for operation in low Earth, sunsynchronous orbits contain 21 entries, of which 20 are carried aboard multi-instrument spacecraft. This list identifies the temporal requirements for repetition of measurements and also includes groups of instruments that make complementing measurements. Definitions for individual spacecraft follows the temporal and grouping requirements to establish constellations which will provide the measurement data. The definitions of constellations for multi-instrument spacecraft show two alternatives: a constellation of 10 spacecraft, each compatible with launch by a Delta booster; a constellation of 4 spacecraft, each requiring a Titan booster. Operating subsystems for the individual spacecraft can use modular concepts that are adaptations based upon current plans for improving the performance of the NASA-Goddard Multimission Modular units. The descriptions of the spacecraft and constellations begins with a compilation of instrument related requirements that define the principal system performance parameters and operating capabilities.

  2. Earth resources technology satellite /ERTS/ data collection and transmission buoys for inland, neritic and oceanic waters

    NASA Technical Reports Server (NTRS)

    Chapman, W. S.; Yen, H. H.

    1974-01-01

    As a result of a consortium of several industries and organizations, an economical, versatile, and stable data collection and transmission buoy has been designed, developed, and deployed to gather and transmit water quality data to a ground receiving station at three-minute intervals and to the earth resources technology satellite (ERTS) as it passes over the deployed buoy every 12 hours. The buoy system, designed for both fresh and salt water application, gathers data inclusive of temperature measurement, conductivity, relative acidity, dissolved oxygen, current speed, and direction. The mechanical design philosophy used to determine and satisfy boundary conditions involving stability, ease of deployment, servicing and maintenance, minimal manufacturing costs, and fresh and salt water installation capability is discussed. The development of peripheral handling equipment and anchoring systems is described.

  3. Risk reduction methodologies and technologies for the Earth Observing System (EOS) Operations Center (EOC)

    NASA Technical Reports Server (NTRS)

    Hudson, Richard K.; Pingitore, Nelson V.

    1994-01-01

    This paper will discuss proposed Flight Operations methodologies and technologies for the Earth Observing System (EOS) Operations Center (EOC), to reduce risks associated with the operation of complex multi-instrument spacecraft in a multi-spacecraft environment. The EOC goals are to obtain 100 percent science data capture and maintain 100 percent spacecraft health, for each EOS spacecraft. Operations risks to the spacecraft and data loss due to operator command error, mission degradation due to mis-identification of an anomalous trend in component performance or mis-management of resources, and total mission loss due to improper subsystem configuration or mis-identification of an anomalous condition. This paper discusses automation of routine Flight Operations Team (FOT) responsibilities, Expert systems for real-time non-nominal condition decision support, and Telemetry analysis systems for in-depth playback data analysis and trending.

  4. 2000 Survey of Distributed Spacecraft Technologies and Architectures for NASA's Earth Science Enterprise in the 2010-2025 Timeframe

    NASA Technical Reports Server (NTRS)

    Ticker, Ronald L.; Azzolini, John D.

    2000-01-01

    The study investigates NASA's Earth Science Enterprise needs for Distributed Spacecraft Technologies in the 2010-2025 timeframe. In particular, the study focused on the Earth Science Vision Initiative and extrapolation of the measurement architecture from the 2002-2010 time period. Earth Science Enterprise documents were reviewed. Interviews were conducted with a number of Earth scientists and technologists. fundamental principles of formation flying were also explored. The results led to the development of four notional distribution spacecraft architectures. These four notional architectures (global constellations, virtual platforms, precision formation flying, and sensorwebs) are presented. They broadly and generically cover the distributed spacecraft architectures needed by Earth Science in the post-2010 era. These notional architectures are used to identify technology needs and drivers. Technology needs are subsequently grouped into five categories: Systems and architecture development tools; Miniaturization, production, manufacture, test and calibration; Data networks and information management; Orbit control, planning and operations; and Launch and deployment. The current state of the art and expected developments are explored. High-value technology areas are identified for possible future funding emphasis.

  5. Intelligent Systems Technologies to Assist in Utilization of Earth Observation Data

    NASA Technical Reports Server (NTRS)

    Ramapriyan, Hampapuram K.; McConaughy, Gail; Lynnes, Christopher; McDonald, Kenneth; Kempler, Steven

    2003-01-01

    With the launch of several Earth observing satellites over the last decade, we are now in a data rich environment. From NASA's Earth Observing System (EOS) satellites alone, we are accumulating more than 3 TB per day of raw data and derived geophysical parameters. The data products are being distributed to a large user community comprising scientific researchers, educators and operational government agencies. Notable progress has been made in the last decade in facilitating access to data. However, to realize the full potential of the growing archives of valuable scientific data, further progress is necessary in the transformation of data into information, and information into knowledge that can be used in particular applications. Sponsored by NASA s Intelligent Systems Project within the Computing, Information and Communication Technology (CICT) Program, a conceptual architecture study has been conducted to examine ideas to improve data utilization through the addition of intelligence into the archives in the context of an overall knowledge building system. Potential Intelligent Archive concepts include: 1) Mining archived data holdings using Intelligent Data Understanding algorithms to improve metadata to facilitate data access and usability; 2) Building intelligence about transformations on data, information, knowledge, and accompanying services involved in a scientific enterprise; 3) Recognizing the value of results, indexing and formatting them for easy access, and delivering them to concerned individuals; 4) Interacting as a cooperative node in a web of distributed systems to perform knowledge building (i.e., the transformations from data to information to knowledge) instead of just data pipelining; and 5) Being aware of other nodes in the knowledge building system, participating in open systems interfaces and protocols for virtualization, and collaborative interoperability. This paper presents some of these concepts and identifies issues to be addressed by

  6. Foundational Methane Propulsion Related Technology Efforts, and Challenges for Applications to Human Exploration Beyond Earth Orbit

    NASA Technical Reports Server (NTRS)

    Brown, Thomas; Klem, Mark; McRight, Patrick

    2016-01-01

    Current interest in human exploration beyond earth orbit is driving requirements for high performance, long duration space transportation capabilities. Continued advancement in photovoltaic power systems and investments in high performance electric propulsion promise to enable solar electric options for cargo delivery and pre-deployment of operational architecture elements. However, higher thrust options are required for human in-space transportation as well as planetary descent and ascent functions. While high thrust requirements for interplanetary transportation may be provided by chemical or nuclear thermal propulsion systems, planetary descent and ascent systems are limited to chemical solutions due to their higher thrust to weight and potential planetary protection concerns. Liquid hydrogen fueled systems provide high specific impulse, but pose challenges due to low propellant density and the thermal issues of long term propellant storage. Liquid methane fueled propulsion is a promising compromise with lower specific impulse, higher bulk propellant density and compatibility with proposed in-situ propellant production concepts. Additionally, some architecture studies have identified the potential for commonality between interplanetary and descent/ascent propulsion solutions using liquid methane (LCH4) and liquid oxygen (LOX) propellants. These commonalities may lead to reduced overall development costs and more affordable exploration architectures. With this increased interest, it is critical to understand the current state of LOX/LCH4 propulsion technology and the remaining challenges to its application to beyond earth orbit human exploration. This paper provides a survey of NASA's past and current methane propulsion related technology efforts, assesses the accomplishments to date, and examines the remaining risks associated with full scale development.

  7. New Technologies and Strategies to Exploit Near Earth Asteroids for Breakthrough Space Development

    NASA Astrophysics Data System (ADS)

    Rather, John; Powell, James; Maise, George

    2010-01-01

    The past two decades have brought a profound expansion of knowledge of near earth objects (NEO). If creatively exploited, NEOs can significantly increase human safety while reducing costs of exploration and development of the moon, Mars and the solar system. Synergistically, the ability to defend the Earth from devastating impacts will become very effective. A spherical volume having a radius equivalent to the moon's orbit, 400,000 km, is visited every day by approximately ten NEOs having diameters of ~10 meters, while ~30 meter diameter encounters occur about once per month. Because these objects are usually very faint and only within detectable range for a few days, they require specialized equipment to discover them with high probability of detection and to enable accurate determination of orbital parameters. Survey systems are now being implemented that are cataloging many thousands of objects larger than 30 meters, but numerous advantages will result from extending the complete NEO census down to 10 meter diameters. The typical compositions of such NEOs will range from ~80% that are low density dust & rock ``rubble piles'' to perhaps 2% containing heavy metals-properties well known from meteorite samples. It is quite possible that there will also be some fragments of short period comets that are rich in water ice and other volatile components. In this paper we will propose a set of new technologies and strategies for exploiting NEO resources that can yield important space development breakthroughs at much lower costs than existing concepts. Solar powered ``Tugboats'' deployed at the space station can rendezvous with carefully selected NEOs and steer them into captured orbits in the lunar L4 & L5 regions. Robotic equipment will then modify them for a plethora of benefits. Notably, the problem of radiation shielding against the Van Allen belts, solar flares and cosmic rays will be solved. Free transportation from low earth orbit to the moon and beyond will be

  8. Application of the Iridium Satellite System to Aeronautical Communications

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Meza, Mike; Gupta, Om

    2008-01-01

    The next generation air transportation system will require greater air-ground communications capacity to accommodate more air traffic with increased safety and efficiency. Communications will remain primarily terrestrially based, but satellite communications will have an increased role. Inmarsat s aeronautical services have been approved and are in use for aeronautical safety communications provided by geostationary satellites. More recently the approval process for the Iridium low earth orbit constellation is nearing completion. The current Iridium system will be able to provide basic air traffic services communications suitable for oceanic, remote and polar regions. The planned second generation of the Iridium system, called Iridium NEXT, will provide enhanced capabilities and enable a greater role in the future of aeronautical communications. This paper will review the potential role of satellite communications in the future of air transportation, the Iridium approval process and relevant system testing, and the potential role of Iridium NEXT.

  9. Canadian aeronautical mobile data trials

    NASA Technical Reports Server (NTRS)

    Pedersen, Allister; Pearson, Andrea

    1993-01-01

    This paper describes a series of aeronautical mobile data trials conducted on small aircraft (helicopters and fixed wing) utilizing a low-speed store-and-forward mobile data service. The paper outlines the user requirements for aeronautical mobile satellite communications. 'Flight following' and improved wide-area dispatch communications were identified as high priority requirements. A 'proof-of-concept' trial in a Cessna Skymaster aircraft is described. This trial identified certain development work as essential to the introduction of commercial service including antenna development, power supply modifications and doppler software modifications. Other improvements were also proposed. The initial aeronautical mobile data service available for pre-operational (Beta) trials is outlined. Pre-operational field trials commenced in October 1992 and consisted of installations on a Gralen Communications Inc. Cessna 177 and an Aerospatiale Astar 350 series light single engine helicopter. The paper concludes with a discussion of desirable near term mobile data service developments, commercial benefits, current safety benefits and potential future applications for improved safety.

  10. An Overview of the NASA Aeronautics Test Program Strategic Plan

    NASA Technical Reports Server (NTRS)

    Marshall, Timothy J.

    2010-01-01

    U.S. leadership in aeronautics depends on ready access to technologically advanced, efficient, and affordable aeronautics test capabilities. These systems include major wind tunnels and propulsion test facilities and flight test capabilities. The federal government owns the majority of the major aeronautics test capabilities in the United States, primarily through the National Aeronautics and Space Administration (NASA) and the Department of Defense (DoD), however an overarching strategy for management of these national assets was needed. Therefore, in Fiscal Year (FY) 2006 NASA established the Aeronautics Test Program (ATP) as a two-pronged strategic initiative to: (1) retain and invest in NASA aeronautics test capabilities considered strategically important to the agency and the nation, and (2) establish a strong, high level partnership with the DoD Test Resources Management Center (TRMC), stewards of the DoD test and evaluation infrastructure. Since then, approximately seventy percent of the ATP budget has been directed to underpin fixed and variable costs of facility operations within its portfolio and the balance towards strategic investments in its test facilities, including maintenance and capability upgrades. Also, a strong guiding coalition was established through the National Partnership for Aeronautics Testing (NPAT), with governance by the senior leadership of NASA s Aeronautics Research Mission Directorate (ARMD) and the DoD's TRMC. As part of its strategic planning, ATP has performed or participated in many studies and analyses, including assessments of major NASA and DoD aeronautics test capabilities, test facility condition evaluations and market research. The ATP strategy has also benefitted from unpublished RAND research and analysis by Ant n et al. (2009). Together, these various studies, reports and assessments serve as a foundation for a new, five year strategic plan that will guide ATP through FY 2014. Our vision for the future is a balanced

  11. Aeronautical applications of high-temperature superconductors

    NASA Technical Reports Server (NTRS)

    Turney, George E.; Luidens, Roger W.; Uherka, Kenneth; Hull, John

    1989-01-01

    The successful development of high-temperature superconductors (HTS) could have a major impact on future aeronautical propulsion and aeronautical flight vehicle systems. A preliminary examination of the potential application of HTS for aeronautics indicates that significant benefits may be realized through the development and implementation of these newly discovered materials. Applications of high-temperature superconductors (currently substantiated at 95 k) were envisioned for several classes of aeronautical systems, including subsonic and supersonic transports, hypersonic aircraft, V/STOL aircraft, rotorcraft, and solar, microwave and laser powered aircraft. Introduced and described are the particular applications and potential benefits of high-temperature superconductors as related to aeronautics and/or aeronautical systems.

  12. Aeronautical applications of high-temperature superconductors

    NASA Technical Reports Server (NTRS)

    Turney, George E.; Luidens, Roger W.; Uherka, Kenneth; Hull, John

    1989-01-01

    The successful development of high-temperature superconductors (HTS) could have a major impact on future aeronautical propulsion and aeronautical flight vehicle systems. A preliminary examination of the potential application of HTS for aeronautics indicates that significant benefits may be realized through the development and implementation of these newly discovered materials. Applications of high-temperature superconductors (currently substantiated at 95 K) were envisioned for several classes of aeronautical systems, including subsonic and supersonic transports, hypersonic aircraft, V/STOL aircraft, rotorcraft, and solar, microwave and laser powered aircraft. Introduced and described are the particular applications and potential benefits of high-temperature superconductors as related to aeronautics and/or aeronautical systems.

  13. Technology and Engineering Advances Supporting EarthScope's Alaska Transportable Array

    NASA Astrophysics Data System (ADS)

    Miner, J.; Enders, M.; Busby, R.

    2015-12-01

    EarthScope's Transportable Array (TA) in Alaska and Canada is an ongoing deployment of 261 high quality broadband seismographs. The Alaska TA is the continuation of the rolling TA/USArray deployment of 400 broadband seismographs in the lower 48 contiguous states and builds on the success of the TA project there. The TA in Alaska and Canada is operated by the IRIS Consortium on behalf of the National Science Foundation as part of the EarthScope program. By Sept 2015, it is anticipated that the TA network in Alaska and Canada will be operating 105 stations. During the summer of 2015, TA field crews comprised of IRIS and HTSI station specialists, as well as representatives from our partner agencies the Alaska Earthquake Center and the Alaska Volcano Observatory and engineers from the UNAVCO Plate Boundary Observatory will have completed a total of 36 new station installations. Additionally, we will have completed upgrades at 9 existing Alaska Earthquake Center stations with borehole seismometers and the adoption of an additional 35 existing stations. Continued development of battery systems using LiFePO4 chemistries, integration of BGAN, Iridium, Cellular and VSAT technologies for real time data transfer, and modifications to electronic systems are a driving force for year two of the Alaska Transportable Array. Station deployment utilizes custom heliportable drills for sensor emplacement in remote regions. The autonomous station design evolution include hardening the sites for Arctic, sub-Arctic and Alpine conditions as well as the integration of rechargeable Lithium Iron Phosphate batteries with traditional AGM batteries We will present new design aspects, outcomes, and lessons learned from past and ongoing deployments, as well as efforts to integrate TA stations with other existing networks in Alaska including the Plate Boundary Observatory and the Alaska Volcano Observatory.

  14. Critical laser technology developments and ESA space qualification approach in support of ESA's Earth observation missions

    NASA Astrophysics Data System (ADS)

    Zahir, Mustapha; Durand, Yannig

    2011-10-01

    In this paper, ESA's approach to lasers and detectors space evaluation and qualification will be explored. ESA has its own international qualification system, the ESCC system. This system guarantees reliability, assurance and quality of components, and hence a successful space mission. An overview of the ESCC (European Space Component Coordination) system, as well as the relevant ECSS (European Cooperation for Space Standards) related standards addressing components and hybrid qualification will be given. These standards are being constantly updated, through well structured working groups, constantly coming up with new ways of qualifying space components. These components are themselves constantly changing in terms of material, technology, and manufacturing processes. The development of advanced Lidar systems for space applications and their evaluation by airborne or ground based test campaigns is an important strategic element of the ESA Earth Observation Programme. These systems depend on robust and reliable lasers and detector at their core function. Since the early eighties, ESA has been supporting the development of the critical subsystems of any Lidar, i.e. lasers and detectors. Several missions, involving different kinds of lidars, provide the requirements to be addressed in the Lidar risk mitigation activities. They also present a challenge concerning their space qualification and reliability assurance. These missions are: ADM-Aeolus flying ALADIN a Doppler Wind Lidar; EarthCARE embarking ATLID an Atmospheric Backscatter Lidar; three missions studied for their feasibilities: WALES, A-SCOPE and ACCURATE, all using Differential Absorption Lidar in different ways to measure respectively profiles of water vapour, total column of CO2 and greenhouse gases in an occultation geometry.

  15. Hyperspectral remote sensing technology (HRST) program and the Naval EarthMap Observer (NEMO) satellite

    NASA Astrophysics Data System (ADS)

    Wilson, Thomas L.; Davis, Curtiss O.

    1998-11-01

    The Office of Naval Research (ONR) and the Naval Research Laboratory (NRL) are currently in the design phase of a program called the Hyperspectral Remote Sensing Technology (HRST) program. HRST will demonstrate the utility of a hyperspectral earth-imaging system to support Naval needs for characterization of the littoral regions of the world. One key component of the HRST program is the development of the Naval EarthMap Observer (NEMO) satellite system to provide a large hyperspectral data base. NEMO will carry the Coastal Ocean Imaging Spectrometer (COIS) which will provide images of littoral regions with 210 spectral channels over a bandpass of 0.4 to 2.5 micrometer. Since ocean environments have reflectances typically less than 5%, this system requires a very high signal-to-noise ratio (SNR). COIS will sample over a 30 km swath width with a 60 m Ground Sample Distance (GSD) with the ability to go to a 30 m GSD by utilizing the systems attitude control system to 'nod' (i.e., use ground motion compensation to slow down the ground track of the field of view). Also included in the payload is a co-registered 5m Panchromatic Imager (PIC) to provide simultaneous high spatial resolution imagery. A sun-synchronous circular orbit of 605 km allows continuous repeat coverage of the whole earth. One unique aspect of NEMO is an on board processing system, a feature extraction and data compression software package developed by NRL called the Optical Real-Time Spectral Identification System (ORASIS). ORASIS employs a parallel, adaptive hyperspectral method for real time scene characterization, data reduction, background suppression, and target recognition. The use of ORASIS is essential for management of the massive amounts of data expected from the NEMO HSI system, and for developing Naval products under HRST. The combined HSI and panchromatic images will provide critical phenomenology to aid in the operation of Naval systems in the littoral environment. The imagery can also

  16. The Aeronautics Education, Research, and Industry Alliance (AERIAL) 2002 Report

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.; Box, Richard C.; Fink, Mary; Gogos, George; Lehrer, Henry R.; Narayanan, Ram M.; Nickerson, Jocelyn S.; Tarry, Scott E.; Vlasek, Karisa D.; O'Neil, Patrick D.

    2002-01-01

    The NASA Nebraska Space Grant Consortium (NSGC) & EPSCoR programs at the University of Nebraska at Omaha are involved in a variety of innovative research activities. Such research is supported through the Aeronautics Education, Research, and Industry Alliance (AERIAL) and collaborative seed funds. AERIAL is a comprehensive, multi-faceted, five year NASA EPSCoR initiative that contributes substantially to the strategic research and technology priorities of NASA while intensifying Nebraska s rapidly growing aeronautics research and development endeavors. AERIAL includes three major collaborative research teams (CRTs) whose nexus is a common focus in aeronautics research. Each CRT - Small Aircraft Transportation System (SATS), Airborne Remote Sensing for Agricultural Research and Commercialization Applications (ARS), and Numerical Simulation of the Combustion of Fuel Droplets: Finite Rate Kinetics and Flame Zone Grid Adaptation (CEFD) -has a distinct research agenda. This program provides the template for funding of new and innovative research that emphasizes aerospace technology.

  17. Aeronautical record : no. 1 (to June, 1923)

    NASA Technical Reports Server (NTRS)

    1923-01-01

    "...considerations have prompted us to pay special attention to the development of aeronautical industries and aerial navigation as a commercial enterprise and to publish an analytical review of events in the aeronautical world and of the attendant problems."

  18. Program of Research in Aeronautics

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A prospectus of the educational and research opportunities available at the Joint Institute for Advancement of Flight Sciences, operated at NASA Langley Research Center in conjunction with George Washington University's School of Engineering and Applied Sciences is presented. Requirements of admission to various degree programs are given as well as the course offerings in the areas of acoustics, aeronautics, environmental modelling, materials science, and structures and dynamics. Research facilities for each field of study are described. Presentations and publications (including dissertations and theses) generated by each program are listed as well as faculty members visting scientists and engineers.

  19. Chemical Gas Sensors for Aeronautic and Space Applications 2

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Chen, L. Y.; Neudeck, P. G.; Knight, D.; Liu, C. C.; Wu, Q. H.; Zhou, H. J.; Makel, D.; Liu, M.; Rauch, W. A.

    1998-01-01

    Aeronautic and Space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Areas of most interest include launch vehicle safety monitoring emission monitoring and fire detection. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensor is based on progress two types of technology: 1) Micro-machining and micro-fabrication technology to fabricate miniaturized sensors. 2) The development of high temperature semiconductors, especially silicon carbide. Sensor development for each application involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this micro-fabricated gas sensor technology make this area of sensor development a field of significant interest.

  20. Chemical Gas Sensors for Aeronautic and Space Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Chen, Liang-Yu; Neudeck, Philip G.; Knight, Dak; Liu, Chung-Chiun; Wu, Quing-Hai; Zhou, Huan-Jun

    1997-01-01

    Aeronautic and space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Two areas of particular interest are safety monitoring and emission monitoring. In safety monitoring, detection of low concentrations of hydrogen at potentially low temperatures is important while for emission monitoring the detection of nitrogen oxides, hydrogen, hydrocarbons and oxygen is of interest. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensors is based on progress in two types of technology: (1) Micromachining and microfabrication technology to fabricate miniaturized sensors. (2) The development of high temperature semiconductors, especially silicon carbide. The detection of each type of gas involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this microfabricated gas sensor technology make this general area of sensor development a field of significant interest.

  1. Chemical Gas Sensors for Aeronautic and Space Applications 2

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Chen, Liong-Yu; Neudeck, Phil G.; Knight, Dale; Liu, C. C.; Wu, Q. H.; Zhou, H. J.; Makel, Darby; Liu, M.; Rauch, W. A.

    1998-01-01

    Aeronautic and space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Areas of interest include launch vehicle safety monitoring, emission monitoring, and fire detection. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensors is based on progress in two types of technology: 1) Micromachining and microfabrication technology to fabricate miniaturized sensors. 2) The development of high temperature semiconductors, especially silicon carbide. Sensor development for each application involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this microfabricated gas sensor technology make this area of sensor development a field of significant interest.

  2. Chemical Gas Sensors for Aeronautics and Space Applications III

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Neudeck, P. G.; Chen, L. Y.; Liu, C. C.; Wu, Q. H.; Sawayda, M. S.; Jin, Z.; Hammond, J.; Makel, D.; Liu, M.; Rauch, W. A.; Hall, G.

    1999-01-01

    Aeronautic and space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Areas of interest include launch vehicle safety monitoring, emission monitoring, and fire detection. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensors is based on progress in two types of technology: 1) Micromachining and microfabrication technology to fabricate miniaturized sensors. 2) The development of high temperature semiconductors, especially silicon carbide. Sensor development for each application involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this microfabricated gas sensor technology make this area of sensor development a field of significant interest.

  3. Questions & Answers about Aeronautics and Space.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    Answers to 27 questions about aeronautics, space, and the National Aeronautics and Space Administration (NASA) are provided in this pamphlet. Among the topics dealt with in these questions are: costs of the space program; NASA's role in aeronautics; benefits received from the space program; why the United States hasn't developed means of rescuing…

  4. 14 CFR 61.105 - Aeronautical knowledge.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Aeronautical knowledge. 61.105 Section 61.105 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... log ground training from an authorized instructor or complete a home-study course on the...

  5. 14 CFR 61.97 - Aeronautical knowledge.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aeronautical knowledge. 61.97 Section 61.97 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN... ground training from an authorized instructor or complete a home-study course on the...

  6. 14 CFR 61.97 - Aeronautical knowledge.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Aeronautical knowledge. 61.97 Section 61.97 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN... ground training from an authorized instructor or complete a home-study course on the...

  7. 14 CFR 61.125 - Aeronautical knowledge.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aeronautical knowledge. 61.125 Section 61.125 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... log ground training from an authorized instructor, or complete a home-study course, on...

  8. 14 CFR 61.105 - Aeronautical knowledge.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aeronautical knowledge. 61.105 Section 61.105 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... log ground training from an authorized instructor or complete a home-study course on the...

  9. 14 CFR 61.125 - Aeronautical knowledge.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Aeronautical knowledge. 61.125 Section 61.125 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... log ground training from an authorized instructor, or complete a home-study course, on...

  10. Aeronautical audio broadcasting via satellite

    NASA Technical Reports Server (NTRS)

    Tzeng, Forrest F.

    1993-01-01

    A system design for aeronautical audio broadcasting, with C-band uplink and L-band downlink, via Inmarsat space segments is presented. Near-transparent-quality compression of 5-kHz bandwidth audio at 20.5 kbit/s is achieved based on a hybrid technique employing linear predictive modeling and transform-domain residual quantization. Concatenated Reed-Solomon/convolutional codes with quadrature phase shift keying are selected for bandwidth and power efficiency. RF bandwidth at 25 kHz per channel, and a decoded bit error rate at 10(exp -6) with E(sub b)/N(sub o) at 3.75 dB are obtained. An interleaver, scrambler, modem synchronization, and frame format were designed, and frequency-division multiple access was selected over code-division multiple access. A link budget computation based on a worst-case scenario indicates sufficient system power margins. Transponder occupancy analysis for 72 audio channels demonstrates ample remaining capacity to accommodate emerging aeronautical services.

  11. Earth observation technologies in service to the cultural landscape of Cyprus: risk identification and assessment

    NASA Astrophysics Data System (ADS)

    Cuca, Branka; Tzouvaras, Marios; Agapiou, Athos; Lysandrou, Vasiliki; Themistocleous, Kyriacos; Nisantzi, Argyro; Hadjimitsis, Diofantos G.

    2016-08-01

    The Cultural landscapes are witnesses of "the creative genius, social development and the imaginative and spiritual vitality of humanity. They are part of our collective identity", as it is internationally defined and accepted (ICOMOSUNESCO). The need for their protection, management and inclusion in the territorial policies has already been widely accepted and pursued. There is a great number of risks to which the cultural landscapes are exposed, arising mainly from natural (both due to slow geo-physical phenomena as well as hazards) and anthropogenic causes (e.g. urbanisation pressure, agriculture, landscape fragmentation etc.). This paper explores to what extent Earth Observation (EO) technologies can contribute to identify and evaluate the risks to which Cultural Landscapes of Cyprus are exposed, taking into consideration specific phenomena, such as land movements and soil erosion. The research of the paper is illustrated as part of the activities carried out in the CLIMA project - "Cultural Landscape risk Identification, Management and Assessment". It aims to combine the fields of remote sensing technologies, including Sentinel data, and monitoring of cultural landscape for its improved protection and management. Part of this approach will be based on the use of InSAR techniques in order to monitor the temporal evolution of deformations through the detection and measurement of the effects of surface movements caused by various factors. The case study selected for Cyprus is the Nea Paphos archeological site and historical center of Paphos, which are listed as UNESCO World Heritage sites. The interdisciplinary approach adopted in this research was useful to identify major risks affecting the landscape of Cyprus and to classify the most suitable EO methods to assess and map such risks.

  12. Earth System Grid Center for Enabling Technologies: Building a Global Infrastructure for Climate Change Research

    SciTech Connect

    Williams, Dean N.; Ahrens, J.; Ananthakrishnan, R.; Bell, G.; Bharathi, S.; Brown, D.; Chen, M.; Chervenak, A. L.; Cinquini, L.; Drach, R.; Foster, I. T.; Fox, P.; Hankin, S.; Harper, D.; Hook, N.; Jones, P.; Middleton, D. E.; Miller, R.; Nienhouse, E.; Schweitzer, R.; Schuler, R.; Shipman, G.; Shoshani, A.; Siebenlist, F.; Sim, A.; Strand, W. G.; Wang, F.; Wilcox, H.; Wilhelmi, N.

    2010-08-16

    Established within DOE’s Scientific Discovery through Advanced Computing (SciDAC-) 2 program, with support from ASCR and BER, the Earth System Grid Center for Enabling Technologies (ESG-CET) is a consortium of seven laboratories (Argonne National Laboratory [ANL], Los Alamos National Laboratory [LANL], Lawrence Berkeley National Laboratory [LBNL], Lawrence Livermore National Laboratory [LLNL], National Center for Atmospheric Research [NCAR], Oak Ridge National Laboratory [ORNL], and Pacific Marine Environmental Laboratory [PMEL]), and two institutes (Rensselaer Polytechnic Institute [RPI] and the University of Southern California, Information Sciences Institute [USC/ISI]). The consortium’s mission is to provide climate researchers worldwide with a science gateway to access data, information, models, analysis tools, and computational capabilities required to evaluate extreme-scale data sets. Its stated goals are to (1) make data more useful to climate researchers by developing collaborative technology that enhances data usability; (2) meet the specific needs that national and international climate projects have for distributed databases, data access, and data movement; (3) provide a universal and secure web-based data access portal for broad-based multi-model data collections; and (4) provide a wide range of climate data-analysis tools and diagnostic methods to international climate centers and U.S. government agencies. To this end, the ESG-CET is working to integrate all highly publicized climate data sets—from climate simulations to observations—using distributed storage management, remote high-performance units, high-bandwidth wide-area networks, and user desktop platforms in a collaborative problem-solving environment.

  13. Measures to restore metallurgical mine wasteland using ecological restoration technologies: A case study at Longnan Rare Earth Mine

    NASA Astrophysics Data System (ADS)

    Rao, Yunzhang; Gu, Ruizhi; Guo, Ruikai; Zhang, Xueyan

    2017-01-01

    Whereas mining activities produce the raw materials that are crucial to economic growth, such activities leave extensive scarring on the land, contributing to the waste of valuable land resources and upsetting the ecological environment. The aim of this study is therefore to investigate various ecological technologies to restore metallurgical mine wastelands. These technologies include measures such as soil amelioration, vegetation restoration, different vegetation planting patterns, and engineering technologies. The Longnan Rare Earth Mine in the Jiangxi Province of China is used as the case study. The ecological restoration process provides a favourable reference for the restoration of a metallurgical mine wasteland.

  14. Earth Resources Technology Satellite: Non-US standard catalog No. N-13

    NASA Technical Reports Server (NTRS)

    1973-01-01

    To provide dissemination of information regarding the availability of Earth Resources Technology Satellite (ERTS) imagery, a Non-U.S. Standard Catalog is published on a monthly schedule. The catalogs identify imagery which has been processed and input to the data files during the preceding month. The Non-U.S. Standard Catalog includes imagery covering all areas except that of the United States, Hawaii, and Alaska. Imagery adjacent to the Continental U.S. and Alaska borders will normally appear in the U.S. Standard Catalog. As a supplement to these catalogs, an inventory of ERTS imagery on 16 millimeter microfilm is available. The catalogs consist of four parts: (1) annotated maps which graphically depict the geographic areas covered by the imagery listed in the current catalog, (2) a computer-generated listing organized by observation identification number (ID) with pertinent information for each image, (3) a computer listing of observations organized by longitude and latitude, and (4) observations which have had changes made in their catalog information since the original entry in the data base.

  15. NASA's Autonomous Formation Flying Technology Demonstration, Earth Observing-1(EO-1)

    NASA Technical Reports Server (NTRS)

    Folta, David; Bristow, John; Hawkins, Albin; Dell, Greg

    2002-01-01

    NASA's first autonomous formation flying mission, the New Millennium Program's (NMP) Earth Observing-1 (EO-1) spacecraft, recently completed its principal goal of demonstrating advanced formation control technology. This paper provides an overview of the evolution of an onboard system that was developed originally as a ground mission planning and operations tool. We discuss the Goddard Space Flight Center s formation flying algorithm, the onboard flight design and its implementation, the interface and functionality of the onboard system, and the implementation of a Kalman filter based GPS data smoother. A number of safeguards that allow the incremental phasing in of autonomy and alleviate the potential for mission-impacting anomalies from the on- board autonomous system are discussed. A comparison of the maneuvers planned onboard using the EO-1 autonomous control system to those from the operational ground-based maneuver planning system is presented to quantify our success. The maneuvers discussed encompass reactionary and routine formation maintenance. Definitive orbital data is presented that verifies all formation flying requirements.

  16. Research and Technology 1998

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This report highlights the challenging work accomplished during fiscal year 1998 by Ames research scientists, engineers, and technologists. It discusses research and technologies that enable the Information Age, that expand the frontiers of knowledge for aeronautics and space, and that help to maintain U.S. leadership in aeronautics and space research and technology development. The accomplishments are grouped into four categories based on NASA's four Strategic Enterprises: Aero-Space Technology, Space Science, Human Exploration and Development of Space, and Earth Science. The primary purpose of this report is to communicate knowledge-to inform our stakeholders, customers, and partners, and the people of the United States about the scope and diversity of Ames mission, the nature of Ames research and technology activities, and the stimulating challenges ahead. The accomplishments cited illustrate the contributions that Ames is making to improve the quality of life for our citizens and the economic position of the United States in the world marketplace.

  17. Research and Technology 1999

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This report highlights the challenging work accomplished during fiscal year 1999 by Ames research scientists, engineers, and technologists. It discusses research and technologies that enable the Information Age, that expand the frontiers of knowledge for aeronautics and space, and that help to maintain U.S. leadership in aeronautics and space research and technology development. The accomplishments are grouped into four categories based on NASA's four Strategic Enterprises: Aero-Space Technology, Space, Human Exploration and Development of Space, and Earth Science. The primary purpose of this report is to communicate knowledge-to inform our stakeholders, customers, and partners, and the people of the United States about the scope and diversity of Ames' mission, the nature of Ames' research and technology activities, and the stimulating challenges ahead. The accomplishments cited illustrate the contributions that Ames is making to improve the quality of life for our citizens and the economic position of the United States in the world marketplace.

  18. The Earth System Grid Center for Enabling Technologies (ESG-CET): Scaling the Earth System Grid to Petascale Data

    SciTech Connect

    Williams, Dean N.

    2007-09-27

    This report, which summarizes work carried out by the ESG-CET during the period April 1, 2007 through September 30, 2007, includes discussion of overall progress, period goals, highlights, collaborations and presentations. To learn more about our project, please visit the Earth System Grid website. In addition, this report will be forwarded to the DOE SciDAC project management, the Office of Biological and Environmental Research (OBER) project management, national and international stakeholders (e.g., the Community Climate System Model (CCSM), the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5), the Climate Science Computational End Station (CCES), etc.), and collaborators. The ESG-CET executive committee consists of David Bernholdt, ORNL; Ian Foster, ANL; Don Middleton, NCAR; and Dean Williams, LLNL. The ESG-CET team is a collective of researchers and scientists with diverse domain knowledge, whose home institutions include seven laboratories (ANL, LANL, LBNL, LLNL, NCAR, ORNL, PMEL) and one university (ISI/USC); all work in close collaboration with the project's stakeholders and domain researchers and scientists. During this semi-annual reporting period, the ESG-CET increased its efforts on completing requirement documents, framework design, and component prototyping. As we strove to complete and expand the overall ESG-CET architectural plans and use-case scenarios to fit our constituency's scope of use, we continued to provide production-level services to the community. These services continued for IPCC AR4, CCES, and CCSM, and were extended to include Cloud Feedback Model Intercomparison Project (CFMIP) data.

  19. Promoting Lifelong Ocean Education: Shaping Tomorrow's Earth Stewards and the Science and Technology Workforce

    NASA Technical Reports Server (NTRS)

    Meeson, Blanche

    2006-01-01

    The coming ocean observing systems provide an unprecedented opportunity to change both the public perception of our oceans, and to inspire, captivate and motivate our children, our young adults and even our fellow adults to pursue careers allied with the oceans and to become stewards of our Planet's last unexplored environment. Education plans for the operational component, the Integrated Ocean Observing System (IOOS), and for the research component, Ocean Research Interactive Observatory Networks (ORION), are designed to take advantage of this opportunity. In both cases, community recommendations were developed within the context of the following assumptions: 1. Utilize research on how people learn, especially the four-pronged model of simultaneous learner-centered, knowledge-center, assessment-centered and community-centered learning 2. Strive for maximum impact on national needs in science and technology learning 3. Build on the best of what is already in place 4. Pay special attention to quality, sustainability, and scalability of efforts 5. Use partnerships across federal, state and local government, academia, and industry. Community recommendations for 100s and ORION education have much in common and offer the opportunity to create a coherent education effort allied with ocean observing systems. Both efforts focus on developing the science and technology workforce of the future, and the science and technology literacy of the public within the context of the Earth system and the role of the oceans and Great Lakes in that system. Both also recognize that an organized education infrastructure that supports sustainability and scalability of education efforts is required if ocean observing education efforts are to achieve a small but measurable improvement in either of these areas. Efforts have begun to develop the education infrastructure by beginning to form a community of educators from existing ocean and aquatic education networks and by exploring needs and

  20. A Digital Library for the National Advisory Committee for Aeronautics

    NASA Technical Reports Server (NTRS)

    Nelson, Michael L.

    1999-01-01

    We describe the digital library (DL) for the National Advisory Committee for Aeronautics (NACA), the NACA Technical Report Server (NACATRS). The predecessor organization for the National Aeronautics and Space Administration (NASA), NACA existed from 1915 until 1958. The primary manifestation of NACA's research was the NACA report series. We describe the process of converting this collection of reports to digital format and making it available on the World Wide Web (WWW) and is a node in the NASA Technical Report Server (NTRS). We describe the current state of the project, the resulting DL technology developed from the project, and the future plans for NACATRS.

  1. Aeronautical engineering: A cumulative index to a continuing bibliography (supplement 248)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This publication is a cumulative index to the abstracts contained in Supplements 236 through 247 of Aeronautical Engineering: A Continuing Bibliography. The bibliographic series is compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). Seven indexes are included -- subject, personal author, corporate source, foreign technology, contract number, report number and accession number.

  2. Aeronautical engineering: A cumulative index to a continuing bibliography (supplement 235)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This publication is a cummulative index to the abstracts contained in Supplements 223 through 234 of Aeronautical Engineering: A Continuing Bibliography. The bibliographic series is compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). Seven indexes are included -- subject, personal author, corporate source, foreign technology, contract number, report number and accession number.

  3. Aeronautical Engineering: A cumulative index to the 1984 issues of the continuing bibliography

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This bibliography is a cumulative index to the abstracts contained in NASA SP-7037(171) through NASA SP-7037(182) of Aeronautical Engineering: A Continuing Bibliography. NASA SP-7037 and its supplements have been compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, foreign technology, contract, report number, and accession number indexes.

  4. Aeronautical engineering: A cumulative index to a continuing bibliography (supplement 325)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This publication is a cumulative index to the abstracts contained in NASA SP-7037 supplements 313 through 324 of Aeronautical Engineering: A Continuing Bibliography. The bibliographic series is compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). This Cumulative index includes: a subject, personal author, corporate source, foreign technology, contract number, report number, and accession number.

  5. Aeronautical engineering: A cumulative index to a continuing bibliography (supplement 274)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This publication is a cumulative index to the abstracts contained in supplements 262 through 273 of Aeronautical Engineering: A Continuing Bibliography. The bibliographic series is compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). Seven indexes are included: subject, personal author, corporate source, foreign technology, contract number, report number, and accession number.

  6. Aeronautical engineering: A cumulative index to a continuing bibliography (supplement 287)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This publication is a cummulative index to the abstracts contained in Supplements 275 through 286 of Aeronautical Engineering: A Continuing Bibliography. The bibliographic series is compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). Seven indexes are included -- subject, personal author, corporate source, foreign technology, contract number, report number and accession number.

  7. Aeronautical engineering: A cumulative index to a continuing bibliography (supplement 261)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This publication is a cummulative index to the abstracts contained in Supplements 249 through 260 of Aeronautical Engineering: A Continuing Bibliography. The bibliographic series is compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). Seven indexes are included -- subject, personal author, corporate source, foreign technology, contract number, report number and accession number.

  8. Tribology needs for future space and aeronautical systems

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1991-01-01

    Future aeronautical and space missions will push tribology technology beyond its current capability. The objective is to discuss the current state of the art of tribology as it is applied to advanced aircraft and spacecraft. Areas of discussion include materials lubrication mechanisms, factors affecting lubrication, current and future tribological problem areas, potential new lubrication techniques, and perceived technology requirements that need to be met in order to solve these tribology problems.

  9. 1981 Aeronautics and Space Highlights

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This video presentation covers Shuttle flights 1 and 2, Spacelab, mobile workstation, Voyager 2 Saturn, Infrared Astronomy Satellite, Hubble Space Telescope, Kuiper Airborne Observatory, High Altitude Earth Survey, Landsat, aerodynamic research, electric cars, wind energy, XV-15, Quiet Shorthaul Research Aircraft, X-14 BVTOL, 40 x 80 Wind Tunnel, and turboprop research.

  10. Preservation of Earth Science Data History with Digital Content Repository Technology

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Pan, J.; Shrestha, B.; Cook, R. B.

    2011-12-01

    An increasing need for derived and on-demand data product in Earth Science research makes the digital content more difficult for providers to manage and preserve and for users to locate, understand, and consume. Specifically, this increasing need presents additional challenges in managing data processing history information and delivering such information to end users. For example, the North American Carbon Program (NACP) Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) chose a modified SYNMAP land cover data as one of the input driver data for participating terrestrial biospheric models. The global 1km resolution SYNMAP data was created by harmonizing 3 remote sensing-based land cover products: GLCC, GLC2000, and the MODIS land cover product. The original SYNMAP land cover data was aggregated into half and quarter degree resolution. It was then enhanced with more detailed grassland and cropland types. Currently, there lacks an effective mechanism to convey this data processing information to different modeling teams for them to determine if a data product meets their needs. It still highly relies on offline human interaction. The NASA-sponsored ORNL DAAC has leveraged the contemporary digital object repository technology to promote the representation, management, and delivery of data processing history and provenance information. Within digital object repository, different data products are managed as objects, with metadata as attributes and content delivery and management services as dissemination methods. Derivation relationships among data products can be semantically referenced between digital objects. Within the repository, data users can easily track a derived data product back to its origin, explorer metadata and documents about each intermediate data product, and discover processing details involved in each derivation step. Coupled with Drupal Web Content Management System, the digital repository interface was enhanced to

  11. NASA's Role in Aeronautics: A Workshop. Volume 2: Military aviation

    NASA Technical Reports Server (NTRS)

    1981-01-01

    While the National Aeronautics and Space Act of 1958 makes DOD primarily responsible for military aeronautics, it stipulates a role for NASA in providing direct and indirect support for national defense. The existing role of NASA in support of military aeronautics is working well and is well coordinated. The role needs only to be kept effective and then improved by increasing its responsiveness to changing military requirements and by the selective application of additional people. Funding resources should also be made available to NASA for research. Specific roles that NASA could or should play were examined. It was determined that the most important areas for this support are in basic research, generic technology evolution, and facility support in the fields of aerodynamics, structures and materials, and propulsion.

  12. Anderson testifies on Planet Earth

    NASA Astrophysics Data System (ADS)

    Wainger, Lisa A.

    AGU president Don Anderson joined former astronaut Sally Ride and National Aeronautics and Space Administration official Lennard Fisk March 8 in testifying before the Senate committee on Commerce, Science, and Transportation. The three had been asked to speak on the future of the Mission to Planet Earth, proposed both in a National Academy of Sciences report and a NASA study.Anderson was chairman of the National Academy of Science's Task Group on Earth Sciences, which prepared the report Mission to Planet Earth as part of the series Space Science in the Twenty-First Century. In his testimony, Anderson highlighted parts of the report and quoted the frontispiece “We now have the technology and the incentive to move boldly forward on a Mission to Planet Earth. We call on the nation to implement an integrated global program using both spaceborne and earth-based instrumentation for fundamental research on the origin, evolution and nature of our planet, its place in our solar system, and its interaction with living things, including mankind.”

  13. Earth Resources Technology Satellite. Cumulative non-US standard catalog, 23 July 1972 - 23 July 1973. Volume 1: Observation ID

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A catalog containing data pertaining to the imagery acquired by the Earth Resources Technology Satellite (ERTS) from its date of launch, July 23, 1972 through the first year of activity is presented. The catalog supersedes the previous catalog which supplied data available through May 1973. Two listings of the imagery are included: (1) an observation identifications listing and (2) a listing of the imagery based on geographical location, the coordinate listing.

  14. Research Study to Identify Technology Requirements for Advanced Earth-Orbital Transportation Systems, Dual-Mode Propulsion

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The results of a study of dual mode propulsion concepts applied to advanced earth orbital transportation systems using reuseable single stage to orbit vehicle concepts were summarized. Both series burn and parallel burn modes of propulsion were analyzed for vertical takeoff, horizontal landing vehicles based on accelerated technology goals. A major study objective was to assess the merits of dual mode main propulsion concepts compared to single mode concepts for carrying payloads of Space Shuttle type to orbit.

  15. Research and Technology, 1995

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This report presents some of the challenging research and technology accomplished at NASA Ames Research Center during FY95. The accomplishments address almost all goals of NASA's four Strategic Enterprises: Aeronautics and Space Transportation Technology, Space Sciences, Human Exploration and Development of Space, and Mission to Planet Earth. The report's primary purpose is to inform stakeholders, customers, partners, colleagues, contractors, employees, and the American people in general about the scope and diversity of the research and technology activities. Additionally, the report will enable the reader to know how these goals are being addressed.

  16. The Role of Advanced Information System Technology in Remote Sensing for NASA's Earth Science Enterprise in the 21st Century

    NASA Technical Reports Server (NTRS)

    Prescott, Glenn; Komar, George (Technical Monitor)

    2001-01-01

    Future NASA Earth observing satellites will carry high-precision instruments capable of producing large amounts of scientific data. The strategy will be to network these instrument-laden satellites into a web-like array of sensors to facilitate the collection, processing, transmission, storage, and distribution of data and data products - the essential elements of what we refer to as "Information Technology." Many of these Information Technologies will enable the satellite and ground information systems to function effectively in real-time, providing scientists with the capability of customizing data collection activities on a satellite or group of satellites directly from the ground. In future systems, extremely large quantities of data collected by scientific instruments will require the fastest processors, the highest communication channel transfer rates, and the largest data storage capacity to insure that data flows smoothly from the satellite-based instrument to the ground-based archive. Autonomous systems will control all essential processes and play a key role in coordinating the data flow through space-based communication networks. In this paper, we will discuss those critical information technologies for Earth observing satellites that will support the next generation of space-based scientific measurements of planet Earth, and insure that data and data products provided by these systems will be accessible to scientists and the user community in general.

  17. PMEL contributions to the collaboration: SCALING THE EARTH SYSTEM GRID TO PETASCALE DATA for the DOE SciDACs Earth System Grid Center for Enabling Technologies

    SciTech Connect

    Hankin, Steve

    2012-06-01

    Drawing to a close after five years of funding from DOE's ASCR and BER program offices, the SciDAC-2 project called the Earth System Grid (ESG) Center for Enabling Technologies has successfully established a new capability for serving data from distributed centers. The system enables users to access, analyze, and visualize data using a globally federated collection of networks, computers and software. The ESG software now known as the Earth System Grid Federation (ESGF) has attracted a broad developer base and has been widely adopted so that it is now being utilized in serving the most comprehensive multi-model climate data sets in the world. The system is used to support international climate model intercomparison activities as well as high profile U.S. DOE, NOAA, NASA, and NSF projects. It currently provides more than 25,000 users access to more than half a petabyte of climate data (from models and from observations) and has enabled over a 1,000 scientific publications.

  18. Quarterly Bulletin of the Division of Mechanical Engineering and the National Aeronautical Establishment, Ottawa, 1 July to 30 September 1978.

    DTIC Science & Technology

    FOREIGN TECHNOLOGY, DATA PROCESSING, YAW, REAL TIME, SHOCK WAVES, CANADA, AERONAUTICS, MODEL TESTS, MECHANICAL ENGINEERING , GAS DISCHARGES, NAVAL ARCHITECTURE, HYDRODYNAMICS, SHOCK TUBES, LASER TRACKING, RAILROAD CARS.

  19. Earth System Grid Center for Enabling Technologies (ESG-CET): A Data Infrastructure for Data-Intensive Climate Research

    SciTech Connect

    Williams, Dean N.

    2011-06-03

    For the Earth System Grid Federation (ESGF), the ESG-CET team has led international development and delivered a production environment for managing and accessing ultrascale climate data. This production environment includes multiple national and international climate projects (e.g., Couple Model Intercomparison Project, Community Earth System Model), ocean model data (such as the Parallel Ocean Program), observation data (Carbon Dioxide Information and Analysis Center, Atmospheric Infrared Sounder, and so forth), and analysis and visualization tools, all of which serve a diverse community of users. These data holdings and services are distributed across multiple ESG-CET sites (such as LANL, LBNL, LLNL, NCAR, and ORNL) as well as at unfunded partners sites such as the Australian National University National Computational Infrastructure, the British Atmospheric Data Centre, the National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory, the Max Planck Institute for Meteorology, the German Climate Computing Centre, and the National Aeronautics and Space Administration Jet Propulsion Laboratory. More recently, ESG-CET has been extending services beyond data-file access and delivery to develop more detailed information products (scientific graphics, animations, etc.), secure binary data-access services (based upon the OPeNDAP protocol), and server-side analysis capabilities. These will allow users to request data subsets transformed through commonly used analysis and intercomparison procedures. As we transition from development activities to production and operations, the ESG-CET team is tasked with making data available to all users seeking to understand, process, extract value from, visualize, and/or communicate it to others. This ongoing effort, though daunting in scope and complexity, will greatly magnify the value of numerical climate model outputs and climate observations for future national and international climate-assessment reports

  20. The NASA Experience in Aeronautical R&D: Three Case Studies with Analysis

    DTIC Science & Technology

    1989-03-01

    Reactors and the Supersonic Transport ," Public Policy, 19 (1971), pp. 403-427. 9 ., Chapter 1. Roles and Missions happened, with repeated attempts to define...Technology: Power Reactors and the Supersonic Transport ," Public Policy, 19 (1971) pp. 403427. 169 "Aeronautics" is used here to include the Standard...of the Benefits and Costs for Aeronautical Research and Technology," in CTOL Transport Technology, 1978, NASA Conference Publication #2036, February

  1. Aeronautical Engineering: A Continuing Bibliography. Supplement 421

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP#2000-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.

  2. Aeronautical engineering: A cumulative index to a continuing bibliography (supplement 300)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This publication is a cumulative index to the abstracts contained in supplements 288 through 299 of Aeronautical Engineering: A Continuing Bibliography. The bibliographic series is compiled through the efforts of the Center for Aerospace Information of the National Aeronautics and Space Administration (NASA). Seven indexes are included: subject, personal author, corporate source, foreign technology, contract number, report number, and accession number.

  3. Aeronautics Education, Research, and Industry Alliance (AERIAL) Year 2 Report and Year 3 Proposal

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.; Box, Richard C.; Fink, Mary M.; Gogos, Geroge; Lehrer, Henry R.; Narayanan, Ram M.; Nickerson, Jocelyn S.; Tarry, Scott E.; Vlasek, Karisa D.

    2003-01-01

    The Aeronautics Education, Research, and Industry Alliance (AERIAL): a comprehensive, multi-faceted NASA EPSCoR 2000 initiative, contributes to the strategic research and technology priorities of NASA while intensifying Nebraska s rapidly growing aeronautics research and development endeavors. AERIAL enables Nebraska researchers to: (a) continue strengthening their collaborative relationships with NASA Field Centers, Codes, and Enterprises; (b) increase the capacity of higher education throughout Nebraska to invigorate and expand aeronautics research; and (c) expedite the development of aeronautics-related research infrastructure and industry in the state. This report contains a summary of AERIAL's activities and accomplishments during the second year of implementation. The AERIAL Year 3 proposal is also included.

  4. 14 CFR 61.125 - Aeronautical knowledge.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... and effects of exceeding aircraft performance limitations; (9) Use of aeronautical charts and a..., and emergency operations appropriate to the aircraft; (14) Night and high-altitude operations;...

  5. 14 CFR 61.125 - Aeronautical knowledge.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... and effects of exceeding aircraft performance limitations; (9) Use of aeronautical charts and a..., and emergency operations appropriate to the aircraft; (14) Night and high-altitude operations;...

  6. 14 CFR 61.125 - Aeronautical knowledge.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... and effects of exceeding aircraft performance limitations; (9) Use of aeronautical charts and a..., and emergency operations appropriate to the aircraft; (14) Night and high-altitude operations;...

  7. 76 FR 16643 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-24

    ... From the Federal Register Online via the Government Publishing Office NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Meeting AGENCY: National Aeronautics... Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space Administration announces...

  8. 77 FR 61432 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-09

    ... From the Federal Register Online via the Government Publishing Office NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Meeting AGENCY: National Aeronautics... Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space Administration announces...

  9. 75 FR 50782 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-17

    ... From the Federal Register Online via the Government Publishing Office NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Meeting AGENCY: National Aeronautics... Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space Administration announces...

  10. 76 FR 40753 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-11

    ... From the Federal Register Online via the Government Publishing Office NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Meeting AGENCY: National Aeronautics... Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space Administration announces...

  11. 75 FR 41240 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-15

    ... From the Federal Register Online via the Government Publishing Office NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Meeting AGENCY: National Aeronautics... Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space Administration announces...

  12. Phased-Array Satcom Antennas Developed for Aeronautical Applications

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.

    2001-01-01

    The Advanced Communications (AC) for Aeronautics research at the NASA Glenn Research Center integrates both aeronautics and space communications technologies to achieve the national objective of upgrading the present National Airspace System infrastructure by responding to the agency's aviation capacity and safety goals. One concept for future air traffic management, free flight, presents a significantly increased demand for communications systems capacity and performance in comparison to current air traffic management practices. Current aeronautical communications systems are incapable of supporting the anticipated demands, and the new digital data communications links that are being developed, or are in the early stages of implementation, are not primarily designed to carry the data-intensive free flight air traffic management (ATM) communications loads. Emerging satellite communications technologies are the best potential long-term solution to provide the capacity and performance necessary to enable a mature free flight concept to be deployed. NASA AC/ATM funded the development of a Boeing-designed Ku-band transmit phased-array antenna, a combined in-house and contract effort. Glenn designed and integrated an Aeronautical Mobile Satellite Communications terminal based on the transmit phased-array antenna and a companion receive phased-array antenna previously developed by Boeing.

  13. Proceedings of the Near-Earth-Object Interception Workshop

    NASA Technical Reports Server (NTRS)

    Canavan, G. J. (Editor); Solem, J. C. (Editor); Rather, John D. G. (Editor)

    1993-01-01

    The National Aeronautics and Space Administration Headquarters sponsored the Near-Earth-Object Interception Workshop hosted by the Los Alamos National Laboratory on 14-16 Jan. 1992 at the J. Robert Oppenheimer Study Center in Los Alamos, New Mexico. The Workshop evaluated the issues involved in intercepting celestial objects that could hit the Earth. It covered the technologies for acquiring, tracking, and homing, as well as those for sending interceptors to inspect, rendezvous with, land on, irradiate, deflect, or destroy them. This report records the presentations and technical options reviewed.

  14. Proceedings of the Near-Earth-Object Interception workshop

    SciTech Connect

    Canavan, G.J.; Solem, J.C.; Rather, D.G.

    1993-02-01

    The National Aeronautics and Space Administration Headquarters sponsored the Near-Earth-Object Interception Workshop hosted by the Los Alamos National Laboratory on January 14--16, 1992 at the J. Robert Oppenheimer Study Center in Los Alamos, New Mexico. The Workshop evaluated the issues involved in intercepting celestial objects that could hit the Earth. It covered the technologies for acquiring, tracking, and homing, as well as those for sending interceptors to inspect, rendezvous with, land on, irradiate, deflect, or destroy them. This report records the presentations and technical options reviewed.

  15. Reynolds number influences in aeronautics

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M.; Yip, Long P.; Yao, Chung-Sheng; Lin, John C.; Lawing, Pierce L.; Batina, John T.; Hardin, Jay C.; Horvath, Thomas J.; Fenbert, James W.; Domack, Christopher S.

    1993-01-01

    Reynolds number, a measure of the ratio of inertia to viscous forces, is a fundamental similarity parameter for fluid flows and therefore, would be expected to have a major influence in aerodynamics and aeronautics. Reynolds number influences are generally large, but monatomic, for attached laminar (continuum) flow; however, laminar flows are easily separated, inducing even stronger, non-monatomic, Reynolds number sensitivities. Probably the strongest Reynolds number influences occur in connection with transitional flow behavior. Transition can take place over a tremendous Reynolds number range, from the order of 20 x 10(exp 3) for 2-D free shear layers up to the order of 100 x 10(exp 6) for hypersonic boundary layers. This variability in transition behavior is especially important for complex configurations where various vehicle and flow field elements can undergo transition at various Reynolds numbers, causing often surprising changes in aerodynamics characteristics over wide ranges in Reynolds number. This is further compounded by the vast parameterization associated with transition, in that any parameter which influences mean viscous flow development (e.g., pressure gradient, flow curvature, wall temperature, Mach number, sweep, roughness, flow chemistry, shock interactions, etc.), and incident disturbance fields (acoustics, vorticity, particulates, temperature spottiness, even electro static discharges) can alter transition locations to first order. The usual method of dealing with the transition problem is to trip the flow in the generally lower Reynolds number wind tunnel to simulate the flight turbulent behavior. However, this is not wholly satisfactory as it results in incorrectly scaled viscous region thicknesses and cannot be utilized at all for applications such as turbine blades and helicopter rotors, nacelles, leading edge and nose regions, and High Altitude Long Endurance and hypersonic airbreathers where the transitional flow is an innately critical

  16. Opportunities in Education and Public Outreach for Scientists at the School of Ocean and Earth Sciences and Technology

    NASA Astrophysics Data System (ADS)

    Hicks, T.

    2004-12-01

    The School of Ocean and Earth Sciences and Technology (SOEST) at the University of Hawaii at Manoa is home to twelve diverse research institutes, programs and academic departments that focus on a wide range of earth and planetary sciences. SOEST's main outreach goals at the K-12 level are to increase the awareness of Hawaii's schoolchildren regarding earth, ocean, and space science, and to inspire them to consider a career in science. Education and public outreach efforts in SOEST include a variety of programs that engage students and the public in formal as well as informal educational settings, such as our biennial Open House, expedition web sites, Hawaii Ocean Science Bowl, museum exhibits, and programs with local schools. Some of the projects that allow for scientist involvement in E/PO include visiting local classrooms, volunteering in our outreach programs, submitting lessons and media files to our educational database of outreach materials relating to earth and space science research in Hawaii, developing E/PO materials to supplement research grants, and working with local museum staff as science experts.

  17. LightSAR Pushes Both the Technology and the Economics

    NASA Technical Reports Server (NTRS)

    Bard, S.

    1998-01-01

    As part of the strategic plan for its Earth Science Enterprise, the U.S. National Aeronautics and Space Administration (NASA) is committed to fostering the development and prosperous use of imaging radar science and technology in both the public and private sectors.

  18. DOE SciDAC’s Earth System Grid Center for Enabling Technologies Final Report for University of Southern California Information Sciences Institute

    SciTech Connect

    Chervenak, Ann Louise

    2013-12-19

    The mission of the Earth System Grid Federation (ESGF) is to provide the worldwide climate-research community with access to the data, information, model codes, analysis tools, and intercomparison capabilities required to make sense of enormous climate data sets. Its specific goals are to (1) provide an easy-to-use and secure web-based data access environment for data sets; (2) add value to individual data sets by presenting them in the context of other data sets and tools for comparative analysis; (3) address the specific requirements of participating organizations with respect to bandwidth, access restrictions, and replication; (4) ensure that the data are readily accessible through the analysis and visualization tools used by the climate research community; and (5) transfer infrastructure advances to other domain areas. For the ESGF, the U.S. Department of Energy’s (DOE’s) Earth System Grid Center for Enabling Technologies (ESG-CET) team has led international development and delivered a production environment for managing and accessing ultra-scale climate data. This production environment includes multiple national and international climate projects (such as the Community Earth System Model and the Coupled Model Intercomparison Project), ocean model data (such as the Parallel Ocean Program), observation data (Atmospheric Radiation Measurement Best Estimate, Carbon Dioxide Information and Analysis Center, Atmospheric Infrared Sounder, etc.), and analysis and visualization tools, all serving a diverse user community. These data holdings and services are distributed across multiple ESG-CET sites (such as ANL, LANL, LBNL/NERSC, LLNL/PCMDI, NCAR, and ORNL) and at unfunded partner sites, such as the Australian National University National Computational Infrastructure, the British Atmospheric Data Centre, the National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory, the Max Planck Institute for Meteorology, the German Climate Computing

  19. Overview of the National Aeronautics and Space Administration's Nondestructive Evaluation (NDE) Program

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.

    2002-01-01

    NASA's Office of Safety and Mission Assurance sponsors an Agency-wide NDE Program that supports Aeronautics and Space Transportation Technology, Human Exploration and Development of Space, Earth Science, and Space Science Enterprises. For each of these Enterprises, safety is the number one priority. Development of the next generation aero-space launch and transportation vehicles, satellites, and deep space probes have highlighted the enabling role that NDE plays in these advanced technology systems. Specific areas of advanced component development, component integrity, and structural heath management are critically supported by NDE technologies. The simultaneous goals of assuring safety, maintaining overall operational efficiency, and developing and utilizing revolutionary technologies to expand human activity and space-based commerce in the frontiers of air and space places increasing demands on the Agencies NDE infrastructure and resources. In this presentation, an overview of NASA's NDE Program will be presented, that includes a background and status of current Enterprise NDE issues, and the NDE investment areas being developed to meet Enterprise safety and mission assurance needs through the year 2009 and beyond.

  20. Multibeam satellite EIRP adaptability for aeronautical communications.

    NASA Technical Reports Server (NTRS)

    Kinal, G. V.; Bisaga, J. J.

    1973-01-01

    EIRP enhancement and management techniques, emphasizing aeronautical communications and adaptable multibeam concepts, are classified and characterized. User requirement and demand characteristics that exploit the improvement available from each technique are identified, and the relative performance improvement of each is discussed. It is concluded that aeronautical satellite communications could benefit greatly by the employment of these techniques.

  1. NASA's K/Ka-Band Broadband Aeronautical Terminal for Duplex Satellite Video Communications

    NASA Technical Reports Server (NTRS)

    Densmore, A.; Agan, M.

    1994-01-01

    JPL has recently begun the development of a Broadband Aeronautical Terminal (BAT) for duplex video satellite communications on commercial or business class aircraft. The BAT is designed for use with NASA's K/Ka-band Advanced Communications Technology Satellite (ACTS). The BAT system will provide the systems and technology groundwork for an eventual commercial K/Ka-band aeronautical satellite communication system. With industry/government partnerships, three main goals will be addressed by the BAT task: 1) develop, characterize and demonstrate the performance of an ACTS based high data rate aeronautical communications system; 2) assess the performance of current video compression algorithms in an aeronautical satellite communication link; and 3) characterize the propagation effects of the K/Ka-band channel for aeronautical communications.

  2. Holistic Approach to Secondary Earth Science Teacher Professional Development: the Triad of Project-based Instruction, Earth Science Content, and GIS Technology

    NASA Astrophysics Data System (ADS)

    Rubino-Hare, L.; Sample, J. C.; Fredrickson, K.; Claesgens, J.; Bloom, N.; Henderson-Dahms, C.; Manone, M.

    2011-12-01

    We have provided two years of professional development for secondary and middle school teachers with a focus on project-based instruction (PBI) using GIS. The EYE-POD project (funded by NSF-ITEST) involved pairs of teachers from Arizona and the surrounding region in two-week institutes during Summer, 2010, and an advanced institute in Summer, 2011. The NAz-POD project (funded by Arizona Department of Education and administered by Science Foundation Arizona) provided similar PD experiences, but the institutes occurred during weekends in the academic year. The institutes were led by a team with expertise in Earth science content, professional development and pedagogy, and GIS. The teachers developed learning modules using the project based learning instructional model. Pedagogy, content, and GIS skills were combined throughout the professional development activities. Academic year follow up by NAU personnel included classroom observations and technical support. For assessing student work we provided a rubric, but learned that teachers were not prepared to assess GIS products in order to determine the level of student understanding. In year two of the project we incorporated strategies for assessment of student products into the professional development. Teacher-participants and their students completed several pre- and post- assessments. Teacher assessments included a geospatial performance assessment, classroom observations, and content tests. Student data collection included attitude and efficacy questionnaires, content tests, and authentic assessments including products using GIS. Content tests were the same for teachers and students and included spatial reasoning, data analysis, and Earth science content. Data was also collected on teacher perception of professional development delivery and self-reported confidence in teaching with PBI and geospatial technology. Student assessments show that improvement occurred in all areas on the content test. Possible factors

  3. Carbon footprint assessment of recycling technologies for rare earth elements: A case study of recycling yttrium and europium from phosphor.

    PubMed

    Hu, Allen H; Kuo, Chien-Hung; Huang, Lance H; Su, Chao-Chin

    2017-02-01

    Rare earth elements are key raw materials in high-technology industries. Mining activities and manufacturing processes of such industries have caused considerable environmental impacts, such as soil erosion, vegetation destruction, and various forms of pollution. Sustaining the long-term supply of rare earth elements is difficult because of the global shortage of rare earth resources. The diminishing supply of rare earth elements has attracted considerable concern because many industrialized countries regarded such elements as important strategic resources for economic growth. This study aims to explore the carbon footprints of yttrium and europium recovery techniques from phosphor. Two extraction recovery methods, namely, acid extraction and solvent extraction, were selected for the analysis and comparison of carbon footprints. The two following functional units were used: (1) the same phosphor amounts for specific Y and Eu recovery concentrations, and (2) the same phosphor amounts for extraction. For acid extraction method, two acidic solutions (H2SO4 and HCl) were used at two different temperatures (60 and 90°C). For solvent extraction method, acid leaching was performed followed by ionic liquid extraction. Carbon footprints from acid and solvent extraction methods were estimated to be 10.1 and 10.6kgCO2eq, respectively. Comparison of the carbon emissions of the two extraction methods shows that the solvent extraction method has significantly higher extraction efficiency, even though acid extraction method has a lower carbon footprint. These results may be used to develop strategies for life cycle management of rare earth resources to realize sustainable usage.

  4. Getting Out of Orbit: Water Recycling Requirements and Technology Needs for Long Duration Missions Away from Earth

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.

    2017-01-01

    Deep-space crewed missions will not have regular access to the Earth's resources or the ability to rapidly return to Earth if a system fails. As crewed missions extend farther from Earth for longer periods, habitation systems must become more self-sufficient and reliable for safe, healthy, and sustainable human exploration. For human missions to Mars, Environmental Control and Life Support Systems (ECLSS) must be able operate for up to 1,100 days with minimal spares and consumables. These missions will require capabilities to more fully recycle atmospheric gases and wastewater to substantially reduce mission costs. Even with relatively austere requirements for use, water represents one of the largest consumables by mass. Systems must be available to extract and recycle water from all sources of waste. And given that there will be no opportunity to send samples back to Earth for analysis, analytical measurements will be limited to monitoring hardware brought on board the spacecraft. The Earth Reliant phase of NASA's exploration strategy includes leveraging the International Space Station (ISS) to demonstrate advanced capabilities for a robust and reliable ECLSS. The ISS Water Recovery System (WRS) includes a Urine Processor Assembly (UPA) for distillation and recovery of water from urine and a Water Processor Assembly (WPA) to process humidity condensate and urine distillate into potable water. Possible enhancements to more fully "close the water loop" include recovery of water from waste brines and solid wastes. A possible game changer is the recovery of water from local planetary resources through use of In Situ Resource Utilization (ISRU) technologies. As part of the development and demonstration sequence, NASA intends to utilize cis-Lunar space as a Proving Ground to verify systems for deep space habitation by conducting extended duration missions to validate our readiness for Mars.

  5. Creating a Down-to-Earth Approach to Teaching Science, Math and Technology.

    ERIC Educational Resources Information Center

    Williamson, Robert; Smoak, Ellen

    1999-01-01

    Down-to-Earth is a program designed to increase 9- to 12-year olds' critical thinking and problem solving by teaching gardening through the scientific method. The combination of multi- and interdisciplinary topics has increased achievement and resulted in attitudinal and behavioral changes. (SK)

  6. Handbook for Building Homes of Earth. Appropriate Technologies for Development. Reprint R-34.

    ERIC Educational Resources Information Center

    Wolfskill, Lyle A.; And Others

    This manual, developed by the Agency for International Development and used by the Peace Corps, explains how to build homes made of earth. Information came from reports, books, and articles from many countries, coupled with research by soil engineers at Texas A & M University. It is presented in the most nontechnical format possible. The…

  7. The Global Energy Situation on Earth, Student Guide. Computer Technology Program Environmental Education Units.

    ERIC Educational Resources Information Center

    Northwest Regional Educational Lab., Portland, OR.

    This is the student guide in a set of five computer-oriented environmental/energy education units. Contents of this guide are: (1) Introduction to the unit; (2) The "EARTH" program; (3) Exercises; and (4) Sources of information on the energy crisis. This guide supplements a simulation which allows students to analyze different aspects of…

  8. Reference Data Layers for Earth and Environmental Science: History, Frameworks, Science Needs, Approaches, and New Technologies

    NASA Astrophysics Data System (ADS)

    Lenhardt, W. C.

    2015-12-01

    Global Mapping Project, Web-enabled Landsat Data (WELD), International Satellite Land Surface Climatology Project (ISLSCP), hydrology, solid earth dynamics, sedimentary geology, climate modeling, integrated assessments and so on all have needs for or have worked to develop consistently integrated data layers for Earth and environmental science. This paper will present an overview of an abstract notion of data layers of this types, what we are referring to as reference data layers for Earth and environmental science, highlight some historical examples, and delve into new approaches. The concept of reference data layers in this context combines data availability, cyberinfrastructure and data science, as well as domain science drivers. We argue that current advances in cyberinfrastructure such as iPython notebooks and integrated science processing environments such as iPlant's Discovery Environment coupled with vast arrays of new data sources warrant another look at the how to create, maintain, and provide reference data layers. The goal is to provide a context for understanding science needs for reference data layers to conduct their research. In addition, to the topics described above this presentation will also outline some of the challenges to and present some ideas for new approaches to addressing these needs. Promoting the idea of reference data layers is relevant to a number of existing related activities such as EarthCube, RDA, ESIP, the nascent NSF Regional Big Data Innovation Hubs and others.

  9. NASA's Role in Aeronautics: A Workshop. Volume 3: Transport aircraft

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Segments of the spectrum of research and development activities that clearly must be within the purview of NASA in order for U.S. transport aircraft manufacturing and operating industries to succeed and to continue to make important contributions to the nation's wellbeing were examined. National facilities and expertise; basic research, and the evolution of generic and vehicle class technologies were determined to be the areas in which NASA has an essential role in transport aircraft aeronautics.

  10. A Study of Oceans and Atmospheric Interactions Associated with Tropical Cyclone Activity using Earth Observing Technology

    NASA Astrophysics Data System (ADS)

    Abdullah, Warith; Reddy, Remata

    From October 22nd to 30th, 2012 Hurricane Sandy was a huge storm of many abnormalities causing an estimated 50 billion dollars in damage. Tropical storm development states systems’ energy as product of warm sea surface temperatures (SST’s) and tropical cyclone heat potential (TCHP). Advances in Earth Observing (EO) technology, remote sensing and proxy remote sensing have allowed for accurate measurements of SST and TCHP information. In this study, we investigated rapid intensification of Sandy through EO applications for precipitable water vapor (PWAT), SST’s and TCHP during the period of October 27th. These data were obtained from NASA and NOAA satellites and NOAA National Buoy data center (NDBC). The Sensible Heat (Qs) fluxes were computed to determine available energy resulting from ocean-atmosphere interface. Buoy 41010, 120 NM east of Cape Canaveral at 0850 UTC measured 22.3 °C atmospheric temperatures and 27 °C SST, an interface of 4.7 °C. Sensible heat equation computed fluxes of 43.7 W/m2 at 982.0 mb central pressure. Sandy formed as late-season storm and near-surface air temperatures averaged > 21 °C according to NOAA/ESRL NCEP/NCAR reanalysis at 1000 mb and GOES 13 (EAST) geostationary water vapor imagery shows approaching cold front during October 27th. Sandy encountered massive dry air intrusion to S, SE and E quadrants of storm while travelling up U.S east coast but experienced no weakening. Cool, dry air intrusion was considered for PWAT investigation from closest sounding station during Oct. 27th 0900 - 2100 UTC at Charleston, SC station 72208. Measured PWAT totaled 42.97 mm, indicating large energy potential supply to the storm. The Gulf Stream was observed using NASA Short-term Prediction Research and Transition Center (SPoRT) MODIS SST analysis. The results show 5 °C warmer above average than surrounding cooler water, with > 25 °C water extent approximately 400 NM east of Chesapeake Bay and eddies > 26 °C. Results from sensible heat

  11. Discover Earth

    NASA Technical Reports Server (NTRS)

    Steele, Colleen

    1998-01-01

    Discover Earth is a NASA-sponsored project for teachers of grades 5-12, designed to: (1) enhance understanding of the Earth as an integrated system; (2) enhance the interdisciplinary approach to science instruction; and (3) provide classroom materials that focus on those goals. Discover Earth is conducted by the Institute for Global Environmental Strategies in collaboration with Dr. Eric Barron, Director, Earth System Science Center, The Pennsylvania State University; and Dr. Robert Hudson, Chair, the Department of Meteorology, University of Maryland at College Park. The enclosed materials: (1) represent only part of the Discover Earth materials; (2) were developed by classroom teachers who are participating in the Discover Earth project; (3) utilize an investigative approach and on-line data; and (4) can be effectively adjusted to classrooms with greater/without technology access. The Discover Earth classroom materials focus on the Earth system and key issues of global climate change including topics such as the greenhouse effect, clouds and Earth's radiation balance, surface hydrology and land cover, and volcanoes and climate change. All the materials developed to date are available on line at (http://www.strategies.org) You are encouraged to submit comments and recommendations about these materials to the Discover Earth project manager, contact information is listed below. You are welcome to duplicate all these materials.

  12. Earth: Earth Science and Health

    NASA Technical Reports Server (NTRS)

    Maynard, Nancy G.

    2001-01-01

    A major new NASA initiative on environmental change and health has been established to promote the application of Earth science remote sensing data, information, observations, and technologies to issues of human health. NASA's Earth Sciences suite of Earth observing instruments are now providing improved observations science, data, and advanced technologies about the Earth's land, atmosphere, and oceans. These new space-based resources are being combined with other agency and university resources, data integration and fusion technologies, geographic information systems (GIS), and the spectrum of tools available from the public health community, making it possible to better understand how the environment and climate are linked to specific diseases, to improve outbreak prediction, and to minimize disease risk. This presentation is an overview of NASA's tools, capabilities, and research advances in this initiative.

  13. Aeronautical Engineering: A Continuing Bibliography. Supplment 385

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-1998-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract.

  14. Lessons Learned on Operating and Preparing Operations for a Technology Mission from the Perspective of the Earth Observing-1 Mission

    NASA Technical Reports Server (NTRS)

    Mandl, Dan; Howard, Joseph

    2000-01-01

    The New Millennium Program's first Earth-observing mission (EO-1) is a technology validation mission. It is managed by the NASA Goddard Space Flight Center in Greenbelt, Maryland and is scheduled for launch in the summer of 2000. The purpose of this mission is to flight-validate revolutionary technologies that will contribute to the reduction of cost and increase of capabilities for future land imaging missions. In the EO-1 mission, there are five instrument, five spacecraft, and three supporting technologies to flight-validate during a year of operations. EO-1 operations and the accompanying ground system were intended to be simple in order to maintain low operational costs. For purposes of formulating operations, it was initially modeled as a small science mission. However, it quickly evolved into a more complex mission due to the difficulties in effectively integrating all of the validation plans of the individual technologies. As a consequence, more operational support was required to confidently complete the on-orbit validation of the new technologies. This paper will outline the issues and lessons learned applicable to future technology validation missions. Examples of some of these include the following: (1) operational complexity encountered in integrating all of the validation plans into a coherent operational plan, (2) initial desire to run single shift operations subsequently growing to 6 "around-the-clock" operations, (3) managing changes in the technologies that ultimately affected operations, (4) necessity for better team communications within the project to offset the effects of change on the Ground System Developers, Operations Engineers, Integration and Test Engineers, S/C Subsystem Engineers, and Scientists, and (5) the need for a more experienced Flight Operations Team to achieve the necessary operational flexibility. The discussion will conclude by providing several cost comparisons for developing operations from previous missions to EO-1 and

  15. Remote sensing: The application of space technology to the survey of the earth and its environment

    NASA Technical Reports Server (NTRS)

    Schertler, R. J.

    1973-01-01

    Research in the earth sciences and management of both natural and man-made resources has been hindered by the difficulty of obtaining accurate and timely information on regional and global scale. Space surveys with remote sensing instruments are simply another means of attempting to attain the total knowledge of the resources needed for sound planning, development, and conservation. The use of earth orbiting satellites will greatly expand the ability to collect this information. The collection and use of these data and imagery, however, are now an end in itself, but only the means to an end, that of achieving total resource knowledge. Satellite systems will provide a valuable supplement to existing aerial and ground based observation techniques.

  16. Aeronautics and space report of the President, 1983 activities

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Achievements in communication; space science; space transportation; aeronautics; and Earth resources and environment are summarized. Activities of the various Federal agencies and cooperation with NASA in these areas are described. The Presidential policy announcement on the endorsement of commercial operation of expendable launch vehicles is included. Tables show, the space activities budget; a historical budget summary, U.S. space launch vehicles; U.S. and Soviet manned spaceflights, 1961 to 1983; U.S. launched space probes, 1975 to 1983; U.S. launched scientific and applications satellites, 1978 to 1983; the U.S. spacecraft record; the world record of space launches successful in attaining Earth orbit or beyond; and successful U.S. launchings for 1983.

  17. Survey of Technologies Relevant to Defense From Near-Earth Objects

    NASA Technical Reports Server (NTRS)

    Adams, R. B.; Alexander, R.; Bonemetti, J.; Chapman, J.; Fincher, S.; Hopkins, R.; Kalkstein, M.; Polsgrove, T.; Statham, G.; White, S.

    2004-01-01

    Several recent near-miss encounters with asteroids and comets have focused attention on the threat of a catastrophic impact with the Earth. This Technical Publication reviews the historical impact record and current understanding of the number and location of near-Earth objects (NEOs) to address their impact probability. Various ongoing projects intended to survey and catalog the NEO population are also reviewed. Details are given of a Marshall Space Right Center-led study intended to develop and assess various candidate systems for protection of the Earth against NEOs. Details of analytical tools, trajectory tools, and a tool that was created to model both the undeflected inbound path of an NEO as well as the modified, post-deflection path are given. A representative selection of these possible options was modeled and evaluated. It is hoped that this study will raise the level of attention about this very real threat and also demonstrate that successful defense is both possible and practicable, provided appropriate steps are taken.

  18. Survey of Technologies Relevant to Defense From Near-Earth Objects

    NASA Technical Reports Server (NTRS)

    Adams, R. B.; Alexander, R.; Bonometti, J.; Chapman, J.; Fincher, S.; Hopkins, R.; Kalkstein, M.; Polsgrove, T.; Statham, G.; White, S.

    2004-01-01

    Several recent near-miss encounters with asteroids and comets have focused attention on the threat of a catastrophic impact with the Earth. This Technical Publication reviews the historical impact record and current understanding of the number and location of near-Earth objects (NEOs) to address their impact probability. Various ongoing projects intended to survey and catalog the NEO population are also reviewed. Details are given of a Marshall Space Flight Center-led study intended to develop and assess various candidate systems for protection of the Earth against NEOs. Details of analytical tools, trajectory tools, and a tool that was created to model both the undeflected inbound path of an NEO as well as the modified, postdeflection path are given. A representative selection of these possible options was modeled and evaluated. It is hoped that this study will raise the level of attention about this very real threat and also demonstrate that successful defense is both possible and practicable, provided appropriate steps are taken.

  19. Proceedings of the NSSDC Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Blackwell, Kim; Blasso, Len (Editor); Lipscomb, Ann (Editor)

    1991-01-01

    The proceedings of the National Space Science Data Center Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications held July 23 through 25, 1991 at the NASA/Goddard Space Flight Center are presented. The program includes a keynote address, invited technical papers, and selected technical presentations to provide a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include magnetic disk and tape technologies, optical disk and tape, software storage and file management systems, and experiences with the use of a large, distributed storage system. The technical presentations describe integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990's.

  20. Technology transfer opportunities: patent license: electrochemical technique for introducing and redistributing ionic species into the earth

    USGS Publications Warehouse

    Leinz, Reinhard

    1996-01-01

    Scientists at the U.S. Geological Survey have expanded applications of the Chim electrode, technology used to perform partial geochemical extractions from soils. Recent applications of the the improved electrode technology show that geochemical extraction efficiencies can be improved by 2 orders of magnitude or better to about 30%.

  1. Sharing meanings: developing interoperable semantic technologies to enhance reproducibility in earth and environmental science research

    NASA Astrophysics Data System (ADS)

    Schildhauer, M.

    2015-12-01

    Earth and environmental scientists are familiar with the entities, processes, and theories germane to their field of study, and comfortable collecting and analyzing data in their area of interest. Yet, while there appears to be consistency and agreement as to the scientific "terms" used to describe features in their data and analyses, aside from a few fundamental physical characteristics—such as mass or velocity-- there can be broad tolerances, if not considerable ambiguity, in how many earth science "terms" map to the underlying "concepts" that they actually represent. This ambiguity in meanings, or "semantics", creates major problems for scientific reproducibility. It greatly impedes the ability to replicate results—by making it difficult to determine the specifics of the intended meanings of terms such as deforestation or carbon flux -- as to scope, composition, magnitude, etc. In addition, semantic ambiguity complicates assemblage of comparable data for reproducing results, due to ambiguous or idiosyncratic labels for measurements, such as percent cover of forest, where the term "forest" is undefined; or where a reported output of "total carbon-emissions" might just include CO2 emissions, but not methane emissions. In this talk, we describe how the NSF-funded DataONE repository for earth and environmental science data (http://dataone.org), is using W3C-standard languages (RDF/OWL) to build an ontology for clarifying concepts embodied in heterogeneous data and model outputs. With an initial focus on carbon cycling concepts using terrestrial biospheric model outputs and LTER productivity data, we describe how we are achieving interoperability with "semantic vocabularies" (or ontologies) from aligned earth and life science domains, including OBO-foundry ontologies such as ENVO and BCO; the ISO/OGC O&M; and the NSF Earthcube GeoLink project. Our talk will also discuss best practices that may be helpful for other groups interested in constructing their own

  2. Center for Aeronautics and Space Information Sciences

    NASA Technical Reports Server (NTRS)

    Flynn, Michael J.

    1992-01-01

    This report summarizes the research done during 1991/92 under the Center for Aeronautics and Space Information Science (CASIS) program. The topics covered are computer architecture, networking, and neural nets.

  3. Astronautics and aeronautics, 1977: A chronology

    NASA Technical Reports Server (NTRS)

    Ritchie, E. H.

    1986-01-01

    This publication is a chronology of events during the year 1977 in the fields of aeronautical and space research, development, activity, and policy. It includes appendixes, an index, and illustrations. Chronological entries list sources for further inquiry.

  4. NASA Aeronautics: A New Strategic Vision

    NASA Video Gallery

    The aviation landscape is shifting. Emerging global trends are creating challenges that are changing the face of aviation for the next 20-40 years. How is NASA Aeronautics responding? With a new st...

  5. NASA Aeronautics Showcased at Balloon Fiesta

    NASA Video Gallery

    Visitors at the 2010 International Balloon Fiesta in Albuquerque, N.M., got visual stimulation from hundreds of colorful hot-air balloons soaring skyward, but also learned about NASA's aeronautics ...

  6. Rare-earth-doped materials with application to optical signal processing, quantum information science, and medical imaging technology

    NASA Astrophysics Data System (ADS)

    Cone, R. L.; Thiel, C. W.; Sun, Y.; Böttger, Thomas; Macfarlane, R. M.

    2012-02-01

    Unique spectroscopic properties of isolated rare earth ions in solids offer optical linewidths rivaling those of trapped single atoms and enable a variety of recent applications. We design rare-earth-doped crystals, ceramics, and fibers with persistent or transient "spectral hole" recording properties for applications including high-bandwidth optical signal processing where light and our solids replace the high-bandwidth portion of the electronics; quantum cryptography and information science including the goal of storage and recall of single photons; and medical imaging technology for the 700-900 nm therapeutic window. Ease of optically manipulating rare-earth ions in solids enables capturing complex spectral information in 105 to 108 frequency bins. Combining spatial holography and spectral hole burning provides a capability for processing high-bandwidth RF and optical signals with sub-MHz spectral resolution and bandwidths of tens to hundreds of GHz for applications including range-Doppler radar and high bandwidth RF spectral analysis. Simply stated, one can think of these crystals as holographic recording media capable of distinguishing up to 108 different colors. Ultra-narrow spectral holes also serve as a vibration-insensitive sub-kHz frequency reference for laser frequency stabilization to a part in 1013 over tens of milliseconds. The unusual properties and applications of spectral hole burning of rare earth ions in optical materials are reviewed. Experimental results on the promising Tm3+:LiNbO3 material system are presented and discussed for medical imaging applications. Finally, a new application of these materials as dynamic optical filters for laser noise suppression is discussed along with experimental demonstrations and theoretical modeling of the process.

  7. Universities Earth System Scientists Program

    NASA Technical Reports Server (NTRS)

    Estes, John E.

    1995-01-01

    This document constitutes the final technical report for the National Aeronautics and Space Administration (NASA) Grant NAGW-3172. This grant was instituted to provide for the conduct of research under the Universities Space Research Association's (USRA's) Universities Earth System Scientist Program (UESSP) for the Office of Mission to Planet Earth (OMTPE) at NASA Headquarters. USRA was tasked with the following requirements in support of the Universities Earth System Scientists Programs: (1) Bring to OMTPE fundamental scientific and technical expertise not currently resident at NASA Headquarters covering the broad spectrum of Earth science disciplines; (2) Conduct basic research in order to help establish the state of the science and technological readiness, related to NASA issues and requirements, for the following, near-term, scientific uncertainties, and data/information needs in the areas of global climate change, clouds and radiative balance, sources and sinks of greenhouse gases and the processes that control them, solid earth, oceans, polar ice sheets, land-surface hydrology, ecological dynamics, biological diversity, and sustainable development; (3) Evaluate the scientific state-of-the-field in key selected areas and to assist in the definition of new research thrusts for missions, including those that would incorporate the long-term strategy of the U.S. Global Change Research Program (USGCRP). This will, in part, be accomplished by study and evaluation of the basic science needs of the community as they are used to drive the development and maintenance of a global-scale observing system, the focused research studies, and the implementation of an integrated program of modeling, prediction, and assessment; and (4) Produce specific recommendations and alternative strategies for OMTPE that can serve as a basis for interagency and national and international policy on issues related to Earth sciences.

  8. Aeronautical Wind Tunnels, Europe and Asia

    DTIC Science & Technology

    2006-02-01

    AERONAUTICAL WIND TUNNELS EUROPE AND ASIA Researchers: Katarina David Jenele Gorham Sarah Kim Patrick Miller... Wind Tunnels Europe and Asia 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f...18 Library of Congress – Federal Research Division Aeronautical Wind Tunnels Europe and Asia PREFACE 1 This catalog is a compilation of data on

  9. Grid Technology as a Cyberinfrastructure for Delivering High-End Services to the Earth and Space Science Community

    NASA Technical Reports Server (NTRS)

    Hinke, Thomas H.

    2004-01-01

    Grid technology consists of middleware that permits distributed computations, data and sensors to be seamlessly integrated into a secure, single-sign-on processing environment. In &is environment, a user has to identify and authenticate himself once to the grid middleware, and then can utilize any of the distributed resources to which he has been,panted access. Grid technology allows resources that exist in enterprises that are under different administrative control to be securely integrated into a single processing environment The grid community has adopted commercial web services technology as a means for implementing persistent, re-usable grid services that sit on top of the basic distributed processing environment that grids provide. These grid services can then form building blocks for even more complex grid services. Each grid service is characterized using the Web Service Description Language, which provides a description of the interface and how other applications can access it. The emerging Semantic grid work seeks to associates sufficient semantic information with each grid service such that applications wii1 he able to automatically select, compose and if necessary substitute available equivalent services in order to assemble collections of services that are most appropriate for a particular application. Grid technology has been used to provide limited support to various Earth and space science applications. Looking to the future, this emerging grid service technology can provide a cyberinfrastructures for both the Earth and space science communities. Groups within these communities could transform those applications that have community-wide applicability into persistent grid services that are made widely available to their respective communities. In concert with grid-enabled data archives, users could easily create complex workflows that extract desired data from one or more archives and process it though an appropriate set of widely distributed grid

  10. Interdisciplinary Navigation Unit for Mathematics and Earth Science Using Geospatial Technology

    NASA Astrophysics Data System (ADS)

    Smaglik, S. M.; Harris, V.

    2006-12-01

    Central Wyoming College (CWC) is located northeast of the Wind River Mountains. Although many people find recreation in the wilderness and remote areas surrounding the area, people still lose their lives because they become lost or disoriented. Creating an interdisciplinary field-based curriculum unit within mathematics (MATH 1000) and earth science (GEOL 1070) courses for non-science and education majors, provides students an opportunity to develop critical thinking skills and quantitative literacy. It also provides some necessary skills for survival and an understanding of landscape formation and wilderness navigation using geoscience. A brief history of navigation, including the importance of finding latitude and longitude, and the fairly recent implementation of the Global Positioning System, precedes activities in which students learn to use a basic compass. In addition to learning how to adjust for magnetic declination they read topographic maps, specifically USGS quadrangles, and learn how to use the scale in the legend to verify calculations using the Pythagorean Theorem. Students learn how to estimate distance and time required for traveling a pre- determined distance while using dimensional analysis to convert from the English system to metric. They learn how to read and measure latitude and longitude, as well as universal transverse Mercator projection measurements (UTM's), to find their position. The basic mathematical skills are assessed through hands-on activities such as finding their location on a map using a compass, a GPS unit, and Google Earth, and using a combination of maps, compasses, and GPS units to navigate through a course. Our goal is to provide life-saving information to students while incorporating necessary core curriculum from both mathematics and earth science classes. We work to create field-based activities, as well as assessments, to insure that students who complete the course are prepared to safely enjoy the outdoors and are

  11. A study of Minnesota forests and lakes using data from earth resources technology satellites

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This project is to foster and develop new applications of remote sensing under an interdisciplinary effort. Seven reports make up the specific projects presently being conducted throughout the State of Minnesota in cooperation with several agencies and municipalities. These are included under the general headings of: (1) applications of aerial photography and ERTS-1 data to agricultural, forest, and water resources management; (2) classification and dynamics of water and wetland resources of Minnesota; (3) studies of Lake Superior Bay; and (4) feasibility of detecting major air pollutants by earth-oriented satellite-borne sensors.

  12. ESTREAMS and EarthScapes: Integrating Teacher Professional Development Into a Science and Technology Center

    NASA Astrophysics Data System (ADS)

    Campbell, K.; Dalbotten, D.

    2004-12-01

    The National Center for Earth-surface Dynamics (NCED) has developed three inter-locking programs to integrate Teacher Professional Development into the Center. These programs address teachers at two stages of professional development: post-baccalaureate pre-service teachers enrolled in masters programs and in-service teachers. Formal and informal methods are used to involve teachers in NCED research and in NCED's informal public education programs, exhibits and outdoor park at the Science Museum of Minnesota. This session will present the methods we are developing and our results to date. It will also introduce materials we currently make available through our online Education Portal.

  13. Application of superconducting technology to earth-to-orbit electromagnetic launch systems

    NASA Technical Reports Server (NTRS)

    Hull, J. R.; Carney, L. M.

    1988-01-01

    Benefits may occur by incorporating superconductors, both existing and those currently under development, in one or more parts of a large-scale electromagnetic launch (EML) system that is capable of delivering payloads from the surface of the Earth to space. The use of superconductors for many of the EML components results in lower system losses; consequently, reductions in the size and number of energy storage devices are possible. Applied high-temperature superconductivity may eventually enable novel design concepts for energy distribution and switching. All of these technical improvements have the potential to reduce system complexity and lower payload launch costs.

  14. Mission to Planet Earth technology assessment and development for large deployable antennas

    NASA Technical Reports Server (NTRS)

    Rogers, C. A.; Stutzman, W. L.; Campbell, T. G.; Hedgepeth, J. M.

    1990-01-01

    A NASA R&D program, the Large Deployable Antenna program, was initiated to investigate and demonstrate the availability of critical technologies for passive microwave imagers. The science objectives, current state-of-the-art, a number of electromagnetic configurations under consideration, and the mechanical systems development effort are presented. The program team conducted a detailed technology review, evaluated the feasibility and technology readiness for a large dual-reflector radiometer, and developed a system concept for a 25-meter deployable radiometer. The study approach involved determining basic operational parameters and configurations for a geosynchronous wide-scanning radiometer from which specific structural requirements were utilized as goals (rather than specifications) with which specific technologies could be evaluated.

  15. Technology requirements for future Earth-to-geosynchronous orbit transportation systems. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Caluori, V. A.; Conrad, R. T.; Jenkins, J. C.

    1980-01-01

    Technologies including accelerated technology that are critical to performance and/or provide cost advantages for future space transportation systems are identified. Mission models are scoped and include priority missions, and cargo missions. Summary data, providing primary design concepts and features, are given for the SSTO, HLLV, POTV, and LCOTV vehicles. Significant system costs and total system costs in terms of life cycle costs in both discounted and undiscounted dollars are summarized for each of the vehicles.

  16. Technological characteristics of compressed earth blocks for its use as a building material

    NASA Astrophysics Data System (ADS)

    Gomez-Villalba, Luz Stella; Camacho-Perez, Nancy; Alvarez de Buergo, Monica; Becerra-Becerra, Javier; Esmeralda Corredor-Pulido, Dery; Fort, Rafael

    2013-04-01

    We present here an innovative building technique, which uses ecological, inexpensive and environmentally friendly materials. These compressed earth blocks seem to be very good for building purposes and that is why we have characterized three types of compressed earth blocks (CEB, named by their color as yellow, grey and red) mineralogically by means of X ray diffraction XRD and scanning electron microscopy SEM (both blocks and raw materials), petrographically by polarizing optical light microscopy POLM, and SEM, and, mainly, petrophysically: their hydric, physical and physico-mechanical properties by means of determining their capillary water absorption, porosity (open or accessible to water, pore size distribution and micro/macroporosity), and densities, color and ultrasound velocity (together with anisotropy). The particularities of these analyzed materials show that some varieties are more durable than others, and that all of them can be used as building materials with some restrictions related to their appropriate placing in the structures and the exposure to water. Acknowledgements: This work is supported by the GEOMATERIALES (S2009/MAT-1629) and CONSOLIDER-TCP (CSD2007-0058) programmes. Thanks also to the UCM (Complutense University of Madrid) Research Group "Alteración y conservación de los materiales pétreos del patrimonio" / Alteration and conservation of heritage stone materials (ref. 921349).

  17. Synthetic biology meets bioprinting: enabling technologies for humans on Mars (and Earth)

    PubMed Central

    Rothschild, Lynn J.

    2016-01-01

    Human exploration off planet is severely limited by the cost of launching materials into space and by re-supply. Thus materials brought from Earth must be light, stable and reliable at destination. Using traditional approaches, a lunar or Mars base would require either transporting a hefty store of metals or heavy manufacturing equipment and construction materials for in situ extraction; both would severely limit any other mission objectives. Long-term human space presence requires periodic replenishment, adding a massive cost overhead. Even robotic missions often sacrifice science goals for heavy radiation and thermal protection. Biology has the potential to solve these problems because life can replicate and repair itself, and perform a wide variety of chemical reactions including making food, fuel and materials. Synthetic biology enhances and expands life's evolved repertoire. Using organisms as feedstock, additive manufacturing through bioprinting will make possible the dream of producing bespoke tools, food, smart fabrics and even replacement organs on demand. This new approach and the resulting novel products will enable human exploration and settlement on Mars, while providing new manufacturing approaches for life on Earth. PMID:27528764

  18. Synthetic biology meets bioprinting: enabling technologies for humans on Mars (and Earth).

    PubMed

    Rothschild, Lynn J

    2016-08-15

    Human exploration off planet is severely limited by the cost of launching materials into space and by re-supply. Thus materials brought from Earth must be light, stable and reliable at destination. Using traditional approaches, a lunar or Mars base would require either transporting a hefty store of metals or heavy manufacturing equipment and construction materials for in situ extraction; both would severely limit any other mission objectives. Long-term human space presence requires periodic replenishment, adding a massive cost overhead. Even robotic missions often sacrifice science goals for heavy radiation and thermal protection. Biology has the potential to solve these problems because life can replicate and repair itself, and perform a wide variety of chemical reactions including making food, fuel and materials. Synthetic biology enhances and expands life's evolved repertoire. Using organisms as feedstock, additive manufacturing through bioprinting will make possible the dream of producing bespoke tools, food, smart fabrics and even replacement organs on demand. This new approach and the resulting novel products will enable human exploration and settlement on Mars, while providing new manufacturing approaches for life on Earth.

  19. Send Student Interest Skyward!: Soaring Teaches Aeronautics Basics

    ERIC Educational Resources Information Center

    Scarcella, Joe; Wallace, Art

    2011-01-01

    Gliders and sailplanes provide a great launching platform for teaching about technology and scientific principles. Soaring is technological innovation in action, using earth's natural resources for energy and endurance during flight. This article focuses on the basics of soaring, which educators can use to increase excitement and interest in the…

  20. Send Student Interest Skyward! Soaring Teaches Aeronautics Basics

    ERIC Educational Resources Information Center

    Scarcella, Joe; Wallace, Art

    2011-01-01

    Gliders and sailplanes provide a great launching platform for teaching about technology and scientific principles. Soaring is technological innovation in action, using earth's natural resources for energy and endurance during flight. This article focuses on the basics of soaring, which educators can use to increase excitement and interest in the…

  1. 75 FR 54221 - Government/Industry Aeronautical Charting Forum Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-03

    ... Administration (FAA) Aeronautical Charting Forum (ACF) to discuss informational content and design of aeronautical charts and related products, as well as instrument flight procedures development policy and design... Aeronautical Charting Forum Meeting AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice...

  2. The rare-earth elements: vital to modern technologies and lifestyles

    USGS Publications Warehouse

    Van Gosen, Bradley S.; Verplanck, Philip L.; Long, Keith R.; Gambogi, Joseph; Seal, Robert R., II

    2014-01-01

    Since the late 1990s, China has provided 85–95 percent of the world’s REEs. In 2010, China announced their intention to reduce REE exports. During this timeframe, REE use increased substantially. REEs are used as components in high technology devices, including smart phones, digital cameras, computer hard disks, fluorescent and light-emitting-diode (LED) lights, flat screen televisions, computer monitors, and electronic displays. Large quantities of some REEs are used in clean energy and defense technologies. Because of the many important uses of REEs, nations dependent on new technologies, such as Japan, the United States, and members of the European Union, reacted with great concern to China’s intent to reduce its REE exports. Consequently, exploration activities intent on discovering economic deposits of REEs and bringing them into production have increased.

  3. Research and Technology 1996

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This report highlights the challenging work accomplished during fiscal year 1996 by Ames research scientists, engineers, and technologists. It discusses research and technologies that enable the Information Age, that expand the frontiers of knowledge for aeronautics and space, and that help to maintain U.S. leadership in aeronautics and space research and technology development. The accomplishments span the range of goals of NASA's four Strategic Enterprises: (1) Aeronautics and Space Transportation Technology, (2) Space Science, (3) Human Exploration and Development of Space, and (4) Mission to Planet Earth. The primary purpose of this report is to communicate knowledge--to inform our stakeholders, customers, and partners, and the people of the United States about the scope and diversity of Ames' mission, the nature of Ames' research and technology activities, and the stimulating challenges ahead. The accomplishments cited illustrate the contributions that Ames is making to improve the quality of life for our citizens and the economic position of the United States in the world marketplace.

  4. Reference earth orbital research and applications investigations (blue book). Volume 7: Technology

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The candidate experiment program for manned space stations with specific application to technology disciplines is presented. The five functional program elements are devoted to the development of new technology for application to future generation spacecraft and experiments. The functional program elements are as follows: (1) monitor and trace movement of external contaminants to determine methods for controlling contamination, (2) analysis of fundamentals of fluid systems management, (3) extravehicular activity, (4) advanced spacecraft systems tests, and (5) development of teleoperator system for use with space activities.

  5. Aerospace technology can be applied to exploration 'back on earth'. [offshore petroleum resources

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.

    1977-01-01

    Applications of aerospace technology to petroleum exploration are described. Attention is given to seismic reflection techniques, sea-floor mapping, remote geochemical sensing, improved drilling methods and down-hole acoustic concepts, such as down-hole seismic tomography. The seismic reflection techniques include monitoring of swept-frequency explosive or solid-propellant seismic sources, as well as aerial seismic surveys. Telemetry and processing of seismic data may also be performed through use of aerospace technology. Sea-floor sonor imaging and a computer-aided system of geologic analogies for petroleum exploration are also considered.

  6. Phased array feed design technology for Large Aperture Microwave Radiometer (LAMR) Earth observations

    NASA Technical Reports Server (NTRS)

    Schuman, H. K.

    1992-01-01

    An assessment of the potential and limitations of phased array antennas in space-based geophysical precision radiometry is described. Mathematical models exhibiting the dependence of system and scene temperatures and system sensitivity on phased array antenna parameters and components such as phase shifters and low noise amplifiers (LNA) are developed. Emphasis is given to minimum noise temperature designs wherein the LNA's are located at the array level, one per element or subarray. Two types of combiners are considered: array lenses (space feeds) and corporate networks. The result of a survey of suitable components and devices is described. The data obtained from that survey are used in conjunction with the mathematical models to yield an assessment of effective array antenna noise temperature for representative geostationary and low Earth orbit systems. Practical methods of calibrating a space-based, phased array radiometer are briefly addressed as well.

  7. The first Earth Resources Technology Satellite - Nearly two years of operation

    NASA Technical Reports Server (NTRS)

    Nordberg, W.

    1974-01-01

    A brief status report is given of the ERTS-1 satellite system as of June, 1974, and some applications of the ERTS-1 images are discussed. The multispectral images make it possible to identify or measure the quality and composition of water, the potential water content of snow, the moisture and possible composition of soils, the types and state of vegetation cover, and factors relating to stresses on the environment. The orthographic view of the earth provided by the satellite makes it possible to rapidly produce thematic maps, on a scale of 1:250,000, of most areas of the world. The regular, repetitive coverage provided by ERTS-1 every 18 days is important in areas such as water-supply and flood-damage studies. The use of ERTS-1 imagery for land-use planning, wetlands surveying, assessing marine resources, and observing processes such as desertification in the African Sahel is discussed.

  8. Taiwanese Science and Life Technology Curriculum Standards and Earth Systems Education

    ERIC Educational Resources Information Center

    Chang, Chun-Yen

    2005-01-01

    In the past several years, curriculum reform has received increasing attention from educators in many countries around the world. Recently, Taiwan has developed new Science and Life Technology Curriculum Standards (SaLTS) for grades 1-9. SaLTS features a systematic way for developing students' understanding and appreciation of…

  9. The Teaching of Anthropogenic Climate Change and Earth Science via Technology-Enabled Inquiry Education

    ERIC Educational Resources Information Center

    Bush, Drew; Sieber, Renee; Seiler, Gale; Chandler, Mark

    2016-01-01

    A gap has existed between the tools and processes of scientists working on anthropogenic global climate change (AGCC) and the technologies and curricula available to educators teaching the subject through student inquiry. Designing realistic scientific inquiry into AGCC poses a challenge because research on it relies on complex computer models,…

  10. Software System Safety and the NASA Aeronautics Blueprint

    NASA Technical Reports Server (NTRS)

    Holloway, C. Michael; Hayhurst, Kelly J.

    2002-01-01

    NASA's Aeronautics Blueprint lays out a research agenda for the Agency s aeronautics program. The word software appears only four times in this Blueprint, but the critical importance of safe and correct software to the fulfillment of the proposed research is evident on almost every page. Most of the technology solutions proposed to address challenges in aviation are software dependent technologies. Of the fifty-two specific technology solutions described in the Blueprint, forty-one depend, at least in part, on software for success. For thirty-five of these forty-one, software is not only critical to success, but also to human safety. That is, implementing the technology solutions will require using software in such a way that it may, if not specified, designed, and implemented properly, lead to fatal accidents. These results have at least two implications for the research based on the Blueprint: (1) knowledge about the current state-of-the-art and state-of-the-practice in software engineering and software system safety is essential, and (2) research into current unsolved problems in these software disciplines is also essential.

  11. A geostationary satellite system for mobile multimedia applications using portable, aeronautical and mobile terminals

    NASA Technical Reports Server (NTRS)

    Losquadro, G.; Luglio, M.; Vatalaro, F.

    1997-01-01

    A geostationary satellite system for mobile multimedia services via portable, aeronautical and mobile terminals was developed within the framework of the Advanced Communications Technology Service (ACTS) programs. The architecture of the system developed under the 'satellite extremely high frequency communications for multimedia mobile services (SECOMS)/ACTS broadband aeronautical terminal experiment' (ABATE) project is presented. The system will be composed of a Ka band system component, and an extremely high frequency band component. The major characteristics of the space segment, the ground control station and the portable, aeronautical and mobile user terminals are outlined.

  12. Air Breathing Propulsion Controls and Diagnostics Research at NASA Glenn Under NASA Aeronautics Research Mission Programs

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2014-01-01

    The Intelligent Control and Autonomy Branch (ICA) at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet the goals of the NASA Aeronautics Research Mission Directorate (ARMD) Programs. These efforts are primarily under the various projects under the Fundamental Aeronautics Program (FAP) and the Aviation Safety Program (ASP). The ICA Branch is focused on advancing the state-of-the-art of aero-engine control and diagnostics technologies to help improve aviation safety, increase efficiency, and enable operation with reduced emissions. This paper describes the various ICA research efforts under the NASA Aeronautics Research Mission Programs with a summary of motivation, background, technical approach, and recent accomplishments for each of the research tasks.

  13. Air Breathing Propulsion Controls and Diagnostics Research at NASA Glenn Under NASA Aeronautics Research Mission Programs

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2015-01-01

    The Intelligent Control and Autonomy Branch (ICA) at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet the goals of the NASA Aeronautics Research Mission Directorate (ARMD) Programs. These efforts are primarily under the various projects under the Advanced Air Vehicles Program (AAVP), Airspace Operations and Safety Program (AOSP) and Transformative Aeronautics Concepts Program (TAC). The ICA Branch is focused on advancing the state-of-the-art of aero-engine control and diagnostics technologies to help improve aviation safety, increase efficiency, and enable operation with reduced emissions. This paper describes the various ICA research efforts under the NASA Aeronautics Research Mission Programs with a summary of motivation, background, technical approach, and recent accomplishments for each of the research tasks.

  14. Earth survey applications division: Research leading to the effective use of space technology in applications relating to the Earth's surface and interior

    NASA Technical Reports Server (NTRS)

    Carpenter, L. (Editor)

    1980-01-01

    Accomplishments and future plans are described for the following areas: (1) geology - geobotanical indicators and geopotential data; (2) modeling magnetic fields; (3) modeling the structure, composition, and evolution of the Earth's crust; (4) global and regional motions of the Earth's crust and earthquake occurrence; (5) modeling geopotential from satellite tracking data; (6) modeling the Earth's gravity field; (7) global Earth dynamics; (8) sea surface topography, ocean dynamics; and geophysical interpretation; (9) land cover and land use; (10) physical and remote sensing attributes important in detecting, measuring, and monitoring agricultural crops; (11) prelaunch studies using LANDSAT D; (12) the multispectral linear array; (13) the aircraft linear array pushbroom radiometer; and (14) the spaceborne laser ranging system.

  15. Aeronautical Engineering: A Continuing Bibliography with Indexes

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-1999-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes-subject and author are included after the abstract section.

  16. Aeronautical Engineering: A Continuing Bibliography with Indexes

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This supplemental issue of Aeronautical Engineering: A Continuing Bibliography with Indexes lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes-subject and author are included after the abstract section.

  17. Enhancing Earth Science And IT Literacy Through Environmental Science Information Technology Activities

    NASA Astrophysics Data System (ADS)

    Cuff, K. E.; Molinaro, M.

    2004-12-01

    The Environmental Science Information Technology Activities (ESITA) program provides grades 9 and 10 students with under-represented minority backgrounds in the East San Francisco Bay Area with real-world opportunities to learn about and apply information technologies through a series of project-based activities related to environmental science. Supported by the NSF Information Technology Experiences for Students and Teachers (ITEST) program, ESITA activities engage students in the use of newly acquired information technology (IT) skills and understandings while performing air and water quality research investigations. One project that ESITA students have become involved in relates to the currently relevant issue of elevated levels of lead found in drinking waters in Washington, D.C. Students based in the Bay Area have initiated and maintained E-mail correspondence with children who attend elementary schools in the D.C. area. After receiving a thorough explanation of required sampling procedures devised by the Bay Area students, the elementary school children have sent 500 ml water samples from their homes and schools to Berkeley along with information about the locations from which the water samples were collected. These samples were then prepared for lead analysis at Lawrence Hall of Science by ESITA students, who used resulting data to perform a preliminary assessment of the geospatial distribution of lead trouble spots throughout Washington, DC. Later, ESITA student scientists will work with students from the UC Berkeley School of Public Health to develop surveys and questionnaires that generate high quality information useful with regard to assessing the impact of the current lead crisis on younger children in the Washington, D.C. area. Through the application of new understandings to current, real-world environmental problems and issues such as that related to lead, positive changes in students' attitudes towards IT and science have occurred, which accompany

  18. Earth's future in the Anthropocene: Technological interventions between piecemeal and utopian social engineering

    NASA Astrophysics Data System (ADS)

    Schäfer, Stefan; Stelzer, Harald; Maas, Achim; Lawrence, Mark G.

    2014-04-01

    An extensive discussion in the academic and policy communities is developing around the possibility of climate engineering through stratospheric aerosol injection (SAI). In this contribution, we develop a perspective on this issue in the context of the wider setting of societal development in the Anthropocene. We draw on Karl Popper's concepts of piecemeal and utopian social engineering to examine how different visions of societal development relate to SAI. Based on this reflection, we argue that the debate on SAI is fueled not only by the inequitable distribution of its effects and potential atmospheric and climatic side effects, as disconcerting as some of these effects and side effects may be, but also, and perhaps primarily, by its apparent privileging of the status quo and incremental change over a more immediate and radical change in societal organization. Although differing ideological orientations might thus help explain the intensity of parts of the debate, the understanding from which they follow, in which societal development is deduced from postulated technological characteristics and assumptions about a technology's use, hides from view a more subtle understanding of the relationship between technology and politics.

  19. RFID Equivalent Model for Prediction of Functional and EMC Performances in Complex Aeronautic Environments

    NASA Astrophysics Data System (ADS)

    Piche, Alexandre; Perraud, Richard; Peres, Gilles; Nguyen, Francois; Herlem, Yannick

    2016-05-01

    Wireless networks are widely used in urban or office environments and are increasingly considered as an attractive solution for various aeronautic applications. Current investigations focus in particular on RFID technologies because of their widespread use, low cost and ease of installation. The objective of this publication is to propose a concept of RFID equivalent model to predict functional and EMC performances in complex aeronautic areas.

  20. Aeronautical enginnering: A cumulative index to a continuing bibliography (supplement 312)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a cumulative index to the abstracts contained in NASA SP-7037 (301) through NASA SP-7073 (311) of Aeronautical Engineering: A Continuing Bibliography. NASA SP-7037 and its supplements have been compiled by the Center for AeroSpace Information of the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, foreign technology, contract number, report number, and accession number indexes.

  1. The Canadian Space Agency, Space Station, Strategic Technologies for Automation and Robotics Program technology development activity in protection of materials from the low Earth orbit space environment

    NASA Technical Reports Server (NTRS)

    Francoeur, J. R.

    1992-01-01

    The Strategic Technologies in Automation and Robotics (STEAR) program is managing a number of development contracts to improve the protection of spacecraft materials from the Low Earth Orbit (LEO) space environment. The project is structured in two phases over a 3 to 4 year period with a budget of 3 to 4 million dollars. Phase 1 is designed to demonstrate the technical feasibility and commercial potential of a coating/substrate system and its associated application process. The objective is to demonstrate a prototype fabrication capability using a full scale component of a commercially viable process for the protection of materials and surface finishes from the LEO space environment, and to demonstrate compliance with a set of performance requirements. Only phase 1 will be discussed in this paper.

  2. The first earth resources technology satellite nearly two years of operation

    NASA Technical Reports Server (NTRS)

    Nordberg, W.

    1974-01-01

    A brief status report on the performance of the ERTS-1, and an overview of the applications derived from the images are presented. The ERTS-1 spacecraft, sensor and picture processing systems have continued to perform almost flawlessly since August 1972. Registered, multispectral images of all major land masses of the earth, both polar and some oceanic regions are continuously made, covering daily an area of about 5 million square kilometers. The systematic repetition of these observations, which were made over most parts of the world at least once every season, and the high accuracy of thematic mapping that can be obtained from the images, have resulted in many applications that have immense potential benefits for developing countries. Among these applications are the detection and accurate mensuration of surface water; the identification and mensuration of forests, rangeland, crops and soils; the monitoring and mapping of water quality, wildlife habitats and of the effects of land use practices on food and water resources; the assessment of flooding and earthquake hazards; and the facilitation of mineral exploration.

  3. Large Deployable Reflector Technologies for Future European Telecom and Earth Observation Missions

    NASA Astrophysics Data System (ADS)

    Ihle, A.; Breunig, E.; Dadashvili, L.; Migliorelli, M.; Scialino, L.; van't Klosters, K.; Santiago-Prowald, J.

    2012-07-01

    This paper presents requirements, analysis and design results for European large deployable reflectors (LDR) for space applications. For telecommunications, the foreseeable use of large reflectors is associated to the continuous demand for improved performance of mobile services. On the other hand, several earth observation (EO) missions can be identified carrying either active or passive remote sensing instruments (or both), in which a large effective aperture is needed e.g. BIOMASS. From the European point of view there is a total dependence of USA industry as such LDRs are not available from European suppliers. The RESTEO study is part of a number of ESA led activities to facilitate European LDR development. This paper is focused on the structural-mechanical aspects of this study. We identify the general requirements for LDRs with special emphasis on launcher accommodation for EO mission. In the next step, optimal concepts for the LDR structure and the RF-Surface are reviewed. Regarding the RF surface, both, a knitted metal mesh and a shell membrane based on carbon fibre reinforced silicon (CFRS) are considered. In terms of the backing structure, the peripheral ring concept is identified as most promising and a large number of options for the deployment kinematics are discussed. Of those, pantographic kinematics and a conical peripheral ring are selected. A preliminary design for these two most promising LDR concepts is performed which includes static, modal and kinematic simulation and also techniques to generate the reflector nets.

  4. Citizen Explorer. 1; An Earth Observer With New Small Satellite Technology

    NASA Technical Reports Server (NTRS)

    Allen, Zachary; Dunn, Catherine E.

    2003-01-01

    Citizen Explorer-I (CX-I), designed and built by students at Colorado Space Grant Consortium in Boulder to provide global ozone monitoring, employs a unique mission architecture and several innovative technologies during its mission. The mission design allows K-12 schools around the world to be involved as ground stations available to receive science data and telemetry from CX-I. Another important technology allows the spacecraft to be less reliant on ground operators. Spacecraft Command Language (SCL) allows mission designers to set constraints on the satellite operations. The satellite then automatically adheres to the constraints when the satellite is out of contact with Mission Operations. In addition to SCL, a low level of artificial intelligence will be supplied to the spacecraft through the use of the Automated Scheduling and Planning ENvironment (ASPEN). ASPEN is used to maintain a spacecraft schedule in order to achieve the objectives a mission operator would normally have to complete. Within the communications system of CX-I, internet of CX-I, internet protocols are the main method for communicating with the satellite. As internet protocols have not been widely used in satellite communication, CX-I provides an opportunity to study the effectiveness of using internet protocols over radio links. The Attitude Determination and Control System (ADCS) on CX-I uses a gravity gradient boom as a means of orienting the satellite's science instruments toward nadir. The boom design is unique because it is constructed of tape measure material. These new technologies' effectiveness will be tested for use on future small satellite projects within the space satellite industry.

  5. An analysis of metropolitan land-use by machine processing of earth resources technology satellite data

    NASA Technical Reports Server (NTRS)

    Mausel, P. W.; Todd, W. J.; Baumgardner, M. F.

    1976-01-01

    A successful application of state-of-the-art remote sensing technology in classifying an urban area into its broad land use classes is reported. This research proves that numerous urban features are amenable to classification using ERTS multispectral data automatically processed by computer. Furthermore, such automatic data processing (ADP) techniques permit areal analysis on an unprecedented scale with a minimum expenditure of time. Also, classification results obtained using ADP procedures are consistent, comparable, and replicable. The results of classification are compared with the proposed U. S. G. S. land use classification system in order to determine the level of classification that is feasible to obtain through ERTS analysis of metropolitan areas.

  6. Biological Technologies for Life Beyond Low Earth Orbit (BT4LBLEO): Study Introductions and Synopsis

    NASA Technical Reports Server (NTRS)

    Hines, John W.

    2011-01-01

    The study will address the following mission concerns: -Extended human presence in the environments of deep space as well as the Moon and Mars will require a solid biological understanding of the integrated effects of diminished gravity, enhanced radiation, and transit- and destination-specific variables from the sub-cellular to the whole organism level. -Biological and associated technologies for biological and robotic precursor missions to realize future objectives for space colonization. -Surfaces, gravity levels, radiation environments, and atmospheres of these nearest neighbors are radically different in chemical and geological make-up from those on our home planet, and all of these contributory effects must be considered.

  7. New Water Disinfection Technology for Earth and Space Applications as Part of the NPP Fellowship Research

    NASA Technical Reports Server (NTRS)

    SilvestryRodriquez, Nadia

    2010-01-01

    There is the need for a safe, low energy consuming and compact water disinfection technology to maintain water quality for human consumption. The design of the reactor should present no overheating and a constant temperature, with good electrical and optical performance for a UV water treatment system. The study assessed the use of UVA-LEDs to disinfectant water for MS2 Bacteriophage. The log reduction was sufficient to meet US EPA standards as a secondary disinfectant for maintaining water quality control. The study also explored possible inactivation of Pseudomonas aeruginosa and E. coli.

  8. NSSDC Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications, volume 1

    NASA Technical Reports Server (NTRS)

    Kobler, Benjamin (Editor); Hariharan, P. C. (Editor); Blasso, L. G. (Editor)

    1992-01-01

    Papers and viewgraphs from the conference are presented. This conference served as a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include magnetic disk and tape technologies, optical disks and tape, software storage and file management systems, and experiences with the use of a large, distributed storage system. The technical presentations describe, among other things, integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990's.

  9. 75 FR 60484 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Applied Sciences Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-30

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Earth Science Subcommittee; Applied Sciences Advisory Group Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of..., the National Aeronautics and Space Administration (NASA) announces a meeting of the Applied...

  10. 77 FR 55863 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Applied Sciences Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Earth Science Subcommittee; Applied Sciences Advisory Group Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of... Aeronautics and Space Administration (NASA) announces a meeting of the Applied Science Advisory Group....

  11. Pulsed Plasma Thruster (PPT) Technology: Earth Observing-1 PPT Operational and Advanced Components Being Developed

    NASA Technical Reports Server (NTRS)

    Pencil, Eric J.; Benson, Scott W.; Arrington, Lynn A.; Frus, John; Hoskins, W. Andrew; Burton, Rodney

    2003-01-01

    In 2002 the pulsed plasma thruster (PPT) mounted on the Earth Observing-1 spacecraft was operated successfully in orbit. The two-axis thruster system is fully incorporated in the attitude determination and control system and is being used to automatically counteract disturbances in the pitch axis of the spacecraft. The first tests conducted in space demonstrated the full range of PPT operation, followed by calibration of control torques from the PPT in the attitude control system. Then the spacecraft was placed in PPT control mode. To date, it has operated for about 30 hr. The PPT successfully controlled pitch momentum during wheel de-spin, solar array acceleration and deceleration during array rewind, and environmental torques in nominal operating conditions. Images collected with the Advanced Landsat Imager during PPT operation have demonstrated that there was no degradation in comparison to full momentum wheel control. In addition, other experiments have been performed to interrogate the effects of PPT operation on communication packages and light reflection from spacecraft surfaces. Future experiments will investigate the possibility of orbit-raising maneuvers, spacecraft roll, and concurrent operation with the Hyperion imager. Future applications envisioned for pulsed plasma thrusters include longer life, higher precision, multiaxis thruster configurations for three-axis attitude control systems or high-precision, formationflying systems. Advanced components, such as a "dry" mica-foil capacitor, a wear-resistant spark plug, and a multichannel power processing unit have been developed under contract with Unison Industries, General Dynamics, and C.U. Aerospace. Over the last year, evaluation tests have been conducted to determine power processing unit efficiency, atmospheric functionality, vacuum functionality, thruster performance evaluation, thermal performance, and component life.

  12. Intelligent Systems: Shaping the Future of Aeronautics and Space Exploration

    NASA Technical Reports Server (NTRS)

    Krishnakumar, Kalmanje; Lohn, Jason; Kaneshige, John

    2004-01-01

    Intelligent systems are nature-inspired, mathematically sound, computationally intensive problem solving tools and methodologies that have become important for NASA's future roles in Aeronautics and Space Exploration. Intelligent systems will enable safe, cost and mission-effective approaches to air& control, system design, spacecraft autonomy, robotic space exploration and human exploration of Moon, Mars, and beyond. In this talk, we will discuss intelligent system technologies and expand on the role of intelligent systems in NASA's missions. We will also present several examples of which some are highlighted m this extended abstract.

  13. National Aeronautics and Space Administration Science and Engineering Apprentice Program

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The National Aeronautics and Space Administration's Science and Engineering Apprentice Program for high school students is one of NASA's many efforts toward a goal of scientific literacy. It embraces science, mathematics, and technology as keys to purposeful and sustained progress and security for our nation and its people. It serves as a model for helping reform education by striving to address mechanisms to influence the knowledge, skills, and attitudes of our students. It focuses on what to do today to meet the challenges of tomorrow.

  14. Ames Research Center Research and Technology 2000

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This report highlights the challenging work accomplished during fiscal year 2000 by Ames research scientists,engineers, and technologists. It discusses research and technologies that enable the Information Age, that expand the frontiers of knowledge for aeronautics and space, and that help to maintain U.S. leadership in aeronautics and space research and technology development. The accomplishments are grouped into four categories based on four of NASA's Strategic Enterprises: Aerospace Technology, Space Science, Biological and Physical Research, and Earth Science. The primary purpose of this report is to communicate knowledge-to inform our stakeholders, customer, and partners, and the people of the United States about the scope and diversity of Ames' mission,the nature of Ames' research and technolog) activities,and the stimulating challenges ahead. The accomplishments cited illustrate the contributions that Ames is willing to improve the quality of life for our citizens and the economic position of the United States in the world marketplace.

  15. Model research: The National Advisory Committee for Aeronautics, 1915-1958, volume 1

    NASA Technical Reports Server (NTRS)

    Roland, A.

    1984-01-01

    The National Advisory Committee for Aeronautics, the predecessor of NASA, was the premier aeronautical research organization in the United States. It conducted scientific study of the problems of flight with a view to their practical solution. This institutional history traces the birth and evolution of the NACA and analyzes such recurrent themes as the roles of science and engineering, the influence of politics on technology, the way in which the institution shapes technology and technology shapes the institution, the contributions of key individuals, the nature of the research process, and the relation between military and civilian aviation.

  16. The outlook for aeronautics, 1980 - 2000: Appendix B: Study group report on an industry-university-government survey

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Results of a comprehensive survey of key representatives of the aeronautical community are presented. Emphasis is placed on trends in civil and military aviation, the role of NASA in aeronautical research and development, and the required technology advances for the development of new aircraft.

  17. Astronautics and aeronautics, 1974: A chronology

    NASA Technical Reports Server (NTRS)

    Brun, N. L.

    1977-01-01

    The 14th volume in the NASA series of day-by-day records of aeronautical and space events has somewhat narrowed its scope and selectivity in its brief accounts from immediately available, open sources. This year the emphasis is even more directly focused on concrete air and space activities. The text continues to reflect some events in other agencies and countries.

  18. Experiment In Aeronautical-Mobile/Satellite Communication

    NASA Technical Reports Server (NTRS)

    Jedrey, Thomas C.; Lay, Norman E.; Dessouky, Khaled

    1992-01-01

    Report describes study of performance of digital mobile/satellite communication terminals of advanced design intended for use in ground stations and airplanes in aeronautical-mobile service. Study was collaboration of NASA, Federal Aviation Administration (FAA), Communications Satellite Corp. (COMSAT), and International Maritime Satellite System (INMARSAT).

  19. Developing a global aeronautical satellite system

    NASA Technical Reports Server (NTRS)

    Dement, Donald K.

    1988-01-01

    Arinc, an airline industry-owned and operated company in the United States, has taken steps toward establishing a global aeronautical satellite communications system. Plans call for initiation of a thin-route data operation in 1989, upgrading to establish voice communications via shared spot-beam transponders carried on other satellites, and deploying a worldwide network using dedicated satellites by 1994.

  20. Aeronautical mobile satellite service: An overview

    NASA Astrophysics Data System (ADS)

    Rigley, Jack

    Successful flight trials of Aeronautical Mobile Satellite Services (AMSS) were first carried out in the 1960's but it is only in the past few years that plans to implement such a system have achieved any degree of certainty. System architecture has been agreed upon by users, service providers, and manufacturers. Detailed avionic characteristics have been approved and the International Civil Aviation Organization is currently preparing AMSS standards which will ensure the safety and regularity of international air traffic. In this paper, a review is provided of the history of AMSS, especially of Canadian participation, and a description of the technical and operational features of the system are given. The system will use the 1545-1555 and 1646.5-1656.5 MHz bands for satellite to aircraft and aircraft to satellite communication. Different categories of communication including air traffic control, aeronautical operational control, aeronautical administrative communications, and aeronautical passenger communication, will be assigned different priorities. A set of radio frequency (RF) channels have been defined to accommodate all foreseen traffic types. Standards for the avionics required for large passenger planes have been developed by the Airlines Electronic Engineering Committee.

  1. The history of aeronautical medicine in Venezuela

    NASA Technical Reports Server (NTRS)

    Iriarte, D. R.

    1986-01-01

    The Aerial Medical Service of the Ministry of Transportation and Communications of Venezuela was created on June 1949, and later became the Department of Aeronautical Medicine. Its functions include the medical examinations of future pilots, navigators and flight engineers. The importance of good mental and physical health in all flight and ground personnel to ensure the safety of air travel is discussed.

  2. Astronautics and aeronautics, 1978: A chronology

    NASA Technical Reports Server (NTRS)

    Janson, Bette R.

    1986-01-01

    This is the 18th in a series of annual chronologies of significant events in the fields of astronautics and aeronautics. Events covered are international as well as national and political as well as scientific and technical. This series is a reference work for historians, NASA personnel, government agencies, congressional staffs, and the media.

  3. Astronautics and aeronautics, 1976. A chronology

    NASA Technical Reports Server (NTRS)

    Ritchie, E. H.

    1984-01-01

    A chronology of events concerning astronautics and aeronautics for the year 1976 is presented. Some of the many and varied topics include the aerospace industry, planetary exploration, space transportation system, defense department programs, politics, and aerospace medicine. The entries are organized by the month and presented in a news release format.

  4. Astronautics and aeronautics, 1985: A chronology

    NASA Technical Reports Server (NTRS)

    Janson, Bette R.

    1988-01-01

    This book is part of a series of annual chronologies of significant events in the fields of astronautics and aeronautics. Events covered are international as well as national, in political as well as scientific and technical areas. This series is an important reference work used by historians, NASA personnel, government agencies, and congressional staffs, as well as the media.

  5. Aeronautical Engineering: A Continuing Bibliography with indexes

    NASA Technical Reports Server (NTRS)

    1984-01-01

    This bibliography lists 426 reports, articles and other documents introduced into the NASA scientific and technical information system in August 1984. Reports are cited in the area of Aeronautical Engineering. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing operation and performance of aircraft (including aircraft engines) and associated components, equipment and systems.

  6. Aeronautical engineering. A continuing bibliography with indexes

    NASA Technical Reports Server (NTRS)

    1982-01-01

    This bibliography lists 326 reports, articles, and other documents introduced into the NASA scientific and technical information system in January 1982. Topics on aeronautical engineering and aerodynamics such as flight control systems, avionics, computer programs, computational fluid dynamics and composite structures are covered.

  7. Dr. Alexander H. Flax: Technologist of Aeronautics

    DTIC Science & Technology

    1992-03-01

    aeronautics. (82:19) The ability to apply theory made the difference in the spectacular aviation feats of this time--Lindbergh, Wiley Post, 6 Amelia ... Earhart and Howard Hughes. Of these, the Lindbergh flight was perceived by the popular imagination as the event of the century. The plane had one motor

  8. 14 CFR 61.105 - Aeronautical knowledge.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... intended use, data on takeoff and landing distances, weather reports and forecasts, and fuel requirements...) Recognition of critical weather situations from the ground and in flight, windshear avoidance, and the procurement and use of aeronautical weather reports and forecasts; (7) Safe and efficient operation...

  9. 14 CFR 61.105 - Aeronautical knowledge.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... intended use, data on takeoff and landing distances, weather reports and forecasts, and fuel requirements...) Recognition of critical weather situations from the ground and in flight, windshear avoidance, and the procurement and use of aeronautical weather reports and forecasts; (7) Safe and efficient operation...

  10. 14 CFR 61.105 - Aeronautical knowledge.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... intended use, data on takeoff and landing distances, weather reports and forecasts, and fuel requirements...) Recognition of critical weather situations from the ground and in flight, windshear avoidance, and the procurement and use of aeronautical weather reports and forecasts; (7) Safe and efficient operation...

  11. 14 CFR 61.97 - Aeronautical knowledge.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... takeoff and landing distances, weather reports and forecasts, and fuel requirements; and (ii) How to plan... using pilotage with the aid of a magnetic compass; (5) Recognition of critical weather situations from the ground and in flight, windshear avoidance, and the procurement and use of aeronautical...

  12. 14 CFR 61.97 - Aeronautical knowledge.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... takeoff and landing distances, weather reports and forecasts, and fuel requirements; and (ii) How to plan... using pilotage with the aid of a magnetic compass; (5) Recognition of critical weather situations from the ground and in flight, windshear avoidance, and the procurement and use of aeronautical...

  13. 14 CFR 61.97 - Aeronautical knowledge.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... takeoff and landing distances, weather reports and forecasts, and fuel requirements; and (ii) How to plan... using pilotage with the aid of a magnetic compass; (5) Recognition of critical weather situations from the ground and in flight, windshear avoidance, and the procurement and use of aeronautical...

  14. Bibliography of Aeronautics, 1920-1921

    NASA Technical Reports Server (NTRS)

    Brockett, Paul

    1925-01-01

    This work covers the literatme published from January 1, 1920, to December 31, 1921, and continues the work of the Smithsonian Institution issued as Volume 55 of the Smithsonian Miscellaneous Collections, which covered the material published prior to June 30, 1909, and the work of Lhe National Advisory Committee for Aeronautics as published in the Bibliography of Aeronautics for the years 1909 to 1916 and 1917 to 1919. As in the Smithsonian volume and in the Bibliography of Aeronautics for the years 1909 to 1916 and 1917 to 1919, citations of the publications of all nations have been included in the languages in which these publications originally appeared. The arrangement is in dictionary form with author and subject entry and one alphabetical arrangement. Detail in the matter of subject reference has been omitted on account of the cost of presentation, but an attempt has been made to give sufficient cross reference for research in special lines. The National Advisory Committee for Aeronautics will next present a bibliography for the year 1922.

  15. NASA's Role in Aeronautics: A Workshop. Volume I--Summary.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Assembly of Engineering.

    The central task of the workshop summarized in this report was to examine the relationship of the National Aeronautics and Space Administration's (NASA's) aeronautical research capabilities to the state of U.S. aviation and to make recommendations about NASA's future roles in aeronautics. Topics include NASA's role in: (1) aeronautics research and…

  16. 14 CFR 77.29 - Evaluating aeronautical effect.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Evaluating aeronautical effect. 77.29 Section 77.29 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRSPACE SAFE, EFFICIENT USE, AND PRESERVATION OF THE NAVIGABLE AIRSPACE Aeronautical Studies...

  17. 14 CFR 77.29 - Evaluating aeronautical effect.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Evaluating aeronautical effect. 77.29 Section 77.29 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRSPACE SAFE, EFFICIENT USE, AND PRESERVATION OF THE NAVIGABLE AIRSPACE Aeronautical Studies...

  18. 14 CFR 77.29 - Evaluating aeronautical effect.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Evaluating aeronautical effect. 77.29 Section 77.29 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRSPACE SAFE, EFFICIENT USE, AND PRESERVATION OF THE NAVIGABLE AIRSPACE Aeronautical Studies...

  19. 78 FR 69885 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-21

    ... SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Meeting AGENCY: National Aeronautics... meeting of the Aeronautics Committee of the NASA Advisory Council. This Committee reports to the NAC. The... for the Aeronautics Committee, NASA Headquarters, Washington, DC 20546, (202) 358-0566, or...

  20. Environmental consequences of Pollution and its Impact on earth's surface climate Using Geospatial Technology

    NASA Astrophysics Data System (ADS)

    Kumar, Amit

    2016-07-01

    Modern transportation is an indispensable ingredient for development, allowing the pressure group of labor, supplies and goods, and enabling general public to access key resources and services. Climate change is a most important threat to sustainable development in any developing or developed country. Urban air pollution is on the rise, due to rapid economic and inhabitants growth and an increase in motorization. Modern transport is fundamental for improvement, allowing the movement of goods and enabling general public to access key resources and services. Travel today is relatively faster and people across the world are travelling more than ever before. Its stipulate regarding forecast is an indispensable part of transportation development in order to evaluate future needs of an urban area. Over increasing traffic concentration posed continued threat to ambient air quality and responsible for producing agents of physical condition hazards. Geospatial technology provides the smartest approach to resolve these inconvenience as it can cover a large area in a fraction of time. The research work focuses on the recognition of traffic intensities with increasing of SO2, NO2 and noise level considered at particular traffic sites in the Varanasi, Uttar Pradesh, India. SO2, NO2 and Noise levels recorded in the city, are much higher than the permissible level and are likely to causes associated health and psychological illnesses to nearby inhabitant.