Sample records for aeronautics program subsonic

  1. NASA Collaborative Research on the Ultra High Bypass Engine Cycle and Potential Benefits for Noise, Performance, and Emissions

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.

    2013-01-01

    The National Aeronautics and Space Administration has taken an active role in collaborative research with the U.S. aerospace industry to investigate technologies to minimize the impact of aviation on the environment. In December 2006, a new program, called the Fundamental Aeronautics Program, was established to enhance U.S. aeronautics technology and conduct research on energy, efficiency and the environment. A project within the overall program, the Subsonic Fixed Wing Project, was formed to focus on research related to subsonic aircraft with specific goals and time based milestones to reduce aircraft noise, emissions and fuel burn. This paper will present an overview of the Subsonic Fixed Wing Project environmental goals and describe a segment of the current research within NASA and also were worked collaboratively with partners from the U.S. aerospace industry related to the next generation of aircraft that will have lower noise, emissions and fuel burn.

  2. Aeronautics research and technology program and specific objectives

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Aeronautics research and technology program objectives in fluid and thermal physics, materials and structures, controls and guidance, human factors, multidisciplinary activities, computer science and applications, propulsion, rotorcraft, high speed aircraft, subsonic aircraft, and rotorcraft and high speed aircraft systems technology are addressed.

  3. Ultra High Bypass Ratio Engine Research for Reducing Noise, Emissions, and Fuel Consumption

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.; Schweitzer, Jeff

    2007-01-01

    A pictorial history of NASA development of advanced engine technologies for reducing environmental emissions and increasing performance from the 1970s to 2000s is presented. The goals of the Subsonic Fixed Wing Program portion of the NASA Fundamental Aeronautics Program are discussed, along with the areas of investigation currently being pursued by the Ultra High Bypass Partnership Element of the Subsonic Fixed Wing Program.

  4. Power-by-Wire Development and Demonstration for Subsonic Civil Transport

    NASA Technical Reports Server (NTRS)

    1996-01-01

    During the last decade, three significant studies by the Lockheed Martin Corporation, the NASA Lewis Research Center, and McDonnell Douglas Corporation have clearly shown operational, weight, and cost advantages for commercial subsonic transport aircraft that use all-electric or more-electric technologies in the secondary electric power systems. Even though these studies were completed on different aircraft, used different criteria, and applied a variety of technologies, all three have shown large benefits to the aircraft industry and to the nation's competitive position. The Power-by-Wire (PBW) program is part of the highly reliable Fly-By-Light/Power-By-Wire (FBL/PBW) Technology Program, whose goal is to develop the technology base for confident application of integrated FBL/PBW systems for transport aircraft. This program is part of the NASA aeronautics strategic thrust in subsonic aircraft/national airspace (Thrust 1) to "develop selected high-leverage technologies and explore new means to ensure the competitiveness of U.S. subsonic aircraft and to enhance the safety and productivity of the national aviation system" (The Aeronautics Strategic Plan). Specifically, this program is an initiative under Thrust 1, Key Objective 2, to "develop, in cooperation with U.S. industry, selected high-payoff technologies that can enable significant improvements in aircraft efficiency and cost."

  5. A Vision in Aeronautics: The K-12 Wind Tunnel Project

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A Vision in Aeronautics, a project within the NASA Lewis Research Center's Information Infrastructure Technologies and Applications (IITA) K-12 Program, employs small-scale, subsonic wind tunnels to inspire students to explore the world of aeronautics and computers. Recently, two educational K-12 wind tunnels were built in the Cleveland area. During the 1995-1996 school year, preliminary testing occurred in both tunnels.

  6. Collaborative Research on the Ultra High Bypass Ratio Engine Cycle to Reduce Noise, Emissions and Fuel Consumption

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher

    2008-01-01

    A pictorial history of NASA development of advanced engine technologies for reducing environmental emissions and increasing performance from the 1970s to present is presented. The goals of the Subsonic Fixed Wing Program portion of the NASA Fundamental Aeronautics Program are addressed, along with the areas of investigation currently being pursued by the Ultra High Bypass Partnership Element of the Subsonic Fixed Wing Program to meet the goals. Ultra High Bypass cycle research collaboration successes with Pratt & Whitney are presented.

  7. An Overview of the NASA Fundamental Aeronautics Program Subsonic Fixed Wing Project and Ultra High Bypass Partnership Research Goals

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.

    2009-01-01

    An overview of the NASA Fundamental Aeronautics Program (FAP) mission and goals is presented. One of the subprograms under the FAP, the Subsonic Fixed Wing Project (SFW), is the focus of the presentation. The SFW system environmental metrics are discussed, along with highlights of planned, systematic approach to research to reduce the environmental impact of commercial aircraft in the areas of acoustics, fuel burn and emissions. The presentation then focuses on collaborative research being conducted with U.S. Industry on the Ultra High Bypass (UHB) engine cycle, the propulsion cycle selected by the SFW to meet the system goals. The partnerships with General Electric Aviation to investigate Open Rotor propulsion concepts and with Pratt & Whitney to investigate the Geared Turbofan UHB engine are highlighted, including current and planned future collaborative research activities with NASA and each organization.

  8. Materials and Structures Research for Gas Turbine Applications Within the NASA Subsonic Fixed Wing Project

    NASA Technical Reports Server (NTRS)

    Hurst, Janet

    2011-01-01

    A brief overview is presented of the current materials and structures research geared toward propulsion applications for NASA s Subsonic Fixed Wing Project one of four projects within the Fundamental Aeronautics Program of the NASA Aeronautics Research Mission Directorate. The Subsonic Fixed Wing (SFW) Project has selected challenging goals which anticipate an increasing emphasis on aviation s impact upon the global issue of environmental responsibility. These goals are greatly reduced noise, reduced emissions and reduced fuel consumption and address 25 to 30 years of technology development. Successful implementation of these demanding goals will require development of new materials and structural approaches within gas turbine propulsion technology. The Materials and Structures discipline, within the SFW project, comprise cross-cutting technologies ranging from basic investigations to component validation in laboratory environments. Material advances are teamed with innovative designs in a multidisciplinary approach with the resulting technology advances directed to promote the goals of reduced noise and emissions along with improved performance.

  9. National facilities study. Volume 2: Task group on aeronautical research and development facilities report

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Task Group on Aeronautics R&D Facilities examined the status and requirements for aeronautics facilities against the competitive need. Emphasis was placed on ground-based facilities for subsonic, supersonic and hypersonic aerodynamics, and propulsion. Subsonic and transonic wind tunnels were judged to be most critical and of highest priority. Results of the study are presented.

  10. Overview of CMC Research at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.

    2011-01-01

    CMC technology development in the Ceramics Branch at NASA Glenn Research Center addresses Aeronautics propulsion goals across subsonic, supersonic and hypersonic flight regimes. Combustor, turbine and exhaust nozzle applications of CMC materials will enable NASA to demonstrate reduced fuel consumption, emissions, and noise in advanced gas turbine engines. Applications ranging from basic Fundamental Aeronautics research activities to technology demonstrations in the new Integrated Systems Research Program will be discussed.

  11. NASA Aeronautics: Research and Technology Program Highlights

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This report contains numerous color illustrations to describe the NASA programs in aeronautics. The basic ideas involved are explained in brief paragraphs. The seven chapters deal with Subsonic aircraft, High-speed transport, High-performance military aircraft, Hypersonic/Transatmospheric vehicles, Critical disciplines, National facilities and Organizations & installations. Some individual aircraft discussed are : the SR-71 aircraft, aerospace planes, the high-speed civil transport (HSCT), the X-29 forward-swept wing research aircraft, and the X-31 aircraft. Critical disciplines discussed are numerical aerodynamic simulation, computational fluid dynamics, computational structural dynamics and new experimental testing techniques.

  12. Atmospheric Effects of Aviation: First Report of the Subsonic Assessment Project

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M. (Editor); Friedl, Randall R. (Editor); Wesoky, Howard L. (Editor)

    1996-01-01

    This document is the first report from the Office of Aeronautics Advanced Subsonic Technology (AST) Program's Subsonic Assessment (SASS) Project. This effort, initiated in late 1993, has as its objective the assessment of the atmospheric effects of the current and predicted future aviation fleet. The two areas of impact are ozone (stratospheric and tropospheric) and radiative forcing. These are driven, respectively, by possible perturbations from aircraft emissions of NOX and soot and/or sulfur-containing particles. The report presents the major questions to which project assessments will be directed (Introduction) and the status of six programmatic elements: Emissions Scenarios, Exhaust Characterization, Near-Field Interactions, Kinetics and Laboratory Studies, Global Modeling, and Atmospheric Observations (field studies).

  13. Overview of the NASA Subsonic Rotary Wing Aeronautics Research Program in Rotorcraft Crashworthiness

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Kellas, Sotiris; Fuchs, Yvonne T.

    2009-01-01

    This paper provides an overview of rotorcraft crashworthiness research being conducted at NASA Langley Research Center under sponsorship of the Subsonic Rotary Wing (SRW) Aeronautics Program. The research is focused in two areas: development of an externally deployable energy attenuating concept and improved prediction of rotorcraft crashworthiness. The deployable energy absorber (DEA) is a composite honeycomb structure, with a unique flexible hinge design that allows the honeycomb to be packaged and remain flat until needed for deployment. The capabilities of the DEA have been demonstrated through component crush tests and vertical drop tests of a retrofitted fuselage section onto different surfaces or terrain. The research on improved prediction of rotorcraft crashworthiness is focused in several areas including simulating occupant responses and injury risk assessment, predicting multi-terrain impact, and utilizing probabilistic analysis methods. A final task is to perform a system-integrated simulation of a full-scale helicopter crash test onto a rigid surface. A brief description of each research task is provided along with a summary of recent accomplishments.

  14. Overview of the NASA Subsonic Rotary Wing Aeronautics Research Program in Rotorcraft Crashworthiness

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fuchs, Yvonne T.; Kellas, Sotiris

    2008-01-01

    This paper provides an overview of rotorcraft crashworthiness research being conducted at NASA Langley Research Center under sponsorship of the Subsonic Rotary Wing (SRW) Aeronautics Program. The research is focused in two areas: development of an externally deployable energy attenuating concept and improved prediction of rotorcraft crashworthiness. The deployable energy absorber (DEA) is a composite honeycomb structure, with a unique flexible hinge design that allows the honeycomb to be packaged and remain flat until needed for deployment. The capabilities of the DEA have been demonstrated through component crush tests and vertical drop tests of a retrofitted fuselage section onto different surfaces or terrain. The research on improved prediction of rotorcraft crashworthiness is focused in several areas including simulating occupant responses and injury risk assessment, predicting multi-terrain impact, and utilizing probabilistic analysis methods. A final task is to perform a system-integrated simulation of a full-scale helicopter crash test onto a rigid surface. A brief description of each research task is provided along with a summary of recent accomplishments.

  15. An Analytical Assessment of NASA's N+1 Subsonic Fixed Wing Project Noise Goal

    NASA Technical Reports Server (NTRS)

    Berton, Jeffrey J.; Envia, Edmane; Burley, Casey L.

    2009-01-01

    The Subsonic Fixed Wing Project of NASA's Fundamental Aeronautics Program has adopted a noise reduction goal for new, subsonic, single-aisle, civil aircraft expected to replace current 737 and A320 airplanes. These so-called 'N+1' aircraft - designated in NASA vernacular as such since they will follow the current, in-service, 'N' airplanes - are hoped to achieve certification noise goal levels of 32 cumulative EPNdB under current Stage 4 noise regulations. A notional, N+1, single-aisle, twinjet transport with ultrahigh bypass ratio turbofan engines is analyzed in this study using NASA software and methods. Several advanced noise-reduction technologies are analytically applied to the propulsion system and airframe. Certification noise levels are predicted and compared with the NASA goal.

  16. A Comparison of Combustor-Noise Models

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart, S.

    2012-01-01

    The current status of combustor-noise prediction in the NASA Aircraft Noise Prediction Program (ANOPP) for current-generation (N) turbofan engines is summarized. Best methods for near-term updates are reviewed. Long-term needs and challenges for the N+1 through N+3 timeframe are discussed. This work was carried out under the NASA Fundamental Aeronautics Program, Subsonic Fixed Wing Project, Quiet Aircraft Subproject.

  17. 14 CFR 91.805 - Final compliance: Subsonic airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Final compliance: Subsonic airplanes. 91... § 91.805 Final compliance: Subsonic airplanes. Except as provided in §§ 91.809 and 91.811, on and after January 1, 1985, no person may operate to or from an airport in the United States any subsonic airplane...

  18. 14 CFR 91.805 - Final compliance: Subsonic airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Final compliance: Subsonic airplanes. 91... § 91.805 Final compliance: Subsonic airplanes. Except as provided in §§ 91.809 and 91.811, on and after January 1, 1985, no person may operate to or from an airport in the United States any subsonic airplane...

  19. 14 CFR 91.805 - Final compliance: Subsonic airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Final compliance: Subsonic airplanes. 91... § 91.805 Final compliance: Subsonic airplanes. Except as provided in §§ 91.809 and 91.811, on and after January 1, 1985, no person may operate to or from an airport in the United States any subsonic airplane...

  20. 14 CFR 91.805 - Final compliance: Subsonic airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Final compliance: Subsonic airplanes. 91... § 91.805 Final compliance: Subsonic airplanes. Except as provided in §§ 91.809 and 91.811, on and after January 1, 1985, no person may operate to or from an airport in the United States any subsonic airplane...

  1. 14 CFR 91.805 - Final compliance: Subsonic airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Final compliance: Subsonic airplanes. 91... § 91.805 Final compliance: Subsonic airplanes. Except as provided in §§ 91.809 and 91.811, on and after January 1, 1985, no person may operate to or from an airport in the United States any subsonic airplane...

  2. An Analytical Assessment of NASA's N(+)1 Subsonic Fixed Wing Project Noise Goal

    NASA Technical Reports Server (NTRS)

    Berton, Jeffrey J.; Envia, Edmane; Burley, Casey L.

    2010-01-01

    The Subsonic Fixed Wing Project of NASA s Fundamental Aeronautics Program has adopted a noise reduction goal for new, subsonic, single-aisle, civil aircraft expected to replace current 737 and A320 airplanes. These so-called "N+1" aircraft--designated in NASA vernacular as such since they will follow the current, in-service, "N" airplanes--are hoped to achieve certification noise goal levels of 32 cumulative EPNdB under current Stage 4 noise regulations. A notional, N+1, single-aisle, twinjet transport with ultrahigh bypass ratio turbofan engines is analyzed in this study using NASA software and methods. Several advanced noise-reduction technologies are empirically applied to the propulsion system and airframe. Certification noise levels are predicted and compared with the NASA goal.

  3. Core Noise Reduction

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2011-01-01

    This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system-level noise metrics for the 2015, 2020, and 2025 timeframes; turbofan design trends and their aeroacoustic implications; the emerging importance of core noise and its relevance to the SFW Reduce-Perceived-Noise Technical Challenge; and the current research activities in the core noise area. Recent work1 on the turbine-transmission loss of combustor noise is briefly described, two2,3 new NRA efforts in the core-noise area are outlined, and an effort to develop CMC-based acoustic liners for broadband noise reduction suitable for turbofan-core application is delineated. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic. The Subsonic Fixed Wing Project's Reduce-Perceived-Noise Technical Challenge aims to develop concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries.

  4. USSAERO version D computer program development using ANSI standard FORTRAN 77 and DI-3000 graphics

    NASA Technical Reports Server (NTRS)

    Wiese, M. R.

    1986-01-01

    The D version of the Unified Subsonic Supersonic Aerodynamic Analysis (USSAERO) program is the result of numerous modifications and enhancements to the B01 version. These changes include conversion to ANSI standard FORTRAN 77; use of the DI-3000 graphics package; removal of the overlay structure; a revised input format; the addition of an input data analysis routine; and increasing the number of aeronautical components allowed.

  5. 14 CFR 91.853 - Final compliance: Civil subsonic airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Final compliance: Civil subsonic airplanes... Noise Limits § 91.853 Final compliance: Civil subsonic airplanes. Except as provided in § 91.873, after... airplane subject to § 91.801(c) of this subpart, unless that airplane has been shown to comply with Stage 3...

  6. 14 CFR 91.853 - Final compliance: Civil subsonic airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Final compliance: Civil subsonic airplanes... Noise Limits § 91.853 Final compliance: Civil subsonic airplanes. Except as provided in § 91.873, after... airplane subject to § 91.801(c) of this subpart, unless that airplane has been shown to comply with Stage 3...

  7. 14 CFR 91.853 - Final compliance: Civil subsonic airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Final compliance: Civil subsonic airplanes... Noise Limits § 91.853 Final compliance: Civil subsonic airplanes. Except as provided in § 91.873, after... airplane subject to § 91.801(c) of this subpart, unless that airplane has been shown to comply with Stage 3...

  8. 14 CFR 91.853 - Final compliance: Civil subsonic airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Final compliance: Civil subsonic airplanes... Noise Limits § 91.853 Final compliance: Civil subsonic airplanes. Except as provided in § 91.873, after... airplane subject to § 91.801(c) of this subpart, unless that airplane has been shown to comply with Stage 3...

  9. 14 CFR 91.853 - Final compliance: Civil subsonic airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Final compliance: Civil subsonic airplanes... Noise Limits § 91.853 Final compliance: Civil subsonic airplanes. Except as provided in § 91.873, after... airplane subject to § 91.801(c) of this subpart, unless that airplane has been shown to comply with Stage 3...

  10. 14 CFR 36.103 - Noise limits.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT NOISE STANDARDS: AIRCRAFT TYPE AND AIRWORTHINESS CERTIFICATION Transport Category Large Airplanes and Jet Airplanes § 36.103 Noise limits. (a) For subsonic transport category large airplanes and subsonic jet airplanes compliance...

  11. 14 CFR 36.103 - Noise limits.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT NOISE STANDARDS: AIRCRAFT TYPE AND AIRWORTHINESS CERTIFICATION Transport Category Large Airplanes and Jet Airplanes § 36.103 Noise limits. (a) For subsonic transport category large airplanes and subsonic jet airplanes compliance...

  12. Aircraft Engine Technology for Green Aviation to Reduce Fuel Burn

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.; VanZante, Dale E.; Heidmann, James D.

    2013-01-01

    The NASA Fundamental Aeronautics Program Subsonic Fixed Wing Project and Integrated Systems Research Program Environmentally Responsible Aviation Project in the Aeronautics Research Mission Directorate are conducting research on advanced aircraft technology to address the environmental goals of reducing fuel burn, noise and NOx emissions for aircraft in 2020 and beyond. Both Projects, in collaborative partnerships with U.S. Industry, Academia, and other Government Agencies, have made significant progress toward reaching the N+2 (2020) and N+3 (beyond 2025) installed fuel burn goals by fundamental aircraft engine technology development, subscale component experimental investigations, full scale integrated systems validation testing, and development validation of state of the art computation design and analysis codes. Specific areas of propulsion technology research are discussed and progress to date.

  13. Progress Toward National Aeronautics Goals

    NASA Technical Reports Server (NTRS)

    Russo, Carlo J.; Sehra, Arun K.

    1999-01-01

    NASA has made definitive progress towards achieving several bold U.S. goals in aeronautics related to air breathing engines. The advanced technologies developed towards these goals span applications from general aviation to large subsonic and supersonic aircraft. The proof of successful technology development is demonstrated through successful technology transfer to U.S. industry and projected fleet impact. Specific examples of progress are discussed that quantifies the achievement towards these goals. In addition, a more detailed vision for NASA aeronautics is defined and key strategic issues are explored which invite international and national debate and involvement especially in reduced environmental impact for subsonic and supersonic aircraft, dramatic new capabilities in general aviation engines, and reduced development cycle time and costs.

  14. Full-Scale Turbofan-Engine Turbine-Transfer Function Determination Using Three Internal Sensors

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2012-01-01

    Noise-source separation techniques, using three engine-internal sensors, are applied to existing static-engine test data to determine the turbine transfer function for the currently subdominant combustion noise. The results are used to assess the combustion-noise prediction capability of the Aircraft Noise Prediction Program (ANOPP) and an improvement to the combustion-noise module GECOR is suggested. The work was carried out in response to the NASA Fundamental Aeronautics Subsonic Fixed Wing Program s Reduced-Perceived-Noise Technical Challenge.

  15. Acoustics Discipline Overview

    NASA Technical Reports Server (NTRS)

    Envia, Edmane; Thomas, Russell

    2007-01-01

    As part of the Fundamental Aeronautics Program Annual Review, a summary of the progress made in 2007 in acoustics research under the Subsonic Fixed Wing project is given. The presentation describes highlights from in-house and external activities including partnerships and NRA-funded research with industry and academia. Brief progress reports from all acoustics Phase 1 NRAs are also included as are outlines of the planned activities for 2008 and all Phase 2 NRAs. N+1 and N+2 technology paths outlined for Subsonic Fixed Wing noise targets. NRA Round 1 progressing with focus on prediction method advancement. NRA Round 2 initiating work focused on N+2 technology, prediction methods, and validation. Excellent partnerships in progress supporting N+1 technology targets and providing key data sets.

  16. Simultaneous, Unsteady PIV and Photogrammetry Measurements of a Tension-Cone Decelerator in Subsonic Flow

    NASA Technical Reports Server (NTRS)

    Schairer, Edward T.; Heineck, James T.; Walker, Louise Ann; Kushner, Laura Kathryn; Zilliac, Gregory

    2010-01-01

    This paper describes simultaneous, synchronized, high-frequency measurements of both unsteady flow in the wake of a tension-cone decelerator in subsonic flow (by PIV) and the unsteady shape of the decelerator (by photogrammetry). The purpose of these measurements was to develop the test techniques necessary to validate numerical methods for computing fluid-structure interactions of flexible decelerators. A critical need for this effort is to map fabric surfaces that have buckled or wrinkled so that code developers can accurately represent them. This paper describes a new photogrammetric technique that performs this measurement. The work was done in support of the Entry, Descent, and Landing discipline within the Supersonics Project of NASA s Fundamental Aeronautics Program.

  17. Some experience with Barnwell-Sewall type correction to two-dimensional airfoil data

    NASA Technical Reports Server (NTRS)

    Jenkins, R. V.

    1984-01-01

    A series of airfoils were tested in the Langley 0.3-Meter Transonic Cryogenic Tunnel (TCT) at Reynolds numbers from 2 to 50 million. The 0.3-m TCT is equipped with Barnwell slots designed to minimize blockage due to the tunnel flow and ceiling. This design suggests that sidewall corrections for blockage is needed, and that a lifting airfoil produces a change in angle of attack. Sidewall correction methods were developed for subsonic and subsonic-transonic flow. Comparisons of theory with experimental data obtained in the 0.3-m TCT for two airfoils, the British NPL 9510 and the German R-4 are presented. The NPL 9510 was tested as part of the NASA/United Kingdom Joint Aeronautical Program and R-4 was tested as part f the DFVLR/NASA Advanced Airfoil Research Program. For the NPL 9510 airfoil, only those test points that one would anticipate being difficult to predict theoretically are presented.

  18. A survey of computational aerodynamics in the United States

    NASA Technical Reports Server (NTRS)

    Gessow, A.; Morris, D. J.

    1977-01-01

    Programs in theoretical and computational aerodynamics in the United States are described. Those aspects of programs that relate to aeronautics are detailed. The role of analysis at various levels of sophistication is discussed as well as the inverse solution techniques that are of primary importance in design methodology. The research is divided into the broad categories of application for boundary layer flow, Navier-Stokes turbulence modeling, internal flows, two-dimensional configurations, subsonic and supersonic aircraft, transonic aircraft, and the space shuttle. A survey of representative work in each area is presented.

  19. OpenMDAO Framework Status

    NASA Technical Reports Server (NTRS)

    Naiman, Cynthia Gutierrez

    2010-01-01

    Advancing and exploring the science of Multidisciplinary Analysis & Optimization (MDAO) capabilities are high-level goals in the Fundamental Aeronautics Program s Subsonic Fixed Wing (SFW) project. The OpenMDAO team has made significant progress toward completing the Alpha OpenMDAO deliverable due in September 2010. Included in the presentation are: details of progress on developing the OpenMDAO framework, example usage of OpenMDAO, technology transfer plans, near term plans, progress toward establishing partnerships with external parties, and discussion of additional potential collaborations.

  20. Remotely Piloted Vehicles for Experimental Flight Control Testing

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.; High, James W.

    2009-01-01

    A successful flight test and training campaign of the NASA Flying Controls Testbed was conducted at Naval Outlying Field, Webster Field, MD during 2008. Both the prop and jet-powered versions of the subscale, remotely piloted testbeds were used to test representative experimental flight controllers. These testbeds were developed by the Subsonic Fixed Wing Project s emphasis on new flight test techniques. The Subsonic Fixed Wing Project is under the Fundamental Aeronautics Program of NASA's Aeronautics Research Mission Directorate (ARMD). The purpose of these testbeds is to quickly and inexpensively evaluate advanced concepts and experimental flight controls, with applications to adaptive control, system identification, novel control effectors, correlation of subscale flight tests with wind tunnel results, and autonomous operations. Flight tests and operator training were conducted during four separate series of tests during April, May, June and August 2008. Experimental controllers were engaged and disengaged during fully autonomous flight in the designated test area. Flaps and landing gear were deployed by commands from the ground control station as unanticipated disturbances. The flight tests were performed NASA personnel with support from the Maritime Unmanned Development and Operations (MUDO) team of the Naval Air Warfare Center, Aircraft Division

  1. An Overview of the Role of Systems Analysis in NASA's Hypersonics Project

    NASA Technical Reports Server (NTRS)

    Robinson, Jeffrey S.; Martin John G.; Bowles, Jeffrey V> ; Mehta, Unmeel B.; Snyder, CHristopher A.

    2006-01-01

    NASA's Aeronautics Research Mission Directorate recently restructured its Vehicle Systems Program, refocusing it towards understanding the fundamental physics that govern flight in all speed regimes. Now called the Fundamental Aeronautics Program, it is comprised of four new projects, Subsonic Fixed Wing, Subsonic Rotary Wing, Supersonics, and Hypersonics. The Aeronautics Research Mission Directorate has charged the Hypersonics Project with having a basic understanding of all systems that travel at hypersonic speeds within the Earth's and other planets atmospheres. This includes both powered and unpowered systems, such as re-entry vehicles and vehicles powered by rocket or airbreathing propulsion that cruise in and accelerate through the atmosphere. The primary objective of the Hypersonics Project is to develop physics-based predictive tools that enable the design, analysis and optimization of such systems. The Hypersonics Project charges the systems analysis discipline team with providing it the decision-making information it needs to properly guide research and technology development. Credible, rapid, and robust multi-disciplinary system analysis processes and design tools are required in order to generate this information. To this end, the principal challenges for the systems analysis team are the introduction of high fidelity physics into the analysis process and integration into a design environment, quantification of design uncertainty through the use of probabilistic methods, reduction in design cycle time, and the development and implementation of robust processes and tools enabling a wide design space and associated technology assessment capability. This paper will discuss the roles and responsibilities of the systems analysis discipline team within the Hypersonics Project as well as the tools, methods, processes, and approach that the team will undertake in order to perform its project designated functions.

  2. A Fan Concept to Meet the 2017 Noise Goals

    NASA Technical Reports Server (NTRS)

    Dittmar, James H.

    1998-01-01

    The National Aeronautics and Space Administration has established a goal of a 20 EPNdB reduction of aircraft noise by the year 2017. This paper proposes a fan concept for an engine that may meet this noise goal. The concept builds upon technology established during the Advanced Subsonic Technology Program which should show a 10 dB reduction potential. The new concept uses a two stage fan which allows low tip speed while still maintaining a reasonable total pressure rise across the two stages. The concept also incorporates many other noise reduction techniques in addition to low tip speed including a low number of exit guide vanes, swept and leaned guide vanes, a high subsonic Mach number inlet and syncrophased rotors to obtain active noise cancellation. The fan proposed in this paper is calculated to be able to achieve the 2017 noise goal.

  3. Wake Vortex Wingtip-Turbine Powered Circulation Control High-Lift System

    NASA Technical Reports Server (NTRS)

    Moore, Mark D.

    2005-01-01

    NASA s Vehicle Systems Program is investing in aeronautics technology development across six vehicle sectors, in order to improve future air travel. These vehicle sectors include subsonic commercial transports, supersonic vehicles, Uninhabited Aerial Vehicles (UAVs), Extreme Short Takeoff and Landing (ESTOL) vehicles, Rotorcraft, and Personal Air Vehicles (PAVs). While the subsonic transport is firmly established in U.S. markets, the other vehicle sectors have not developed a sufficient technology or regulatory state to permit widespread, practical use. The PAV sector has legacy products in the General Aviation (GA) market, but currently only accounts for negligible revenue miles, sales, or market share of personal travel. In order for PAV s to ever capture a significant market, these small aircraft require technologies that permit them to be less costly, environmentally acceptable, safer, easier to operate, more efficient, and less dependent on large support infrastructures.

  4. The future of aeronautical transportation; Proceedings of the Princeton University Conference, Princeton, N.J., November 10, 11, 1975

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Papers are presented on first and second generation supersonic transports, the Supersonic Cruise Aircraft Research Program, wide-body subsonic transports and vertical and short takeoff and landing transports. Aspects of aircraft design are examined including the airframe, propulsion and electronics. Government regulation, cost/benefit analysis of research and development, airline economics and aircraft financing are also considered. The environmental impact of air transportation is discussed with emphasis on atmospheric emissions (including stratospheric pollution) and noise pollution. Individual items are announced in this issue.

  5. Multi-Disciplinary Analysis and Optimization Frameworks

    NASA Technical Reports Server (NTRS)

    Naiman, Cynthia Gutierrez

    2009-01-01

    Since July 2008, the Multidisciplinary Analysis & Optimization Working Group (MDAO WG) of the Systems Analysis Design & Optimization (SAD&O) discipline in the Fundamental Aeronautics Program s Subsonic Fixed Wing (SFW) project completed one major milestone, Define Architecture & Interfaces for Next Generation Open Source MDAO Framework Milestone (9/30/08), and is completing the Generation 1 Framework validation milestone, which is due December 2008. Included in the presentation are: details of progress on developing the Open MDAO framework, modeling and testing the Generation 1 Framework, progress toward establishing partnerships with external parties, and discussion of additional potential collaborations

  6. Multidisciplinary Analysis and Optimization Generation 1 and Next Steps

    NASA Technical Reports Server (NTRS)

    Naiman, Cynthia Gutierrez

    2008-01-01

    The Multidisciplinary Analysis & Optimization Working Group (MDAO WG) of the Systems Analysis Design & Optimization (SAD&O) discipline in the Fundamental Aeronautics Program s Subsonic Fixed Wing (SFW) project completed three major milestones during Fiscal Year (FY)08: "Requirements Definition" Milestone (1/31/08); "GEN 1 Integrated Multi-disciplinary Toolset" (Annual Performance Goal) (6/30/08); and "Define Architecture & Interfaces for Next Generation Open Source MDAO Framework" Milestone (9/30/08). Details of all three milestones are explained including documentation available, potential partner collaborations, and next steps in FY09.

  7. Advanced Civilian Aeronautical Concepts

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M.

    1996-01-01

    Paper discusses alternatives to currently deployed systems which could provide revolutionary improvements in metrics applicable to civilian aeronautics. Specific missions addressed include subsonic transports, supersonic transports and personal aircraft. These alternative systems and concepts are enabled by recent and envisaged advancements in electronics, communications, computing and Designer Fluid Mechanics in conjunction with a design approach employing extensive synergistic interactions between propulsion, aerodynamics and structures.

  8. Structural Load Alleviation Applied to Next Generation Aircraft and Wind Turbines

    NASA Technical Reports Server (NTRS)

    Frost, Susan

    2011-01-01

    Reducing the environmental impact of aviation is a goal of the Subsonic Fixed Wing Project under the Fundamental Aeronautics Program of NASAs Aeronautics Research Mission Directorate. Environmental impact of aviation is being addressed by novel aircraft configurations and materials that reduce aircraft weight and increase aerodynamic efficiency. NASA is developing tools to address the challenges of increased airframe flexibility created by wings constructed with reduced structural material and novel light-weight materials. This talk will present a framework and demonstration of a flight control system using optimal control allocation with structural load feedback and constraints to achieve safe aircraft operation. As wind turbines age, they become susceptible to many forms of blade degradation. Results will be presented on work in progress that uses adaptive contingency control for load mitigation in a wind turbine simulation with blade damage progression modeled.

  9. Development of a Temperature Sensor for Jet Engine and Space Missions Environments

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad; Culley, Dennis E.; Elbuluk, Malik

    2008-01-01

    Electronic systems in aerospace and in space exploration missions are expected to encounter extreme temperatures and wide thermal swings. To address the needs for extreme temperature electronics, research efforts exist at the NASA Glenn Research Center (GRC) to develop and evaluate electronics for extreme temperature operations, and to establish their reliability under extreme temperature operation and thermal cycling; conditions that are typical of both the aerospace and space environments. These efforts are supported by the NASA Fundamental Aeronautics/Subsonic Fixed Wing Program and by the NASA Electronic Parts and Packaging (NEPP) Program. This work reports on the results obtained on the development of a temperature sensor geared for use in harsh environments.

  10. Conceptual Design and Cost Estimate of a Subsonic NASA Testbed Vehicle (NTV) for Aeronautics Research

    NASA Technical Reports Server (NTRS)

    Nickol, Craig L.; Frederic, Peter

    2013-01-01

    A conceptual design and cost estimate for a subsonic flight research vehicle designed to support NASA's Environmentally Responsible Aviation (ERA) project goals is presented. To investigate the technical and economic feasibility of modifying an existing aircraft, a highly modified Boeing 717 was developed for maturation of technologies supporting the three ERA project goals of reduced fuel burn, noise, and emissions. This modified 717 utilizes midfuselage mounted modern high bypass ratio engines in conjunction with engine exhaust shielding structures to provide a low noise testbed. The testbed also integrates a natural laminar flow wing section and active flow control for the vertical tail. An eight year program plan was created to incrementally modify and test the vehicle, enabling the suite of technology benefits to be isolated and quantified. Based on the conceptual design and programmatic plan for this testbed vehicle, a full cost estimate of $526M was developed, representing then-year dollars at a 50% confidence level.

  11. Acoustic Prediction State of the Art Assessment

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.

    2007-01-01

    The acoustic assessment task for both the Subsonic Fixed Wing and the Supersonic projects under NASA s Fundamental Aeronautics Program was designed to assess the current state-of-the-art in noise prediction capability and to establish baselines for gauging future progress. The documentation of our current capabilities included quantifying the differences between predictions of noise from computer codes and measurements of noise from experimental tests. Quantifying the accuracy of both the computed and experimental results further enhanced the credibility of the assessment. This presentation gives sample results from codes representative of NASA s capabilities in aircraft noise prediction both for systems and components. These include semi-empirical, statistical, analytical, and numerical codes. System level results are shown for both aircraft and engines. Component level results are shown for a landing gear prototype, for fan broadband noise, for jet noise from a subsonic round nozzle, and for propulsion airframe aeroacoustic interactions. Additional results are shown for modeling of the acoustic behavior of duct acoustic lining and the attenuation of sound in lined ducts with flow.

  12. Aeronautical fuel conservation possibilities for advanced subsonic transports. [application of aeronautical technology for drag and weight reduction

    NASA Technical Reports Server (NTRS)

    Braslow, A. L.; Whitehead, A. H., Jr.

    1973-01-01

    The anticipated growth of air transportation is in danger of being constrained by increased prices and insecure sources of petroleum-based fuel. Fuel-conservation possibilities attainable through the application of advances in aeronautical technology to aircraft design are identified with the intent of stimulating NASA R and T and systems-study activities in the various disciplinary areas. The material includes drag reduction; weight reduction; increased efficiency of main and auxiliary power systems; unconventional air transport of cargo; and operational changes.

  13. Subsonic Round and Rectangular Twin Jet Flow Effects

    NASA Technical Reports Server (NTRS)

    Bozak, Rick; Wernet, Mark

    2014-01-01

    Subsonic and supersonic aircraft concepts proposed by NASAs Fundamental Aeronautics Program have integrated propulsion systems with asymmetric nozzles. The asymmetry in the exhaust of these propulsion systems creates asymmetric flow and acoustic fields. The flow asymmetries investigated in the current study are from two parallel round, 2:1, and 8:1 aspect ratio rectangular jets at the same nozzle conditions. The flow field was measured with streamwise and cross-stream particle image velocimetry (PIV). A large dataset of single and twin jet flow field measurements was acquired at subsonic jet conditions. The effects of twin jet spacing and forward flight were investigated. For round, 2:1, and 8:1 rectangular twin jets at their closest spacings, turbulence levels between the two jets decreased due to enhanced jet mixing at near static conditions. When the flight Mach number was increased to 0.25, the flow around the twin jet model created a velocity deficit between the two nozzles. This velocity deficit diminished the effect of forward flight causing an increase in turbulent kinetic energy relative to a single jet. Both of these twin jet flow field effects decreased with increasing twin jet spacing relative to a single jet. These variations in turbulent kinetic energy correlate with changes in far-field sound pressure level.

  14. The evolution of the high-speed civil transport

    NASA Technical Reports Server (NTRS)

    Spearman, M. Leroy

    1994-01-01

    Current research directed toward the technology requirements for a high-speed civil transport (HSCT) airplane is an outgrowth of many years of activity related to air transportation. The purpose was to review some of the events that provided the background upon which current research programs are built. The review will include the subsonic era of transport aircraft and some events of the supersonic era that are related to the development of commercial supersonic transport aircraft. These events include the early NASA in-house studies and industry evaluations, the U.S. Supersonic Transport (SST) Program, the follow-on NASA supersonic cruise research programs, and the issuance of the National Aeronautical Research and Development (R&D) goals. Observations are made concerning some of the factors, both technical and nontechnical, that have had an impact on HSCT studies.

  15. High Pressure Low NOx Emissions Research: Recent Progress at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Chi-Ming, Lee; Tacina, Kathleen M.; Wey, Changlie

    2007-01-01

    In collaboration with U.S. aircraft engine companies, NASA Glenn Research Center has contributed to the advancement of low emissions combustion systems. For the High Speed Research Program (HSR), a 90% reduction in nitrogen oxides (NOx) emissions (relative to the then-current state of the art) has been demonstrated in sector rig testing at General Electric Aircraft Engines (GEAE). For the Advanced Subsonic Technology Program (AST), a 50% reduction in NOx emissions relative to the 1996 International Civil Aviation Organization (ICAO) standards has been at demonstrated in sector rigs at both GEAE and Pratt & Whitney (P&W). During the Ultra Efficient Engine Technology Program (UEET), a 70% reduction in NOx emissions, relative to the 1996 ICAO standards, was achieved in sector rig testing at Glenn in the world class Advanced Subsonic Combustion Rig (ASCR) and at contractor facilities. Low NOx combustor development continues under the Fundamental Aeronautics Program. To achieve these reductions, experimental and analytical research has been conducted to advance the understanding of emissions formation in combustion processes. Lean direct injection (LDI) concept development uses advanced laser-based non-intrusive diagnostics and analytical work to complement the emissions measurements and to provide guidance for concept improvement. This paper describes emissions results from flametube tests of a 9- injection-point LDI fuel/air mixer tested at inlet pressures up to 5500 kPa. Sample results from CFD and laser diagnostics are also discussed.

  16. NASA Glenn High Pressure Low NOx Emissions Research

    NASA Technical Reports Server (NTRS)

    Tacina, Kathleen M.; Wey, Changlie

    2008-01-01

    In collaboration with U.S. aircraft engine companies, NASA Glenn Research Center has contributed to the advancement of low emissions combustion systems. For the High Speed Research Program (HSR), a 90% reduction in nitrogen oxides (NOx) emissions (relative to the then-current state of the art) has been demonstrated in sector rig testing at General Electric Aircraft Engines (GEAE). For the Advanced Subsonic Technology Program (AST), a 50% reduction in NOx emissions relative to the 1996 International Civil Aviation Organization (ICAO) standards has been demonstrated in sector rigs at both GEAE and Pratt & Whitney (P&W). During the Ultra Efficient Engine Technology Program (UEET), a 70% reduction in NOx emissions, relative to the 1996 ICAO standards, was achieved in sector rig testing at Glenn in the world class Advanced Subsonic Combustion Rig (ASCR) and at contractor facilities. Low NOx combustor development continues under the Fundamental Aeronautics Program. To achieve these reductions, experimental and analytical research has been conducted to advance the understanding of emissions formation in combustion processes. Lean direct injection (LDI) concept development uses advanced laser-based non-intrusive diagnostics and analytical work to complement the emissions measurements and to provide guidance for concept improvement. This paper describes emissions results from flametube tests of a 9-injection-point LDI fuel/air mixer tested at inlet pressures up to 5500 kPa. Sample results from CFD and laser diagnostics are also discussed.

  17. Developing Soil Models for Dynamic Impact Simulations

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Lyle, Karen H.; Jackson, Karen E.

    2009-01-01

    This paper describes fundamental soils characterization work performed at NASA Langley Research Center in support of the Subsonic Rotary Wing (SRW) Aeronautics Program and the Orion Landing System (LS) Advanced Development Program (ADP). LS-DYNA(Registered TradeMark)1 soil impact model development and test-analysis correlation results are presented for: (1) a 38-ft/s vertical drop test of a composite fuselage section, outfitted with four blocks of deployable energy absorbers (DEA), onto sand, and (2) a series of impact tests of a 1/2-scale geometric boilerplate Orion capsule onto soil. In addition, the paper will discuss LS-DYNA contact analysis at the soil/structure interface, methods used to estimate frictional forces, and the sensitivity of the model to density, moisture, and compaction.

  18. NASA/industry advanced turboprop technology program

    NASA Technical Reports Server (NTRS)

    Ziemianski, Joseph A.; Whitlow, John B., Jr.

    1988-01-01

    Experimental and analytical effort shows that use of advanced turboprop (propfan) propulsion instead of conventional turbofans in the older narrow-body airline fleet could reduce fuel consumption for this type of aircraft by up to 50 percent. The NASA Advanced Turboprop (ATP) program was formulated to address the key technologies required for these thin, swept-blade propeller concepts. A NASA, industry, and university team was assembled to develop and validate applicable design codes and prove by ground and flight test the viability of these propeller concepts. Some of the history of the ATP project, an overview of some of the issues, and a summary of the technology developed to make advanced propellers viable in the high-subsonic cruise speed application are presented. The ATP program was awarded the prestigious Robert J. Collier Trophy for the greatest achievement in aeronautics and astronautics in America in 1987.

  19. The Impact of Subsonic Twin Jets on Airport Noise

    NASA Technical Reports Server (NTRS)

    Bozak, Richard, F.

    2012-01-01

    Subsonic and supersonic aircraft concepts proposed through NASA s Fundamental Aeronautics Program have multiple engines mounted near one another. Engine configurations with multiple jets introduce an asymmetry to the azimuthal directivity of the jet noise. Current system noise predictions add the jet noise from each jet incoherently, therefore, twin jets are estimated by adding 3 EPNdB to the far-field noise radiated from a single jet. Twin jet effects have the ability to increase or decrease the radiated noise to different azimuthal observation locations. Experiments have shown that twin jet effects are reduced with forward flight and increasing spacings. The current experiment investigates the impact of spacing, and flight effects on airport noise for twin jets. Estimating the jet noise radiated from twin jets as that of a single jet plus 3 EPNdB may be sufficient for horizontal twin jets with an s/d of 4.4 and 5.5, where s is the center-to-center spacing and d is the jet diameter. However, up to a 3 EPNdB error could be present for jet spacings with an s/d of 2.6 and 3.2.

  20. Collaborative Educational Experiences through Higher Education-Industry Partnerships

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Hall, Cathy W.

    2012-01-01

    This paper examines the perceptions of mentors and student interns from NASA's Langley Aerospace Research Summer Scholars (LARSS) program in Hampton, Virginia. Data for the current study are from student interns and mentors participating in the 2010, 10-week summer internship. Students are chosen from around the country based upon their applications and mentoring opportunities to participate in a summer program focusing on a range of specialty areas including: aeronautics; earth science research; exploration and flight; systems and concepts; systems engineering; subsonic/transonic testing; supersonic/hypersonic testing; and structures testing. This study presents information on mentors perceptions of academic preparedness brought to the workplace by student interns; student interns perceptions of how the internship helped develop key skill areas; and self-reports from student interns and their mentors about their internship experience.

  1. Aeronautical technologies for the twenty-first century

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This study gives an overview of the future technologies in aeronautics. This collaborative effort relies upon the input of numerous experts from around the country. Specific issues covered include subsonic transport aircraft, high-speed civil transport aircraft short-haul aircraft, environmental issues, operational issues, aerodynamics, propulsion, materials and structures, avionics and control, and cognitive engineering. The appendices include bibliography, abbreviations and acronyms, and NASA fiscal year 1992 aeronautics funding (table) and participants. The forward states that over the last decade, foreign aircraft manufacturers have made significant inroads into the global aircraft market, to the detriment of U.S. interests. Recommendations are made to counter that trend.

  2. NASA/industry advanced turboprop technology program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziemianski, J.A.; Whitlow, J.B. Jr.

    1988-01-01

    Experimental and analytical effort shows that use of advanced turboprop (propfan) propulsion instead of conventional turbofans in the older narrow-body airline fleet could reduce fuel consumption for this type of aircraft by up to 50 percent. The NASA Advanced Turboprop (ATP) program was formulated to address the key technologies required for these thin, swept-blade propeller concepts. A NASA, industry, and university team was assembled to develop and validate applicable design codes and prove by ground and flight test the viability of these propeller concepts. Some of the history of the ATP project, an overview of some of the issues, andmore » a summary of the technology developed to make advanced propellers viable in the high-subsonic cruise speed application are presented. The ATP program was awarded the prestigious Robert J. Collier Trophy for the greatest achievement in aeronautics and astronautics in America in 1987.« less

  3. An Overview of NASA's SubsoniC Research Aircraft Testbed (SCRAT)

    NASA Technical Reports Server (NTRS)

    Baumann, Ethan; Hernandez, Joe; Ruhf, John

    2013-01-01

    National Aeronautics and Space Administration Dryden Flight Research Center acquired a Gulfstream III (GIII) aircraft to serve as a testbed for aeronautics flight research experiments. The aircraft is referred to as SCRAT, which stands for SubsoniC Research Aircraft Testbed. The aircraft’s mission is to perform aeronautics research; more specifically raising the Technology Readiness Level (TRL) of advanced technologies through flight demonstrations and gathering high-quality research data suitable for verifying the technologies, and validating design and analysis tools. The SCRAT has the ability to conduct a range of flight research experiments throughout a transport class aircraft’s flight envelope. Experiments ranging from flight-testing of a new aircraft system or sensor to those requiring structural and aerodynamic modifications to the aircraft can be accomplished. The aircraft has been modified to include an instrumentation system and sensors necessary to conduct flight research experiments along with a telemetry capability. An instrumentation power distribution system was installed to accommodate the instrumentation system and future experiments. An engineering simulation of the SCRAT has been developed to aid in integrating research experiments. A series of baseline aircraft characterization flights has been flown that gathered flight data to aid in developing and integrating future research experiments. This paper describes the SCRAT’s research systems and capabilities

  4. An Overview of NASA's Subsonic Research Aircraft Testbed (SCRAT)

    NASA Technical Reports Server (NTRS)

    Baumann, Ethan; Hernandez, Joe; Ruhf, John C.

    2013-01-01

    National Aeronautics and Space Administration Dryden Flight Research Center acquired a Gulfstream III (GIII) aircraft to serve as a testbed for aeronautics flight research experiments. The aircraft is referred to as SCRAT, which stands for SubsoniC Research Aircraft Testbed. The aircraft's mission is to perform aeronautics research; more specifically raising the Technology Readiness Level (TRL) of advanced technologies through flight demonstrations and gathering high-quality research data suitable for verifying the technologies, and validating design and analysis tools. The SCRAT has the ability to conduct a range of flight research experiments throughout a transport class aircraft's flight envelope. Experiments ranging from flight-testing of a new aircraft system or sensor to those requiring structural and aerodynamic modifications to the aircraft can be accomplished. The aircraft has been modified to include an instrumentation system and sensors necessary to conduct flight research experiments along with a telemetry capability. An instrumentation power distribution system was installed to accommodate the instrumentation system and future experiments. An engineering simulation of the SCRAT has been developed to aid in integrating research experiments. A series of baseline aircraft characterization flights has been flown that gathered flight data to aid in developing and integrating future research experiments. This paper describes the SCRAT's research systems and capabilities.

  5. Subsonic Aircraft Safety Icing Study

    NASA Technical Reports Server (NTRS)

    Jones, Sharon Monica; Reveley, Mary S.; Evans, Joni K.; Barrientos, Francesca A.

    2008-01-01

    NASA's Integrated Resilient Aircraft Control (IRAC) Project is one of four projects within the agency s Aviation Safety Program (AvSafe) in the Aeronautics Research Mission Directorate (ARMD). The IRAC Project, which was redesigned in the first half of 2007, conducts research to advance the state of the art in aircraft control design tools and techniques. A "Key Decision Point" was established for fiscal year 2007 with the following expected outcomes: document the most currently available statistical/prognostic data associated with icing for subsonic transport, summarize reports by subject matter experts in icing research on current knowledge of icing effects on control parameters and establish future requirements for icing research for subsonic transports including the appropriate alignment. This study contains: (1) statistical analyses of accident and incident data conducted by NASA researchers for this "Key Decision Point", (2) an examination of icing in other recent statistically based studies, (3) a summary of aviation safety priority lists that have been developed by various subject-matter experts, including the significance of aircraft icing research in these lists and (4) suggested future requirements for NASA icing research. The review of several studies by subject-matter experts was summarized into four high-priority icing research areas. Based on the Integrated Resilient Aircraft Control (IRAC) Project goals and objectives, the IRAC project was encouraged to conduct work in all of the high-priority icing research areas that were identified, with the exception of the developing of methods to sense and document actual icing conditions.

  6. Navier-Stokes Simulation of a Heavy Lift Slowed-Rotor Compound Helicopter Configuration

    NASA Technical Reports Server (NTRS)

    Allan, Brian G.; Jenkins, Luther N.; Yao, Chung-Sheng; Bartram, Scott M.; Hallissy, Jim B.; Harris, Jerome; Noonan, Kevin W.; Wong, Oliver D.; Jones, Henry E.; Malovrh, Brendon D.; hide

    2009-01-01

    Time accurate numerical simulations were performed using the Reynolds-averaged Navier-Stokes (RANS) flow solver OVERFLOW for a heavy lift, slowed-rotor, compound helicopter configuration, tested at the NASA Langley 14- by 22-Foot Subsonic Tunnel. The primary purpose of these simulations is to provide support for the development of a large field of view Particle Imaging Velocimetry (PIV) flow measurement technique supported by the Subsonic Rotary Wing (SRW) project under the NASA Fundamental Aeronautics program. These simulations provide a better understanding of the rotor and body wake flows and helped to define PIV measurement locations as well as requirements for validation of flow solver codes. The large field PIV system can measure the three-dimensional velocity flow field in a 0.914m by 1.83m plane. PIV measurements were performed upstream and downstream of the vertical tail section and are compared to simulation results. The simulations are also used to better understand the tunnel wall and body/rotor support effects by comparing simulations with and without tunnel floor/ceiling walls and supports. Comparisons are also made to the experimental force and moment data for the body and rotor.

  7. Gas Turbine Characteristics for a Large Civil Tilt-Rotor (LCTR)

    NASA Technical Reports Server (NTRS)

    Snyder, Christopher A.; Thurman, Douglas R.

    2010-01-01

    In support of the Fundamental Aeronautics Program, Subsonic Rotary Wing Project; an engine system study has been undertaken to help define and understand some of the major gas turbine engine parameters required to meet performance and weight requirements as defined by earlier vehicle system studies. These previous vehicle studies will be reviewed to help define gas turbine performance goals. Assumptions and analysis methods used will be described. Performance and weight estimates for a few conceptual gas turbine engines meeting these requirements will be given and discussed. Estimated performance for these conceptual engines over a wide speed variation (down to 50 percent power turbine rpm at high torque) will be presented. Finally, areas needing further effort will be suggested and discussed.

  8. Simulation Packages Expand Aircraft Design Options

    NASA Technical Reports Server (NTRS)

    2013-01-01

    In 2001, NASA released a new approach to computational fluid dynamics that allows users to perform automated analysis on complex vehicle designs. In 2010, Palo Alto, California-based Desktop Aeronautics acquired a license from Ames Research Center to sell the technology. Today, the product assists organizations in the design of subsonic aircraft, space planes, spacecraft, and high speed commercial jets.

  9. An inventory of aeronautical ground research facilities. Volume 1: Wind tunnels

    NASA Technical Reports Server (NTRS)

    Pirrello, C. J.; Hardin, R. D.; Heckart, M. V.; Brown, K. R.

    1971-01-01

    A survey of wind tunnel research facilities in the United States is presented. The inventory includes all subsonic, transonic, and hypersonic wind tunnels operated by governmental and private organizations. Each wind tunnel is described with respect to size, mechanical operation, construction, testing capabilities, and operating costs. Facility performance data are presented in charts and tables.

  10. ARC-1964-AC-32745

    NASA Image and Video Library

    1964-09-19

    XV-5A airplane installed in 40x80ft Subsonic Wind Tunnel at NASA Ames Research Center with Tom Mills. The propulsive lift system was tested to determine power-on performance characteristics in preparation for flight tests. Used in Memoiors of an Aeronautical Engineer, Flight Tests at Ames Research Center 1940-1970 NASA-SP-2002-4526 (Seth B. Anderson)

  11. NASA aeronautics research and technology

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The technical accomplishments and research highlights of 1986 are featured, along with information on possible areas of future research. These include hypersonic, supersonic, high performance, subsonic, and rotorcraft vehicle technology. Fundamental disciplinary research areas discussed include aerodynamics, propulsion, materials and structures, information sciences and human factors, and flight systems/safety. A description of the NASA organization and facilities is given.

  12. TBCC Discipline Overview. Hypersonics Project

    NASA Technical Reports Server (NTRS)

    Thomas, Scott R.

    2011-01-01

    The "National Aeronautics Research and Development Policy" document, issued by the National Science and Technology Council in December 2006, stated that one (among several) of the guiding objectives of the federal aeronautics research and development endeavors shall be stable and long-term foundational research efforts. Nearly concurrently, the National Academies issued a more technically focused aeronautics blueprint, entitled: the "Decadal Survey of Civil Aeronautics - Foundations for the Future." Taken together these documents outline the principles of an aeronautics maturation plan. Thus, in response to these overarching inputs (and others), the National Aeronautics and Space Administration (NASA) organized the Fundamental Aeronautics Program (FAP), a program within the NASA Aeronautics Research Mission Directorate (ARMD). The FAP initiated foundational research and technology development tasks to enable the capability of future vehicles that operate across a broad range of Mach numbers, inclusive of the subsonic, supersonic, and hypersonic flight regimes. The FAP Hypersonics Project concentrates on two hypersonic missions: (1) Air-breathing Access to Space (AAS) and (2) the (Planetary Atmospheric) Entry, Decent, and Landing (EDL). The AAS mission focuses on Two-Stage-To-Orbit (TSTO) systems using air-breathing combined-cycle-engine propulsion; whereas, the EDL mission focuses on the challenges associated with delivering large payloads to (and from) Mars. So, the FAP Hypersonic Project investments are aligned to achieve mastery and intellectual stewardship of the core competencies in the hypersonic-flight regime, which ultimately will be required for practical systems with highly integrated aerodynamic/vehicle and propulsion/engine technologies. Within the FAP Hypersonics, the technology management is further divided into disciplines including one targeting Turbine-Based Combine-Cycle (TBCC) propulsion. Additionally, to obtain expertise and support from outside (including industry and academia) the hypersonic uses both NASA Research Announcements (NRAs) and a jointly sponsored, Air Force Office of Scientific Research and NASA, National Hypersonic Science Center that are focused on propulsion research. Finally, these two disciplines use selected external partnership agreements with both governmental agencies and industrial entities. The TBCC discipline is comprised of analytic and experimental tasks, and is structured into the following two research topic areas: (1) TBCC Integrated Flowpath Technologies, and (2) TBCC Component Technologies. These tasks will provide experimental data to support design and analysis tool development and validation that will enable advances in TBCC technology.

  13. Quest for Performance: the Evolution of Modern Aircraft

    NASA Technical Reports Server (NTRS)

    Loftin, Lawrence K., Jr.

    1985-01-01

    The technical evolution of the subsonic airplane is traced from a curiosity at the beginning of World War I to the highly useful machine of today. Included are descriptions of significant aircraft which incorporated important technical innovations and served to shape the future course of aeronautical development, as well as aircraft which represented the state-of-art in a particular time frame or were much used or liked. The discussion is related primarily to aircraft configuration evolution and associated aerodynamic characteristics and, to a lesser extent, to developments in aircraft construction and propulsion. The material is presented in a manner designed to appeal to the nontechnical reader who is interested in the evolution of the airplane, as well as to students of aeronautical engineering and others with an aeronautical background.

  14. Technical needs and research opportunities provided by projected aeronautical and space systems

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.

    1992-01-01

    The overall goal of the present task is to identify the enabling and supporting technologies for projected aeronautical and space systems. A detailed examination was made of the technical needs in the structures, dynamics and materials areas required for the realization of these systems. Also, the level of integration required with other disciplines was identified. The aeronautical systems considered cover the broad spectrum of rotorcraft; subsonic, supersonic and hypersonic aircraft; extremely high-altitude aircraft; and transatmospheric vehicles. The space systems considered include space transportation systems; spacecrafts for near-earth observation; spacecrafts for planetary and solar exploration; and large space systems. A monograph is being compiled which summarizes the results of this study. The different chapters of the monograph are being written by leading experts from governmental laboratories, industry and universities.

  15. Large-Scale V/STOL Experimental Investigations of an Ejector-Lift Fighter and a Twin Tilt-Nacelle Transport

    NASA Technical Reports Server (NTRS)

    Dudley, Michael R.

    2016-01-01

    In the 1980s NASA Aeronautics was actively involved in full-scale wind tunnel testing of promising VSTOL aircraft concepts. This presentation looks at two, a multi-role fighter and a subsonic tactical transport. Their strengths and weaknesses are discussed with some of the rationale that ultimately led to the selection of competing concepts for production, namely the V-22 Osprey and the F-35 Lightning. The E7-A STOVL multi-role fighter was the product of an aircraft development program in the late 1980s by NASA, the Defense Advanced Research Projects Agency (DARPA), the Canadian Department of Industry Science and Technology (DIST), and industry partners General Dynamics and Boeing Dehavilland. The program was conducted an in response to increasing US-UK interest in supersonic STOVL fighters. The objective was to design an aircraft that could replace most existing close air support-air combat fighters with a single aircraft that had some of the qualities of an air superiority fighter and the deployment flexibility of a VSTOL aircraft. The resulting E7-A concept was a delta-wing supersonic fighter that used a fuselage-mounted thrust augmenting ejector and a ventral deflecting jet nozzle for vertical lift. The Grumman Aircraft Company, the Navy, and NASA developed the Design-698 (D-698) subsonic tactical transport in response to the Navy's Type A VSTOL utility aircraft requirement. The objective was to develop a subsonic utility transport with the operational flexibility of a helicopter, but with greater speed and range. The D-698 employs two high-bypass turbofan engines mounted on a dumbbell that rotates through ninety degrees for vertical takeoff and cruise flight. Movable vanes positioned in the exhaust flow provide control in hover with the need for reaction control jets. The presentations concluding comments suggest that technology advances in the last thirty-years may justify the value of revisiting some of these concepts.

  16. Workshop on Jet Exhaust Noise Reduction for Tactical Aircraft - NASA Perspective

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.; Henderson, Brenda S.

    2007-01-01

    Jet noise from supersonic, high performance aircraft is a significant problem for takeoff and landing operations near air bases and aircraft carriers. As newer aircraft with higher thrust and performance are introduced, the noise tends to increase due to higher jet exhaust velocities. Jet noise has been a subject of research for over 55 years. Commercial subsonic aircraft benefit from changes to the engine cycle that reduce the exhaust velocities and result in significant noise reduction. Most of the research programs over the past few decades have concentrated on commercial aircraft. Progress has been made by introducing new engines with design features that reduce the noise. NASA has recently started a new program called "Fundamental Aeronautics" where three projects (subsonic fixed wing, subsonic rotary wing, and supersonics) address aircraft noise. For the supersonics project, a primary goal is to understand the underlying physics associated with jet noise so that improved noise prediction tools and noise reduction methods can be developed for a wide range of applications. Highlights from the supersonics project are presented including prediction methods for broadband shock noise, flow measurement methods, and noise reduction methods. Realistic expectations are presented based on past history that indicates significant jet noise reduction cannot be achieved without major changes to the engine cycle. NASA s past experience shows a few EPNdB (effective perceived noise level in decibels) can be achieved using low noise design features such as chevron nozzles. Minimal thrust loss can be expected with these nozzles (< 0.5%) and they may be retrofitted on existing engines. In the long term, it is desirable to use variable cycle engines that can be optimized for lower jet noise during takeoff operations and higher thrust for operational performance. It is also suggested that noise experts be included early in the design process for engine nozzle systems to participate in decisions that may impact the jet noise.

  17. USSAERO computer program development, versions B and C

    NASA Technical Reports Server (NTRS)

    Woodward, F. A.

    1980-01-01

    Versions B and C of the unified subsonic and supersonic aerodynamic analysis program, USSAERO, are described. Version B incorporates a new symmetrical singularity method to provide improved surface pressure distributions on wings in subsonic flow. Version C extends the range of application of the program to include the analysis of multiple engine nacelles or finned external stores. In addition, nonlinear compressibility effects in high subsonic and supersonic flows are approximated using a correction based on the local Mach number at panel control points. Several examples are presented comparing the results of these programs with other panel methods and experimental data.

  18. High altitude subsonic parachute field programmable gate array

    NASA Technical Reports Server (NTRS)

    Kowalski, James E.; Gromov, Konstantin; Konefat, Edward H.

    2005-01-01

    This paper describes a rapid, top down requirements-driven design of an FPGA used in an Earth qualification test program for a new Mars subsonic parachute. The FPGA is used to process and control storage of telemetry data from multiple sensors throughout; launch, ascent, deployment and descent phases of the subsonic parachute test.

  19. Research and technology, 1983

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Highlights of major accomplishments and applications made during the past year illustrate the broad range of research and technology activities at the Langley Research Center. Advances are reported in the following areas: systems engineering and operation; aeronautics; electronics; space applications; aircraft and spacecraft structures; composite structures; laminar flow control; subsonic transport aircraft; and supersonic fighter concepts. Technology utilization efforts described cover a hyperthermia monitor, a lightweight composite wheelchair; and a vehicle ride quality meter.

  20. Subsonic Ultra Green Aircraft Research: Phase II- Volume III-Truss Braced Wing Aeroelastic Test Report

    NASA Technical Reports Server (NTRS)

    Bradley, Marty K.; Allen, Timothy J.; Droney, Christopher

    2014-01-01

    This Test Report summarizes the Truss Braced Wing (TBW) Aeroelastic Test (Task 3.1) work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team, which includes the time period of February 2012 through June 2014. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, Virginia Tech, and NextGen Aeronautics. The model was fabricated by NextGen Aeronautics and designed to meet dynamically scaled requirements from the sized full scale TBW FEM. The test of the dynamically scaled SUGAR TBW half model was broken up into open loop testing in December 2013 and closed loop testing from January 2014 to April 2014. Results showed the flutter mechanism to primarily be a coalescence of 2nd bending mode and 1st torsion mode around 10 Hz, as predicted by analysis. Results also showed significant change in flutter speed as angle of attack was varied. This nonlinear behavior can be explained by including preload and large displacement changes to the structural stiffness and mass matrices in the flutter analysis. Control laws derived from both test system ID and FEM19 state space models were successful in suppressing flutter. The control laws were robust and suppressed flutter for a variety of Mach, dynamic pressures, and angle of attacks investigated.

  1. A study of sound generation in subsonic rotors, volume 2

    NASA Technical Reports Server (NTRS)

    Chalupnik, J. D.; Clark, L. T.

    1975-01-01

    Computer programs were developed for use in the analysis of sound generation by subsonic rotors. Program AIRFOIL computes the spectrum of radiated sound from a single airfoil immersed in a laminar flow field. Program ROTOR extends this to a rotating frame, and provides a model for sound generation in subsonic rotors. The program also computes tone sound generation due to steady state forces on the blades. Program TONE uses a moving source analysis to generate a time series for an array of forces moving in a circular path. The resultant time series are than Fourier transformed to render the results in spectral form. Program SDATA is a standard time series analysis package. It reads in two discrete time series and forms auto and cross covariances and normalizes these to form correlations. The program then transforms the covariances to yield auto and cross power spectra by means of a Fourier transformation.

  2. Towards Bridging the Gaps in Holistic Transition Prediction via Numerical Simulations

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan M.; Li, Fei; Duan, Lian; Chang, Chau-Lyan; Carpenter, Mark H.; Streett, Craig L.; Malik, Mujeeb R.

    2013-01-01

    The economic and environmental benefits of laminar flow technology via reduced fuel burn of subsonic and supersonic aircraft cannot be realized without minimizing the uncertainty in drag prediction in general and transition prediction in particular. Transition research under NASA's Aeronautical Sciences Project seeks to develop a validated set of variable fidelity prediction tools with known strengths and limitations, so as to enable "sufficiently" accurate transition prediction and practical transition control for future vehicle concepts. This paper provides a summary of selected research activities targeting the current gaps in high-fidelity transition prediction, specifically those related to the receptivity and laminar breakdown phases of crossflow induced transition in a subsonic swept-wing boundary layer. The results of direct numerical simulations are used to obtain an enhanced understanding of the laminar breakdown region as well as to validate reduced order prediction methods.

  3. A Higher-Order Trapezoidal Vector Vortex Panel for Subsonic Flow.

    DTIC Science & Technology

    1980-12-01

    Presented to the Faculty of the School of Engineering of the Air Force Institute of Technology Air University In Partial Fulfillment of the...Requirements for the Degree of Master of Science by Ronald E. Luther, B.S. Capt USAF Graduate Aeronautical Engineering December 1980 Approved for public... methd also permits analysis of cranked leading and/or trailiig edges. The root edge, tip edge and all chordwise boundaries are parallel to the x-axis

  4. Development of a Temperature Sensor for Jet Engine and Space Mission Applications

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad; Elbuluk, Malik; Culley, Dennis

    2008-01-01

    Electronics for Distributed Turbine Engine Control and Space Exploration Missions are expected to encounter extreme temperatures and wide thermal swings. In particular, circuits deployed in a jet engine compartment are likely to be exposed to temperatures well exceeding 150 C. To meet this requirement, efforts exist at the NASA Glenn Research Center (GRC), in support of the Fundamental Aeronautics Program/Subsonic Fixed Wing Project, to develop temperature sensors geared for use in high temperature environments. The sensor and associated circuitry need to be located in the engine compartment under distributed control architecture to simplify system design, improve reliability, and ease signal multiplexing. Several circuits were designed using commercial-off-the-shelf as well as newly-developed components to perform temperature sensing at high temperatures. The temperature-sensing circuits will be described along with the results pertaining to their performance under extreme temperature.

  5. Human Rating the Orion Parachute System

    NASA Technical Reports Server (NTRS)

    Machin, Ricardo A.; Fisher, Timothy E.; Evans, Carol T.; Stewart, Christine E.

    2011-01-01

    Human rating begins with design. Converging on the requirements and identifying the risks as early as possible in the design process is essential. Understanding of the interaction between the recovery system and the spacecraft will in large part dictate the achievable reliability of the final design. Component and complete system full-scale flight testing is critical to assure a realistic evaluation of the performance and reliability of the parachute system. However, because testing is so often difficult and expensive, comprehensive analysis of test results and correlation to accurate modeling completes the human rating process. The National Aeronautics and Space Administration (NASA) Orion program uses parachutes to stabilize and decelerate the Crew Exploration Vehicle (CEV) spacecraft during subsonic flight in order to deliver a safe water landing. This paper describes the approach that CEV Parachute Assembly System (CPAS) will take to human rate the parachute recovery system for the CEV.

  6. Electric Propulsion Platforms at DFRC

    NASA Technical Reports Server (NTRS)

    Baraaclough, Jonathan

    2009-01-01

    NASA Dryden Flight Research Center is a world-class flight research facility located at Edwards AFB, CA. With access to a 44 sq. mile dry lakebed and 350 testable days per year, it is the ideal location for flight research. DFRC has been undertaking aircraft research for approximately six decades including the famous X-aircraft (X-1 through X-48) and many science and exploration platforms. As part of this impressive heritage, DFRC has garnered more hours of full-sized electric aircraft testing than any other facility in the US, and possibly the world. Throughout the 80 s and 90 s Dryden was the home of the Pathfinder, Pathfinder Plus, and Helios prototype solar-electric aircraft. As part of the ERAST program, these electric aircraft achieved a world record 97,000 feet altitude for propeller-driven aircraft. As a result of these programs, Dryden s staff has collected thousands of man-hours of electric aircraft research and testing. In order to better answer the needs of the US in providing aircraft technologies with lower fuel consumption, lower toxic emissions (NOx, CO, VOCs, etc.), lower greenhouse gas (GHG) emissions, and lower noise emissions, NASA has engaged in cross-discipline research under the Aeronautics Research Mission Directorate (ARMD). As a part of this overall effort, Mark Moore of LaRC has initiated a cross-NASA-center electric propulsion working group (EPWG) to focus on electric propulsion technologies as applied to aircraft. Electric propulsion technologies are ideally suited to overcome all of the obstacles mentioned above, and are at a sufficiently advanced state of development component-wise to warrant serious R&D and testing (TRL 3+). The EPWG includes participation from NASA Langley Research Center (LaRC), Glenn Research Center (GRC), Ames Research Center (ARC), and Dryden Flight Research Center (DFRC). Each of the center participants provides their own unique expertise to support the overall goal of advancing the state-of-the-art in aircraft electric propulsion technologies. DFRC will leverage its vast experience in flight test to assist in the integration and flight test phases of any electric propulsion program. DFRC s core competencies, that have particular relevance to the goals of the EPWG, include flight research planning and execution and providing aircraft test beds for researching and testing electric propulsion concepts and equipment. There are three flight regimes that the EPWG is focusing on: subsonic small GA and UAV, subsonic transport class, and supersonic. DFRC proposes two classes of test bed aircraft, to answer the early- and mid-phase testing requirements of all flight regimes the EPWG is concerned with. First, a highly efficient PIK motor glider will be used to test concepts and equipment associated with the subsonic GA and UAV aircraft regime (N+1). Second, a small fleet of subscale remotely-piloted aircraft test beds, similar to the X48B Blended Wing Body aircraft tested at Dryden, will be developed to answer the unique testing requirements of the subsonic GA and UAV, subsonic transport and possibly the supersonic class of aircraft (N+2, N+3). These aircraft can be tested in either serial stages or concurrent stages, depending on the actual test requirements and program schedules. Both classes of test bed aircraft are described below.

  7. The incorporation of plotting capability into the Unified Subsonic Supersonic Aerodynamic Analysis program, version B

    NASA Technical Reports Server (NTRS)

    Winter, O. A.

    1980-01-01

    The B01 version of the United Subsonic Supersonic Aerodynamic Analysis program is the result of numerous modifications and additions made to the B00 version. These modifications and additions affect the program input, its computational options, the code readability, and the overlay structure. The following are described: (1) the revised input; (2) the plotting overlay programs which were also modified, and their associated subroutines, (3) the auxillary files used by the program, the revised output data; and (4) the program overlay structure.

  8. Application of the CAP-TSD unsteady transonic small disturbance program to wing flutter. [Computational Aeroelasticity Program

    NASA Technical Reports Server (NTRS)

    Bennett, Robert M.; Batina, John T.

    1989-01-01

    The application and assessment of a computer program called CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) for flutter predictions are described. Flutter calculations are presented for two thin swept-and-tapered wing planforms with well-defined modal properties. One planform is a series of 45-degree swept wings and the other planform is a clipped delta wing. Comparisons are made between the results of CAP-TSD using the linear equation and no airfoil thickness and the results obtained from a subsonic kernel function analysis. The calculations cover a Mach number range from low subsonic to low supersonic values, including the transonic range, and are compared with subsonic linear theory and experimental data. It is noted that since both wings have very thin airfoil sections, the effects of thickness are minimal.

  9. Influence matrix program for aerodynamic lifting surface theory. [in subsonic flows

    NASA Technical Reports Server (NTRS)

    Medan, R. T.; Ray, K. S.

    1973-01-01

    A users manual is described for a USA FORTRAN 4 computer program which computes an aerodynamic influence matrix and is one of several computer programs used to analyze lifting, thin wings in steady, subsonic flow according to a kernel function method lifting surface theory. The most significant features of the program are that it can treat unsymmetrical wings, control points can be placed on the leading and/or trailing edges, and a stable, efficient algorithm is used to compute the influence matrix.

  10. The Influence of Heat Transfer on the Drag of Airfoils.

    DTIC Science & Technology

    1981-04-01

    OF STANDARDS-1963-A LL b AFWAL-TR-81- 3030 THE INFLUENCE OF HEAT TRANSFER ON THE DRAG OF AIRFOILS DR. JOHN D. LEE The Aeronautical and Astronautical...if necReary mid identify by block number) Airfoils , Subsonic, Transonic, Supercritical, Laminar Flow, Transition, Drag Reduction, Heat Transfer...determine the effects of surface temperature on the drag of airfoils . Models of an aft- loaded profile and of a NACA 65A413 were tested with separate models

  11. Atmospheric Effects of Subsonic Aircraft: Interim Assessment Report of the Advanced Subsonic Technology Program

    NASA Technical Reports Server (NTRS)

    Friedl, Randall R. (Editor)

    1997-01-01

    This first interim assessment of the subsonic assessment (SASS) project attempts to summarize concisely the status of our knowledge concerning the impacts of present and future subsonic aircraft fleets. It also highlights the major areas of scientific uncertainty, through review of existing data bases and model-based sensitivity studies. In view of the need for substantial improvements in both model formulations and experimental databases, this interim assessment cannot provide confident numerical predictions of aviation impacts. However, a number of quantitative estimates are presented, which provide some guidance to policy makers.

  12. Preliminary design of a supersonic cruise aircraft high-pressure turbine

    NASA Technical Reports Server (NTRS)

    Aceto, L. D.; Calderbank, J. C.

    1983-01-01

    Development of the supersonic cruise aircraft engine continued in this National Aeronautics and Space Administration (NASA) sponsored Pratt and Whitney program for the Preliminary Design of an Advanced High-Pressure Turbine. Airfoil cooling concepts and the technology required to implement these concepts received particular emphasis. Previous supersonic cruise aircraft mission studies were reviewed and the Variable Stream Control Engine (VSCE) was chosen as the candidate or the preliminary turbine design. The design was evaluated for the supersonic cruise mission. The advanced technology to be generated from these designs showed benefits in the supersonic cruise application and subsonic cruise application. The preliminary design incorporates advanced single crystal materials, thermal barrier coatings, and oxidation resistant coatings for both the vane and blade. The 1990 technology vane and blade designs have cooled turbine efficiency of 92.3 percent, 8.05 percent Wae cooling and a 10,000 hour life. An alternate design with 1986 technology has 91.9 percent efficiency and 12.43 percent Wae cooling at the same life. To achieve these performance and life results, technology programs must be pursued to provide the 1990's technology assumed for this study.

  13. Wireless Sensors Pinpoint Rotorcraft Troubles

    NASA Technical Reports Server (NTRS)

    2013-01-01

    Helicopters present many advantages over fixed-wing aircraft: they can take off from and land in tight spots, they can move in any direction with relative ease, and they can hover in one area for extended periods of time. But that maneuverability comes with costs. For example, one persistent issue in helicopter maintenance and operation is that their components are subject to high amounts of wear compared to fixed-wing aircraft. In particular, the rotor drive system that makes flight possible undergoes heavy vibration during routine performance, slowly degrading components in a way that can cause failures if left unmonitored. The level of attention required to ensure flight safety makes helicopters very expensive to maintain. As a part of NASA s Fundamental Aeronautics Program, the Subsonic Rotary Wing Project seeks to advance knowledge about and improve prediction capabilities for rotorcraft, with the aim of developing technology that will meet future civilian requirements like higher efficiency and lower noise flights. One of the program s goals is to improve technology to detect and assess the health of critical components in rotorcraft drive systems.

  14. Compressibility Effects in Aeronautical Engineering

    NASA Technical Reports Server (NTRS)

    Stack, John

    1941-01-01

    Compressible-flow research, while a relatively new field in aeronautics, is very old, dating back almost to the development of the first firearm. Over the last hundred years, researches have been conducted in the ballistics field, but these results have been of practically no use in aeronautical engineering because the phenomena that have been studied have been the more or less steady supersonic condition of flow. Some work that has been done in connection with steam turbines, particularly nozzle studies, has been of value, In general, however, understanding of compressible-flow phenomena has been very incomplete and permitted no real basis for the solution of aeronautical engineering problems in which.the flow is likely to be unsteady because regions of both subsonic and supersonic speeds may occur. In the early phases of the development of the airplane, speeds were so low that the effects of compressibility could be justifiably ignored. During the last war and immediately after, however, propellers exhibited losses in efficiency as the tip speeds approached the speed of sound, and the first experiments of an aeronautical nature were therefore conducted with propellers. Results of these experiments indicated serious losses of efficiency, but aeronautical engineers were not seriously concerned at the time became it was generally possible. to design propellers with quite low tip. speeds. With the development of new engines having increased power and rotational speeds, however, the problems became of increasing importance.

  15. Computing Trimmed, Mean-Camber Surfaces At Minimum Drag

    NASA Technical Reports Server (NTRS)

    Lamar, John E.; Hodges, William T.

    1995-01-01

    VLMD computer program determines subsonic mean-camber surfaces of trimmed noncoplanar planforms with minimum vortex drag at specified lift coefficient. Up to two planforms designed together. Method used that of subsonic vortex lattice method of chord loading specification, ranging from rectangular to triangular, left specified by user. Program versatile and applied to isolated wings, wing/canard configurations, tandem wing, and wing/-winglet configuration. Written in FORTRAN.

  16. Technology for design of transport aircraft. Lecture notes for MIT courses: Seminar 1.61 freshman seminar in air transportation and graduate course 1.201, transportation systems analysis

    NASA Technical Reports Server (NTRS)

    Simpson, R. W.

    1972-01-01

    The design parameters which determine cruise performance for a conventional subsonic jet transport are discussed. It is assumed that the aircraft burns climb fuel to reach cruising altitude and that aeronautical technology determines the ability to carry a given payload at cruising altitude. It is shown that different sizes of transport aircraft are needed to provide the cost optimal vehicle for different given payload-range objectives.

  17. Overview and major characteristics of future aeronautical and space systems

    NASA Technical Reports Server (NTRS)

    Venneri, Samuel L.; Noor, Ahmed K.

    1992-01-01

    A systematic projection is made of prospective materials and structural systems' performance requirements in light of emerging applications. The applications encompass high-speed/long-range rotorcraft, advanced subsonic commercial aircraft, high speed (supersonic) commercial transports, hypersonic aircraft and missiles, extremely high-altitude cruise aircraft and missiles, and aerospace craft and launch vehicles. A tabulation is presented of the materials/structures/dynamics requirements associated with future aerospace systems, as well as the further development needs foreseen in each such case.

  18. Recent Developments in U.S. Engine Noise Reduction Research

    NASA Technical Reports Server (NTRS)

    Bridges, James; Envia, Edmane; Huff, Dennis

    2001-01-01

    Aircraft engine noise research in the United States has made considerable progress over the past 10 years for both subsonic and supersonic flight applications. The Advanced Subsonic Technology (AST) Noise Reduction Program started in 1994 and will be completed in 2001 without major changes to program plans and funding levels. As a result, significant progress has been made toward the goal of reducing engine source noise by 6 EPNdB (Effective Perceived Noise level in decibels). This paper will summarize some of the significant accomplishments from the subsonic engine noise research performed over the past 10 years. The review is by no means comprehensive and only represents a sample of major accomplishments.

  19. TRW vortex-lattice method subsonic aerodynamic analysis for multiple-lifting-surfaces (N. surface) TRW program number HA010B

    NASA Technical Reports Server (NTRS)

    Gomez, A. V.

    1972-01-01

    The program was designed to provide solutions of engineering accuracy for determining the aerodynamic loads on single- or multiple-lifting-surface configurations that represent vehicles in subsonic flight, e.g., wings, wing-tail, wing-canard, lifting bodies, etc. The preparation is described of the input data, associated input arrangement, and the output format for the program data, including specification of the various operational details of the program such as array sizes, tape numbers utilized, and program dumps. A full description of the underlying theory used in the program development and a review of the program qualification tests are included.

  20. TranAir: A full-potential, solution-adaptive, rectangular grid code for predicting subsonic, transonic, and supersonic flows about arbitrary configurations. User's manual

    NASA Technical Reports Server (NTRS)

    Johnson, F. T.; Samant, S. S.; Bieterman, M. B.; Melvin, R. G.; Young, D. P.; Bussoletti, J. E.; Hilmes, C. L.

    1992-01-01

    The TranAir computer program calculates transonic flow about arbitrary configurations at subsonic, transonic, and supersonic freestream Mach numbers. TranAir solves the nonlinear full potential equations subject to a variety of boundary conditions modeling wakes, inlets, exhausts, porous walls, and impermeable surfaces. Regions with different total temperature and pressure can be represented. The user's manual describes how to run the TranAir program and its graphical support programs.

  1. Sensitivity Analysis of Linear Programming and Quadratic Programming Algorithms for Control Allocation

    NASA Technical Reports Server (NTRS)

    Frost, Susan A.; Bodson, Marc; Acosta, Diana M.

    2009-01-01

    The Next Generation (NextGen) transport aircraft configurations being investigated as part of the NASA Aeronautics Subsonic Fixed Wing Project have more control surfaces, or control effectors, than existing transport aircraft configurations. Conventional flight control is achieved through two symmetric elevators, two antisymmetric ailerons, and a rudder. The five effectors, reduced to three command variables, produce moments along the three main axes of the aircraft and enable the pilot to control the attitude and flight path of the aircraft. The NextGen aircraft will have additional redundant control effectors to control the three moments, creating a situation where the aircraft is over-actuated and where a simple relationship does not exist anymore between the required effector deflections and the desired moments. NextGen flight controllers will incorporate control allocation algorithms to determine the optimal effector commands and attain the desired moments, taking into account the effector limits. Approaches to solving the problem using linear programming and quadratic programming algorithms have been proposed and tested. It is of great interest to understand their relative advantages and disadvantages and how design parameters may affect their properties. In this paper, we investigate the sensitivity of the effector commands with respect to the desired moments and show on some examples that the solutions provided using the l2 norm of quadratic programming are less sensitive than those using the l1 norm of linear programming.

  2. Changing the Landscape of Civil Aviation

    NASA Technical Reports Server (NTRS)

    Russo, Carol J.

    1997-01-01

    NASA is undertaking several bold new initiatives to develop revolutionary technologies for civil aviation. These technologies span the civil aviation fleet from general aviation to large subsonic and supersonic aircraft and promise to bring a new era of new aircraft, lower operation costs, faster more direct flight capabilities, more environmentally friendly aircraft, and safer airline operations. These initiatives have specific quantified goals that require technologies well beyond those currently being developed creating a bold new vision for aeronautics. Revolutionary propulsion systems are enabling for these advancements. This paper gives an overview of the new national aeronautics goals and explores for a selected subset of goals some of the revolutionary technologies will be required to meet some of these goals. The focus of the paper is on the pivotal role propulsion and icing technologies will play in changing the landscape of civil aviation.

  3. User's manual: Subsonic/supersonic advanced panel pilot code

    NASA Technical Reports Server (NTRS)

    Moran, J.; Tinoco, E. N.; Johnson, F. T.

    1978-01-01

    Sufficient instructions for running the subsonic/supersonic advanced panel pilot code were developed. This software was developed as a vehicle for numerical experimentation and it should not be construed to represent a finished production program. The pilot code is based on a higher order panel method using linearly varying source and quadratically varying doublet distributions for computing both linearized supersonic and subsonic flow over arbitrary wings and bodies. This user's manual contains complete input and output descriptions. A brief description of the method is given as well as practical instructions for proper configurations modeling. Computed results are also included to demonstrate some of the capabilities of the pilot code. The computer program is written in FORTRAN IV for the SCOPE 3.4.4 operations system of the Ames CDC 7600 computer. The program uses overlay structure and thirteen disk files, and it requires approximately 132000 (Octal) central memory words.

  4. NASA Noise Reduction Program for Advanced Subsonic Transports

    NASA Technical Reports Server (NTRS)

    Stephens, David G.; Cazier, F. W., Jr.

    1995-01-01

    Aircraft noise is an important byproduct of the world's air transportation system. Because of growing public interest and sensitivity to noise, noise reduction technology is becoming increasingly important to the unconstrained growth and utilization of the air transportation system. Unless noise technology keeps pace with public demands, noise restrictions at the international, national and/or local levels may unduly constrain the growth and capacity of the system to serve the public. In recognition of the importance of noise technology to the future of air transportation as well as the viability and competitiveness of the aircraft that operate within the system, NASA, the FAA and the industry have developed noise reduction technology programs having application to virtually all classes of subsonic and supersonic aircraft envisioned to operate far into the 21st century. The purpose of this paper is to describe the scope and focus of the Advanced Subsonic Technology Noise Reduction program with emphasis on the advanced technologies that form the foundation of the program.

  5. Direct numerical simulation of a compressible boundary-layer flow past an isolated three-dimensional hump in a high-speed subsonic regime

    NASA Astrophysics Data System (ADS)

    De Grazia, D.; Moxey, D.; Sherwin, S. J.; Kravtsova, M. A.; Ruban, A. I.

    2018-02-01

    In this paper we study the boundary-layer separation produced in a high-speed subsonic boundary layer by a small wall roughness. Specifically, we present a direct numerical simulation (DNS) of a two-dimensional boundary-layer flow over a flat plate encountering a three-dimensional Gaussian-shaped hump. This work was motivated by the lack of DNS data of boundary-layer flows past roughness elements in a similar regime which is typical of civil aviation. The Mach and Reynolds numbers are chosen to be relevant for aeronautical applications when considering small imperfections at the leading edge of wings. We analyze different heights of the hump: The smaller heights result in a weakly nonlinear regime, while the larger result in a fully nonlinear regime with an increasing laminar separation bubble arising downstream of the roughness element and the formation of a pair of streamwise counterrotating vortices which appear to support themselves.

  6. Towards Intelligent Control for Next Generation Aircraft

    NASA Technical Reports Server (NTRS)

    Acosta, Diana Michelle; KrishnaKumar, Kalmanje Srinvas; Frost, Susan Alane

    2008-01-01

    NASA Aeronautics Subsonic Fixed Wing Project is focused on mitigating the environmental and operation impacts expected as aviation operations triple by 2025. The approach is to extend technological capabilities and explore novel civil transport configurations that reduce noise, emissions, fuel consumption and field length. Two Next Generation (NextGen) aircraft have been identified to meet the Subsonic Fixed Wing Project goals - these are the Hybrid Wing-Body (HWB) and Cruise Efficient Short Take-Off and Landing (CESTOL) aircraft. The technologies and concepts developed for these aircraft complicate the vehicle s design and operation. In this paper, flight control challenges for NextGen aircraft are described. The objective of this paper is to examine the potential of state-of-the-art control architectures and algorithms to meet the challenges and needed performance metrics for NextGen flight control. A broad range of conventional and intelligent control approaches are considered, including dynamic inversion control, integrated flight-propulsion control, control allocation, adaptive dynamic inversion control, data-based predictive control and reinforcement learning control.

  7. Protective Skins for Composite Airliners

    NASA Technical Reports Server (NTRS)

    Johnson, Vicki S.; Boone, Richard L.; Jones, Shannon; Pendse, Vandana; Hayward, Greg

    2014-01-01

    Traditional composite aircraft structures are designed for load bearing and then overdesigned for impact damage and hot humid environments. Seeking revolutionary improvement in the performance and weight of composite structures, Cessna Aircraft Company, with sponsorship from the NASA Fundamental Aeronautics Program/Subsonic Fixed Wing Project, has developed and tested a protective skin concept which would allow the primary composite structure to carry only load and would meet the impact, hot and humid, and other requirements through protective skins. A key requirement for the protective skins is to make any impact damage requiring repair visible. Testing from the first generation of skins helped identify the most promising materials which were used in a second generation of test articles. This report summarizes lessons learned from the first generation of protective skins, the design and construction of the second-generation test articles, test results from the second generation for impact, electromagnetic effects, aesthetics and smoothing, thermal, and acoustic (for the first time), and an assessment of the feasibility of the protective skin concept.

  8. Comparison of ALE and SPH Simulations of Vertical Drop Tests of a Composite Fuselage Section into Water

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fuchs, Yvonne T.

    2008-01-01

    Simulation of multi-terrain impact has been identified as an important research area for improved prediction of rotorcraft crashworthiness within the NASA Subsonic Rotary Wing Aeronautics Program on Rotorcraft Crashworthiness. As part of this effort, two vertical drop tests were conducted of a 5-ft-diameter composite fuselage section into water. For the first test, the fuselage section was impacted in a baseline configuration without energy absorbers. For the second test, the fuselage section was retrofitted with a composite honeycomb energy absorber. Both tests were conducted at a nominal velocity of 25-ft/s. A detailed finite element model was developed to represent each test article and water impact was simulated using both Arbitrary Lagrangian Eulerian (ALE) and Smooth Particle Hydrodynamics (SPH) approaches in LS-DYNA, a nonlinear, explicit transient dynamic finite element code. Analytical predictions were correlated with experimental data for both test configurations. In addition, studies were performed to evaluate the influence of mesh density on test-analysis correlation.

  9. Assessment of High Temperature Superconducting (HTS) electric motors for rotorcraft propulsion

    NASA Technical Reports Server (NTRS)

    Doernbach, Jay

    1990-01-01

    The successful development of high temperature superconductors (HTS) could have a major impact on future aeronautical propulsion and aeronautical flight vehicle systems. Applications of high temperature superconductors have been envisioned for several classes of aeronautical systems, including subsonic and supersonic transports, hypersonic aircraft, V/STOL aircraft, rotorcraft and solar powered aircraft. The potential of HTS electric motors and generators for providing primary shaft power for rotorcraft propulsion is examined. Three different sized production helicopters were investigated; namely, the Bell Jet Ranger, the Sikorsky Black Hawk and the Sikorsky Super Stallion. These rotorcraft have nominal horsepower ratings of 500, 3600, and 13400 respectively. Preliminary results indicated that an all-electric HTS drive system produces an improvement in rotorcraft Takeoff Gross Weight (TOGW) for those rotorcraft with power ratings above 2000 horsepower. The predicted TOGW improvements are up to 9 percent for the medium-sized Sikorsky Black Hawk and up to 20 percent for the large-sized Sikorsky Super Stallion. The small-sized Bell Jet Ranger, however, experienced a penalty in TOGW with the all-electric HTS drive system.

  10. Rocket-Model Investigation of the Longitudinal Stability, Drag, and Duct Performance Characteristics of the North American MX-770 (X-10) Missile at Mach Numbers from 0.80 to 1.70

    NASA Technical Reports Server (NTRS)

    Bond, Aleck C.; Swanson, Andrew G.

    1953-01-01

    A free-flight 0.12-scale rocket-boosted model of the North American MX-770 (X-10) missile has been tested in flight by the Pilotless Aircraft Research Division of the Langley Aeronautical Laboratory. Drag, longitudinal stability, and duct performance data were obtained at Mach numbers from 0.8 to 1.7 covering a Reynolds number range of about 9 x 10(exp 6) to 24 x 10(exp 6) based on wing mean aerodynamic chord. The lift-curve slope, static stability, and damping-in-pitch derivatives showed similar variations with Mach number, the parameters increasing from subsonic values in the transonic region and decreasing in the supersonic region. The variations were for the most part fairly smooth. The aerodynamic center of the configuration shifted rearward in the transonic region and moved forward gradually in the supersonic region. The pitching effectiveness of the canard control surfaces was maintained throughout the flight speed range, the supersonic values being somewhat greater than the subsonic. Trim values of angle of attack and lift coefficient changed abruptly in the transonic region, the change being associated with variations in the out-of-trim pitching moment, control effectiveness, and aerodynamic-center travel in this speed range. Duct total-pressure recovery decreased with increase in free-stream Mach number and the values were somewhat less than normal-shock recovery. Minimum drag data indicated a supersonic drag coefficient about twice the subsonic drag coefficient and a drag-rise Mach number of approximately 0.90. Base drag was small subsonically but was about 25 percent of the minimum drag of the configuration supersonically.

  11. Multidisciplinary Design, Analysis, and Optimization Tool Development Using a Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi; Li, Wesley

    2009-01-01

    Multidisciplinary design, analysis, and optimization using a genetic algorithm is being developed at the National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California) to automate analysis and design process by leveraging existing tools to enable true multidisciplinary optimization in the preliminary design stage of subsonic, transonic, supersonic, and hypersonic aircraft. This is a promising technology, but faces many challenges in large-scale, real-world application. This report describes current approaches, recent results, and challenges for multidisciplinary design, analysis, and optimization as demonstrated by experience with the Ikhana fire pod design.!

  12. NASA Fixed Wing Project: Green Technologies for Future Aircraft Generation

    NASA Technical Reports Server (NTRS)

    Del Rosario, Ruben; Koudelka, John M.; Wahls, Rich; Madavan, Nateri

    2014-01-01

    Commercial aviation relies almost entirely on subsonic fixed wing aircraft to constantly move people and goods from one place to another across the globe. While air travel is an effective means of transportation providing an unmatched combination of speed and range, future subsonic aircraft must improve substantially to meet efficiency and environmental targets.The NASA Fundamental Aeronautics Fixed Wing (FW) Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. Multidisciplinary advances are required in aerodynamic efficiency to reduce drag, structural efficiency to reduce aircraft empty weight, and propulsive and thermal efficiency to reduce thrust-specific energy consumption (TSEC) for overall system benefit. Additionally, advances are required to reduce perceived noise without adversely affecting drag, weight, or TSEC, and to reduce harmful emissions without adversely affecting energy efficiency or noise.The paper will highlight the Fixed Wing project vision of revolutionary systems and technologies needed to achieve these challenging goals. Specifically, the primary focus of the FW Project is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe

  13. Performance seeking control: Program overview and future directions

    NASA Technical Reports Server (NTRS)

    Gilyard, Glenn B.; Orme, John S.

    1993-01-01

    A flight test evaluation of the performance-seeking control (PSC) algorithm on the NASA F-15 highly integrated digital electronic control research aircraft was conducted for single-engine operation at subsonic and supersonic speeds. The model-based PSC system was developed with three optimization modes: minimum fuel flow at constant thrust, minimum turbine temperature at constant thrust, and maximum thrust at maximum dry and full afterburner throttle settings. Subsonic and supersonic flight testing were conducted at the NASA Dryden Flight Research Facility covering the three PSC optimization modes and over the full throttle range. Flight results show substantial benefits. In the maximum thrust mode, thrust increased up to 15 percent at subsonic and 10 percent at supersonic flight conditions. The minimum fan turbine inlet temperature mode reduced temperatures by more than 100 F at high altitudes. The minimum fuel flow mode results decreased fuel consumption up to 2 percent in the subsonic regime and almost 10 percent supersonically. These results demonstrate that PSC technology can benefit the next generation of fighter or transport aircraft. NASA Dryden is developing an adaptive aircraft performance technology system that is measurement based and uses feedback to ensure optimality. This program will address the technical weaknesses identified in the PSC program and will increase performance gains.

  14. PAN AIR: A computer program for predicting subsonic or supersonic linear potential flows about arbitrary configurations using a higher order panel method. Volume 1: Theory document (version 1.1)

    NASA Technical Reports Server (NTRS)

    Magnus, A. E.; Epton, M. A.

    1981-01-01

    Panel aerodynamics (PAN AIR) is a system of computer programs designed to analyze subsonic and supersonic inviscid flows about arbitrary configurations. A panel method is a program which solves a linear partial differential equation by approximating the configuration surface by a set of panels. An overview of the theory of potential flow in general and PAN AIR in particular is given along with detailed mathematical formulations. Fluid dynamics, the Navier-Stokes equation, and the theory of panel methods were also discussed.

  15. FLUT - A program for aeroelastic stability analysis. [of aircraft structures in subsonic flow

    NASA Technical Reports Server (NTRS)

    Johnson, E. H.

    1977-01-01

    A computer program (FLUT) that can be used to evaluate the aeroelastic stability of aircraft structures in subsonic flow is described. The algorithm synthesizes data from a structural vibration analysis with an unsteady aerodynamics analysis and then performs a complex eigenvalue analysis to assess the system stability. The theoretical basis of the program is discussed with special emphasis placed on some innovative techniques which improve the efficiency of the analysis. User information needed to efficiently and successfully utilize the program is provided. In addition to identifying the required input, the flow of the program execution and some possible sources of difficulty are included. The use of the program is demonstrated with a listing of the input and output for a simple example.

  16. Engine Seal Technology Requirements to Meet NASA's Advanced Subsonic Technology Program Goals

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Hendricks, Robert C.

    1994-01-01

    Cycle studies have shown the benefits of increasing engine pressure ratios and cycle temperatures to decrease engine weight and improve performance of commercial turbine engines. NASA is working with industry to define technology requirements of advanced engines and engine technology to meet the goals of NASA's Advanced Subsonic Technology Initiative. As engine operating conditions become more severe and customers demand lower operating costs, NASA and engine manufacturers are investigating methods of improving engine efficiency and reducing operating costs. A number of new technologies are being examined that will allow next generation engines to operate at higher pressures and temperatures. Improving seal performance - reducing leakage and increasing service life while operating under more demanding conditions - will play an important role in meeting overall program goals of reducing specific fuel consumption and ultimately reducing direct operating costs. This paper provides an overview of the Advanced Subsonic Technology program goals, discusses the motivation for advanced seal development, and highlights seal technology requirements to meet future engine performance goals.

  17. New Model Exhaust System Supports Testing in NASA Lewis' 10- by 10-Foot Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Roeder, James W., Jr.

    1998-01-01

    In early 1996, the ability to run NASA Lewis Research Center's Abe Silverstein 10- by 10- Foot Supersonic Wind Tunnel (10x10) at subsonic test section speeds was reestablished. Taking advantage of this new speed range, a subsonic research test program was scheduled for the 10x10 in the fall of 1996. However, many subsonic aircraft test models require an exhaust source to simulate main engine flow, engine bleed flows, and other phenomena. This was also true of the proposed test model, but at the time the 10x10 did not have a model exhaust capability. So, through an in-house effort over a period of only 5 months, a new model exhaust system was designed, installed, checked out, and made ready in time to support the scheduled test program.

  18. Civilian Aeronautical Futures - The Responsibly Imaginable

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M.

    2006-01-01

    Since 1940 Aeronautics has had an immense impact upon Global Human lifestyles and affairs - in both the Civilian and Military arenas. During this period Long distance Train and Ship passenger transport were largely supplanted by Air Travel and Aviation assumed a dominant role in warfare. The early 1940 s to the mid 1970 s was a particularly productive period in terms of Aeronautical Technology. What is interesting is that, since the mid 1970 s, the rate of Aeronautical Technological Progress has been far slower, the basic technology in nearly all of our current Aero Systems dates from the mid 70 s or earlier. This is especially true in terms of Configuration Aerodynamics, Aeronautics appears to have "settled" on the 707, double delta and rotary wing as the approach of choice for Subsonic long haul, supersonic cruise and VTOL respectively. Obviously there have been variants and some niche digression from this/these but in the main Aeronautics, particularly civilian Aeronautics, has become a self-professed "mature", Increasingly "Commodity", Industry. The Industry is far along an existing/deployed technology curve and focused, now for decades, on incremental/evolutionary change - largely Appliers vs. developers of technology. This is, of course, in sharp contrast to the situation in the early-to-later 20th century where Aeronautics was viewed as A Major Technological Engine, much the way IT/Bio/Nano/Energetics/Quantum Technologies are viewed today. A search for Visionary Aeronautical "Futures" papers/projections indicates a decided dearth thereof over the last 20 plus years compared to the previous quarter Century. Aeronautics is part of Aerospace and Aerospace [including Aeronautics] has seen major cutbacks over the last decades. Some numbers for the U.S. Aerospace Industry serve as examples. Order of 600,000 jobs lost, with some 180,000 more on the block over the next 10 years. Approximately 25% of the Aerospace workforce is eligible to retire and the average Engineer age is in the mid-50 s. Firms such as Microsoft, Intel and Walmart are individually capitalized at a factor of 4 or more than the Aerospace industry as a whole. Aerospace Research levels are in the less than 5% range in terms of overall U.S. Research Investments.

  19. The potential of hybrid micro-vortex generators to control flow separation of NACA 4415 airfoil in subsonic flow

    NASA Astrophysics Data System (ADS)

    Jumahadi, Muhammad Taufiq; Saad, Mohd Rashdan; Idris, Azam Che; Sujipto, Suriyadi; Rahman, Mohd Rosdzimin Abdul

    2018-02-01

    Boundary layer separation is detrimental to the lift and drag of most aeronautical applications. Many vortex generators (VG), both passive and active have been designed to reduce these drawbacks. This study targets to investigate the effectiveness of hybrid micro-VGs, which combine both active and passive micro-VGs in controlling separation under subsonic conditions. NACA 4415 airfoils installed with passive, active and hybrid micro-VGs each are designed, 3D printed, and tested in a wind tunnel at 26.19 m/s under Re = 2.5x105. The lift and drag measurements from a 3-component force balance prove that hybrid micro-VGs increase lift by up to 21.2%, increase drag by more than 11.3% and improve lift-to-drag ratio by at least 8.6% until up to 33.7%. From this research, it is believed that hybrid micro-VGs are competitive to the performance of active VGs and a better configuration is to be considered to reduce parasitic drag and outstand active VGs.

  20. Flow Visualization of Aircraft in Flight by Means of Background Oriented Schlieren Using Celestial Objects

    NASA Technical Reports Server (NTRS)

    Hill, Michael A.; Haering, Edward A., Jr.

    2017-01-01

    The Background Oriented Schlieren using Celestial Objects series of flights was undertaken in the spring of 2016 at National Aeronautics and Space Administration Armstrong Flight Research Center to further develop and improve a flow visualization technique which can be performed from the ground upon flying aircraft. Improved hardware and imaging techniques from previous schlieren tests were investigated. A United States Air Force T-38C and NASA B200 King Air aircraft were imaged eclipsing the sun at ranges varying from 2 to 6 nautical miles, at subsonic and supersonic speeds.

  1. Fully unsteady subsonic and supersonic potential aerodynamics for complex aircraft configurations with applications to flutter

    NASA Technical Reports Server (NTRS)

    Tseng, K.; Morino, L.

    1975-01-01

    A general formulation is presented for the analysis of steady and unsteady, subsonic and supersonic aerodynamics for complex aircraft configurations. The theoretical formulation, the numerical procedure, the description of the program SOUSSA (steady, oscillatory and unsteady, subsonic and supersonic aerodynamics) and numerical results are included. In particular, generalized forces for fully unsteady (complex frequency) aerodynamics for a wing-body configuration, AGARD wing-tail interference in both subsonic and supersonic flows as well as flutter analysis results are included. The theoretical formulation is based upon an integral equation, which includes completely arbitrary motion. Steady and oscillatory aerodynamic flows are considered. Here small-amplitude, fully transient response in the time domain is considered. This yields the aerodynamic transfer function (Laplace transform of the fully unsteady operator) for frequency domain analysis. This is particularly convenient for the linear systems analysis of the whole aircraft.

  2. Aeropropulsion 1987. Session 5: Subsonic Propulsion Technology

    NASA Technical Reports Server (NTRS)

    1987-01-01

    NASA is conducting aeropropulsion research over a broad range of Mach numbers. In addition to the high-speed propulsion research described, major progress was recorded in research aimed at the subsonic flight regimes of interest to many commercial and military users. Recent progress and future directions in such areas as small engine technology, rotorcraft transmissions, icing, Hot Section Technology (HOST) and the Advanced Turboprop Program (ATP) are covered.

  3. Aeropropulsion '87. Session 5: Subsonic propulsion technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-11-01

    NASA is conducting aeropropulsion research over a broad range of Mach numbers. In addition to the high-speed propulsion research described, major progress was recorded in research aimed at the subsonic flight regimes of interest to many commercial and military users. Recent progress and future directions in such areas as small engine technology, rotorcraft transmissions, icing, Hot Section Technology (HOST) and the Advanced Turboprop Program (ATP) are covered.

  4. Twin Jet Effects on Noise of Round and Rectangular Jets: Experiment and Model

    NASA Technical Reports Server (NTRS)

    Bozak, Rick

    2014-01-01

    Many subsonic and supersonic aircraft concepts proposed by NASA's Fundamental Aeronautics Program have asymmetric, integrated propulsion systems. The asymmetries in the exhaust of these propulsion systems create an asymmetric acoustic field. The asymmetries investigated in the current study are from twin jets and rectangular nozzles. Each effect produces its own variation of the acoustic field. An empirical model was developed to predict the acoustic field variation from round twin jets with twin jet spacing from 2.6 to 5.6, where s is the center-to-center spacing over the jet diameter. The model includes parameters to account for the effects of twin jet spacing, jet static temperature ratio, flight Mach number, frequency, and observer angle (both polar and azimuthal angles). The model was then applied to twin 2:1 and 8:1 aspect ratio nozzles to determine the impact of jet aspect ratio. For the round and rectangular jets, the use of the model reduces the average magnitude of the error over all frequencies, observation angles, and jet spacings by approximately 0.5dB when compared against the assumption of adding two jets incoherently.

  5. ERA's Open Rotor Studies Including Shielding for Noise Reduction

    NASA Technical Reports Server (NTRS)

    Van Zante, Dale; Thomas, Russell

    2012-01-01

    The Open Rotor is a modern version of the UnDucted Fan (UDF) that was flight tested in the late 1980's through a partnership between NASA and General Electric (GE). Tests were conducted in the 9' x 15' Low Speed Wind Tunnel and the 8' x 6' Supersonic Wind Tunnel starting in late 2009 and completed in early 2012. Aerodynamic and acoustic data were obtained for takeoff, approach and cruise simulations. GE was the primary partner, but other organizations were involved such as Boeing and Airbus who provided additional hardware for fuselage simulations. This test campaign provided the acoustic and performance characteristics for modern open rotor blades designs." NASA and GE conducted joint systems analysis to evaluate how well new blade designs would perform on a B737 class aircraft, and compared the results to an advanced higher bypass ratio turbofan." Acoustic shielding experiments were performed at NASA GRC and Boeing LSAF facilities to provide data for noise estimates of unconventional aircraft configurations with Open Rotor propulsion systems." The work was sponsored by NASA's aeronautics programs, including the Subsonic Fixed Wing (SFW) and the Environmentally Responsible Aviation (ERA) projects."

  6. Unsteady Aero Computation of a 1 1/2 Stage Large Scale Rotating Turbine

    NASA Technical Reports Server (NTRS)

    To, Wai-Ming

    2012-01-01

    This report is the documentation of the work performed for the Subsonic Rotary Wing Project under the NASA s Fundamental Aeronautics Program. It was funded through Task Number NNC10E420T under GESS-2 Contract NNC06BA07B in the period of 10/1/2010 to 8/31/2011. The objective of the task is to provide support for the development of variable speed power turbine technology through application of computational fluid dynamics analyses. This includes work elements in mesh generation, multistage URANS simulations, and post-processing of the simulation results for comparison with the experimental data. The unsteady CFD calculations were performed with the TURBO code running in multistage single passage (phase lag) mode. Meshes for the blade rows were generated with the NASA developed TCGRID code. The CFD performance is assessed and improvements are recommended for future research in this area. For that, the United Technologies Research Center's 1 1/2 stage Large Scale Rotating Turbine was selected to be the candidate engine configuration for this computational effort because of the completeness and availability of the data.

  7. The future challenge for aeropropulsion

    NASA Technical Reports Server (NTRS)

    Rosen, Robert; Bowditch, David N.

    1992-01-01

    NASA's research in aeropropulsion is focused on improving the efficiency, capability, and environmental compatibility for all classes of future aircraft. The development of innovative concepts, and theoretical, experimental, and computational tools provide the knowledge base for continued propulsion system advances. Key enabling technologies include advances in internal fluid mechanics, structures, light-weight high-strength composite materials, and advanced sensors and controls. Recent emphasis has been on the development of advanced computational tools in internal fluid mechanics, structural mechanics, reacting flows, and computational chemistry. For subsonic transport applications, very high bypass ratio turbofans with increased engine pressure ratio are being investigated to increase fuel efficiency and reduce airport noise levels. In a joint supersonic cruise propulsion program with industry, the critical environmental concerns of emissions and community noise are being addressed. NASA is also providing key technologies for the National Aerospaceplane, and is studying propulsion systems that provide the capability for aircraft to accelerate to and cruise in the Mach 4-6 speed range. The combination of fundamental, component, and focused technology development underway at NASA will make possible dramatic advances in aeropropulsion efficiency and environmental compatibility for future aeronautical vehicles.

  8. A Temperature Sensor using a Silicon-on-Insulator (SOI) Timer for Very Wide Temperature Measurement

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad; Elbuluk, Malik; Culley, Dennis E.

    2008-01-01

    A temperature sensor based on a commercial-off-the-shelf (COTS) Silicon-on-Insulator (SOI) Timer was designed for extreme temperature applications. The sensor can operate under a wide temperature range from hot jet engine compartments to cryogenic space exploration missions. For example, in Jet Engine Distributed Control Architecture, the sensor must be able to operate at temperatures exceeding 150 C. For space missions, extremely low cryogenic temperatures need to be measured. The output of the sensor, which consisted of a stream of digitized pulses whose period was proportional to the sensed temperature, can be interfaced with a controller or a computer. The data acquisition system would then give a direct readout of the temperature through the use of a look-up table, a built-in algorithm, or a mathematical model. Because of the wide range of temperature measurement and because the sensor is made of carefully selected COTS parts, this work is directly applicable to the NASA Fundamental Aeronautics/Subsonic Fixed Wing Program--Jet Engine Distributed Engine Control Task and to the NASA Electronic Parts and Packaging (NEPP) Program. In the past, a temperature sensor was designed and built using an SOI operational amplifier, and a report was issued. This work used an SOI 555 timer as its core and is completely new work.

  9. Generalization of the subsonic kernel function in the s-plane, with applications to flutter analysis

    NASA Technical Reports Server (NTRS)

    Cunningham, H. J.; Desmarais, R. N.

    1984-01-01

    A generalized subsonic unsteady aerodynamic kernel function, valid for both growing and decaying oscillatory motions, is developed and applied in a modified flutter analysis computer program to solve the boundaries of constant damping ratio as well as the flutter boundary. Rates of change of damping ratios with respect to dynamic pressure near flutter are substantially lower from the generalized-kernel-function calculations than from the conventional velocity-damping (V-g) calculation. A rational function approximation for aerodynamic forces used in control theory for s-plane analysis gave rather good agreement with kernel-function results, except for strongly damped motion at combinations of high (subsonic) Mach number and reduced frequency.

  10. Evaluation of the Advanced Subsonic Technology Program Noise Reduction Benefits

    NASA Technical Reports Server (NTRS)

    Golub, Robert A.; Rawls, John W., Jr.; Russell, James W.

    2005-01-01

    This report presents a detailed evaluation of the aircraft noise reduction technology concepts developed during the course of the NASA/FAA Advanced Subsonic Technology (AST) Noise Reduction Program. In 1992, NASA and the FAA initiated a cosponsored, multi-year program with the U.S. aircraft industry focused on achieving significant advances in aircraft noise reduction. The program achieved success through a systematic development and validation of noise reduction technology. Using the NASA Aircraft Noise Prediction Program, the noise reduction benefit of the technologies that reached a NASA technology readiness level of 5 or 6 were applied to each of four classes of aircraft which included a large four engine aircraft, a large twin engine aircraft, a small twin engine aircraft and a business jet. Total aircraft noise reductions resulting from the implementation of the appropriate technologies for each class of aircraft are presented and compared to the AST program goals.

  11. Vehicle Design Evaluation Program (VDEP). A computer program for weight sizing, economic, performance and mission analysis of fuel-conservative aircraft, multibodied aircraft and large cargo aircraft using both JP and alternative fuels

    NASA Technical Reports Server (NTRS)

    Oman, B. H.

    1977-01-01

    The NASA Langley Research Center vehicle design evaluation program (VDEP-2) was expanded by (1) incorporating into the program a capability to conduct preliminary design studies on subsonic commercial transport type aircraft using both JP and such alternate fuels as hydrogen and methane;(2) incorporating an aircraft detailed mission and performance analysis capability; and (3) developing and incorporating an external loads analysis capability. The resulting computer program (VDEP-3) provides a preliminary design tool that enables the user to perform integrated sizing, structural analysis, and cost studies on subsonic commercial transport aircraft. Both versions of the VDEP-3 Program which are designated preliminary Analysis VDEP-3 and detailed Analysis VDEP utilize the same vehicle sizing subprogram which includes a detailed mission analysis capability, as well as a geometry and weight analysis for multibodied configurations.

  12. CARS Temperature Measurements in Turbulent and Supersonic Facilities

    NASA Technical Reports Server (NTRS)

    Jarrett, O., Jr.; Antcliff, R. R.; Smith, M. W.; Cutler, A. D.; Diskin, G. S.; Northam, G. B.

    1991-01-01

    This paper documents the development of the National Aeronautics and Space Administration s (NASA) Langley Research Center ( LaRC) Coherent Antistokes Raman Spectroscopy (CARS) systems for measurements of temperature in a turbulent subsonic or supersonic reacting hydrogen-air environment. Spectra data provides temperature data when compared to a precalculated library of nitrogen CARS spectra. Library validity was confirmed by comparing CARS temperatures derived through the library with three different techniques for determination of the temperature in hydrogen-air combustion and an electrically heated furnace. The CARS system has been used to survey temperature profiles in the simulated flow of a supersonic combustion ramjet (scramjet) model. Measurement results will be discussed.

  13. Thermal Stability Testing of a Fischer-Tropsch Fuel and Various Blends with Jet A

    NASA Technical Reports Server (NTRS)

    Klettlinger, Jennifer Suder; Surgenor, Angela; Yen, Chia

    2010-01-01

    Fischer-Tropsch (F-T) jet fuel composition differs from petroleum-based, conventional commercial jet fuel because of differences in feedstock and production methodology. Fischer-Tropsch fuel typically has a lower aromatic and sulfur content and consists primarily of iso and normal parafins. The ASTM D3241 specification for Jet Fuel Thermal Oxidation Test (JFTOT) break point testing method was used to test the breakpoint of a baseline conventional Jet A, a commercial grade F-T jet fuel, and various blends of this F-T fuel in Jet A. The testing completed in this report was supported by the NASA Fundamental Aeronautics Subsonics Fixed Wing Project.

  14. Multidisciplinary Design, Analysis, and Optimization Tool Development using a Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi; Li, Wesley

    2008-01-01

    Multidisciplinary design, analysis, and optimization using a genetic algorithm is being developed at the National Aeronautics and Space A dministration Dryden Flight Research Center to automate analysis and design process by leveraging existing tools such as NASTRAN, ZAERO a nd CFD codes to enable true multidisciplinary optimization in the pr eliminary design stage of subsonic, transonic, supersonic, and hypers onic aircraft. This is a promising technology, but faces many challe nges in large-scale, real-world application. This paper describes cur rent approaches, recent results, and challenges for MDAO as demonstr ated by our experience with the Ikhana fire pod design.

  15. Hybrid-Electric and Distributed Propulsion Technologies for Large Commercial Transports: A NASA Perspective

    NASA Technical Reports Server (NTRS)

    Madavan, Nateri K.; Del Rosario, Ruben; Jankovsky, Amy L.

    2015-01-01

    Develop and demonstrate technologies that will revolutionize commercial transport aircraft propulsion and accelerate development of all-electric aircraft architectures. Enable radically different propulsion systems that can meet national environmental and fuel burn reduction goals for subsonic commercial aircraft. Focus on future large regional jets and single-aisle twin (Boeing 737- class) aircraft for greatest impact on fuel burn, noise and emissions. Research horizon is long-term but with periodic spinoff of technologies for introduction in aircraft with more- and all-electric architectures. Research aligned with new NASA Aeronautics strategic R&T thrusts in areas of transition to low-carbon propulsion and ultra-efficient commercial transports.

  16. Analysis and design of insulation systems for LH2-fueled aircraft

    NASA Technical Reports Server (NTRS)

    Cunnington, G. R., Jr.

    1979-01-01

    An analytical program was conducted to evaluate the performance of 15 potential insulations for the fuel tanks of a subsonic LH2-fueled transport aircraft intended for airline service in the 1990-1995 time period. As a result, two candidate insulation systems are proposed for subsonic transport aircraft applications. Both candidates are judged to be the optimum available and should meet the design requirements. However, because of the long-life cyclic nature of the application and the cost sensitivity of airline operations, an experimental tank/insulation development or proof-of-concept program is recommended. This program should be carried out with a nearly full-scale system which would be subjected to the cyclic thermal and mechanical inputs anticipated in aircraft service.

  17. Revolutionary opportunities for materials and structures study

    NASA Technical Reports Server (NTRS)

    Schweiger, F. A.

    1987-01-01

    The revolutionary opportunities for materials and structures study was performed to provide Government and Industry focus for advanced materials technology. Both subsonic and supersonic engine studies and aircraft fuel burn and DOC evaluation are examined. Year 2010 goal materials were used in the advanced engine studies. These goal materials and improved component aero yielded subsonic fuel burn and DOC improvements of 13.4 percent and 5 percent, respectively and supersonic fuel burn and DOC improvements of 21.5 percent and 18 percent, respectively. Conclusions are that the supersonic study engine yielded fuel burn and DOC improvements well beyond the program goals; therefore, it is appropriate that advanced material programs be considered.

  18. Subsonic Ultra Green Aircraft Research. Phase II - Volume I; Truss Braced Wing Design Exploration

    NASA Technical Reports Server (NTRS)

    Bradley, Marty K.; Droney, Christopher K.; Allen, Timothy J.

    2015-01-01

    This report summarizes the Truss Braced Wing (TBW) work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team, consisting of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, Georgia Tech, Virginia Tech, NextGen Aeronautics, and Microcraft. A multi-disciplinary optimization (MDO) environment defined the geometry that was further refined for the updated SUGAR High TBW configuration. Airfoil shapes were tested in the NASA TCT facility, and an aeroelastic model was tested in the NASA TDT facility. Flutter suppression was successfully demonstrated using control laws derived from test system ID data and analysis models. Aeroelastic impacts for the TBW design are manageable and smaller than assumed in Phase I. Flutter analysis of TBW designs need to include pre-load and large displacement non-linear effects to obtain a reasonable match to test data. With the updated performance and sizing, fuel burn and energy use is reduced by 54% compared to the SUGAR Free current technology Baseline (Goal 60%). Use of the unducted fan version of the engine reduces fuel burn and energy by 56% compared to the Baseline. Technology development roadmaps were updated, and an airport compatibility analysis established feasibility of a folding wing aircraft at existing airports.

  19. Comparative assessment of turbulence model in predicting airflow over a NACA 0010 airfoil

    NASA Astrophysics Data System (ADS)

    Panday, Shoyon; Khan, Nafiz Ahmed; Rasel, Md; Faisal, Kh. Md.; Salam, Md. Abdus

    2017-06-01

    Nowadays the role of computational fluid dynamics to predict the flow behavior over airfoil is quite prominent. Most often a 2-D subsonic flow simulation is carried out over an airfoil at a certain Reynolds number and various angles of attack obtained by different turbulence models those are based on governing equations. The commonly used turbulence models are K-ɛpsilon, K-omega, Spalart Allmaras etc. Variation in turbulence model effectively influences the result of analysis. Here a comparative study is represented to show the effect of different turbulence models for a 2-D flow analysis over a National Advisory Committee for Aeronautics (NACA) airfoil 0010. This airfoil was analysed at 200000 Re number in 10 different angle of attacks at a constant speed of 21.6 m/s. Numbers of two dimensional flow simulation was run by changing the turbulence model, for each AOA. In accordance with the variation of result for different turbulence model, it was also found that for which model, attained result is close enough to experimental outcome from a low subsonic wind tunnel AF100. This paper also documents the effect of high and low angle of attack on the flow behaviour over an airfoil.

  20. Low Noise Cruise Efficient Short Take-Off and Landing Transport Vehicle Study

    NASA Technical Reports Server (NTRS)

    Kim, Hyun D.; Berton, Jeffrey J.; Jones, Scott M.

    2007-01-01

    The saturation of the airspace around current airports combined with increasingly stringent community noise limits represents a serious impediment to growth in world aviation travel. Breakthrough concepts that both increase throughput and reduce noise impacts are required to enable growth in aviation markets. Concepts with a 25 year horizon must facilitate a 4x increase in air travel while simultaneously meeting community noise constraints. Attacking these horizon issues holistically is the concept study of a Cruise Efficient Short Take-Off and Landing (CESTOL) high subsonic transport under the NASA's Revolutionary Systems Concepts for Aeronautics (RSCA) project. The concept is a high-lift capable airframe with a partially embedded distributed propulsion system that takes a synergistic approach in propulsion-airframe-integration (PAI) by fully integrating the airframe and propulsion systems to achieve the benefits of both low-noise short take-off and landing (STOL) operations and efficient high speed cruise. This paper presents a summary of the recent study of a distributed propulsion/airframe configuration that provides low-noise STOL operation to enable 24-hour use of the untapped regional and city center airports to increase the capacity of the overall airspace while still maintaining efficient high subsonic cruise flight capability.

  1. Interactive Graphics Analysis for Aircraft Design

    NASA Technical Reports Server (NTRS)

    Townsend, J. C.

    1983-01-01

    Program uses higher-order far field drag minimization. Computer program WDES WDEM preliminary aerodynamic design tool for one or two interacting, subsonic lifting surfaces. Subcritical wing design code employs higher-order far-field drag minimization technique. Linearized aerodynamic theory used. Program written in FORTRAN IV.

  2. Energy efficient engine: Low-pressure turbine subsonic cascade component development and integration program

    NASA Technical Reports Server (NTRS)

    Sharma, O. P.; Kopper, F. C.; Knudsen, L. K.; Yustinich, J. B.

    1982-01-01

    A subsonic cascade test program was conducted to provide technical data for optimizing the blade and vane airfoil designs for the Energy Efficient Engine Low-Pressure Turbine component. The program consisted of three parts. The first involved an evaluation of the low-chamber inlet guide vane. The second, was an evaluation of two candidate aerodynamic loading philosophies for the fourth blade root section. The third part consisted of an evaluation of three candidate airfoil geometries for the fourth blade mean section. The performance of each candidate airfoil was evaluated in a linear cascade configuration. The overall results of this study indicate that the aft-loaded airfoil designs resulted in lower losses which substantiated Pratt & Whitney Aircraft's design philosophy for the Energy Efficient Engine low-pressure turbine component.

  3. Computer programs for estimating civil aircraft economics

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.; Molloy, J. K.; Neubawer, M. J.

    1980-01-01

    Computer programs for calculating airline direct operating cost, indirect operating cost, and return on investment were developed to provide a means for determining commercial aircraft life cycle cost and economic performance. A representative wide body subsonic jet aircraft was evaluated to illustrate use of the programs.

  4. An experimental investigation of a cold jet emitting from a body of revolution into a subsonic free stream

    NASA Technical Reports Server (NTRS)

    Ousterhout, D. S.

    1972-01-01

    An experimental program was undertaken to determine the pressure distribution induced on aerodynamic bodies by a subsonic cold jet exhausting normal to the body surface and into a subsonic free stream. The investigation was limited to two bodies with single exhaust jets a flat plate at zero angle of attack with respect to the free-stream flow and a cylinder, fitted with a conical nose, with the longitudinal axis alined with the free-stream flow. Experimental data were obtained for free-stream velocity to jet velocity ratios between 0.3 and 0.5. The experimental data are presented in tabular form with appropriate graphs to indicate pressure coefficient contours, pressure coefficient decay, pitching-moment characteristics, and lift characteristics.

  5. Computational methods in the prediction of advanced subsonic and supersonic propeller induced noise: ASSPIN users' manual

    NASA Technical Reports Server (NTRS)

    Dunn, M. H.; Tarkenton, G. M.

    1992-01-01

    This document describes the computational aspects of propeller noise prediction in the time domain and the use of high speed propeller noise prediction program ASSPIN (Advanced Subsonic and Supersonic Propeller Induced Noise). These formulations are valid in both the near and far fields. Two formulations are utilized by ASSPIN: (1) one is used for subsonic portions of the propeller blade; and (2) the second is used for transonic and supersonic regions on the blade. Switching between the two formulations is done automatically. ASSPIN incorporates advanced blade geometry and surface pressure modelling, adaptive observer time grid strategies, and contains enhanced numerical algorithms that result in reduced computational time. In addition, the ability to treat the nonaxial inflow case has been included.

  6. Three-Dimensional Boundary-Layer program (BL3D) for swept subsonic or supersonic wings with application to laminar flow control

    NASA Technical Reports Server (NTRS)

    Iyer, Venkit

    1993-01-01

    The theory, formulation, and solution of three-dimensional, compressible attached laminar flows, applied to swept wings in subsonic or supersonic flow are discussed. Several new features and modifications to an earlier general procedure described in NASA CR 4269, Jan. 1990 are incorporated. Details of interfacing the boundary-layer computation with solution of the inviscid Euler equations are discussed. A description of the computer program, complete with user's manual and example cases, is also included. Comparison of solutions with Navier-Stokes computations with or without boundary-layer suction is given. Output of solution profiles and derivatives required in boundary-layer stability analysis is provided.

  7. Application of Mobile-ip to Space and Aeronautical Networks

    NASA Technical Reports Server (NTRS)

    Leung, Kent; Shell, Dan; Ivancic, William D.; Stewart, David H.; Bell, Terry L.; Kachmar, Brian A.

    2001-01-01

    The National Aeronautics and Space Administration (NASA) is interested in applying mobile Internet protocol (mobile-ip) technologies to its space and aeronautics programs. In particular, mobile-ip will play a major role in the Advanced Aeronautic Transportation Technology (AAT-F), the Weather Information Communication (WINCOMM), and the Small Aircraft Transportation System (SATS) aeronautics programs. This paper describes mobile-ip and mobile routers--in particular, the features, capabilities, and initial performance of the mobile router are presented. The application of mobile-router technology to NASA's space and aeronautics programs is also discussed.

  8. NASCRIN - NUMERICAL ANALYSIS OF SCRAMJET INLET

    NASA Technical Reports Server (NTRS)

    Kumar, A.

    1994-01-01

    The NASCRIN program was developed for analyzing two-dimensional flow fields in supersonic combustion ramjet (scramjet) inlets. NASCRIN solves the two-dimensional Euler or Navier-Stokes equations in conservative form by an unsplit, explicit, two-step finite-difference method. A more recent explicit-implicit, two-step scheme has also been incorporated in the code for viscous flow analysis. An algebraic, two-layer eddy-viscosity model is used for the turbulent flow calculations. NASCRIN can analyze both inviscid and viscous flows with no struts, one strut, or multiple struts embedded in the flow field. NASCRIN can be used in a quasi-three-dimensional sense for some scramjet inlets under certain simplifying assumptions. Although developed for supersonic internal flow, NASCRIN may be adapted to a variety of other flow problems. In particular, it should be readily adaptable to subsonic inflow with supersonic outflow, supersonic inflow with subsonic outflow, or fully subsonic flow. The NASCRIN program is available for batch execution on the CDC CYBER 203. The vectorized FORTRAN version was developed in 1983. NASCRIN has a central memory requirement of approximately 300K words for a grid size of about 3,000 points.

  9. A Systematic Kernel Function Procedure for Determining Aerodynamic Forces on Oscillating or Steady Finite Wings at Subsonic Speeds

    NASA Technical Reports Server (NTRS)

    Watkins, Charles E.; Woolston, Donald S.; Cunningham, Herbert J.

    1959-01-01

    Details are given of a numerical solution of the integral equation which relates oscillatory or steady lift and downwash distributions in subsonic flow. The procedure has been programmed for the IBM 704 electronic data processing machine and yields the pressure distribution and some of its integrated properties for a given Mach number and frequency and for several modes of oscillation in from 3 to 4 minutes, results of several applications are presented.

  10. Combustion

    NASA Technical Reports Server (NTRS)

    Bulzan, Dan

    2007-01-01

    An overview of the emissions related research being conducted as part of the Fundamental Aeronautics Subsonics Fixed Wing Project is presented. The overview includes project metrics, milestones, and descriptions of major research areas. The overview also includes information on some of the emissions research being conducted under NASA Research Announcements. Objective: Development of comprehensive detailed and reduced kinetic mechanisms of jet fuels for chemically-reacting flow modeling. Scientific Challenges: 1) Developing experimental facilities capable of handling higher hydrocarbons and providing benchmark combustion data. 2) Determining and understanding ignition and combustion characteristics, such as laminar flame speeds, extinction stretch rates, and autoignition delays, of jet fuels and hydrocarbons relevant to jet surrogates. 3) Developing comprehensive kinetic models for jet fuels.

  11. Thermal Stability Testing of Fischer-Tropsch Fuel and Various Blends with Jet A, as Well as Aromatic Blend Additives

    NASA Technical Reports Server (NTRS)

    Klettlinger, J.; Rich, R.; Yen, C.; Surgenor, A.

    2011-01-01

    Fischer-Tropsch (F-T) jet fuel composition differs from petroleum-based, conventional commercial jet fuel because of differences in feedstock and production methodology. Fischer-Tropsch fuel typically has a lower aromatic and sulfur content and consists primarily of iso and normal parafins. The ASTM D3241 specification for Jet Fuel Thermal Oxidation Test (JFTOT) break point testing method was used to test the breakpoint of a baseline conventional Jet A, a commercial grade F-T jet fuel, and various blends of this F-T fuel in Jet A. The testing completed in this report was supported by the NASA Fundamental Aeronautics Subsonics Fixed Wing Project.

  12. Flight Simulation Model Exchange. Volume 1

    NASA Technical Reports Server (NTRS)

    Murri, Daniel G.; Jackson, E. Bruce

    2011-01-01

    The NASA Engineering and Safety Center Review Board sponsored an assessment of the draft Standard, Flight Dynamics Model Exchange Standard, BSR/ANSI-S-119-201x (S-119) that was conducted by simulation and guidance, navigation, and control engineers from several NASA Centers. The assessment team reviewed the conventions and formats spelled out in the draft Standard and the actual implementation of two example aerodynamic models (a subsonic F-16 and the HL-20 lifting body) encoded in the Extensible Markup Language grammar. During the implementation, the team kept records of lessons learned and provided feedback to the American Institute of Aeronautics and Astronautics Modeling and Simulation Technical Committee representative. This document contains the results of the assessment.

  13. Aeronautical research in the United States - Challenges for the 1990's

    NASA Technical Reports Server (NTRS)

    Petersen, Richard H.; Holmes, Bruce J.

    1990-01-01

    An overview is presented of NASA R&D initiatives in air transportation technologies that will dominate its efforts through the 1990s. These efforts are to be concentrated in (1) advanced subsonic transports with greater fuel economy, passenger capacity, and control effectiveness, whose design will be undertaken with state-of-the-art CFD and CAD/CAM systems; (2) a second-generation SST whose propulsion system will be substantially more fuel-efficient than that of Concorde and have far lower atmospheric emissions; and (3) a hypersonic transport predicated on the results of research into materials, cryogenic fuels, propulsion cycles, and propulsion/airframe aerodynamics integration, which will be undertaken in connection with the X-30 testbed.

  14. Flight Simulation Model Exchange. Volume 2; Appendices

    NASA Technical Reports Server (NTRS)

    Murri, Daniel G.; Jackson, E. Bruce

    2011-01-01

    The NASA Engineering and Safety Center Review Board sponsored an assessment of the draft Standard, Flight Dynamics Model Exchange Standard, BSR/ANSI-S-119-201x (S-119) that was conducted by simulation and guidance, navigation, and control engineers from several NASA Centers. The assessment team reviewed the conventions and formats spelled out in the draft Standard and the actual implementation of two example aerodynamic models (a subsonic F-16 and the HL-20 lifting body) encoded in the Extensible Markup Language grammar. During the implementation, the team kept records of lessons learned and provided feedback to the American Institute of Aeronautics and Astronautics Modeling and Simulation Technical Committee representative. This document contains the appendices to the main report.

  15. NASA Fixed Wing Project: Green Technologies for Future Aircraft Generation

    NASA Technical Reports Server (NTRS)

    DelRosario, Ruben

    2014-01-01

    The NASA Fundamental Aeronautics Fixed Wing (FW) Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advances in multidisciplinary technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. The presentation will highlight the FW Project vision of revolutionary systems and technologies needed to achieve the challenging goals of aviation. Specifically, the primary focus of the FW Project is on the N+3 generation that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe.

  16. Core-Noise Research

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2012-01-01

    This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system-level noise metrics for the 2015 (N+1), 2020 (N+2), and 2025 (N+3) timeframes; SFW strategic thrusts and technical challenges; SFW advanced subsystems that are broadly applicable to N+3 vehicle concepts, with an indication where further noise research is needed; the components of core noise (compressor, combustor and turbine noise) and a rationale for NASA's current emphasis on the combustor-noise component; the increase in the relative importance of core noise due to turbofan design trends; the need to understand and mitigate core-noise sources for high-efficiency small gas generators; and the current research activities in the core-noise area, with additional details given about forthcoming updates to NASA's Aircraft Noise Prediction Program (ANOPP) core-noise prediction capabilities, two NRA efforts (Honeywell International, Phoenix, AZ and University of Illinois at Urbana-Champaign, respectively) to improve the understanding of core-noise sources and noise propagation through the engine core, and an effort to develop oxide/oxide ceramic-matrix-composite (CMC) liners for broadband noise attenuation suitable for turbofan-core application. Core noise must be addressed to ensure that the N+3 noise goals are met. Focused, but long-term, core-noise research is carried out to enable the advanced high-efficiency small gas-generator subsystem, common to several N+3 conceptual designs, needed to meet NASA's technical challenges. Intermediate updates to prediction tools are implemented as the understanding of the source structure and engine-internal propagation effects is improved. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The SFW Quiet-Aircraft Subproject aims to develop concepts and technologies to reduce perceived community noise attributable to aircraft with minimal impact on weight and performance. This reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic.

  17. Vertical Drop Testing and Analysis of the WASP Helicopter Skid Gear

    NASA Technical Reports Server (NTRS)

    Fuchs, Yvonne T.; Jackson, Karen E.

    2008-01-01

    Human occupant modeling and injury risk assessment have been identified as areas of research for improved prediction of rotorcraft crashworthiness within the NASA Aeronautics Program's Subsonic Rotary Wing Project. As part of this effort, an experimental program was conducted to assess the impact performance of a skid gear for use on the WASP kit-built helicopter, which is marketed by HeloWerks, Inc. of Hampton, Virginia. Test data from a drop test at an impact velocity of 8.4 feet-per-second were used to assess a finite element model of the skid gear test article. This assessment included human occupant analytic models developed for execution in LS-DYNA. The test article consisted of an aluminum skid gear mounted beneath a steel plate. A seating platform was attached to the upper surface of the steel plate, and two 95th percentile Hybrid III male Aerospace Anthropomorphic Test Devices (ATDs) were seated on the platform and secured using a four-point restraint system. The goal of the test-analysis correlation is to further the understanding of LS-DYNA ATD occupant models and responses in the vertical (or spinal) direction. By correlating human occupant experimental test data for a purely vertical impact with the LS-DYNA occupant responses, improved confidence in the use of these tools and better understanding of the limitations of the automotive-based occupant models for aerospace application can begin to be developed.

  18. Vertical Drop Testing and Analysis of the WASP Helicopter Skid Gear

    NASA Technical Reports Server (NTRS)

    Fuchs, Yvonne T.; Jackson, Karen E.

    2008-01-01

    Human occupant modeling and injury risk assessment have been identified as areas of research for improved prediction of rotorcraft crashworthiness within the NASA Aeronautics Program s Subsonic Rotary Wing Project. As part of this effort, an experimental program was conducted to assess the impact performance of a skid gear for use on the WASP kit-built helicopter, which is marketed by HeloWerks, Inc. of Hampton, Virginia. Test data from a drop test at an impact velocity of 8.4 feet-per-second were used to assess a finite element model of the skid gear test article. This assessment included human occupant analytic models developed for execution in LS-DYNA. The test article consisted of an aluminum skid gear mounted beneath a steel plate. A seating platform was attached to the upper surface of the steel plate, and two 95th percentile Hybrid III male Aerospace Anthropomorphic Test Devices (ATDs) were seated on the platform and secured using a four-point restraint system. The goal of the test-analysis correlation is to further the understanding of LS-DYNA ATD occupant models and responses in the vertical (or spinal) direction. By correlating human occupant experimental test data for a purely vertical impact with the LS-DYNA occupant responses, improved confidence in the use of these tools and better understanding of the limitations of the automotive-based occupant models for aerospace application can begin to be developed.

  19. FLEXWAL: A computer program for predicting the wall modifications for two-dimensional, solid, adaptive-wall tunnels

    NASA Technical Reports Server (NTRS)

    Everhart, J. L.

    1983-01-01

    A program called FLEXWAL for calculating wall modifications for solid, adaptive-wall wind tunnels is presented. The method used is the iterative technique of NASA TP-2081 and is applicable to subsonic and transonic test conditions. The program usage, program listing, and a sample case are given.

  20. Program Fighter - An Evaluation.

    ERIC Educational Resources Information Center

    Hull, David G.; Fowler, Wallace T.

    Described is a computer program for the sizing of subsonic and supersonic fighters which has been adapted for use in an aerospace engineering design course. Following a description of the program, an evaluation of its use in the university is presented. It is concluded that computer programs for the conceptual design of aerospace vehicles can play…

  1. Optimal Inlet Shape Design of N2B Hybrid Wing Body Configuration

    NASA Technical Reports Server (NTRS)

    Kim, Hyoungjin; Liou, Meng-Sing

    2012-01-01

    The N2B hybrid wing body aircraft was conceptually designed to meet environmental and performance goals for the N+2 generation transport set by the Subsonic Fixed Wing project of NASA Fundamental Aeronautics Program. In the present study, flow simulations are conducted around the N2B configuration by a Reynolds-averaged Navier-Stokes flow solver using unstructured meshes. Boundary conditions at engine fan face and nozzle exhaust planes are provided by the NPSS thermodynamic engine cycle model. The flow simulations reveal challenging design issues arising from boundary layer ingestion offset inlet and airframe-propulsion integration. Adjoint-based optimal designs are then conducted for the inlet shape to minimize the airframe drag force and flow distortion at fan faces. Design surfaces are parameterized by NURBS, and the cowl lip geometry is modified by a spring analogy approach. By the drag minimization design, flow separation on the cowl surfaces are almost removed, and shock wave strength got remarkably reduced. For the distortion minimization design, a circumferential distortion indicator DPCP(sub avg) is adopted as the design objective and diffuser bottom and side wall surfaces are perturbed for the design. The distortion minimization results in a 12.5 % reduction in the objective function.

  2. The NASA Environmentally Responsible Aviation Project/General Electric Open Rotor Test Campaign

    NASA Technical Reports Server (NTRS)

    Van Zante, Dale

    2013-01-01

    The Open Rotor is a modern version of the UnDucted Fan (UDF) that was flight tested in the late 1980's through a partnership between NASA and General Electric (GE). Tests were conducted in the 9'x15' Low Speed Wind Tunnel and the 8'x6' Supersonic Wind Tunnel starting in late 2009 and completed in early 2012. Aerodynamic and acoustic data were obtained for takeoff, approach and cruise simulations. GE was the primary partner, but other organizations were involved such as Boeing and Airbus who provided additional hardware for fuselage simulations. This test campaign provided the acoustic and performance characteristics for modern open rotor blades designs." NASA and GE conducted joint systems analysis to evaluate how well new blade designs would perform on a B737 class aircraft, and compared the results to an advanced higher bypass ratio turbofan." Acoustic shielding experiments were performed at NASA GRC and Boeing LSAF facilities to provide data for noise estimates of unconventional aircraft configurations with Open Rotor propulsion systems." The work was sponsored by NASA's aeronautics programs, including the Subsonic Fixed Wing (SFW) and the Environmentally Responsible Aviation (ERA) projects."

  3. Assessment of Technologies for Noncryogenic Hybrid Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Dever, Timothy P.; Duffy, Kirsten P.; Provenza, Andrew J.; Loyselle, Patricia L.; Choi, Benjamin B.; Morrison, Carlos R.; Lowe, Angela M.

    2015-01-01

    The Subsonic Fixed Wing Project of NASA's Fundamental Aeronautics Program is researching aircraft propulsion technologies that will lower noise, emissions, and fuel burn. One promising technology is noncryogenic electric propulsion, which could be either hybrid electric propulsion or turboelectric propulsion. Reducing dependence on the turbine engine would certainly reduce emissions. However, the weight of the electricmotor- related components that would have to be added would adversely impact the benefits of the smaller turbine engine. Therefore, research needs to be done to improve component efficiencies and reduce component weights. This study projects technology improvements expected in the next 15 and 30 years, including motor-related technologies, power electronics, and energy-storage-related technologies. Motor efficiency and power density could be increased through the use of better conductors, insulators, magnets, bearings, structural materials, and thermal management. Energy storage could be accomplished through batteries, flywheels, or supercapacitors, all of which expect significant energy density growth over the next few decades. A first-order approximation of the cumulative effect of each technology improvement shows that motor power density could be improved from 3 hp/lb, the state of the art, to 8 hp/lb in 15 years and 16 hp/lb in 30 years.

  4. Effects of Gas Turbine Component Performance on Engine and Rotary Wing Vehicle Size and Performance

    NASA Technical Reports Server (NTRS)

    Snyder, Christopher A.; Thurman, Douglas R.

    2010-01-01

    In support of the Fundamental Aeronautics Program, Subsonic Rotary Wing Project, further gas turbine engine studies have been performed to quantify the effects of advanced gas turbine technologies on engine weight and fuel efficiency and the subsequent effects on a civilian rotary wing vehicle size and mission fuel. The Large Civil Tiltrotor (LCTR) vehicle and mission and a previous gas turbine engine study will be discussed as a starting point for this effort. Methodology used to assess effects of different compressor and turbine component performance on engine size, weight and fuel efficiency will be presented. A process to relate engine performance to overall LCTR vehicle size and fuel use will also be given. Technology assumptions and levels of performance used in this analysis for the compressor and turbine components performances will be discussed. Optimum cycles (in terms of power specific fuel consumption) will be determined with subsequent engine weight analysis. The combination of engine weight and specific fuel consumption will be used to estimate their effect on the overall LCTR vehicle size and mission fuel usage. All results will be summarized to help suggest which component performance areas have the most effect on the overall mission.

  5. Defining Gas Turbine Engine Performance Requirements for the Large Civil TiltRotor (LCTR2)

    NASA Technical Reports Server (NTRS)

    Snyder, Christopher A.

    2013-01-01

    Defining specific engine requirements is a critical part of identifying technologies and operational models for potential future rotary wing vehicles. NASA's Fundamental Aeronautics Program, Subsonic Rotary Wing Project has identified the Large Civil TiltRotor (LCTR) as the configuration to best meet technology goals. This notional vehicle concept has evolved with more clearly defined mission and operational requirements to the LCTR-iteration 2 (LCTR2). This paper reports on efforts to further review and refine the LCTR2 analyses to ascertain specific engine requirements and propulsion sizing criteria. The baseline mission and other design or operational requirements are reviewed. Analysis tools are described to help understand their interactions and underlying assumptions. Various design and operational conditions are presented and explained for their contribution to defining operational and engine requirements. These identified engine requirements are discussed to suggest which are most critical to the engine sizing and operation. The most-critical engine requirements are compared to in-house NASA engine simulations to try to ascertain which operational requirements define engine requirements versus points within the available engine operational capability. Finally, results are summarized with suggestions for future efforts to improve analysis capabilities, and better define and refine mission and operational requirements.

  6. Aircraft aerodynamic prediction method for V/STOL transition including flow separation

    NASA Technical Reports Server (NTRS)

    Gilmer, B. R.; Miner, G. A.; Bristow, D. R.

    1983-01-01

    A numerical procedure was developed for the aerodynamic force and moment analysis of V/STOL aircraft operating in the transition regime between hover and conventional forward flight. The trajectories, cross sectional area variations, and mass entrainment rates of the jets are calculated by the Adler-Baron Jet-in-Crossflow Program. The inviscid effects of the interaction between the jets and airframe on the aerodynamic properties are determined by use of the MCAIR 3-D Subsonic properties are determined by use of the MCAIR 3-D Subsonic Potential Flow Program, a surface panel method. In addition, the MCAIR 3-D Geometry influence Coefficient Program is used to calculate a matrix of partial derivatives that represent the rate of change of the inviscid aerodynamic properties with respect to arbitrary changes in the effective wing shape.

  7. NASA's aeronautics research and technology base

    NASA Technical Reports Server (NTRS)

    1979-01-01

    NASA's research technology base in aeronautics is assessed in terms of: (1) US aeronautical technology needs and requirements in the future; (2) objectives of the aeronautics program; (3) magnitude and scope of the program; and (4) research and technology performed by NASA and other research organizations.

  8. PAN AIR: A Computer Program for Predicting Subsonic or Supersonic Linear Potential Flows About Arbitrary Configurations Using a Higher Order Panel Method. Volume 1; Theory Document (Version 1.1)

    NASA Technical Reports Server (NTRS)

    Magnus, Alfred E.; Epton, Michael A.

    1981-01-01

    An outline of the derivation of the differential equation governing linear subsonic and supersonic potential flow is given. The use of Green's Theorem to obtain an integral equation over the boundary surface is discussed. The engineering techniques incorporated in the PAN AIR (Panel Aerodynamics) program (a discretization method which solves the integral equation for arbitrary first order boundary conditions) are then discussed in detail. Items discussed include the construction of the compressibility transformations, splining techniques, imposition of the boundary conditions, influence coefficient computation (including the concept of the finite part of an integral), computation of pressure coefficients, and computation of forces and moments.

  9. Subsonic Glideback Rocket Demonstrator Flight Testing

    NASA Technical Reports Server (NTRS)

    DeTurris, Dianne J.; Foster, Trevor J.; Barthel, Paul E.; Macy, Daniel J.; Droney, Christopher K.; Talay, Theodore A. (Technical Monitor)

    2001-01-01

    For the past two years, Cal Poly's rocket program has been aggressively exploring the concept of remotely controlled, fixed wing, flyable rocket boosters. This program, embodied by a group of student engineers known as Cal Poly Space Systems, has successfully demonstrated the idea of a rocket design that incorporates a vertical launch pattern followed by a horizontal return flight and landing. Though the design is meant for supersonic flight, CPSS demonstrators are deployed at a subsonic speed. Many steps have been taken by the club that allowed the evolution of the StarBooster prototype to reach its current size: a ten-foot tall, one-foot diameter, composite material rocket. Progress is currently being made that involves multiple boosters along with a second stage, third rocket.

  10. Comparison of two transonic noise prediction formulations using the aircraft noise prediction program

    NASA Technical Reports Server (NTRS)

    Spence, Peter L.

    1987-01-01

    This paper addresses recently completed work on using Farassat's Formulation 3 noise prediction code with the Aircraft Noise Prediction Program (ANOPP). Software was written to link aerodynamic loading generated by the Propeller Loading (PLD) module within ANOPP with formulation 3. Included are results of comparisons between Formulation 3 with ANOPP's existing noise prediction modules, Subsonic Propeller Noise (SPN) and Transonic Propeller Noise (TPN). Four case studies are investigated. Results of the comparison studies show excellent agreement for the subsonic cases. Differences found in the comparisons made under transonic conditions are strictly numerical and can be explained by the way in which the time derivative is calculated in Formulation 3. Also included is a section on how to execute Formulation 3 with ANOPP.

  11. Propulsion technology challenges for turn-of-the-century commercial aircraft

    NASA Technical Reports Server (NTRS)

    Ziemianski, Joseph A.; Ball, Calvin L.

    1993-01-01

    This paper highlights the efforts being performed or sponsored by NASA, in cooperation with the U.S. civil aviation industry, to address the propulsion system technological challenges that must be met in order to ensure a viable future for the industry. Both the subsonic and supersonic aeropropulsion programs are considered. Subsonic transport propulsion program elements, including ultra-high-bypass-ratio turbofans with attendant noise reduction efforts, high-efficiency cores, and combustor emissions reductions are discussed in terms of goals, technical issues, and problem solutions. Similarly, the high-speed research propulsion efforts addressing a high-speed commercial transport are reviewed in terms of environmental barrier issues, such as oxides of nitrogen and noise reduction, and the related economic issues.

  12. Research Data Acquired in World-Class, 60-atm Subsonic Combustion Rig

    NASA Technical Reports Server (NTRS)

    Lee, Chi-Ming; Wey, Changlie

    1999-01-01

    NASA Lewis Research Center's new, world-class, 60-atmosphere (atm) combustor research facility, the Advanced Subsonic Combustion Rig (ASCR), is in operation and producing highly unique research data. Specifically, data were acquired at high pressures and temperatures representative of future subsonic engines from a fundamental flametube configuration with an advanced fuel injector. The data acquired include exhaust emissions as well as pressure and temperature distributions. Results to date represent an improved understanding of nitrous oxide (NOx) formation at high pressures and temperatures and include an NOx emissions reduction greater than 70 percent with an advanced fuel injector at operating pressures to 800 pounds per square inch absolute (psia). ASCR research is an integral part of the Advanced Subsonic Technology (AST) Propulsion Program. This program is developing critical low-emission combustion technology that will result in the next generation of gas turbine engines producing 50 to 70 percent less NOx emissions in comparison to 1996 International Civil Aviation Organization (ICAO) limits. The results to date indicate that the AST low-emission combustor goals of reducing NOx emissions by 50 to 70 percent are feasible. U.S. gas turbine manufacturers have started testing the low-emissions combustors at the ASCR. This collaborative testing will enable the industry to develop low-emission combustors at the high pressure and temperature conditions of future subsonic engines. The first stage of the flametube testing has been implemented. Four GE Aircraft Engines low-emissions fuel injector concepts, three Pratt & Whitney concepts, and two Allison concepts have been tested at Lewis ASCR facility. Subsequently, the flametube was removed from the test stand, and the sector combustor was installed. The testing of low emissions sector has begun. Low-emission combustors developed as a result of ASCR research will enable U.S. engine manufacturers to compete on a worldwide basis by producing environmentally acceptable commercial engines.

  13. Feasibility study of an Integrated Program for Aerospace vehicle Design (IPAD). Volume 5: Catalog of IPAD technical program elements

    NASA Technical Reports Server (NTRS)

    Gillette, W. B. (Editor); Southall, J. W. (Editor)

    1973-01-01

    The catalog is presented of technical program elements which are required to support the design activities for a subsonic and supersonic commercial transport. Information for each element consists of usage and storage information, ownership, status and an abstract describing the purpose of the element.

  14. Radially leaned outlet guide vanes for fan source noise reduction

    NASA Technical Reports Server (NTRS)

    Kazin, S. B.

    1973-01-01

    Two quiet engine program half scale fans one with a subsonic and the other with a supersonic fan tip speed at takeoff were run with 30 degree leaned and radial outlet guide vanes. Acoustic data at takeoff fan speed on the subsonic tip speed fan showed decreases in 200-foot sideline noise of from 1 to 2 PNdb. The supersonic tip speed fan a takeoff fan speed, however, showed noise increases of up 3 PNdb and a decrease in fan efficiency. At approach fan speed, the subsonic tip speed fan showed a noise decrease of 2.3 PNdb at the 200-foot sideline maximum angle and an increase in efficiency. The supersonic tip speed fan showed noise increase of 3.5 PNdb and no change in efficiency. The decrease in fan efficiency and the nature of the noise increase largely high frequency broadband noise lead to the speculation that an aerodynamic problem occurred.

  15. NASA / Pratt and Whitney Collaborative Partnership Research in Ultra High Bypass Cycle Propulsion Concepts

    NASA Technical Reports Server (NTRS)

    Hughes, Chris; Lord, Wed

    2008-01-01

    Current collaborative research with Pratt & Whitney on Ultra High Bypass Engine Cycle noise, performance and emissions improvements as part of the Subsonic Fixed Wing Project Ultra High Bypass Engine Partnership Element is discussed. The Subsonic Fixed Wing Project goals are reviewed, as well as their relative technology level compared to previous NASA noise program goals. Progress toward achieving the Subsonic Fixed Wing Project goals over the 2008 fiscal year by the UHB Partnership in this area of research are reviewed. The current research activity in Ultra High Bypass Engine Cycle technology, specifically the Pratt & Whitney Geared Turbofan, at NASA and Pratt & Whitney are discussed including the contributions each entity bring toward the research project, and technical plans and objectives. Pratt & Whitney Geared Turbofan current and future technology and business plans are also discussed, including the role the NASA SFW UHB partnership plays toward achieving those goals.

  16. Questions & Answers about Aeronautics and Space.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    Answers to 27 questions about aeronautics, space, and the National Aeronautics and Space Administration (NASA) are provided in this pamphlet. Among the topics dealt with in these questions are: costs of the space program; NASA's role in aeronautics; benefits received from the space program; why the United States hasn't developed means of rescuing…

  17. Subsonic flight test evaluation of a performance seeking control algorithm on an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Gilyard, Glenn B.; Orme, John S.

    1992-01-01

    The subsonic flight test evaluation phase of the NASA F-15 (powered by F 100 engines) performance seeking control program was completed for single-engine operation at part- and military-power settings. The subsonic performance seeking control algorithm optimizes the quasi-steady-state performance of the propulsion system for three modes of operation. The minimum fuel flow mode minimizes fuel consumption. The minimum thrust mode maximizes thrust at military power. Decreases in thrust-specific fuel consumption of 1 to 2 percent were measured in the minimum fuel flow mode; these fuel savings are significant, especially for supersonic cruise aircraft. Decreases of up to approximately 100 degree R in fan turbine inlet temperature were measured in the minimum temperature mode. Temperature reductions of this magnitude would more than double turbine life if inlet temperature was the only life factor. Measured thrust increases of up to approximately 15 percent in the maximum thrust mode cause substantial increases in aircraft acceleration. The system dynamics of the closed-loop algorithm operation were good. The subsonic flight phase has validated the performance seeking control technology, which can significantly benefit the next generation of fighter and transport aircraft.

  18. Study of the application of hydrogen fuel to long-range subsonic transport aircraft, volume 2

    NASA Technical Reports Server (NTRS)

    Brewer, G. D.; Morris, R. E.; Lange, R. H.; Moore, J. W.

    1975-01-01

    The feasibility, practicability, and potential advantages/disadvantages of using liquid hydrogen as fuel in long range, subsonic transport aircraft of advanced design were studied. Both passenger and cargo-type aircraft were investigated. To provide a valid basis for comparison, conventional hydrocarbon (Jet A) fueled aircraft were designed to perform identical missions using the same advanced technology and meeting the same operational constraints. The liquid hydrogen and Jet A fueled aircraft were compared on the basis of weight, size, energy utilization, cost, noise, emissions, safety, and operational characteristics. A program of technology development was formulated.

  19. Subsonic/transonic stall flutter investigation of a rotating rig

    NASA Technical Reports Server (NTRS)

    Jutras, R. R.; Fost, R. B.; Chi, R. M.; Beacher, B. F.

    1981-01-01

    Stall flutter is investigated by obtaining detailed quantitative steady and aerodynamic and aeromechanical measurements in a typical fan rotor. The experimental investigation is made with a 31.3 percent scale model of the Quiet Engine Program Fan C rotor system. Both subsonic/transonic (torsional mode) flutter and supersonic (flexural) flutter are investigated. Extensive steady and unsteady data on the blade deformations and aerodynamic properties surrounding the rotor are acquired while operating in both the steady and flutter modes. Analysis of this data shows that while there may be more than one traveling wave present during flutter, they are all forward traveling waves.

  20. Condensation of wet vapors in turbines

    NASA Technical Reports Server (NTRS)

    Kothman, R. E.

    1970-01-01

    Computer program predicts condensation point in wet vapor turbines and analyzes subsequent nucleation and growth processes to determine both moisture content and drop size and number distribution as a function of position. Program includes effects of molecular association on condensation and flow processes and handles both subsonic and supersonic flows.

  1. Program Fighter: An Evaluation.

    ERIC Educational Resources Information Center

    Hull, David G.; Fowler, Wallace T.

    A computer program for the sizing of subsonic and supersonic fighter planes was adapted for use in an aerospace engineering course at the University of Texas at Austin. FIGHTER uses classroom notation and separate subroutines for different disciplines to implement the conceptual design process. Input consists of a set of design variables and a set…

  2. User's guide to STIPPAN: A panel method program for slotted tunnel interference prediction

    NASA Technical Reports Server (NTRS)

    Kemp, W. B., Jr.

    1985-01-01

    Guidelines are presented for use of the computer program STIPPAN to simulate the subsonic flow in a slotted wind tunnel test section with a known model disturbance. Input data requirements are defined in detail and other aspects of the program usage are discussed in more general terms. The program is written for use in a CDC CYBER 200 class vector processing system.

  3. 14 CFR 1203.900 - Establishment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INFORMATION SECURITY PROGRAM NASA Information Security Program Committee § 1203.900 Establishment. Pursuant to Executive Order 12958, “National Security Information,” and the National Aeronautics and Space Act of 1958, as amended, there is established...

  4. 14 CFR 1203.900 - Establishment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INFORMATION SECURITY PROGRAM NASA Information Security Program Committee § 1203.900 Establishment. Pursuant to Executive Order 12958, “National Security Information,” and the National Aeronautics and Space Act of 1958, as amended, there is established...

  5. 14 CFR 1203.201 - Information security objectives.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Information security objectives. 1203.201 Section 1203.201 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INFORMATION SECURITY PROGRAM NASA Information Security Program § 1203.201 Information security objectives. The objectives of...

  6. 14 CFR 1203.201 - Information security objectives.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Information security objectives. 1203.201 Section 1203.201 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INFORMATION SECURITY PROGRAM NASA Information Security Program § 1203.201 Information security objectives. The objectives of...

  7. Air Breathing Propulsion Controls and Diagnostics Research at NASA Glenn Under NASA Aeronautics Research Mission Programs

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2015-01-01

    The Intelligent Control and Autonomy Branch (ICA) at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet the goals of the NASA Aeronautics Research Mission Directorate (ARMD) Programs. These efforts are primarily under the various projects under the Advanced Air Vehicles Program (AAVP), Airspace Operations and Safety Program (AOSP) and Transformative Aeronautics Concepts Program (TAC). The ICA Branch is focused on advancing the state-of-the-art of aero-engine control and diagnostics technologies to help improve aviation safety, increase efficiency, and enable operation with reduced emissions. This paper describes the various ICA research efforts under the NASA Aeronautics Research Mission Programs with a summary of motivation, background, technical approach, and recent accomplishments for each of the research tasks.

  8. Steady, Oscillatory, and Unsteady Subsonic and Supersonic Aerodynamics, production version (SOUSSA-P 1.1). Volume 1: Theoretical manual. [Green function

    NASA Technical Reports Server (NTRS)

    Morino, L.

    1980-01-01

    Recent developments of the Green's function method and the computer program SOUSSA (Steady, Oscillatory, and Unsteady Subsonic and Supersonic Aerodynamics) are reviewed and summarized. Applying the Green's function method to the fully unsteady (transient) potential equation yields an integro-differential-delay equation. With spatial discretization by the finite-element method, this equation is approximated by a set of differential-delay equations in time. Time solution by Laplace transform yields a matrix relating the velocity potential to the normal wash. Premultiplying and postmultiplying by the matrices relating generalized forces to the potential and the normal wash to the generalized coordinates one obtains the matrix of the generalized aerodynamic forces. The frequency and mode-shape dependence of this matrix makes the program SOUSSA useful for multiple frequency and repeated mode-shape evaluations.

  9. Flutter analysis of swept-wing subsonic aircraft with parameter studies of composite wings

    NASA Technical Reports Server (NTRS)

    Housner, J. M.; Stein, M.

    1974-01-01

    A computer program is presented for the flutter analysis, including the effects of rigid-body roll, pitch, and plunge of swept-wing subsonic aircraft with a flexible fuselage and engines mounted on flexible pylons. The program utilizes a direct flutter solution in which the flutter determinant is derived by using finite differences, and the root locus branches of the determinant are searched for the lowest flutter speed. In addition, a preprocessing subroutine is included which evaluates the variable bending and twisting stiffness properties of the wing by using a laminated, balanced ply, filamentary composite plate theory. The program has been substantiated by comparisons with existing flutter solutions. The program has been applied to parameter studies which examine the effect of filament orientation upon the flutter behavior of wings belonging to the following three classes: wings having different angles of sweep, wings having different mass ratios, and wings having variable skin thicknesses. These studies demonstrated that the program can perform a complete parameter study in one computer run. The program is designed to detect abrupt changes in the lowest flutter speed and mode shape as the parameters are varied.

  10. Experimental and Analytical Evaluation of a Composite Honeycomb Deployable Energy Absorber

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Kellas, Sotiris; Horta, Lucas G.; Annett, Martin S.; Polanco, Michael A.; Littell, Justin D.; Fasanella, Edwin L.

    2011-01-01

    In 2006, the NASA Subsonic Rotary Wing Aeronautics Program sponsored the experimental and analytical evaluation of an externally deployable composite honeycomb structure that is designed to attenuate impact energy during helicopter crashes. The concept, which is designated the Deployable Energy Absorber (DEA), utilizes an expandable Kevlar honeycomb structure to dissipate kinetic energy through crushing. The DEA incorporates a unique flexible hinge design that allows the honeycomb to be packaged and stowed flat until needed for deployment. A variety of deployment options such as linear, radial, and/or hybrid methods can be used. Experimental evaluation of the DEA utilized a building block approach that included material characterization testing of its constituent, Kevlar -129 fabric/epoxy, and flexural testing of single hexagonal cells. In addition, the energy attenuation capabilities of the DEA were demonstrated through multi-cell component dynamic crush tests, and vertical drop tests of a composite fuselage section, retrofitted with DEA blocks, onto concrete, water, and soft soil. During each stage of the DEA evaluation process, finite element models of the test articles were developed and simulations were performed using the explicit, nonlinear transient dynamic finite element code, LS-DYNA. This report documents the results of the experimental evaluation that was conducted to assess the energy absorption capabilities of the DEA.

  11. NASA's Vision for Potential Energy Reduction from Future Generations of Propulsion Technology

    NASA Technical Reports Server (NTRS)

    Haller, Bill

    2015-01-01

    Through a robust partnership with the aviation industry, over the past 50 years NASA programs have helped foster advances in propulsion technology that enabled substantial reductions in fuel consumption for commercial transports. Emerging global trends and continuing environmental concerns are creating challenges that will very likely transform the face of aviation over the next 20-40 years. In recognition of this development, NASA Aeronautics has established a set of Research Thrusts that will help define the future direction of the agency's research technology efforts. Two of these thrusts, Ultra-Efficient Commercial Vehicles and Transition to Low-Carbon Propulsion, serve as cornerstones for the Advanced Air Transport Technology (AATT) project. The AATT project is exploring and developing high-payoff technologies and concepts that are key to continued improvement in energy efficiency and environmental compatibility for future generations of fixed-wing, subsonic transports. The AATT project is primarily focused on the N+3 timeframe, or 3 generations from current technology levels. As should be expected, many of the propulsion system architectures technologies envisioned for N+3 vary significantly from todays engines. The use of batteries in a hybrid-electric configuration or deploying multiple fans distributed across the airframe to enable higher bypass ratios are just two examples of potential advances that could enable substantial energy reductions over current propulsion systems.

  12. 14 CFR 1203.904 - Meetings.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Meetings. 1203.904 Section 1203.904 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INFORMATION SECURITY PROGRAM NASA Information Security Program Committee § 1203.904 Meetings. (a) Meetings will be held at the call of the...

  13. 14 CFR 1203.904 - Meetings.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Meetings. 1203.904 Section 1203.904 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INFORMATION SECURITY PROGRAM NASA Information Security Program Committee § 1203.904 Meetings. (a) Meetings will be held at the call of the...

  14. 14 CFR 1203.903 - Ad hoc committees.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Ad hoc committees. 1203.903 Section 1203.903 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INFORMATION SECURITY PROGRAM NASA Information Security Program Committee § 1203.903 Ad hoc committees. The Chairperson is authorized...

  15. User's guide to PANCOR: A panel method program for interference assessment in slotted-wall wind tunnels

    NASA Technical Reports Server (NTRS)

    Kemp, William B., Jr.

    1990-01-01

    Guidelines are presented for use of the computer program PANCOR to assess the interference due to tunnel walls and model support in a slotted wind tunnel test section at subsonic speeds. Input data requirements are described in detail and program output and general program usage are described. The program is written for effective automatic vectorization on a CDC CYBER 200 class vector processing system.

  16. Core Noise - Increasing Importance

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2011-01-01

    This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system-level noise metrics for the 2015, 2020, and 2025 timeframes; turbofan design trends and their aeroacoustic implications; the emerging importance of core noise and its relevance to the SFW Reduced-Perceived-Noise Technical Challenge; and the current research activities in the core-noise area, with additional details given about the development of a high-fidelity combustor-noise prediction capability as well as activities supporting the development of improved reduced-order, physics-based models for combustor-noise prediction. The need for benchmark data for validation of high-fidelity and modeling work and the value of a potential future diagnostic facility for testing of core-noise-reduction concepts are indicated. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The SFW Reduced-Perceived-Noise Technical Challenge aims to develop concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries. This reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic. Noise generated in the jet engine core, by sources such as the compressor, combustor, and turbine, can be a significant contribution to the overall noise signature at low-power conditions, typical of approach flight. At high engine power during takeoff, jet and fan noise have traditionally dominated over core noise. However, current design trends and expected technological advances in engine-cycle design as well as noise-reduction methods are likely to reduce non-core noise even at engine-power points higher than approach. In addition, future low-emission combustor designs could increase the combustion-noise component. The trend towards high-power-density cores also means that the noise generated in the low-pressure turbine will likely increase. Consequently, the combined result from these emerging changes will be to elevate the overall importance of turbomachinery core noise, which will need to be addressed in order to meet future noise goals.

  17. Investing American Recovery and Reinvestment Act Funds to Advance Capability, Reliability, and Performance in NASA Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Sydnor, Goerge H.

    2010-01-01

    The National Aeronautics and Space Administration's (NASA) Aeronautics Test Program (ATP) is implementing five significant ground-based test facility projects across the nation with funding provided by the American Recovery and Reinvestment Act (ARRA). The projects were selected as the best candidates within the constraints of the ARRA and the strategic plan of ATP. They are a combination of much-needed large scale maintenance, reliability, and system upgrades plus creating new test beds for upcoming research programs. The projects are: 1.) Re-activation of a large compressor to provide a second source for compressed air and vacuum to the Unitary Plan Wind Tunnel at the Ames Research Center (ARC) 2.) Addition of high-altitude ice crystal generation at the Glenn Research Center Propulsion Systems Laboratory Test Cell 3, 3.) New refrigeration system and tunnel heat exchanger for the Icing Research Tunnel at the Glenn Research Center, 4.) Technical viability improvements for the National Transonic Facility at the Langley Research Center, and 5.) Modifications to conduct Environmentally Responsible Aviation and Rotorcraft research at the 14 x 22 Subsonic Tunnel at Langley Research Center. The selection rationale, problem statement, and technical solution summary for each project is given here. The benefits and challenges of the ARRA funded projects are discussed. Indirectly, this opportunity provides the advantages of developing experience in NASA's workforce in large projects and maintaining corporate knowledge in that very unique capability. It is envisioned that improved facilities will attract a larger user base and capabilities that are needed for current and future research efforts will offer revenue growth and future operations stability. Several of the chosen projects will maximize wind tunnel reliability and maintainability by using newer, proven technologies in place of older and obsolete equipment and processes. The projects will meet NASA's goal of integrating more efficient, environmentally safer, and less energy consuming hardware and processes into existing tunnel systems. These include Environmental Protection Agency-approved refrigerants, energy efficient motors, and faster, flexible tunnel data systems.

  18. Core-Noise

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2010-01-01

    This presentation is a technical progress report and near-term outlook for NASA-internal and NASA-sponsored external work on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system level noise metrics for the 2015, 2020, and 2025 timeframes; the emerging importance of core noise and its relevance to the SFW Reduced-Noise-Aircraft Technical Challenge; the current research activities in the core-noise area, with some additional details given about the development of a high-fidelity combustion-noise prediction capability; the need for a core-noise diagnostic capability to generate benchmark data for validation of both high-fidelity work and improved models, as well as testing of future noise-reduction technologies; relevant existing core-noise tests using real engines and auxiliary power units; and examples of possible scenarios for a future diagnostic facility. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The SFW Reduced-Noise-Aircraft Technical Challenge aims to enable concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries. This reduction of aircraft noise is critical for enabling the anticipated large increase in future air traffic. Noise generated in the jet engine core, by sources such as the compressor, combustor, and turbine, can be a significant contribution to the overall noise signature at low-power conditions, typical of approach flight. At high engine power during takeoff, jet and fan noise have traditionally dominated over core noise. However, current design trends and expected technological advances in engine-cycle design as well as noise-reduction methods are likely to reduce non-core noise even at engine-power points higher than approach. In addition, future low-emission combustor designs could increase the combustion-noise component. The trend towards high-power-density cores also means that the noise generated in the low-pressure turbine will likely increase. Consequently, the combined result from these emerging changes will be to elevate the overall importance of turbomachinery core noise, which will need to be addressed in order to meet future noise goals.

  19. Effect of Aromatic Concentration of a Fischer-Tropsch Fuel on Thermal Stability

    NASA Technical Reports Server (NTRS)

    Klettlinger, Jennifer Lindsey Suder

    2012-01-01

    Fischer-Tropsch (F-T) jet fuel composition differs from petroleum-based, conventional commercial jet fuel because of differences in feedstock and production methodology. Fischer­ Tropsch fuel typically has a lower aromatic and sulfur content and consists primarily of iso and normal parafins. The ASTM D3241 specification for Jet Fuel Thermal Oxidation Test (JFTOT) break point testing method was used to test the breakpoint of a baseline commercial grade F-T jet fuel, and various blends of this F-T fuel with an aromatic solution. The goal of this research is to determine the effect of aromatic content on the thermal stability of Fischer-Tropsch fuel. The testing completed in this report was supported by the NASA Fundamental Aeronautics Subsonics Fixed Wing Project.

  20. 14 CFR 1203.903 - Ad hoc committees.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Ad hoc committees. 1203.903 Section 1203.903 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INFORMATION SECURITY PROGRAM NASA Information Security Program Committee § 1203.903 Ad hoc committees. The Chairperson is authorized to...

  1. 14 CFR 1260.124 - Program income.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Program income. 1260.124 Section 1260.124 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GRANTS AND COOPERATIVE AGREEMENTS Uniform... and Trademark Amendments (35 U.S.C. 18) apply to inventions made under an experimental, developmental...

  2. [NASA] in the 21st Century

    NASA Technical Reports Server (NTRS)

    Horn, Thomas J.

    2006-01-01

    This viewgraph presentation reviews the NASA programs in support of Aeronautical and Space research. This research involves imagining the future of air travel. There are three major Aeronautics technology programs: (1) Fundamental Aeronautics, (2) Aviation Safety and (3) Airspace Systems. The aim of exploring the depths of the universe through earth based and space based assets. Other Space programs include the plans for exploration of the moon and Mars.

  3. Aeronautics in NACA and NASA

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Initiated in 1915, the National Advisory Committee for Aeronautics/National Aeronautics and Space Administration (NACA/NASA) aeronautical programs have been the keystone of a sustained U.S. Government, industry, and university research effort which has been a primary factor in the development of our remarkable air transportation systems, the country's largest positive trade balance component, and the world's finest military Air Force. This overview summarizes the flow of events, and the major trends, that have led from the NACA origins to the present NASA Aeronautics program, and indicates some important directions for the years ahead.

  4. 14 CFR 1221.105 - Establishment of NASA Program Identifiers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Establishment of NASA Program Identifiers. 1221.105 Section 1221.105 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA...

  5. 14 CFR 1221.105 - Establishment of NASA Program Identifiers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Establishment of NASA Program Identifiers. 1221.105 Section 1221.105 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA...

  6. 14 CFR 1221.105 - Establishment of NASA Program Identifiers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Establishment of NASA Program Identifiers. 1221.105 Section 1221.105 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA...

  7. 14 CFR 1221.105 - Establishment of NASA Program Identifiers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Establishment of NASA Program Identifiers. 1221.105 Section 1221.105 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA...

  8. High supersonic aerodynamic characteristics of five irregular planform wings with systematically varying wing fillet geometry tested in the NASA/LaRC 4-foot UPWT (LEG 2) (LA45A/B)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    An experimental and analytical aerodynamic program to develop predesign guides for irregular planform wings is reported. The benefits are linearization of subsonic lift curve slope to high angles of attack and avoidance of subsonic pitch instabilities at high lift by proper tailoring of the planform fillet wing combination while providing the desired hypersonic trim angle and stability. The two prime areas of concern are to optimize shuttle orbiter landing and entry characteristics. Basic longitudinal aerodynamic characteristics at high supersonic speeds are developed.

  9. Study and evaluation of ferro-cement for use in wind tunnel construction

    NASA Technical Reports Server (NTRS)

    Larsen, H. J., Jr. (Compiler)

    1972-01-01

    The structural suitability and cost effectiveness of ferro-cement for large subsonic wind tunnel structures is investigated. This investigation was carried out in the following four main categories: (1) a state-of-the-art survey into the uses, properties, and costs of ferro-cement; (2) an evaluation of those ferro-cement properties critical to construction of large, subsonic wind tunnels, which have not been adequately established to date; (3) a laboratory testing program to determine preliminary values for those properties; and (4) a study to establish cost factors for ferro-cement as related to a preliminary construction scheme for a nacelle and shroud unit.

  10. NASA / GE Aviation Collaborative Partnership Research in Ultra High Bypass Cycle Propulsion Concepts

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.; Zeug, Theresa

    2008-01-01

    Current collaborative research with General Electric Aviation on Open Rotor propulsion as part of the Subsonic Fixed Wing Project Ultra High Bypass Engine Partnership Element is discussed. The Subsonic Fixed Wing Project goals are reviewed, as well as their relative technology level compared to previous NASA noise program goals. The current Open Rotor propulsion research activity at NASA and GE are discussed including the contributions each entity bring toward the research project, and technical plans and objectives. GE Open Rotor propulsion technology and business plans currently and toward the future are also discussed, including the role the NASA SFW UHB partnership plays toward achieving those goals.

  11. Air Breathing Propulsion Controls and Diagnostics Research at NASA Glenn Under NASA Aeronautics Research Mission Programs

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2014-01-01

    The Intelligent Control and Autonomy Branch (ICA) at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet the goals of the NASA Aeronautics Research Mission Directorate (ARMD) Programs. These efforts are primarily under the various projects under the Fundamental Aeronautics Program (FAP) and the Aviation Safety Program (ASP). The ICA Branch is focused on advancing the state-of-the-art of aero-engine control and diagnostics technologies to help improve aviation safety, increase efficiency, and enable operation with reduced emissions. This paper describes the various ICA research efforts under the NASA Aeronautics Research Mission Programs with a summary of motivation, background, technical approach, and recent accomplishments for each of the research tasks.

  12. Aeronautics Research and Technology Program and specific objectives, fiscal year 1982

    NASA Technical Reports Server (NTRS)

    Olstad, W. B.

    1981-01-01

    The Aeronautics Research and Technology program is broken down into two program areas (research and technology base, and systems technology programs) which are further broken down into succeedingly more detailed activities to form a work breakdown structure for the aeronautics program: program area, program/discipline objective, specific objective, and research and technology objective and plan (RTOP). A detailed view of this work breakdown structure down to the specific objective level is provided, and goals or objectives at each of these levels are set forth. What is to be accomplished and why are addressed, but not how. The letter falls within the domain of the RTOP.

  13. Quality Program Provisions for Aeronautical and Space System Contractors

    NASA Technical Reports Server (NTRS)

    1969-01-01

    This publication sets forth quality program requirements for NASA aeronautical and space programs, systems, subsystems, and related services. These requirements provide for the effective operation of a quality program which ensures that quality criteria and requirements are recognized, definitized, and performed satisfactorily.

  14. FORTRAN program for calculating velocities and streamlines on the hub-shroud mid-channel flow surface of an axial- or mixed-flow turbomachine. 1: User's manual

    NASA Technical Reports Server (NTRS)

    Katsanis, T.

    1973-01-01

    A FORTRAN 4 computer program has been developed that obtains a subsonic or shock-free transonic flow solution on the hub-shroud mid-channel flow surface of a turbomachine. The blade row may be fixed or rotating, and may be twisted and leaned. Flow may be axial or mixed, up to 45 deg from axial. Upstream and downstream flow variables may vary from hub to shroud, and provision is made to correct for loss of stagnation pressure. The results include velocities, streamlines, and flow angles on the flow surface; and approximate blade surface velocities. Subsonic solutions are obtained by a finite-difference stream-function solution. Transonic solutions are obtained by a velocity-gradient method, using information from a finite-difference stream-function solution at a reduced mass flow.

  15. FORTRAN program for calculating velocities and streamlines on the hub-shroud mid-channel flow surface of an axial-or mixed-flow turbomachine. 2: Programmer's manual

    NASA Technical Reports Server (NTRS)

    Katsanis, T.; Mcnally, W. D.

    1974-01-01

    A FORTRAN-IV computer program, MERIDL, has been developed that obtains a subsonic or shock-free transonic flow solution on the hub-shroud mid-channel flow surface of a turbomachine. The blade row may be fixed or rotating and may be twisted and leaned. Flow may be axial or mixed, up to 45 deg from axial. Upstream and downstream flow variables can vary from hub to shroud, and provision is made to correct for loss of stagnation pressure. The results include velocities, streamlines, and flow angles on the flow surface and approximate blade surface velocities. Subsonic solutions are obtained by a finite-difference stream-function solution. Transonic solutions are obtained by a velocity-gradient method, using information from a finite-difference stream-function solution at a reduced mass flow.

  16. Analysis and testing of high entrainment single nozzle jet pumps with variable mixing tubes

    NASA Technical Reports Server (NTRS)

    Hickman, K. E.; Hill, P. G.; Gilbert, G. B.

    1972-01-01

    An analytical model was developed to predict the performance characteristics of axisymmetric single-nozzle jet pumps with variable area mixing tubes. The primary flow may be subsonic or supersonic. The computer program uses integral techniques to calculate the velocity profiles and the wall static pressures that result from the mixing of the supersonic primary jet and the subsonic secondary flow. An experimental program was conducted to measure mixing tube wall static pressure variations, velocity profiles, and temperature profiles in a variable area mixing tube with a supersonic primary jet. Static pressure variations were measured at four different secondary flow rates. These test results were used to evaluate the analytical model. The analytical results compared well to the experimental data. Therefore, the analysis is believed to be ready for use to relate jet pump performance characteristics to mixing tube design.

  17. An improved panel method for the solution of three-dimensional leading edge vortex flows Volume 2: User's guide and programmer's document

    NASA Technical Reports Server (NTRS)

    Tinoco, E. N.; Lu, P.; Johnson, F. T.

    1980-01-01

    A computer program developed for solving the subsonic, three dimensional flow over wing-body configurations with leading edge vortex separation is presented. Instructions are given for the proper set up and input of a problem into the computer code. Program input formats and output are described, as well as the overlay structure of the program. The program is written in FORTRAN.

  18. 14 CFR 1221.112 - Use of the NASA Program Identifiers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Use of the NASA Program Identifiers. 1221.112 Section 1221.112 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype...

  19. 14 CFR 1221.112 - Use of the NASA Program Identifiers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Use of the NASA Program Identifiers. 1221.112 Section 1221.112 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype...

  20. 14 CFR 1221.112 - Use of the NASA Program Identifiers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Use of the NASA Program Identifiers. 1221.112 Section 1221.112 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype...

  1. 14 CFR 1221.112 - Use of the NASA Program Identifiers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Use of the NASA Program Identifiers. 1221.112 Section 1221.112 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype...

  2. Mixing, Noise and Thrust Benefits Using Corrugated Designs

    NASA Technical Reports Server (NTRS)

    Morgan, Morris H., III; Gilinsky, Mikhail M.

    2000-01-01

    These projects are directed toward the analysis of several concepts for nozzle and inlet performance improvement and noise reduction from jet exhausts. Currently. The FM&AL also initiates new joint research between the HU/FM&AL, the Hyper-X Program Team at the LaRC, and the Central Institute of Aviation Motors (CIAM), Moscow, Russia in the field of optimization of fuel injection and mixing in air-breathing propulsion systems. The main results of theoretical, numerical simulation and experimental tests obtained in the previous research are in the papers and patents. The goals of the 14U/FM&AL programs are twofold: 1) to improve the working efficiency of the HU/FM&AL team in generating new innovative ideas and in conducting research in the field of fluid dynamics and acoustics, basically for improvement of supersonic and subsonic aircraft engines, and 2) to attract promising minority students to this research and training and, in cooperation with other HU departments, to teach them basic knowledge in Aerodynamics, Gas Dynamics, and Theoretical and Experimental Methods in Aeroacoustics and Computational Fluid Dynamics (CFD). The research at the HU/FM&AL supports reduction schemes associated with the emission of en 'ne pollutants for commercial aircraft and concepts for reduction of 91 observables for military aircraft. These research endeavors relate to the goals of the NASA Strategic Enterprise in Aeronautics concerning the development of environmentally acceptable aircraft. It is in this precise area, where the US aircraft industry, academia, and Government are in great need of trained professionals and which is a high priority goal of the Minority University Research and Education (MLTREP) Program, that the HU/FM&AL can make its most important contribution.

  3. Fischer-Tropsch Catalyst for Aviation Fuel Production

    NASA Technical Reports Server (NTRS)

    DeLaRee, Ana B.; Best, Lauren M.; Bradford, Robyn L.; Gonzalez-Arroyo, Richard; Hepp, Aloysius F.

    2012-01-01

    As the oil supply declines, there is a greater need for cleaner alternative fuels. There will undoubtedly be a shift from crude oil to nonpetroleum sources as a feedstock for aviation (and other transportation) fuels. The Fischer-Tropsch process uses a gas mixture of carbon monoxide and hydrogen which is converted into various liquid hydrocarbons; this versatile gas-to-liquid technology produces a complex product stream of paraffins, olefins, and oxygenated compounds such as alcohols and aldehydes. The Fischer-Tropsch process can produce a cleaner diesel oil fraction with a high cetane number (typically above 70) without any sulfur and aromatic compounds. It is most commonly catalyzed by cobalt supported on alumina, silica, or titania or unsupported alloyed iron powders. Cobalt is typically used more often than iron, in that cobalt is a longer-active catalyst, has lower water-gas shift activity, and lower yield of modified products. Promoters are valuable in improving Fischer-Tropsch catalyst as they can increase cobalt oxide dispersion, enhance the reduction of cobalt oxide to the active metal phase, stabilize a high metal surface area, and improve mechanical properties. Our goal is to build up the specificity of the Fischer-Tropsch catalyst while adding less-costly transition metals as promoters; the more common promoters used in Fischer-Tropsch synthesis are rhenium, platinum, and ruthenium. In this report we will describe our preliminary efforts to design and produce catalyst materials to achieve our goal of preferentially producing C8 to C18 paraffin compounds in the NASA Glenn Research Center Gas-To-Liquid processing plant. Efforts at NASA Glenn Research Center for producing green fuels using non-petroleum feedstocks support both the Sub-sonic Fixed Wing program of Fundamental Aeronautics and the In Situ Resource Utilization program of the Exploration Technology Development and Demonstration program.

  4. Fischer-Tropsch Catalyst for Aviation Fuel Production

    NASA Technical Reports Server (NTRS)

    deLaRee, Ana B.; Best, Lauren M.; Hepp, Aloysius F.

    2011-01-01

    As the oil supply declines, there is a greater need for cleaner alternative fuels. There will undoubtedly be a shift from crude oil to non-petroleum sources as a feedstock for aviation (and other transportation) fuels. The Fischer-Tropsch process uses a gas mixture of carbon monoxide and hydrogen which is converted into various liquid hydrocarbons; this versatile gas-to-liquid technology produces a complex product stream of paraffins, olefins, and oxygenated compounds such as alcohols and aldehydes. The Fischer-Tropsch process can produce a cleaner diesel oil fraction with a high cetane number (typically above 70) without any sulfur and aromatic compounds. It is most commonly catalyzed by cobalt supported on alumina, silica, or titania or unsupported alloyed iron powders. Cobalt is typically used more often than iron, in that cobalt is a longer-active catalyst, has lower water-gas shift activity, and lower yield of modified products. Promoters are valuable in improving Fischer-Tropsch catalyst as they can increase cobalt oxide dispersion, enhance the reduction of cobalt oxide to the active metal phase, stabilize a high metal surface area, and improve mechanical properties. Our goal is to build up the specificity of the Fischer-Tropsch catalyst while adding less-costly transition metals as promoters; the more common promoters used in Fischer-Tropsch synthesis are rhenium, platinum, and ruthenium. In this report we will describe our preliminary efforts to design and produce catalyst materials to achieve our goal of preferentially producing C8 to C18 paraffin compounds in the NASA Glenn Research Center Gas-To-Liquid processing plant. Efforts at NASA Glenn Research Center for producing green fuels using non-petroleum feedstocks support both the Sub-sonic Fixed Wing program of Fundamental Aeronautics and the In Situ Resource Utilization program of the Exploration Technology Development and Demonstration program.

  5. Mobile-ip Aeronautical Network Simulation Study

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Tran, Diepchi T.

    2001-01-01

    NASA is interested in applying mobile Internet protocol (mobile-ip) technologies to its space and aeronautics programs. In particular, mobile-ip will play a major role in the Advanced Aeronautic Transportation Technology (AATT), the Weather Information Communication (WINCOMM), and the Small Aircraft Transportation System (SATS) aeronautics programs. This report presents the results of a simulation study of mobile-ip for an aeronautical network. The study was performed to determine the performance of the transmission control protocol (TCP) in a mobile-ip environment and to gain an understanding of how long delays, handoffs, and noisy channels affect mobile-ip performance.

  6. Research And Development Contributions to Aviation Progress (RADCAP): Executive summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Positive contributions of military aeronautical research and development programs to civil aviation are reviewed and some possible future contributions of those military programs are assessed. A summary is presented of detailed results concerned with: (1) review of the progress that has been made in aviation since 1925 and the significant technological advances that have been made; (2) an examination of current and planned military aeronautical research and technology programs and an assessment of their relevancy to the aeronautical R and D needs of civil aviation; (3) the relationship of the development base generated by military programs to the needs of civil airliner design, development, and production; (4) information on aeronautical R and D funding; and (5) the findings and observations of the RADCAP study.

  7. Quiet engine program flight engine design study

    NASA Technical Reports Server (NTRS)

    Klapproth, J. F.; Neitzel, R. E.; Seeley, C. T.

    1974-01-01

    The results are presented of a preliminary flight engine design study based on the Quiet Engine Program high-bypass, low-noise turbofan engines. Engine configurations, weight, noise characteristics, and performance over a range of flight conditions typical of a subsonic transport aircraft were considered. High and low tip speed engines in various acoustically treated nacelle configurations were included.

  8. U.S. Aeronautical L-Band Satellite Technology Test Program : Interim Tests Results

    DOT National Transportation Integrated Search

    1975-06-01

    The U.S. Aeronautical L-Band satellite test program was performed between September 1974 and April 1975 as part of an international ATS-6 L-Band satellite test program. The U.S. program consisted of both technology and ATC communications demonstratio...

  9. Economic benefits of supersonic overland operation

    NASA Technical Reports Server (NTRS)

    Metwally, Munir

    1992-01-01

    Environmental concerns are likely to impose some restrictions on the next generation of supersonic commercial transport. There is a global concern over the effects of engine emissions on the ozone layer which protects life on Earth from ultraviolet radiation. There is also some concern over community noise. The High Speed Civil Transport (HSCT) must meet at least the current subsonic noise certification standards to be compatible with the future subsonic fleet. Concerns over sonic boom represent another environmental and marketing challenge to the HSCT program. The most attractive feature of the supersonic transport is speed, which offers the traveling public significant time-savings on long range routes. The sonic boom issue represents a major environmental and economic challenge as well. Supersonic operation overland produces the most desirable economic results. However, unacceptable overland sonic boom raise levels may force HSCT to use subsonic speeds overland. These environmental and economic challenges are likely to impose some restrictions on supersonic operation, thus introducing major changes to existing route structures and future supersonic network composition. The current subsonic route structure may have to be altered for supersonic transports to avoid sensitive areas in the stratosphere or to minimize overland flight tracks. It is important to examine the alternative route structure and the impact of these restrictions on the economic viability of the overall supersonic operation. Future market potential for HSCT fleets must be large enough to enable engine and airframe manufacturers to build the plane at a cost that provides them with an attractive return on investment and to sell it at a price that allows the airlines to operate with a reasonable margin of profit. Subsonic overland operation of a supersonic aircraft hinders its economic viability. Ways to increase the market potential of supersonic operation are described.

  10. 14 CFR 1203.901 - Responsibilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INFORMATION SECURITY PROGRAM NASA Information Security Program Committee § 1203.901 Responsibilities. (a) The Chairperson reports to the Administrator concerning the management and direction of the NASA Information Security Program as provided for...

  11. 14 CFR 1203.901 - Responsibilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INFORMATION SECURITY PROGRAM NASA Information Security Program Committee § 1203.901 Responsibilities. (a) The Chairperson reports to the Administrator concerning the management and direction of the NASA Information Security Program as provided for...

  12. Advanced Configurations for Very Large Subsonic Transport Airplanes

    NASA Technical Reports Server (NTRS)

    McMasters, John H.; Paisley, David J.; Hubert, Richard J.; Kroo, Ilan; Bofah, Kwasi K.; Sullivan, John P.; Drela, Mark

    1996-01-01

    Recent aerospace industry interest in developing a subsonic commercial transport airplane with 50 percent greater passenger capacity than the largest existing aircraft in this category (the Boeing 747-400 with approximately 400-450 seats) has generated a range of proposals based largely on the configuration paradigm established nearly 50 years ago with the Boeing B-47 bomber. While this basic configuration paradigm has come to dominate subsonic commercial airplane development since the advent of the Boeing 707/Douglas DC-8 in the mid-1950's, its extrapolation to the size required to carry more than 600-700 passengers raises several questions. To explore these and a number of related issues, a team of Boeing, university, and NASA engineers was formed under the auspices of the NASA Advanced Concepts Program. The results of a Research Analysis focused on a large, unconventional transport airplane configuration for which Boeing has applied for a patent are the subject of this report. It should be noted here that this study has been conducted independently of the Boeing New Large Airplane (NLA) program, and with the exception of some generic analysis tools which may be common to this effort and the NLA (as will be described later), no explicit Boeing NLA data other than that published in the open literature has been used in the conduct of the study reported here.

  13. An improved viscous characteristics analysis program

    NASA Technical Reports Server (NTRS)

    Jenkins, R. V.

    1978-01-01

    An improved two dimensional characteristics analysis program is presented. The program is built upon the foundation of a FORTRAN program entitled Analysis of Supersonic Combustion Flow Fields With Embedded Subsonic Regions. The major improvements are described and a listing of the new program is provided. The subroutines and their functions are given as well as the input required for the program. Several applications of the program to real problems are qualitatively described. Three runs obtained in the investigation of a real problem are presented to provide insight for the input and output of the program.

  14. Plotting program for aerodynamic lifting surface theory. [user manual for FORTRAN computer program

    NASA Technical Reports Server (NTRS)

    Medan, R. T.; Ray, K. S.

    1973-01-01

    A description of and users manual for a USA FORTRAN IV computer program which plots the planform and control points of a wing are presented. The program also plots some of the configuration data such as the aspect ratio. The planform data is stored on a disc file which is created by a geometry program. This program, the geometry program, and several other programs are used together in the analysis of lifting, thin wings in steady, subsonic flow according to a kernel function lifting surface theory.

  15. Development of Integrated Programs for Aerospace-vehicle design (IPAD): Reference design process

    NASA Technical Reports Server (NTRS)

    Meyer, D. D.

    1979-01-01

    The airplane design process and its interfaces with manufacturing and customer operations are documented to be used as criteria for the development of integrated programs for the analysis, design, and testing of aerospace vehicles. Topics cover: design process management, general purpose support requirements, design networks, and technical program elements. Design activity sequences are given for both supersonic and subsonic commercial transports, naval hydrofoils, and military aircraft.

  16. A review of NASA's propulsion programs for aviation

    NASA Technical Reports Server (NTRS)

    Stewart, W. L.; Johnson, H. W.; Weber, R. J.

    1978-01-01

    A review of five NASA engine-oriented propulsion programs of major importance to civil aviation are presented and discussed. Included are programs directed at exploring propulsion system concepts for (1) energy conservation subsonic aircraft (improved current turbofans, advanced turbofans, and advanced turboprops); (2) supersonic cruise aircraft (variable cycle engines); (3) general aviation aircraft (improved reciprocating engines and small gas turbines); (4) powered lift aircraft (advanced turbofans); and (5) advanced rotorcraft.

  17. Subsonic flutter analysis addition to NASTRAN. [for use with CDC 6000 series digital computers

    NASA Technical Reports Server (NTRS)

    Doggett, R. V., Jr.; Harder, R. L.

    1973-01-01

    A subsonic flutter analysis capability has been developed for NASTRAN, and a developmental version of the program has been installed on the CDC 6000 series digital computers at the Langley Research Center. The flutter analysis is of the modal type, uses doublet lattice unsteady aerodynamic forces, and solves the flutter equations by using the k-method. Surface and one-dimensional spline functions are used to transform from the aerodynamic degrees of freedom to the structural degrees of freedom. Some preliminary applications of the method to a beamlike wing, a platelike wing, and a platelike wing with a folded tip are compared with existing experimental and analytical results.

  18. Surface roughness effects on the subsonic aerodynamics of the Rockwell International 089B-139B orbiter

    NASA Technical Reports Server (NTRS)

    Ware, G. M.; Spencer, B., Jr.

    1973-01-01

    An experimental test program was conducted to determine the effects of vehicle surface roughness on the subsonic aerodynamic characteristics of a 0.01875 scale model of a Rockwell International Space Shuttle Configuration. Surface roughness was simulated by applying a sparce coating of carborundum grit to the complete model. Various grit sizes were investigated. Tests were conducted in the Langley Low Turbulence Pressure Tunnel at a constant nominal Mach number of 0.25 with Reynolds number varying from 2 to 12 x 10 to the 6th power per foot. Angle of attack was varied from about -2 to 28 deg at 0 deg and 6 deg angle of sideslip.

  19. Oscillating Cascade Aerodynamics at Large Mean Incidence Angles

    NASA Technical Reports Server (NTRS)

    Buffum, Daniel H.

    1997-01-01

    In a cooperative program with Pratt & Whitney, researchers obtained fundamental separated flow unsteady aerodynamic data in the NASA Lewis Research Center's Oscillating Cascade. These data fill a void that has hindered the understanding and prediction of subsonic and transonic stall flutter. For small-amplitude torsional oscillations, unsteady pressure distributions were measured on airfoils with cross sections representative of an advanced, low-aspect-ratio fan blade. Data were obtained for two mean incidence angles with a subsonic inflow. At high mean incidence angles (alpha = 10 deg), the mean flow separated at the leading edge and reattached at about 40 percent of the chord. For comparison purposes, data were also obtained for a low incidence angle (a = 0 deg) attached flow.

  20. Enhancement of Aviation Fuel Thermal Stability Characterization Through Application of Ellipsometry

    NASA Technical Reports Server (NTRS)

    Browne, Samuel Tucker; Wong, Hubert; Hinderer, Cameron Branch; Klettlinger, Jennifer

    2012-01-01

    ASTM D3241/Jet Fuel Thermal Oxidation Tester (JFTOT) procedure, the standard method for testing thermal stability of conventional aviation turbine fuels is inherently limited due to the subjectivity in the color standard for tube deposit rating. Quantitative assessment of the physical characteristics of oxidative fuel deposits provides a more powerful method for comparing the thermal oxidation stability characteristics of fuels, especially in a research setting. We propose employing a Spectroscopic Ellipsometer to determine the film thickness and profile of oxidative fuel deposits on JFTOT heater tubes. Using JP-8 aviation fuel and following a modified ASTM D3241 testing procedure, the capabilities of the Ellipsometer will be demonstrated by measuring oxidative fuel deposit profiles for a range of different deposit characteristics. The testing completed in this report was supported by the NASA Fundamental Aeronautics Subsonics Fixed Wing Project

  1. VISCOUS CHARACTERICTICS ANALYSIS

    NASA Technical Reports Server (NTRS)

    Jenkins, R. V.

    1994-01-01

    Current investigations of the hydrogen-fueled supersonic combustion ramjet engine have delineated several technological problem areas. One area, the analysis of the injection, turbulent mixing, and combusiton of hydrogen, requires the accurate calculation of the supersonic combustion flow fields. This calculation has proven difficult because of an interesting phenomena which makes possible the transition from supersonic to subsonic flow in the combustion field, due to the temperature transitions which occur in the flow field. This computer program was developed to use viscous characteristics theory to analyze supersonic combustion flow fields with imbedded subsonic regions. Intended to be used as a practical design tool for two-dimensional and axisymmetric supersonic combustor development, this program has proven useful in the analysis of such problems as determining the flow field of a single underexpanded hydrogen jet, the internal flow of a gas sampling probe, the effects of fuel-injector strut shape, and the effects of changes in combustor configuration. Both combustion and diffusive effects can significantly alter the wave pattern in a supersonic field and generate significant pressure gradients in both the axial and radial directions. The induced pressure, in turn, substantially influences the ignition delay and reaction times as well as the velocity distribution. To accurately analyze the flow fields, the effects of finite rate chemistry, mixing, and wave propagation must be properly linked to one another. The viscous characteristics theory has been used in the past to describe flows that are purely supersonic; however, the interacting pressure effects in the combustor often allow for the development of shock waves and imbedded subsonic regions. Numerical investigation of these transonic situations has required the development of a new viscous characteristics procedure which is valid within the subsonic region and can be coupled with the standard viscous characteristics procedure in the supersonic region. The basic governing equations used are the 'viscous-inviscid' equations, similar to those employed in higher-order boundary layer analyses, with finite rate chemistry terms included. In addition, the Rankine-Hugoniot and Prandtl-Meyer relations are used to compute shock and expansion conditions. The program can handle up to 20 simultaneous shock waves. Chemistry terms are computed for a 7-species 8-mechanism hydrogen-air reaction scheme. The user input consists of a physical description of the combustor and flow determination parameters. Output includes detail flow parameter values at selected points within the flow field. This computer program is written in FORTRAN IV for batch execution and has been implemented on a CDC CYBER 175 with a central memory requirement of approximately 114K (octal) of 60 bit words. The program was developed in 1978.

  2. Overview of NASA's Integrated Design and Engineering Analysis (IDEA)Environment

    NASA Technical Reports Server (NTRS)

    Robinson, Jeffrey S.; Martin John G.

    2008-01-01

    Historically, the design of subsonic and supersonic aircraft has been divided into separate technical disciplines (such as propulsion, aerodynamics and structures) each of which performs their design and analysis in relative isolation from others. This is possible in most cases either because the amount of interdisciplinary coupling is minimal or because the interactions can be treated as linear. The design of hypersonic airbreathing vehicles, like NASA s X-43, is quite the opposite. Such systems are dominated by strong non-linear interactions between disciplines. The design of these systems demands that a multi-disciplinary approach be taken. Furthermore, increased analytical fidelity at the conceptual design phase is highly desirable as many of the non-linearities are not captured by lower fidelity tools. Only when these systems are designed from a true multi-disciplinary perspective can the real performance benefits be achieved and complete vehicle systems be fielded. Toward this end, the Vehicle Analysis Branch at NASA Langley Research Center has been developing the Integrated Design & Engineering Analysis (IDEA) Environment. IDEA is a collaborative environment for parametrically modeling conceptual and preliminary launch vehicle configurations using the Adaptive Modeling Language (AML) as the underlying framework. The environment integrates geometry, configuration, propulsion, aerodynamics, aerothermodynamics, trajectory, closure and structural analysis into a generative, parametric, unified computational model where data is shared seamlessly between the different disciplines. Plans are also in place to incorporate life cycle analysis tools into the environment which will estimate vehicle operability, reliability and cost. IDEA is currently being funded by NASA s Hypersonics Project, a part of the Fundamental Aeronautics Program within the Aeronautics Research Mission Directorate. The environment is currently focused around a two-stage-to-orbit configuration with a turbine based combined cycle (TBCC) first stage and reusable rocket second stage. This paper provides an overview of the development of the IDEA environment, a description of the current status and detail of future plans.

  3. UAS Related Activities at NASA's Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Bauer, Jeffrey E.

    2009-01-01

    NASA s Dryden Flight Research Center is completing its refurbishment and initial flights of one the pre-production Global Hawk aircraft it received from the U.S. Air Force. NASA Dryden has an agreement with the Global Hawk s manufacturer, Northrop Grumman, to partner in the refurbishment and flight operations of the vehicles. The National Oceanic and Atmospheric Administration (NOAA) has also partnered on the project and is assisting NASA with project management and pilot responsibilities for the aircraft. NASA and NOAA will be using the Global Hawks to conduct earth science research. The earth science community is increasing utilizing UAS of all sizes and capabilities to collect important data on a variety of issues including important global climate change issues. To pursue the data collection needs of the science community there is a growing demand for international collaboration with respect to operating UAS in global airspace. Operations of NASA s Ikhana aircraft continued this past year. The Ikhana is a modified Predator B UAS. A UAS dedicated to research at NASA Dryden is the X-48B blended wing body research aircraft. Flight tests with the 500- pound, remotely piloted test vehicle are now in a block 4 phase involving parameter identification and maneuvers to research the limits of the engine in stall situations. NASA s participation in the blended wing body research effort is focused on fundamental, advanced flight dynamics and structural design concepts within the Subsonic Fixed Wing project, part of the Fundamental Aeronautics program managed through NASA s Aeronautics Research Mission Directorate. Potential benefits of the aircraft include increased volume for carrying capacity, efficient aerodynamics for reduced fuel burn and possibly significant reductions in noise due to propulsion integration options. NASA Dryden continues to support the UAS industry by facilitating access to three specially designated test areas on Edwards Air Force Base for the development of small UAS.

  4. Configuration aerodynamics

    NASA Technical Reports Server (NTRS)

    Polhamus, E. C.; Gloss, B. B.

    1981-01-01

    Static aerodynamic research related to aircraft configurations in their cruise or combat modes is discussed. Subsonic transport aircraft, transonic tactical aircraft, and slender wing aircraft are considered. The status and plans of Langley's NTF configuration research program are reviewed. Recommendations for near term configuration research are made.

  5. Alternate-fueled transport aircraft possibilities

    NASA Technical Reports Server (NTRS)

    Aiken, W. S.

    1977-01-01

    The paper is organized to describe: (1) NASA's cryogenically fueled aircraft program; (2) LH2 subsonic and supersonic transport design possibilities (3) the fuel system and ground side problems associated with LH2 distribution; (4) a comparison of LCH4 with LH2; (5) the design possibilities for LCH4 fueled aircraft; and (6) a summary of where NASA's cryogenically fueled programs are headed.

  6. A Probabilistic Assessment of NASA Ultra-Efficient Engine Technologies for a Large Subsonic Transport

    NASA Technical Reports Server (NTRS)

    Tong, Michael T.; Jones, Scott M.; Arcara, Philip C., Jr.; Haller, William J.

    2004-01-01

    NASA's Ultra Efficient Engine Technology (UEET) program features advanced aeropropulsion technologies that include highly loaded turbomachinery, an advanced low-NOx combustor, high-temperature materials, intelligent propulsion controls, aspirated seal technology, and an advanced computational fluid dynamics (CFD) design tool to help reduce airplane drag. A probabilistic system assessment is performed to evaluate the impact of these technologies on aircraft fuel burn and NOx reductions. A 300-passenger aircraft, with two 396-kN thrust (85,000-pound) engines is chosen for the study. The results show that a large subsonic aircraft equipped with the UEET technologies has a very high probability of meeting the UEET Program goals for fuel-burn (or equivalent CO2) reduction (15% from the baseline) and LTO (landing and takeoff) NOx reductions (70% relative to the 1996 International Civil Aviation Organization rule). These results are used to provide guidance for developing a robust UEET technology portfolio, and to prioritize the most promising technologies required to achieve UEET program goals for the fuel-burn and NOx reductions.

  7. 14 CFR 1203b.109 - Disclaimer.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... otherwise lawful activities of security force personnel or the National Aeronautics and Space Administration. ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Disclaimer. 1203b.109 Section 1203b.109 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND...

  8. 14 CFR 1203b.109 - Disclaimer.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... otherwise lawful activities of security force personnel or the National Aeronautics and Space Administration. ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Disclaimer. 1203b.109 Section 1203b.109 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND...

  9. 14 CFR 1203b.109 - Disclaimer.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... otherwise lawful activities of security force personnel or the National Aeronautics and Space Administration. ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Disclaimer. 1203b.109 Section 1203b.109 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND...

  10. 14 CFR 1203b.109 - Disclaimer.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... otherwise lawful activities of security force personnel or the National Aeronautics and Space Administration. ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Disclaimer. 1203b.109 Section 1203b.109 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND...

  11. 14 CFR 91.25 - Aviation Safety Reporting Program: Prohibition against use of reports for enforcement purposes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aviation Safety Reporting Program... GENERAL OPERATING AND FLIGHT RULES General § 91.25 Aviation Safety Reporting Program: Prohibition against... to the National Aeronautics and Space Administration under the Aviation Safety Reporting Program (or...

  12. Aeronautics and Space Report of the President: Fiscal Year 2005 Activities

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The National Aeronautics and Space Act of 1958 directed the annual Aeronautics and Space Report to include a "comprehensive description of the programmed activities and the accomplishments of all agencies of the United States in the field of aeronautics and space activities during the preceding calendar year." In recent years, the reports have been prepared on a fiscal-year basis, consistent with the budgetary period now used in programs of the Federal Government. This year's report covers activities that took place from October 1 , 2004, through September 30, 2005.

  13. Aeronautics and Space Report of the President: Fiscal Year 2001 Activities

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The National Aeronautics and Space Act of 1958 directed the annual Aeronautics and Space Report to include a 'comprehensive description of the programmed activities and the accomplishments of all agencies of the United States in the field of aeronautics and space activities during the preceding calendar year.' In recent years the reports have been prepared on a fiscal-year basis consistent with the budgetary period now used in programs of the Federal Government. This year's report covers activities that took place from October 1, 2000, through September 30, 2001.

  14. Aeronautics and Space Report of the President: Fiscal Year 1999 Activities

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The National Aeronautics and Space Act of 1958 directed the annual Aeronautics and Space Report to include a "comprehensive description of the programmed activities and the accomplishments of all agencies of the United States in the field of aeronautics and space activities during the preceding calendar year." In recent years, the reports have been prepared on a fiscal year basis, consistent with the budgetary period now used in programs of the Federal Government. This year's report covers activities that took place from October 1, 1998, through September 30, 1999.

  15. Aeronautics and Space Report of the President: Fiscal Year 2003 Activities

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The National Aeronautics and Space Act of 1958 directed the annual Aeronautics and Space Report to include a comprehensive description of the programmed activities and the accomplishments of all agencies of the United States in the field of aeronautics and space activities during the preceding calendar year. In recent years, the reports have been prepared on a fiscal-year basis, consistent with the budgetary period now used in programs of the Federal Government. This year's report covers activities that took place from October 1, 2002, through September 30, 2003.

  16. Aeronautics and Space Report of the President: Fiscal Year 2000 Activities

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The National Aeronautics and Space Act of 1958 directed the annual Aeronautics and Space Report to include a "comprehensive description of the programmed activities and the accomplishments of all agencies of the United States in the field of aeronautics and space activities during the preceding calendar year." In recent years, the reports have been prepared on a fiscal year basis, consistent with the budgetary period now used in programs of the Federal Government. This year's report covers activities that took place from October 1, 1999, through September 30, 2000.

  17. Aeronautics and Space Report of the President: Fiscal Year 2007 Activities

    NASA Technical Reports Server (NTRS)

    2009-01-01

    The National Aeronautics and Space Act of 1958 directed the annual Aeronautics and Space Report to include a "comprehensive description of the programmed activities and the accomplishments of all agencies of the United States in the field of aeronautics and space activities during the preceding calendar year." In recent years, the reports have been prepared on a fiscal-year basis, consistent with the budgetary period now used in programs of the Federal Government. This year's report covers activities that took place from October 1, 2006, through September 30, 2007.

  18. Aeronautics and Space Report of the President - Fiscal Year 2008 Activities

    NASA Technical Reports Server (NTRS)

    2009-01-01

    The National Aeronautics and Space Act of 1958 directed the annual Aeronautics and Space Report to include a "comprehensive description of the programmed activities and the accomplishments of all agencies of the United States in the field of aeronautics and space activities during the preceding calendar year." In recent years, the reports have been prepared on a fiscal-year basis, consistent with the budgetary period now used in programs of the Federal Government. This year's report covers activities that took place from October 1, 2007, through September 30, 2008.

  19. Aeronautics and Space Report of the President - Fiscal Year 2010 Activities

    NASA Technical Reports Server (NTRS)

    2011-01-01

    The National Aeronautics and Space Act of 1958 directed the annual Aeronautics and Space Report to include a "comprehensive description of the programmed activities and the accomplishments of all agencies of the United States in the field of aeronautics and space activities during the preceding calendar year." In recent years, the reports have been prepared on a fiscal-year basis, consistent with the budgetary period now used in programs of the Federal Government. This year's report covers activities that took place from October 1, 2009, through September 30, 2010.

  20. Slender body theory programmed for bodies with arbitrary cross section. [including fuselages

    NASA Technical Reports Server (NTRS)

    Werner, J.; Krenkel, A. R.

    1978-01-01

    A computer program developed for determining the subsonic pressure, force, and moment coefficients for a fuselage-type body using slender body theory is described. The program is suitable for determining the angle of attack and sideslipping characteristics of such bodies in the linear range where viscous effects are not predominant. Procedures developed which are capable of treating cross sections with corners or regions of large curvature are outlined.

  1. Aeronautics and space report of the President: 1981 activities

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Achievements in the aeronautics and space program by function are summarized. Activities in communications, Earth's resources and environment, space science, space transportation, international activities, and aeronautics are included.

  2. 14 CFR 1203.409 - Exceptional cases.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ....409 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INFORMATION SECURITY PROGRAM... Information Security Program Committee, Security Division, Washington, DC 20546 for a classification..., to the Director, Information Security Oversight Office, GSA, for a determination. ...

  3. The calibration and flight test performance of the space shuttle orbiter air data system

    NASA Technical Reports Server (NTRS)

    Dean, A. S.; Mena, A. L.

    1983-01-01

    The Space Shuttle air data system (ADS) is used by the guidance, navigation and control system (GN&C) to guide the vehicle to a safe landing. In addition, postflight aerodynamic analysis requires a precise knowledge of flight conditions. Since the orbiter is essentially an unpowered vehicle, the conventional methods of obtaining the ADS calibration were not available; therefore, the calibration was derived using a unique and extensive wind tunnel test program. This test program included subsonic tests with a 0.36-scale orbiter model, transonic and supersonic tests with a smaller 0.2-scale model, and numerous ADS probe-alone tests. The wind tunnel calibration was further refined with subsonic results from the approach and landing test (ALT) program, thus producing the ADS calibration for the orbital flight test (OFT) program. The calibration of the Space Shuttle ADS and its performance during flight are discussed in this paper. A brief description of the system is followed by a discussion of the calibration methodology, and then by a review of the wind tunnel and flight test programs. Finally, the flight results are presented, including an evaluation of the system performance for on-board systems use and a description of the calibration refinements developed to provide the best possible air data for postflight analysis work.

  4. Development of a computer program to obtain ordinates for NACA 4-digit, 4-digit modified, 5-digit, and 16 series airfoils

    NASA Technical Reports Server (NTRS)

    Ladson, C. L.; Brooks, Cuyler W., Jr.

    1975-01-01

    A computer program developed to calculate the ordinates and surface slopes of any thickness, symmetrical or cambered NACA airfoil of the 4-digit, 4-digit modified, 5-digit, and 16-series airfoil families is presented. The program produces plots of the airfoil nondimensional ordinates and a punch card output of ordinates in the input format of a readily available program for determining the pressure distributions of arbitrary airfoils in subsonic potential viscous flow.

  5. Quasi-one-dimensional compressible flow across face seals and narrow slots. 2: Computer program

    NASA Technical Reports Server (NTRS)

    Zuk, J.; Smith, P. J.

    1972-01-01

    A computer program is presented for compressible fluid flow with friction across face seals and through narrow slots. The computer program carries out a quasi-one-dimensional flow analysis which is valid for laminar and turbulent flows under both subsonic and choked flow conditions for parallel surfaces. The program is written in FORTRAN IV. The input and output variables are in either the International System of Units (SI) or the U.S. customary system.

  6. 14 CFR 1203.300 - General.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false General. 1203.300 Section 1203.300 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INFORMATION SECURITY PROGRAM... research, technology or operations. ...

  7. NASA aerodynamics program

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.; Schairer, Edward; Hicks, Gary; Wander, Stephen; Blankson, Isiaiah; Rose, Raymond; Olson, Lawrence; Unger, George

    1990-01-01

    Presented here is a comprehensive review of the following aerodynamics elements: computational methods and applications, computational fluid dynamics (CFD) validation, transition and turbulence physics, numerical aerodynamic simulation, drag reduction, test techniques and instrumentation, configuration aerodynamics, aeroacoustics, aerothermodynamics, hypersonics, subsonic transport/commuter aviation, fighter/attack aircraft and rotorcraft.

  8. NASA LANGLEY RESEARCH CENTER AND THE TIDEWATER INTERAGENCY POLLUTION PREVENTION PROGRAM

    EPA Science Inventory

    National Aeronautics and Space Administration (NASA)'s Langley Research Center (LaRC) is an 807-acre research center devoted to aeronautics and space research. aRC has initiated a broad-based pollution prevention program guided by a Pollution Prevention Program Plan and implement...

  9. FY 1978 aeronautics and space technology program summary

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Highlights of the aeronautics program include research on aircraft energy efficiency, supersonic cruise aircraft, vertical takeoff and landing aircraft, short haul/short takeoff and landing aircraft, and general aviation aircraft. The space technology program includes work on space structures, propulsion systems, power systems, materials, and electronics.

  10. 14 CFR § 1203b.109 - Disclaimer.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... otherwise lawful activities of security force personnel or the National Aeronautics and Space Administration... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Disclaimer. § 1203b.109 Section § 1203b.109 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST...

  11. Project Mercury: Man-In-Space Program of the National Aeronautics and Space Administration. [Report of the Committee on Aeronautical and Space Sciences United States Senate

    NASA Technical Reports Server (NTRS)

    1959-01-01

    The purpose of this staff study, made at the request of the chairman, is to serve members of the Committee on Aeronautical and Space Sciences as a source of basic information on Project Mercury, the man-in-space program of the National Aeronautics and Space Administration. The study is largely derived from unclassified information released by the National Aeronautics and Space Administration and testimony concerning Project Mercury given during hearings before this committee. The program descriptions are based upon current program planning. Since this is a highly advanced research and development program, the project is obviously subject to changes that may result from future developments and accomplishments characteristic of such research activities. Certain information with respect to revised schedules, obtained on a classified basis by the committee during inspection trips, is necessarily omitted. The appendixes to the study include information that may prove helpful on various aspects of space flight and exploration. Included are unofficial comments and observations relating to Russia's manned space flight activities and also a complete chronology of all satellites, lunar probes, and space probes up to the present.

  12. National Aeronautics and Space Administration technology application team program

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Contracts are reported between the RTI TATeam and the National Aeronautics and Space Administration (NASA), the Environmental Protection Agency (EPA), and other governmental, educational, and industrial organizations participating in NASA's Technology Utilization Program.

  13. 14 CFR 1203.703 - Declassification.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INFORMATION SECURITY PROGRAM Foreign Government Information § 1203.703 Declassification. (a) Information classified in accordance with § 1203.400.... The Chairperson, NASA Information Security Program Committee, will initiate administrative functions...

  14. 14 CFR 1203.703 - Declassification.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INFORMATION SECURITY PROGRAM Foreign Government Information § 1203.703 Declassification. (a) Information classified in accordance with § 1203.400.... The Chairperson, NASA Information Security Program Committee, will initiate administrative functions...

  15. PAN AIR summary document (version 1.0)

    NASA Technical Reports Server (NTRS)

    Derbyshire, T.; Sidwell, K. W.

    1982-01-01

    The capabilities and limitations of the panel aerodynamics (PAN AIR) computer program system are summarized. This program uses a higher order panel method to solve boundary value problems involving the Prandtl-Glauert equation for subsonic and supersonic potential flows. Both aerodynamic and hydrodynamic problems can be solved using this modular software which is written for the CDC 6600 and 7600, and the CYBER 170 series computers.

  16. Effect of Mixing Enhancement Devices on Turbulence in Separate Flow Nozzles

    NASA Technical Reports Server (NTRS)

    Bridges, James

    2001-01-01

    This paper presents the effects of several mixing enhancement devices on turbulence in jet nozzles. The topics include: 1) The Advanced Subsonic Technology (AST) Program; 2) Test Programs SFNT97 and SFNT2K; 3) Facility; 4) Mixing Enhancement Nozzles; 5) IR reductions; 6) Schlieren of Chevrons; and 7) Aeroacoustics of Enhanced Mixing-Paradigm. This paper is presented in viewgraph form.

  17. NASA aerodynamics program

    NASA Technical Reports Server (NTRS)

    Williams, Louis J.; Hessenius, Kristin A.; Corsiglia, Victor R.; Hicks, Gary; Richardson, Pamela F.; Unger, George; Neumann, Benjamin; Moss, Jim

    1992-01-01

    The annual accomplishments is reviewed for the Aerodynamics Division during FY 1991. The program includes both fundamental and applied research directed at the full spectrum of aerospace vehicles, from rotorcraft to planetary entry probes. A comprehensive review is presented of the following aerodynamics elements: computational methods and applications; CFD validation; transition and turbulence physics; numerical aerodynamic simulation; test techniques and instrumentation; configuration aerodynamics; aeroacoustics; aerothermodynamics; hypersonics; subsonics; fighter/attack aircraft and rotorcraft.

  18. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology into NASA Programs Associated with the Aeronautics Research Mission Directorate

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2015-01-01

    This report is intended to help NASA program and project managers incorporate Small Business Innovation Research/Small Business Technology Transfer (SBIR/STTR) technologies that have gone through Phase II of the SBIR program into NASA Aeronautics and Mission Directorate (ARMD) programs. Other Government and commercial program managers can also find this information useful.

  19. Computer program for quasi-one-dimensional compressible flow with area change and friction - Application to gas film seals

    NASA Technical Reports Server (NTRS)

    Zuk, J.; Smith, P. J.

    1974-01-01

    A computer program is presented for compressible fluid flow with friction and area change. The program carries out a quasi-one-dimensional flow analysis which is valid for laminar and turbulent flows under both subsonic and choked flow conditions. The program was written to be applied to gas film seals. The area-change analysis should prove useful for choked flow conditions with small mean thickness, as well as for face seals where radial area change is significant. The program is written in FORTRAN 4.

  20. Subsonic-transonic stall flutter study

    NASA Technical Reports Server (NTRS)

    Stardter, H.

    1979-01-01

    The objective of the Subsonic/Transonic Stall Flutter Program was to obtain detailed measurements of both the steady and unsteady flow field surrounding a rotor and the mechanical state of the rotor while it was operating in both steady and flutter modes to provide a basis for future analysis and for development of theories describing the flutter phenomenon. The program revealed that while all blades flutter at the same frequency, they do not flutter at the same amplitude, and their interblade phase angles are not equal. Such a pattern represents the superposition of a number of rotating nodal diameter patterns, each characterized by a different amplitude and different phase indexing, but each rotating at a speed that results in the same flutter frequency as seen in the rotor system. Review of the steady pressure contours indicated that flutter may alter the blade passage pressure distribution. The unsteady pressure amplitude contour maps reveal regions of high unsteady pressure amplitudes near the leading edge, lower amplitudes near the trailing.

  1. Modeling of Compressible Flow with Friction and Heat Transfer Using the Generalized Fluid System Simulation Program (GFSSP)

    NASA Technical Reports Server (NTRS)

    Bandyopadhyay, Alak; Majumdar, Alok

    2007-01-01

    The present paper describes the verification and validation of a quasi one-dimensional pressure based finite volume algorithm, implemented in Generalized Fluid System Simulation Program (GFSSP), for predicting compressible flow with friction, heat transfer and area change. The numerical predictions were compared with two classical solutions of compressible flow, i.e. Fanno and Rayleigh flow. Fanno flow provides an analytical solution of compressible flow in a long slender pipe where incoming subsonic flow can be choked due to friction. On the other hand, Raleigh flow provides analytical solution of frictionless compressible flow with heat transfer where incoming subsonic flow can be choked at the outlet boundary with heat addition to the control volume. Nonuniform grid distribution improves the accuracy of numerical prediction. A benchmark numerical solution of compressible flow in a converging-diverging nozzle with friction and heat transfer has been developed to verify GFSSP's numerical predictions. The numerical predictions compare favorably in all cases.

  2. Supersonic combustion engine testbed, heat lightning

    NASA Technical Reports Server (NTRS)

    Hoying, D.; Kelble, C.; Langenbahn, A.; Stahl, M.; Tincher, M.; Walsh, M.; Wisler, S.

    1990-01-01

    The design of a supersonic combustion engine testbed (SCET) aircraft is presented. The hypersonic waverider will utilize both supersonic combustion ramjet (SCRAMjet) and turbofan-ramjet engines. The waverider concept, system integration, electrical power, weight analysis, cockpit, landing skids, and configuration modeling are addressed in the configuration considerations. The subsonic, supersonic and hypersonic aerodynamics are presented along with the aerodynamic stability and landing analysis of the aircraft. The propulsion design considerations include: engine selection, turbofan ramjet inlets, SCRAMjet inlets and the SCRAMjet diffuser. The cooling requirements and system are covered along with the topics of materials and the hydrogen fuel tanks and insulation system. A cost analysis is presented and the appendices include: information about the subsonic wind tunnel test, shock expansion calculations, and an aerodynamic heat flux program.

  3. Two dimensional aerodynamic interference effects on oscillating airfoils with flaps in ventilated subsonic wind tunnels. [computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Fromme, J.; Golberg, M.; Werth, J.

    1979-01-01

    The numerical computation of unsteady airloads acting upon thin airfoils with multiple leading and trailing-edge controls in two-dimensional ventilated subsonic wind tunnels is studied. The foundation of the computational method is strengthened with a new and more powerful mathematical existence and convergence theory for solving Cauchy singular integral equations of the first kind, and the method of convergence acceleration by extrapolation to the limit is introduced to analyze airfoils with flaps. New results are presented for steady and unsteady flow, including the effect of acoustic resonance between ventilated wind-tunnel walls and airfoils with oscillating flaps. The computer program TWODI is available for general use and a complete set of instructions is provided.

  4. Aerodynamic preliminary analysis system 2. Part 2: User's manual

    NASA Technical Reports Server (NTRS)

    Sova, G.; Divan, P.; Spacht, L.

    1991-01-01

    An aerodynamic analysis system based on potential theory at subsonic and/or supersonic speeds and impact type finite element solutions at hypersonic conditions is described. Three dimensional configurations have multiple nonplanar surfaces of arbitrary planforms and bodies of noncircular contour may be analyzed. Static, rotary, and control longitudinal and lateral-directional characteristics may be generated. The analysis was implemented on a time sharing system in conjunction with an input tablet digitizer and an interactive graphics input/output display and editing terminal to maximize its responsiveness to the preliminary analysis. Computation times on an IBM 3081 are typically less than one minute of CPU/Mach number at subsonic, supersonic, or hypersonic speeds. This is a user manual for the computer programming.

  5. 14 CFR 1203.202 - Responsibilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INFORMATION SECURITY PROGRAM NASA Information Security Program § 1203.202 Responsibilities. (a) The Chairperson, NASA Information Security...) Ensuring effective compliance with and implementation of “the Order” and the Information Security Oversight...

  6. 14 CFR 1203.202 - Responsibilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INFORMATION SECURITY PROGRAM NASA Information Security Program § 1203.202 Responsibilities. (a) The Chairperson, NASA Information Security...) Ensuring effective compliance with and implementation of “the Order” and the Information Security Oversight...

  7. 78 FR 34408 - Notice of Information Collection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-07

    ... United States Space Exploration programs. In evaluating an applicant for the Astronaut Candidate Program... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (13-063)] Notice of Information Collection AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of information collection...

  8. 14 CFR § 1203.300 - General.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false General. § 1203.300 Section § 1203.300 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INFORMATION SECURITY PROGRAM... research, technology or operations. ...

  9. Analysis of supersonic combustion flow fields with embedded subsonic regions

    NASA Technical Reports Server (NTRS)

    Dash, S.; Delguidice, P.

    1972-01-01

    The viscous characteristic analysis for supersonic chemically reacting flows was extended to include provisions for analyzing embedded subsonic regions. The numerical method developed to analyze this mixed subsonic-supersonic flow fields is described. The boundary conditions are discussed related to the supersonic-subsonic and subsonic-supersonic transition, as well as a heuristic description of several other numerical schemes for analyzing this problem. An analysis of shock waves generated either by pressure mismatch between the injected fluid and surrounding flow or by chemical heat release is also described.

  10. 14 CFR 1203.602 - Authorization.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INFORMATION SECURITY PROGRAM Declassification and Downgrading § 1203.602 Authorization. Information shall be declassified or downgraded by the... writing by the Administrator or the Chairperson, NASA Information Security Program Committee. [48 FR 5891...

  11. 14 CFR 1203.602 - Authorization.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INFORMATION SECURITY PROGRAM Declassification and Downgrading § 1203.602 Authorization. Information shall be declassified or downgraded by the... writing by the Administrator or the Chairperson, NASA Information Security Program Committee. [48 FR 5891...

  12. NASA aeronautics

    NASA Technical Reports Server (NTRS)

    Anderton, D. A.

    1982-01-01

    Aeronautical research programs are discussed in relation to research methods and the status of the programs. The energy efficient aircraft, STOL aircraft and general aviation aircraft are considered. Aerodynamic concepts, rotary wing aircraft, aircraft safety, noise reduction, and aircraft configurations are among the topics included.

  13. NASA Aeronautics Research: An Assessment

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The U.S. air transportation system is vital to the economic well-being and security of the United States. To support continued U.S. leadership in aviation, Congress and NASA requested that the National Research Council undertake a decadal survey of civil aeronautics research and technology (R&T) priorities that would help NASA fulfill its responsibility to preserve U.S. leadership in aeronautics technology. In 2006, the National Research Council published the Decadal Survey of Civil Aeronautics. That report presented a set of six strategic objectives for the next decade of aeronautics R&T, and it described 51 high-priority R&T challenges--characterized by five common themes--for both NASA and non-NASA researchers. The National Research Council produced the present report, which assesses NASA's Aeronautics Research Program, in response to the National Aeronautics and Space Administration Authorization Act of 2005 (Public Law 109-155). This report focuses on three sets of questions: 1. How well does NASA's research portfolio implement appropriate recommendations and address relevant high-priority research and technology challenges identified in the Decadal Survey of Civil Aeronautics? If gaps are found, what steps should be taken by the federal government to eliminate them? 2. How well does NASA's aeronautics research portfolio address the aeronautics research requirements of NASA, particularly for robotic and human space exploration? How well does NASA's aeronautics research portfolio address other federal government department/agency non-civil aeronautics research needs? If gaps are found, what steps should be taken by NASA and/or other parts of the federal government to eliminate them? 3. Will the nation have a skilled research workforce and research facilities commensurate with the requirements in (1) and (2) above? What critical improvements in workforce expertise and research facilities, if any, should NASA and the nation make to achieve the goals of NASA's research program? This report continues the good work begun by the Decadal Survey of Civil Aeronautics, and it expands that work to consider in more depth NASA aeronautics research issues related to the space program, non-civil applications, workforce, and facilities.

  14. APEX 3D Propeller Test Preliminary Design

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.

    2002-01-01

    A low Reynolds number, high subsonic mach number flight regime is fairly uncommon in aeronautics. Most flight vehicles do not fly under these aerodynamic conditions. However, recently there have been a number of proposed aircraft applications (such as high altitude observation platforms and Mars aircraft) that require flight within this regime. One of the main obstacles to flight under these conditions is the ability to reliably generate sufficient thrust for the aircraft. For a conventional propulsion system, the operation and design of the propeller is the key aspect to its operation. Due to the difficulty in experimentally modeling the flight conditions in ground-based facilities, it has been proposed to conduct propeller experiments from a high altitude gliding platform (APEX). A preliminary design of a propeller experiment under the low Reynolds number, high mach number flight conditions has been devised. The details of the design are described as well as the potential data that will be collected.

  15. Aircraft technology opportunities for the 21st Century

    NASA Technical Reports Server (NTRS)

    Albers, James A.; Zuk, John

    1988-01-01

    New aircraft technologies are presented that have the potential to expand the air transportation system and reduce congestion through new operating capabilities, and at the same time provide greater levels of safety and environmental compatibility. Both current and planned civil aeronautics technology at the NASA Ames, Lewis, and Langley Research Centers are addressed. The complete spectrum of current aircraft and new vehicle concepts is considered including rotorcraft (helicopters and tiltrotors), vertical and short takeoff and landing (V/STOL) and short takeoff and landing (STOL) aircraft, subsonic transports, high speed transports, and hypersonic/transatmospheric vehicles. New technologies for current aircraft will improve efficiency, affordability, safety, and environmental compatibility. Research and technology promises to enable development of new vehicles that will revolutionize or greatly change the transportation system. These vehicles will provide new capabilities which will lead to enormous market opportunities and economic growth, as well as improve the competitive position of the U.S. aerospace industry.

  16. SST Technology Follow-on Program - Phase I, Performance Evaluation of an SST Noise Suppressor Nozzle System. Volume 1. Suppressed Mode.

    DTIC Science & Technology

    ACOUSTIC INSULATION, *TURBOJET EXHAUST NOZZLES, *JET ENGINE NOISE, REDUCTION, JET TRANSPORT AIRCRAFT, THRUST AUGMENTATION , SUPERSONIC NOZZLES, DUCT...INLETS, CONVERGENT DIVERGENT NOZZLES, SUBSONIC FLOW, SUPERSONIC FLOW, SUPPRESSORS, TURBOJET INLETS, BAFFLES, JET PUMPS, THRUST , DRAG, TEMPERATURE

  17. 14 CFR 1203.200 - Background and discussion.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 1203.200 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INFORMATION SECURITY PROGRAM NASA Information Security Program § 1203.200 Background and discussion. (a) In establishing a... public inspection of that information that is classified to protect the national security. (b) In...

  18. 14 CFR 1203.200 - Background and discussion.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 1203.200 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INFORMATION SECURITY PROGRAM NASA Information Security Program § 1203.200 Background and discussion. (a) In establishing a... public inspection of that information that is classified to protect the national security. (b) In...

  19. Acoustic prediction methods for the NASA generalized advanced propeller analysis system (GAPAS)

    NASA Technical Reports Server (NTRS)

    Padula, S. L.; Block, P. J. W.

    1984-01-01

    Classical methods of propeller performance analysis are coupled with state-of-the-art Aircraft Noise Prediction Program (ANOPP:) techniques to yield a versatile design tool, the NASA Generalized Advanced Propeller Analysis System (GAPAS) for the novel quiet and efficient propellers. ANOPP is a collection of modular specialized programs. GAPAS as a whole addresses blade geometry and aerodynamics, rotor performance and loading, and subsonic propeller noise.

  20. Software for Real-Time Analysis of Subsonic Test Shot Accuracy

    DTIC Science & Technology

    2014-03-01

    used the C++ programming language, the Open Source Computer Vision ( OpenCV ®) software library, and Microsoft Windows® Application Programming...video for comparison through OpenCV image analysis tools. Based on the comparison, the software then computed the coordinates of each shot relative to...DWB researchers wanted to use the Open Source Computer Vision ( OpenCV ) software library for capturing and analyzing frames of video. OpenCV contains

  1. Advanced Methods for Acoustic and Thrust Benefits for Aircraft Engine Nozzles

    NASA Technical Reports Server (NTRS)

    Morgan, Morris H., III; Gilinsky, Mikhail M.

    2000-01-01

    The Fluid Mechanics and Acoustics Laboratory (FM&AL) was established At Hampton University in June of 1996. In addition, the FM&AL jointly conducted research with the Central AeroHydrodynamics Institute (TsAGI, Moscow) in Russia under a 2.5 year Civilian Research and Development Foundation (CRDF). The goals of the FM&AL programs are two fold: 1) to improve the working efficiency of the FM&AL team in generating new innovative ideas and in conducting research in the field of fluid dynamics and acoustics, basically for improvement of supersonic and subsonic aircraft engines, and 2) to attract promising minority students to this research and training and, in cooperation with other HU departments, to teach them basic knowledge in Aerodynamics, Gas Dynamics, and Theoretical and Experimental Methods in Aeroacoustics and Computational Fluid Dynamics (CFD). The research at the FM&AL supports reduction schemes associated with the emission of engine pollutants for commercial aircraft and concepts for reduction of observables for military aircraft. These research endeavors relate to the goals of the NASA Strategic Enterprise in Aeronautics concerning the development of environmentally acceptable aircraft. It is in this precise area, where the US aircraft industry, academia, and Government are in great need of trained professionals and which is a high priority goal of the Minority University Research and Education (MUREP) Program, that the HU FM&AL can make its most important contribution. This project already benefits NASA and HU because: First, the innovation, testing, and further development of new techniques for advanced propulsion systems are necessary for the successful attainment of the NASA Long Term Goals in Aeronautics and Space Transportation Technology (ASTT) including Global Civil Aviation, Revolutionary Technology Leaps, Access to Space, R&D Services, and the economic competitiveness of the US Aircraft Industry in the 2 1 st century. Secondly, the joint theoretical and experimental research and training by the GRC-HU Teams aids: using advanced methods and experience in Aerospace Engineering for domestic industries and training of HU students for interesting innovative work in the numerical simulation field as well as engineering and experimental research. HU students use and modify existing numerical codes for the solution of actual applied problems of the NASA Langley Research Center (LaRC)

  2. Normal loads program for aerodynamic lifting surface theory. [evaluation of spanwise and chordwise loading distributions

    NASA Technical Reports Server (NTRS)

    Medan, R. T.; Ray, K. S.

    1974-01-01

    A description of and users manual are presented for a U.S.A. FORTRAN 4 computer program which evaluates spanwise and chordwise loading distributions, lift coefficient, pitching moment coefficient, and other stability derivatives for thin wings in linearized, steady, subsonic flow. The program is based on a kernel function method lifting surface theory and is applicable to a large class of planforms including asymmetrical ones and ones with mixed straight and curved edges.

  3. TranAir: A full-potential, solution-adaptive, rectangular grid code for predicting subsonic, transonic, and supersonic flows about arbitrary configurations. Theory document

    NASA Technical Reports Server (NTRS)

    Johnson, F. T.; Samant, S. S.; Bieterman, M. B.; Melvin, R. G.; Young, D. P.; Bussoletti, J. E.; Hilmes, C. L.

    1992-01-01

    A new computer program, called TranAir, for analyzing complex configurations in transonic flow (with subsonic or supersonic freestream) was developed. This program provides accurate and efficient simulations of nonlinear aerodynamic flows about arbitrary geometries with the ease and flexibility of a typical panel method program. The numerical method implemented in TranAir is described. The method solves the full potential equation subject to a set of general boundary conditions and can handle regions with differing total pressure and temperature. The boundary value problem is discretized using the finite element method on a locally refined rectangular grid. The grid is automatically constructed by the code and is superimposed on the boundary described by networks of panels; thus no surface fitted grid generation is required. The nonlinear discrete system arising from the finite element method is solved using a preconditioned Krylov subspace method embedded in an inexact Newton method. The solution is obtained on a sequence of successively refined grids which are either constructed adaptively based on estimated solution errors or are predetermined based on user inputs. Many results obtained by using TranAir to analyze aerodynamic configurations are presented.

  4. Subsonic stability and control flight test results of the Space Shuttle /tail cone off/

    NASA Technical Reports Server (NTRS)

    Cooke, D. R.

    1980-01-01

    The subsonic stability and control testing of the Space Shuttle Orbiter in its two test flights in the tailcone-off configuration is discussed, and test results are presented. Flight test maneuvers were designed to maximize the quality and quantity of stability and control data in the minimal time allotted using the Space Shuttle Functional Simulator and the Modified Maximum Likelihood Estimator (MMLE) programs, and coefficients were determined from standard sensor data sets using the MMLE, despite problems encountered in timing due to the different measurement systems used. Results are included for lateral directional and longitudinal maneuvers as well as the Space Shuttle aerodynamic data base obtained using the results of wind tunnel tests. The flight test data are found to permit greater confidence in the data base since the differences found are well within control system capability. It is suggested that the areas of major differences, including lateral directional data with open speedbrake, roll due to rudder and normal force due to elevon, be investigated in any further subsonic flight testing. Improvements in sensor data and data handling techniques for future orbital test flights are indicated.

  5. Ensuring US National Aeronautics Test Capabilities

    NASA Technical Reports Server (NTRS)

    Marshall, Timothy J.

    2010-01-01

    U.S. leadership in aeronautics depends on ready access to technologically advanced, efficient, and affordable aeronautics test capabilities. These systems include major wind tunnels and propulsion test facilities and flight test capabilities. The federal government owns the majority of the major aeronautics test capabilities in the United States, primarily through the National Aeronautics and Space Administration (NASA) and the Department of Defense (DoD). However, changes in the Aerospace landscape, primarily the decrease in demand for testing over the last 20 years required an overarching strategy for management of these national assets. Therefore, NASA established the Aeronautics Test Program (ATP) as a two-pronged strategic initiative to: (1) retain and invest in NASA aeronautics test capabilities considered strategically important to the agency and the nation, and (2) establish a strong, high level partnership with the DoD. Test facility utilization is a critical factor for ATP because it relies on user occupancy fees to recover a substantial part of the operations costs for its facilities. Decreasing utilization is an indicator of excess capacity and in some cases low-risk redundancy (i.e., several facilities with basically the same capability and overall low utilization). However, low utilization does not necessarily translate to lack of strategic importance. Some facilities with relatively low utilization are nonetheless vitally important because of the unique nature of the capability and the foreseeable aeronautics testing needs. Unfortunately, since its inception, the customer base for ATP has continued to shrink. Utilization of ATP wind tunnels has declined by more than 50% from the FY 2006 levels. This significant decrease in customer usage is attributable to several factors, including the overall decline in new programs and projects in the aerospace sector; the impact of computational fluid dynamics (CFD) on the design, development, and research process; and the reductions in wind tunnel testing requirements within the largest consumer of ATP wind tunnel test time, the Aeronautics Research Mission Directorate (ARMD). Retirement of the Space Shuttle Program and recent perturbations of NASA's Constellation Program will exacerbate this downward trend. Therefore it is crucial that ATP periodically revisit and determine which of its test capabilities are strategically important, which qualify as low-risk redundancies that could be put in an inactive status or closed, and address the challenges associated with both sustainment and improvements to the test capabilities that must remain active. This presentation will provide an overview of the ATP vision, mission, and goals as well as the challenges and opportunities the program is facing both today and in the future. We will discuss the strategy ATP is taking over the next five years to address the National aeronautics test capability challenges and what the program will do to capitalize on its opportunities to ensure a ready, robust and relevant portfolio of National aeronautics test capabilities.

  6. 14 CFR 399.91 - Air carrier participation in programs of technical assistance to airlines of less developed...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... § 399.91 Air carrier participation in programs of technical assistance to airlines of less developed... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Air carrier participation in programs of technical assistance to airlines of less developed countries. 399.91 Section 399.91 Aeronautics and Space...

  7. 14 CFR 399.91 - Air carrier participation in programs of technical assistance to airlines of less developed...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... § 399.91 Air carrier participation in programs of technical assistance to airlines of less developed... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Air carrier participation in programs of technical assistance to airlines of less developed countries. 399.91 Section 399.91 Aeronautics and Space...

  8. Budget estimates, fiscal year 1995. Volume 1: Agency summary, human space flight, and science, aeronautics and technology

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The NASA budget request has been restructured in FY 1995 into four appropriations: human space flight; science, aeronautics, and technology; mission support; and inspector general. The human space flight appropriations provides funding for NASA's human space flight activities. This includes the on-orbit infrastructure (space station and Spacelab), transportation capability (space shuttle program, including operations, program support, and performance and safety upgrades), and the Russian cooperation program, which includes the flight activities associated with the cooperative research flights to the Russian Mir space station. These activities are funded in the following budget line items: space station, Russian cooperation, space shuttle, and payload utilization and operations. The science, aeronautics, and technology appropriations provides funding for the research and development activities of NASA. This includes funds to extend our knowledge of the earth, its space environment, and the universe and to invest in new technologies, particularly in aeronautics, to ensure the future competitiveness of the nation. These objectives are achieved through the following elements: space science, life and microgravity sciences and applications, mission to planet earth, aeronautical research and technology, advanced concepts and technology, launch services, mission communication services, and academic programs.

  9. 14 CFR 1259.401 - Responsibilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Responsibilities. 1259.401 Section 1259.401 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NATIONAL SPACE GRANT COLLEGE AND FELLOWSHIP PROGRAM Space Grant College and Consortium Designation § 1259.401 Responsibilities. Each...

  10. 14 CFR 1259.401 - Responsibilities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Responsibilities. 1259.401 Section 1259.401 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NATIONAL SPACE GRANT COLLEGE AND FELLOWSHIP PROGRAM Space Grant College and Consortium Designation § 1259.401 Responsibilities. Each...

  11. 14 CFR 1259.401 - Responsibilities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Responsibilities. 1259.401 Section 1259.401 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NATIONAL SPACE GRANT COLLEGE AND FELLOWSHIP PROGRAM Space Grant College and Consortium Designation § 1259.401 Responsibilities. Each...

  12. 14 CFR 1203.601 - Responsibilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Responsibilities. 1203.601 Section 1203.601 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INFORMATION SECURITY PROGRAM... authority may declassify or downgrade information that is subject to the final classification jurisdiction...

  13. 14 CFR 1251.540 - Employment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON BASIS OF HANDICAP Enforcement of Nondiscrimination on the Basis of Handicap in Programs or Activities Conducted by the National Aeronautics and Space Administration § 1251.540 Employment. No qualified individual with handicaps shall, on...

  14. 14 CFR 1251.540 - Employment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON BASIS OF HANDICAP Enforcement of Nondiscrimination on the Basis of Handicap in Programs or Activities Conducted by the National Aeronautics and Space Administration § 1251.540 Employment. No qualified individual with handicaps shall, on...

  15. 14 CFR 1251.540 - Employment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON BASIS OF HANDICAP Enforcement of Nondiscrimination on the Basis of Handicap in Programs or Activities Conducted by the National Aeronautics and Space Administration § 1251.540 Employment. No qualified individual with handicaps shall, on...

  16. 14 CFR 1251.540 - Employment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON BASIS OF HANDICAP Enforcement of Nondiscrimination on the Basis of Handicap in Programs or Activities Conducted by the National Aeronautics and Space Administration § 1251.540 Employment. No qualified individual with handicaps shall, on...

  17. 14 CFR 1203.601 - Responsibilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Responsibilities. 1203.601 Section 1203.601 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INFORMATION SECURITY PROGRAM... authority may declassify or downgrade information that is subject to the final classification jurisdiction...

  18. 14 CFR 1203.300 - General.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false General. 1203.300 Section 1203.300 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INFORMATION SECURITY PROGRAM Classification Principles and Considerations § 1203.300 General. In general, the types of NASA-generated...

  19. 14 CFR 1203.801 - Redelegation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Redelegation. 1203.801 Section 1203.801 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INFORMATION SECURITY PROGRAM Delegation of... TOP SECRET, SECRET, or CONFIDENTIAL original classification authority or declassification authority is...

  20. 14 CFR 1273.40 - Monitoring and reporting program performance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... performance. 1273.40 Section 1273.40 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION... program performance. (a) Monitoring by grantees. Grantees are responsible for managing the day-to-day... assure compliance with applicable Federal requirements and that performance goals are being achieved...

  1. 14 CFR 1251.501 - Purpose.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON BASIS OF HANDICAP Enforcement of Nondiscrimination on the Basis of Handicap in Programs or Activities Conducted by the National... basis of handicap in programs or activities conducted by Executive agencies or the United States Postal...

  2. 14 CFR 1251.501 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON BASIS OF HANDICAP Enforcement of Nondiscrimination on the Basis of Handicap in Programs or Activities Conducted by the National... basis of handicap in programs or activities conducted by Executive agencies or the United States Postal...

  3. 14 CFR 1251.501 - Purpose.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON BASIS OF HANDICAP Enforcement of Nondiscrimination on the Basis of Handicap in Programs or Activities Conducted by the National... basis of handicap in programs or activities conducted by Executive agencies or the United States Postal...

  4. 14 CFR § 1251.501 - Purpose.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON BASIS OF HANDICAP Enforcement of Nondiscrimination on the Basis of Handicap in Programs or Activities Conducted by the National... basis of handicap in programs or activities conducted by Executive agencies or the United States Postal...

  5. 14 CFR 1251.501 - Purpose.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON BASIS OF HANDICAP Enforcement of Nondiscrimination on the Basis of Handicap in Programs or Activities Conducted by the National... basis of handicap in programs or activities conducted by Executive agencies or the United States Postal...

  6. 14 CFR 151.89 - Roads.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Roads. 151.89 Section 151.89 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS FEDERAL AID TO AIRPORTS Project Programming Standards § 151.89 Roads. (a) Federal-aid Airport Program funds...

  7. 14 CFR 151.89 - Roads.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Roads. 151.89 Section 151.89 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS FEDERAL AID TO AIRPORTS Project Programming Standards § 151.89 Roads. (a) Federal-aid Airport Program funds...

  8. 14 CFR 152.417 - Monitoring employment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Monitoring employment. 152.417 Section 152.417 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS AIRPORT AID PROGRAM Nondiscrimination in Airport Aid Program § 152.417 Monitoring employment. (a...

  9. 14 CFR 91.1085 - Hazardous materials recognition training.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Hazardous materials recognition training. 91.1085 Section 91.1085 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Ownership Operations Program Management § 91.1085 Hazardous materials recognition training. No program...

  10. 14 CFR 91.1085 - Hazardous materials recognition training.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Hazardous materials recognition training. 91.1085 Section 91.1085 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Ownership Operations Program Management § 91.1085 Hazardous materials recognition training. No program...

  11. 14 CFR 91.1085 - Hazardous materials recognition training.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Hazardous materials recognition training. 91.1085 Section 91.1085 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Ownership Operations Program Management § 91.1085 Hazardous materials recognition training. No program...

  12. 14 CFR 91.1085 - Hazardous materials recognition training.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Hazardous materials recognition training. 91.1085 Section 91.1085 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Ownership Operations Program Management § 91.1085 Hazardous materials recognition training. No program...

  13. 14 CFR 91.1085 - Hazardous materials recognition training.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Hazardous materials recognition training. 91.1085 Section 91.1085 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Ownership Operations Program Management § 91.1085 Hazardous materials recognition training. No program...

  14. 14 CFR 151.89 - Roads.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Roads. 151.89 Section 151.89 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS FEDERAL AID TO AIRPORTS Project Programming Standards § 151.89 Roads. (a) Federal-aid Airport Program funds...

  15. Hypersonic research engine/aerothermodynamic integration model, experimental results. Volume 2: Mach 6 performance

    NASA Technical Reports Server (NTRS)

    Andrews, E. H., Jr.; Mackley, E. A.

    1976-01-01

    Computer program performance results of a Mach 6 hypersonic research engine during supersonic and subsonic combustion modes were presented. The combustion mode transition was successfully performed, exit surveys made, and effects of altitude, angle of attack, and inlet spike position were determined during these tests.

  16. Trimmed noncoplanar planforms with minimum vortex drag

    NASA Technical Reports Server (NTRS)

    Lamar, J. E.

    1977-01-01

    Vortex-lattice subsonic method determines mean camber surface for trimmed noncoplanar planforms with minimum vortex drag. Multiple surfaces can be designed together to yield trimmed configuration with minimum induced drag at some specified lift coefficient. Program is applicable to isolated wings, wing-canard configuration, tandem wing, and wing-winglet configuration.

  17. Western Aeronautical Test Range

    NASA Technical Reports Server (NTRS)

    Sakahara, Robert D.

    2008-01-01

    This viewgraph presentation reviews the work of the Western Aeronautical Test Range (WATR). NASA's Western Aeronautical Test Range is a network of facilities used to support aeronautical research, science missions, exploration system concepts, and space operations. The WATR resides at NASA's Dryden Flight Research Center located at Edwards Air Force Base, California. The WATR is a part of NASA's Corporate Management of Aeronautical Facilities and funded by the Strategic Capability Asset Program (SCAP). Maps show the general location of the WATR area that is used for aeronautical testing and evaluation. The products, services and facilities of WATR are discussed,

  18. Modeling the Launch Abort Vehicle's Subsonic Aerodynamics from Free Flight Testing

    NASA Technical Reports Server (NTRS)

    Hartman, Christopher L.

    2010-01-01

    An investigation into the aerodynamics of the Launch Abort Vehicle for NASA's Constellation Crew Launch Vehicle in the subsonic, incompressible flow regime was conducted in the NASA Langley 20-ft Vertical Spin Tunnel. Time histories of center of mass position and Euler Angles are captured using photogrammetry. Time histories of the wind tunnel's airspeed and dynamic pressure are recorded as well. The primary objective of the investigation is to determine models for the aerodynamic yaw and pitch moments that provide insight into the static and dynamic stability of the vehicle. System IDentification Programs for AirCraft (SIDPAC) is used to determine the aerodynamic model structure and estimate model parameters. Aerodynamic models for the aerodynamic body Y and Z force coefficients, and the pitching and yawing moment coefficients were identified.

  19. Full-Scale Turbofan-Engine Turbine-Transfer Function Determination Using Three Internal Sensors

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2011-01-01

    Existing NASA/Honeywell EVNERT full-scale static engine test data is analyzed by using source-separation techniques in order to determine the turbine transfer of the currently sub-dominant combustor noise. The results are used to assess the combustor-noise prediction capability of the Aircraft Noise Prediction Program (ANOPP). Time-series data from three sensors internal to the Honeywell TECH977 research engine is used in the analysis. The true combustor-noise turbine-transfer function is educed by utilizing a new three-signal approach. The resulting narrowband gain factors are compared with the corresponding constant values obtained from two empirical acoustic-turbine-loss formulas. It is found that a simplified Pratt & Whitney formula agrees better with the experimental results for frequencies of practical importance. The 130 deg downstream-direction far-field 1/3-octave sound-pressure levels (SPL) results of Hultgren & Miles are reexamined using a post-correction of their ANOPP predictions for both the total noise signature and the combustion-noise component. It is found that replacing the standard ANOPP turbine-attenuation function for combustion noise with the simplified Pratt & Whitney formula clearly improves the predictions. It is recommended that the GECOR combustion-noise module in ANOPP be updated to allow for a user-selectable switch between the current transmission-loss model and the simplified Pratt & Whitney formula. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The Subsonic Fixed Wing Project's Reduce-Perceived-Noise Technical Challenge aims to develop concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries. The reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic.

  20. A Preliminary Evaluation of Supersonic Transport Category Vehicle Operations in the National Airspace System

    NASA Technical Reports Server (NTRS)

    Underwood, Matthew C.; Guminsky, Michael D.

    2015-01-01

    Several public sector businesses and government agencies, including the National Aeronautics and Space Administration are currently working on solving key technological barriers that must be overcome in order to realize the vision of low-boom supersonic flights conducted over land. However, once these challenges are met, the manner in which this class of aircraft is integrated in the National Airspace System may become a potential constraint due to the significant environmental, efficiency, and economic repercussions that their integration may cause. Background research was performed on historic supersonic operations in the National Airspace System, including both flight deck procedures and air traffic controller procedures. Using this information, an experiment was created to test some of these historic procedures in a current-day, emerging Next Generation Air Transportation System (NextGen) environment and observe the interactions between commercial supersonic transport aircraft and modern-day air traffic. Data was gathered through batch simulations of supersonic commercial transport category aircraft operating in present-day traffic scenarios as a base-lining study to identify the magnitude of the integration problems and begin the exploration of new air traffic management technologies and architectures which will be needed to seamlessly integrate subsonic and supersonic transport aircraft operations. The data gathered include information about encounters between subsonic and supersonic aircraft that may occur when supersonic commercial transport aircraft are integrated into the National Airspace System, as well as flight time data. This initial investigation is being used to inform the creation and refinement of a preliminary Concept of Operations and for the subsequent development of technologies that will enable overland supersonic flight.

  1. 14 CFR 1203.300 - General.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true General. 1203.300 Section 1203.300 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INFORMATION SECURITY PROGRAM... information and material requiring protection in the interest of national security lie in the areas of applied...

  2. 14 CFR § 1251.540 - Employment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON BASIS OF HANDICAP Enforcement of Nondiscrimination on the Basis of Handicap in Programs or Activities Conducted by the National Aeronautics and Space Administration § 1251.540 Employment. No qualified individual with handicaps shall, on...

  3. 14 CFR 1203.300 - General.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false General. 1203.300 Section 1203.300 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INFORMATION SECURITY PROGRAM... information and material requiring protection in the interest of national security lie in the areas of applied...

  4. 14 CFR 1253.510 - Recruitment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Recruitment. 1253.510 Section 1253.510 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON THE BASIS OF SEX IN... in Employment in Education Programs or Activities Prohibited § 1253.510 Recruitment. (a...

  5. 14 CFR 1253.510 - Recruitment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Recruitment. 1253.510 Section 1253.510 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON THE BASIS OF SEX IN... in Employment in Education Programs or Activities Prohibited § 1253.510 Recruitment. (a...

  6. 14 CFR 1203.800 - Delegations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Delegations. 1203.800 Section 1203.800 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INFORMATION SECURITY PROGRAM Delegation of Authority To Make Determinations in Original Classification Matters § 1203.800 Delegations. (a) The NASA...

  7. 14 CFR § 1203.1001 - Membership.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Membership. § 1203.1001 Section § 1203.1001 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INFORMATION SECURITY PROGRAM...) Science Missions Directorate. (3) Human Explorations and Operations. (4) International and Interagency...

  8. 14 CFR 1214.1107 - Notification.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Notification. 1214.1107 Section 1214.1107 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT NASA Astronaut Candidate Recruitment and Selection Program § 1214.1107 Notification. Selectees and the appropriate military services...

  9. 14 CFR 1214.1107 - Notification.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Notification. 1214.1107 Section 1214.1107 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT NASA Astronaut Candidate Recruitment and Selection Program § 1214.1107 Notification. Selectees and the appropriate military services...

  10. 14 CFR 1212.203 - Disclosures.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Disclosures. 1212.203 Section 1212.203 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PRIVACY ACT-NASA REGULATIONS Access to... computer matching programs (See NASA Management Instruction (NMI) 1382.18). (b) Disclosure accountings are...

  11. 14 CFR 1253.200 - Application.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Application. 1253.200 Section 1253.200 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Coverage § 1253.200 Application...

  12. The 1982 ASEE-NASA Faculty Fellowship program (Aeronautics and Research)

    NASA Technical Reports Server (NTRS)

    Fan, D. N.; Hodge, J. R.; Emadi, F. P.

    1982-01-01

    The NASA/ASEE Summer Faculty Fellowship Program (Aeronautics and Research) conducted at the NASA Goddard Space Flight Center during the summer of 1982 is described. Abstracts of the Final Reports submitted by the Fellows detailing the results of their research are also presented.

  13. Evaluating CMA Equalization of SOQPSK-TG for Aeronautical Telemetry

    DTIC Science & Technology

    2015-03-01

    Program through the U.S. Army Program Executive Office for Simulation, Training and Instrumentation (PEO STRI) under contract W900KK-13-C-0026 ( PAQ ...Report: Preamble assisted equalization for aeronautical telemetry ( PAQ ),‖ Brigham Young University, Technical Report, 2014, submitted to the Spectrum

  14. Geometry program for aerodynamic lifting surface theory

    NASA Technical Reports Server (NTRS)

    Medan, R. T.

    1973-01-01

    A computer program that provides the geometry and boundary conditions appropriate for an analysis of a lifting, thin wing with control surfaces in linearized, subsonic, steady flow is presented. The kernel function method lifting surface theory is applied. The data which is generated by the program is stored on disk files or tapes for later use by programs which calculate an influence matrix, plot the wing planform, and evaluate the loads on the wing. In addition to processing data for subsequent use in a lifting surface analysis, the program is useful for computing area and mean geometric chords of the wing and control surfaces.

  15. WINDOWAC (Wing Design Optimization With Aeroelastic Constraints): Program manual

    NASA Technical Reports Server (NTRS)

    Haftka, R. T.; Starnes, J. H., Jr.

    1974-01-01

    User and programer documentation for the WIDOWAC programs is given. WIDOWAC may be used for the design of minimum mass wing structures subjected to flutter, strength, and minimum gage constraints. The wing structure is modeled by finite elements, flutter conditions may be both subsonic and supersonic, and mathematical programing methods are used for the optimization procedure. The user documentation gives general directions on how the programs may be used and describes their limitations; in addition, program input and output are described, and example problems are presented. A discussion of computational algorithms and flow charts of the WIDOWAC programs and major subroutines is also given.

  16. NASA: 1986 long-range program plan

    NASA Technical Reports Server (NTRS)

    1985-01-01

    For the years beyond FY 1986, the plan consists of activities that are technologically possible and considered to be in the national interest. Its implementation will ensure logical and continued progress in reaching the Nation's goals in aeronautics and space, consistent with the responsibilities assigned NASA by the National Aeronautics and Space Act of 1958, as amended. The major features of the programs are described in detail and the nature of the aeronautics and space programs beyond the year 2000 are projected. The abbreviations and acronyms that appear in this report are listed. The status of NASA's plans are summarized at the time of its preparation.

  17. A program to compute three-dimensional subsonic unsteady aerodynamic characteristics using the doublet lattic method, L216 (DUBFLX). Volume 1: Engineering and usage

    NASA Technical Reports Server (NTRS)

    Richard, M.; Harrison, B. A.

    1979-01-01

    The program input presented consists of configuration geometry, aerodynamic parameters, and modal data; output includes element geometry, pressure difference distributions, integrated aerodynamic coefficients, stability derivatives, generalized aerodynamic forces, and aerodynamic influence coefficient matrices. Optionally, modal data may be input on magnetic file (tape or disk), and certain geometric and aerodynamic output may be saved for subsequent use.

  18. 14 CFR 1245.304 - Procedures.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Procedures. 1245.304 Section 1245.304 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PATENTS AND OTHER INTELLECTUAL PROPERTY RIGHTS NASA Foreign Patent Program § 1245.304 Procedures. (a) The patent counsel at each NASA field...

  19. 14 CFR 1245.304 - Procedures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Procedures. 1245.304 Section 1245.304 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PATENTS AND OTHER INTELLECTUAL PROPERTY RIGHTS NASA Foreign Patent Program § 1245.304 Procedures. (a) The patent counsel at each NASA field...

  20. 14 CFR 1214.201 - Definition.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Definition. 1214.201 Section 1214.201 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Reimbursement for Shuttle... have made substantial investment in the STS program, i.e., European Space Agency (ESA), ESA member or...

  1. 14 CFR 1214.201 - Definition.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Definition. 1214.201 Section 1214.201 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Reimbursement for Shuttle... have made substantial investment in the STS program, i.e., European Space Agency (ESA), ESA member or...

  2. 14 CFR 1259.600 - Panel description.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Panel description. 1259.600 Section 1259.600 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NATIONAL SPACE GRANT COLLEGE AND FELLOWSHIP PROGRAM Space Grant Review Panel § 1259.600 Panel description. An independent committee...

  3. 14 CFR 1251.100 - Purpose.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Purpose. 1251.100 Section 1251.100 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON BASIS OF HANDICAP..., which is designed to eliminate discrimination on the basis of handicap in any program or activity...

  4. 14 CFR 1251.511 - Notice.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Notice. 1251.511 Section 1251.511 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON BASIS OF HANDICAP Enforcement of Nondiscrimination on the Basis of Handicap in Programs or Activities Conducted by the National...

  5. 14 CFR 1251.100 - Purpose.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Purpose. 1251.100 Section 1251.100 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON BASIS OF HANDICAP..., which is designed to eliminate discrimination on the basis of handicap in any program or activity...

  6. 14 CFR 1251.511 - Notice.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Notice. 1251.511 Section 1251.511 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON BASIS OF HANDICAP Enforcement of Nondiscrimination on the Basis of Handicap in Programs or Activities Conducted by the National...

  7. 14 CFR 1251.511 - Notice.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Notice. 1251.511 Section 1251.511 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON BASIS OF HANDICAP Enforcement of Nondiscrimination on the Basis of Handicap in Programs or Activities Conducted by the National...

  8. 14 CFR 1251.100 - Purpose.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Purpose. 1251.100 Section 1251.100 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON BASIS OF HANDICAP..., which is designed to eliminate discrimination on the basis of handicap in any program or activity...

  9. 14 CFR 1251.100 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Purpose. 1251.100 Section 1251.100 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON BASIS OF HANDICAP..., which is designed to eliminate discrimination on the basis of handicap in any program or activity...

  10. 14 CFR 1251.511 - Notice.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Notice. 1251.511 Section 1251.511 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON BASIS OF HANDICAP Enforcement of Nondiscrimination on the Basis of Handicap in Programs or Activities Conducted by the National...

  11. 14 CFR 1259.300 - Description.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Description. 1259.300 Section 1259.300 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NATIONAL SPACE GRANT COLLEGE AND FELLOWSHIP PROGRAM National Needs Grants § 1259.300 Description. National needs awards may be awarded by the...

  12. 14 CFR 1203.401 - Effect of open publication.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Effect of open publication. 1203.401 Section 1203.401 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INFORMATION SECURITY PROGRAM Guides for Original Classification § 1203.401 Effect of open publication. Public disclosure...

  13. 14 CFR 1203.401 - Effect of open publication.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Effect of open publication. 1203.401 Section 1203.401 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INFORMATION SECURITY PROGRAM Guides for Original Classification § 1203.401 Effect of open publication. Public disclosure...

  14. 14 CFR 1203.401 - Effect of open publication.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Effect of open publication. 1203.401 Section 1203.401 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INFORMATION SECURITY PROGRAM Guides for Original Classification § 1203.401 Effect of open publication. Public disclosure...

  15. 14 CFR 1203.401 - Effect of open publication.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Effect of open publication. 1203.401 Section 1203.401 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INFORMATION SECURITY PROGRAM Guides for Original Classification § 1203.401 Effect of open publication. Public disclosure...

  16. 76 FR 40753 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-11

    ... strategy Verification and Validation of Flight Critical Systems planning update NASA Aeronautics systems analysis and strategic planning It is imperative that this meeting be held on this date to accommodate the... aeronautics community and other persons, research and technical information relevant to program planning...

  17. 14 CFR 1259.603 - Responsibilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Responsibilities. 1259.603 Section 1259.603 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NATIONAL SPACE GRANT COLLEGE AND FELLOWSHIP PROGRAM Space Grant Review Panel § 1259.603 Responsibilities. (a) The Panel shall advise the...

  18. 14 CFR 1259.603 - Responsibilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Responsibilities. 1259.603 Section 1259.603 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NATIONAL SPACE GRANT COLLEGE AND FELLOWSHIP PROGRAM Space Grant Review Panel § 1259.603 Responsibilities. (a) The Panel shall advise the...

  19. 14 CFR 1214.1103 - Application cutoff date.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Application cutoff date. 1214.1103 Section 1214.1103 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT NASA Astronaut Candidate Recruitment and Selection Program § 1214.1103 Application cutoff date. (a) The JSC...

  20. 14 CFR 1214.1102 - Evaluation of applications.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Evaluation of applications. 1214.1102 Section 1214.1102 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT NASA Astronaut Candidate Recruitment and Selection Program § 1214.1102 Evaluation of applications. (a) All...

  1. 14 CFR 1214.1106 - Selection of astronaut candidates.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Selection of astronaut candidates. 1214.1106 Section 1214.1106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT NASA Astronaut Candidate Recruitment and Selection Program § 1214.1106 Selection of astronaut...

  2. 14 CFR 1214.1103 - Application cutoff date.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Application cutoff date. 1214.1103 Section 1214.1103 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT NASA Astronaut Candidate Recruitment and Selection Program § 1214.1103 Application cutoff date. (a) The JSC...

  3. 14 CFR 1259.603 - Responsibilities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Responsibilities. 1259.603 Section 1259.603 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NATIONAL SPACE GRANT COLLEGE AND FELLOWSHIP PROGRAM Space Grant Review Panel § 1259.603 Responsibilities. (a) The Panel shall advise the...

  4. 14 CFR 1259.603 - Responsibilities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Responsibilities. 1259.603 Section 1259.603 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NATIONAL SPACE GRANT COLLEGE AND FELLOWSHIP PROGRAM Space Grant Review Panel § 1259.603 Responsibilities. (a) The Panel shall advise the...

  5. National Aeronautics and Space Administration Scientific and Technical Information Programs.

    ERIC Educational Resources Information Center

    Pinelli, Thomas E., Ed.

    1990-01-01

    Eleven articles discuss informational and educational programs of the National Aeronautics and Space Administration (NASA). Some of the areas discussed include scientific and technical information management, the new Space and Earth Science Information Systems, transfer of technology to other industries, intellectual property issues, and the…

  6. NASA Initiatives with Historically Black Colleges & Universities.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This publication outlines the involvement of the National Aeronautics and Space Administration (NASA) with Historically Black Colleges and Universities (HBCU) programs in aeronautics and space research. NASA aims to assist HBCUs in science, engineering, and technology programs and also to encourage greater participation of minorities in its…

  7. Selected Technical Spin Offs from the Space Program

    NASA Technical Reports Server (NTRS)

    Gilmore, H. L.

    1970-01-01

    The report describes some of the problems which the National Aeronautics and Space Administration has encountered in getting people to understand how the general public has profited from the technical discoveries of the space program. Next, it describes NASA's Technology Utilization Program and comments on it. It then describes some of the many spin-offs from the space program. These include examples from management technology, communications, aeronautics, medicine, fabrics highway safety, and weather forecasting.

  8. Flight research and testing

    NASA Technical Reports Server (NTRS)

    Putnam, Terrill W.; Ayers, Theodore G.

    1989-01-01

    Flight research and testing form a critical link in the aeronautic research and development chain. Brilliant concepts, elegant theories, and even sophisticated ground tests of flight vehicles are not sufficient to prove beyond a doubt that an unproven aeronautical concept will actually perform as predicted. Flight research and testing provide the ultimate proof that an idea or concept performs as expected. Ever since the Wright brothers, flight research and testing were the crucible in which aeronautical concepts were advanced and proven to the point that engineers and companies are willing to stake their future to produce and design aircraft. This is still true today, as shown by the development of the experimental X-30 aerospace plane. The Dryden Flight Research Center (Ames-Dryden) continues to be involved in a number of flight research programs that require understanding and characterization of the total airplane in all the aeronautical disciplines, for example the X-29. Other programs such as the F-14 variable-sweep transition flight experiment have focused on a single concept or discipline. Ames-Dryden also continues to conduct flight and ground based experiments to improve and expand the ability to test and evaluate advanced aeronautical concepts. A review of significant aeronautical flight research programs and experiments is presented to illustrate both the progress being made and the challenges to come.

  9. Flight research and testing

    NASA Technical Reports Server (NTRS)

    Putnam, Terrill W.; Ayers, Theodore G.

    1988-01-01

    Flight research and testing form a critical link in the aeronautic R and D chain. Brilliant concepts, elegant theories, and even sophisticated ground tests of flight vehicles are not sufficient to prove beyond doubt that an unproven aeronautical concept will actually perform as predicted. Flight research and testing provide the ultimate proof that an idea or concept performs as expected. Ever since the Wright brothers, flight research and testing have been the crucible in which aeronautical concepts have advanced and been proven to the point that engineers and companies have been willing to stake their future to produce and design new aircraft. This is still true today, as shown by the development of the experimental X-30 aerospace plane. The Dryden Flight Research Center (Ames-Dryden) continues to be involved in a number of flight research programs that require understanding and characterization of the total airplane in all the aeronautical disciplines, for example the X-29. Other programs such as the F-14 variable-sweep transition flight experiment have focused on a single concept or discipline. Ames-Dryden also continues to conduct flight and ground based experiments to improve and expand the ability to test and evaluate advanced aeronautical concepts. A review of significant aeronautical flight research programs and experiments is presented to illustrate both the progress made and the challenges to come.

  10. 14 CFR § 1259.401 - Responsibilities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Responsibilities. § 1259.401 Section § 1259.401 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NATIONAL SPACE GRANT COLLEGE AND FELLOWSHIP PROGRAM Space Grant College and Consortium Designation § 1259.401 Responsibilities...

  11. 14 CFR 1264.128 - Sanctions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Sanctions. 1264.128 Section 1264.128 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION IMPLEMENTATION OF THE PROGRAM FRAUD CIVIL... for admission, the presiding officer may— (1) Draw an inference in favor of the requesting party with...

  12. 14 CFR 1203.100 - Legal basis.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Legal basis. 1203.100 Section 1203.100 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INFORMATION SECURITY PROGRAM Scope § 1203.100 Legal basis. (a) Executive Order 12958 (hereinafter referred to as “the Order”). The...

  13. 14 CFR 1203.100 - Legal basis.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Legal basis. 1203.100 Section 1203.100 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INFORMATION SECURITY PROGRAM Scope § 1203.100 Legal basis. (a) Executive Order 12958 (hereinafter referred to as “the Order”). The...

  14. 14 CFR 1203.100 - Legal basis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Legal basis. 1203.100 Section 1203.100 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INFORMATION SECURITY PROGRAM Scope § 1203.100 Legal basis. (a) Executive Order 12958 (hereinafter referred to as “the Order”). The...

  15. 14 CFR 1203.100 - Legal basis.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Legal basis. 1203.100 Section 1203.100 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INFORMATION SECURITY PROGRAM Scope § 1203.100 Legal basis. (a) Executive Order 12958 (hereinafter referred to as “the Order”). The...

  16. 14 CFR 1259.600 - Panel description.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Panel description. 1259.600 Section 1259.600 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NATIONAL SPACE GRANT COLLEGE AND FELLOWSHIP PROGRAM Space Grant Review Panel § 1259.600 Panel description. An independent committee, the Space...

  17. 14 CFR 1251.504-1251.509 - [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false [Reserved] 1251.504-1251.509 Section 1251.504-1251.509 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON BASIS OF HANDICAP Enforcement of Nondiscrimination on the Basis of Handicap in Programs or Activities...

  18. 14 CFR 1251.531-1251.539 - [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false [Reserved] 1251.531-1251.539 Section 1251.531-1251.539 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON BASIS OF HANDICAP Enforcement of Nondiscrimination on the Basis of Handicap in Programs or Activities...

  19. 14 CFR 1251.541-1251.548 - [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false [Reserved] 1251.541-1251.548 Section 1251.541-1251.548 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON BASIS OF HANDICAP Enforcement of Nondiscrimination on the Basis of Handicap in Programs or Activities...

  20. 14 CFR 1251.571-1251.999 - [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false [Reserved] 1251.571-1251.999 Section 1251.571-1251.999 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON BASIS OF HANDICAP Enforcement of Nondiscrimination on the Basis of Handicap in Programs or Activities...

  1. 14 CFR 1251.561-1251.569 - [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false [Reserved] 1251.561-1251.569 Section 1251.561-1251.569 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON BASIS OF HANDICAP Enforcement of Nondiscrimination on the Basis of Handicap in Programs or Activities...

  2. 14 CFR 1251.552-1251.559 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true [Reserved] 1251.552-1251.559 Section 1251.552-1251.559 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON BASIS OF HANDICAP Enforcement of Nondiscrimination on the Basis of Handicap in Programs or Activities...

  3. 14 CFR 1251.531-1251.539 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false [Reserved] 1251.531-1251.539 Section 1251.531-1251.539 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON BASIS OF HANDICAP Enforcement of Nondiscrimination on the Basis of Handicap in Programs or Activities...

  4. 14 CFR 1251.552-1251.559 - [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false [Reserved] 1251.552-1251.559 Section 1251.552-1251.559 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON BASIS OF HANDICAP Enforcement of Nondiscrimination on the Basis of Handicap in Programs or Activities...

  5. 14 CFR 1251.561-1251.569 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false [Reserved] 1251.561-1251.569 Section 1251.561-1251.569 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON BASIS OF HANDICAP Enforcement of Nondiscrimination on the Basis of Handicap in Programs or Activities...

  6. 14 CFR 1251.531-1251.539 - [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false [Reserved] 1251.531-1251.539 Section 1251.531-1251.539 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON BASIS OF HANDICAP Enforcement of Nondiscrimination on the Basis of Handicap in Programs or Activities...

  7. 14 CFR 1251.571-1251.999 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true [Reserved] 1251.571-1251.999 Section 1251.571-1251.999 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON BASIS OF HANDICAP Enforcement of Nondiscrimination on the Basis of Handicap in Programs or Activities...

  8. 14 CFR 1251.552-1251.559 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false [Reserved] 1251.552-1251.559 Section 1251.552-1251.559 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON BASIS OF HANDICAP Enforcement of Nondiscrimination on the Basis of Handicap in Programs or Activities...

  9. 14 CFR 1251.561-1251.569 - [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false [Reserved] 1251.561-1251.569 Section 1251.561-1251.569 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON BASIS OF HANDICAP Enforcement of Nondiscrimination on the Basis of Handicap in Programs or Activities...

  10. 14 CFR 1251.504-1251.509 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true [Reserved] 1251.504-1251.509 Section 1251.504-1251.509 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON BASIS OF HANDICAP Enforcement of Nondiscrimination on the Basis of Handicap in Programs or Activities...

  11. 14 CFR 1251.561-1251.569 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true [Reserved] 1251.561-1251.569 Section 1251.561-1251.569 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON BASIS OF HANDICAP Enforcement of Nondiscrimination on the Basis of Handicap in Programs or Activities...

  12. 14 CFR 1251.512-1251.529 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true [Reserved] 1251.512-1251.529 Section 1251.512-1251.529 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON BASIS OF HANDICAP Enforcement of Nondiscrimination on the Basis of Handicap in Programs or Activities...

  13. 14 CFR 1251.541-1251.548 - [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false [Reserved] 1251.541-1251.548 Section 1251.541-1251.548 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON BASIS OF HANDICAP Enforcement of Nondiscrimination on the Basis of Handicap in Programs or Activities...

  14. 14 CFR 1251.571-1251.999 - [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false [Reserved] 1251.571-1251.999 Section 1251.571-1251.999 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON BASIS OF HANDICAP Enforcement of Nondiscrimination on the Basis of Handicap in Programs or Activities...

  15. 14 CFR 1251.512-1251.529 - [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false [Reserved] 1251.512-1251.529 Section 1251.512-1251.529 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON BASIS OF HANDICAP Enforcement of Nondiscrimination on the Basis of Handicap in Programs or Activities...

  16. 14 CFR 1251.552-1251.559 - [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false [Reserved] 1251.552-1251.559 Section 1251.552-1251.559 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON BASIS OF HANDICAP Enforcement of Nondiscrimination on the Basis of Handicap in Programs or Activities...

  17. 14 CFR 1251.571-1251.999 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false [Reserved] 1251.571-1251.999 Section 1251.571-1251.999 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON BASIS OF HANDICAP Enforcement of Nondiscrimination on the Basis of Handicap in Programs or Activities...

  18. 14 CFR 1251.512-1251.529 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false [Reserved] 1251.512-1251.529 Section 1251.512-1251.529 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON BASIS OF HANDICAP Enforcement of Nondiscrimination on the Basis of Handicap in Programs or Activities...

  19. 14 CFR 1251.541-1251.548 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false [Reserved] 1251.541-1251.548 Section 1251.541-1251.548 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON BASIS OF HANDICAP Enforcement of Nondiscrimination on the Basis of Handicap in Programs or Activities...

  20. 14 CFR 1251.541-1251.548 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true [Reserved] 1251.541-1251.548 Section 1251.541-1251.548 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON BASIS OF HANDICAP Enforcement of Nondiscrimination on the Basis of Handicap in Programs or Activities...

  1. 14 CFR 1251.504-1251.509 - [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false [Reserved] 1251.504-1251.509 Section 1251.504-1251.509 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON BASIS OF HANDICAP Enforcement of Nondiscrimination on the Basis of Handicap in Programs or Activities...

  2. 14 CFR 1251.512-1251.529 - [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false [Reserved] 1251.512-1251.529 Section 1251.512-1251.529 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON BASIS OF HANDICAP Enforcement of Nondiscrimination on the Basis of Handicap in Programs or Activities...

  3. 14 CFR 1251.531-1251.539 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true [Reserved] 1251.531-1251.539 Section 1251.531-1251.539 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON BASIS OF HANDICAP Enforcement of Nondiscrimination on the Basis of Handicap in Programs or Activities...

  4. 14 CFR 1251.504-1251.509 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false [Reserved] 1251.504-1251.509 Section 1251.504-1251.509 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON BASIS OF HANDICAP Enforcement of Nondiscrimination on the Basis of Handicap in Programs or Activities...

  5. 14 CFR 1204.1510 - Efforts to accommodate intergovernmental concerns.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Efforts to accommodate intergovernmental concerns. 1204.1510 Section 1204.1510 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION... Programs and Activities § 1204.1510 Efforts to accommodate intergovernmental concerns. (a) If a state...

  6. 14 CFR 1264.133 - Evidence.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Evidence. 1264.133 Section 1264.133 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION IMPLEMENTATION OF THE PROGRAM FRAUD CIVIL PENALTIES ACT OF 1986 § 1264.133 Evidence. (a) The presiding officer shall determine the admissibility of...

  7. 14 CFR 1221.115 - Violations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Violations. 1221.115 Section 1221.115 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA Program Identifiers, NASA Flags...

  8. 14 CFR 1221.100 - Scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Scope. 1221.100 Section 1221.100 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA Program Identifiers, NASA Flags...

  9. 14 CFR 1221.101 - Policy.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Policy. 1221.101 Section 1221.101 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA Program Identifiers, NASA Flags...

  10. 14 CFR 1221.115 - Violations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Violations. 1221.115 Section 1221.115 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA Program Identifiers, NASA Flags...

  11. 14 CFR 1264.111 - Notice of hearing.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Notice of hearing. 1264.111 Section 1264.111 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION IMPLEMENTATION OF THE PROGRAM... adjustment through alternative dispute resolutions, if not already explored; and (7) Such other matters as...

  12. 14 CFR 1264.111 - Notice of hearing.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Notice of hearing. 1264.111 Section 1264.111 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION IMPLEMENTATION OF THE PROGRAM... adjustment through alternative dispute resolutions, if not already explored; and (7) Such other matters as...

  13. 14 CFR 1264.111 - Notice of hearing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Notice of hearing. 1264.111 Section 1264.111 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION IMPLEMENTATION OF THE PROGRAM... adjustment through alternative dispute resolutions, if not already explored; and (7) Such other matters as...

  14. NASA/USRA University Advanced Design Program Fifth Annual Summer Conference

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The NASA/USRA University Advanced Design Program is a unique program that brings together NASA engineers, students, and faculty from United States engineering schools by integrating current and future NASA space/aeronautics engineering design projects into the university curriculum. The Program was conceived in the fall of 1984 as a pilot project to foster engineering design education in the universities and to supplement NASA's in-house efforts in advanced planning for space and aeronautics design. Nine universities and five NASA centers participated in the first year of the pilot project. Close cooperation between the NASA centers and the universities, the careful selection of design topics, and the enthusiasm of the students has resulted in a very successful program than now includes forty universities and eight NASA centers. The study topics cover a broad range of potential space and aeronautics projects.

  15. Spinoff 1977: An Annual Report. Technology Utilization Program Report.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This publication focuses on spinoff benefits of the National Aeronautics and Space Administration space program developments. The first of the three sections describes the direct benefits of space exploration and aeronautical research. Some of these direct benefits are expanding knowledge about our solar system and our universe, the development of…

  16. Exploring in Aeronautics. An Introduction to Aeronautical Sciences.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Cleveland, OH. Lewis Research Center.

    This curriculum guide is based on a year of lectures and projects of a contemporary special-interest Explorer program intended to provide career guidance and motivation for promising students interested in aerospace engineering and scientific professions. The adult-oriented program avoids technicality and rigorous mathematics and stresses real…

  17. 14 CFR 151.89 - Roads.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Appendix G sets forth typical eligible and ineligible items of road construction covered by this section. ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Roads. 151.89 Section 151.89 Aeronautics... AID TO AIRPORTS Project Programming Standards § 151.89 Roads. (a) Federal-aid Airport Program funds...

  18. Energy efficient engine component development and integration program

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The development of the technology to improve energy efficiency of propulsion systems for subsonic commercial aircrafts was examined. Goals established include: (1) fuel consumption, reduction in flight propulsion system; (2) direct operation cost; (3) noise, with provision for engine growth corresponding to future engine application; and (4) emissions, EPA new engine standards.

  19. Analytic models of ducted turbomachinery tone noise sources. Volume 2: Subprogram documentation

    NASA Technical Reports Server (NTRS)

    Clark, T. L.; Ganz, U. W.; Graf, G. A.; Westall, J. S.

    1974-01-01

    Analytical models were developed for computing the periodic sound pressures of subsonic fans in an infinite hardwall annular duct with uniform flow. The computer programs are described which are used for numerical computations of sound pressure mode amplitudes. The data are applied to the acoustic properties of turbomachinery.

  20. Innovative Airbreathing Propulsion Concepts for High-speed Applications

    NASA Technical Reports Server (NTRS)

    Whitlow, Woodrow, Jr.

    2002-01-01

    The current cost to launch payloads to low earth orbit (LEO) is approximately loo00 U.S. dollars ($) per pound ($22000 per kilogram). This high cost limits our ability to pursue space science and hinders the development of new markets and a productive space enterprise. This enterprise includes NASA's space launch needs and those of industry, universities, the military, and other U.S. government agencies. NASA's Advanced Space Transportation Program (ASTP) proposes a vision of the future where space travel is as routine as in today's commercial air transportation systems. Dramatically lower launch costs will be required to make this vision a reality. In order to provide more affordable access to space, NASA has established new goals in its Aeronautics and Space Transportation plan. These goals target a reduction in the cost of launching payloads to LEO to $lo00 per pound ($2200 per kilogram) by 2007 and to $100' per pound by 2025 while increasing safety by orders of magnitude. Several programs within NASA are addressing innovative propulsion systems that offer potential for reducing launch costs. Various air-breathing propulsion systems currently are being investigated under these programs. The NASA Aerospace Propulsion and Power Base Research and Technology Program supports long-term fundamental research and is managed at GLenn Research Center. Currently funded areas relevant to space transportation include hybrid hyperspeed propulsion (HHP) and pulse detonation engine (PDE) research. The HHP Program currently is addressing rocket-based combined cycle and turbine-based combined cycle systems. The PDE research program has the goal of demonstrating the feasibility of PDE-based hybrid-cycle and combined cycle propulsion systems that meet NASA's aviation and access-to-space goals. The ASTP also is part of the Base Research and Technology Program and is managed at the Marshall Space Flight Center. As technologies developed under the Aerospace Propulsion and Power Base Research and Technology Program mature, they are incorporated into ASTP. One example of this is rocket-based combined cycle systems that are being considered as part of ASTP. The NASA Ultra Efficient Engine Technology (UEET) Program has the goal of developing propulsion system component technology that is relevant to a wide range of vehicle missions. In addition to subsonic and supersonic speed regimes, it includes the hypersonic speed regime. More specifically, component technologies for turbine-based combined cycle engines are being developed as part of UEET.

  1. DONBOL: A computer program for predicting axisymmetric nozzle afterbody pressure distributions and drag at subsonic speeds

    NASA Technical Reports Server (NTRS)

    Putnam, L. E.

    1979-01-01

    A Neumann solution for inviscid external flow was coupled to a modified Reshotko-Tucker integral boundary-layer technique, the control volume method of Presz for calculating flow in the separated region, and an inviscid one-dimensional solution for the jet exhaust flow in order to predict axisymmetric nozzle afterbody pressure distributions and drag. The viscous and inviscid flows are solved iteratively until convergence is obtained. A computer algorithm of this procedure was written and is called DONBOL. A description of the computer program and a guide to its use is given. Comparisons of the predictions of this method with experiments show that the method accurately predicts the pressure distributions of boattail afterbodies which have the jet exhaust flow simulated by solid bodies. For nozzle configurations which have the jet exhaust simulated by high-pressure air, the present method significantly underpredicts the magnitude of nozzle pressure drag. This deficiency results because the method neglects the effects of jet plume entrainment. This method is limited to subsonic free-stream Mach numbers below that for which the flow over the body of revolution becomes sonic.

  2. The Feasibility of Developing a Non-Engineering Aeronautical/Aerospace Science Doctoral Degree Program in U.S. Universities.

    ERIC Educational Resources Information Center

    Johnson, Jeffrey Alan; Lehrer, Henry R.

    1995-01-01

    A survey of 101 college aviation faculty that received a 79% response indicated that 68.3% agree on the current need and 75.9% on the future need for a nonengineering doctoral program in aeronautical/aerospace sciences; 51% believe the Council on Aviation Accreditation would be more willing to accredit institutions with such programs. (SK)

  3. Aeronautics. An Educator's Guide with Activities in Science, Mathematics, and Technology Education: What Pilot, Astronaut, or Aeronautical Engineer didn't Start out with a Toy Glider?

    NASA Technical Reports Server (NTRS)

    Biggs, Pat (Editor); Huetter, Ted (Editor)

    1998-01-01

    Welcome to the exciting world of aeronautics. The term aeronautics originated in France, and was derived from the Greek words for "air" and "to sail." It is the study of flight and the operation of aircraft. This educator guide explains basic aeronautical concepts, provides a background in the history of aviation, and sets them within the context of the flight environment (atmosphere, airports, and navigation). The activities in this guide are designed to be uncomplicated and fun. They have been developed by NASA Aerospace Education Services Program specialists, who have successfully used them in countless workshops and student programs around the United States. The activities encourage students to explore the nature of flight, and experience some real-life applications of mathematics, science, and technology. The subject of flight has a wonderful power to inspire learning.

  4. 14 CFR 1203b.103 - Arrest authority.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Arrest authority. 1203b.103 Section 1203b.103 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.103 Arrest authority. (a) NASA security...

  5. 14 CFR 1203b.100 - Purpose.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Purpose. 1203b.100 Section 1203b.100 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.100 Purpose. This regulation implements section...

  6. 14 CFR 1203b.101 - Scope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Scope. 1203b.101 Section 1203b.101 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.101 Scope. This part applies to only those NASA...

  7. 14 CFR 1203b.103 - Arrest authority.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Arrest authority. 1203b.103 Section 1203b.103 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.103 Arrest authority. (a) NASA security...

  8. 14 CFR 1203b.103 - Arrest authority.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Arrest authority. 1203b.103 Section 1203b.103 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.103 Arrest authority. (a) NASA security...

  9. 14 CFR 1203b.102 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Definitions. 1203b.102 Section 1203b.102 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.102 Definitions. Accredited Course of Training...

  10. 14 CFR 1203b.102 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Definitions. 1203b.102 Section 1203b.102 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.102 Definitions. Accredited Course of Training...

  11. 14 CFR 1203b.102 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Definitions. 1203b.102 Section 1203b.102 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.102 Definitions. Accredited Course of Training...

  12. 14 CFR 1203b.108 - Management oversight.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Management oversight. 1203b.108 Section 1203b.108 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.108 Management oversight. (a) The...

  13. 14 CFR 1203b.101 - Scope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Scope. 1203b.101 Section 1203b.101 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.101 Scope. This part applies to only those NASA...

  14. 14 CFR 1203b.103 - Arrest authority.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Arrest authority. 1203b.103 Section 1203b.103 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.103 Arrest authority. (a) NASA security...

  15. 14 CFR 1203b.101 - Scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Scope. 1203b.101 Section 1203b.101 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.101 Scope. This part applies to only those NASA...

  16. 14 CFR 1203b.100 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Purpose. 1203b.100 Section 1203b.100 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.100 Purpose. This regulation implements section...

  17. 14 CFR 1203b.101 - Scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Scope. 1203b.101 Section 1203b.101 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.101 Scope. This part applies to only those NASA...

  18. 14 CFR 1203b.100 - Purpose.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Purpose. 1203b.100 Section 1203b.100 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.100 Purpose. This regulation implements section...

  19. 14 CFR 1203b.108 - Management oversight.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Management oversight. 1203b.108 Section 1203b.108 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.108 Management oversight. (a) The...

  20. 14 CFR 1203b.102 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Definitions. 1203b.102 Section 1203b.102 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.102 Definitions. Accredited Course of Training...

  1. 14 CFR 1203b.100 - Purpose.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Purpose. 1203b.100 Section 1203b.100 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.100 Purpose. This regulation implements section...

  2. 14 CFR § 1214.201 - Definition.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Definition. § 1214.201 Section § 1214.201 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Reimbursement for Shuttle... have made substantial investment in the STS program, i.e., European Space Agency (ESA), ESA member or...

  3. 14 CFR 1203b.108 - Management oversight.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Management oversight. 1203b.108 Section 1203b.108 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST...) Demonstrate knowledge and skill in the use of unarmed defense techniques and their assigned firearms. (d) The...

  4. 14 CFR § 1251.541-1251.548 - [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false [Reserved] § 1251.541-1251.548 Section § 1251.541-1251.548 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON BASIS OF HANDICAP Enforcement of Nondiscrimination on the Basis of Handicap in Programs or...

  5. 14 CFR § 1251.511 - Notice.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Notice. § 1251.511 Section § 1251.511 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON BASIS OF HANDICAP Enforcement of Nondiscrimination on the Basis of Handicap in Programs or Activities Conducted by the National...

  6. 14 CFR § 1251.100 - Purpose.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Purpose. § 1251.100 Section § 1251.100 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON BASIS OF HANDICAP..., which is designed to eliminate discrimination on the basis of handicap in any program or activity...

  7. 14 CFR 1259.602 - Conflict of interest.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Conflict of interest. 1259.602 Section 1259.602 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NATIONAL SPACE GRANT COLLEGE AND FELLOWSHIP PROGRAM Space Grant Review Panel § 1259.602 Conflict of interest. Any member of the...

  8. 14 CFR 1245.300 - Scope of subpart.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Scope of subpart. 1245.300 Section 1245.300 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PATENTS AND OTHER INTELLECTUAL PROPERTY RIGHTS NASA Foreign Patent Program § 1245.300 Scope of subpart. This subpart establishes policy, criteria...

  9. 14 CFR § 1203.401 - Effect of open publication.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Effect of open publication. § 1203.401 Section § 1203.401 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INFORMATION SECURITY PROGRAM Guides for Original Classification § 1203.401 Effect of open publication. Public...

  10. 14 CFR § 1203.802 - Membership.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Membership. § 1203.802 Section § 1203.802 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INFORMATION SECURITY PROGRAM Delegation of Authority To Make Determinations in Original Classification Matters § 1203.802 Membership. The Committee...

  11. 14 CFR 1214.1104 - Evaluation and ranking of highly qualified candidates.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Evaluation and ranking of highly qualified candidates. 1214.1104 Section 1214.1104 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT NASA Astronaut Candidate Recruitment and Selection Program § 1214.1104 Evaluation and...

  12. 14 CFR 1245.300 - Scope of subpart.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Scope of subpart. 1245.300 Section 1245.300 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PATENTS AND OTHER INTELLECTUAL PROPERTY RIGHTS NASA Foreign Patent Program § 1245.300 Scope of subpart. This subpart establishes policy, criteria...

  13. 14 CFR 1221.116 - Compliance and enforcement.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Compliance and enforcement. 1221.116 Section 1221.116 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA Program...

  14. 14 CFR 1214.1104 - Evaluation and ranking of highly qualified candidates.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Evaluation and ranking of highly qualified candidates. 1214.1104 Section 1214.1104 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT NASA Astronaut Candidate Recruitment and Selection Program § 1214.1104 Evaluation and...

  15. 14 CFR 1214.1105 - Final ranking.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Final ranking. 1214.1105 Section 1214.1105 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT NASA Astronaut Candidate Recruitment and Selection Program § 1214.1105 Final ranking. Final rankings will be based on a combination of...

  16. 14 CFR 1245.300 - Scope of subpart.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Scope of subpart. 1245.300 Section 1245.300 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PATENTS AND OTHER INTELLECTUAL PROPERTY RIGHTS NASA Foreign Patent Program § 1245.300 Scope of subpart. This subpart establishes policy, criteria...

  17. 14 CFR 1264.124 - Fees.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Fees. 1264.124 Section 1264.124 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION IMPLEMENTATION OF THE PROGRAM FRAUD CIVIL PENALTIES ACT OF 1986 § 1264.124 Fees. The party requesting a supoena shall pay the cost of the fees and...

  18. 14 CFR § 1259.603 - Responsibilities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Responsibilities. § 1259.603 Section § 1259.603 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NATIONAL SPACE GRANT COLLEGE AND FELLOWSHIP PROGRAM Space Grant Review Panel § 1259.603 Responsibilities. (a) The Panel shall...

  19. 14 CFR 1264.111 - Notice of hearing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Notice of hearing. 1264.111 Section 1264.111 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION IMPLEMENTATION OF THE PROGRAM FRAUD CIVIL... through alternative dispute resolutions, if not already explored; and (7) Such other matters as the...

  20. PREDICTING TURBINE STAGE PERFORMANCE

    NASA Technical Reports Server (NTRS)

    Boyle, R. J.

    1994-01-01

    This program was developed to predict turbine stage performance taking into account the effects of complex passage geometries. The method uses a quasi-3D inviscid-flow analysis iteratively coupled to calculated losses so that changes in losses result in changes in the flow distribution. In this manner the effects of both the geometry on the flow distribution and the flow distribution on losses are accounted for. The flow may be subsonic or shock-free transonic. The blade row may be fixed or rotating, and the blades may be twisted and leaned. This program has been applied to axial and radial turbines, and is helpful in the analysis of mixed flow machines. This program is a combination of the flow analysis programs MERIDL and TSONIC coupled to the boundary layer program BLAYER. The subsonic flow solution is obtained by a finite difference, stream function analysis. Transonic blade-to-blade solutions are obtained using information from the finite difference, stream function solution with a reduced flow factor. Upstream and downstream flow variables may vary from hub to shroud and provision is made to correct for loss of stagnation pressure. Boundary layer analyses are made to determine profile and end-wall friction losses. Empirical loss models are used to account for incidence, secondary flow, disc windage, and clearance losses. The total losses are then used to calculate stator, rotor, and stage efficiency. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 370/3033 under TSS with a central memory requirement of approximately 4.5 Megs of 8 bit bytes. This program was developed in 1985.

  1. Aerodynamic design guidelines and computer program for estimation of subsonic wind tunnel performance

    NASA Technical Reports Server (NTRS)

    Eckert, W. T.; Mort, K. W.; Jope, J.

    1976-01-01

    General guidelines are given for the design of diffusers, contractions, corners, and the inlets and exits of non-return tunnels. A system of equations, reflecting the current technology, has been compiled and assembled into a computer program (a user's manual for this program is included) for determining the total pressure losses. The formulation presented is applicable to compressible flow through most closed- or open-throat, single-, double-, or non-return wind tunnels. A comparison of estimated performance with that actually achieved by several existing facilities produced generally good agreement.

  2. The NASA Aircraft Energy Efficiency Program

    NASA Technical Reports Server (NTRS)

    Klineberg, J. M.

    1978-01-01

    The objective of the NASA Aircraft Energy Efficiency Program is to accelerate the development of advanced technology for more energy-efficient subsonic transport aircraft. This program will have application to current transport derivatives in the early 1980s and to all-new aircraft of the late 1980s and early 1990s. Six major technology projects were defined that could result in fuel savings in commercial aircraft: (1) Engine Component Improvement, (2) Energy Efficient Engine, (3) Advanced Turboprops, (4) Energy Efficiency Transport (aerodynamically speaking), (5) Laminar Flow Control, and (6) Composite Primary Structures.

  3. Assessment of computational issues associated with analysis of high-lift systems

    NASA Technical Reports Server (NTRS)

    Balasubramanian, R.; Jones, Kenneth M.; Waggoner, Edgar G.

    1992-01-01

    Thin-layer Navier-Stokes calculations for wing-fuselage configurations from subsonic to hypersonic flow regimes are now possible. However, efficient, accurate solutions for using these codes for two- and three-dimensional high-lift systems have yet to be realized. A brief overview of salient experimental and computational research is presented. An assessment of the state-of-the-art relative to high-lift system analysis and identification of issues related to grid generation and flow physics which are crucial for computational success in this area are also provided. Research in support of the high-lift elements of NASA's High Speed Research and Advanced Subsonic Transport Programs which addresses some of the computational issues is presented. Finally, fruitful areas of concentrated research are identified to accelerate overall progress for high lift system analysis and design.

  4. PAN AIR modeling studies. [higher order panel method for aircraft design

    NASA Technical Reports Server (NTRS)

    Towne, M. C.; Strande, S. M.; Erickson, L. L.; Kroo, I. M.; Enomoto, F. Y.; Carmichael, R. L.; Mcpherson, K. F.

    1983-01-01

    PAN AIR is a computer program that predicts subsonic or supersonic linear potential flow about arbitrary configurations. The code's versatility and generality afford numerous possibilities for modeling flow problems. Although this generality provides great flexibility, it also means that studies are required to establish the dos and don'ts of modeling. The purpose of this paper is to describe and evaluate a variety of methods for modeling flows with PAN AIR. The areas discussed are effects of panel density, internal flow modeling, forebody modeling in subsonic flow, propeller slipstream modeling, effect of wake length, wing-tail-wake interaction, effect of trailing-edge paneling on the Kutta condition, well- and ill-posed boundary-value problems, and induced-drag calculations. These nine topics address problems that are of practical interest to the users of PAN AIR.

  5. A Lagrangian Simulation of Subsonic Aircraft Exhaust Emissions

    NASA Technical Reports Server (NTRS)

    Schoeberl, M. R.; Morris, G. A.

    1999-01-01

    To estimate the effect of subsonic and supersonic aircraft exhaust on the stratospheric concentration of NO(y), we employ a trajectory model initialized with air parcels based on the standard release scenarios. The supersonic exhaust simulations are in good agreement with 2D and 3D model results and show a perturbation of about 1-2 ppbv of NO(y) in the stratosphere. The subsonic simulations show that subsonic emissions are almost entirely trapped below the 380 K potential temperature surface. Our subsonic results contradict results from most other models, which show exhaust products penetrating above 380 K, as summarized. The disagreement can likely be attributed to an excessive vertical diffusion in most models of the strong vertical gradient in NO(y) that forms at the boundary between the emission zone and the stratosphere above 380 K. Our results suggest that previous assessments of the impact of subsonic exhaust emission on the stratospheric region above 380 K should be considered to be an upper bound.

  6. A comparison of the experimental subsonic pressure distributions about several bodies of revolution with pressure distributions computed by means of the linearized theory

    NASA Technical Reports Server (NTRS)

    Matthews, Clarence W

    1953-01-01

    An analysis is made of the effects of compressibility on the pressure coefficients about several bodies of revolution by comparing experimentally determined pressure coefficients with corresponding pressure coefficients calculated by the use of the linearized equations of compressible flow. The results show that the theoretical methods predict the subsonic pressure-coefficient changes over the central part of the body but do not predict the pressure-coefficient changes near the nose. Extrapolation of the linearized subsonic theory into the mixed subsonic-supersonic flow region fails to predict a rearward movement of the negative pressure-coefficient peak which occurs after the critical stream Mach number has been attained. Two equations developed from a consideration of the subsonic compressible flow about a prolate spheroid are shown to predict, approximately, the change with Mach number of the subsonic pressure coefficients for regular bodies of revolution of fineness ratio 6 or greater.

  7. HSR Overview

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Steinetz, B. M.

    2006-01-01

    The leading Aeronautics program within NASA is the High Speed Research Program (HSR). The HSR program's highest priorities are high pay-off technologies for airframe and propulsion systems required for a high speed civil transport (HSCT). These priorities have been developed collaboratively with NASA, FAA and the US Industry (Boeing-McDonnell Douglas, Pratt & Whitney and General Electric). Phase one of the HSR program started on 1990, and concentrated on the environmental challenges of minimizing NOx and noise. The first program goal is to reduce the NOx emission index to less than 5 (Concord NOx index is 20 and is unacceptable), in order to have little impact on the earth's ozone layer. The second goal is to reduce noise levels to FAR Stage 3 (or better), comparable to those of subsonic aircraft (far below the Concorde noise levels that require exemptions form less stringent standards). This requirement greatly impacts the nozzle design increasing its length and complexity and poses unique sealing challenges. Phase two started in 1993 and initiated work on the technologies required for an economical HSCT. Materials technologies under development include a ceramic-matrix-composite combustion liner, lightweight materials for the nozzle, as well long-life turbomachinery disk and blade alloys. Other required materials are being developed under the DOD-IHPTET program, where there is close cooperation. Economic goals translate into the development of technologies for tri-class service, 5000 nautical mile range aircraft with a ticket price no more than 20% over the subsonic ticket price. The potential market could be as large as 1500 aircraft, according to a Boeing study. Technology alone will not enable this airplane, yet without enabling technologies "on the shelf", it will not occur. The HSCT engine will be the largest engine ever built and operate at maximum conditions for long periods of time posing a number of challenges. The HSR engine mission requires that rotating equipment stay at take-off condition temperatures for hours not minutes per flight. Hence rotating equipment and seals must operate for many thousands of hours at extreme temperatures. It is anticipated that the nozzle will be 12 feet long and roughly 4 ft. by 5 ft. in cross-section with a nominal airflow of 800 lbs/sec. The complex function of the nozzle (including an ejector for noise attenuation) combined with long life place new demands on nozzle seal design. Three inlet configurations are under consideration with attendant sealing challenges, as will be illustrated herein. Four of these engines are required to propel a 5000 nautical mile class vehicle which demand that component reliability be at the highest possible level. In response, an HSR seals session was implemented as a part of the 1997-Seals and Secondary Flow Workshop. Overview presentations were given for each of the following areas: inlet, turbomachinery, combustor and nozzle. The HSCT seal issues center on durability and efficiency of rotating equipment seals (including brush seals), structural seals (including rope seals and other advanced concepts), and high-speed bearing and sump seals. Tighter clearances, propulsion system size and thermal requirements represent extremes that challenge the component designers. This document provides an initial step toward defining HSR seal needs. The overview for HSR seal designs includes, defining seal objectives, summarizing sealing and materials requirements, presenting relevant seal cross-sections, and identifying technology needs for the HSR office.

  8. Engineer in charge: A history of the Langley Aeronautical Laboratory, 1917-1958

    NASA Technical Reports Server (NTRS)

    Hansen, James R.

    1986-01-01

    A history is presented by using the most technologically significant research programs associated with the Langley Aeronautical Laboratory from 1917 to 1958 and those programs that, after preliminary research, seemed best to illustrate how the laboratory was organized, how it works, and how it cooperated with industry and the military.

  9. National Aeronautics and Space Administration (NASA) Education 1993-2009

    ERIC Educational Resources Information Center

    Ivie, Christine M.

    2009-01-01

    The National Aeronautics and Space Administration was established in 1958 and began operating a formal education program in 1993. The purpose of this study was to analyze the education program from 1993-2009 by examining strategic plan documents produced by the NASA education office and interviewing NASA education officials who served during that…

  10. NASA Strategic Plan

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The aforementioned strategic decisions and the overarching direction for America's aeronautics and space program are addressed in the Strategic Plan. Our Strategic Plan is critical to our ability to meet the challenges of this new era and deliver a vibrant aeronautics and space program that strengthens and inspires the Nation. The Plan is our top-level strategy.

  11. 14 CFR 1203b.107 - Use of firearms.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Use of firearms. 1203b.107 Section 1203b.107 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.107 Use of firearms. (a) If it becomes...

  12. 14 CFR 1203b.107 - Use of firearms.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Use of firearms. 1203b.107 Section 1203b.107 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.107 Use of firearms. (a) If it becomes...

  13. 14 CFR 1203b.107 - Use of firearms.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Use of firearms. 1203b.107 Section 1203b.107 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.107 Use of firearms. (a) If it becomes...

  14. 14 CFR 1203b.104 - Exercise of arrest authority-general guidelines.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Exercise of arrest authority-general guidelines. 1203b.104 Section 1203b.104 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.104 Exercise...

  15. 14 CFR 1203b.104 - Exercise of arrest authority-general guidelines.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Exercise of arrest authority-general guidelines. 1203b.104 Section 1203b.104 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.104 Exercise...

  16. 14 CFR 1203b.104 - Exercise of arrest authority-general guidelines.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Exercise of arrest authority-general guidelines. 1203b.104 Section 1203b.104 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.104 Exercise...

  17. 14 CFR § 1203b.102 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Definitions. § 1203b.102 Section § 1203b.102 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.102 Definitions. Accredited Course of...

  18. 14 CFR 1203b.106 - Use of deadly force.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Use of deadly force. 1203b.106 Section 1203b.106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.106 Use of deadly force. Deadly force...

  19. 14 CFR 1203b.104 - Exercise of arrest authority-general guidelines.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Exercise of arrest authority-general guidelines. 1203b.104 Section 1203b.104 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.104 Exercise...

  20. 14 CFR § 1203b.108 - Management oversight.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Management oversight. § 1203b.108 Section § 1203b.108 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.108 Management oversight. (a...

Top