Science.gov

Sample records for aeronautics subsonic fixed

  1. An Overview of the NASA Fundamental Aeronautics Program Subsonic Fixed Wing Project and Ultra High Bypass Partnership Research Goals

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.

    2009-01-01

    An overview of the NASA Fundamental Aeronautics Program (FAP) mission and goals is presented. One of the subprograms under the FAP, the Subsonic Fixed Wing Project (SFW), is the focus of the presentation. The SFW system environmental metrics are discussed, along with highlights of planned, systematic approach to research to reduce the environmental impact of commercial aircraft in the areas of acoustics, fuel burn and emissions. The presentation then focuses on collaborative research being conducted with U.S. Industry on the Ultra High Bypass (UHB) engine cycle, the propulsion cycle selected by the SFW to meet the system goals. The partnerships with General Electric Aviation to investigate Open Rotor propulsion concepts and with Pratt & Whitney to investigate the Geared Turbofan UHB engine are highlighted, including current and planned future collaborative research activities with NASA and each organization.

  2. Aeroelasticity Benchmark Assessment: Subsonic Fixed Wing Program

    NASA Technical Reports Server (NTRS)

    Florance, Jennifer P.; Chwalowski, Pawel; Wieseman, Carol D.

    2010-01-01

    Aeroelasticity Branch will examine other experimental efforts within the Subsonic Fixed Wing (SFW) program (such as testing of the NASA Common Research Model (CRM)) and other NASA programs and assess aeroelasticity issues and research topics.

  3. Materials and Structures Research for Gas Turbine Applications Within the NASA Subsonic Fixed Wing Project

    NASA Technical Reports Server (NTRS)

    Hurst, Janet

    2011-01-01

    A brief overview is presented of the current materials and structures research geared toward propulsion applications for NASA s Subsonic Fixed Wing Project one of four projects within the Fundamental Aeronautics Program of the NASA Aeronautics Research Mission Directorate. The Subsonic Fixed Wing (SFW) Project has selected challenging goals which anticipate an increasing emphasis on aviation s impact upon the global issue of environmental responsibility. These goals are greatly reduced noise, reduced emissions and reduced fuel consumption and address 25 to 30 years of technology development. Successful implementation of these demanding goals will require development of new materials and structural approaches within gas turbine propulsion technology. The Materials and Structures discipline, within the SFW project, comprise cross-cutting technologies ranging from basic investigations to component validation in laboratory environments. Material advances are teamed with innovative designs in a multidisciplinary approach with the resulting technology advances directed to promote the goals of reduced noise and emissions along with improved performance.

  4. An Analytical Assessment of NASA's N(+)1 Subsonic Fixed Wing Project Noise Goal

    NASA Technical Reports Server (NTRS)

    Berton, Jeffrey J.; Envia, Edmane; Burley, Casey L.

    2010-01-01

    The Subsonic Fixed Wing Project of NASA s Fundamental Aeronautics Program has adopted a noise reduction goal for new, subsonic, single-aisle, civil aircraft expected to replace current 737 and A320 airplanes. These so-called "N+1" aircraft--designated in NASA vernacular as such since they will follow the current, in-service, "N" airplanes--are hoped to achieve certification noise goal levels of 32 cumulative EPNdB under current Stage 4 noise regulations. A notional, N+1, single-aisle, twinjet transport with ultrahigh bypass ratio turbofan engines is analyzed in this study using NASA software and methods. Several advanced noise-reduction technologies are empirically applied to the propulsion system and airframe. Certification noise levels are predicted and compared with the NASA goal.

  5. An Analytical Assessment of NASA's N+1 Subsonic Fixed Wing Project Noise Goal

    NASA Technical Reports Server (NTRS)

    Berton, Jeffrey J.; Envia, Edmane; Burley, Casey L.

    2009-01-01

    The Subsonic Fixed Wing Project of NASA's Fundamental Aeronautics Program has adopted a noise reduction goal for new, subsonic, single-aisle, civil aircraft expected to replace current 737 and A320 airplanes. These so-called 'N+1' aircraft - designated in NASA vernacular as such since they will follow the current, in-service, 'N' airplanes - are hoped to achieve certification noise goal levels of 32 cumulative EPNdB under current Stage 4 noise regulations. A notional, N+1, single-aisle, twinjet transport with ultrahigh bypass ratio turbofan engines is analyzed in this study using NASA software and methods. Several advanced noise-reduction technologies are analytically applied to the propulsion system and airframe. Certification noise levels are predicted and compared with the NASA goal.

  6. Overview of the NASA Subsonic Rotary Wing Aeronautics Research Program in Rotorcraft Crashworthiness

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fuchs, Yvonne T.; Kellas, Sotiris

    2008-01-01

    This paper provides an overview of rotorcraft crashworthiness research being conducted at NASA Langley Research Center under sponsorship of the Subsonic Rotary Wing (SRW) Aeronautics Program. The research is focused in two areas: development of an externally deployable energy attenuating concept and improved prediction of rotorcraft crashworthiness. The deployable energy absorber (DEA) is a composite honeycomb structure, with a unique flexible hinge design that allows the honeycomb to be packaged and remain flat until needed for deployment. The capabilities of the DEA have been demonstrated through component crush tests and vertical drop tests of a retrofitted fuselage section onto different surfaces or terrain. The research on improved prediction of rotorcraft crashworthiness is focused in several areas including simulating occupant responses and injury risk assessment, predicting multi-terrain impact, and utilizing probabilistic analysis methods. A final task is to perform a system-integrated simulation of a full-scale helicopter crash test onto a rigid surface. A brief description of each research task is provided along with a summary of recent accomplishments.

  7. Overview of the NASA Subsonic Rotary Wing Aeronautics Research Program in Rotorcraft Crashworthiness

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Kellas, Sotiris; Fuchs, Yvonne T.

    2009-01-01

    This paper provides an overview of rotorcraft crashworthiness research being conducted at NASA Langley Research Center under sponsorship of the Subsonic Rotary Wing (SRW) Aeronautics Program. The research is focused in two areas: development of an externally deployable energy attenuating concept and improved prediction of rotorcraft crashworthiness. The deployable energy absorber (DEA) is a composite honeycomb structure, with a unique flexible hinge design that allows the honeycomb to be packaged and remain flat until needed for deployment. The capabilities of the DEA have been demonstrated through component crush tests and vertical drop tests of a retrofitted fuselage section onto different surfaces or terrain. The research on improved prediction of rotorcraft crashworthiness is focused in several areas including simulating occupant responses and injury risk assessment, predicting multi-terrain impact, and utilizing probabilistic analysis methods. A final task is to perform a system-integrated simulation of a full-scale helicopter crash test onto a rigid surface. A brief description of each research task is provided along with a summary of recent accomplishments.

  8. Conceptual Design and Cost Estimate of a Subsonic NASA Testbed Vehicle (NTV) for Aeronautics Research

    NASA Technical Reports Server (NTRS)

    Nickol, Craig L.; Frederic, Peter

    2013-01-01

    A conceptual design and cost estimate for a subsonic flight research vehicle designed to support NASA's Environmentally Responsible Aviation (ERA) project goals is presented. To investigate the technical and economic feasibility of modifying an existing aircraft, a highly modified Boeing 717 was developed for maturation of technologies supporting the three ERA project goals of reduced fuel burn, noise, and emissions. This modified 717 utilizes midfuselage mounted modern high bypass ratio engines in conjunction with engine exhaust shielding structures to provide a low noise testbed. The testbed also integrates a natural laminar flow wing section and active flow control for the vertical tail. An eight year program plan was created to incrementally modify and test the vehicle, enabling the suite of technology benefits to be isolated and quantified. Based on the conceptual design and programmatic plan for this testbed vehicle, a full cost estimate of $526M was developed, representing then-year dollars at a 50% confidence level.

  9. ARMD Fundamental Aeronautics Program

    NASA Technical Reports Server (NTRS)

    Dryer, Jay; DelRosario, Ruben

    2010-01-01

    This slide presentation focuses work of the Aeronautics Research Mission Directorate (ARMD) with particular interest on the work being done to address the environmental and energy efficiency challenges. Particular interest is on the Subsonic Fixed Wing (SFW) project, though there is discussion of the rotorcraft and the supersonics environmental challenges.

  10. Focused Assessment of State-of-the-Art CFD Capabilities for Prediction of Subsonic Fixed Wing Aircraft Aerodynamics

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.; Wahls, Richard A.

    2008-01-01

    Several recent workshops and studies are used to make an assessment of the current status of CFD for subsonic fixed wing aerodynamics. Uncertainty quantification plays a significant role in the assessment, so terms associated with verification and validation are given and some methodology and research areas are highlighted. For high-subsonic-speed cruise through buffet onset, the series of drag prediction workshops and NASA/Boeing buffet onset studies are described. For low-speed flow control for high lift, a circulation control workshop and a synthetic jet flow control workshop are described. Along with a few specific recommendations, gaps and needs identified through the workshops and studies are used to develop a list of broad recommendations to improve CFD capabilities and processes for this discipline in the future.

  11. 14 CFR 91.805 - Final compliance: Subsonic airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Final compliance: Subsonic airplanes. 91... § 91.805 Final compliance: Subsonic airplanes. Except as provided in §§ 91.809 and 91.811, on and after January 1, 1985, no person may operate to or from an airport in the United States any subsonic...

  12. 14 CFR 91.805 - Final compliance: Subsonic airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Final compliance: Subsonic airplanes. 91... § 91.805 Final compliance: Subsonic airplanes. Except as provided in §§ 91.809 and 91.811, on and after January 1, 1985, no person may operate to or from an airport in the United States any subsonic...

  13. Advanced Civilian Aeronautical Concepts

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M.

    1996-01-01

    Paper discusses alternatives to currently deployed systems which could provide revolutionary improvements in metrics applicable to civilian aeronautics. Specific missions addressed include subsonic transports, supersonic transports and personal aircraft. These alternative systems and concepts are enabled by recent and envisaged advancements in electronics, communications, computing and Designer Fluid Mechanics in conjunction with a design approach employing extensive synergistic interactions between propulsion, aerodynamics and structures.

  14. Air Force Academy Aeronautics Digest.

    DTIC Science & Technology

    1984-03-01

    map the external flow field on the upper surface of the wing and fuselage, *Major, USAF, Associate Professor of Aeronautics, DFAN 2 7...research effort at the USAF Academy to establish the capabilities and limitations of the seven-hole pressure probe in mapping unknown flow fields. The ... map their locations. III. Apparatus A. Wind Tunnel The Subsonic Wind Tunnel in the Aeronautics Laboratory of

  15. 14 CFR 91.853 - Final compliance: Civil subsonic airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Final compliance: Civil subsonic airplanes... Noise Limits § 91.853 Final compliance: Civil subsonic airplanes. Except as provided in § 91.873, after... airplane subject to § 91.801(c) of this subpart, unless that airplane has been shown to comply with Stage...

  16. 14 CFR 91.853 - Final compliance: Civil subsonic airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Final compliance: Civil subsonic airplanes... Noise Limits § 91.853 Final compliance: Civil subsonic airplanes. Except as provided in § 91.873, after... airplane subject to § 91.801(c) of this subpart, unless that airplane has been shown to comply with Stage...

  17. Color/magnitude calibration for National Aeronautics and Space Administration (NASA) standard Fixed-Head Star Trackers (FHST)

    NASA Technical Reports Server (NTRS)

    Landis, J.; Leid, Terry; Garber, A.; Lee, M.

    1994-01-01

    This paper characterizes and analyzes the spectral response of Ball Aerospace fixed-head star trackers, (FHST's) currently in use on some three-axis stabilized spacecraft. The FHST output is a function of the frequency and intensity of the incident light and the position of the star image in the field of view. The FHST's on board the Extreme Ultraviolet Explorer (EUVE) have had occasional problems identifying stars with a high B-V value. These problems are characterized by inaccurate intensity counts observed by the tracker. The inaccuracies are due to errors in the observed star magnitude values. These errors are unique to each individual FHST. For this reason, data were also collected and analyzed from the Upper Atmosphere Research Satellite (UARS). As a consequence of this work, the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) hopes to improve the attitude accuracy on these missions and to adopt better star selection procedures for catalogs.

  18. Aeronautical applications of high-temperature superconductors

    NASA Technical Reports Server (NTRS)

    Turney, George E.; Luidens, Roger W.; Uherka, Kenneth; Hull, John

    1989-01-01

    The successful development of high-temperature superconductors (HTS) could have a major impact on future aeronautical propulsion and aeronautical flight vehicle systems. A preliminary examination of the potential application of HTS for aeronautics indicates that significant benefits may be realized through the development and implementation of these newly discovered materials. Applications of high-temperature superconductors (currently substantiated at 95 k) were envisioned for several classes of aeronautical systems, including subsonic and supersonic transports, hypersonic aircraft, V/STOL aircraft, rotorcraft, and solar, microwave and laser powered aircraft. Introduced and described are the particular applications and potential benefits of high-temperature superconductors as related to aeronautics and/or aeronautical systems.

  19. Aeronautical applications of high-temperature superconductors

    NASA Technical Reports Server (NTRS)

    Turney, George E.; Luidens, Roger W.; Uherka, Kenneth; Hull, John

    1989-01-01

    The successful development of high-temperature superconductors (HTS) could have a major impact on future aeronautical propulsion and aeronautical flight vehicle systems. A preliminary examination of the potential application of HTS for aeronautics indicates that significant benefits may be realized through the development and implementation of these newly discovered materials. Applications of high-temperature superconductors (currently substantiated at 95 K) were envisioned for several classes of aeronautical systems, including subsonic and supersonic transports, hypersonic aircraft, V/STOL aircraft, rotorcraft, and solar, microwave and laser powered aircraft. Introduced and described are the particular applications and potential benefits of high-temperature superconductors as related to aeronautics and/or aeronautical systems.

  20. 14 CFR 91.881 - Final compliance: Civil subsonic jet airplanes weighing 75,000 pounds or less.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Final compliance: Civil subsonic jet... OPERATING AND FLIGHT RULES Operating Noise Limits § 91.881 Final compliance: Civil subsonic jet airplanes... operate to or from an airport in the contiguous United States a civil subsonic jet airplane subject...

  1. Progress Toward National Aeronautics Goals

    NASA Technical Reports Server (NTRS)

    Russo, Carlo J.; Sehra, Arun K.

    1999-01-01

    NASA has made definitive progress towards achieving several bold U.S. goals in aeronautics related to air breathing engines. The advanced technologies developed towards these goals span applications from general aviation to large subsonic and supersonic aircraft. The proof of successful technology development is demonstrated through successful technology transfer to U.S. industry and projected fleet impact. Specific examples of progress are discussed that quantifies the achievement towards these goals. In addition, a more detailed vision for NASA aeronautics is defined and key strategic issues are explored which invite international and national debate and involvement especially in reduced environmental impact for subsonic and supersonic aircraft, dramatic new capabilities in general aviation engines, and reduced development cycle time and costs.

  2. National facilities study. Volume 2: Task group on aeronautical research and development facilities report

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Task Group on Aeronautics R&D Facilities examined the status and requirements for aeronautics facilities against the competitive need. Emphasis was placed on ground-based facilities for subsonic, supersonic and hypersonic aerodynamics, and propulsion. Subsonic and transonic wind tunnels were judged to be most critical and of highest priority. Results of the study are presented.

  3. Subsonic Aircraft Safety Icing Study

    NASA Technical Reports Server (NTRS)

    Jones, Sharon Monica; Reveley, Mary S.; Evans, Joni K.; Barrientos, Francesca A.

    2008-01-01

    NASA's Integrated Resilient Aircraft Control (IRAC) Project is one of four projects within the agency s Aviation Safety Program (AvSafe) in the Aeronautics Research Mission Directorate (ARMD). The IRAC Project, which was redesigned in the first half of 2007, conducts research to advance the state of the art in aircraft control design tools and techniques. A "Key Decision Point" was established for fiscal year 2007 with the following expected outcomes: document the most currently available statistical/prognostic data associated with icing for subsonic transport, summarize reports by subject matter experts in icing research on current knowledge of icing effects on control parameters and establish future requirements for icing research for subsonic transports including the appropriate alignment. This study contains: (1) statistical analyses of accident and incident data conducted by NASA researchers for this "Key Decision Point", (2) an examination of icing in other recent statistically based studies, (3) a summary of aviation safety priority lists that have been developed by various subject-matter experts, including the significance of aircraft icing research in these lists and (4) suggested future requirements for NASA icing research. The review of several studies by subject-matter experts was summarized into four high-priority icing research areas. Based on the Integrated Resilient Aircraft Control (IRAC) Project goals and objectives, the IRAC project was encouraged to conduct work in all of the high-priority icing research areas that were identified, with the exception of the developing of methods to sense and document actual icing conditions.

  4. Aeronautic instruments

    NASA Technical Reports Server (NTRS)

    Everling, E; Koppe, H

    1924-01-01

    The development of aeronautic instruments. Vibrations, rapid changes of the conditions of flight and of atmospheric conditions, influence of the air stream all call for particular design and construction of the individual instruments. This is shown by certain examples of individual instruments and of various classes of instruments for measuring pressure, change of altitude, temperature, velocity, inclination and turning or combinations of these.

  5. NASA Fixed Wing Project: Green Technologies for Future Aircraft Generation

    NASA Technical Reports Server (NTRS)

    Del Rosario, Ruben; Koudelka, John M.; Wahls, Rich; Madavan, Nateri

    2014-01-01

    Commercial aviation relies almost entirely on subsonic fixed wing aircraft to constantly move people and goods from one place to another across the globe. While air travel is an effective means of transportation providing an unmatched combination of speed and range, future subsonic aircraft must improve substantially to meet efficiency and environmental targets.The NASA Fundamental Aeronautics Fixed Wing (FW) Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. Multidisciplinary advances are required in aerodynamic efficiency to reduce drag, structural efficiency to reduce aircraft empty weight, and propulsive and thermal efficiency to reduce thrust-specific energy consumption (TSEC) for overall system benefit. Additionally, advances are required to reduce perceived noise without adversely affecting drag, weight, or TSEC, and to reduce harmful emissions without adversely affecting energy efficiency or noise.The paper will highlight the Fixed Wing project vision of revolutionary systems and technologies needed to achieve these challenging goals. Specifically, the primary focus of the FW Project is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe

  6. Compressibility Effects in Aeronautical Engineering

    NASA Technical Reports Server (NTRS)

    Stack, John

    1941-01-01

    Compressible-flow research, while a relatively new field in aeronautics, is very old, dating back almost to the development of the first firearm. Over the last hundred years, researches have been conducted in the ballistics field, but these results have been of practically no use in aeronautical engineering because the phenomena that have been studied have been the more or less steady supersonic condition of flow. Some work that has been done in connection with steam turbines, particularly nozzle studies, has been of value, In general, however, understanding of compressible-flow phenomena has been very incomplete and permitted no real basis for the solution of aeronautical engineering problems in which.the flow is likely to be unsteady because regions of both subsonic and supersonic speeds may occur. In the early phases of the development of the airplane, speeds were so low that the effects of compressibility could be justifiably ignored. During the last war and immediately after, however, propellers exhibited losses in efficiency as the tip speeds approached the speed of sound, and the first experiments of an aeronautical nature were therefore conducted with propellers. Results of these experiments indicated serious losses of efficiency, but aeronautical engineers were not seriously concerned at the time became it was generally possible. to design propellers with quite low tip. speeds. With the development of new engines having increased power and rotational speeds, however, the problems became of increasing importance.

  7. Fundamental Aeronautics Program Subsonic Rotary Wing Project: Aeromechanics Overview

    NASA Technical Reports Server (NTRS)

    Norman, Thomas

    2012-01-01

    The following presentation will cover the topic of Aeromechanics. This includes, the organization of the SRW project, as well as, the Aeromechanic task areas and corresponding facilities including ARC, GRC, and LARC. This presentation will also be covering Aeromechanics highlights like rotorcraft icing, Apache Active Twist Rotor and many more. Furthermore, near-term plans will also be discussed.

  8. [Exploring Aeronautics

    NASA Technical Reports Server (NTRS)

    Robinson, Brandi

    2004-01-01

    This summer I have been working with the N.A.S.A. Project at Cuyahoga Community College (Tri-C) under the title of Exploring Aeronautics Project Leader. The class that I have worked with is comprised of students that will enter the eighth grade in the fall of 2004. The program primarily focuses upon math proficiency and individualized class projects. My duties have encompassed both realms. During the first 2-3 weeks of my internship, I worked at NASA Glenn Research Center (GRC) researching, organizing, and compiling information for weekly Scholastic Challenges and the Super Scholastic Challenge. I was able to complete an overview of Scholastic Challenge and staff responsibilities regarding the competition; a proposal for an interactive learning system, Quizdom; a schedule for challenge equipment, as well as a schedule listing submission deadlines for the staff. Also included in my tasks, during these first 2-3 weeks, were assisting Tammy Allen and Candice Thomas with the student application review and interview processes for student applicants. For the student and parent orientation, I was assigned publications and other varying tasks to complete before the start of the program. Upon the commencement of the program, I changed location from NASA GRC to Tri-C Metro Campus, where student classes for the Cleveland site are held. During the duration of the program, I work with the instructor for the Exploring Aeronautics class, kkkk, assisting in classroom management, daily attendance, curriculum, project building, and other tasks as needed. These tasks include the conducting of the weekly competition, known as Scholastic Challenge. As a Project Leader, I am also responsible for one subject area of the Scholastic Challenge aspect of the N.A.S.A. Project curriculum. Each week I have to prepare a mission that the participants will take home the following Monday and at least 10 questions that will be included in the pool of questions used for the Scholastic Challenge

  9. A Vision in Aeronautics: The K-12 Wind Tunnel Project

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A Vision in Aeronautics, a project within the NASA Lewis Research Center's Information Infrastructure Technologies and Applications (IITA) K-12 Program, employs small-scale, subsonic wind tunnels to inspire students to explore the world of aeronautics and computers. Recently, two educational K-12 wind tunnels were built in the Cleveland area. During the 1995-1996 school year, preliminary testing occurred in both tunnels.

  10. Effect of Riblets upon Flow Separation in a Subsonic Diffuser

    DTIC Science & Technology

    1988-12-01

    Technology Air University In Partial Fulfillment of the Requirements for the Degree of Master of Science in Aeronautical Engineering Nathan W. Martens...afterburner where the flow leaving the turbine must be 4 slowed from a high subsonic Mach number to a Mach number of about 0.2" (8:305). Physicall ., a...Second Edition). New York: McGraw-Hill Book Company, 1975. 3. Cebeci, Tuncer and A. M. 0. Smith. Analysis of Turbulent Boundary Layers. Orlando: Academic

  11. Aeronautics research and technology program and specific objectives

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Aeronautics research and technology program objectives in fluid and thermal physics, materials and structures, controls and guidance, human factors, multidisciplinary activities, computer science and applications, propulsion, rotorcraft, high speed aircraft, subsonic aircraft, and rotorcraft and high speed aircraft systems technology are addressed.

  12. NASA Aeronautics: Research and Technology Program Highlights

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This report contains numerous color illustrations to describe the NASA programs in aeronautics. The basic ideas involved are explained in brief paragraphs. The seven chapters deal with Subsonic aircraft, High-speed transport, High-performance military aircraft, Hypersonic/Transatmospheric vehicles, Critical disciplines, National facilities and Organizations & installations. Some individual aircraft discussed are : the SR-71 aircraft, aerospace planes, the high-speed civil transport (HSCT), the X-29 forward-swept wing research aircraft, and the X-31 aircraft. Critical disciplines discussed are numerical aerodynamic simulation, computational fluid dynamics, computational structural dynamics and new experimental testing techniques.

  13. Fundamental Aeronautics Program

    NASA Technical Reports Server (NTRS)

    Misra, Ajay

    2009-01-01

    The Overarching Mission of NASA's Aeronautics Research Mission Directorate (ARMD) is: To advance U.S. technological leadership in aeronautics in partnership with industry, academia, and other government agencies that conduct aeronautics-related research. ARMD supports the Agency's goal of developing a balanced overall program of science, exploration, and aeronautics, and ARMD's research plans also directly support the National Aeronautics R&D Policy and accompanying Executive Order 131419.

  14. Advanced Subsonic Combustion Rig

    NASA Technical Reports Server (NTRS)

    Lee, Chi-Ming

    1998-01-01

    Researchers from the NASA Lewis Research Center have obtained the first combustion/emissions data under extreme future engine operating conditions. In Lewis' new world-class 60-atm combustor research facility--the Advanced Subsonic Combustion Rig (ASCR)--a flametube was used to conduct combustion experiments in environments as extreme as 900 psia and 3400 F. The greatest challenge for combustion researchers is the uncertainty of the effects of pressure on the formation of nitrogen oxides (NOx). Consequently, U.S. engine manufacturers are using these data to guide their future combustor designs. The flametube's metal housing has an inside diameter of 12 in. and a length of 10.5 in. The flametube can be used with a variety of different flow paths. Each flow path is lined with a high-temperature, castable refractory material (alumina) to minimize heat loss. Upstream of the flametube is the injector section, which has an inside diameter of 13 in. and a length of 0.5-in. It was designed to provide for quick changeovers. This flametube is being used to provide all U.S. engine manufacturers early assessments of advanced combustion concepts at full power conditions prior to engine production. To date, seven concepts from engine manufacturers have been evaluated and improved. This collaborated development can potentially give U.S. engine manufacturers the competitive advantage of being first in the market with advanced low-emission technologies.

  15. Achieving Aeronautics Leadership: Aeronautics Strategic Enterprise Plan

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Today, more than ever, aggressive leadership is required to ensure that our national investments in aeronautical research, technology, and facilities are shaped into a coordinated, and high-impact, strategy. Under the auspices of the National Science and Technology Council, and in conjunction with the domestic industry, universities, the Department of Defense, and the Federal Aviation Administration - our partners in aeronautics - we propose to provide that leadership, and this document is our plan.

  16. Subsonic Glideback Rocket Demonstrator Flight Testing

    NASA Technical Reports Server (NTRS)

    DeTurris, Dianne J.; Foster, Trevor J.; Barthel, Paul E.; Macy, Daniel J.; Droney, Christopher K.; Talay, Theodore A. (Technical Monitor)

    2001-01-01

    For the past two years, Cal Poly's rocket program has been aggressively exploring the concept of remotely controlled, fixed wing, flyable rocket boosters. This program, embodied by a group of student engineers known as Cal Poly Space Systems, has successfully demonstrated the idea of a rocket design that incorporates a vertical launch pattern followed by a horizontal return flight and landing. Though the design is meant for supersonic flight, CPSS demonstrators are deployed at a subsonic speed. Many steps have been taken by the club that allowed the evolution of the StarBooster prototype to reach its current size: a ten-foot tall, one-foot diameter, composite material rocket. Progress is currently being made that involves multiple boosters along with a second stage, third rocket.

  17. Western Aeronautical Test Range

    NASA Technical Reports Server (NTRS)

    Sakahara, Robert D.

    2008-01-01

    This viewgraph presentation reviews the work of the Western Aeronautical Test Range (WATR). NASA's Western Aeronautical Test Range is a network of facilities used to support aeronautical research, science missions, exploration system concepts, and space operations. The WATR resides at NASA's Dryden Flight Research Center located at Edwards Air Force Base, California. The WATR is a part of NASA's Corporate Management of Aeronautical Facilities and funded by the Strategic Capability Asset Program (SCAP). Maps show the general location of the WATR area that is used for aeronautical testing and evaluation. The products, services and facilities of WATR are discussed,

  18. NASA Fixed Wing Project: Green Technologies for Future Aircraft Generation

    NASA Technical Reports Server (NTRS)

    DelRosario, Ruben

    2014-01-01

    The NASA Fundamental Aeronautics Fixed Wing (FW) Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advances in multidisciplinary technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. The presentation will highlight the FW Project vision of revolutionary systems and technologies needed to achieve the challenging goals of aviation. Specifically, the primary focus of the FW Project is on the N+3 generation that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe.

  19. Civilian Aeronautical Futures - The Responsibly Imaginable

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M.

    2006-01-01

    Since 1940 Aeronautics has had an immense impact upon Global Human lifestyles and affairs - in both the Civilian and Military arenas. During this period Long distance Train and Ship passenger transport were largely supplanted by Air Travel and Aviation assumed a dominant role in warfare. The early 1940 s to the mid 1970 s was a particularly productive period in terms of Aeronautical Technology. What is interesting is that, since the mid 1970 s, the rate of Aeronautical Technological Progress has been far slower, the basic technology in nearly all of our current Aero Systems dates from the mid 70 s or earlier. This is especially true in terms of Configuration Aerodynamics, Aeronautics appears to have "settled" on the 707, double delta and rotary wing as the approach of choice for Subsonic long haul, supersonic cruise and VTOL respectively. Obviously there have been variants and some niche digression from this/these but in the main Aeronautics, particularly civilian Aeronautics, has become a self-professed "mature", Increasingly "Commodity", Industry. The Industry is far along an existing/deployed technology curve and focused, now for decades, on incremental/evolutionary change - largely Appliers vs. developers of technology. This is, of course, in sharp contrast to the situation in the early-to-later 20th century where Aeronautics was viewed as A Major Technological Engine, much the way IT/Bio/Nano/Energetics/Quantum Technologies are viewed today. A search for Visionary Aeronautical "Futures" papers/projections indicates a decided dearth thereof over the last 20 plus years compared to the previous quarter Century. Aeronautics is part of Aerospace and Aerospace [including Aeronautics] has seen major cutbacks over the last decades. Some numbers for the U.S. Aerospace Industry serve as examples. Order of 600,000 jobs lost, with some 180,000 more on the block over the next 10 years. Approximately 25% of the Aerospace workforce is eligible to retire and the average

  20. Robust, Optimal Subsonic Airfoil Shapes

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan

    2014-01-01

    A method has been developed to create an airfoil robust enough to operate satisfactorily in different environments. This method determines a robust, optimal, subsonic airfoil shape, beginning with an arbitrary initial airfoil shape, and imposes the necessary constraints on the design. Also, this method is flexible and extendible to a larger class of requirements and changes in constraints imposed.

  1. Aeronautical technologies for the twenty-first century

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This study gives an overview of the future technologies in aeronautics. This collaborative effort relies upon the input of numerous experts from around the country. Specific issues covered include subsonic transport aircraft, high-speed civil transport aircraft short-haul aircraft, environmental issues, operational issues, aerodynamics, propulsion, materials and structures, avionics and control, and cognitive engineering. The appendices include bibliography, abbreviations and acronyms, and NASA fiscal year 1992 aeronautics funding (table) and participants. The forward states that over the last decade, foreign aircraft manufacturers have made significant inroads into the global aircraft market, to the detriment of U.S. interests. Recommendations are made to counter that trend.

  2. Nomenclature for Aeronautics

    NASA Technical Reports Server (NTRS)

    1927-01-01

    This nomenclature for aeronautics was prepared by a Special Conference on Aeronautical Nomenclature by the executive committee of the National Advisory Committee for Aeronautics at a meeting held on August 19, 1924, at which meeting Dr. Joseph S. Ames was appointed chairman of the conference. The conference was composed of representatives of the National Advisory Committee for Aeronautics and specially appointed representatives officially designated by the Army Air Service, the Bureau of Aeronautics of the Navy Department, the Bureau of Standards, the American Society of Mechanical Engineers, the Society of Automotive Engineers, and the Aeronautical Chamber of Commerce. The purpose of the committee in the preparation and publication of this report is to secure uniformity in the official documents of the government and, as far as possible, in technical and other commercial publications

  3. NASA thesaurus aeronautics vocabulary

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The controlled vocabulary used by the NASA Scientific and Technical Information effort to index documents in the area of aeronautics is presented. The terms comprise a subset of the 1988 edition of the NASA Thesaurus and its supplements issued through the end of 1990. The Aeronautics Vocabulary contains over 4700 terms presented in a hierarchical display format. In addition to aeronautics per se, the vocabulary covers supporting terminology from areas such as fluid dynamics, propulsion engineering, and test facilities and instrumentation.

  4. Nomenclature for Aeronautics

    NASA Technical Reports Server (NTRS)

    1923-01-01

    This nomenclature for aeronautics was prepared by a special conference on aeronautical nomenclature, composed of representatives of the Army and Navy Air Services, the Air Mail Service, the Bureau of Standards, the National Advisory Committee for Aeronautics, and private life. This report supersedes all previous publications of the committee on this subject. It is published with the intention of securing greater uniformity and accuracy in official documents of the government, and, as far as possible, in technical and other commercial publications. (author)

  5. Nomenclature for Aeronautics

    NASA Technical Reports Server (NTRS)

    1924-01-01

    This nomenclature for aeronautics was prepared by a special conference on aeronautical nomenclature by the Executive Committee of the National Advisory Committee for Aeronautics at a meeting held August 11, 1933. This publication supersedes all previous publications of the committee on this subject. The purpose of the committee in the preparation and publication of this report is to secure uniformity in the official documents of the government and, as far as possible, in technical and other commercial publications.

  6. Nomenclature for aeronautics

    NASA Technical Reports Server (NTRS)

    1920-01-01

    Report defines the principal terms which have come into use in the development of aeronautics. It was prepared in cooperation with a committee engaged upon a similar undertaking in Great Britain. As a result this nomenclature is in substantial agreement with the one which has been adopted by the aeronautical authorities of Great Britain.

  7. Bibliography of Aeronautics: 1926

    NASA Technical Reports Server (NTRS)

    Brockett, Paul

    1928-01-01

    This Bibliography of Aeronautics for 1926 covers the aeronautical literature published from January 1 to December 31, 1926. The first Bibliography of Aeronautics was published by the Smithsonian Institution as volume 55 of the Smithsonian Miscellaneous Collections and covered the material published prior to June 30, 1909. Supplementary volumes of the Bibliography of Aeronautics for the subsequent years have been published by the National Advisory Committee for Aeronautics. The last preceding volume was for the calendar year 1925. As in the previous volumes, citations of the publications of all nations are included in the languages in which these publications originally appeared. The arrangement is dictionary form with author find subject entry, and one alphabetical arrangement. Detail in the matter of subject reference has been omitted on aCC01.mt of the cost of presentation, but an attempt has been made to give sufficient cross reference for research in special lines.

  8. Bibliography of Aeronautics: 1932

    NASA Technical Reports Server (NTRS)

    1935-01-01

    This Bibliography of Aeronautics for 1932 covers the aeronautical literature published from January 1 to December 31, 1932. The first Bibliography of Aeronautics was published by the Smithsonian Institution as volume 55 of the Smithsonian Miscellaneous Collections and covered the material published prior to June 30, 1909. Supplementary volumes of the Bibliography of Aeronautics for the subsequent years have been published by the National Advisory Committee for Aeronautics. The last preceding volume was for the calendar year 1931. As in the previous volumes, citations of the publications of all nations are included in the languages in which these publications originally appeared. The arrangement is in dictionary form with author and subject entry and one alphabetical arrangement. Detail in the matter of subject reference has been omitted on account of the cost of presentation, but an attempt has been made to give sufficient cross-reference for research in special lines.

  9. Bibliography of Aeronautics: 1928

    NASA Technical Reports Server (NTRS)

    Brockett, Paul

    1928-01-01

    This Bibliography of Aeronautics for 1928 covers the aeronautical literature published from January 1 to December 31, 1928. The first Bibliography of Aeronautics was published by the Smithsonian Institution as volume 55 of the Smithsonian Miscellaneous Collections and covered the material published prior to June 30, 1909. Supplementary volumes of the Bibliography of Aeronautics for the subsequent years have been published by the National Advisory Committee for Aeronautics. The last preceding volume was for the calendar year 1927. As in the previous volumes, citations of the publications of all nations are included in the languages in which these publications originally appeared. The arrangement is in dictionary form with author and subject entry, and one alphabetical arrangement. Detail in the matter of subject reference has been omitted on account of the cost of presentation, but an attempt has been made to give sufficient cross reference for research in special lines.

  10. Bibliography of Aeronautics, 1929

    NASA Technical Reports Server (NTRS)

    Brockett, Paul

    1930-01-01

    This Bibliography of Aeronautics for 1929 covers the aeronautical literature published from January 1 to December 31, 1929. The first Bibliography of Aeronautics was published by the Smithsonian Institution as Volume 55 of the Smithsonian Miscellaneous Collections and covered the material published prior to June 30, 1909. Supplementary volumes of the Bibliography of Aeronautics for the subsequent years have been published by the National Advisory Committee for Aeronautics. The last preceding volume was for the calendar year 1928. As in the previous volumes, citations of the pUblications of all nations are included in th.e languages in which. these publications originally appeared. The arrangement is in dictionary form with author and subject entry, and one alphabetical arrangement. Detail in the matter of subject reference has been omitted on account of the cost of presentation, but an attempt has been made to give sufficient cross reference for research in special lines.

  11. Robust, optimal subsonic airfoil shapes

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan (Inventor)

    2008-01-01

    Method system, and product from application of the method, for design of a subsonic airfoil shape, beginning with an arbitrary initial airfoil shape and incorporating one or more constraints on the airfoil geometric parameters and flow characteristics. The resulting design is robust against variations in airfoil dimensions and local airfoil shape introduced in the airfoil manufacturing process. A perturbation procedure provides a class of airfoil shapes, beginning with an initial airfoil shape.

  12. Canadian aeronautical mobile data trials

    NASA Technical Reports Server (NTRS)

    Pedersen, Allister; Pearson, Andrea

    1993-01-01

    This paper describes a series of aeronautical mobile data trials conducted on small aircraft (helicopters and fixed wing) utilizing a low-speed store-and-forward mobile data service. The paper outlines the user requirements for aeronautical mobile satellite communications. 'Flight following' and improved wide-area dispatch communications were identified as high priority requirements. A 'proof-of-concept' trial in a Cessna Skymaster aircraft is described. This trial identified certain development work as essential to the introduction of commercial service including antenna development, power supply modifications and doppler software modifications. Other improvements were also proposed. The initial aeronautical mobile data service available for pre-operational (Beta) trials is outlined. Pre-operational field trials commenced in October 1992 and consisted of installations on a Gralen Communications Inc. Cessna 177 and an Aerospatiale Astar 350 series light single engine helicopter. The paper concludes with a discussion of desirable near term mobile data service developments, commercial benefits, current safety benefits and potential future applications for improved safety.

  13. Advanced Subsonic Combustion Rig Developed

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Advanced Subsonic Combustion Rig (ASCR), a unique, state-of-the-art facility for conducting combustion research, is located at the NASA Lewis Research Center in Cleveland, Ohio. The ASCR, which was nearing completion at the close of 1995, will be capable of simulating the very high pressure and high temperature conditions that are expected to exist in future, advanced subsonic gas turbine (jet) engines. Future environmental regulations will require much cleaner burning (more environmentally friendly) aircraft engines. The ASCR is critical to the development of these cleaner engines. It will allow NASA and U.S. aircraft engine industry researchers to identify and test promising clean-burning gas turbine engine combustion concepts under the pressure and temperature conditions that are expected for those future engines. Combustion processes will be investigated for a variety of next-generation aircraft engine sizes, including engines for large, long-range aircraft (with typical trip lengths of about 3000 mi) and for regional aircraft (with typical trip lengths of about 400 mi). The ASCR design was conceived and initiated in 1993, and fabrication and construction of the rig, including the buildup of an advanced control room, took place throughout 1994 and 1995. In early 1996, the ASCR will be operational for obtaining research data. The ASCR is an intricate part of the NASA Advanced Subsonic Technology Propulsion Program, which is aimed at developing technologies critical to the next generation of gas turbine engines. This effort is in collaboration with the U.S. aircraft gas turbine engine industry. A goal of the Advanced Subsonic Technology Propulsion Program is to develop combustion concepts and technologies that will result in gas turbine engines that produce 50 percent less nitrous oxide (NO_x) pollutants than current engines do. This facility is unique in its capability to simulate advanced subsonic engine pressure, temperature, and air flow rate conditions

  14. Nomenclature for Aeronautics

    NASA Technical Reports Server (NTRS)

    1939-01-01

    The nomenclature for aeronautics presented in this Report No. 474 is a revision of the last previous report on this subject (i.e., Report no. 240.) This report is published for the purpose of encouraging greater uniformity and precision in the use of terms relating to aeronautics, both in official documents of the Government and in commercial publications. Terms in general use in other branches of engineering have been included only where they have some special significance in aeronautics, or form an integral part of its terminology.

  15. An NACA Vane-Type Angle-of-Attack Indicator for use at Subsonic and Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Mitchell, Jesse L.; Peck, Robert F.

    1949-01-01

    A vane-type angle-of-attack indicator suitable for measurements at both subsonic and supersonic speeds has been developed by the National Advisory Committee for Aeronautics. A brief history is given of the development, and a wind-tunnel calibration of the indicator is presented, together with a discussion of the corrections to be applied to the indicated readings.

  16. Curriculum for modern aeronautics

    NASA Technical Reports Server (NTRS)

    Roberts, L.

    1975-01-01

    Methods for improving the university training of aeronautical engineering students are discussed. Specific topics considered are: (1) the kind of students which should be developed through aeronautical engineering education, (2) to what extent should aerospace engineering be prepared for diversity and change, (3) to what extent should theory be emphasized as compared with practical engineering and design, and (4) a suggestion for NASA/Industry/University collaboration.

  17. Subsonic Flow for the Multidimensional Euler-Poisson System

    NASA Astrophysics Data System (ADS)

    Bae, Myoungjean; Duan, Ben; Xie, Chunjing

    2016-04-01

    We establish the existence and stability of subsonic potential flow for the steady Euler-Poisson system in a multidimensional nozzle of a finite length when prescribing the electric potential difference on a non-insulated boundary from a fixed point at the exit, and prescribing the pressure at the exit of the nozzle. The Euler-Poisson system for subsonic potential flow can be reduced to a nonlinear elliptic system of second order. In this paper, we develop a technique to achieve a priori {C^{1,α}} estimates of solutions to a quasi-linear second order elliptic system with mixed boundary conditions in a multidimensional domain enclosed by a Lipschitz continuous boundary. In particular, we discovered a special structure of the Euler-Poisson system which enables us to obtain {C^{1,α}} estimates of the velocity potential and the electric potential functions, and this leads us to establish structural stability of subsonic flows for the Euler-Poisson system under perturbations of various data.

  18. Western Aeronautical Test Range

    NASA Technical Reports Server (NTRS)

    Sakahara, Robert D.

    2008-01-01

    NASA's Western Aeronautical Test Range (WATR) is a network of facilities used to support aeronautical research, science missions, exploration system concepts, and space operations. The WATR resides at NASA's Dryden Flight Research Center located at Edwards Air Force Base, California. The WATR is a part of NASA's Corporate Management of Aeronautical Facilities and funded by the Strategic Capability Asset Program (SCAP). It is managed by the Aeronautics Test Program (ATP) of the Aeronautics Research Mission Directorate (ARMD) to provide the right facility at the right time. NASA is a tenant on Edwards Air Force Base and has an agreement with the Air Force Flight Test Center to use the land and airspace controlled by the Department of Defense (DoD). The topics include: 1) The WATR supports a variety of vehicles; 2) Dryden shares airspace with the AFFTC; 3) Restricted airspace, corridors, and special use areas are available for experimental aircraft; 4) WATR Products and Services; 5) WATR Support Configuration; 6) Telemetry Tracking; 7) Time Space Positioning; 8) Video; 9) Voice Communication; 10) Mobile Operations Facilities; 11) Data Processing; 12) Mission Control Center; 13) Real-Time Data Analysis; and 14) Range Safety.

  19. Diaphragms for Aeronautic Instruments

    NASA Technical Reports Server (NTRS)

    Hersey, M D

    1924-01-01

    This investigation was carried out at the request of the National Advisory Committee for Aeronautics and comprises an outline of historical developments and theoretical principles, together with a discussion of expedients for making the most effective use of existing diaphragms actuated by the hydrostatic pressure form an essential element of a great variety instruments for aeronautic and other technical purposes. The various physical data needed as a foundation for rational methods of diaphragm design have not, however, been available hitherto except in the most fragmentary form.

  20. An Overview of NASA's Subsonic Research Aircraft Testbed (SCRAT)

    NASA Technical Reports Server (NTRS)

    Baumann, Ethan; Hernandez, Joe; Ruhf, John C.

    2013-01-01

    National Aeronautics and Space Administration Dryden Flight Research Center acquired a Gulfstream III (GIII) aircraft to serve as a testbed for aeronautics flight research experiments. The aircraft is referred to as SCRAT, which stands for SubsoniC Research Aircraft Testbed. The aircraft's mission is to perform aeronautics research; more specifically raising the Technology Readiness Level (TRL) of advanced technologies through flight demonstrations and gathering high-quality research data suitable for verifying the technologies, and validating design and analysis tools. The SCRAT has the ability to conduct a range of flight research experiments throughout a transport class aircraft's flight envelope. Experiments ranging from flight-testing of a new aircraft system or sensor to those requiring structural and aerodynamic modifications to the aircraft can be accomplished. The aircraft has been modified to include an instrumentation system and sensors necessary to conduct flight research experiments along with a telemetry capability. An instrumentation power distribution system was installed to accommodate the instrumentation system and future experiments. An engineering simulation of the SCRAT has been developed to aid in integrating research experiments. A series of baseline aircraft characterization flights has been flown that gathered flight data to aid in developing and integrating future research experiments. This paper describes the SCRAT's research systems and capabilities.

  1. SUBSONIC WIND TUNNEL PERFORMANCE ANALYSIS SOFTWARE

    NASA Technical Reports Server (NTRS)

    Eckert, W. T.

    1994-01-01

    area corners, diffusing corners, diffusers, exits, flow straighteners, fans, and fixed, known losses. Input to this program consists of data describing each section; the section type, the section end shapes, the section diameters, and parameters which vary from section to section. Output from the program consists of a tabulation of the performance-related parameters for each section of the wind tunnel circuit and the overall performance values that include the total circuit length, the total pressure losses and energy ratios for the circuit, and the total operating power required. If requested, the output also includes an echo of the input data, a summary of the circuit characteristics and plotted results on the cumulative pressure losses and the wall pressure differentials. The Subsonic Wind Tunnel Performance Analysis Software is written in FORTRAN 77 (71%) and BASIC (29%) for IBM PC series computers and compatibles running MS-DOS 2.1 or higher. The machine requirements include either an 80286 or 80386 processor, a math co-processor and 640K of main memory. The PERFORM analysis software is written for the RM/FORTRAN v2.4 compiler. This portion of the code is portable to other platforms which support a standard FORTRAN 77 compiler. Source code and executables for the PC are included with the distribution. They are compressed using the PKWARE archiving tool; the utility to unarchive the files, PKUNZIP.EXE, is included. With the PERFINTER program interface the user is allowed to enter the wind tunnel characteristics via the menu driven program, but this is only available for the PC. The standard distribution medium for this package is a 5.25 inch 360K MS-DOS format diskette. This software package was developed in 1990. DEC, VAX and VMS are trademarks of Digital Equipment Corporation. RM/FORTRAN is trademark of Ryan McFarland Corporation. PERFORM is a trademark of Prime Computer Inc. MS-DOS is a registered trademark of Microsoft Corporation.

  2. Subsonic Round and Rectangular Twin Jet Flow Effects

    NASA Technical Reports Server (NTRS)

    Bozak, Rick; Wernet, Mark

    2014-01-01

    Subsonic and supersonic aircraft concepts proposed by NASAs Fundamental Aeronautics Program have integrated propulsion systems with asymmetric nozzles. The asymmetry in the exhaust of these propulsion systems creates asymmetric flow and acoustic fields. The flow asymmetries investigated in the current study are from two parallel round, 2:1, and 8:1 aspect ratio rectangular jets at the same nozzle conditions. The flow field was measured with streamwise and cross-stream particle image velocimetry (PIV). A large dataset of single and twin jet flow field measurements was acquired at subsonic jet conditions. The effects of twin jet spacing and forward flight were investigated. For round, 2:1, and 8:1 rectangular twin jets at their closest spacings, turbulence levels between the two jets decreased due to enhanced jet mixing at near static conditions. When the flight Mach number was increased to 0.25, the flow around the twin jet model created a velocity deficit between the two nozzles. This velocity deficit diminished the effect of forward flight causing an increase in turbulent kinetic energy relative to a single jet. Both of these twin jet flow field effects decreased with increasing twin jet spacing relative to a single jet. These variations in turbulent kinetic energy correlate with changes in far-field sound pressure level.

  3. University research in aeronautics

    NASA Technical Reports Server (NTRS)

    Duberg, J. E.

    1975-01-01

    The contributions which universities can make to aeronautical research projects are discussed. The activities of several facilities are presented to show the effectiveness of the educational and research programs. Reference is made to the Intergovernmental Personnel Act of 1970 which permits an exchange of federal agency personnel with state and local governments and with public and private higher education schools.

  4. Aeronautical facilities assessment

    NASA Technical Reports Server (NTRS)

    Penaranda, F. E. (Compiler)

    1985-01-01

    A survey of the free world's aeronautical facilities was undertaken and an evaluation made on where the relative strengths and weaknesses exist. Special emphasis is given to NASA's own capabilities and needs. The types of facilities surveyed are: Wind Tunnels; Airbreathing Propulsion Facilities; and Flight Simulators

  5. ACTS broadband aeronautical experiment

    NASA Technical Reports Server (NTRS)

    Abbe, Brian S.; Jedrey, Thomas C.; Estabrook, Polly; Agan, Martin J.

    1993-01-01

    In the last decade, the demand for reliable data, voice, and video satellite communication links between aircraft and ground to improve air traffic control, airline management, and to meet the growing demand for passenger communications has increased significantly. It is expected that in the near future, the spectrum required for aeronautical communication services will grow significantly beyond that currently available at L-band. In anticipation of this, JPL is developing an experimental broadband aeronautical satellite communications system that will utilize NASA's Advanced Communications Technology Satellite (ACTS) as a satellite of opportunity and the technology developed under JPL's ACTS Mobile Terminal (AMT) Task to evaluate the feasibility of using K/Ka-band for these applications. The application of K/Ka-band for aeronautical satellite communications at cruise altitudes is particularly promising for several reasons: (1) the minimal amount of signal attenuation due to rain; (2) the reduced drag due to the smaller K/Ka-band antennas (as compared to the current L-band systems); and (3) the large amount of available bandwidth. The increased bandwidth available at these frequencies is expected to lead to significantly improved passenger communications - including full-duplex compressed video and multiple channel voice. A description of the proposed broadband experimental system will be presented including: (1) applications of K/Ka-band aeronautical satellite technology to U.S. industry; (2) the experiment objectives; (3) the experiment set-up; (4) experimental equipment description; and (5) industrial participation in the experiment and the benefits.

  6. The influence of subsonic mission segments on the use of variable-sweep wings for high speed civil transport configurations

    NASA Technical Reports Server (NTRS)

    Martin, Glenn L.; Beissner, Fred L., Jr.; Domack, Christopher S.; Shields, E. William

    1988-01-01

    A Mach-3.0, 250-passenger, 6500-n. mi. range SST configuration's alternative use of fixed-planform or variable-sweep wings is presently evaluated, with a view to effects on aerodynamics, mission performance, and sizing. After preliminary design, the fixed and variable-wing configurations were resized to perform missions incorporating subsonic cruise segments of as much as 4000 n. mi.; the effect of subsonic segment length on design gross weight and block time was then ascertained. Due to the reduced supersonic efficiency of the variable-sweep aircraft, over one-half of the 6500-n. mi. mission would have to be flown subsonically for its sizing to reach a lower ramp weight than that of its fixed-geometry counterpart.

  7. Aeronautical Knowledge (Selected Articles),

    DTIC Science & Technology

    1981-01-14

    UNCLASSIFIED FTD-ID RSN -12348 Nm m ED I FTD-ID(RS)T-1234-80-- FOREIGN TECHNOLOGY DIVISION AERONAUTICAL KNOWLEDGE (Selected Articles) * DTIC cm. ’- D...of the spacecraft cabin, went through the structure of the eyes of the astronauts, and caused them to see flahig-. The frequency of the flashing was...to tell space travelers of the existence of belts of high radiation end alert them to the danger. Present and future missins must clarify the

  8. Power-by-Wire Development and Demonstration for Subsonic Civil Transport

    NASA Technical Reports Server (NTRS)

    1996-01-01

    During the last decade, three significant studies by the Lockheed Martin Corporation, the NASA Lewis Research Center, and McDonnell Douglas Corporation have clearly shown operational, weight, and cost advantages for commercial subsonic transport aircraft that use all-electric or more-electric technologies in the secondary electric power systems. Even though these studies were completed on different aircraft, used different criteria, and applied a variety of technologies, all three have shown large benefits to the aircraft industry and to the nation's competitive position. The Power-by-Wire (PBW) program is part of the highly reliable Fly-By-Light/Power-By-Wire (FBL/PBW) Technology Program, whose goal is to develop the technology base for confident application of integrated FBL/PBW systems for transport aircraft. This program is part of the NASA aeronautics strategic thrust in subsonic aircraft/national airspace (Thrust 1) to "develop selected high-leverage technologies and explore new means to ensure the competitiveness of U.S. subsonic aircraft and to enhance the safety and productivity of the national aviation system" (The Aeronautics Strategic Plan). Specifically, this program is an initiative under Thrust 1, Key Objective 2, to "develop, in cooperation with U.S. industry, selected high-payoff technologies that can enable significant improvements in aircraft efficiency and cost."

  9. NASA's Role in Aeronautics: A Workshop. Volume VI - Aeronautical Research.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Assembly of Engineering.

    The central task of a 1980 workshop on the role of the National Aeronautics and Space Administration (NASA) in aeronautics was to examine the relationship of NASA's research capabilities to the state of U.S. aviation and to make recommendations about NASA's future role in aeronautics. Following a brief introduction, the Overview Panel on…

  10. Fixed Wing Project: Technologies for Advanced Air Transports

    NASA Technical Reports Server (NTRS)

    Del Rosario, Ruben; Koudelka, John M.; Wahls, Richard A.; Madavan, Nateri

    2014-01-01

    The NASA Fundamental Aeronautics Fixed Wing (FW) Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. Multidisciplinary advances are required in aerodynamic efficiency to reduce drag, structural efficiency to reduce aircraft empty weight, and propulsive and thermal efficiency to reduce thrust-specific energy consumption (TSEC) for overall system benefit. Additionally, advances are required to reduce perceived noise without adversely affecting drag, weight, or TSEC, and to reduce harmful emissions without adversely affecting energy efficiency or noise.The presentation will highlight the Fixed Wing project vision of revolutionary systems and technologies needed to achieve these challenging goals. Specifically, the primary focus of the FW Project is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe.

  11. Subsonic and transonic propeller noise

    NASA Astrophysics Data System (ADS)

    Lewy, S.; Gounet, H.

    Models for the noise levels from propellers are discussed, with results compared to in-flight measurements. Methods originally applied to noise from light aircraft are modified and extended to high speed passenger aircraft. Noise emitted from propellers has three components: a monopolar emission due to the air displaced by a blade; a bipolar form from average and fluctuating forces exerted by the blades; and a quadripolar component produced by deformation of the streamlines around the blade profile and defined by the Lighthill tensor. The latter is not a factor in the subsonic regime and can be neglected. Attention is given to a formalism which accounts for the sound level along each band, the frequency harmonics at each blade passage, the number of blades, and the rotation rate. The measured directivities of the two components are described. It is found that the radiated noise levels can be reduced in slow aircraft by lowering the peripheral velocity while keeping the same power with more blades. Calculations including the quadripolar term are necessary for modeling noise levels in transonic propellers.

  12. Subsonic Ultra Green Aircraft Research

    NASA Technical Reports Server (NTRS)

    Bradley, Marty K.; Droney, Christopher K.

    2011-01-01

    This Final Report summarizes the work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team in Phase 1, which includes the time period of October 2008 through March 2010. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, and Georgia Tech. The team completed the development of a comprehensive future scenario for world-wide commercial aviation, selected baseline and advanced configurations for detailed study, generated technology suites for each configuration, conducted detailed performance analysis, calculated noise and emissions, assessed technology risks, and developed technology roadmaps. Five concepts were evaluated in detail: 2008 baseline, N+3 reference, N+3 high span strut braced wing, N+3 gas turbine battery electric concept, and N+3 hybrid wing body. A wide portfolio of technologies was identified to address the NASA N+3 goals. Significant improvements in air traffic management, aerodynamics, materials and structures, aircraft systems, propulsion, and acoustics are needed. Recommendations for Phase 2 concept and technology projects have been identified.

  13. 78 FR 44028 - Review of Foreign Ownership Policies for Common Carrier and Aeronautical Radio Licensees

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-23

    ... COMMISSION 47 CFR Part 1 Review of Foreign Ownership Policies for Common Carrier and Aeronautical Radio... carrier, aeronautical en route and aeronautical fixed radio station licensees. DATES: Effective on August..., July 10, 2013, the following corrections are made: Subpart F--Wireless Radio Services Applications...

  14. Atmospheric Effects of Aviation: First Report of the Subsonic Assessment Project

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M. (Editor); Friedl, Randall R. (Editor); Wesoky, Howard L. (Editor)

    1996-01-01

    This document is the first report from the Office of Aeronautics Advanced Subsonic Technology (AST) Program's Subsonic Assessment (SASS) Project. This effort, initiated in late 1993, has as its objective the assessment of the atmospheric effects of the current and predicted future aviation fleet. The two areas of impact are ozone (stratospheric and tropospheric) and radiative forcing. These are driven, respectively, by possible perturbations from aircraft emissions of NOX and soot and/or sulfur-containing particles. The report presents the major questions to which project assessments will be directed (Introduction) and the status of six programmatic elements: Emissions Scenarios, Exhaust Characterization, Near-Field Interactions, Kinetics and Laboratory Studies, Global Modeling, and Atmospheric Observations (field studies).

  15. Aeronautic Instruments. Section II : Altitude Instruments

    NASA Technical Reports Server (NTRS)

    Mears, A H; Henrickson, H B; Brombacher, W G

    1923-01-01

    This report is Section two of a series of reports on aeronautic instruments (Technical Report nos. 125 to 132, inclusive). This section discusses briefly barometric altitude determinations, and describes in detail the principal types of altimeters and barographs used in aeronautics during the recent war. This is followed by a discussion of performance requirements for such instruments and an account of the methods of testing developed by the Bureau of Standards. The report concludes with a brief account of the results of recent investigations. For accurate measurements of altitude, reference must also be made to thermometer readings of atmospheric temperature, since the altitude is not fixed by atmospheric pressure alone. This matter is discussed in connection with barometric altitude determination.

  16. Unsteady Aerodynamics - Subsonic Compressible Inviscid Case

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A. V.

    1999-01-01

    This paper presents a new analytical treatment of Unsteady Aerodynamics - the linear theory covering the subsonic compressible (inviscid) case - drawing on some recent work in Operator Theory and Functional Analysis. The specific new results are: (a) An existence and uniqueness proof for the Laplace transform version of the Possio integral equation as well as a new closed form solution approximation thereof. (b) A new representation for the time-domain solution of the subsonic compressible aerodynamic equations emphasizing in particular the role of the initial conditions.

  17. Analysis of an advanced ducted propeller subsonic inlet

    NASA Technical Reports Server (NTRS)

    Iek, Chanthy; Boldman, Donald R.; Ibrahim, Mounir

    1992-01-01

    A time marching Navier-Stokes code called PARC (PARC2D for 2-D/axisymmetric and PARC3D for 3-D flow simulations) was validated for an advanced ducted propeller (ADP) subsonic inlet. The code validation for an advanced ducted propeller (ADP) subsonic inlet. The code validation was implemented for a non-separated flow condition associated with the inlet operating at angles-of-attack of 0 and 25 degrees. The inlet test data were obtained in the 9 x 15 ft Low Speed Wind Tunnel at NASA Lewis Research Center as part of a cooperative study with Pratt and Whitney. The experimental study focused on the ADP inlet performance for take-off and approach conditions. The inlet was tested at a free stream Mach number of 0.2, at angles-of-attack between O and 35 degrees, and at a maximum propeller speed of 12,000 RPM which induced a corrected air flow rate of about 46 lb/sec based on standard day conditions. The computational grid and flow boundary conditions (BC) were based on the actual inlet geometry and the funnel flow conditions. At the propeller face, two types of BC's were applied: a mass flow BC and a fixed flow properties BC. The fixed flow properties BC was based on a combination of data obtained from the experiment and calculations using a potential flow code. Comparison of the computational results with the test data indicates that the PARC code with the propeller face fixed flow properties BC provided a better prediction of the inlet surface static pressures than the predictions when the mass flow BC was used. For an angle-of-attack of 0 degrees, the PARC2D code with the propeller face mass flow BC provided a good prediction of inlet static pressures except in the region of high pressure gradient. With the propeller face fixed flow properties BC, the PARC2D code provided a good prediction of the inlet static pressures. For an angle-of-attack of 25 degrees with the mass flow BC, the PARC3D code predicted statis pressures which deviated significantly from the test data

  18. Aeronautical Engineering: 1983 cumulative index

    NASA Technical Reports Server (NTRS)

    1984-01-01

    This bibliography is a cumulative index to the abstracts contained in NASA SP-7037 (158) through NASA SP-7037 (169) of Aeronautical Engineering: A Continuing Bibliography. NASA SP-7037 and its supplements have been compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, contract, report number, and accession number indexes.

  19. Aeronautics in NACA and NASA

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Initiated in 1915, the National Advisory Committee for Aeronautics/National Aeronautics and Space Administration (NACA/NASA) aeronautical programs have been the keystone of a sustained U.S. Government, industry, and university research effort which has been a primary factor in the development of our remarkable air transportation systems, the country's largest positive trade balance component, and the world's finest military Air Force. This overview summarizes the flow of events, and the major trends, that have led from the NACA origins to the present NASA Aeronautics program, and indicates some important directions for the years ahead.

  20. Airfoil shape for flight at subsonic speeds

    DOEpatents

    Whitcomb, Richard T.

    1976-01-01

    An airfoil having an upper surface shaped to control flow accelerations and pressure distribution over the upper surface and to prevent separation of the boundary layer due to shock wave formulation at high subsonic speeds well above the critical Mach number. A highly cambered trailing edge section improves overall airfoil lifting efficiency.

  1. Aeronautical Engineering: A continuing bibliography

    NASA Technical Reports Server (NTRS)

    1982-01-01

    This bibliography lists 347 reports, articles and other documents introduced into the scientific and technical information system. Documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated compounds, equipment, and systems are included. Research and development in aerodynamics, aeronautics and ground support equipment for aeronautical vehicles are also included.

  2. NASA Aeronautics Research: An Assessment

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The U.S. air transportation system is vital to the economic well-being and security of the United States. To support continued U.S. leadership in aviation, Congress and NASA requested that the National Research Council undertake a decadal survey of civil aeronautics research and technology (R&T) priorities that would help NASA fulfill its responsibility to preserve U.S. leadership in aeronautics technology. In 2006, the National Research Council published the Decadal Survey of Civil Aeronautics. That report presented a set of six strategic objectives for the next decade of aeronautics R&T, and it described 51 high-priority R&T challenges--characterized by five common themes--for both NASA and non-NASA researchers. The National Research Council produced the present report, which assesses NASA's Aeronautics Research Program, in response to the National Aeronautics and Space Administration Authorization Act of 2005 (Public Law 109-155). This report focuses on three sets of questions: 1. How well does NASA's research portfolio implement appropriate recommendations and address relevant high-priority research and technology challenges identified in the Decadal Survey of Civil Aeronautics? If gaps are found, what steps should be taken by the federal government to eliminate them? 2. How well does NASA's aeronautics research portfolio address the aeronautics research requirements of NASA, particularly for robotic and human space exploration? How well does NASA's aeronautics research portfolio address other federal government department/agency non-civil aeronautics research needs? If gaps are found, what steps should be taken by NASA and/or other parts of the federal government to eliminate them? 3. Will the nation have a skilled research workforce and research facilities commensurate with the requirements in (1) and (2) above? What critical improvements in workforce expertise and research facilities, if any, should NASA and the nation make to achieve the goals of NASA

  3. The Impact of Subsonic Twin Jets on Airport Noise

    NASA Technical Reports Server (NTRS)

    Bozak, Richard F.

    2012-01-01

    Subsonic and supersonic aircraft concepts proposed through NASA s Fundamental Aeronautics Program have multiple engines mounted near one another. Engine configurations with multiple jets introduce an asymmetry to the azimuthal directivity of the jet noise. Current system noise predictions add the jet noise from each jet incoherently, therefore, twin jets are estimated by adding 3 EPNdB to the far-field noise radiated from a single jet. Twin jet effects have the ability to increase or decrease the radiated noise to different azimuthal observation locations. Experiments have shown that twin jet effects are reduced with forward flight and increasing spacings. The current experiment investigates the impact of spacing, and flight effects on airport noise for twin jets. Estimating the jet noise radiated from twin jets as that of a single jet plus 3 EPNdB may be sufficient for horizontal twin jets with an s/d of 4.4 and 5.5, where s is the center-to-center spacing and d is the jet diameter. However, up to a 3 EPNdB error could be present for jet spacings with an s/d of 2.6 and 3.2.

  4. NASA's Role in Aeronautics: A Workshop. Volume 6: Aeronautical research

    NASA Technical Reports Server (NTRS)

    1981-01-01

    While each aspect of its aeronautical technology program is important to the current preeminence of the United States in aeronautics, the most essential contributions of NASA derive from its research. Successes and challenges in NASA's efforts to improve civil and military aviation are discussed for the following areas: turbulence, noise, supercritical aerodynamics, computational aerodynamics, fuels, high temperature materials, composite materials, single crystal components, powder metallurgy, and flight controls. Spin offs to engineering and other sciences explored include NASTRAN, lubricants, and composites.

  5. Aeropropulsion 1987. Session 5: Subsonic Propulsion Technology

    NASA Technical Reports Server (NTRS)

    1987-01-01

    NASA is conducting aeropropulsion research over a broad range of Mach numbers. In addition to the high-speed propulsion research described, major progress was recorded in research aimed at the subsonic flight regimes of interest to many commercial and military users. Recent progress and future directions in such areas as small engine technology, rotorcraft transmissions, icing, Hot Section Technology (HOST) and the Advanced Turboprop Program (ATP) are covered.

  6. Flow quality measurements in compressible subsonic flows

    NASA Technical Reports Server (NTRS)

    Stainback, P. Calvin; Johnson, Charles B.

    1987-01-01

    The purpose is to re-examine the heat transfer from a hot-wire probe in the compressible subsonic flow regime; describe the three-wire hot-wire probe calibration and data reduction techniques used to measure the velocity, density, and total temperature fluctuation; and present flow quality results obtained in the Langley 0.3 meter Transonic Cryogenic Wind Tunnel and in flight with the NASA JetStar from the same three-wire hot-wire probe.

  7. 1978 Aeronautics and Space Highlights

    NASA Technical Reports Server (NTRS)

    1978-01-01

    These highlights include the space shuttle, new astronauts, Pioneers to Venus, Voyagers to Jupiter and Saturn, High Energy Astronomy Observatories Space Telescope, Landsat/Seasat, space applications, wind energy research, and aeronautics.

  8. [Burns in an aeronautic environment].

    PubMed

    Rigotti, G

    1979-10-27

    Following an examination of the aetiology of burns in aeronautic environments, the physiopathology, classification and general and local treatment of the burn case is discussed. Special mention is then made of aircraft as an extremely useful means of transport.

  9. CFD Prediction of Magnus Effect in Subsonic to Supersonic Flight

    DTIC Science & Technology

    2009-09-01

    CFD Prediction of Magnus Effect in Subsonic to Supersonic Flight by James DeSpirito ARL-TR-4929 September 2009...of Magnus Effect in Subsonic to Supersonic Flight James DeSpirito Weapons and Materials Research Directorate, ARL...TITLE AND SUBTITLE CFD Prediction of Magnus Effect in Subsonic to Supersonic Flight 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  10. Atmospheric Effects of Subsonic Aircraft: Interim Assessment Report of the Advanced Subsonic Technology Program

    NASA Technical Reports Server (NTRS)

    Friedl, Randall R. (Editor)

    1997-01-01

    This first interim assessment of the subsonic assessment (SASS) project attempts to summarize concisely the status of our knowledge concerning the impacts of present and future subsonic aircraft fleets. It also highlights the major areas of scientific uncertainty, through review of existing data bases and model-based sensitivity studies. In view of the need for substantial improvements in both model formulations and experimental databases, this interim assessment cannot provide confident numerical predictions of aviation impacts. However, a number of quantitative estimates are presented, which provide some guidance to policy makers.

  11. Analysis of supersonic combustion flow fields with embedded subsonic regions

    NASA Technical Reports Server (NTRS)

    Dash, S.; Delguidice, P.

    1972-01-01

    The viscous characteristic analysis for supersonic chemically reacting flows was extended to include provisions for analyzing embedded subsonic regions. The numerical method developed to analyze this mixed subsonic-supersonic flow fields is described. The boundary conditions are discussed related to the supersonic-subsonic and subsonic-supersonic transition, as well as a heuristic description of several other numerical schemes for analyzing this problem. An analysis of shock waves generated either by pressure mismatch between the injected fluid and surrounding flow or by chemical heat release is also described.

  12. An Overview of the NASA Aeronautics Test Program Strategic Plan

    NASA Technical Reports Server (NTRS)

    Marshall, Timothy J.

    2010-01-01

    U.S. leadership in aeronautics depends on ready access to technologically advanced, efficient, and affordable aeronautics test capabilities. These systems include major wind tunnels and propulsion test facilities and flight test capabilities. The federal government owns the majority of the major aeronautics test capabilities in the United States, primarily through the National Aeronautics and Space Administration (NASA) and the Department of Defense (DoD), however an overarching strategy for management of these national assets was needed. Therefore, in Fiscal Year (FY) 2006 NASA established the Aeronautics Test Program (ATP) as a two-pronged strategic initiative to: (1) retain and invest in NASA aeronautics test capabilities considered strategically important to the agency and the nation, and (2) establish a strong, high level partnership with the DoD Test Resources Management Center (TRMC), stewards of the DoD test and evaluation infrastructure. Since then, approximately seventy percent of the ATP budget has been directed to underpin fixed and variable costs of facility operations within its portfolio and the balance towards strategic investments in its test facilities, including maintenance and capability upgrades. Also, a strong guiding coalition was established through the National Partnership for Aeronautics Testing (NPAT), with governance by the senior leadership of NASA s Aeronautics Research Mission Directorate (ARMD) and the DoD's TRMC. As part of its strategic planning, ATP has performed or participated in many studies and analyses, including assessments of major NASA and DoD aeronautics test capabilities, test facility condition evaluations and market research. The ATP strategy has also benefitted from unpublished RAND research and analysis by Ant n et al. (2009). Together, these various studies, reports and assessments serve as a foundation for a new, five year strategic plan that will guide ATP through FY 2014. Our vision for the future is a balanced

  13. National Advisory Committee for Aeronautics

    NASA Technical Reports Server (NTRS)

    1938-01-01

    NASA was created from the National Advisory Committee on Aeronautics in 1958. This is a photo of the members of the advisory board of NACA in 1938. NACA was the governmental organization charged with the supervision and conduct of scientific laboratory research in aeronautics. Its laboratories located at Langley Field, Virginia, provide new knowledge underlying the continuous improvement in the performance, efficiency, and safety of American aircraft. At this meeting Dr. Joesph S. Ames, President Emeritus of John Hopkins University, was re-elected Chairman, and Dr. Vannevar Bush, President- elect of the Carnegie Institution of Washington, was elected Vice Chairman. Dr. Ames' re-election as chairman was a recognition of his outstanding contributions to the science of aeronautics. He has been the leading scientific member of the Committee for over twenty-three years and chairman for eleven years. Under his visionary leadership the great laboratories of the N.A.C.A. at Langley Field have been developed. Left to Right: Hon. C. M. Hester, Administrator, Civil Aeronautics Authority Captain S. M. Kraus, U.S.N. Brig. General A. W. Robins, Chief, Materiel Division, Army Air Corps. Dr. L.J. Biggs, Director, National Bureau of Standards Dr. E.P. Warner Dr. Orville Wright Dr. Joesph S. Ames, Chairman Dr. C.J. Abbot, Secretary, Smithsonian Institution J.F. Victory, Secretary Rear Adm. A.B. Cook, U.S.N., Chief, Bureau Aeronautics Authority Dr. Vannevar Bush Dr. J.C. Hunsaker Dr. G.W. Lewis, Director of Aeronautical Research. Absent: Col. Charles A. Lindbergh and Maj. Gen. H. 'Hap' Arnold, Chief, Army Air Corps. One Vacany: U.S. Weather Bureau.

  14. A CCIR aeronautical mobile satellite report

    NASA Technical Reports Server (NTRS)

    Davarian, Faramaz; Bishop, Dennis; Rogers, David; Smith, Ernest K.

    1989-01-01

    Propagation effects in the aeronautical mobile-satellite service differ from those in the fixed-satellite service and other mobile-satellite services because: small antennas are used on aircraft, and the aircraft body may affect the performance of the antenna; high aircraft speeds cause large Doppler spreads; aircraft terminals must accommodate a large dynamic range in transmission and reception; and due to their high speeds, banking maneuvers, and three-dimensional operation, aircraft routinely require exceptionally high integrity of communications, making even short-term propagation effects very important. Data and models specifically required to characterize the path impairments are discussed, which include: tropospheric effects, including gaseous attenuation, cloud and rain attenuation, fog attenuation, refraction and scintillation; surface reflection (multipath) effects; ionospheric effects such as scintillation; and environmental effects (aircraft motion, sea state, land surface type). Aeronautical mobile-satellite systems may operate on a worldwide basis, including propagation paths at low elevation angles. Several measurements of multipath parameters over land and sea were conducted. In some cases, laboratory simulations are used to compare measured data and verify model parameters. The received signals is considered in terms of its possible components: a direct wave subject to atmospheric effects, and a reflected wave, which generally contains mostly a diffuse component.

  15. Propulsion technology for an advanced subsonic transport

    NASA Technical Reports Server (NTRS)

    Beheim, M. A.; Antl, R. J.; Povolny, J. H.

    1972-01-01

    Engine design studies for future subsonic commercial transport aircraft were conducted in parallel with airframe studies. These studies surveyed a broad distribution of design variables, including aircraft configuration, payload, range, and speed, with particular emphasis on reducing noise and exhaust emissions without severe economic and performance penalties. The results indicated that an engine for an advanced transport would be similar to the currently emerging turbofan engines. Application of current technology in the areas of noise suppression and combustors imposed severe performance and economic penalties.

  16. Rectangular subsonic jet flow field measurements

    NASA Technical Reports Server (NTRS)

    Morrison, Gerald L.; Swan, David H.

    1990-01-01

    Flow field measurements of three subsonic rectangular cold air jets are presented. The three cases had aspect ratios of 1x2, 1x4 at a Mach number of 0.09 and an aspect ratio of 1x2 at a Mach number of 0.9. All measurements were made using a 3-D laser Doppler anemometer system. The data includes the mean velocity vector, all Reynolds stress tensor components, turbulent kinetic energy and velocity correlation coefficients. The data are presented in tabular and graphical form. No analysis of the measured data or comparison to other published data is made.

  17. Computational fluid dynamic studies of a solid and ribbon 12-gore parachute canopy in subsonic and supersonic flow

    SciTech Connect

    Nelsen, J.M.

    1995-06-01

    Computational fluid dynamic studies of 3-D, fixed geometry, gore-shaped parachute canopies are presented. Both solid and ribbon canopies with a 10% vent diameter are investigated. The flowfields analyzed are laminar and compressible, broaching both the subsonic and supersonic regimes. Results presented include characterization of the local and global flowfields and the internal and external canopy surface pressure distributions. The canopy surface pressure distributions may be utilized in subsequent structural analyses to assess the integrity of the parachute canopy fabric components.

  18. FPGA development for high altitude subsonic parachute testing

    NASA Technical Reports Server (NTRS)

    Kowalski, James E.; Gromov, Konstantin G.; Konefat, Edward H.

    2005-01-01

    This paper describes a rapid, top down requirements-driven design of a Field Programmable Gate Array (FPGA) used in an Earth qualification test program for a new Mars subsonic parachute. The FPGA is used to process and control storage of telemetry data from multiple sensors throughout launch, ascent, deployment and descent phases of the subsonic parachute test.

  19. FPGA development for high altitude subsonic parachute testing

    NASA Technical Reports Server (NTRS)

    Kowalski, James E.; Konefat, Edward H.; Gromovt, Konstantin

    2005-01-01

    This paper describes a rapid, top down requirements-driven design of an FPGA used in an Earth qualification test program for a new Mars subsonic parachute. The FPGA is used to process and store data from multiple sensors at multiple rates during launch, ascent, deployment and descent phases of the subsonic parachute test.

  20. High altitude subsonic parachute field programmable gate array

    NASA Technical Reports Server (NTRS)

    Kowalski, James E.; Gromov, Konstantin; Konefat, Edward H.

    2005-01-01

    This paper describes a rapid, top down requirements-driven design of an FPGA used in an Earth qualification test program for a new Mars subsonic parachute. The FPGA is used to process and control storage of telemetry data from multiple sensors throughout; launch, ascent, deployment and descent phases of the subsonic parachute test.

  1. 1997 NASA Academy in Aeronautics

    NASA Technical Reports Server (NTRS)

    Andrisani, Dominick, II

    1998-01-01

    The NASA Academy in Aeronautics at the Dryden Flight Research Center (DFRC) was a ten-week summer leadership training program conducted for the first time in the summer of 1997. Funding was provided by a contract between DFRC and Purdue University. Mr. Lee Duke of DFRC was the contract monitor, and Professor Dominick Andrisani was the principal investigator. Five student research associates participated in the program. Biographies of the research associates are given in Appendix 1. Dominick Andrisani served as Dean of the NASA Academy in Aeronautics. NASA Academy in Aeronautics is a unique summer institute of higher learning that endeavors to provide insight into all of the elements that make NASA aeronautical research possible. At the same time the Academy assigns the research associate to be mentored by one of NASA!s best researchers so that they can contribute towards an active flight research program. Aeronautical research and development are an investment in the future, and NASA Academy is an investment in aeronautical leaders of the future. The Academy was run by the Indiana Space Grant Consortium at Purdue in strategic partnership with the National Space Grant College and Fellowship Program. Research associates at the Academy were selected with help from the Space Grant Consortium that sponsored the research associate. Research associate stipend and travel to DFRC were paid by the students' Space Grant Consortium. All other student expenses were paid by the Academy. Since the Academy at DFRC had only five students the opportunity for individual growth and attention was unique in the country. About 30% of the working time and most of the social time of the students were be spent as a "group" or "team." This time was devoted to exchange of ideas, on forays into the highest levels of decision making, and in executing aeronautical research. This was done by interviewing leaders throughout the aerospace industry, seminars, working dinners, and informal

  2. Cavity Unsteady-Pressure Measurements at Subsonic and Transonic Speeds

    NASA Technical Reports Server (NTRS)

    Tracy, Maureen B.; Plentovich, E. B.

    1997-01-01

    An experimental investigation was conducted in the Langley 8-Foot Transonic Pressure Tunnel to determine the flow characteristics of rectangular cavities with varying relative dimensions at subsonic and transonic speeds. Cavities were tested with width-to-depth ratios of 1, 4, 8, and 16 for length-to-depth ratios l/h of 1 through 17.5. The maximum cavity depth was 2.4 in., and the turbulent boundary layer approaching the cavity was approximately 0.5 in. thick. Unsteady- and mean static-pressure measurements were made at free-stream Mach numbers from 0.20 to 0.95 at a unit Reynolds number per foot of approximately 3 x 10(exp 6); however, only unsteady-pressure results are presented in this paper. Results indicate that as l/h increases, cavity flows changed from resonant to nonresonant with resonant amplitudes decreasing gradually. Resonant spectra are obtained largely in cavities with mean static-pressure distributions characteristic of open and transitional flows. Resonance sometimes occurred for closed flow. Increasing cavity width or decreasing cavity depth while holding l/h fixed had the effect of increasing resonant amplitudes and sometimes induced resonance. The effects due to changes in width are more pronounced. Decreasing Mach number has the effect of broadening the resonances.

  3. Aeronautics. America in Space: The First Decade.

    ERIC Educational Resources Information Center

    Anderton, David A.

    The major research and developments in aeronautics during the late 1950's and 1960's are reviewed descriptively with a minimum of technical content. Topics covered include aeronautical research, aeronautics in NASA, The National Advisory Committee for Aeronautics, the X-15 Research Airplane, variable-sweep wing design, the Supersonic Transport…

  4. 14 CFR 77.35 - Aeronautical studies.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Aeronautical studies. 77.35 Section 77.35 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRSPACE OBJECTS AFFECTING NAVIGABLE AIRSPACE (Eff. until 1-18-11) Aeronautical Studies of Effect of...

  5. 14 CFR 77.35 - Aeronautical studies.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aeronautical studies. 77.35 Section 77.35 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRSPACE OBJECTS AFFECTING NAVIGABLE AIRSPACE Aeronautical Studies of Effect of Proposed Construction on...

  6. NASA/University Conference on Aeronautics

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The proceedings of a conference on the future of aeronautics are presented. The subjects discussed include the following: (1) aeronautics and the education of the engineer, (2) technical trends in aeronautics, and (3) the role of the university in aeronautics. The technical trends in aeronautics are concerned with aircraft noise control, the effect of the aircraft on the environment, airborne electronics for automated flight, and trends in aircraft design.

  7. An Overview of NASA's SubsoniC Research Aircraft Testbed (SCRAT)

    NASA Technical Reports Server (NTRS)

    Baumann, Ethan; Hernandez, Joe; Ruhf, John

    2013-01-01

    National Aeronautics and Space Administration Dryden Flight Research Center acquired a Gulfstream III (GIII) aircraft to serve as a testbed for aeronautics flight research experiments. The aircraft is referred to as SCRAT, which stands for SubsoniC Research Aircraft Testbed. The aircraft’s mission is to perform aeronautics research; more specifically raising the Technology Readiness Level (TRL) of advanced technologies through flight demonstrations and gathering high-quality research data suitable for verifying the technologies, and validating design and analysis tools. The SCRAT has the ability to conduct a range of flight research experiments throughout a transport class aircraft’s flight envelope. Experiments ranging from flight-testing of a new aircraft system or sensor to those requiring structural and aerodynamic modifications to the aircraft can be accomplished. The aircraft has been modified to include an instrumentation system and sensors necessary to conduct flight research experiments along with a telemetry capability. An instrumentation power distribution system was installed to accommodate the instrumentation system and future experiments. An engineering simulation of the SCRAT has been developed to aid in integrating research experiments. A series of baseline aircraft characterization flights has been flown that gathered flight data to aid in developing and integrating future research experiments. This paper describes the SCRAT’s research systems and capabilities

  8. Simultaneous, Unsteady PIV and Photogrammetry Measurements of a Tension-Cone Decelerator in Subsonic Flow

    NASA Technical Reports Server (NTRS)

    Schairer, Edward T.; Heineck, James T.; Walker, Louise Ann; Kushner, Laura Kathryn; Zilliac, Gregory

    2010-01-01

    This paper describes simultaneous, synchronized, high-frequency measurements of both unsteady flow in the wake of a tension-cone decelerator in subsonic flow (by PIV) and the unsteady shape of the decelerator (by photogrammetry). The purpose of these measurements was to develop the test techniques necessary to validate numerical methods for computing fluid-structure interactions of flexible decelerators. A critical need for this effort is to map fabric surfaces that have buckled or wrinkled so that code developers can accurately represent them. This paper describes a new photogrammetric technique that performs this measurement. The work was done in support of the Entry, Descent, and Landing discipline within the Supersonics Project of NASA s Fundamental Aeronautics Program.

  9. Rectangular subsonic jet flow field measurements

    NASA Technical Reports Server (NTRS)

    Morrison, Gerald L.; Swan, David H.

    1989-01-01

    Flow field measurements are presented of 3 subsonic rectangular cold air jets. The 3 cases presented had aspect ratios of 1 x 2, 1 x 4 at a Mach number of 0.09 and an aspect ratio of 1 x 2 at a Mach number of 0.9. All measurements were made using a 3-D laser Doppler anemoneter system. The presented data includes the mean velocity vector, all Reynolds stress tensor components, turbulent kinetic energy and velocity correlation coefficients. The data is presented in tabular and graphical form. No analysis of the measured data or comparison to other published data is made. All tabular data are available in ASCII format on MS-DOS compatible disks.

  10. a Numerical Model for Subsonic Acoustic Choking.

    NASA Astrophysics Data System (ADS)

    Walkington, Noel John

    In aircraft turbofan inlets, fan generated noise is observed experimentally to be significantly attenuated at high subsonic inlet Mach numbers. This phenomenon cannot be predicted by linear acoustic theory. In order to study the physical process by which this may occur, a numerical algorithm has been developed to solve a related nonlinear problem in one dimensional gas dynamics. The nonlinear solution admits the possibility of wave steepening and shock waves. Approximate solutions are obtained using several finite difference schemes. The boundary conditions required to model an acoustic source and an anechoic termination are developed. The numerical solutions agree closely with those obtained using the method of matched asymptotic expansions. Solutions involving shock waves exhibit a large reduction in the ratio of transmitted to incident power. This offers an explanation for acoustic choking. The results indicate that more power is dissipated as the Mach number, sound amplitude and frequency are increased. These observations are in agreement with those observed experimentally.

  11. On the stability of subsonic thermal fronts

    SciTech Connect

    Ibanez S, Miguel H.; Shchekinov, Yuri; Bessega L, Maria C.

    2005-08-15

    The stability of subsonic thermal fronts against corrugation is analyzed and an exact dispersion relation is obtained taking into account the compressibility of the gas. For heat fronts, this dispersion equation has an unstable root ({omega}{sub ex}) corresponding to the Landau-Darrieus unstable mode ({omega}{sub 0}) modified by the compressional effects. In particular, the exact solution shows a conspicuous maximum very close to the value of the intake Mach number M{sub 1} at which a Chapman-Jouguet deflagration wave behind the heat front is formed. Cooling fronts are stable for corrugation-like disturbances. A maximum damping as well as a maximum in the frequency occur at a value of M{sub 1} depending on the value of the normalized cooling q.

  12. Technical needs and research opportunities provided by projected aeronautical and space systems

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.

    1992-01-01

    The overall goal of the present task is to identify the enabling and supporting technologies for projected aeronautical and space systems. A detailed examination was made of the technical needs in the structures, dynamics and materials areas required for the realization of these systems. Also, the level of integration required with other disciplines was identified. The aeronautical systems considered cover the broad spectrum of rotorcraft; subsonic, supersonic and hypersonic aircraft; extremely high-altitude aircraft; and transatmospheric vehicles. The space systems considered include space transportation systems; spacecrafts for near-earth observation; spacecrafts for planetary and solar exploration; and large space systems. A monograph is being compiled which summarizes the results of this study. The different chapters of the monograph are being written by leading experts from governmental laboratories, industry and universities.

  13. Pressure recovery performance of conical diffusers at high subsonic Mach numbers

    NASA Technical Reports Server (NTRS)

    Dolan, F. X.; Runstadler, P. W., Jr.

    1973-01-01

    The pressure recovery performance of conical diffusers has been measured for a wide range of geometries and inlet flow conditions. The approximate level and location (in terms of diffuser geometry of optimum performance were determined. Throat Mach numbers from low subsonic (m sub t equals 0.2) through choking (m sub t equals 1.0) were investigated in combination with throat blockage from 0.03 to 0.12. For fixed Mach number, performance was measured over a fourfold range of inlet Reynolds number. Maps of pressure recovery are presented as a function of diffuser geometry for fixed sets of inlet conditions. The influence of inlet blockage, throat Mach number, and inlet Reynolds number is discussed.

  14. Aeronautical record : no. 1 (to June, 1923)

    NASA Technical Reports Server (NTRS)

    1923-01-01

    "...considerations have prompted us to pay special attention to the development of aeronautical industries and aerial navigation as a commercial enterprise and to publish an analytical review of events in the aeronautical world and of the attendant problems."

  15. An aeronautical mobile satellite experiment

    NASA Technical Reports Server (NTRS)

    Jedrey, T. C.; Dessouky, K. I.; Lay, N. E.

    1990-01-01

    The various activities and findings of a NASA/FAA/COMSAT/INMARSAT collaborative aeronautical mobile satellite experiment are detailed. The primary objective of the experiment was to demonstrate and evaluate an advanced digital mobile satellite terminal developed at the Jet Propulsion Laboratory under the NASA Mobile Satellite Program. The experiment was a significant milestone for NASA/JPL, since it was the first test of the mobile terminal in a true mobile satellite environment. The results were also of interest to the general mobile satellite community because of the advanced nature of the technologies employed in the terminal.

  16. Program of Research in Aeronautics

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A prospectus of the educational and research opportunities available at the Joint Institute for Advancement of Flight Sciences, operated at NASA Langley Research Center in conjunction with George Washington University's School of Engineering and Applied Sciences is presented. Requirements of admission to various degree programs are given as well as the course offerings in the areas of acoustics, aeronautics, environmental modelling, materials science, and structures and dynamics. Research facilities for each field of study are described. Presentations and publications (including dissertations and theses) generated by each program are listed as well as faculty members visting scientists and engineers.

  17. 7. VIEW NORTHWEST OF SUBSONIC WIND TUNNEL BUILDING TO TRANSONIC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW NORTHWEST OF SUBSONIC WIND TUNNEL BUILDING TO TRANSONIC WIND TUNNEL BUILDING - Naval Surface Warfare Center, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD

  18. 5. VIEW NORTHWEST OF SUBSONIC WIND TUNNEL BUILDING TO TRANSONIC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW NORTHWEST OF SUBSONIC WIND TUNNEL BUILDING TO TRANSONIC WIND TUNNEL BUILDING - Naval Surface Warfare Center, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD

  19. 1. VIEW SOUTHWEST OF SUBSONIC WIND TUNNEL BUILDING AND TRANSONIC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW SOUTHWEST OF SUBSONIC WIND TUNNEL BUILDING AND TRANSONIC WIND TUNNEL BUILDING - Naval Surface Warfare Center, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD

  20. 3. VIEW SOUTHEAST OF TRANSONIC WIND TUNNEL BUILDING TO SUBSONIC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW SOUTHEAST OF TRANSONIC WIND TUNNEL BUILDING TO SUBSONIC WIND TUNNEL BUILDING - Naval Surface Warfare Center, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD

  1. NASA's aeronautics research and technology base

    NASA Technical Reports Server (NTRS)

    1979-01-01

    NASA's research technology base in aeronautics is assessed in terms of: (1) US aeronautical technology needs and requirements in the future; (2) objectives of the aeronautics program; (3) magnitude and scope of the program; and (4) research and technology performed by NASA and other research organizations.

  2. Questions & Answers about Aeronautics and Space.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    Answers to 27 questions about aeronautics, space, and the National Aeronautics and Space Administration (NASA) are provided in this pamphlet. Among the topics dealt with in these questions are: costs of the space program; NASA's role in aeronautics; benefits received from the space program; why the United States hasn't developed means of rescuing…

  3. 14 CFR 61.105 - Aeronautical knowledge.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Aeronautical knowledge. 61.105 Section 61.105 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... log ground training from an authorized instructor or complete a home-study course on the...

  4. 14 CFR 61.97 - Aeronautical knowledge.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aeronautical knowledge. 61.97 Section 61.97 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN... ground training from an authorized instructor or complete a home-study course on the...

  5. 14 CFR 61.97 - Aeronautical knowledge.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Aeronautical knowledge. 61.97 Section 61.97 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN... ground training from an authorized instructor or complete a home-study course on the...

  6. 14 CFR 61.125 - Aeronautical knowledge.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aeronautical knowledge. 61.125 Section 61.125 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... log ground training from an authorized instructor, or complete a home-study course, on...

  7. 14 CFR 61.105 - Aeronautical knowledge.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aeronautical knowledge. 61.105 Section 61.105 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... log ground training from an authorized instructor or complete a home-study course on the...

  8. 14 CFR 61.125 - Aeronautical knowledge.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Aeronautical knowledge. 61.125 Section 61.125 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... log ground training from an authorized instructor, or complete a home-study course, on...

  9. Aeronautical audio broadcasting via satellite

    NASA Technical Reports Server (NTRS)

    Tzeng, Forrest F.

    1993-01-01

    A system design for aeronautical audio broadcasting, with C-band uplink and L-band downlink, via Inmarsat space segments is presented. Near-transparent-quality compression of 5-kHz bandwidth audio at 20.5 kbit/s is achieved based on a hybrid technique employing linear predictive modeling and transform-domain residual quantization. Concatenated Reed-Solomon/convolutional codes with quadrature phase shift keying are selected for bandwidth and power efficiency. RF bandwidth at 25 kHz per channel, and a decoded bit error rate at 10(exp -6) with E(sub b)/N(sub o) at 3.75 dB are obtained. An interleaver, scrambler, modem synchronization, and frame format were designed, and frequency-division multiple access was selected over code-division multiple access. A link budget computation based on a worst-case scenario indicates sufficient system power margins. Transponder occupancy analysis for 72 audio channels demonstrates ample remaining capacity to accommodate emerging aeronautical services.

  10. The future of very large subsonic transports

    NASA Technical Reports Server (NTRS)

    Justice, R. Steven; Hays, Anthony P.; Parrott, Ed L.

    1996-01-01

    The Very Large Subsonic Transport (VLST) is a multi-use commercial passenger, commercial cargo, and military airlifter roughly 50% larger than the current Lockheed C-5 and Boeing 747. Due to the large size and cost of the VLST, it is unlikely that the commercial market can support more than one aircraft production line, while declining defense budgets will not support a dedicated military VLST. A successful VLST must therefore meet airline requirements for more passenger and cargo capacity on congested routes into slot-limited airports and also provide a cost effective heavy airlift capacity to support the overseas deployment of US military forces. A successful VLST must satisfy three key missions: commercial passenger service with nominal seating capacity at a minimum of 650 passengers with a range capability of 7,000 to 10,000 miles; commercial air cargo service for containerized cargo to support global manufacturing of high value added products, 'just-in-time' parts delivery, and the general globalization of trade; and military airlift with adequate capacity to load current weapon systems, with minimal break-down, over global ranges (7,000 to 10,000 miles) required to reach the operational theater without need of overseas bases and midair refueling. The development of the VLST poses some technical issues specific to large aircraft, but also key technologies applicable to a wide range of subsonic transport aircraft. Key issues and technologies unique to the VLST include: large composite structures; dynamic control of a large, flexible structure; aircraft noise requirements for aircraft over 850,000 pounds; and increased aircraft separation due to increased wake vortex generation. Other issues, while not unique to the VLST, will critically impact the ability to build an efficient and affordable aircraft include: active control systems: Fly-By-Light/Power-By-Wire (FBL/PBW); high lift systems; flight deck associate systems; laminar flow; emergency egress; and

  11. SHARP: Subsonic High Altitude Research Platform

    NASA Technical Reports Server (NTRS)

    Beals, Todd; Burton, Craig; Cabatan, Aileen; Hermano, Christine; Jones, Tom; Lee, Susan; Radloff, Brian

    1991-01-01

    The Universities Space Research Association is sponsoring an undergraduate program which is geared to designing an aircraft that can study the ozone layer at the equator. This aircraft must be able to satisfy four mission profiles. Mission one is a polar mission that ranges from Chile to the South Pole and back to Chile, a total range of 6000 n.mi. at 100,000 ft with a 2500 lb payload. The second mission is also a polar mission, with an altitude of 70,000 ft and an increased payload of 4000 lbs. For the third mission, the aircraft will takeoff at NASA Ames, cruise at 100,000 ft carrying a 2500 lb payload, and land at Puerto Montt, Chile. The final mission requires the aircraft to take off at NASA Ames, cruise at 100,000 ft with a 1000 lb payload, make an excursion to 120,000 ft, and land at Howard AFB, Panama. Three missions require that a subsonic Mach number be maintained due to constraints imposed by the air sampling equipment. The aircraft need not be manned for all four missions. Three aircraft configurations have been determined to be the most suitable for meeting the above requirements. In the event that a requirement cannot be obtained within the given constraints, recommendations for proposal modifications are given.

  12. The numerical simulation of subsonic flutter

    NASA Technical Reports Server (NTRS)

    Strganac, Thomas W.; Mitchum, Maria V.; Mook, Dean T.

    1987-01-01

    The present paper describes a numerical simulation of unsteady, subsonic aeroelastic responses. The technique accounts for aerodynamic nonlinearities associated with angles of attack, vortex-dominated flow, static deformations, and unsteady behavior. The fluid and the wing together are treated as a single dynamic system, and the equations of motion for the structure and flowfield are integrated simultaneously and interactively in the time domain. The method employs an iterative scheme based on a predictor-corrector technique. The aerodynamic loads are computed by the general unsteady vortex-lattice method and are determined simultaneously with the motion of the wing. Two models are used to demonstrate the technique: a rigid wing on an elastic support experiencing plunge and pitch about the elastic axis, and a continuous wing rigidly supported at the root chord experiencing spanwise bending and twisting. The time domain solution coupled with the unsteady vortex-lattice method provides the capability of graphically depicting wing and wake motion. Several graphs that illustrate the time domain behavior of the wing and wake are presented.

  13. Subsonic-transonic stall flutter study

    NASA Technical Reports Server (NTRS)

    Stardter, H.

    1979-01-01

    The objective of the Subsonic/Transonic Stall Flutter Program was to obtain detailed measurements of both the steady and unsteady flow field surrounding a rotor and the mechanical state of the rotor while it was operating in both steady and flutter modes to provide a basis for future analysis and for development of theories describing the flutter phenomenon. The program revealed that while all blades flutter at the same frequency, they do not flutter at the same amplitude, and their interblade phase angles are not equal. Such a pattern represents the superposition of a number of rotating nodal diameter patterns, each characterized by a different amplitude and different phase indexing, but each rotating at a speed that results in the same flutter frequency as seen in the rotor system. Review of the steady pressure contours indicated that flutter may alter the blade passage pressure distribution. The unsteady pressure amplitude contour maps reveal regions of high unsteady pressure amplitudes near the leading edge, lower amplitudes near the trailing.

  14. Advanced Subsonic Airplane Design and Economic Studies

    NASA Technical Reports Server (NTRS)

    Liebeck, Robert H.; Andrastek, Donald A.; Chau, Johnny; Girvin, Raquel; Lyon, Roger; Rawdon, Blaine K.; Scott, Paul W.; Wright, Robert A.

    1995-01-01

    A study was made to examine the effect of advanced technology engines on the performance of subsonic airplanes and provide a vision of the potential which these advanced engines offered. The year 2005 was selected as the entry-into-service (EIS) date for engine/airframe combination. A set of four airplane classes (passenger and design range combinations) that were envisioned to span the needs for the 2005 EIS period were defined. The airframes for all classes were designed and sized using 2005 EIS advanced technology. Two airplanes were designed and sized for each class: one using current technology (1995) engines to provide a baseline, and one using advanced technology (2005) engines. The resulting engine/airframe combinations were compared and evaluated on the basis on sensitivity to basic engine performance parameters (e.g. SFC and engine weight) as well as DOC+I. The advanced technology engines provided significant reductions in fuel burn, weight, and wing area. Average values were as follows: reduction in fuel burn = 18%, reduction in wing area = 7%, and reduction in TOGW = 9%. Average DOC+I reduction was 3.5% using the pricing model based on payload-range index and 5% using the pricing model based on airframe weight. Noise and emissions were not considered.

  15. NASA's Subsonic Jet Transport Noise Reduction Research

    NASA Technical Reports Server (NTRS)

    Powell, Clemans A.; Preisser, John S.

    2000-01-01

    Although new jet transport airplanes in today s fleet are considerably quieter than the first jet transports introduced about 40 years ago, airport community noise continues to be an important environmental issue. NASA s Advanced Subsonic Transport (AST) Noise Reduction program was begun in 1994 as a seven-year effort to develop technology to reduce jet transport noise 10 dB relative to 1992 technology. This program provides for reductions in engine source noise, improvements in nacelle acoustic treatments, reductions in the noise generated by the airframe, and improvements in the way airplanes are operated in the airport environs. These noise reduction efforts will terminate at the end of 2001 and it appears that the objective will be met. However, because of an anticipated 3-8% growth in passenger and cargo operations well into the 21st Century and the slow introduction of new the noise reduction technology into the fleet, world aircraft noise impact will remain essentially constant until about 2020 to 2030 and thereafter begin to rise. Therefore NASA has begun planning with the Federal Aviation Administration, industry, universities and environmental interest groups in the USA for a new noise reduction initiative to provide technology for significant further reductions.

  16. The Cylinder and Semicylinder in Subsonic Flow

    NASA Technical Reports Server (NTRS)

    Bingham, Harry J.; Weimer, David K..; Griffith, Wayland

    1952-01-01

    In studying the diffraction of shock waves around various two-dimensional obstacles we have observed that flow separation and the formation of vortices contributes in an important way to transient loading of the obstacle. The cases of a cylinder and semicylinder are especially interesting because the breakaway point is not clearly defined as it is for objects having sharp corners. Accordingly a number of experiments have been made in the shock tube to observe the influence of Reynolds number and Mach number on the transient flow patterns about a cylinder and about a semicylinder mounted on a smooth plane. Some differences might be anticipated since the plane would impose a symmetry on the flow and produce a viscous boundary layer for which there is no counterpart with the cylinder. In the course of these experiments it was noted that a condition of steady subsonic flow about both the cylinder and semicylinder was approached. Thus a comparison with von Karrnan's theoretical calculation of the drag on a cylinder, from certain characteristics of its wake or "vortex street", was undertaken.

  17. Subsonic Ultra Green Aircraft Research: Phase II- Volume III-Truss Braced Wing Aeroelastic Test Report

    NASA Technical Reports Server (NTRS)

    Bradley, Marty K.; Allen, Timothy J.; Droney, Christopher

    2014-01-01

    This Test Report summarizes the Truss Braced Wing (TBW) Aeroelastic Test (Task 3.1) work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team, which includes the time period of February 2012 through June 2014. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, Virginia Tech, and NextGen Aeronautics. The model was fabricated by NextGen Aeronautics and designed to meet dynamically scaled requirements from the sized full scale TBW FEM. The test of the dynamically scaled SUGAR TBW half model was broken up into open loop testing in December 2013 and closed loop testing from January 2014 to April 2014. Results showed the flutter mechanism to primarily be a coalescence of 2nd bending mode and 1st torsion mode around 10 Hz, as predicted by analysis. Results also showed significant change in flutter speed as angle of attack was varied. This nonlinear behavior can be explained by including preload and large displacement changes to the structural stiffness and mass matrices in the flutter analysis. Control laws derived from both test system ID and FEM19 state space models were successful in suppressing flutter. The control laws were robust and suppressed flutter for a variety of Mach, dynamic pressures, and angle of attacks investigated.

  18. Subsonic Aerodynamics of Spinning and Non-Spinning Type 200 Lightcraft: Progress Report

    NASA Astrophysics Data System (ADS)

    Kenoyer, David A.; Myrabo, Leik N.

    2010-05-01

    A combined experimental and numerical investigation of subsonic aerodynamics for Type 200 laser lightcraft is underway for both spinning and non-spinning cases. A 12.2 cm diameter aluminum model with a "closed" annular airbreathing inlet was fitted to a sting balance in RPI's 61 cm by 61 cm subsonic wind tunnel. Aerodynamic forces and moments were measured first for the non-spinning case vs. angle of attack, at several freestream flow velocities (e.g., 30, 45, and 60 m/s) to assess Reynolds number effects. The CFD analysis was performed for 0-180° angles of attack for a fixed coordinate system (i.e., non-spinning Type 200 model), and predictions compared favorably with the experimental data. In the near future, for the spinning case, a brushless electric motor has been installed to rotate the wind tunnel model at 3000 to 13,000 RPM; Magnus force effects upon the coefficients (Cd, Cl, and Cm) are expected to reveal interesting departures from the non-spinning database in forthcoming experiments.

  19. Source characterization of a subsonic jet by using near-field acoustical holography.

    PubMed

    Lee, Moohyung; Bolton, J Stuart

    2007-02-01

    In the present study, patch near-field acoustical holography was used in conjunction with a multireference, cross-spectral sound pressure measurement to visualize the sound field emitted by a subsonic jet and to predict its farfield radiation pattern. A strategy for microphone array design is described that accounts for the low spatial coherence of aeroacoustic sources and for microphone self-noise resulting from entrained flow near the jet. In the experiments, a 0.8-cm-diameter burner was used to produce a subsonic, turbulent jet with a Mach number of 0.26. Six fixed, linear arrays holding eight reference microphones apiece were disposed circumferentially around the jet, and a circular array holding sixteen, equally spaced field microphones was traversed along the jet axis to measure the sound field on a 30-cm-diameter cylindrical surface enclosing the jet. The results revealed that the jet could be modeled as a combination of eleven uncorrelated dipole-, quadrupole-, and octupole-like sources, and the contribution of each source type to the total radiated sound power could be identified. Both the total sound field reconstructed in a three-dimensional space and the farfield radiation directivity obtained by using the latter model were successfully validated by comparisons to directly measured results.

  20. Aeronautical Engineering: A Continuing Bibliography. Supplement 421

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP#2000-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.

  1. Mobile-ip Aeronautical Network Simulation Study

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Tran, Diepchi T.

    2001-01-01

    NASA is interested in applying mobile Internet protocol (mobile-ip) technologies to its space and aeronautics programs. In particular, mobile-ip will play a major role in the Advanced Aeronautic Transportation Technology (AATT), the Weather Information Communication (WINCOMM), and the Small Aircraft Transportation System (SATS) aeronautics programs. This report presents the results of a simulation study of mobile-ip for an aeronautical network. The study was performed to determine the performance of the transmission control protocol (TCP) in a mobile-ip environment and to gain an understanding of how long delays, handoffs, and noisy channels affect mobile-ip performance.

  2. 14 CFR 61.125 - Aeronautical knowledge.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... and effects of exceeding aircraft performance limitations; (9) Use of aeronautical charts and a..., and emergency operations appropriate to the aircraft; (14) Night and high-altitude operations;...

  3. 14 CFR 61.125 - Aeronautical knowledge.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... and effects of exceeding aircraft performance limitations; (9) Use of aeronautical charts and a..., and emergency operations appropriate to the aircraft; (14) Night and high-altitude operations;...

  4. 14 CFR 61.125 - Aeronautical knowledge.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... and effects of exceeding aircraft performance limitations; (9) Use of aeronautical charts and a..., and emergency operations appropriate to the aircraft; (14) Night and high-altitude operations;...

  5. 76 FR 16643 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-24

    ... From the Federal Register Online via the Government Publishing Office NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Meeting AGENCY: National Aeronautics... Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space Administration announces...

  6. 77 FR 61432 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-09

    ... From the Federal Register Online via the Government Publishing Office NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Meeting AGENCY: National Aeronautics... Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space Administration announces...

  7. 75 FR 50782 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-17

    ... From the Federal Register Online via the Government Publishing Office NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Meeting AGENCY: National Aeronautics... Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space Administration announces...

  8. 76 FR 40753 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-11

    ... From the Federal Register Online via the Government Publishing Office NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Meeting AGENCY: National Aeronautics... Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space Administration announces...

  9. 75 FR 41240 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-15

    ... From the Federal Register Online via the Government Publishing Office NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Meeting AGENCY: National Aeronautics... Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space Administration announces...

  10. Fundamental Aeronautics Program. Subsonic Rotary Wing Project: SRW Aeromechanics Overview/UH-60 Airloads Wind Tunnel Test Summary

    NASA Technical Reports Server (NTRS)

    Norman, Thomas R.

    2011-01-01

    Objectives: a) Advance the understanding of phenomena in aerodynamics, dynamics, and active control of rotorcraft. b) Develop and validate first-principles tools. c) Acquire data for tool validation from small and large-scale testing of existing and novel rotorcraft configurations. Recent Accomplishments include: (CFD) - Made significant improvements in structured and unstructured rotorcraft CFD methods (OVERFLOW and FUN3D). (Icing) - a) Continued development of high-fidelity icing analysis tools. b) Completed test of oscillating airfoil in Icing Research Tunnel (IRT). c) Developed plans and began detailed preparations for subscale rotor test in IRT.

  11. Subsonic potential aerodynamics for complex configurations - A general theory

    NASA Technical Reports Server (NTRS)

    Morino, L.; Kuo, C.-C.

    1974-01-01

    A general theory of subsonic potential aerodynamic flow around a lifting body having arbitrary shape and motion is presented. By using the Green function method, an integral representation for the velocity potential is obtained for both supersonic and subsonic flow. Under the small perturbation assumption, the potential at any point in the field depends only upon the values of the potential and its normal derivative on the surface of the body. On the surface of the body, this representation reduces to an integro-differential equation relating the potential and its normal derivative (which is known from the boundary conditions) on the surface. The theory is applied to finite-thickness wings in subsonic steady and oscillatory flows.

  12. Subsonic loads on wings having sharp leading edges and tips

    NASA Technical Reports Server (NTRS)

    Kandil, O. A.; Mook, D. T.; Nayfeh, A. H.

    1976-01-01

    A vortex-lattice method for predicting the aerodynamics of wings having separation at the sharp edges in incompressible flows is extended to compressible subsonic flows using a modified Prandtl-Glauert transformation. Numerical results showing the effect of freestream Mach number on the aerodynamic coefficients are compared with available experimental data for several planforms. It is shown that the proposed method is suitable for predicting the aerodynamic loads on low-aspect wings at moderate angles of attack for high subsonic freestream Mach number. The method is limited to angles of attack up to 12 deg for high subsonic freestream Mach number and to angles of attack up to 20 deg for Mach number not exceeding 0.5.

  13. Reynolds number influences in aeronautics

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M.; Yip, Long P.; Yao, Chung-Sheng; Lin, John C.; Lawing, Pierce L.; Batina, John T.; Hardin, Jay C.; Horvath, Thomas J.; Fenbert, James W.; Domack, Christopher S.

    1993-01-01

    Reynolds number, a measure of the ratio of inertia to viscous forces, is a fundamental similarity parameter for fluid flows and therefore, would be expected to have a major influence in aerodynamics and aeronautics. Reynolds number influences are generally large, but monatomic, for attached laminar (continuum) flow; however, laminar flows are easily separated, inducing even stronger, non-monatomic, Reynolds number sensitivities. Probably the strongest Reynolds number influences occur in connection with transitional flow behavior. Transition can take place over a tremendous Reynolds number range, from the order of 20 x 10(exp 3) for 2-D free shear layers up to the order of 100 x 10(exp 6) for hypersonic boundary layers. This variability in transition behavior is especially important for complex configurations where various vehicle and flow field elements can undergo transition at various Reynolds numbers, causing often surprising changes in aerodynamics characteristics over wide ranges in Reynolds number. This is further compounded by the vast parameterization associated with transition, in that any parameter which influences mean viscous flow development (e.g., pressure gradient, flow curvature, wall temperature, Mach number, sweep, roughness, flow chemistry, shock interactions, etc.), and incident disturbance fields (acoustics, vorticity, particulates, temperature spottiness, even electro static discharges) can alter transition locations to first order. The usual method of dealing with the transition problem is to trip the flow in the generally lower Reynolds number wind tunnel to simulate the flight turbulent behavior. However, this is not wholly satisfactory as it results in incorrectly scaled viscous region thicknesses and cannot be utilized at all for applications such as turbine blades and helicopter rotors, nacelles, leading edge and nose regions, and High Altitude Long Endurance and hypersonic airbreathers where the transitional flow is an innately critical

  14. Shape memory alloy actuation effect on subsonic static aeroelastic deformation of composite cantilever plate

    NASA Astrophysics Data System (ADS)

    Hussein, A. M. H.; Majid, D. L. Abdul; Abdullah, E. J.

    2016-10-01

    Shape memory alloy (SMA) is one of the smart materials that have unique properties and used recently in several aerospace applications. SMAs are metallic alloys that can recover permanent strains when they are heated above a certain temperature. In this study, the effects of SMA actuation on the composite plate under subsonic aeroelastic conditions are examined. The wind tunnel test is carried out for two configurations of a cantilever shape memory alloy composite plate with a single SMA wire fixed eccentrically. Strain gage data for both bending and torsional strain are recorded and demonstrated during the aeroelastic test for active and non-active SMA wire in two locations. The cyclic actuation of the SMA wire embedded inside the composite plate is also investigated during the aeroelastic test. The results show reduction in both bending and torsional strain of the composite plate after activation of the SMA wire during the wind tunnel test.

  15. Overview of the Langley subsonic research effort on SCR configuration

    NASA Technical Reports Server (NTRS)

    Coe, P. L., Jr.; Thomas, J. D.; Huffman, J. K.; Weston, R. P.; Schoonover, W. E., Jr.; Gentry, C. L., Jr.

    1980-01-01

    Recent advances achieved in the subsonic aerodynamics of low aspect ratio, highly swept wing designs are summarized. The most significant of these advances was the development of leading edge deflection concepts which effectively reduce leading edge flow separation. The improved flow attachment results in substantial improvements in low speed performance, significant delay of longitudinal pitch up, increased trailing edge flap effectiveness, and increased lateral control capability. Various additional theoretical and/or experimental studies are considered which, in conjunction with the leading edge deflection studies, form the basis for future subsonic research effort.

  16. Second-order subsonic airfoil theory including edge effects

    NASA Technical Reports Server (NTRS)

    Van Dyke, Milton D

    1956-01-01

    Several recent advances in plane subsonic flow theory are combined into a unified second-order theory for airfoil sections of arbitrary shape. The solution is reached in three steps: the incompressible result is found by integration, it is converted into the corresponding subsonic compressible result by means of the second-order compressibility rule, and it is rendered uniformly valid near stagnation points by further rules. Solutions for a number of airfoils are given and are compared with the results of other theories and of experiment. A straight-forward computing scheme is outlined for calculating the surface velocities and pressures on any airfoil at any angle of attack

  17. Subsonic flow over thin oblique airfoils at zero lift

    NASA Technical Reports Server (NTRS)

    Jones, Robert T

    1948-01-01

    A previous report gave calculations for the pressure distribution over thin oblique airfoils at supersonic speed. The present report extends the calculations to subsonic speeds. It is found that the flows again can be obtained by the superposition of elementary conical flow fields. In the case of the swept-back wing the pressure distributions remain qualitatively similar at subsonic and supersonic speeds. Thus a distribution similar to the Ackeret type of distribution appears on the root sections of the swept-back wing at Mach=0. The resulting positive pressure drag on the root section is balanced by negative drags on outboard sections.

  18. The VIBRA-8 Subsonic Aerodynamic Nuclear Gust Vulnerability Code.

    DTIC Science & Technology

    1979-05-01

    entries along with AA(a=O, M) as given by Eq. (12) to obtain f NP(s-*). Data for the symmetric 64A006 and 64A010 airfoils (6 and 10 percent thick...N.A.C.A. Report 1977, 1952. 5. Stivers, L.S., Jr., Effects of Subsonic Mach Number on the Forces and Pressure Distributions on Four NACA 64A-Series...Airfoil Sections at Angles of Attack as High as 280, NACA TN3162, March 1954. 6. Axelson, J.A., and Haacker, J.F., Subsonic Wing Loadings on a 450 Sweptback

  19. Economic analysis of aeronautical research and technology

    NASA Technical Reports Server (NTRS)

    Gellman, A. J.

    1982-01-01

    The appropriateness of government intervention in the civilian market for aeronautics research and technology (R&T) is examined. The economic rationale for government intervention is examined. The conclusion is that the institutional role played by NASA in civilian aeronautics R&T markets is economically justified.

  20. Multibeam satellite EIRP adaptability for aeronautical communications.

    NASA Technical Reports Server (NTRS)

    Kinal, G. V.; Bisaga, J. J.

    1973-01-01

    EIRP enhancement and management techniques, emphasizing aeronautical communications and adaptable multibeam concepts, are classified and characterized. User requirement and demand characteristics that exploit the improvement available from each technique are identified, and the relative performance improvement of each is discussed. It is concluded that aeronautical satellite communications could benefit greatly by the employment of these techniques.

  1. Review of Aeronautical Wind Tunnel Facilities

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The nation's aeronautical wind tunnel facilities constitute a valuable technological resource and make a significant contribution to the global supremacy of U.S. aircraft, both civil and military. At the request of NASA, the National Research Council's Aeronautics and Space Engineering Board organized a commitee to review the state of repair, adequacy, and future needs of major aeronautical wind tunnel facilities in meeting national goals. The comittee identified three main areas where actions are needed to sustain the capability of NASA's aeronautical wind tunnel facilities to support the national aeronautical research and development activities: tunnel maintenance and upgrading, productivity enhancement, and accommodation of new requirements (particularly in hypersonics). Each of these areas are addressed and the committee recommendations for appropriate actions presented.

  2. Interference Analysis for an Aeronautical Mobile Airport Communications System

    NASA Technical Reports Server (NTRS)

    Wilson, Jeffrey D.; Kerczewski, Robert J.

    2011-01-01

    The next generation of aeronautical communications for airport surface applications has been identified through a NASA research program and an international collaborative future communications study. The result, endorsed by both the United States and European regulatory agencies is called AeroMACS (Aeronautical Mobile Airport Communications System) and is based upon the IEEE 802.16e mobile wireless standard. Coordinated efforts to develop appropriate aviation standards for the AeroMACS system are now underway within RTCA (United States) and Eurocae (Europe). AeroMACS will be implemented in a recently allocated frequency band, 5091-5150 MHz. As this band is also occupied by fixed satellite service uplinks, AeroMACS must be designed to avoid interference with this incumbent service. The aspects of AeroMACS operation that present potential interference to the fixed satellite service are under analysis in order to enable the definition of standards that assure that such interference will be avoided. The NASA Glenn Research Center has been involved in this analysis, and the first results of modeling and simulation efforts directed at this analysis are the subject of this presentation.

  3. Interference Analysis for an Aeronautical Mobile Airport Communications System

    NASA Technical Reports Server (NTRS)

    Wilson, Jeffrey D.; Kercewski, Robert J.

    2010-01-01

    The next generation of aeronautical communications for airport surface applications has been identified through a NASA research program and an international collaborative future communications study. The result, endorsed by both the United States and European regulatory agencies is called AeroMACS (Aeronautical Mobile Airport Communications System) and is based upon the IEEE 802.16e mobile wireless standard. Coordinated efforts to develop appropriate aviation standards for the AeroMACS system are now underway within RTCA (United States) and Eurocae (Europe). AeroMACS will be implemented in a recently allocated frequency band, 5091- 5150 MHz. As this band is also occupied by fixed satellite service uplinks, AeroMACS must be designed to avoid interference with this incumbent service. The aspects of AeroMACS operation that present potential interference to the fixed satellite service are under analysis in order to enable the definition of standards that assure that such interference will be avoided. The NASA Glenn Research Center has been involved in this analysis, and the first results of modeling and simulation efforts directed at this analysis are the subject of this paper.12

  4. Near-Field Noise Computation for a Subsonic Coannular Jet

    NASA Technical Reports Server (NTRS)

    Loh, Ching Y.; Hultgren, Lennart S.; Jorgenson, Philip C. E.

    2008-01-01

    A high-Reynolds-number, subsonic coannular jet is simulated, using a three-dimensional finite-volume LES method, with emphasis on the near field noise. The nozzle geometry used is the NASA Glenn 3BB baseline model. The numerical results are generally in good agreement with existing experimental findings.

  5. 27. VIEW OF EXHAUST AND DEFLECTOR FOR SUBSONIC AERODYNAMICS RESEARCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. VIEW OF EXHAUST AND DEFLECTOR FOR SUBSONIC AERODYNAMICS RESEARCH LABORATORY, BUILDING 25C, WHICH REPLACED THE 10-FOOT WIND TUNNEL (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH

  6. 28. VIEW OF EXHAUST AND DEFLECTOR FOR SUBSONIC AERODYNAMICS RESEARCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. VIEW OF EXHAUST AND DEFLECTOR FOR SUBSONIC AERODYNAMICS RESEARCH LABORATORY, BUILDING 25C, WHICH REPLACED THE 10-FOOT WIND TUNNEL (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH

  7. 26. VIEW OF EXHAUST AND DEFLECTOR FOR SUBSONIC AERODYNAMICS RESEARCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. VIEW OF EXHAUST AND DEFLECTOR FOR SUBSONIC AERODYNAMICS RESEARCH LABORATORY, BUILDING 25C, WHICH REPLACED THE 10-FOOT WIND TUNNEL (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH

  8. Design procedure for low-drag subsonic airfoils

    NASA Technical Reports Server (NTRS)

    Peterson, J. B.; Chen, A. B.

    1975-01-01

    Airfoil has least amount of drag under given restrictions of boundary layer transition position, lift coefficient, thickness ratio, and Reynolds number based on airfoil chord. It is suitable for use as wing and propeller aircraft sections operating at subsonic speeds and for hydrofoil sections and blades for fans, compressors, turbines, and windmills.

  9. Subsonic annular wing theory with application to flow about nacelles

    NASA Technical Reports Server (NTRS)

    Mann, M. J.

    1974-01-01

    A method has recently been developed for calculating the flow over a subsonic nacelle at zero angle of attack. The method makes use of annular wing theory and boundary-layer theory and has shown good agreement with both experimental data and more complex theoretical solutions. The method permits variation of the mass flow by changing the size of a center body.

  10. The requirements for a new full scale subsonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Kelly, M. W.; Mckinney, M. O.; Luidens, R. W.

    1972-01-01

    Justification and requirements are presented for a large subsonic wind tunnel capable of testing full scale aircraft, rotor systems, and advanced V/STOL propulsion systems. The design considerations and constraints for such a facility are reviewed, and the trades between facility test capability and costs are discussed.

  11. Wing-Design Program for Subsonic or Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Carlson, H. W.; Walkley, K. B.

    1986-01-01

    Surface of mildest possible camber generated. WINGDES provides analysis, design capability and is applicable to both subsonic and supersonic flows. Optimization carried out for entire wing or for designated leading- and trailing-edge areas, for design of missionadaptive surfaces. WINGDES written in FORTRAN IV.

  12. Aeronautical Engineering: A Continuing Bibliography. Supplment 385

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-1998-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract.

  13. Center for Aeronautics and Space Information Sciences

    NASA Technical Reports Server (NTRS)

    Flynn, Michael J.

    1992-01-01

    This report summarizes the research done during 1991/92 under the Center for Aeronautics and Space Information Science (CASIS) program. The topics covered are computer architecture, networking, and neural nets.

  14. Astronautics and aeronautics, 1977: A chronology

    NASA Technical Reports Server (NTRS)

    Ritchie, E. H.

    1986-01-01

    This publication is a chronology of events during the year 1977 in the fields of aeronautical and space research, development, activity, and policy. It includes appendixes, an index, and illustrations. Chronological entries list sources for further inquiry.

  15. NASA Aeronautics: A New Strategic Vision

    NASA Video Gallery

    The aviation landscape is shifting. Emerging global trends are creating challenges that are changing the face of aviation for the next 20-40 years. How is NASA Aeronautics responding? With a new st...

  16. NASA Aeronautics Showcased at Balloon Fiesta

    NASA Video Gallery

    Visitors at the 2010 International Balloon Fiesta in Albuquerque, N.M., got visual stimulation from hundreds of colorful hot-air balloons soaring skyward, but also learned about NASA's aeronautics ...

  17. Aeronautics and space report of the President

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This report describes the activities and accomplishments of all agencies of the United States in the fields of aeronautics and space science during FY 1994. Activity summaries are presented for the following areas: space launch activities, space science, space flight and space technology, space communications, aeronuatics, and studies of the planet Earth. Several appendices providing data on U.S. launch activities, the Federal budget for space and aeronautics, remote sensing capabilities, and space policy are included.

  18. Aeronautical Wind Tunnels, Europe and Asia

    DTIC Science & Technology

    2006-02-01

    AERONAUTICAL WIND TUNNELS EUROPE AND ASIA Researchers: Katarina David Jenele Gorham Sarah Kim Patrick Miller... Wind Tunnels Europe and Asia 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f...18 Library of Congress – Federal Research Division Aeronautical Wind Tunnels Europe and Asia PREFACE 1 This catalog is a compilation of data on

  19. Subsonic Ultra Green Aircraft Research. Phase II - Volume I; Truss Braced Wing Design Exploration

    NASA Technical Reports Server (NTRS)

    Bradley, Marty K.; Droney, Christopher K.; Allen, Timothy J.

    2015-01-01

    This report summarizes the Truss Braced Wing (TBW) work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team, consisting of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, Georgia Tech, Virginia Tech, NextGen Aeronautics, and Microcraft. A multi-disciplinary optimization (MDO) environment defined the geometry that was further refined for the updated SUGAR High TBW configuration. Airfoil shapes were tested in the NASA TCT facility, and an aeroelastic model was tested in the NASA TDT facility. Flutter suppression was successfully demonstrated using control laws derived from test system ID data and analysis models. Aeroelastic impacts for the TBW design are manageable and smaller than assumed in Phase I. Flutter analysis of TBW designs need to include pre-load and large displacement non-linear effects to obtain a reasonable match to test data. With the updated performance and sizing, fuel burn and energy use is reduced by 54% compared to the SUGAR Free current technology Baseline (Goal 60%). Use of the unducted fan version of the engine reduces fuel burn and energy by 56% compared to the Baseline. Technology development roadmaps were updated, and an airport compatibility analysis established feasibility of a folding wing aircraft at existing airports.

  20. 75 FR 54221 - Government/Industry Aeronautical Charting Forum Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-03

    ... Administration (FAA) Aeronautical Charting Forum (ACF) to discuss informational content and design of aeronautical charts and related products, as well as instrument flight procedures development policy and design... Aeronautical Charting Forum Meeting AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice...

  1. A study of sound generation in subsonic rotors, volume 2

    NASA Technical Reports Server (NTRS)

    Chalupnik, J. D.; Clark, L. T.

    1975-01-01

    Computer programs were developed for use in the analysis of sound generation by subsonic rotors. Program AIRFOIL computes the spectrum of radiated sound from a single airfoil immersed in a laminar flow field. Program ROTOR extends this to a rotating frame, and provides a model for sound generation in subsonic rotors. The program also computes tone sound generation due to steady state forces on the blades. Program TONE uses a moving source analysis to generate a time series for an array of forces moving in a circular path. The resultant time series are than Fourier transformed to render the results in spectral form. Program SDATA is a standard time series analysis package. It reads in two discrete time series and forms auto and cross covariances and normalizes these to form correlations. The program then transforms the covariances to yield auto and cross power spectra by means of a Fourier transformation.

  2. User's manual: Subsonic/supersonic advanced panel pilot code

    NASA Technical Reports Server (NTRS)

    Moran, J.; Tinoco, E. N.; Johnson, F. T.

    1978-01-01

    Sufficient instructions for running the subsonic/supersonic advanced panel pilot code were developed. This software was developed as a vehicle for numerical experimentation and it should not be construed to represent a finished production program. The pilot code is based on a higher order panel method using linearly varying source and quadratically varying doublet distributions for computing both linearized supersonic and subsonic flow over arbitrary wings and bodies. This user's manual contains complete input and output descriptions. A brief description of the method is given as well as practical instructions for proper configurations modeling. Computed results are also included to demonstrate some of the capabilities of the pilot code. The computer program is written in FORTRAN IV for the SCOPE 3.4.4 operations system of the Ames CDC 7600 computer. The program uses overlay structure and thirteen disk files, and it requires approximately 132000 (Octal) central memory words.

  3. Advanced surface paneling method for subsonic and supersonic flow

    NASA Technical Reports Server (NTRS)

    Erickson, L. L.; Johnson, F. T.; Ehlers, F. E.

    1976-01-01

    Numerical results illustrating the capabilities of an advanced aerodynamic surface paneling method are presented. The method is applicable to both subsonic and supersonic flow, as represented by linearized potential flow theory. The method is based on linearly varying sources and quadratically varying doublets which are distributed over flat or curved panels. These panels are applied to the true surface geometry of arbitrarily shaped three dimensional aerodynamic configurations.

  4. Development of panel methods for subsonic analysis and design

    NASA Technical Reports Server (NTRS)

    Bristow, D. R.

    1980-01-01

    Two computer programs, developed for subsonic inviscid analysis and design are described. The first solves arbitrary mixed analysis design problems for multielement airfoils in two dimensional flow. The second calculates the pressure distribution for arbitrary lifting or nonlifting three dimensional configurations. In each program, inviscid flow is modelled by using distributed source doublet singularities on configuration surface panels. Numerical formulations and representative solutions are presented for the programs.

  5. Aeronautics and space report of the President: 1981 activities

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Achievements in the aeronautics and space program by function are summarized. Activities in communications, Earth's resources and environment, space science, space transportation, international activities, and aeronautics are included.

  6. Human Factors in Aeronautics at NASA

    NASA Technical Reports Server (NTRS)

    Mogford, Richard

    2016-01-01

    This is a briefing to a regularly meeting DoD group called the Human Systems Community of Interest: Mission Effectiveness. I was asked to address human factors in aeronautics at NASA. (Exploration (space) human factors has apparently already been covered.) The briefing describes human factors organizations at NASA Ames and Langley. It then summarizes some aeronautics tasks that involve the application of human factors in the development of specific tools and capabilities. The tasks covered include aircrew checklists, dispatch operations, Playbook, Dynamic Weather Routes, Traffic Aware Strategic Aircrew Requests, and Airplane State Awareness and Prediction Technologies. I mention that most of our aeronautics work involves human factors as embedded in development tasks rather than basic research.

  7. Aeronautical Engineering: A Continuing Bibliography with Indexes

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-1999-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes-subject and author are included after the abstract section.

  8. Aeronautical Engineering: A Continuing Bibliography with Indexes

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This supplemental issue of Aeronautical Engineering: A Continuing Bibliography with Indexes lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes-subject and author are included after the abstract section.

  9. Emerging Options and Opportunities in Civilian Aeronautics

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M.

    2012-01-01

    This paper addresses the major problems/issues with civilian aeronautics going forward, the contextual ongoing technology revolutions, the several emerging civilian aeronautical "Big Ideas" and associated enabling technological approaches. The ongoing IT Revolution is increasingly providing, as 5 senses virtual presence/reality becomes available, along with Nano/Molecular Manufacturing, virtual alternatives to Physical transportation for both people and goods. Paper examines the potential options available to aeronautics to maintain and perhaps grow "market share" in the context of this evolving competition. Many of these concepts are not new, but the emerging technology landscape is enhancing their viability and marketability. The concepts vary from the "interesting" to the truly revolutionary and all require considerable research. Paper considers the speed range from personal/general aviation to supersonic transports and technologies from energetics to fabrication.

  10. Langley aeronautics and space test highlights, 1984

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests which were performed during calendar year 1984 in Langley test facilities are highlighted. The broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research are illustrated.

  11. Inmarsat aeronautical mobile satellite system: Internetworking issues

    NASA Technical Reports Server (NTRS)

    Sengupta, Jay R.

    1990-01-01

    The Inmarsat Aeronautical Mobile Satellite System (AMSS) provides air-ground and air-air communications services to aero-mobile users on a global basis. Communicating parties may be connected either directly, or more commonly, via interconnecting networks to the Inmarsat AMSS, in order to construct end-to-end communications circuits. The aircraft earth station (AES) and the aeronautical ground earth station (GES) are the points of interconnection of the Inmarsat AMSS to users, as well as to interconnecting networks. This paper reviews the internetworking aspects of the Inmarsat AMSS, by introducing the Inmarsat AMSS network architecture and services concepts and then discussing the internetwork address/numbering and routing techniques.

  12. Wireless Sensor Applications in Extreme Aeronautical Environments

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Atkinson, Gary M.

    2013-01-01

    NASA aeronautical programs require rigorous ground and flight testing. Many of the testing environments can be extremely harsh. These environments include cryogenic temperatures and high temperatures (greater than 1500 C). Temperature, pressure, vibration, ionizing radiation, and chemical exposure may all be part of the harsh environment found in testing. This paper presents a survey of research opportunities for universities and industry to develop new wireless sensors that address anticipated structural health monitoring (SHM) and testing needs for aeronautical vehicles. Potential applications of passive wireless sensors for ground testing and high altitude aircraft operations are presented. Some of the challenges and issues of the technology are also presented.

  13. 14 CFR 45.25 - Location of marks on fixed-wing aircraft.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Location of marks on fixed-wing aircraft... Location of marks on fixed-wing aircraft. (a) The operator of a fixed-wing aircraft shall display the..., horizontally on both sides of the fuselage between the trailing edge of the wing and the leading edge of...

  14. 14 CFR 45.25 - Location of marks on fixed-wing aircraft.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Location of marks on fixed-wing aircraft... Location of marks on fixed-wing aircraft. (a) The operator of a fixed-wing aircraft must display the..., horizontally on both sides of the fuselage between the trailing edge of the wing and the leading edge of...

  15. 14 CFR 45.25 - Location of marks on fixed-wing aircraft.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Location of marks on fixed-wing aircraft... Location of marks on fixed-wing aircraft. (a) The operator of a fixed-wing aircraft shall display the..., horizontally on both sides of the fuselage between the trailing edge of the wing and the leading edge of...

  16. 14 CFR 45.25 - Location of marks on fixed-wing aircraft.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Location of marks on fixed-wing aircraft... Location of marks on fixed-wing aircraft. (a) The operator of a fixed-wing aircraft must display the..., horizontally on both sides of the fuselage between the trailing edge of the wing and the leading edge of...

  17. 14 CFR 45.25 - Location of marks on fixed-wing aircraft.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Location of marks on fixed-wing aircraft... Location of marks on fixed-wing aircraft. (a) The operator of a fixed-wing aircraft must display the..., horizontally on both sides of the fuselage between the trailing edge of the wing and the leading edge of...

  18. Astronautics and aeronautics, 1974: A chronology

    NASA Technical Reports Server (NTRS)

    Brun, N. L.

    1977-01-01

    The 14th volume in the NASA series of day-by-day records of aeronautical and space events has somewhat narrowed its scope and selectivity in its brief accounts from immediately available, open sources. This year the emphasis is even more directly focused on concrete air and space activities. The text continues to reflect some events in other agencies and countries.

  19. Experiment In Aeronautical-Mobile/Satellite Communication

    NASA Technical Reports Server (NTRS)

    Jedrey, Thomas C.; Lay, Norman E.; Dessouky, Khaled

    1992-01-01

    Report describes study of performance of digital mobile/satellite communication terminals of advanced design intended for use in ground stations and airplanes in aeronautical-mobile service. Study was collaboration of NASA, Federal Aviation Administration (FAA), Communications Satellite Corp. (COMSAT), and International Maritime Satellite System (INMARSAT).

  20. Developing a global aeronautical satellite system

    NASA Technical Reports Server (NTRS)

    Dement, Donald K.

    1988-01-01

    Arinc, an airline industry-owned and operated company in the United States, has taken steps toward establishing a global aeronautical satellite communications system. Plans call for initiation of a thin-route data operation in 1989, upgrading to establish voice communications via shared spot-beam transponders carried on other satellites, and deploying a worldwide network using dedicated satellites by 1994.

  1. Aeronautical mobile satellite service: An overview

    NASA Astrophysics Data System (ADS)

    Rigley, Jack

    Successful flight trials of Aeronautical Mobile Satellite Services (AMSS) were first carried out in the 1960's but it is only in the past few years that plans to implement such a system have achieved any degree of certainty. System architecture has been agreed upon by users, service providers, and manufacturers. Detailed avionic characteristics have been approved and the International Civil Aviation Organization is currently preparing AMSS standards which will ensure the safety and regularity of international air traffic. In this paper, a review is provided of the history of AMSS, especially of Canadian participation, and a description of the technical and operational features of the system are given. The system will use the 1545-1555 and 1646.5-1656.5 MHz bands for satellite to aircraft and aircraft to satellite communication. Different categories of communication including air traffic control, aeronautical operational control, aeronautical administrative communications, and aeronautical passenger communication, will be assigned different priorities. A set of radio frequency (RF) channels have been defined to accommodate all foreseen traffic types. Standards for the avionics required for large passenger planes have been developed by the Airlines Electronic Engineering Committee.

  2. The history of aeronautical medicine in Venezuela

    NASA Technical Reports Server (NTRS)

    Iriarte, D. R.

    1986-01-01

    The Aerial Medical Service of the Ministry of Transportation and Communications of Venezuela was created on June 1949, and later became the Department of Aeronautical Medicine. Its functions include the medical examinations of future pilots, navigators and flight engineers. The importance of good mental and physical health in all flight and ground personnel to ensure the safety of air travel is discussed.

  3. Astronautics and aeronautics, 1978: A chronology

    NASA Technical Reports Server (NTRS)

    Janson, Bette R.

    1986-01-01

    This is the 18th in a series of annual chronologies of significant events in the fields of astronautics and aeronautics. Events covered are international as well as national and political as well as scientific and technical. This series is a reference work for historians, NASA personnel, government agencies, congressional staffs, and the media.

  4. Astronautics and aeronautics, 1976. A chronology

    NASA Technical Reports Server (NTRS)

    Ritchie, E. H.

    1984-01-01

    A chronology of events concerning astronautics and aeronautics for the year 1976 is presented. Some of the many and varied topics include the aerospace industry, planetary exploration, space transportation system, defense department programs, politics, and aerospace medicine. The entries are organized by the month and presented in a news release format.

  5. Astronautics and aeronautics, 1985: A chronology

    NASA Technical Reports Server (NTRS)

    Janson, Bette R.

    1988-01-01

    This book is part of a series of annual chronologies of significant events in the fields of astronautics and aeronautics. Events covered are international as well as national, in political as well as scientific and technical areas. This series is an important reference work used by historians, NASA personnel, government agencies, and congressional staffs, as well as the media.

  6. Aeronautical Engineering: A Continuing Bibliography with indexes

    NASA Technical Reports Server (NTRS)

    1984-01-01

    This bibliography lists 426 reports, articles and other documents introduced into the NASA scientific and technical information system in August 1984. Reports are cited in the area of Aeronautical Engineering. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing operation and performance of aircraft (including aircraft engines) and associated components, equipment and systems.

  7. Exploring Aeronautics and Space Technology. Teacher Edition.

    ERIC Educational Resources Information Center

    Buck, Sue; And Others

    This curriculum guide contains six units of instruction for an introduction to the technology systems in the National Aeronautics and Space Administration (NASA). Designed to be used either as a stand-alone publication or to be infused into the instruction and activities of an existing technology education program, this publication describes the…

  8. Aeronautical engineering. A continuing bibliography with indexes

    NASA Technical Reports Server (NTRS)

    1982-01-01

    This bibliography lists 326 reports, articles, and other documents introduced into the NASA scientific and technical information system in January 1982. Topics on aeronautical engineering and aerodynamics such as flight control systems, avionics, computer programs, computational fluid dynamics and composite structures are covered.

  9. Dr. Alexander H. Flax: Technologist of Aeronautics

    DTIC Science & Technology

    1992-03-01

    aeronautics. (82:19) The ability to apply theory made the difference in the spectacular aviation feats of this time--Lindbergh, Wiley Post, 6 Amelia ... Earhart and Howard Hughes. Of these, the Lindbergh flight was perceived by the popular imagination as the event of the century. The plane had one motor

  10. 14 CFR 61.105 - Aeronautical knowledge.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... intended use, data on takeoff and landing distances, weather reports and forecasts, and fuel requirements...) Recognition of critical weather situations from the ground and in flight, windshear avoidance, and the procurement and use of aeronautical weather reports and forecasts; (7) Safe and efficient operation...

  11. 14 CFR 61.105 - Aeronautical knowledge.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... intended use, data on takeoff and landing distances, weather reports and forecasts, and fuel requirements...) Recognition of critical weather situations from the ground and in flight, windshear avoidance, and the procurement and use of aeronautical weather reports and forecasts; (7) Safe and efficient operation...

  12. 14 CFR 61.105 - Aeronautical knowledge.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... intended use, data on takeoff and landing distances, weather reports and forecasts, and fuel requirements...) Recognition of critical weather situations from the ground and in flight, windshear avoidance, and the procurement and use of aeronautical weather reports and forecasts; (7) Safe and efficient operation...

  13. 14 CFR 61.97 - Aeronautical knowledge.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... takeoff and landing distances, weather reports and forecasts, and fuel requirements; and (ii) How to plan... using pilotage with the aid of a magnetic compass; (5) Recognition of critical weather situations from the ground and in flight, windshear avoidance, and the procurement and use of aeronautical...

  14. 14 CFR 61.97 - Aeronautical knowledge.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... takeoff and landing distances, weather reports and forecasts, and fuel requirements; and (ii) How to plan... using pilotage with the aid of a magnetic compass; (5) Recognition of critical weather situations from the ground and in flight, windshear avoidance, and the procurement and use of aeronautical...

  15. 14 CFR 61.97 - Aeronautical knowledge.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... takeoff and landing distances, weather reports and forecasts, and fuel requirements; and (ii) How to plan... using pilotage with the aid of a magnetic compass; (5) Recognition of critical weather situations from the ground and in flight, windshear avoidance, and the procurement and use of aeronautical...

  16. Bibliography of Aeronautics, 1920-1921

    NASA Technical Reports Server (NTRS)

    Brockett, Paul

    1925-01-01

    This work covers the literatme published from January 1, 1920, to December 31, 1921, and continues the work of the Smithsonian Institution issued as Volume 55 of the Smithsonian Miscellaneous Collections, which covered the material published prior to June 30, 1909, and the work of Lhe National Advisory Committee for Aeronautics as published in the Bibliography of Aeronautics for the years 1909 to 1916 and 1917 to 1919. As in the Smithsonian volume and in the Bibliography of Aeronautics for the years 1909 to 1916 and 1917 to 1919, citations of the publications of all nations have been included in the languages in which these publications originally appeared. The arrangement is in dictionary form with author and subject entry and one alphabetical arrangement. Detail in the matter of subject reference has been omitted on account of the cost of presentation, but an attempt has been made to give sufficient cross reference for research in special lines. The National Advisory Committee for Aeronautics will next present a bibliography for the year 1922.

  17. NASA's Role in Aeronautics: A Workshop. Volume I--Summary.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Assembly of Engineering.

    The central task of the workshop summarized in this report was to examine the relationship of the National Aeronautics and Space Administration's (NASA's) aeronautical research capabilities to the state of U.S. aviation and to make recommendations about NASA's future roles in aeronautics. Topics include NASA's role in: (1) aeronautics research and…

  18. 14 CFR 77.29 - Evaluating aeronautical effect.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Evaluating aeronautical effect. 77.29 Section 77.29 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRSPACE SAFE, EFFICIENT USE, AND PRESERVATION OF THE NAVIGABLE AIRSPACE Aeronautical Studies...

  19. 14 CFR 77.29 - Evaluating aeronautical effect.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Evaluating aeronautical effect. 77.29 Section 77.29 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRSPACE SAFE, EFFICIENT USE, AND PRESERVATION OF THE NAVIGABLE AIRSPACE Aeronautical Studies...

  20. 14 CFR 77.29 - Evaluating aeronautical effect.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Evaluating aeronautical effect. 77.29 Section 77.29 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRSPACE SAFE, EFFICIENT USE, AND PRESERVATION OF THE NAVIGABLE AIRSPACE Aeronautical Studies...

  1. 78 FR 69885 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-21

    ... SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Meeting AGENCY: National Aeronautics... meeting of the Aeronautics Committee of the NASA Advisory Council. This Committee reports to the NAC. The... for the Aeronautics Committee, NASA Headquarters, Washington, DC 20546, (202) 358-0566, or...

  2. Ensuring US National Aeronautics Test Capabilities

    NASA Technical Reports Server (NTRS)

    Marshall, Timothy J.

    2010-01-01

    U.S. leadership in aeronautics depends on ready access to technologically advanced, efficient, and affordable aeronautics test capabilities. These systems include major wind tunnels and propulsion test facilities and flight test capabilities. The federal government owns the majority of the major aeronautics test capabilities in the United States, primarily through the National Aeronautics and Space Administration (NASA) and the Department of Defense (DoD). However, changes in the Aerospace landscape, primarily the decrease in demand for testing over the last 20 years required an overarching strategy for management of these national assets. Therefore, NASA established the Aeronautics Test Program (ATP) as a two-pronged strategic initiative to: (1) retain and invest in NASA aeronautics test capabilities considered strategically important to the agency and the nation, and (2) establish a strong, high level partnership with the DoD. Test facility utilization is a critical factor for ATP because it relies on user occupancy fees to recover a substantial part of the operations costs for its facilities. Decreasing utilization is an indicator of excess capacity and in some cases low-risk redundancy (i.e., several facilities with basically the same capability and overall low utilization). However, low utilization does not necessarily translate to lack of strategic importance. Some facilities with relatively low utilization are nonetheless vitally important because of the unique nature of the capability and the foreseeable aeronautics testing needs. Unfortunately, since its inception, the customer base for ATP has continued to shrink. Utilization of ATP wind tunnels has declined by more than 50% from the FY 2006 levels. This significant decrease in customer usage is attributable to several factors, including the overall decline in new programs and projects in the aerospace sector; the impact of computational fluid dynamics (CFD) on the design, development, and research

  3. Conversion of the Aeronautics Interactive Workstation

    NASA Technical Reports Server (NTRS)

    Riveras, Nykkita L.

    2004-01-01

    This summer I am working in the Educational Programs Office. My task is to convert the Aeronautics Interactive Workstation from a Macintosh (Mac) platform to a Personal Computer (PC) platform. The Aeronautics Interactive Workstation is a workstation in the Aerospace Educational Laboratory (AEL), which is one of the three components of the Science, Engineering, Mathematics, and Aerospace Academy (SEMAA). The AEL is a state-of-the-art, electronically enhanced, computerized classroom that puts cutting-edge technology at the fingertips of participating students. It provides a unique learning experience regarding aerospace technology that features activities equipped with aerospace hardware and software that model real-world challenges. The Aeronautics Interactive Workstation, in particular, offers a variety of activities pertaining to the history of aeronautics. When the Aeronautics Interactive Workstation was first implemented into the AEL it was designed with Macromedia Director 4 for a Mac. Today it is being converted to Macromedia DirectorMX2004 for a PC. Macromedia Director is the proven multimedia tool for building rich content and applications for CDs, DVDs, kiosks, and the Internet. It handles the widest variety of media and offers powerful features for building rich content that delivers red results, integrating interactive audio, video, bitmaps, vectors, text, fonts, and more. Macromedia Director currently offers two programmingkripting languages: Lingo, which is Director's own programmingkripting language and JavaScript. In the workstation, Lingo is used in the programming/scripting since it was the only language in use when the workstation was created. Since the workstation was created with an older version of Macromedia Director it hosted significantly different programming/scripting protocols. In order to successfully accomplish my task, the final product required correction of Xtra and programming/scripting errors. I also had to convert the Mac platform

  4. Acoustic Prediction Methodology and Test Validation for an Efficient Low-Noise Hybrid Wing Body Subsonic Transport

    NASA Technical Reports Server (NTRS)

    Kawai, Ronald T. (Compiler)

    2011-01-01

    This investigation was conducted to: (1) Develop a hybrid wing body subsonic transport configuration with noise prediction methods to meet the circa 2007 NASA Subsonic Fixed Wing (SFW) N+2 noise goal of -52 dB cum relative to FAR 36 Stage 3 (-42 dB cum re: Stage 4) while achieving a -25% fuel burned compared to current transports (re :B737/B767); (2) Develop improved noise prediction methods for ANOPP2 for use in predicting FAR 36 noise; (3) Design and fabricate a wind tunnel model for testing in the LaRC 14 x 22 ft low speed wind tunnel to validate noise predictions and determine low speed aero characteristics for an efficient low noise Hybrid Wing Body configuration. A medium wide body cargo freighter was selected to represent a logical need for an initial operational capability in the 2020 time frame. The Efficient Low Noise Hybrid Wing Body (ELNHWB) configuration N2A-EXTE was evolved meeting the circa 2007 NRA N+2 fuel burn and noise goals. The noise estimates were made using improvements in jet noise shielding and noise shielding prediction methods developed by UC Irvine and MIT. From this the Quiet Ultra Integrated Efficient Test Research Aircraft #1 (QUIET-R1) 5.8% wind tunnel model was designed and fabricated.

  5. Simulation of Atmospheric-Entry Capsules in the Subsonic Regime

    NASA Technical Reports Server (NTRS)

    Murman, Scott M.; Childs, Robert E.; Garcia, Joseph A.

    2015-01-01

    The accuracy of Computational Fluid Dynamics predictions of subsonic capsule aerodynamics is examined by comparison against recent NASA wind-tunnel data at high-Reynolds-number flight conditions. Several aspects of numerical and physical modeling are considered, including inviscid numerical scheme, mesh adaptation, rough-wall modeling, rotation and curvature corrections for eddy-viscosity models, and Detached-Eddy Simulations of the unsteady wake. All of these are considered in isolation against relevant data where possible. The results indicate that an improved predictive capability is developed by considering physics-based approaches and validating the results against flight-relevant experimental data.

  6. NASA Subsonic Rotary Wing Project - Structures and Materials Discipline

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Johnson, Susan M.

    2008-01-01

    The Structures & Materials Discipline within the NASA Subsonic Rotary Wing Project is focused on developing rotorcraft technologies. The technologies being developed are within the task areas of: 5.1.1 Life Prediction Methods for Engine Structures & Components 5.1.2 Erosion Resistant Coatings for Improved Turbine Blade Life 5.2.1 Crashworthiness 5.2.2 Methods for Prediction of Fatigue Damage & Self Healing 5.3.1 Propulsion High Temperature Materials 5.3.2 Lightweight Structures and Noise Integration The presentation will discuss rotorcraft specific technical challenges and needs as well as details of the work being conducted in the six task areas.

  7. Subsonic/transonic stall flutter investigation of a rotating rig

    NASA Technical Reports Server (NTRS)

    Jutras, R. R.; Fost, R. B.; Chi, R. M.; Beacher, B. F.

    1981-01-01

    Stall flutter is investigated by obtaining detailed quantitative steady and aerodynamic and aeromechanical measurements in a typical fan rotor. The experimental investigation is made with a 31.3 percent scale model of the Quiet Engine Program Fan C rotor system. Both subsonic/transonic (torsional mode) flutter and supersonic (flexural) flutter are investigated. Extensive steady and unsteady data on the blade deformations and aerodynamic properties surrounding the rotor are acquired while operating in both the steady and flutter modes. Analysis of this data shows that while there may be more than one traveling wave present during flutter, they are all forward traveling waves.

  8. Computation of subsonic base flow on a vector processor

    NASA Technical Reports Server (NTRS)

    Rudy, D. H.

    1987-01-01

    Two-dimensional subsonic laminar compressible base flow has been studied using numerical solutions of the time-dependent Navier-Stokes equations. These solutions were obtained using an explicit finite-difference scheme which is highly efficient on a vector processor. The organization of the code for a CDC CYBER-205 computer is described. Solutions were obtained for Mach 0.4 and 0.6 flows past a slender blunt-based model at moderately high Reynolds numbers. The flow in the wake is unsteady with periodic shedding of vortices from the trailing edge. The computed shedding frequency was found to increase with increasing Reynolds number.

  9. Sound radiation from a subsonic rotor subjected to turbulence

    NASA Technical Reports Server (NTRS)

    Sevik, M.

    1974-01-01

    The broadband sound radiated by a subsonic rotor subjected to turbulence in the approach stream has been analyzed. The power spectral density of the sound intensity has been found to depend on a characteristic time scale-namely, the integral scale of the turbulence divided by the axial flow velocity-as well as several length-scale ratios. These consist of the ratio of the integral scale to the acoustic wavelength, rotor radius, and blade chord. Due to the simplified model chosen, only a limited number of cascade parameters appear. Limited comparisons with experimental data indicate good agreement with predicted values.

  10. Acoustic measurement study 40 by 80 foot subsonic wind tunnel

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An acoustical study conducted during the period from September 1, 1973 to April 30, 1974 measured sound pressure levels and vibration amplitudes inside and outside of the subsonic tunnel and on the tunnel structure. A discussion of the technical aspects of the study, the field measurement and data reduction procedures, and results are presentd, and conclusions resulting from the study which bear upon near field and far field tunnel noise, upon the tunnel as an acoustical enclosure, and upon the sources of noise within the tunnel drive system are given.

  11. Solution of the unsteady subsonic thin airfoil problem

    NASA Technical Reports Server (NTRS)

    Williams, M. H.

    1982-01-01

    The problem of a thin airfoil subject to simple harmonic disturbances in a uniform subsonic free stream is solved by extension of a technique developed earlier for a stationary strip vibrating in a uniform fluid. Explicit expressions are given for the lift and moment, acoustic directivity pattern, and total acoustic power for arbitrary upwash and, in particular, for the 'elementary disturbances': plunge, pitch and a stationary transverse gust. Numerical results for a simple skewed gust are presented and compared to the high-frequency asymptotic theory of Martinez and Widnall.

  12. Ongoing Fixed Wing Research within the NASA Langley Aeroelasticity Branch

    NASA Technical Reports Server (NTRS)

    Bartels, Robert; Chwalowski, Pawel; Funk, Christie; Heeg, Jennifer; Hur, Jiyoung; Sanetrik, Mark; Scott, Robert; Silva, Walter; Stanford, Bret; Wiseman, Carol

    2015-01-01

    The NASA Langley Aeroelasticity Branch is involved in a number of research programs related to fixed wing aeroelasticity and aeroservoelasticity. These ongoing efforts are summarized here, and include aeroelastic tailoring of subsonic transport wing structures, experimental and numerical assessment of truss-braced wing flutter and limit cycle oscillations, and numerical modeling of high speed civil transport configurations. Efforts devoted to verification, validation, and uncertainty quantification of aeroelastic physics in a workshop setting are also discussed. The feasibility of certain future civil transport configurations will depend on the ability to understand and control complex aeroelastic phenomena, a goal that the Aeroelasticity Branch is well-positioned to contribute through these programs.

  13. Aeronautics and Space Report of the President

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Nineteen eighty-eight marked the United States' return to space flight with two successful space shuttle launches in September and December, as well as six successful expendable rocket launches. Meanwhile, many other less spectacular but important contributions were made in aeronautics and space by the 14 participating government organizations. Each organization's aeronautics and/or space activities for the year are presented. The organizations involved include: (1) NASA; (2) Department of Defense; (3) Department of Commerce; (4) Department of Energy; (5) Department of the Interior; (6) Department of Agriculture; (7) Federal Communications Commission; (8) Department of Transportation; (9) Environmental Protection Agency; (10) National Science Foundation; (11) Smithsonian Institution; (12) Department of State; (13) Arms Control and Disarmament Agency; and (14) United States Information Agency.

  14. The history and importance of aeronautic dentistry.

    PubMed

    Rai, Balwant; Kaur, Jasdeep

    2011-06-01

    Current projected missions to Mars will require 18 to 24 months of exposure to microgravity conditions, which might have serious effects on human physiology, including that of the oral cavity. Very few studies have been published on the effect of microgravity on the oral cavity, although it has been reported that microgravity increases the prevalence of periodontitis, dental caries, bone loss and fracture in the jaw bone, pain and numbness in teeth and oral cavity tissue, salivary duct stones, and oral cancer. Aeronautic dentistry is a new field, so further study of the effects of microgravity are required. In this article, we review the role of aeronautic dentistry in space missions and offer our recommendations for the future growth of this field.

  15. World-wide aeronautical satellite communications

    NASA Technical Reports Server (NTRS)

    Wood, Peter; Smith, Keith

    1988-01-01

    INMARSAT decided to expand the spectrum covered by its new generation of satellites, INMARSAT-2, to include 1 MHz (subsequently increased to 3 MHz) of the spectrum designed for aeronautical use. It began a design study that led to the specifications for the system that is now being implemented. Subsequently, INMARSAT awarded contracts for the design of avionics and high gain antennas to a number of manufactures, while several of the signatories that provide ground equipment for communicating with the INMARSAT satellites are modifying their earth stations to work with the avionic equipment. As a resullt of these activities, a world-wide aeronautical satellite system supporting both voice and data will become operational in 1989.

  16. Aeronautics and Space Report of the President

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The years 1989 to 1990 activities are reported including human space flight, unmanned expendable launch vehicles, space science and applications, space communications operations, space research and technology, and aeronautics research and technology. Contributions made by the 14 participating government organizations are outline. Each organization's aeronautics and/or space activities for the year are presented. The organizations involved include: (1) NASA; (2) Dept. of Defense; (3) Dept. of Commerce; (4) Dept. of Energy; (5) Dept. of the Interior; (6) Dept. of Agriculture; (7) Federal Communications Commission; (8) Dept. of Transportation; (9) Environmental Protection Agency; (10) National Science Foundation; (11) Smithsonian Institution; (12) Dept. of State; (13) Arms Control and Disarmament; and (14) United States Information Agency.

  17. Langley aeronautics and space test highlights, 1983

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests which were performed during calendar year 1983 in Langley test facilities, a number of which are unique in the world are highlighted. Both the broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research are illustrated.

  18. Future Aeronautical Communication Infrastructure Technology Investigation

    NASA Technical Reports Server (NTRS)

    Gilbert, Tricia; Jin, Jenny; Bergerm Jason; Henriksen, Steven

    2008-01-01

    This National Aeronautics and Space Administration (NASA) Contractor Report summarizes and documents the work performed to investigate technologies that could support long-term aeronautical mobile communications operating concepts for air traffic management (ATM) in the timeframe of 2020 and beyond, and includes the associated findings and recommendations made by ITT Corporation and NASA Glenn Research Center to the Federal Aviation Administration (FAA). The work was completed as the final phase of a multiyear NASA contract in support of the Future Communication Study (FCS), a cooperative research and development program of the United States FAA, NASA, and EUROCONTROL. This final report focuses on an assessment of final five candidate technologies, and also provides an overview of the entire technology assessment process, including final recommendations.

  19. Aeronautical Mobile Satellite Service (AMSS) test plan

    NASA Astrophysics Data System (ADS)

    Sandlin, Sean M.

    1991-05-01

    A test program is described which will be conducted by the Federal Aviation Administration to support the validation of Standards and Recommended Practices being developed for the Aeronautical Mobile Satellite Service by the International Civil Aviation Organization. A description of the Communication Test Facility is also presented which will be used to perform the tests. A brief description is also included of each test to be performed along with setup and data to be recorded.

  20. The K-8 Aeronautics Internet Textbook

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The following report is broken down into two components. First, a status report covering the period from August 15, 1998 to October 30, 1998. The remainder of the report summarizes all project accomplishments of the K-8 Aeronautics Internet Textbook over the period of June 19, 1995 through October 30, 1998. The report also discusses observations and lessons learned in the undertaking of the project.

  1. Smart Aeronautical Chart Management System Design

    NASA Astrophysics Data System (ADS)

    Pakdil, M. E.; Celik, R. N.; Kaya, Ö.; Konak, Y. C.; Guney, C.

    2015-10-01

    Civil aviation is developing rapidly, and the number of domestic and international operations is increasing exponentially every year than the previous one. Airline companies with increased air traffic and the number of passengers increase the demand of new aircrafts. An aircraft needs not only fuel but also pilot and aeronautical information (charts, digital navigation information, flight plan, and etc.) to perform flight operation. One of the most important components in aeronautical information is the terminal chart. Authorized institution in every state is responsible to publish their terminal charts for certain periods. Although these charts are produced in accordance with ICAO's Annex 4 and Annex 15, cartographic representation and page layout differs in each state's publication. This situation makes difficult to read them by pilots. In this paper, standard instrument departure (SID) charts are analysed to produce by use of cutting-edge and competitive technologies instead of classical computer-aided drawing and vector based graphic applications that are currently used by main chart producers. The goal is to design efficient and commercial chart management system that is able to produce aeronautical charts with same cartographic representation for all states.

  2. Numerical Simulation of Subsonic and Transonic Propeller Flow. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Snyder, Aaron

    1988-01-01

    The numerical simulation of 3-D transonic flow about a system of propeller blades is investigated. In particular, it is shown that the use of helical coordinates significantly simplifies the form of the governing equation when the propeller system is assumed to be surrounded by an irrotational flow field of an inviscid fluid. The unsteady small disturbance equation, valid for lightly loaded blades and expressed in helical coordinates, is derived from the general blade-fixed potential equation, given for an arbitrary coordinate system. The use of a coordinate system which inherently adapts to the mean flow results in a disturbance equation requiring relatively few terms to accurately model the physics of the flow. Furthermore, the helical coordinate system presented here is novel in that it is periodic in the circumferential direction while, simultaneously, maintaining orthogonal properties at the mean blade locations. The periodic characteristic allows a complete cascade of blades to be treated, and the orthogonality property affords straightforward treatment of blade boundary conditions. An ADI numerical scheme is used to compute the solution of the steady flow as an asymptotic limit of an unsteady flow. As an example of the method, solutions are presented for subsonic and transonic flow about a 5 percent thick bicircular arc blade of an 8-bladed cascade. Both high and low advance ratio cases are computed and include a lifting as well as nonlifting cases. The nonlifting solutions obtained are compared to solutions from a Euler code.

  3. Longitudinal aerodynamic characteristics of a subsonic, energy-efficient transport configuration in the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Jacobs, Peter F.; Gloss, Blair B.

    1989-01-01

    The Reynolds number, aeroelasticity, boundary layer transition, and nonadiabatic wall temperature effects, and data repeatability was determined in the National Transonic Facility (NTF) for a subsonic, energy efficient transport model. The model was tested over a Mach number range of 0.50 to 0.86 and a Reynolds number range of 1.9 million to approximately 23.0 million (based on mean geometric chord). The majority of the data was taken using cryogenic nitrogen (data at 1.9 million Reynolds number was taken in air). Force and moment, wing pressure, and wing thermocouple data are presented. The data indicate that increasing Reynolds number resulted in greater effective camber of the supercritical wing and horizontal tail, resulting in greater lift and pitching moment coefficients at nearly all angles of attack for M = 0.82. As Reynolds number was increased, untrimmed L/D increased, the angle of attack for maximum L/D decreased, drag creep was reduced significantly, and drag divergence Mach number increased slightly. Data repeatability for both modes of operation of the NTF (air and cryogenic nitrogen) was generally very good, and nonadiabatic wall effects were estimated to be small. Transition-free and transition-fixed configurations had significantly different force and moment data at M = 0.82 for low Reynolds number, and very small differences were noted at high Reynolds numbers.

  4. Experimental cavity pressure measurements at subsonic and transonic speeds. Static-pressure results

    NASA Technical Reports Server (NTRS)

    Plentovich, E. B.; Stallings, Robert L., Jr.; Tracy, M. B.

    1993-01-01

    An experimental investigation was conducted to determine cavity flow-characteristics at subsonic and transonic speeds. A rectangular box cavity was tested in the Langley 8-Foot Transonic Pressure Tunnel at Mach numbers from 0.20 to 0.95 at a unit Reynolds number of approximately 3 x 10(exp 6) per foot. The boundary layer approaching the cavity was turbulent. Cavities were tested over a range of length-to-depth ratios (l/h) of 1 to 17.5 for cavity width-to-depth ratios of 1, 4, 8, and 16. Fluctuating- and static-pressure data in the cavity were obtained; however, only static-pressure data is analyzed. The boundaries between the flow regimes based on cavity length-to-depth ratio were determined. The change to transitional flow from open flow occurs at l/h at approximately 6-8 however, the change from transitional- to closed-cavity flow occurred over a wide range of l/h and was dependent on Mach number and cavity configuration. The change from closed to open flow as found to occur gradually. The effect of changing cavity dimensions showed that if the vlaue of l/h was kept fixed but the cavity width was decreased or cavity height was increased, the cavity pressure distribution tended more toward a more closed flow distribution.

  5. Mitigation of wind tunnel wall interactions in subsonic cavity flows

    SciTech Connect

    Wagner, Justin L.; Casper, Katya Marie; Beresh, Steven J.; Henfling, John F.; Spillers, Russell Wayne; Pruett, Brian Owen Matthew

    2015-03-06

    In this study, the flow over an open aircraft bay is often represented in a wind tunnel with a cavity. In flight, this flow is unconfined, though in experiments, the cavity is surrounded by wind tunnel walls. If untreated, wind tunnel wall effects can lead to significant distortions of cavity acoustics in subsonic flows. To understand and mitigate these cavity–tunnel interactions, a parametric approach was taken for flow over an L/D = 7 cavity at Mach numbers 0.6–0.8. With solid tunnel walls, a dominant cavity tone was observed, likely due to an interaction with a tunnel duct mode. Furthermore, an acoustic liner opposite the cavity decreased the amplitude of the dominant mode and its harmonics, a result observed by previous researchers. Acoustic dampeners were also placed in the tunnel sidewalls, which further decreased the dominant mode amplitudes and peak amplitudes associated with nonlinear interactions between cavity modes. This then indicates that cavity resonance can be altered by tunnel sidewalls and that spanwise coupling should be addressed when conducting subsonic cavity experiments. Though mechanisms for dominant modes and nonlinear interactions likely exist in unconfined cavity flows, these effects can be amplified by the wind tunnel walls.

  6. Mitigation of wind tunnel wall interactions in subsonic cavity flows

    DOE PAGES

    Wagner, Justin L.; Casper, Katya Marie; Beresh, Steven J.; ...

    2015-03-06

    In this study, the flow over an open aircraft bay is often represented in a wind tunnel with a cavity. In flight, this flow is unconfined, though in experiments, the cavity is surrounded by wind tunnel walls. If untreated, wind tunnel wall effects can lead to significant distortions of cavity acoustics in subsonic flows. To understand and mitigate these cavity–tunnel interactions, a parametric approach was taken for flow over an L/D = 7 cavity at Mach numbers 0.6–0.8. With solid tunnel walls, a dominant cavity tone was observed, likely due to an interaction with a tunnel duct mode. Furthermore, anmore » acoustic liner opposite the cavity decreased the amplitude of the dominant mode and its harmonics, a result observed by previous researchers. Acoustic dampeners were also placed in the tunnel sidewalls, which further decreased the dominant mode amplitudes and peak amplitudes associated with nonlinear interactions between cavity modes. This then indicates that cavity resonance can be altered by tunnel sidewalls and that spanwise coupling should be addressed when conducting subsonic cavity experiments. Though mechanisms for dominant modes and nonlinear interactions likely exist in unconfined cavity flows, these effects can be amplified by the wind tunnel walls.« less

  7. NASA Noise Reduction Program for Advanced Subsonic Transports

    NASA Technical Reports Server (NTRS)

    Stephens, David G.; Cazier, F. W., Jr.

    1995-01-01

    Aircraft noise is an important byproduct of the world's air transportation system. Because of growing public interest and sensitivity to noise, noise reduction technology is becoming increasingly important to the unconstrained growth and utilization of the air transportation system. Unless noise technology keeps pace with public demands, noise restrictions at the international, national and/or local levels may unduly constrain the growth and capacity of the system to serve the public. In recognition of the importance of noise technology to the future of air transportation as well as the viability and competitiveness of the aircraft that operate within the system, NASA, the FAA and the industry have developed noise reduction technology programs having application to virtually all classes of subsonic and supersonic aircraft envisioned to operate far into the 21st century. The purpose of this paper is to describe the scope and focus of the Advanced Subsonic Technology Noise Reduction program with emphasis on the advanced technologies that form the foundation of the program.

  8. Control of Subsonic and Sonic Jets with Limiting Tabs

    NASA Astrophysics Data System (ADS)

    Berrueta, T.; Rathakrishnan, E.

    2017-04-01

    Aerodynamic mixing of subsonic and sonic jets with limiting tabs, with and without corrugations, has been studied experimentally. Limiting tab located at the nozzle exit and at a downstream distance of 0.5D has been considered in this study. Mixing caused by the tab at nozzle exit is found to be better that of tab at 0.5D, for both plain and corrugated geometries. Also, both tabs caused better mixing for underexpanded sonic jets than the correctly expanded sonic jet and subsonic jets. At nozzle pressure ratio 3 the plain tab at the nozzle exit reduced the core by about 56 % and the corrugated tab by about 51 %. But when the plain tab is placed at 0.5D the jet mixing is retarded. However, the corrugated tab at 0.5D enhances the mixing, though not up to the level of the same tab at 0D, at all Mach numbers except 0.6. The maximum reduction of core caused by shifted corrugated tab is 14 % for Mach 0.8 jet.

  9. Subsonic and Supersonic Effects in Bose-Einstein Condensate

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2003-01-01

    A paper presents a theoretical investigation of subsonic and supersonic effects in a Bose-Einstein condensate (BEC). The BEC is represented by a time-dependent, nonlinear Schroedinger equation that includes terms for an external confining potential term and a weak interatomic repulsive potential proportional to the number density of atoms. From this model are derived Madelung equations, which relate the quantum phase with the number density, and which are used to represent excitations propagating through the BEC. These equations are shown to be analogous to the classical equations of flow of an inviscid, compressible fluid characterized by a speed of sound (g/Po)1/2, where g is the coefficient of the repulsive potential and Po is the unperturbed mass density of the BEC. The equations are used to study the effects of a region of perturbation moving through the BEC. The excitations created by a perturbation moving at subsonic speed are found to be described by a Laplace equation and to propagate at infinite speed. For a supersonically moving perturbation, the excitations are found to be described by a wave equation and to propagate at finite speed inside a Mach cone.

  10. Advanced Configurations for Very Large Subsonic Transport Airplanes

    NASA Technical Reports Server (NTRS)

    McMasters, John H.; Paisley, David J.; Hubert, Richard J.; Kroo, Ilan; Bofah, Kwasi K.; Sullivan, John P.; Drela, Mark

    1996-01-01

    Recent aerospace industry interest in developing a subsonic commercial transport airplane with 50 percent greater passenger capacity than the largest existing aircraft in this category (the Boeing 747-400 with approximately 400-450 seats) has generated a range of proposals based largely on the configuration paradigm established nearly 50 years ago with the Boeing B-47 bomber. While this basic configuration paradigm has come to dominate subsonic commercial airplane development since the advent of the Boeing 707/Douglas DC-8 in the mid-1950's, its extrapolation to the size required to carry more than 600-700 passengers raises several questions. To explore these and a number of related issues, a team of Boeing, university, and NASA engineers was formed under the auspices of the NASA Advanced Concepts Program. The results of a Research Analysis focused on a large, unconventional transport airplane configuration for which Boeing has applied for a patent are the subject of this report. It should be noted here that this study has been conducted independently of the Boeing New Large Airplane (NLA) program, and with the exception of some generic analysis tools which may be common to this effort and the NLA (as will be described later), no explicit Boeing NLA data other than that published in the open literature has been used in the conduct of the study reported here.

  11. Extension of sonic anemometry to high subsonic Mach number flows

    NASA Astrophysics Data System (ADS)

    Otero, R.; Lowe, K. T.; Ng, W. F.

    2017-03-01

    In the literature, the application of sonic anemometry has been limited to low subsonic Mach number, near-incompressible flow conditions. To the best of the authors’ knowledge, this paper represents the first time a sonic anemometry approach has been used to characterize flow velocity beyond Mach 0.3. Using a high speed jet, flow velocity was measured using a modified sonic anemometry technique in flow conditions up to Mach 0.83. A numerical study was conducted to identify the effects of microphone placement on the accuracy of the measured velocity. Based on estimated error strictly due to uncertainty in time-of-acoustic flight, a random error of +/- 4 m s‑1 was identified for the configuration used in this experiment. Comparison with measurements from a Pitot probe indicated a velocity RMS error of +/- 9 m s‑1. The discrepancy in error is attributed to a systematic error which may be calibrated out in future work. Overall, the experimental results from this preliminary study support the use of acoustics for high subsonic flow characterization.

  12. Steady subsonic flow around finite-thickness wings

    NASA Technical Reports Server (NTRS)

    Kuo, C. C.; Morino, L.

    1975-01-01

    The general method for analyzing steady subsonic potential aerodynamic flow around a lifting body having arbitrary shape is presented. By using the Green function method, an integral representation for the potential is obtained. Under small perturbation assumption, the potential at any point, P, in the field depends only upon the values of the potential and its normal derivative on the surface of the body. Hence if the point P approaches the surface of the body, the representation reduces to an integral equation relating the potential and its normal derivative (which is known from the boundary conditions) on the surface. The question of uniqueness is examined and it is shown that, for thin wings, the operator becomes singular as the thickness approaches zero. This fact may yield numerical problems for very thin wings. However, numerical results obtained for a rectangular wing in subsonic flow show that these problems do not appear even for thickness ratio tau = .001. Comparison with existing results shows that the proposed method is at least as fast and accurate as the lifting surface theories.

  13. 77 FR 38091 - NASA Advisory Council; Aeronautics Committee; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-26

    ...: NASA Goddard Space Flight Center (GSFC), Building 34, Room 120B, 8800 Greenbelt Road, Greenbelt, MD... SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Meeting. AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In accordance with the Federal...

  14. 77 FR 50759 - Government/Industry Aeronautical Charting Forum Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-22

    ...This notice announces the bi-annual meeting of the Federal Aviation Administration (FAA) Aeronautical Charting Forum (ACF) to discuss informational content and design of aeronautical charts and related products, as well as instrument flight procedures development policy and design...

  15. An aeronautical-mobile satellite experiment

    NASA Technical Reports Server (NTRS)

    Jedrey, Thomas C.; Dessouky, Khaled I.; Lay, Norman E.

    1991-01-01

    The various activities and findings of a NASA/FAA/COMSAT/INMARSAT collaborative aeronautical mobile-satellite experiment are detailed. The primary objective of the experiment was to demonstrate and evaluate an advanced digital mobile-satellite terminal developed at the Jet Propulsion Laboratory under the NASA Mobile Satellite Program. The experiment was a significant milestone for NASA/JPL, since it was the first test of the mobile terminal in a true mobile-satellite environment. The results were also of interest to the general mobile-satellite community because of the advanced nature of the technologies employed in the terminal.

  16. Solar energy and the aeronautics industry. Thesis

    NASA Technical Reports Server (NTRS)

    Benedek, L.

    1985-01-01

    An introduction to the physical aspects of solar energy, incidental energy and variations in solar flux is presented, along with an explanation of the physical principles of obtaining solar energy. The history of the application of solar energy to aeronautics, including the Gossamer Penguin and the Solar Challenger is given. Finally, an analysis of the possibilities of using a reaction motor with hybrid propulsion combining solar energy with traditional fuels as well as calculations of the proposed cycle and its mode of operation are given.

  17. Fundamentals of Aeronautical and Aerospace Medical Science,

    DTIC Science & Technology

    1981-07-17

    184) -I & A0A1 8 F ORE IGN TIC.iOLOY DIV UUIAN?-PAT?1m5 APA ON i tFUND~AMENTALS OF AERONAUTICAL AND AEROSPACE MEDICAL SCtEC.j (UlIJUL lI MC 01*0. A...xysel, con- rSin.- more than 1/5 of the air, is essential for human metabolism. Since human beings have lived constantly under norma " air pressure...Temperature under different air flow rate, research subjects wearing norma ; indoor clothing: 1) dry bulb temperature, C; 9) air flow, m/sec; 3) wet

  18. Graduate engineering research participation in aeronautics

    NASA Technical Reports Server (NTRS)

    Roberts, A. S., Jr.

    1984-01-01

    Graduate student engineering research in aeronautics at Old Dominion University is surveyed. Student participation was facilitated through a NASA sponsored university program which enabled the students to complete degrees. Research summaries are provided and plans for the termination of the grant program are outlined. Project topics include: Failure modes for mechanically fastened joints in composite materials; The dynamic stability of an earth orbiting satellite deploying hinged appendages; The analysis of the Losipescu shear test for composite materials; and the effect of boundary layer structure on wing tip vortex formation and decay.

  19. Solar energy and the aeronautics industry

    NASA Astrophysics Data System (ADS)

    Benedek, L.

    1985-11-01

    An introduction to the physical aspects of solar energy, incidental energy and variations in solar flux is presented, along with an explanation of the physical principles of obtaining solar energy. The history of the application of solar energy to aeronautics, including the Gossamer Penguin and the Solar Challenger is given. Finally, an analysis of the possibilities of using a reaction motor with hybrid propulsion combining solar energy with traditional fuels as well as calculations of the proposed cycle and its mode of operation are given.

  20. The K-8 Aeronautics Internet Textbook

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Efforts were focused on web site migration, from UC (University of California) Davis to the National Business Aviation Association's (NBAA) web site. K8AIT (K-8 Aeronautics Internet Textbook), which has remained an unadvertised web site, receives almost two million hits per month. Project continuation funding with the National Business Aviation Association is being pursued. A Memorandum of Understanding (MOU) between NASA Ames LTP (Learning Technologies Project) and Cislunar has been drafted and approved by NASA's legal department. Additional web content on space flight and the Wright brothers has been added in English and Spanish.

  1. MSAT aeronautical mobile satellite communications terminal development

    NASA Technical Reports Server (NTRS)

    Sutherland, C. A.; Sydor, J. T.

    1995-01-01

    CAL has undertaken the development of a new aeronautical mobile terminal for the North American MSAT market. The terminal is to meet the MSAT standard and is aimed in particular at the 300,000 general aviation and business aircraft in North America. The terminals are therefore relatively low cost and small in size when compared to those currently being produced for larger airline aircraft. The terminal incorporates a top mounted mechanical steered antenna and a unique antenna steering subsystem. An overview of the terminal design is presented.

  2. Graduate engineering research participation in aeronautics

    NASA Technical Reports Server (NTRS)

    Roberts, A. S., Jr.

    1986-01-01

    The Aeronautics Graduate Research Program commenced in 1971, with the primary goal of engaging students who qualified for regular admission to the Graduate School of Engineering at Old Dominion University in a graduate engineering research and study program in collaboration with NASA Langley Research Center, Hampton, Virginia. The format and purposes of this program are discussed. Student selection and program statistics are summarized. Abstracts are presented in the folowing areas: aircraft design, aerodynamics, lift/drag characteristics; avionics; fluid mechanics; solid mechanics; instrumentation and measurement techniques; thermophysical properties experiments; large space structures; earth orbital dynamics; and environmental engineering.

  3. NASA's Role in Aeronautics: A Workshop. Volume V - Rotorcraft.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Assembly of Engineering.

    The central task of a 1980 workshop on the role of the National Aeronautics and Space Administration (NASA) in aeronautics was to examine the relationship of NASA's research capabilities to the state of U.S. aviation and to make recommendations about NASA's future role in aeronautics. Following an introduction, findings and recommendations of the…

  4. NASA's Role in Aeronautics: A Workshop. Volume II - Military Aviation.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Assembly of Engineering.

    The central task of a 1980 workshop on the role of the National Aeronautics and Space Administration (NASA) in aeronautics was to examine the relationship of NASA's research capabilities to the state of U.S. aviation and to make recommendations about NASA's future role in aeronautics. The findings and recommendations of the Panel on Military…

  5. NASA's Role in Aeronautics: A Workshop. Volume IV - General Aviation.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Assembly of Engineering.

    The central task of a 1980 workshop on the role of the National Aeronautics and Space Administration (NASA) in aeronautics was to examine the relationship of NASA's research capabilities to the state of U.S. aviation and to make recommendations about NASA's future role in aeronautics. The findings and recommendations of the Panel on General…

  6. 14 CFR 61.159 - Aeronautical experience: Airplane category rating.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Aeronautical experience: Airplane category... Transport Pilots § 61.159 Aeronautical experience: Airplane category rating. (a) Except as provided in... certificate with an airplane category and class rating must have at least 1,500 hours of total time as a...

  7. Aeronautics and Space Report of the President: 1975 Activities.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This report, submitted to the Congress by President Ford in accordance with the National Aeronautics and Space Act of 1958, summarizes the United States' space and aeronautics activities for the year 1975. Detailed summaries of the activities of the following governmental departments or agencies are provided: National Aeronautics and Space…

  8. NASA's Role in Aeronautics: A Workshop. Volume III - Transport Aircraft.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Assembly of Engineering.

    The central task of a 1980 workshop on the role of the National Aeronautics and Space Administration (NASA) in aeronautics was to examine the relationship of NASA's research capabilities to the state of U.S. aviation and to make recommendations about NASA's future role in aeronautics. The specific task of the Panel on Transport Aircraft was to…

  9. 76 FR 58843 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-22

    ... SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Meeting AGENCY: National Aeronautics... meeting of the Aeronautics Committee of the NASA Advisory Council. The meeting will be held for the...) 358-0566, or susan.l.minor@nasa.gov . SUPPLEMENTARY INFORMATION: The meeting will be open to...

  10. 75 FR 17166 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-05

    ... SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Meeting AGENCY: National Aeronautics... meeting of the Aeronautics Committee of the NASA Advisory Council. The meeting will be held for the.... ADDRESSES: NASA Langley Research Center, Building 1219, Room 225, Hampton, Virginia (Note that visitors...

  11. 76 FR 183 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-03

    ... SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Meeting AGENCY: National Aeronautics... meeting of the Aeronautics Committee of the NASA Advisory Council. The meeting will be held for the... Administration Headquarters, Washington, DC 20546, (202) 358-0566, or susan.l.minor@nasa.gov ....

  12. An Impact-Location Estimation Algorithm for Subsonic Uninhabited Aircraft

    NASA Technical Reports Server (NTRS)

    Bauer, Jeffrey E.; Teets, Edward

    1997-01-01

    An impact-location estimation algorithm is being used at the NASA Dryden Flight Research Center to support range safety for uninhabited aerial vehicle flight tests. The algorithm computes an impact location based on the descent rate, mass, and altitude of the vehicle and current wind information. The predicted impact location is continuously displayed on the range safety officer's moving map display so that the flightpath of the vehicle can be routed to avoid ground assets if the flight must be terminated. The algorithm easily adapts to different vehicle termination techniques and has been shown to be accurate to the extent required to support range safety for subsonic uninhabited aerial vehicles. This paper describes how the algorithm functions, how the algorithm is used at NASA Dryden, and how various termination techniques are handled by the algorithm. Other approaches to predicting the impact location and the reasons why they were not selected for real-time implementation are also discussed.

  13. Subsonic Static and Dynamic Aerodynamics of Blunt Entry Vehicles

    NASA Technical Reports Server (NTRS)

    Mitcheltree, Robert A.; Fremaux, Charles M.; Yates, Leslie A.

    1999-01-01

    The incompressible subsonic aerodynamics of four entry-vehicle shapes with variable c.g. locations are examined in the Langley 20-Foot Vertical Spin Tunnel. The shapes examined are spherically-blunted cones with half-cone angles of 30, 45, and 60 deg. The nose bluntness varies between 0.25 and 0.5 times the base diameter. The Reynolds number based on model diameter for these tests is near 500,000. Quantitative data on attitude and location are collected using a video-based data acquisition system and reduced with a six deg-of-freedom inverse method. All of the shapes examined suffered from strong dynamic instabilities which could produced limit cycles with sufficient amplitudes to overcome static stability of the configuration. Increasing cone half-angle or nose bluntness increases drag but decreases static and dynamic stability.

  14. Review of Propulsion Technologies for N+3 Subsonic Vehicle Concepts

    NASA Technical Reports Server (NTRS)

    Ashcraft, Scott W.; Padron, Andres S.; Pascioni, Kyle A.; Stout, Gary W., Jr.; Huff, Dennis L.

    2011-01-01

    NASA has set aggressive fuel burn, noise, and emission reduction goals for a new generation (N+3) of aircraft targeting concepts that could be viable in the 2035 timeframe. Several N+3 concepts have been formulated, where the term "N+3" indicate aircraft three generations later than current state-of-the-art aircraft, "N". Dramatic improvements need to be made in the airframe, propulsion systems, mission design, and the air transportation system in order to meet these N+3 goals. The propulsion system is a key element to achieving these goals due to its major role with reducing emissions, fuel burn, and noise. This report provides an in-depth description and assessment of propulsion systems and technologies considered in the N+3 subsonic vehicle concepts. Recommendations for technologies that merit further research and development are presented based upon their impact on the N+3 goals and likelihood of being operational by 2035.

  15. Unsteady Subsonic and Transonic Potential Flow over Helicopter Rotor Blades

    NASA Technical Reports Server (NTRS)

    Isom, M. P.

    1974-01-01

    Differential equations and boundary conditions for a rotor blade in forward flight, with subsonic or transonic tip Mach number, are derived. A variety of limiting flow regimes determined by different limits involving blade thickness ratio, aspect ratio, advance ratio and maximum tip Mach number is discussed. The transonic problem is discussed in some detail, and in particular the conditions that make this problem quasi-steady or essentially unsteady are determined. Asymptotic forms of equations and boundary conditions that are valid in an appropriately scaled region of the tip and an azimuthal sector on the advancing side are derived. The equations are then put in a form that is valid from the blade tip inboard through the strip theory region.

  16. Prediction of subsonic vortex shedding from forebodies with chines

    NASA Technical Reports Server (NTRS)

    Mendenhall, Michael R.; Lesieutre, Daniel J.

    1990-01-01

    An engineering prediction method and associated computer code VTXCHN to predict nose vortex shedding from circular and noncircular forebodies with sharp chine edges in subsonic flow at angles of attack and roll are presented. Axisymmetric bodies are represented by point sources and doublets, and noncircular cross sections are transformed to a circle by either analytical or numerical conformal transformations. The lee side vortex wake is modeled by discrete vortices in crossflow planes along the body; thus the three-dimensional steady flow problem is reduced to a two-dimensional, unsteady, separated flow problem for solution. Comparison of measured and predicted surface pressure distributions, flow field surveys, and aerodynamic characteristics are presented for noncircular bodies alone and forebodies with sharp chines.

  17. Subsonic Dynamic Stability Tests of a Sample Return Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Fremaux, C. Michael; Johnson, R. Keith

    2006-01-01

    An investigation has been conducted in the NASA Langley 20-Foot Vertical Spin Tunnel (VST) to determine the subsonic dynamic stability characteristics of a proposed atmospheric entry vehicle for sample return missions. In particular, the effects of changes in aft-body geometry on stability were examined. Freeflying tests of a dynamically scaled model with various geometric features were conducted, including cases in which the model was perturbed to measure dynamic response. Both perturbed and non-perturbed runs were recorded as motion time histories using the VST optical data acquisition system and reduced for post-test analysis. In addition, preliminary results from a static force and moment test of a similar model in the Langley 12-Foot Low Speed Tunnel are presented. Results indicate that the configuration is dynamically stable for the baseline geometry, but exhibits degraded dynamic behavior for the geometry modifications tested.

  18. Analysis of an advanced technology subsonic turbofan incorporating revolutionary materials

    NASA Technical Reports Server (NTRS)

    Knip, Gerald, Jr.

    1987-01-01

    Successful implementation of revolutionary composite materials in an advanced turbofan offers the possibility of further improvements in engine performance and thrust-to-weight ratio relative to current metallic materials. The present analysis determines the approximate engine cycle and configuration for an early 21st century subsonic turbofan incorporating all composite materials. The advanced engine is evaluated relative to a current technology baseline engine in terms of its potential fuel savings for an intercontinental quadjet having a design range of 5500 nmi and a payload of 500 passengers. The resultant near optimum, uncooled, two-spool, advanced engine has an overall pressure ratio of 87, a bypass ratio of 18, a geared fan, and a turbine rotor inlet temperature of 3085 R. Improvements result in a 33-percent fuel saving for the specified misssion. Various advanced composite materials are used throughout the engine. For example, advanced polymer composite materials are used for the fan and the low pressure compressor (LPC).

  19. Estimation of Rotary Stability Derivatives at Subsonic and Transonic Speeds

    NASA Technical Reports Server (NTRS)

    Tobak, Murray; Lessing, Henry C.

    1961-01-01

    The first part of this paper pertains to the estimation of subsonic rotary stability derivatives of wings. The unsteady potential flow problem is solved by a superposition of steady flow solutions. Numerical results for the damping coefficients of triangular wings are presented as functions of aspect ratio and Mach number, and are compared with experimental results over the Mach number range 0 to 1. In the second part, experimental results are used. to point out a close correlation between the nonlinear variations with angle of attack of the static pitching-moment curve slope and the damping-in-pitch coefficient. The underlying basis for the correlation is found as a result of an analysis in which the indicial function concept and. the principle of super-position are adapted to apply to the nonlinear problem. The form of the result suggests a method of estimating nonlinear damping coefficients from results of static wind-tunnel measurements.

  20. Persistent pressure anisotropy in the subsonic magnetosheath region

    NASA Technical Reports Server (NTRS)

    Crooker, N. U.; Siscoe, G. L.; Geller, R. B.

    1976-01-01

    Observations of proton fluxes in the subsonic flow region of the magnetosheath show double peaks as a function of angle in the equatorial plane of the spacecraft. The peaks are separated by a wide angle, usually more than 90 deg. Suggestions of double flux peaks are present in 95 per cent of the data. They are interpreted as the effect of a persistent pressure anisotropy. The clearest cases were analyzed to determine the orientation of the flux peaks relative to the magnetic field and direction of a model hydrodynamic flow. The peaks are shown to be consistent with a greater pressure perpendicular to the field. Possible sources of the pressure anisotropy in the magnetosheath are discussed.

  1. Inviscid and Viscous Interactions in Subsonic Corner Flows

    PubMed Central

    Chung, Kung-Ming; Chang, Po-Hsiung; Chang, Keh-Chin

    2013-01-01

    A flap can be used as a high-lift device, in which a downward deflection results in a gain in lift at a given geometric angle of attack. To characterize the aerodynamic performance of a deflected surface in compressible flows, the present study examines a naturally developed turbulent boundary layer past the convex and concave corners. This investigation involves the analysis of mean and fluctuating pressure distributions. The results obtained indicate strong inviscid-viscous interactions. There are upstream expansion and downstream compression for the convex-corner flows, while the opposite trend is observed for the concave-corner flows. A combined flow similarity parameter, based on the small perturbation theory, is proposed to scale the flow characteristics in both subsonic convex- and concave-corner flows. PMID:23935440

  2. Evaluation of the Advanced Subsonic Technology Program Noise Reduction Benefits

    NASA Technical Reports Server (NTRS)

    Golub, Robert A.; Rawls, John W., Jr.; Russell, James W.

    2005-01-01

    This report presents a detailed evaluation of the aircraft noise reduction technology concepts developed during the course of the NASA/FAA Advanced Subsonic Technology (AST) Noise Reduction Program. In 1992, NASA and the FAA initiated a cosponsored, multi-year program with the U.S. aircraft industry focused on achieving significant advances in aircraft noise reduction. The program achieved success through a systematic development and validation of noise reduction technology. Using the NASA Aircraft Noise Prediction Program, the noise reduction benefit of the technologies that reached a NASA technology readiness level of 5 or 6 were applied to each of four classes of aircraft which included a large four engine aircraft, a large twin engine aircraft, a small twin engine aircraft and a business jet. Total aircraft noise reductions resulting from the implementation of the appropriate technologies for each class of aircraft are presented and compared to the AST program goals.

  3. Subsonic Wing Optimization for Handling Qualities Using ACSYNT

    NASA Technical Reports Server (NTRS)

    Soban, Danielle Suzanne

    1996-01-01

    The capability to accurately and rapidly predict aircraft stability derivatives using one comprehensive analysis tool has been created. The PREDAVOR tool has the following capabilities: rapid estimation of stability derivatives using a vortex lattice method, calculation of a longitudinal handling qualities metric, and inherent methodology to optimize a given aircraft configuration for longitudinal handling qualities, including an intuitive graphical interface. The PREDAVOR tool may be applied to both subsonic and supersonic designs, as well as conventional and unconventional, symmetric and asymmetric configurations. The workstation-based tool uses as its model a three-dimensional model of the configuration generated using a computer aided design (CAD) package. The PREDAVOR tool was applied to a Lear Jet Model 23 and the North American XB-70 Valkyrie.

  4. National Advisory Committee for Aeronautics Meeting

    NASA Technical Reports Server (NTRS)

    1921-01-01

    The National Advisory Committee for Aeronautics in session at Washington to discuss plans to place America foremost in the development of avaition. A report was heard from Dr. Ames, chairman of the executive committee, on research work to develop the new heavy oil fuel injection aircraft engine which does away with carburetor and spark plugs, and will lesson the fire hazard. Dr. S.W. Stratton, secretary of the committee and director of the Bureau of Standards, is shown seated at the extreme left. Around the table, left to right, are: Prof. Charles F. Marvin, chief of the weather bureau; Dr. John F. Hayford (Northwestern Univ.); Orville Wright; Major Thurman H. Bane (chief Engineer Div. Army); Paul Henderson, (Second Ass. Postmaster Gen.); Rear Adm. W.A. Moffet, Chief Bureau Aeronautics, Navy; Dr. Michael I. Pupin, (Columbia Univ.); Rear Adm. D.W. Taylor, U.S.N. (Chief Bureau Construction and repair); Dr. Charles D. Walcott, chairman, (Chief Air Service) and Dr. Joesph S. Ames, chairman executive committee (John Hopkins Univ.)

  5. Aeronautical Research Engineer Milt Thompson computing data

    NASA Technical Reports Server (NTRS)

    1956-01-01

    Milton O. Thompson was hired as an engineer at the National Advisory Committee for Aeronautics' High-Speed Flight Station (later renamed the National Aeronautics and Space Administration's Dryden Flight Research Center) on March 19, 1956. In 1958 he became a research pilot, but in this photo Milt is working on data from another pilot's research flight. Thompson began flying with the U.S. Navy as a pilot trainee at the age of 19. He subsequently served during World War II, with duty in China and Japan. Following six years of active naval service, he entered the University of Washington, in Seattle, Washington. Milt graduated in 1953 with a Bachelor of Science degree in Engineering. He remained in the Naval Reserves during college, and continued flying--not only naval aircraft but crop dusters and forest-spraying aircraft. After college graduation, Milt became a flight test engineer for the Boeing Aircraft Company in Seattle, where he was employed for two years before coming to the High-Speed Flight Station.

  6. Aeroelastic characteristics of a cascade of mistuned blades in subsonic and supersonic flows. [turbofan engines

    NASA Technical Reports Server (NTRS)

    Kielb, R. E.; Kaza, K. R. V.

    1981-01-01

    The effects of mistuning on flutter and forced response of a cascade in subsonic in subsonic and supersonic flow were investigated. The aerodynamic and structural coupling between the bending and torsional motions and the aerodynamic coupling between the blades were studied. It is shown that frequency mistuning always has a beneficial effect on flutter. For the cascade considered, the potential for raising flutter speed is greater in subsonic than in supersonic flow. Preliminary results for structural damping mistuning show that there are no additional benefits over adding damping mistuning may have either a beneficial or an adverse effect on forced response, depending on the engine order of the excitation and Mach number.

  7. Application of Mobile-ip to Space and Aeronautical Networks

    NASA Technical Reports Server (NTRS)

    Leung, Kent; Shell, Dan; Ivancic, William D.; Stewart, David H.; Bell, Terry L.; Kachmar, Brian A.

    2001-01-01

    The National Aeronautics and Space Administration (NASA) is interested in applying mobile Internet protocol (mobile-ip) technologies to its space and aeronautics programs. In particular, mobile-ip will play a major role in the Advanced Aeronautic Transportation Technology (AAT-F), the Weather Information Communication (WINCOMM), and the Small Aircraft Transportation System (SATS) aeronautics programs. This paper describes mobile-ip and mobile routers--in particular, the features, capabilities, and initial performance of the mobile router are presented. The application of mobile-router technology to NASA's space and aeronautics programs is also discussed.

  8. Aeronautical concerns and National Aeronautics and Space Administration atmospheric electricity projects

    NASA Technical Reports Server (NTRS)

    Vaughan, W. W.

    1980-01-01

    The phenomenology of lightning and lightning measurement techniques are briefly examined with a particular reference to aeronautics. Developments made in airborne and satellite detection methods are reported. NASA research efforts are outlined which cover topics including in-situ measurements, design factors and protection, remote optical and radio frequency measurements, and space vehicle design.

  9. A fuel level sensor for aeronautical applications

    NASA Astrophysics Data System (ADS)

    Petrazzuoli, L.; Persichetti, G.; Onorato, G.; Grimaldi, I. A.; Testa, G.; Bernini, R.

    2015-03-01

    A novel fuel level sensor for aeronautical applications is developed. The sensor is based on an array of total internal reflection (TIR) point sensors. Respect to conventional TIR sensors the new design permits to be sensitive to common jet fuels (JetA, JP4,JP7) but also to operate with new alternative fuels. The sensor doesn't require aircraft calibration, temperature compensation and furthermore is able to operate correctly when partially or totally exposed to presence of condensed water on its surface. The point sensors are multiplexed on a single fiber by optical couplers and interrogated simultaneously by Optical Time Domain Reflectometry (OTDR) at a wavelength of 1550nm. Experimental results show a resolution of +/-1.5mm could be achieved. The sensors is also able to measure the free water level in the fuel.

  10. Future developments in aeronautical satellite communications

    NASA Technical Reports Server (NTRS)

    Wood, Peter

    1990-01-01

    Very shortly aeronautical satellite communications will be introduced on a world wide basis. By the end of the year, voice communications (both to the cabin and cockpit) and packet data communications will be available to both airlines and executive aircraft. During the decade following the introduction of the system, there will be many enhancements and developments which will increase the range of applications, expand the potential number of users, and reduce costs. A number of ways in which the system is expected to evolve over this period are presented. Among the issues which are covered are the impact of spot beam satellites, spectrum and power conservation techniques, and the expanding range of user services.

  11. Performance of a Regional Aeronautical Telecommunications Network

    NASA Technical Reports Server (NTRS)

    Bretmersky, Steven C.; Ripamonti, Claudio; Konangi, Vijay K.; Kerczewski, Robert J.

    2001-01-01

    This paper reports the findings of the simulation of the ATN (Aeronautical Telecommunications Network) for three typical average-sized U.S. airports and their associated air traffic patterns. The models of the protocols were designed to achieve the same functionality and meet the ATN specifications. The focus of this project is on the subnetwork and routing aspects of the simulation. To maintain continuous communication between the aircrafts and the ground facilities, a model based on mobile IP is used. The results indicate that continuous communication is indeed possible. The network can support two applications of significance in the immediate future FTP and HTTP traffic. Results from this simulation prove the feasibility of development of the ATN concept for AC/ATM (Advanced Communications for Air Traffic Management).

  12. Modulation and Synchronization for Aeronautical Telemetry

    NASA Astrophysics Data System (ADS)

    Shaw, Christopher G.

    Aeronautical telemetry systems have historically been implemented with constant envelope modulations like CPM. Shifts in system constraints including reduced available bandwidth and increased throughput demands have caused many in the field to reevaluate traditional methods and design practices. This work examines the costs and benefits of using APSK for aeronautical telemetry instead of CPM. Variable rate turbo codes are used to improve the power efficiency of 16- and 32-APSK. Spectral regrowth in nonlinear power amplifiers when driven by non-constant envelope modulation is also considered. Simulation results show the improved spectral efficiency of this modulation scheme over those currently defined in telemetry standards. Additionally, the impact of transitioning from continuous transmission to burst-mode is considered. Synchronization loops are ineffective in burst-mode communication. Data-aided feedforward algorithms can be used to estimate offsets in carrier phase, frequency, and symbol timing between the transmitter and the receiver. If a data-aided algorithm is used, a portion of the transmitted signal is devoted to a known sequence of pilot symbols. Optimum pilot sequences for the three synchronization parameters are obtained analytically and numerically for different system constraints. The alternating sequence is shown to be optimal given a peak power constraint. Alternatively, synchronization can be accomplished using blind algorithms that do not rely on a priori knowledge of a pilot sequence. If blind algorithms are used, the observation interval can be longer than for data-aided algorithms. There are combinations of pilot sequence length and packet length where data-aided algorithms perform better than blind algorithms and vice versa. The conclusion is that a sequential arrangement of blind algorithms operating over an entire burst performs better than a CRB-achieving data-aided algorithm operating over a short pilot sequence.

  13. Refined methods of aeroelastic analysis and optimization. [swept wings, propeller theory, and subsonic flutter

    NASA Technical Reports Server (NTRS)

    Ashley, H.

    1984-01-01

    Graduate research activity in the following areas is reported: the divergence of laminated composite lifting surfaces, subsonic propeller theory and aeroelastic analysis, and cross sectional resonances in wind tunnels.

  14. 14 CFR 302.707 - Procedure for fixing temporary mail rates.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Procedure for fixing temporary mail rates... (AVIATION PROCEEDINGS) PROCEDURAL REGULATIONS RULES OF PRACTICE IN PROCEEDINGS Rules Applicable to Mail Rate Proceedings and Mail Contracts Provision for Temporary Rate § 302.707 Procedure for fixing temporary...

  15. 14 CFR 302.707 - Procedure for fixing temporary mail rates.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Procedure for fixing temporary mail rates... (AVIATION PROCEEDINGS) PROCEDURAL REGULATIONS RULES OF PRACTICE IN PROCEEDINGS Rules Applicable to Mail Rate Proceedings and Mail Contracts Provision for Temporary Rate § 302.707 Procedure for fixing temporary...

  16. 14 CFR 302.707 - Procedure for fixing temporary mail rates.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Procedure for fixing temporary mail rates... (AVIATION PROCEEDINGS) PROCEDURAL REGULATIONS RULES OF PRACTICE IN PROCEEDINGS Rules Applicable to Mail Rate Proceedings and Mail Contracts Provision for Temporary Rate § 302.707 Procedure for fixing temporary...

  17. 14 CFR 302.707 - Procedure for fixing temporary mail rates.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Procedure for fixing temporary mail rates... (AVIATION PROCEEDINGS) PROCEDURAL REGULATIONS RULES OF PRACTICE IN PROCEEDINGS Rules Applicable to Mail Rate Proceedings and Mail Contracts Provision for Temporary Rate § 302.707 Procedure for fixing temporary...

  18. 14 CFR 302.707 - Procedure for fixing temporary mail rates.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Procedure for fixing temporary mail rates... (AVIATION PROCEEDINGS) PROCEDURAL REGULATIONS RULES OF PRACTICE IN PROCEEDINGS Rules Applicable to Mail Rate Proceedings and Mail Contracts Provision for Temporary Rate § 302.707 Procedure for fixing temporary...

  19. Quasispherical subsonic accretion in X-ray pulsars

    NASA Astrophysics Data System (ADS)

    Shakura, Nikolai I.; Postnov, Konstantin A.; Kochetkova, A. Yu; Hjalmarsdotter, L.

    2013-04-01

    A theoretical model is considered for quasispherical subsonic accretion onto slowly rotating magnetized neutron stars. In this regime, the accreting matter settles down subsonically onto the rotating magnetosphere, forming an extended quasistatic shell. Angular momentum transfer in the shell occurs via large-scale convective motions resulting, for observed pulsars, in an almost iso-angular-momentum \\omega \\sim 1/R^2 rotation law inside the shell. The accretion rate through the shell is determined by the ability of the plasma to enter the magnetosphere due to Rayleigh-Taylor instabilities, with allowance for cooling. A settling accretion regime is possible for moderate accretion rates \\dot M \\lesssim \\dot M_* \\simeq 4\\times 10^{16} g s ^{-1}. At higher accretion rates, a free-fall gap above the neutron star magnetosphere appears due to rapid Compton cooling, and the accretion becomes highly nonstationary. Observations of spin-up/spin-down rates of quasispherically wind accreting equilibrium X-ray pulsars with known orbital periods (e.g., GX 301-2 and Vela X-1) enable us to determine the main dimensionless parameters of the model, as well as to estimate surface magnetic field of the neutron star. For equilibrium pulsars, the independent measurements of the neutron star magnetic field allow for an estimate of the stellar wind velocity of the optical companion without using complicated spectroscopic measurements. For nonequilibrium pulsars, a maximum value is shown to exist for the spin-down rate of the accreting neutron star. From observations of the spin-down rate and the X-ray luminosity in such pulsars (e.g., GX 1+4, SXP 1062, and 4U 2206+54), a lower limit can be put on the neutron star magnetic field, which in all cases turns out to be close to the standard value and which agrees with cyclotron line measurements. Furthermore, both explains the spin-up/spin-down of the pulsar frequency on large time-scales and also accounts for the irregular short

  20. Subsonic Aircraft With Regression and Neural-Network Approximators Designed

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Hopkins, Dale A.

    2004-01-01

    At the NASA Glenn Research Center, NASA Langley Research Center's Flight Optimization System (FLOPS) and the design optimization testbed COMETBOARDS with regression and neural-network-analysis approximators have been coupled to obtain a preliminary aircraft design methodology. For a subsonic aircraft, the optimal design, that is the airframe-engine combination, is obtained by the simulation. The aircraft is powered by two high-bypass-ratio engines with a nominal thrust of about 35,000 lbf. It is to carry 150 passengers at a cruise speed of Mach 0.8 over a range of 3000 n mi and to operate on a 6000-ft runway. The aircraft design utilized a neural network and a regression-approximations-based analysis tool, along with a multioptimizer cascade algorithm that uses sequential linear programming, sequential quadratic programming, the method of feasible directions, and then sequential quadratic programming again. Optimal aircraft weight versus the number of design iterations is shown. The central processing unit (CPU) time to solution is given. It is shown that the regression-method-based analyzer exhibited a smoother convergence pattern than the FLOPS code. The optimum weight obtained by the approximation technique and the FLOPS code differed by 1.3 percent. Prediction by the approximation technique exhibited no error for the aircraft wing area and turbine entry temperature, whereas it was within 2 percent for most other parameters. Cascade strategy was required by FLOPS as well as the approximators. The regression method had a tendency to hug the data points, whereas the neural network exhibited a propensity to follow a mean path. The performance of the neural network and regression methods was considered adequate. It was at about the same level for small, standard, and large models with redundancy ratios (defined as the number of input-output pairs to the number of unknown coefficients) of 14, 28, and 57, respectively. In an SGI octane workstation (Silicon Graphics

  1. Evaluating CMA Equalization of SOQPSK-TG for Aeronautical Telemetry

    DTIC Science & Technology

    2015-03-01

    Aeronautical Telemetry March 2015 DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited. Test Resource Management...Equalization of SOQPK-TG Data for Aeronautical Telemetry 5a. CONTRACT NUMBER: W900KK-13-C-0026 5b. GRANT NUMBER: N/A 5c. PROGRAM ELEMENT NUMBER 6...This standard is defined and used for aeronautical telemetry. Based on the iNET-packet structure, the adaptive block processing CMA equalizer can be

  2. Cyber Technology for Materials and Structures in Aeronautics and Aerospace

    NASA Technical Reports Server (NTRS)

    Pipes, R. Byron

    2002-01-01

    The evolution of composites applications in aeronautics from 1970 to the present is discussed. The barriers and challenges to economic application and to certification are presented and recommendations for accelerated development are outlined. The potential benefits of emerging technologies to aeronautics and their foundation in composite materials are described and the resulting benefits in vehicle take off gross weight are quantified. Finally, a 21st century vision for aeronautics in which human mobility is increased by an order of magnitude is articulated.

  3. Aeronautical engineering: A cumulative index to a continuing bibliography

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This bibliography is a cumulative index to the abstracts contained in NASA SP-7037 (197) through NASA SP-7037 (208) of Aeronautical Engineering: A Continuing Bibliography. NASA SP-7037 and its supplements have been compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, foreign technology, contract, report number, and accession number indexes.

  4. A cumulative index to Aeronautical Engineering: A continuing bibliography

    NASA Technical Reports Server (NTRS)

    1982-01-01

    This bibliography is a cumulated index to the abstracts contained in NASA SP-7037(132) through NASA SP-7037(143) of Aeronautical Engineering: A continuing bibliography. NASA SP-7037 and its supplements have been compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, contract, and report number indexes.

  5. Aeronautical engineering: A cumulative index to a continuing bibliography

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This bibliography is a cumulative index to the abstracts contained in NASA SP-7037(210) through NASA SP-7037(221) of Aeronautical Engineering: A Continuing Bibliography. NASA SP-7037 and its supplements have been compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, foreign technology, contract number, report number, and accession number indexes.

  6. A cumulative index to a continuing bibliography on aeronautical engineering

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This bibliography is a cumulative index to the abstracts contained in NASA-SP-7037(184) through NASA-SP-7037(195) of Aeronautical Engineering: A Continuing Bibliography. NASA SP-7037 and its supplements have been compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, foreign technology, contract, report number, and accession number indexes.

  7. Aeronautical Engineering: A continuing bibliography, 1982 cumulative index

    NASA Technical Reports Server (NTRS)

    1983-01-01

    This bibliography is a cumulative index to the abstracts contained in NASA SP-7037 (145) through NASA SP-7037 (156) of Aeronautical Engineering: A Continuing Bibliography. NASA SP-7037 and its supplements have been compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, contract, and report number indexes.

  8. The revolutionary impact of evolving aeronautical technologies

    NASA Technical Reports Server (NTRS)

    Kayten, G. G.; Driver, C.; Maglieri, D. J.

    1984-01-01

    Recent advances in aeronautical technologies which could produce revolutionary changes in transport aircraft if fully implemented are delineated. Laminar flow control offers a L/D improvement from the current 18 to 22 if used with a 767 configuration. Higher aspect and thickness/chord ratios could yield more efficient structural designs and further drag reduction. High-strength, fiber-reinforced composite structures can reduce structural weight by 10-30 percent. Improved engine cooling methods, higher stage loadings and exhaust temperatures can lower the SFC by 15 percent, engine weight by 15 percent, and the parts count by 50 percent. Aft-mounted counterrotating propellers can potentially decrease the SFC an additional 15-20 percent. Supersonic transport aircraft with L/D ratios of 18 and 70 seat miles/gal fuel efficiency can now be built that weigh half as much as the Concorde and carry the same load. The new SST would have superplastic-molded Al alloy structures.

  9. Life prediction technologies for aeronautical propulsion systems

    NASA Technical Reports Server (NTRS)

    Mcgaw, Michael A.

    1990-01-01

    Fatigue and fracture problems continue to occur in aeronautical gas turbine engines. Components whose useful life is limited by these failure modes include turbine hot-section blades, vanes, and disks. Safety considerations dictate that catastrophic failures be avoided, while economic considerations dictate that catastrophic failures be avoided, while economic considerations dictate that noncatastrophic failures occur as infrequently as possible. Therefore, the decision in design is making the tradeoff between engine performance and durability. LeRC has contributed to the aeropropulsion industry in the area of life prediction technology for over 30 years, developing creep and fatigue life prediction methodologies for hot-section materials. At the present time, emphasis is being placed on the development of methods capable of handling both thermal and mechanical fatigue under severe environments. Recent accomplishments include the development of more accurate creep-fatigue life prediction methods such as the total strain version of LeRC's strain-range partitioning (SRP) and the HOST-developed cyclic damage accumulation (CDA) model. Other examples include the development of a more accurate cumulative fatigue damage rule - the double damage curve approach (DDCA), which provides greatly improved accuracy in comparison with usual cumulative fatigue design rules. Other accomplishments in the area of high-temperature fatigue crack growth may also be mentioned. Finally, we are looking to the future and are beginning to do research on the advanced methods which will be required for development of advanced materials and propulsion systems over the next 10-20 years.

  10. Life prediction technologies for aeronautical propulsion systems

    NASA Technical Reports Server (NTRS)

    Mcgaw, Michael A.

    1987-01-01

    Fatigue and fracture problems continue to occur in aeronautical gas turbine engines. Components whose useful life is limited by these failure modes include turbine hot-section blades, vanes and disks. Safety considerations dictate that catastrophic failures be avoided, while economic considerations dictate that noncatastrophic failures occur as infrequently as possible. The design decision is therefore in making the tradeoff between engine performance and durability. The NASA Lewis Research Center has contributed to the aeropropulsion industry in the areas of life prediction technology for 30 years, developing creep and fatigue life prediction methodologies for hot-section materials. Emphasis is placed on the development of methods capable of handling both thermal and mechanical fatigue under severe environments. Recent accomplishments include the development of more accurate creep-fatigue life prediction methods such as the total strain version of Lewis' Strainrange Partitioning (SRP) and the HOST-developed Cyclic Damage Accumulation (CDA) model. Other examples include the Double Damage Curve Approach (DDCA), which provides greatly improved accuracy for cumulative fatigue design rules.

  11. Propulsion System for Very High Altitude Subsonic Unmanned Aircraft

    NASA Technical Reports Server (NTRS)

    Bents, David J.; Mockler, Ted; Maldonado, Jaime; Harp, James L., Jr.; King, Joseph F.; Schmitz, Paul C.

    1998-01-01

    This paper explains why a spark ignited gasoline engine, intake pressurized with three cascaded stages of turbocharging, was selected to power NASA's contemplated next generation of high altitude atmospheric science aircraft. Beginning with the most urgent science needs (the atmospheric sampling mission) and tracing through the mission requirements which dictate the unique flight regime in which this aircraft has to operate (subsonic flight at greater then 80 kft) we briefly explore the physical problems and constraints, the available technology options and the cost drivers associated with developing a viable propulsion system for this highly specialized aircraft. The paper presents the two available options (the turbojet and the turbocharged spark ignited engine) which are discussed and compared in the context of the flight regime. We then show how the unique nature of the sampling mission, coupled with the economic considerations pursuant to aero engine development, point to the spark ignited engine as the only cost effective solution available. Surprisingly, this solution compares favorably with the turbojet in the flight regime of interest. Finally, some remarks are made about NASA's present state of development, and future plans to flight demonstrate the three stage turbocharged powerplant.

  12. CFD validation of subsonic turbulent planar shear layers

    NASA Technical Reports Server (NTRS)

    Lai, H. T.; Raju, M. S.

    1993-01-01

    The primary objective of the present study is to assess the limitations and capabilities of RPLUS in predicting the entrainment, mixing, and burning characteristics of a high subsonic planar shear layer; these computations are performed in conjunction with an experiment being conducted at NASA Lewis Research Center. Turbulence is modeled by a two-equation k-epsilon closure modified for compressibility effects. Combustion is modeled by two different models: one in which a finite-rate laminar chemistry model is used for H2-O2 oxidation, and the other based on a composition joint pdf approach to account for the turbulence-chemistry interaction effects. Between upwind and centered differencing schemes, minimal differences are observed for the flow properties of a nonreacting shear layer case studied. In comparison with experimental data, computed growth rates are underpredicted in both reacting and nonreacting cases of a shear layer, but more severely for the reacting flows. However, the qualitative agreement between computation and experiment is reasonably good for the other observable characteristics, and indicative of potential for further improvements.

  13. Subsonic/supersonic aerodynamic characteristics for a tactical supercruiser

    NASA Technical Reports Server (NTRS)

    Capone, F. J.; Bare, E. A.; Hollenback, D.; Hutchison, R.

    1984-01-01

    A series of cooperative NASA-Langley/Boeing experimental investigations have been conducted to determine the aeropropulsive characteristics of an advanced tactical fighter designed for supersonic cruise. These investigations were conducted in the Langley 16-Foot Transonic and Lewis 10 x 10-Foot Supersonic Wind Tunnels at Mach numbers from 0.60 to 2.47. This fighter is a Mach 2.0, 49,000 pound class vehicle that features a close-coupled canard and underwing propulsion units that utilize multifunction two-dimensional exhaust nozzles. Tests were conducted to determine the basic aerodynamic characteristics of the configuration with flow-through nacelles in which the spillage effects of representative inlets were measured. The effects of thrust-induced forces on overall aerodynamic performance were evaluated with a series of multifunction nozzles installed on air-powered nacelles. An axisymmetric nozzle configuration was also tested to obtain comparative aeropropulsive performance. Trim aerodynamic characteristics for the flow-through and powered configurations and the effect of thrust vectoring at subsonic speeds are presented.

  14. The 1996 Subsonic Aircraft: Contrail and Cloud Effects Special Study

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.; Condon, Estelle P. (Technical Monitor)

    1996-01-01

    During April 1996 NASA, in conjunction with the DOE, will sponsor a multi-aircraft field campaign to better understand the microphysical and radiative properties of cirrus clouds, the origins of ice nuclei and cloud condensation nuclei in the upper troposphere, and the possible role that the commercial subsonic aircraft fleet might play in altering cloud or aerosol properties. The NASA ER-2 aircraft will be used as a remote sensing platform, while the NASA DC-8 aircraft will be used as an in situ measurement platform. In situ observations will include a full set of size distribution measurements from nano-meter to millimeter sizes, ice water content measurements, gas phase and condensed phase chemical measurements, ice crystal optical phase function measurements, lidar observations of cloud top and cloud base, and atmospheric state measurement. The ER-2 will have lidar, microwave ice water path measurements, as well as visible and infrared spectral measurement. In this presentation the highlights of the mission will be presented. The goal will be to address fundamental questions such as the mode of nucleation of cirrus clouds, the composition of the nuclei on which cirrus form, the degree to which aircraft impact cirrus cloud properties.

  15. CFD validation of subsonic turbulent planar shear layers

    NASA Astrophysics Data System (ADS)

    Lai, H. T.; Raju, M. S.

    1993-06-01

    The primary objective of the present study is to assess the limitations and capabilities of RPLUS in predicting the entrainment, mixing, and burning characteristics of a high subsonic planar shear layer; these computations are performed in conjunction with an experiment being conducted at NASA Lewis Research Center. Turbulence is modeled by a two-equation k-epsilon closure modified for compressibility effects. Combustion is modeled by two different models: one in which a finite-rate laminar chemistry model is used for H2-O2 oxidation, and the other based on a composition joint pdf approach to account for the turbulence-chemistry interaction effects. Between upwind and centered differencing schemes, minimal differences are observed for the flow properties of a nonreacting shear layer case studied. In comparison with experimental data, computed growth rates are underpredicted in both reacting and nonreacting cases of a shear layer, but more severely for the reacting flows. However, the qualitative agreement between computation and experiment is reasonably good for the other observable characteristics, and indicative of potential for further improvements.

  16. Transverse Injection into Subsonic Crossflow with Various Injector Orifice Geometries

    NASA Technical Reports Server (NTRS)

    Foster, Lancert E.; Zaman, Khairul B.

    2010-01-01

    Computational and experimental results are presented for a case study of single injectors employed in 90 deg transverse injection into a non-reacting subsonic flow. Different injector orifice shapes are used (including circular, square, diamond-shaped, and wide rectangular slot), all with constant cross-sectional area, to observe the effects of this variation on injector penetration and mixing. Whereas the circle, square, and diamond injector produce similar jet plumes, the wide rectangular slot produces a plume with less vertical penetration than the others. There is also some evidence that the diamond injector produces slightly faster penetration with less mixing of the injected fluid. In addition, a variety of rectangular injectors were analyzed, with varying length/width ratios. Both experimental and computational data show improved plume penetration with increased streamwise orifice length. 3-D Reynolds-Averaged Navier-Stokes (RANS) results are obtained for the various injector geometries using NCC (National Combustion Code) with the kappa-epsilon turbulence model in multi-species modes on an unstructured grid. Grid sensitivity results are also presented which indicate consistent qualitative trends in the injector performance comparisons with increasing grid refinement.

  17. High frequency flow-structural interaction in dense subsonic fluids

    NASA Technical Reports Server (NTRS)

    Liu, Baw-Lin; Ofarrell, J. M.

    1995-01-01

    Prediction of the detailed dynamic behavior in rocket propellant feed systems and engines and other such high-energy fluid systems requires precise analysis to assure structural performance. Designs sometimes require placement of bluff bodies in a flow passage. Additionally, there are flexibilities in ducts, liners, and piping systems. A design handbook and interactive data base have been developed for assessing flow/structural interactions to be used as a tool in design and development, to evaluate applicable geometries before problems develop, or to eliminate or minimize problems with existing hardware. This is a compilation of analytical/empirical data and techniques to evaluate detailed dynamic characteristics of both the fluid and structures. These techniques have direct applicability to rocket engine internal flow passages, hot gas drive systems, and vehicle propellant feed systems. Organization of the handbook is by basic geometries for estimating Strouhal numbers, added mass effects, mode shapes for various end constraints, critical onset flow conditions, and possible structural response amplitudes. Emphasis is on dense fluids and high structural loading potential for fatigue at low subsonic flow speeds where high-frequency excitations are possible. Avoidance and corrective measure illustrations are presented together with analytical curve fits for predictions compiled from a comprehensive data base.

  18. Supersonic Jet Exhaust Noise at High Subsonic Flight Speed

    NASA Technical Reports Server (NTRS)

    Norum, Thomas D.; Garber, Donald P.; Golub, Robert A.; Santa Maria, Odilyn L.; Orme, John S.

    2004-01-01

    An empirical model to predict the effects of flight on the noise from a supersonic transport is developed. This model is based on an analysis of the exhaust jet noise from high subsonic flights of the F-15 ACTIVE Aircraft. Acoustic comparisons previously attainable only in a wind tunnel were accomplished through the control of both flight operations and exhaust nozzle exit diameter. Independent parametric variations of both flight and exhaust jet Mach numbers at given supersonic nozzle pressure ratios enabled excellent correlations to be made for both jet broadband shock noise and jet mixing noise at flight speeds up to Mach 0.8. Shock noise correlated with flight speed and emission angle through a Doppler factor exponent of about 2.6. Mixing noise at all downstream angles was found to correlate well with a jet relative velocity exponent of about 7.3, with deviations from this behavior only at supersonic eddy convection speeds and at very high flight Mach numbers. The acoustic database from the flight test is also provided.

  19. Coherent structures and wavepackets in subsonic transitional turbulent jets

    NASA Astrophysics Data System (ADS)

    Yang, Haihua; Zhang, Xingchen; Ran, Lingke; Sun, Dejun; Wan, Zhenhua

    2017-02-01

    A large eddy simulation (LES) is performed for two subsonic jets with a Reynolds number of Re=10^5, which have different core temperatures, i.e., the cold and hot jet. The far-field overall sound pressure levels (OASPL) and noise spectra are well validated against previous experimental results. It is found that the OASPL is raised by heating at shallow angles. The most energetic coherent structures are extracted with specified frequencies using the filter based on the frequency domain variant of the snapshot method of proper orthogonal decomposition (POD). The m=0,1 modes have high coherence of near-field pressure for both jets, while the coherence of m=0 modes is enhanced greatly by heating. Based on the coherent structures, spatial wavepackets are educed and the characteristics of growth, saturation and decay are analyzed and compared between the two jets in detail. The results show that heating would enhance the linear growth rate for high frequency components, and nonlinear growth rates for low frequency components in general, which are responsible for higher OASPL in the hot jet. The far-field sound generated by wavepackets is computed using the Kirchhoff extrapolation, which matches well with that of LES at shallow angles. This indicates that the wavepackets associated with coherent structures are dominant sound sources in forced transitional turbulent jets. Additionally, the present POD method is proven to be a robust tool to extract the salient features of the wavepackets in turbulent flows.

  20. Computational Study of Separating Flow in a Planar Subsonic Diffuser

    NASA Technical Reports Server (NTRS)

    DalBello, Teryn; Dippold, Vance, III; Georgiadis, Nicholas J.

    2005-01-01

    A computational study of the separated flow through a 2-D asymmetric subsonic diffuser has been performed. The Wind Computational Fluid Dynamics code is used to predict the separation and reattachment behavior for an incompressible diffuser flow. The diffuser inlet flow is a two-dimensional, turbulent, and fully-developed channel flow with a Reynolds number of 20,000 based on the centerline velocity and the channel height. Wind solutions computed with the Menter SST, Chien k-epsilon, Spalart-Allmaras and Explicit Algebraic Reynolds Stress turbulence models are compared with experimentally measured velocity profiles and skin friction along the upper and lower walls. In addition to the turbulence model study, the effects of grid resolution and use of wall functions were investigated. The grid studies varied the number of grid points across the diffuser and varied the initial wall spacing from y(sup +) = 0.2 to 60. The wall function study assessed the applicability of wall functions for analysis of separated flow. The SST and Explicit Algebraic Stress models provide the best agreement with experimental data, and it is recommended wall functions should only be used with a high level of caution.

  1. Chaos control for the plates subjected to subsonic flow

    NASA Astrophysics Data System (ADS)

    Norouzi, Hamed; Younesian, Davood

    2016-07-01

    The suppression of chaotic motion in viscoelastic plates driven by external subsonic air flow is studied. Nonlinear oscillation of the plate is modeled by the von-Kármán plate theory. The fluid-solid interaction is taken into account. Galerkin's approach is employed to transform the partial differential equations of the system into the time domain. The corresponding homoclinic orbits of the unperturbed Hamiltonian system are obtained. In order to study the chaotic behavior of the plate, Melnikov's integral is analytically applied and the threshold of the excitation amplitude and frequency for the occurrence of chaos is presented. It is found that adding a parametric perturbation to the system in terms of an excitation with the same frequency of the external force can lead to eliminate chaos. Variations of the Lyapunov exponent and bifurcation diagrams are provided to analyze the chaotic and periodic responses. Two perturbation-based control strategies are proposed. In the first scenario, the amplitude of control forces reads a constant value that should be precisely determined. In the second strategy, this amplitude can be proportional to the deflection of the plate. The performance of each controller is investigated and it is found that the second scenario would be more efficient.

  2. Advancing Aeronautics: A Decision Framework for Selecting Research Agendas

    NASA Technical Reports Server (NTRS)

    Anton, Philip S.; Ecola, Liisa; Kallimani, James G.; Light, Thomas; Ohlandt, Chad J. R.; Osburg, Jan; Raman, Raj; Grammich, Clifford A.

    2011-01-01

    Publicly funded research has long played a role in the development of aeronautics, ranging from foundational research on airfoils to development of the air-traffic control system. Yet more than a century after the research and development of successful controlled, sustained, heavier-than-air flight vehicles, there are questions over the future of aeronautics research. The field of aeronautics is relatively mature, technological developments within it have become more evolutionary, and funding decisions are sometimes motivated by the continued pursuit of these evolutionary research tracks rather than by larger factors. These developments raise questions over whether public funding of aeronautics research continues to be appropriate or necessary and at what levels. Tightened federal budgets and increasing calls to address other public demands make these questions sharper still. To help it address the questions of appropriate directions for publicly funded aeronautics research, the National Aeronautics and Space Administration's (NASA's) Aeronautics Research Mission Directorate (ARMD) asked the RAND Corporation to assess the elements required to develop a strategic view of aeronautics research opportunities; identify candidate aeronautic grand challenges, paradigms, and concepts; outline a framework for evaluating them; and exercise the framework as an example of how to use it. Accordingly, this research seeks to address these questions: What aeronautics research should be supported by the U.S. government? What compelling and desirable benefits drive government-supported research? How should the government--especially NASA--make decisions about which research to support? Advancing aeronautics involves broad policy and decisionmaking challenges. Decisions involve tradeoffs among competing perspectives, uncertainties, and informed judgment.

  3. Aeronautics and Space Report of the President

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Fiscal Year (FY) 2002 brought advances on many fronts in support of NASA's new vision, announced by Administrator Sean O Keefe on April 12, "to improve life here, to extend life to there, to find life beyond." NASA successfully carried out four Space Shuttle missions, including three to the International Space Station (ISS) and one servicing mission to the Hubble Space Telescope (HST). By the end of the fiscal year, humans had occupied the ISS continuously for 2 years. NASA also managed five expendable launch vehicle (ELV) missions and participated in eight international cooperative ELV launches. In the area of space science, two of the Great Observatories, the Hubble Space Telescope and the Chandra X-Ray Observatory, continued to make spectacular observations. The Mars Global Surveyor and Mars Odyssey carried out their mapping missions of the red planet in unprecedented detail. Among other achievements, the Near Earth Asteroid Rendezvous (NEAR) Shoemaker spacecraft made the first soft landing on an asteroid, and the Solar and Heliospheric Observatory (SOHO) monitored a variety of solar activity, including the largest sunspot observed in 10 years. The education and public outreach program stemming from NASA's space science missions continues to grow. In the area of Earth science, attention focused on completing the first Earth Observing Satellite series. Four spacecraft were successfully launched. The goal is to understand our home planet as a system, as well as how the global environment responds to change. In aerospace technology, NASA conducted studies to improve aviation safety and environmental friendliness, progressed with its Space Launch Initiative Program, and explored a variety of pioneering technologies, including nanotechnology, for their application to aeronautics and aerospace. NASA remained broadly engaged in the international arena and concluded over 60 international cooperative and reimbursable international agreements during FY 2002.

  4. The Western Aeronautical Test Range of NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Moore, A. L.

    1984-01-01

    An overview of the Western Aeronautical Test Range (WATR) of NASA Ames Research Center (ARC) is presented in this paper. The three WATR facilities are discussed, and three WATR elements - mission control centerns, communications systems, real-time processing and display systems, and tracking systems -are reviewed. The relationships within the NASA WATR, with respect to the NASA aeronautics program, are also discussed.

  5. Aeronautical engineering: A continuing bibliography with indexes (supplement 324)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This bibliography lists 149 reports, articles, and other documents introduced into the NASA scientific and technical information system in December 1995. Subject coverage includes engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.

  6. Aeronautical engineering: A continuing bibliography with indexes (supplement 319)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This report lists 349 reports, articles and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.

  7. Aeronautical engineering: A continuing bibliography with indexes (supplement 284)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This bibliography lists 974 reports, articles, and other documents introduced into the NASA scientific and technical information system in Oct. 1992. The coverage includes documents on design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.

  8. Aeronautical Engineering: A Continuing Bibliography With Indexes. Supplement 392

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This report lists reports, articles and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.

  9. Aeronautical engineering: A continuing bibliography with indexes (supplement 310)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This bibliography lists 29 reports, articles, and other documents introduced into the NASA scientific and technical information system in Nov. 1994. Subject coverage includes: engineering and theoretical aspects of design, construction,evaluation testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.

  10. NASA's Role in Aeronautics: A Workshop. Volume VII - Background Papers.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Assembly of Engineering.

    Sixteen background papers presented to a plenary session at a 1980 workshop on the role of the National Aeronautics and Space Administration (NASA) in aeronautics are presented. The central task of the workshop was to examine the relationship of NASA's research capabilities to the state of U.S. aviation and to make recommendations about NASA's…

  11. Aeronautical Engineering: A Continuing Bibliography with Indexes. SUPPL-422

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This report lists reports, articles and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.

  12. A cumulative index to Aeronautical Engineering: A special bibliography

    NASA Technical Reports Server (NTRS)

    1978-01-01

    This publication is a cumulative index to the abstracts contained in NASA SP-7037 (80) through NASA SP-7037 (91) of Aeronautical Engineering: A Special Bibliography. NASA SP-7037 and its supplements have been compiled through the cooperative efforts of the American Institute of Aeronautics (AIAA) and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, contract, and report number indexes.

  13. Aeronautics and Space Report of the President: 1977 Activities.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The national programs in aeronautics and space made steady progress in 1977 toward their long-term objectives. In aeronautics the goals were improved performance, energy efficiency, and safety in aircraft. In space the goals were: (1) better remote sensing systems to generate more sophisticated information about the Earth's environment; (2)…

  14. Compressed Aeronautical Chart Processing Operator’s Manual

    DTIC Science & Technology

    2007-11-02

    the processing thread A4A denotes a CAC ODI build for an (A) aeronautical chart at the (4) operational navigation chart (ONC) (1:1M) scale with...builds when both charts are at the same scale. For example, the processing thread A4A denotes a CAC ODI build for an (A) aeronautical chart at the (4

  15. Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplement 405

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This report lists reports, articles and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.

  16. NASA aeronautics. [fact sheet on NASA programs for aeronautical research and aircraft development

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A fact sheet depicting the NASA programs involving aircraft development and aeronautics is presented. The fact sheet consists of artist concepts of the various aircraft which represent specific programs. Among the subjects discussed in the concise explanatory notes are: (1) the YF-12 aircraft, (2) hypersonic drag tests in wind tunnels, (3) augmentor wing concepts, (4) rotary wing development, (5) fly-by-wire aircraft control, (6) supercritical wings, (7) the quiet engine program for noise and emission abatement, (8) flight capabilities of lifting bodies, (9) tilt rotor concepts for improved helicopter performance, and (10) flight safety improvements for general aviation aircraft.

  17. Hot-wire calibration in subsonic/transonic flow regimes

    NASA Technical Reports Server (NTRS)

    Nagabushana, K. A.; Ash, Robert L.

    1995-01-01

    A different approach for calibrating hot-wires, which simplifies the calibration procedure and reduces the tunnel run-time by an order of magnitude was sought. In general, it is accepted that the directly measurable quantities in any flow are velocity, density, and total temperature. Very few facilities have the capability of varying the total temperature over an adequate range. However, if the overheat temperature parameter, a(sub w), is used to calibrate the hot-wire then the directly measurable quantity, voltage, will be a function of the flow variables and the overheat parameter i.e., E = f(u,p,a(sub w), T(sub w)) where a(sub w) will contain the needed total temperature information. In this report, various methods of evaluating sensitivities with different dependent and independent variables to calibrate a 3-Wire hot-wire probe using a constant temperature anemometer (CTA) in subsonic/transonic flow regimes is presented. The advantage of using a(sub w) as the independent variable instead of total temperature, t(sub o), or overheat temperature parameter, tau, is that while running a calibration test it is not necessary to know the recovery factor, the coefficients in a wire resistance to temperature relationship for a given probe. It was deduced that the method employing the relationship E = f (u,p,a(sub w)) should result in the most accurate calibration of hot wire probes. Any other method would require additional measurements. Also this method will allow calibration and determination of accurate temperature fluctuation information even in atmospheric wind tunnels where there is no ability to obtain any temperature sensitivity information at present. This technique greatly simplifies the calibration process for hot-wires, provides the required calibration information needed in obtaining temperature fluctuations, and reduces both the tunnel run-time and the test matrix required to calibrate hotwires. Some of the results using the above techniques are presented

  18. Computational Investigations of Noise Suppression in Subsonic Round Jets

    NASA Technical Reports Server (NTRS)

    Pruett, C. David

    1997-01-01

    NASA Grant NAG1-1802, originally submitted in June 1996 as a two-year proposal, was awarded one-year's funding by NASA LaRC for the period 5 Oct., 1996, through 4 Oct., 1997. Because of the inavailability (from IT at NASA ARC) of sufficient supercomputer time in fiscal 1998 to complete the computational goals of the second year of the original proposal (estimated to be at least 400 Cray C-90 CPU hours), those goals have been appropriately amended, and a new proposal has been submitted to LaRC as a follow-on to NAG1-1802. The current report documents the activities and accomplishments on NAG1-1802 during the one-year period from 5 Oct., 1996, through 4 Oct., 1997. NASA Grant NAG1-1802, and its predecessor, NAG1-1772, have been directed toward adapting the numerical tool of Large-Eddy Simulation (LES) to aeroacoustic applications, with particular focus on noise suppression in subsonic round jets. In LES, the filtered Navier-Stokes equations are solved numerically on a relatively coarse computational grid. Residual stresses, generated by scales of motion too small to be resolved on the coarse grid, are modeled. Although most LES incorporate spatial filtering, time-domain filtering affords certain conceptual and computational advantages, particularly for aeroacoustic applications. Consequently, this work has focused on the development of SubGrid-Scale (SGS) models that incorporate time- domain filters. The author is unaware of any previous attempt at purely time-filtered LES; however, Aldama and Dakhoul and Bedford have considered approaches that combine both spatial and temporal filtering. In our view, filtering in both space and time is redundant, because removal of high frequencies effects the removal of small spatial scales and vice versa.

  19. Aeronautical engineering: A continuing bibliography with indexes (supplement 294)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This issue of Aeronautical Engineering - A Continuing Bibliography with Indexes lists 590 reports, journal articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspect of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. The bibliographic series is compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). Seven indexes are included: subject, personal author, corporate source, foreign technology, contract number, report number, and accession number.

  20. NASA N+3 Subsonic Fixed Wing Silent Efficient Low-Emissions Commercial Transport (SELECT) Vehicle Study. Revision A

    NASA Technical Reports Server (NTRS)

    Bruner, Sam; Baber, Scott; Harris,Chris; Caldwell, Nicholas; Keding, Peter; Rahrig, Kyle; Pho, Luck; Wlezian, Richard

    2010-01-01

    A conceptual commercial passenger transport study was performed to define a single vehicle for entry into service in the 2030 to 2035 timeframe, meeting customer demands as well as NASA goals for improved fuel economy, NOx emissions, noise, and operability into smaller airports. A study of future market and operational scenarios was used to guide the design of an advanced tube-and-wing configuration that utilized advanced material and structural concepts, an advanced three-shaft high-bypass turbofan engine, natural laminar flow technology, and a suite of other advanced technologies. This configuration was found to meet the goals for NOx emissions, noise, and field length. A 64 percent improvement in fuel economy compared to a current state-of-the-art airliner was achieved, which fell slightly short of the desired 70 percent goal. Technology maturation plans for the technologies used in the design were developed to help guide future research and development activities.

  1. Investigation of a subsonic-arc-attachment thruster using segmented anodes

    NASA Technical Reports Server (NTRS)

    Berns, Darren H.; Sankovic, John M.; Sarmiento, Charles J.

    1993-01-01

    To investigate high frequency arc instabilities observed in subsonic-arc-attachment thrusters, a 3 kW, segmented-anode arc jet was designed and tested using hydrogen as the propellant. The thruster nozzle geometry was scaled from a 30 kW design previously tested in the 1960's. By observing the current to each segment and the arc voltage, it was determined that the 75-200 kHz instabilities were results of axial movements of the arc anode attachment point. The arc attachment point was fully contained in the subsonic portion of the nozzle for nearly all flow rates. The effects of isolating selected segments were investigated. In some cases, forcing the arc downstream caused the restrike to cease. Finally, decreasing the background pressure from 18 to 0.05 Pa affected the pressure distribution in the nozzle including the pressure in the subsonic arc chamber.

  2. Investigation of a subsonic-arc-attachment thruster using segmented anodes

    NASA Astrophysics Data System (ADS)

    Berns, Darren H.; Sankovic, John M.; Sarmiento, Charles J.

    1993-12-01

    To investigate high frequency arc instabilities observed in subsonic-arc-attachment thrusters, a 3 kW, segmented-anode arc jet was designed and tested using hydrogen as the propellant. The thruster nozzle geometry was scaled from a 30 kW design previously tested in the 1960's. By observing the current to each segment and the arc voltage, it was determined that the 75-200 kHz instabilities were results of axial movements of the arc anode attachment point. The arc attachment point was fully contained in the subsonic portion of the nozzle for nearly all flow rates. The effects of isolating selected segments were investigated. In some cases, forcing the arc downstream caused the restrike to cease. Finally, decreasing the background pressure from 18 to 0.05 Pa affected the pressure distribution in the nozzle including the pressure in the subsonic arc chamber.

  3. A Hybrid Satellite-Terrestrial Approach to Aeronautical Communication Networks

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Chomos, Gerald J.; Griner, James H.; Mainger, Steven W.; Martzaklis, Konstantinos S.; Kachmar, Brian A.

    2000-01-01

    Rapid growth in air travel has been projected to continue for the foreseeable future. To maintain a safe and efficient national and global aviation system, significant advances in communications systems supporting aviation are required. Satellites will increasingly play a critical role in the aeronautical communications network. At the same time, current ground-based communications links, primarily very high frequency (VHF), will continue to be employed due to cost advantages and legacy issues. Hence a hybrid satellite-terrestrial network, or group of networks, will emerge. The increased complexity of future aeronautical communications networks dictates that system-level modeling be employed to obtain an optimal system fulfilling a majority of user needs. The NASA Glenn Research Center is investigating the current and potential future state of aeronautical communications, and is developing a simulation and modeling program to research future communications architectures for national and global aeronautical needs. This paper describes the primary requirements, the current infrastructure, and emerging trends of aeronautical communications, including a growing role for satellite communications. The need for a hybrid communications system architecture approach including both satellite and ground-based communications links is explained. Future aeronautical communication network topologies and key issues in simulation and modeling of future aeronautical communications systems are described.

  4. Aerodynamic Characteristics in Pitch and Sideslip at High Subsonic Speeds of a 1/14-Scale Model of the Grumman XF104 Airplane with Wing Sweepback of 42.5 Degrees

    NASA Technical Reports Server (NTRS)

    Kuhn, Richard E.; Draper, John W.

    1953-01-01

    An investigation has been made at high subsonic speeds of the aerodynamic'characteristics in pitch and sideslip of a l/l4-scale model of the Grumman XF10F airplane with a wing sweepback angle of 42.5. The longitudinal stability characteristics (with the horizontal tail fixed) indicate a pitch-up near the stall; however, this was somewhat alleviated by the addition of fins to the side of the fuselage below the horizontal tail. The original model configuration became directionally unstable for small sideslip angles at Mach numbers above 0.8; however, the instability was eliminated by several different modifications.

  5. Subsonic Cascade Wind Tunnel Tests Using a Compressor Configuration of DCA Blades.

    DTIC Science & Technology

    1981-06-01

    1399 - .257 1 4 -I,. ’- 𔃾 1 4 4930 1432 -. 1653 15:;7 .5669 1412 -. 1295 - 7746407 13.3𔄃a 0 5-3,’ 175139 -. 8 , .. 7 4 * ,r I t - 7146 .1289 . 0833 ...EDoNa OF I NOV 61 IS OBSOLETE (Page 1 ) s’w4 0 10 2-014- 6601 r1NCT.AA.9T~’TE S SECURITY CLASSIFICATION OF THIS PAGE (She..n DotaEnter*ed) UNCLASSIFIED...6 LIST OF FIGURES Figure 1 . Subsonic Cascade Facility ------------------------ 43 2. Photograph of Subsonic Cascade and Test Section -- 44 3

  6. The Liquid Hydrogen Option for the Subsonic Transport: A status report

    NASA Technical Reports Server (NTRS)

    Korycinski, P. F.

    1977-01-01

    Continued subsonic air transport design studies include the option for a liquid hydrogen fuel system as an aircraft fuel conservation measure. Elements of this option discussed include: (1) economical production of hydrogen; (2) efficient liquefaction of hydrogen; (3) materials for long service life LH2 fuel tanks; (4) insulation materials; (5) LH2 fuel service and installations at major air terminals; (6) assessment of LH2 hazards; and (7) the engineering definition of an LH2 fuel system for a large subsonic passenger air transport.

  7. CFD-Based Design Optimization Tool Developed for Subsonic Inlet

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The traditional approach to the design of engine inlets for commercial transport aircraft is a tedious process that ends with a less-than-optimum design. With the advent of high-speed computers and the availability of more accurate and reliable computational fluid dynamics (CFD) solvers, numerical optimization processes can effectively be used to design an aerodynamic inlet lip that enhances engine performance. The designers' experience at Boeing Corporation showed that for a peak Mach number on the inlet surface beyond some upper limit, the performance of the engine degrades excessively. Thus, our objective was to optimize efficiency (minimize the peak Mach number) at maximum cruise without compromising performance at other operating conditions. Using a CFD code NPARC, the NASA Lewis Research Center, in collaboration with Boeing, developed an integrated procedure at Lewis to find the optimum shape of a subsonic inlet lip and a numerical optimization code, ADS. We used a GRAPE-based three-dimensional grid generator to help automate the optimization procedure. The inlet lip shape at the crown and the keel was described as a superellipse, and the superellipse exponents and radii ratios were considered as design variables. Three operating conditions: cruise, takeoff, and rolling takeoff, were considered in this study. Three-dimensional Euler computations were carried out to obtain the flow field. At the initial design, the peak Mach numbers for maximum cruise, takeoff, and rolling takeoff conditions were 0.88, 1.772, and 1.61, respectively. The acceptable upper limits on the takeoff and rolling takeoff Mach numbers were 1.55 and 1.45. Since the initial design provided by Boeing was found to be optimum with respect to the maximum cruise condition, the sum of the peak Mach numbers at takeoff and rolling takeoff were minimized in the current study while the maximum cruise Mach number was constrained to be close to that at the existing design. With this objective, the

  8. Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplement 413

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-2000-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. Two indexes-subject and author are included after the abstract section.

  9. Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplement 420

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-2000-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. Two indexes-subject and author are included after the abstract section.

  10. Aeronautics and space report of the president, 1974 activities

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The U.S. Government activities for 1974 in aeronautics and space are presented. Significant contributions toward the fulfillment of the nation's goals in space and aeronautics are covered, including application of space systems and technology to beneficial uses on earth, exploration of space and increase of scientific knowledge, development of improved space systems and technology, international cooperation, and advancement of civil and military aeronautics. Also in 1974, space activities in the private sector expanded to provide additional services to the public. The accomplishments are summarized.

  11. Astronautics and Aeronautics, 1986-1990: A Chronology

    NASA Technical Reports Server (NTRS)

    Gawdiak, Ihor Y.; Miro, Ramon J.; Stueland, Sam

    1997-01-01

    This chronology of events in aeronautics, aviation, space science, and space exploration was prepared by the Federal Research Division of the LibrarY of Congress for the History Division of the National Aeronautics and Space Administration (NASA). It covers the years 1996-1990 and continues the series of annual chronologies published by NASA. The present volume returns to the format used in the Astronautics and Aeronautics, 1979-1984: A Chronology volume. It also integrates in a single table the information presented in two or three previous publications.

  12. Aeronautical Engineering: A Continuing Bibliography With Indexes. Supplement 406

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-1999-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. Two indexes-subject and author are included after the abstract section.

  13. Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplement 419

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-2000-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. Two indexes-subject and author are included after the abstract section.

  14. Aeronautical Engineering: A Continuing Bibliography With Indexes. Supplement 398

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This supplemental issue of Aeronautical Engineering lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes - subject and author are included after the abstract section.

  15. NASA's Role in Aeronautics: A Workshop. Volume 7: Background papers

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The nature and implications of the current state of U.S. aviation in a world setting are examined as well as their significance for NASA's role in the nation's aeronautical future. The outlook for the 1980's is examined from the point of view of legislation, economics and finance; petroleum; manpower, metallic materials, general aviation; military aviation; transport aircraft developments; and helicopters. Possible NASA assistance to DOD and the FAA is examined and the evolution of NACA and NASA in aeronautics and of NASA's aeronautics capabilities are described.

  16. Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplement 389

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-1998-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract.

  17. Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplement 396

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-1999-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. Two indexes-subject and author are included after the abstract section.

  18. Aeronautical Engineering: A Continuing Bibliography With Indexes. Supplement 404

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-1999-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. Two indexes-subject and author are included after the abstract section.

  19. Aeronautical Engineering: A Continuing Bibliography With Indexes. Supplement 418

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-2000-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. Two indexes-subject and author are included after the abstract section.

  20. Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplement 387

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-1998-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract.

  1. Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplement 386

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-1998-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract.

  2. Astronautics and Aeronautics, 1991-1995: A Chronology

    NASA Technical Reports Server (NTRS)

    Gawdiak, Ihor Y. (Compiler); Shetland, Charles (Compiler)

    2000-01-01

    This chronology of events in aeronautics, aviation, space science, and space exploration was prepared by the Federal Research Division of the Library of Congress and RSIS for the History Division of the National Aeronautics and Space Administration (NASA). It covers the years 1991-1995 and continues the series of annual chronologies published by NASA. The present volume uses the format of the previous edition of this series, Astronautics and Aeronautics, 1986-1990: A Chronology. It also integrates, in the appendices, information presented in previous publication

  3. Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplement 391

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-1999-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract.

  4. Subsonic and supersonic indicial aerodynamics and aerodynamic transfer function for complex configurations. [aerodynamic configurations for subsonic and supersonic speeds using the finite element method

    NASA Technical Reports Server (NTRS)

    Morino, L.

    1974-01-01

    A general theory for indicial-potential-compressible aerodynamics around complex configurations is presented. The motion is assumed to consist of constant subsonic or supersonic speed (steady state) and small perturbations around the steady state. Using the finite-element method to discretize the space problem, a set of differential-difference equations in time relating the potential to its normal derivative on the surface of the body was obtained. The aerodynamics transfer function was derived by using standard method of operational calculus.

  5. Astronautics and Aeronautics, 1979-1984: A chronology

    NASA Technical Reports Server (NTRS)

    Janson, Bette R.; Ritchie, Eleanor H.

    1989-01-01

    This volume of the Astronautics and Aeronautics series covers 1979 through 1984. The series provides a chronological presentation of all significant events and developments in space exploration and the administration of the space program during the period covered.

  6. 77 FR 13683 - Government/Industry Aeronautical Charting Forum Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ... Charting Group, contact Valerie S. Watson, FAA, National Aeronautical Navigation Products (AeroNav Products... permits. Issued in Washington, DC, on February 28, 2012. Valerie S. Watson, Co-Chair,...

  7. Bureau of Aeronautics, October 16, 1943, Photograph #4875. AERIAL OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Bureau of Aeronautics, October 16, 1943, Photograph #4875. AERIAL OF ROOSEVELT BASE LOOKING EAST - Roosevelt Base, Bounded by Ocean Boulevard, Pennsylvania Avenue, Richardson Avenue, & Idaho Street, Long Beach, Los Angeles County, CA

  8. 1971 Aeronautics and Space Highlights. [NASA programs and research

    NASA Technical Reports Server (NTRS)

    1971-01-01

    These highlights include Mariner orbit of Mars, Interplanetary Monitoring Platform, Orbiting Solar Observatory, small scientific satellite, sounding rockets, Stratoscope 11, earth resources, aeronautics, jet noise abatement, airport runway safety, Apollo 14 and 15, and Skylab.

  9. NASA's Role in Aeronautics: A Workshop. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The state of the U.S. aeronautic industry and progressive changes in national priorities as reflected in federal unified budget outlays are reviewed as well as the contribution of NACA and the character and substance of U.S. aeronautical research under NASA. Eight possible roles for the future defined by NASA are examined and the extent to which the agency should carry out these activities is considered. The roles include: (1) national facilities expertise; (2) flight sciences research; (3) generic technology evolution; (4) vehicle class evolution; (5) technology demonstration; (6) prototype development; (7) technology validation; and (8) operations feasibility; How NASA's roles varies in the areas of military aviation, general aviation, transport aircraft aeronautics, rotorcraft aeronautics, engineering education, information dissemination, and cooperation with other organizations and agencies is discussed with regard to research in aerodynamics; structures and materials; propulsion; electronics and avionics; vehicle operations; and human engineering.

  10. Bureau of Aeronautics, June 5, 1945, Photograph 519. ASERIAL OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Bureau of Aeronautics, June 5, 1945, Photograph 51-9. ASERIAL OF ROOSEVELT BASE, DIRECT OVERHEAD, SHOWING PIERS AND MOLE UNDER CONSTRUCTION - Roosevelt Base, Bounded by Ocean Boulevard, Pennsylvania Avenue, Richardson Avenue, & Idaho Street, Long Beach, Los Angeles County, CA

  11. 75 FR 11225 - Government/Industry Aeronautical Charting Forum Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Government/Industry Aeronautical Charting Forum Meeting AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of public meeting. SUMMARY: This notice announces the...

  12. 76 FR 53530 - Government/Industry Aeronautical Charting Forum Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-26

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Government/Industry Aeronautical Charting Forum Meeting AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of public meeting. SUMMARY: This notice announces the...

  13. 76 FR 12211 - Government/Industry Aeronautical Charting Forum Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-04

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Government/Industry Aeronautical Charting Forum Meeting AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of public meeting. SUMMARY: This notice announces the...

  14. 78 FR 12415 - Government/Industry Aeronautical Charting Forum Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-22

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Government/Industry Aeronautical Charting Forum Meeting AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of public meeting. SUMMARY: This notice announces the...

  15. NASA Aeronautics and Space Database for bibliometric analysis

    NASA Technical Reports Server (NTRS)

    Powers, R.; Rudman, R.

    2004-01-01

    The authors use the NASA Aeronautics and Space Database to perform bibliometric analysis of citations. This paper explains their research methodology and gives some sample results showing collaboration trends between NASA Centers and other institutions.

  16. National Aeronautics and Space Administration technology application team program

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Contracts are reported between the RTI TATeam and the National Aeronautics and Space Administration (NASA), the Environmental Protection Agency (EPA), and other governmental, educational, and industrial organizations participating in NASA's Technology Utilization Program.

  17. Aeronautical Engineering: A continuing bibliography with indexes (supplement 175)

    NASA Technical Reports Server (NTRS)

    1984-01-01

    This bibliography lists 467 reports, articles and other documents introduced into the NASA scientific and technical information system in May 1984. Topics cover varied aspects of aeronautical engineering, geoscience, physics, astronomy, computer science, and support facilities.

  18. Aeronautical engineering: A continuing bibliography with indexes (supplement 282)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This bibliography lists 623 reports, articles, and other documents introduced into the NASA scientific and technical information system in Aug. 1992. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.

  19. Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplement 397

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This report lists reports, articles and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract.

  20. Aeronautical Engineering, a special bibliography with indexes, supplement 15

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This special bibliography lists 363 reports, articles, and other documents introduced into the NASA scientific and technical information system in January 1972. Emphasis is placed on engineering and theoretical aspects for design, construction, evaluation, testing, operation and performance of aircraft (including aircraft engines) and associated components, equipment and systems. Also included are entries on research and development in aeronautics and aerodynamics and research and ground support for aeronautical vehicles.

  1. NASA Ames and Future of Space Exploration, Science, and Aeronautics

    NASA Technical Reports Server (NTRS)

    Cohen, Jacob

    2015-01-01

    Pushing the frontiers of aeronautics and space exploration presents multiple challenges. NASA Ames Research Center is at the forefront of tackling these issues, conducting cutting edge research in the fields of air traffic management, entry systems, advanced information technology, intelligent human and robotic systems, astrobiology, aeronautics, space, earth and life sciences and small satellites. Knowledge gained from this research helps ensure the success of NASA's missions, leading us closer to a world that was only imagined as science fiction just decades ago.

  2. Aeronautical engineering: A continuing bibliography with indexes (supplement 119)

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This bibliography lists 341 reports, articles, and other documents introduced into the NASA scientific and technical information system in January 1980. Abstracts on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems are presented. Research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles are also presented.

  3. First Semiannual Report of the National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    Glennan, T. Keith

    1959-01-01

    The First Semiannual Report of the National Aeronautics and Space Administration (NASA) is submitted to Congress pursuant to section 206 (a) of the National Aeronautics and Space Act of 1958 (Public Law 85-568) to provide for research into problems of flight within and outside the Earth's atmosphere, which states: The Administration shall submit to the President for transmittal to Congress, semiannually and at such other times as it deems desirable, a report on its activities and accomplishments.

  4. Kennedy Educate to Innovate (KETI) Aeronautics PowerPoint Presentation

    NASA Technical Reports Server (NTRS)

    Davila, Dina

    2010-01-01

    This slide presentation reviews some fundamental features of aeronautics. It is designed to introduce students to aeronautics and to engage them in Science Technology Education and Mathematics (STEM). It reviews the history of airflight, the aircraft components and their interaction with the forces that make flight possible (i.e. lift, weight drag and thrust), and the interaction of the components that create aircraft movements (roll, pitch and yaw)

  5. An ocean scatter propagation model for aeronautical satellite communication applications

    NASA Technical Reports Server (NTRS)

    Moreland, K. W.

    1990-01-01

    In this paper an ocean scattering propagation model, developed for aircraft-to-satellite (aeronautical) applications, is described. The purpose of the propagation model is to characterize the behavior of sea reflected multipath as a function of physical propagation path parameters. An accurate validation against the theoretical far field solution for a perfectly conducting sinusoidal surface is provided. Simulation results for typical L band aeronautical applications with low complexity antennas are presented.

  6. Aeronautical Engineering: A special bibliography with indexes, supplement 13

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This special bibliography lists 283 reports, articles, and other documents introduced into the NASA scientific and technical information system in December, 1971. Emphasis is placed on engineering and theoretical aspects for design, construction, evaluation, testing, operation and performance of aircraft (including aircraft engines), and associated components, equipment and systems. Also included are entries on research and development in aeronautics and aerodynamics and research and ground support for aeronautical vehicles.

  7. Data Reduction Functions for the Langley 14- by 22-Foot Subsonic Tunnel

    NASA Technical Reports Server (NTRS)

    Boney, Andy D.

    2014-01-01

    The Langley 14- by 22-Foot Subsonic Tunnel's data reduction software utilizes six major functions to compute the acquired data. These functions calculate engineering units, tunnel parameters, flowmeters, jet exhaust measurements, balance loads/model attitudes, and model /wall pressures. The input (required) variables, the output (computed) variables, and the equations and/or subfunction(s) associated with each major function are discussed.

  8. Formal representation of the requirements for an Advanced Subsonic Civil Transport (ASCT) flight control system

    NASA Technical Reports Server (NTRS)

    Frincke, Deborah; Wolber, Dave; Fisher, Gene; Cohen, Gerald C.; Mclees, R. E.

    1992-01-01

    A partial requirement specification for an Advanced Subsonic Civil Transport (ASCT) Flight Control System is described. The example was adopted from requirements given in a NASA Contractor report. The language used to describe the requirements, Requirements Specification Language (RSL), is described in a companion document.

  9. 12. SOUTHWEST VIEW OF BUILDING 25C (SUBSONIC AERODYNAMICS TEST FACILITY) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. SOUTHWEST VIEW OF BUILDING 25C (SUBSONIC AERODYNAMICS TEST FACILITY) (1992). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH

  10. Wing-Alone Aerodynamic Characteristics to High Angles of Attack at Subsonic and Transonic Speeds.

    DTIC Science & Technology

    1982-11-01

    indicators of symmetry since the wings were unbanked within the limits of tolerances and flow angularity. Longitudinal, spanwise, and vertical... unbanked wings at subsonic and transonic speeds from low to high angles of attack. The wing planforms varied in aspect ratio and taper ratio with

  11. Computer program calculates peripheral water injection cooling of axisymmetric subsonic diffuser

    NASA Technical Reports Server (NTRS)

    Grey, J.

    1968-01-01

    Digital computer program calculates the cooling effectiveness and flow characteristics resulting from the mixing of a cool liquid injectant /water/ with a hot sonic or subsonic gas stream /hydrogen/. The output of the program provides pressure, temperature, velocity, density, composition, and Mach number profiles at any location in the mixing duct.

  12. On the circulatory subsonic flow of a compressible fluid past a circular cylinder

    NASA Technical Reports Server (NTRS)

    Bers, Lipman

    1945-01-01

    The circulatory subsonic flow around an infinite circular cylinder is computed using the linearized pressure-volume relation, by a method developed in a previous report. Formulas and graphs are given for the velocity and pressure distributions, the circulation, the lift, and the dependence of the critical Mach number upon the position of the stagnation point.

  13. Pressure Distributions About Finite Wedges in Bounded and Unbounded Subsonic Streams

    NASA Technical Reports Server (NTRS)

    Donoughe, Patrick L; Prasse, Ernst I

    1953-01-01

    An analytical investigation of incompressible flow about wedges was made to determine effects of tunnel-wedge ratio and wedge angle on the wedge pressure distributions. The region of applicability of infinite wedge-type velocity distribution was examined for finite wedges. Theoretical and experimental pressure coefficients for various tunnel-wedge ratios, wedge angles, and subsonic Mach numbers were compared.

  14. Method of Making a Composite Panel Having Subsonic Transverse Wave Speed Characteristics

    NASA Technical Reports Server (NTRS)

    Palumbo, Daniel L. (Inventor); Klos, Jacob (Inventor)

    2012-01-01

    A method of making a composite panel having subsonic transverse wave speed characteristics which has first and second sheets sandwiching a core with at least one of the sheets being attached to the core at first regions thereof and unattached to the core at second regions thereof.

  15. X-24A Detailing Subsonic Control Surface Configuration

    NASA Technical Reports Server (NTRS)

    1971-01-01

    This annotated photo shows a rear view of the X-24A lifting body research vehicle, emphasizing the control surfaces used for the subsonic portions of the aircraft's flights. The X-24 was one of a group of lifting bodies flown by the NASA Flight Research Center (now Dryden Flight Research Center), Edwards, California, in a joint program with the U.S. Air Force at Edwards Air Force Base from 1963 to 1975. The lifting bodies were used to demonstrate the ability of pilots to maneuver and safely land wingless vehicles designed to fly back to Earth from space and be landed like an airplane at a predetermined site. Lifting bodies' aerodynamic lift, essential to flight in the atmosphere, was obtained from their shape. The addition of fins and control surfaces allowed the pilots to stabilize and control the vehicles and regulate their flight paths. Built by Martin Aircraft Company, Maryland, for the U.S. Air Force, the X-24A was a bulbous vehicle shaped like a teardrop with three vertical fins at the rear for directional control. It weighed 6,270 pounds, was 24.5 feet long and 11.5 feet wide (measuring just the fuselage, not the distance between the tips of the outboard fins). Its first unpowered glide flight was on April 17, 1969, with Air Force Maj. Jerauld Gentry at the controls. Gentry also piloted its first powered flight on March 19, 1970. The X-24A was flown 28 times in the program that, like the HL-10, validated the concept that a Space Shuttle vehicle could be landed unpowered. The fastest speed achieved by the X-24A was 1,036 miles per hour (mph--Mach 1.6). Its maximum altitude was 71,400 feet. It was powered by an XLR-11 rocket engine with a maximum theoretical vacuum thrust of 8,480 pounds. The X-24A was later modified into the X-24B. The bulbous shape of the X-24A was converted into a 'flying flatiron' shape with a rounded top, flat bottom, and double delta platform that ended in a pointed nose. The X-24B demonstrated that accurate unpowered reentry vehicle

  16. On the Importance of Very Light Internally Subsonic AGN Jets in Radio-mode AGN Feedback

    NASA Astrophysics Data System (ADS)

    Guo, Fulai

    2016-07-01

    Radio-mode active galactic nucleus (AGN) feedback plays a key role in the evolution of galaxy groups and clusters. Its physical origin lies in the kiloparsec-scale interaction of AGN jets with the intracluster medium. Large-scale jet simulations often initiate light internally supersonic jets with density contrast 0.01 < η < 1. Here we argue for the first time for the importance of very light (η < 0.01) internally subsonic jets. We investigated the shapes of young X-ray cavities produced in a suite of hydrodynamic simulations, and found that bottom-wide cavities are always produced by internally subsonic jets, while internally supersonic jets inflate cylindrical, center-wide, or top-wide cavities. We found examples of real cavities with shapes analogous to those inflated in our simulations by internally subsonic and internally supersonic jets, suggesting a dichotomy of AGN jets according to their internal Mach numbers. We further studied the long-term cavity evolution, and found that old cavities resulted from light jets spread along the jet direction, while those produced by very light jets are significantly elongated along the perpendicular direction. The northwestern ghost cavity in Perseus is pancake shaped, providing tentative evidence for the existence of very light jets. Our simulations show that very light internally subsonic jets decelerate faster and rise much slower in the intracluster medium than light internally supersonic jets, possibly depositing a larger fraction of jet energy to cluster cores and alleviating the problem of low coupling efficiencies found previously. The internal Mach number points to the jet’s energy content, and internally subsonic jets are energetically dominated by non-kinetic energy, such as thermal energy, cosmic rays, or magnetic fields.

  17. 78 FR 13383 - Public Availability of the National Aeronautics and Space Administration FY 2012 Service Contract...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-27

    ... From the Federal Register Online via the Government Publishing Office NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Public Availability of the National Aeronautics and Space Administration FY 2012 Service Contract Inventory (SCI) AGENCY: Office of Procurement, National Aeronautics and...

  18. 77 FR 7183 - Public Availability of the National Aeronautics and Space Administration FY 2011 Service Contract...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-10

    ... From the Federal Register Online via the Government Publishing Office NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Public Availability of the National Aeronautics and Space Administration FY 2011 Service Contract Inventory AGENCY: National Aeronautics and Space Administration. ACTION: Notice of...

  19. 76 FR 75565 - NASA Advisory Council; Aeronautics Committee; Unmanned Aircraft Systems (UAS) Subcommittee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-02

    ... From the Federal Register Online via the Government Publishing Office NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Unmanned Aircraft Systems (UAS) Subcommittee Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of Meeting....

  20. 78 FR 25100 - NASA Advisory Council; Aeronautics Committee; Unmanned Aircraft Systems Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-29

    ... From the Federal Register Online via the Government Publishing Office NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Unmanned Aircraft Systems Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting....

  1. 78 FR 25134 - Sixteenth Meeting: RTCA Special Committee 217-Aeronautical Databases Joint With EUROCAE WG-44...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-29

    ... Federal Aviation Administration Sixteenth Meeting: RTCA Special Committee 217--Aeronautical Databases Joint With EUROCAE WG-44--Aeronautical Databases AGENCY: Federal Aviation Administration (FAA), U.S. Department of Transportation (DOT). ACTION: Notice of RTCA Special Committee 217--Aeronautical...

  2. 78 FR 51809 - Seventeenth Meeting: RTCA Special Committee 217-Aeronautical Databases Joint With EUROCAE WG-44...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-21

    ... Federal Aviation Administration Seventeenth Meeting: RTCA Special Committee 217--Aeronautical Databases Joint With EUROCAE WG-44--Aeronautical Databases AGENCY: Federal Aviation Administration (FAA), U.S. Department of Transportation (DOT). ACTION: Notice of RTCA Special Committee 217--Aeronautical...

  3. 78 FR 8684 - Fifteenth Meeting: RTCA Special Committee 217-Aeronautical Databases Joint with EUROCAE WG-44...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-06

    ... Federal Aviation Administration Fifteenth Meeting: RTCA Special Committee 217--Aeronautical Databases Joint with EUROCAE WG-44--Aeronautical Databases AGENCY: Federal Aviation Administration (FAA), U.S. Department of Transportation (DOT). ACTION: Notice of RTCA Special Committee 217--Aeronautical...

  4. 78 FR 66418 - Eighteenth Meeting: RTCA Special Committee 217-Aeronautical Databases Joint With EUROCAE WG-44...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-05

    ... Federal Aviation Administration Eighteenth Meeting: RTCA Special Committee 217--Aeronautical Databases Joint With EUROCAE WG-44--Aeronautical Databases AGENCY: Federal Aviation Administration (FAA), U.S. Department of Transportation (DOT). ACTION: Notice of RTCA Special Committee 217--Aeronautical...

  5. Fixing Dataset Search

    NASA Technical Reports Server (NTRS)

    Lynnes, Chris

    2014-01-01

    Three current search engines are queried for ozone data at the GES DISC. The results range from sub-optimal to counter-intuitive. We propose a method to fix dataset search by implementing a robust relevancy ranking scheme. The relevancy ranking scheme is based on several heuristics culled from more than 20 years of helping users select datasets.

  6. Future Fixed Target Facilities

    SciTech Connect

    Melnitchouk, Wolodymyr

    2009-01-01

    We review plans for future fixed target lepton- and hadron-scattering facilities, including the 12 GeV upgraded CEBAF accelerator at Jefferson Lab, neutrino beam facilities at Fermilab, and the antiproton PANDA facility at FAIR. We also briefly review recent theoretical developments which will aid in the interpretation of the data expected from these facilities.

  7. Fixed mount wavefront sensor

    DOEpatents

    Neal, Daniel R.

    2000-01-01

    A rigid mount and method of mounting for a wavefront sensor. A wavefront dissector, such as a lenslet array, is rigidly mounted at a fixed distance relative to an imager, such as a CCD camera, without need for a relay imaging lens therebetween.

  8. Experimental Pressure Distributions over Wing Tips at Mach Number 1.9 I : Wing Tip with Subsonic Leading Edge

    NASA Technical Reports Server (NTRS)

    Jagger, James M; Mirels, Harold

    1949-01-01

    An investigation was conducted at a Mach number of 1.91 to determine spanwise pressure distribution over a wing tip in a region influenced by a sharp subsonic leading edge swept back at 70 degrees. Except for pressure distribution on the top surface in the immediate vicinity of the subsonic leading edge, the maximum difference between linearized theory and experimental data was 2 1/2 percent (of free-stream dynamic pressure) for angles of attack up to 4 degrees and 7 percent for angles of attack up to 8 degrees. Pressures on the top surface nearest the subsonic edge indicated local expansions beyond values predicted by linearized theory.

  9. Adaptive structures for fixed and rotary wing aircraft

    NASA Astrophysics Data System (ADS)

    Martin, Willi; Jänker, Peter; Siemetzki, Markus; Lorkowski, Thomas; Grohmann, Boris; Maier, Rudolf; Maucher, Christoph; Klöppel, Valentin; Enenkl, Bernhard; Roth, Dieter; Hansen, Heinz

    2007-07-01

    Since more than 10 years EADS Innovation Works, which is the corporate research centre of EADS (European Aeronautic Defence and Space Company), is investigating smart materials and adaptive structures for aircraft in cooperation with EADS business units. Focus of research efforts are adaptive systems for shape control, noise reduction and vibration control of both fixed and rotary wing aircraft as well as for lift optimisation of fixed wing aircraft. Two outstanding adaptive systems which have been pushed ahead in cooperation with Airbus Germany and Eurocopter Germany are adaptive servo flaps for helicopter rotor blades and innovative high lift devices for fixed wing aircraft which both were tested in flight for the first time representing world premieres. In this paper various examples of adaptive systems are presented which were developed and realized by EADS in recent years.

  10. Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplment 394

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-1999-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes-subject and author are included after the abstract section.

  11. The Aeronautics Education, Research, and Industry Alliance (AERIAL) 2002 Report

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.; Box, Richard C.; Fink, Mary; Gogos, George; Lehrer, Henry R.; Narayanan, Ram M.; Nickerson, Jocelyn S.; Tarry, Scott E.; Vlasek, Karisa D.; O'Neil, Patrick D.

    2002-01-01

    The NASA Nebraska Space Grant Consortium (NSGC) & EPSCoR programs at the University of Nebraska at Omaha are involved in a variety of innovative research activities. Such research is supported through the Aeronautics Education, Research, and Industry Alliance (AERIAL) and collaborative seed funds. AERIAL is a comprehensive, multi-faceted, five year NASA EPSCoR initiative that contributes substantially to the strategic research and technology priorities of NASA while intensifying Nebraska s rapidly growing aeronautics research and development endeavors. AERIAL includes three major collaborative research teams (CRTs) whose nexus is a common focus in aeronautics research. Each CRT - Small Aircraft Transportation System (SATS), Airborne Remote Sensing for Agricultural Research and Commercialization Applications (ARS), and Numerical Simulation of the Combustion of Fuel Droplets: Finite Rate Kinetics and Flame Zone Grid Adaptation (CEFD) -has a distinct research agenda. This program provides the template for funding of new and innovative research that emphasizes aerospace technology.

  12. Aeronautical Engineering: A Continuing Bibliography With Indexes. Supplement 407

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-1999-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes-subject and author are included after the abstract section.

  13. Application of the Iridium Satellite System to Aeronautical Communications

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Meza, Mike; Gupta, Om

    2008-01-01

    The next generation air transportation system will require greater air-ground communications capacity to accommodate more air traffic with increased safety and efficiency. Communications will remain primarily terrestrially based, but satellite communications will have an increased role. Inmarsat s aeronautical services have been approved and are in use for aeronautical safety communications provided by geostationary satellites. More recently the approval process for the Iridium low earth orbit constellation is nearing completion. The current Iridium system will be able to provide basic air traffic services communications suitable for oceanic, remote and polar regions. The planned second generation of the Iridium system, called Iridium NEXT, will provide enhanced capabilities and enable a greater role in the future of aeronautical communications. This paper will review the potential role of satellite communications in the future of air transportation, the Iridium approval process and relevant system testing, and the potential role of Iridium NEXT.

  14. NASA's Role in Aeronautics: A Workshop. Volume 2: Military aviation

    NASA Technical Reports Server (NTRS)

    1981-01-01

    While the National Aeronautics and Space Act of 1958 makes DOD primarily responsible for military aeronautics, it stipulates a role for NASA in providing direct and indirect support for national defense. The existing role of NASA in support of military aeronautics is working well and is well coordinated. The role needs only to be kept effective and then improved by increasing its responsiveness to changing military requirements and by the selective application of additional people. Funding resources should also be made available to NASA for research. Specific roles that NASA could or should play were examined. It was determined that the most important areas for this support are in basic research, generic technology evolution, and facility support in the fields of aerodynamics, structures and materials, and propulsion.

  15. Aeronautical engineering, a special bibliography, September 1971 (supplement 10)

    NASA Technical Reports Server (NTRS)

    1971-01-01

    This supplement to Aeronautical Engineering-A Special Bibliography (NASA SP-7037) lists 413 reports, journal articles, and other documents originally announced in September 1971 in Scientific and Technical Aerospace Reports (STAR) or in International Aerospace Abstracts (IAA). The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the bibliography consists of a standard bibliographic citation accompanied by an abstract. The listing of the entries is arranged in two major sections, IAA Entries and STAR Entries in that order. The citations and abstracts are reproduced exactly as they appeared originally in IAA or STAR, including the original accession numbers from the respective announcement journals.

  16. Aeronautics Technology Possibilities for 2000: Report of a workshop

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The potential of aeronautical research and technology (R&T) development, which could provide the basis for facility planning and long range guidance of R&T programs and could establish justification for support of aeronautical research and technology was studied. The projections served specific purposes: (1) to provide a base for research and future facilities needed to support the projected technologies, and development advanced vehicles; (2) to provide insight on the possible state of the art in aeronautical technology by the year 2000 for civil and military planners of air vehicles and systems. Topics discussed include: aerodynamics; propulsion; structures; materials; guidance, navigation and control; computer and information technology; human factors; and systems integration.

  17. Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplement 415

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-2000-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes-subject and author are included after the abstract section.

  18. Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplement 411

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-2000-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes- subject and author are included after the abstract section.

  19. Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplement 408

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This supplemental issue of Aeronautical Engineering, a Continuing Bibliography with Indexes (NASA/SP#1999-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes#subject and author are included after the abstract section.

  20. Astronautics and Aeronautics: A Chronology, 1996-2000

    NASA Technical Reports Server (NTRS)

    Lewis, Marieke; Swanson, Ryan

    2009-01-01

    This report is a chronological compilation of narrative summaries of news reports and government documents highlighting significant events and developments in United States and foreign aeronautics and astronautics. It covers the years 1996 through 2000. These summaries provide a day-by-day recounting of major activities, such as administrative developments, awards, launches, scientific discoveries, corporate and government research results, and other events in countries with aeronautics and astronautics programs. Researchers used the archives and files housed in the NASA History Division, as well as reports and databases on the NASA Web site.

  1. Astronautics and Aeronautics: A Chronology, 2001-2005

    NASA Technical Reports Server (NTRS)

    Ivey, William Noel; Lewis, Marieke

    2010-01-01

    This report is a chronological compilation of narrative summaries of news reports and government documents highlighting significant events and developments in U.S. and foreign aeronautics and astronautics. It covers the years 2001 through 2005. These summaries provide a day-by-day recounting of major activities, such as administrative developments, awards, launches, scientific discoveries, corporate and government research results, and other events in countries with aeronautics and astronautics programs. Researchers used the archives and files housed in the NASA History Division, as well as reports and databases on the NASA Web site.

  2. Aeronautical Engineering: A Continuing Bibliography With Indexes. Supplement 414

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This report lists reports, articles and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes-subject and author are included after the abstract section.

  3. Aeronautics and space report of the President, 1982 activities

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Achievements of the space program are summerized in the area of communication, Earth resources, environment, space sciences, transportation, aeronautics, and space energy. Space program activities of the various deprtments and agencies of the Federal Government are discussed in relation to the agencies' goals and policies. Records of U.S. and world spacecraft launchings, successful U.S. launches for 1982, U.S. launched applications and scientific satellites and space probes since 1975, U.S. and Soviet manned spaceflights since 1961, data on U.S. space launch vehicles, and budget summaries are provided. The national space policy and the aeronautical research and technology policy statements are included.

  4. A Digital Library for the National Advisory Committee for Aeronautics

    NASA Technical Reports Server (NTRS)

    Nelson, Michael L.

    1999-01-01

    We describe the digital library (DL) for the National Advisory Committee for Aeronautics (NACA), the NACA Technical Report Server (NACATRS). The predecessor organization for the National Aeronautics and Space Administration (NASA), NACA existed from 1915 until 1958. The primary manifestation of NACA's research was the NACA report series. We describe the process of converting this collection of reports to digital format and making it available on the World Wide Web (WWW) and is a node in the NASA Technical Report Server (NTRS). We describe the current state of the project, the resulting DL technology developed from the project, and the future plans for NACATRS.

  5. The application of artificial intelligence technology to aeronautical system design

    NASA Technical Reports Server (NTRS)

    Bouchard, E. E.; Kidwell, G. H.; Rogan, J. E.

    1988-01-01

    This paper describes the automation of one class of aeronautical design activity using artificial intelligence and advanced software techniques. Its purpose is to suggest concepts, terminology, and approaches that may be useful in enhancing design automation. By understanding the basic concepts and tasks in design, and the technologies that are available, it will be possible to produce, in the future, systems whose capabilities far exceed those of today's methods. Some of the tasks that will be discussed have already been automated and are in production use, resulting in significant productivity benefits. The concepts and techniques discussed are applicable to all design activity, though aeronautical applications are specifically presented.

  6. Fixed solar collection system

    SciTech Connect

    Tipton, H.R.

    1984-07-31

    A fixed solar energy collector system has facing panels of different size forming a Vee-shaped trough open at its base and supporting a plurality of highly reflective convex reflectors strategically disposed upon said panels in reflective relationship to a plurality of Fresnel lenses positioned at the base of the trough. A suitable reflector, disposed beneath the Fresnel lenses, directs the reflected energy to a heat-needy target.

  7. Subsonic Wake Characterization of the Orion Capsule Using PIV in the Ames UPWT 11-foot Wind Tunnel (Invited)

    NASA Technical Reports Server (NTRS)

    Heineck, James T.; Ross, James C.; Yamauchi, Gloria K.

    2015-01-01

    The subsonic regime of Crew Capsule reentry has a very turbulent waker through which the Drogue Chutes must deploy. This presentation describes the particle image velocimetry measurement campaign used to help retire the risk.

  8. Advanced subsonic Technology Noise Reduction Element Separate Flow Nozzle Tests for Engine Noise Reduction Sub-Element

    NASA Technical Reports Server (NTRS)

    Saiyed, Naseem H.

    2000-01-01

    Contents of this presentation include: Advanced Subsonic Technology (AST) goals and general information; Nozzle nomenclature; Nozzle schematics; Photograph of all baselines; Configurations tests and types of data acquired; and Engine cycle and plug geometry impact on EPNL.

  9. High-Lift Systems on Commercial Subsonic Airliners

    NASA Technical Reports Server (NTRS)

    Rudolph, Peter K. C.

    1996-01-01

    The early breed of slow commercial airliners did not require high-lift systems because their wing loadings were low and their speed ratios between cruise and low speed (takeoff and landing) were about 2:1. However, even in those days the benefit of high-lift devices was recognized. Simple trailing-edge flaps were in use, not so much to reduce landing speeds, but to provide better glide-slope control without sideslipping the airplane and to improve pilot vision over the nose by reducing attitude during low-speed flight. As commercial-airplane cruise speeds increased with the development of more powerful engines, wing loadings increased and a real need for high-lift devices emerged to keep takeoff and landing speeds within reasonable limits. The high-lift devices of that era were generally trailing-edge flaps. When jet engines matured sufficiently in military service and were introduced commercially, airplane speed capability had to be increased to best take advantage of jet engine characteristics. This speed increase was accomplished by introducing the wing sweep and by further increasing wing loading. Whereas increased wing loading called for higher lift coefficients at low speeds, wing sweep actually decreased wing lift at low speeds. Takeoff and landing speeds increased on early jet airplanes, and, as a consequence, runways worldwide had to be lengthened. There are economical limits to the length of runways; there are safety limits to takeoff and landing speeds; and there are speed limits for tires. So, in order to hold takeoff and landing speeds within reasonable limits, more powerful high-lift devices were required. Wing trailing-edge devices evolved from plain flaps to Fowler flaps with single, double, and even triple slots. Wing leading edges evolved from fixed leading edges to a simple Krueger flap, and from fixed, slotted leading edges to two- and three-position slats and variable-camber (VC) Krueger flaps. The complexity of high-lift systems probably

  10. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Subsonic radiation waves in neon

    NASA Astrophysics Data System (ADS)

    Loseva, T. V.; Nemchinov, I. V.

    1989-02-01

    Numerical methods are used to investigate the propagation of plane subsonic radiation waves in neon from an obstacle in the direction opposite to the incident radiation of Nd and CO2 lasers. An analysis is made of the influence of the power density of the incident radiation (in the range 10-100 MW/cm2) and of the initial density of neon (beginning from the normal valuep ρ0 up to 10ρ0) on the various characteristics of subsonic radiation waves. It is shown that waves traveling in neon can provide an effective source of radiation with a continuous spectrum and an efficiency of ~ 12-27% in the ultraviolet range (with a characteristic photon energy ~ 5-10 eV).

  11. Fluctuation diagrams for hot-wire anemometry in subsonic compressible flows

    NASA Technical Reports Server (NTRS)

    Stainback, P. C.; Nagabushana, K. A.

    1991-01-01

    The concept of using 'fluctuation diagrams' for describing basic fluctuations in compressible flows was reported by Kovasznay in the 1950's. The application of this technique, for the most part, was restricted to supersonic flows. Recently, Zinovev and Lebiga published reports where they considered the fluctuation diagrams in subsonic compressible flows. For the above studies, the velocity and density sensitivities of the heated wires were equal. However, there are considerable data, much taken in the 1950's, which indicate that under some conditions the velocity and density sensitivities are not equal in subsonic compressible flows. Therefore, possible fluctuation diagrams are described for the cases where the velocity and density sensitivities are equal and the more general cases where they are unequal.

  12. Generalization of the subsonic kernel function in the s-plane, with applications to flutter analysis

    NASA Technical Reports Server (NTRS)

    Cunningham, H. J.; Desmarais, R. N.

    1984-01-01

    A generalized subsonic unsteady aerodynamic kernel function, valid for both growing and decaying oscillatory motions, is developed and applied in a modified flutter analysis computer program to solve the boundaries of constant damping ratio as well as the flutter boundary. Rates of change of damping ratios with respect to dynamic pressure near flutter are substantially lower from the generalized-kernel-function calculations than from the conventional velocity-damping (V-g) calculation. A rational function approximation for aerodynamic forces used in control theory for s-plane analysis gave rather good agreement with kernel-function results, except for strongly damped motion at combinations of high (subsonic) Mach number and reduced frequency.

  13. Design Sensitivity for a Subsonic Aircraft Predicted by Neural Network and Regression Models

    NASA Technical Reports Server (NTRS)

    Hopkins, Dale A.; Patnaik, Surya N.

    2005-01-01

    A preliminary methodology was obtained for the design optimization of a subsonic aircraft by coupling NASA Langley Research Center s Flight Optimization System (FLOPS) with NASA Glenn Research Center s design optimization testbed (COMETBOARDS with regression and neural network analysis approximators). The aircraft modeled can carry 200 passengers at a cruise speed of Mach 0.85 over a range of 2500 n mi and can operate on standard 6000-ft takeoff and landing runways. The design simulation was extended to evaluate the optimal airframe and engine parameters for the subsonic aircraft to operate on nonstandard runways. Regression and neural network approximators were used to examine aircraft operation on runways ranging in length from 4500 to 7500 ft.

  14. Far-Field Turbulent Vortex-Wake/Exhaust Plume Interaction for Subsonic and HSCT Airplanes

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.; Adam, Ihab; Wong, Tin-Chee

    1996-01-01

    Computational study of the far-field turbulent vortex-wake/exhaust plume interaction for subsonic and high speed civil transport (HSCT) airplanes is carried out. The Reynolds-averaged Navier-Stokes (NS) equations are solved using the implicit, upwind, Roe-flux-differencing, finite-volume scheme. The two-equation shear stress transport model of Menter is implemented with the NS solver for turbulent-flow calculation. For the far-field study, the computations of vortex-wake interaction with the exhaust plume of a single engine of a Boeing 727 wing in a holding condition and two engines of an HSCT in a cruise condition are carried out using overlapping zonal method for several miles downstream. These results are obtained using the computer code FTNS3D. The results of the subsonic flow of this code are compared with those of a parabolized NS solver known as the UNIWAKE code.

  15. Validation of a reduced-order jet model for subsonic and underexpanded hydrogen jets

    SciTech Connect

    Li, Xuefang; Hecht, Ethan S.; Christopher, David M.

    2016-01-01

    Much effort has been made to model hydrogen releases from leaks during potential failures of hydrogen storage systems. A reduced-order jet model can be used to quickly characterize these flows, with low computational cost. Notional nozzle models are often used to avoid modeling the complex shock structures produced by the underexpanded jets by determining an “effective” source to produce the observed downstream trends. In our work, the mean hydrogen concentration fields were measured in a series of subsonic and underexpanded jets using a planar laser Rayleigh scattering system. Furthermore, we compared the experimental data to a reduced order jet model for subsonic flows and a notional nozzle model coupled to the jet model for underexpanded jets. The values of some key model parameters were determined by comparisons with the experimental data. Finally, the coupled model was also validated against hydrogen concentrations measurements for 100 and 200 bar hydrogen jets with the predictions agreeing well with data in the literature.

  16. Aeronautical Engineering: A continuing bibliography with indexes, supplement 185

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This bibliography lists 462 reports, articles and other documents introduced into the NASA scientific and technical information system in February 1985. Aerodynamics, aeronautical engineering, aircraft design, aircraft stability and control, geophysics, social sciences, and space sciences are some of the areas covered.

  17. Aeronautical engineering: A continuing bibliography with indexes (supplement 316)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This bibliography lists 413 reports, articles, and other documents introduced into the NASA scientific and technical information system in April 1995. Subject coverage includes: aeronautics; mathematical and computer sciences; chemistry and material sciences; geosciences; design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  18. 78 FR 52230 - Government/Industry Aeronautical Charting Forum Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-22

    ... the Charting Group, contact Valerie S. Watson, FAA, National Aeronautical Navigation Products (AeroNav..., Silver Spring, MD 20910; telephone: (301) 427-5155; Email: valerie.s.watson@faa.gov . SUPPLEMENTARY... considered if time permits. Issued in Washington, DC, on August 15, 2013. Valerie S. Watson,...

  19. Aeronautics Study Takes Off! Glider Design for Beginners

    ERIC Educational Resources Information Center

    Lazaros, Edward J.; Carlson, Katie

    2008-01-01

    Study of aeronautics is an interesting and motivating subject for students and educators alike. The activity described in this article--appropriate for upper elementary or middle school students--provides an excellent introduction to airplane design and the science of aerodynamics. It also gives students good experience applying knowledge from a…

  20. A Case Study of Peer Learning in Higher Aeronautical Education

    ERIC Educational Resources Information Center

    Borglund, Dan

    2007-01-01

    In order to improve student learning in an advanced course in aeronautics, lectures are replaced with more student-centred sessions based on peer learning. The course is organised in student teams, with the main task of delivering lecture requests for full class discussions. For the same reason, the written theory exam is replaced by a peer review…

  1. Aging Systems in Aeronautics and Space Damage Tolerance in Helicopters

    DTIC Science & Technology

    2000-04-01

    sented during the Workshops that will take place time of the lecture, and so, after a few years, or in Corfou this week: Aging Aeronautical Sys- even a...he also chose the men were in the very era of space challenge between who should have been the leaders of AGARD, USA and URSS , with the latter well

  2. National Plan for Aeronautics Research and Development and Related Infrastructure

    DTIC Science & Technology

    2007-12-01

    REPORT DATE DEC 2007 2. REPORT TYPE 3 . DATES COVERED 00-00-2007 to 00-00-2007 4. TITLE AND SUBTITLE National Plan for Aeronautics Research and... 3 – Reduce the adverse impacts of weather on air traffic management decisions...20 Goal 3 – Demonstrate reduced gas turbine specific fuel consumption . . . . . . . . . . . . . . 20 Goal 4 – Demonstrate

  3. Aeronautical Envineering at Technion - Israel Institute of Technology.

    ERIC Educational Resources Information Center

    Mathieu, Richard D.

    The shortage of engineers in Israel and the role that the Technion - Israel Institute of Technology plays in the education of engineers is discussed. Emphasis is placed on the academic program, research, and related activities in the Department of Aeronautical Engineering. A brief description of the development of the institute and its…

  4. National Aeronautics and Space Administration Scientific and Technical Information Programs.

    ERIC Educational Resources Information Center

    Pinelli, Thomas E., Ed.

    1990-01-01

    Eleven articles discuss informational and educational programs of the National Aeronautics and Space Administration (NASA). Some of the areas discussed include scientific and technical information management, the new Space and Earth Science Information Systems, transfer of technology to other industries, intellectual property issues, and the…

  5. Aeronautical Engineering: A cumulative index to the 1980 issue

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This bibliography is a cumulative index to reports, articles, and other documents introduced into the NASA scientific and technical information system. Abstracts for the entries cited appeared in issues 119 through 130 of Aeronautical Engineering: A Continuing Bibliography (NASA SP-7037). Subject, personal author, corporate author, contract number, and report/accession number indexes are provided.

  6. 14 CFR 61.159 - Aeronautical experience: Airplane category rating.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... rating. 61.159 Section 61.159 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF...-command flight time or flight-engineer flight time toward the 1,500 hours of total time as a pilot... crewmember. (2) Flight-engineer time, provided the time— (i) Is acquired in an airplane required to have...

  7. 14 CFR 61.159 - Aeronautical experience: Airplane category rating.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... rating. 61.159 Section 61.159 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... or aviation training device may not be used to satisfy this requirement. (4) 75 hours of instrument... second-in-command flight time or flight-engineer flight time toward the 1,500 hours of total time as...

  8. 14 CFR 61.159 - Aeronautical experience: Airplane category rating.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... rating. 61.159 Section 61.159 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF...-command flight time or flight-engineer flight time toward the 1,500 hours of total time as a pilot... crewmember. (2) Flight-engineer time, provided the time— (i) Is acquired in an airplane required to have...

  9. Of Wings & Things. Aeronautics Information Stuff & Things for Students & Teachers.

    ERIC Educational Resources Information Center

    Poff, Norman O., Ed.

    This book presents information, activities, and paper models related to aviation. Most of the models and activities included use a one page, single concept format. All models and activities are designed to reinforce, clarify, or expand on a concept, easily and quickly. A list of National Aeronautics and Space Administration (NASA) Center education…

  10. Aeronautical engineering: A special bibliography with indexes, supplement 49

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The bibliography contains 368 abstract citations of reports, journal articles, and other documents concerned with the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. Research and development in aerodynamics, aeronautics, and ground support equipment are also treated. Subject, personal, and contract number indexes are included for ease of access.

  11. The role of computational fluid dynamics in aeronautical engineering

    NASA Astrophysics Data System (ADS)

    Kishimoto, Takuji; Uchida, Takashi

    1988-12-01

    Numerical analyses by solving Euler/Navier-Stokes Equations has been used in practical aeronautical engineerings. Here, the results of two dimensional Navier-Stokes analyses of a multiple slotted flap, and a three dimensional wing design problem using Euler analyses are shown.

  12. Astronautics and aeronautics, 1972. [a chronology of events

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Important events of the U. S. space program during 1972 are recorded in a chronology which encompasses all NASA, NASA related, and international cooperative efforts in aeronautics and astronautics. Personnel and budget concerns are documented, along with the major developments in aircraft research, manned space flight, and interplanetary exploration.

  13. Phased-Array Satcom Antennas Developed for Aeronautical Applications

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.

    2001-01-01

    The Advanced Communications (AC) for Aeronautics research at the NASA Glenn Research Center integrates both aeronautics and space communications technologies to achieve the national objective of upgrading the present National Airspace System infrastructure by responding to the agency's aviation capacity and safety goals. One concept for future air traffic management, free flight, presents a significantly increased demand for communications systems capacity and performance in comparison to current air traffic management practices. Current aeronautical communications systems are incapable of supporting the anticipated demands, and the new digital data communications links that are being developed, or are in the early stages of implementation, are not primarily designed to carry the data-intensive free flight air traffic management (ATM) communications loads. Emerging satellite communications technologies are the best potential long-term solution to provide the capacity and performance necessary to enable a mature free flight concept to be deployed. NASA AC/ATM funded the development of a Boeing-designed Ku-band transmit phased-array antenna, a combined in-house and contract effort. Glenn designed and integrated an Aeronautical Mobile Satellite Communications terminal based on the transmit phased-array antenna and a companion receive phased-array antenna previously developed by Boeing.

  14. FY 1978 aeronautics and space technology program summary

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Highlights of the aeronautics program include research on aircraft energy efficiency, supersonic cruise aircraft, vertical takeoff and landing aircraft, short haul/short takeoff and landing aircraft, and general aviation aircraft. The space technology program includes work on space structures, propulsion systems, power systems, materials, and electronics.

  15. Quality Program Provisions for Aeronautical and Space System Contractors

    NASA Technical Reports Server (NTRS)

    1969-01-01

    This publication sets forth quality program requirements for NASA aeronautical and space programs, systems, subsystems, and related services. These requirements provide for the effective operation of a quality program which ensures that quality criteria and requirements are recognized, definitized, and performed satisfactorily.

  16. Vortex-Lattice Utilization. [in aeronautical engineering and aircraft design

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The many novel, innovative, and unique implementations and applications of the vortex-lattice method to aerodynamic design and analysis which have been performed by Industry, Government, and Universities were presented. Although this analytical tool is not new, it continues to be utilized and refined in the aeronautical community.

  17. National Aeronautics and Space Administration (NASA) Education 1993-2009

    ERIC Educational Resources Information Center

    Ivie, Christine M.

    2009-01-01

    The National Aeronautics and Space Administration was established in 1958 and began operating a formal education program in 1993. The purpose of this study was to analyze the education program from 1993-2009 by examining strategic plan documents produced by the NASA education office and interviewing NASA education officials who served during that…

  18. 78 FR 10640 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-14

    ... information relevant to program planning. DATES: Thursday, February 28, 2013, 9:00 a.m. to 4:00 p.m.; Friday... INFORMATION: The meeting will be open to the public up to the capacity of the room. Any person interested in...: Aeronautics Research Mission Directorate (ARMD) Budget Status ARMD External Guidance Planning ARMD...

  19. Research Data Acquired in World-Class, 60-atm Subsonic Combustion Rig

    NASA Technical Reports Server (NTRS)

    Lee, Chi-Ming; Wey, Changlie

    1999-01-01

    NASA Lewis Research Center's new, world-class, 60-atmosphere (atm) combustor research facility, the Advanced Subsonic Combustion Rig (ASCR), is in operation and producing highly unique research data. Specifically, data were acquired at high pressures and temperatures representative of future subsonic engines from a fundamental flametube configuration with an advanced fuel injector. The data acquired include exhaust emissions as well as pressure and temperature distributions. Results to date represent an improved understanding of nitrous oxide (NOx) formation at high pressures and temperatures and include an NOx emissions reduction greater than 70 percent with an advanced fuel injector at operating pressures to 800 pounds per square inch absolute (psia). ASCR research is an integral part of the Advanced Subsonic Technology (AST) Propulsion Program. This program is developing critical low-emission combustion technology that will result in the next generation of gas turbine engines producing 50 to 70 percent less NOx emissions in comparison to 1996 International Civil Aviation Organization (ICAO) limits. The results to date indicate that the AST low-emission combustor goals of reducing NOx emissions by 50 to 70 percent are feasible. U.S. gas turbine manufacturers have started testing the low-emissions combustors at the ASCR. This collaborative testing will enable the industry to develop low-emission combustors at the high pressure and temperature conditions of future subsonic engines. The first stage of the flametube testing has been implemented. Four GE Aircraft Engines low-emissions fuel injector concepts, three Pratt & Whitney concepts, and two Allison concepts have been tested at Lewis ASCR facility. Subsequently, the flametube was removed from the test stand, and the sector combustor was installed. The testing of low emissions sector has begun. Low-emission combustors developed as a result of ASCR research will enable U.S. engine manufacturers to compete on a

  20. The incorporation of plotting capability into the Unified Subsonic Supersonic Aerodynamic Analysis program, version B

    NASA Technical Reports Server (NTRS)

    Winter, O. A.

    1980-01-01

    The B01 version of the United Subsonic Supersonic Aerodynamic Analysis program is the result of numerous modifications and additions made to the B00 version. These modifications and additions affect the program input, its computational options, the code readability, and the overlay structure. The following are described: (1) the revised input; (2) the plotting overlay programs which were also modified, and their associated subroutines, (3) the auxillary files used by the program, the revised output data; and (4) the program overlay structure.

  1. The drag force on a subsonic projectile in a fluid complex plasma

    SciTech Connect

    Ivlev, A. V.; Zhukhovitskii, D. I.

    2012-09-15

    The incompressible Navier-Stokes equation is employed to describe a subsonic particle flow induced in complex plasmas by a moving projectile. Drag forces acting on the projectile in different flow regimes are calculated. It is shown that, along with the regular neutral gas drag, there is an additional force exerted on the projectile due to dissipation in the surrounding particle fluid. This additional force provides significant contribution to the total drag.

  2. Fundamental Studies of SUBSONIC and Transonic Flow Separation. Part 3. Third Phase Summary Report

    DTIC Science & Technology

    1979-10-01

    Direction in the Immediate Downstream of a Normal Shock Measured by Cone Probe . . . . . . . . . . . . . . . . 34 Typical Oil Flow Over Ramp Compression...Shallow- Cavity Model . . . . . . . . . . . . . 82 A Typical Oil Flow Pattern Upstream and on the Forward-Facing Step .... 83 Variation of Base...Unit Reynolds number range Reynolds number range based on length from leading edge Maximum temperature drop (°C) for i0 sec. Subsonic flow

  3. NASA Subsonic Rotary Wing Project-Multidisciplinary Analysis and Technology Development: Overview

    NASA Technical Reports Server (NTRS)

    Yamauchi, Gloria K.

    2009-01-01

    This slide presentation reviews the objectives of the Multidisciplinary Analysis and Technology Development (MDATD) in the Subsonic Rotary Wing project. The objectives are to integrate technologies and analyses to enable advanced rotorcraft and provide a roadmap to guide Level 1 and 2 research. The MDATD objectives will be met by conducting assessments of advanced technology benefits, developing new or enhanced design tools, and integrating Level 2 discipline technologies to develop and enable system-level analyses and demonstrations.

  4. Automatic computation of Euler-marching and subsonic grids for wing-fuselage configurations

    NASA Technical Reports Server (NTRS)

    Barger, Raymond L.; Adams, Mary S.; Krishnan, Ramki R.

    1994-01-01

    Algebraic procedures are described for the automatic generation of structured, single-block flow computation grids for relatively simple configurations (wing, fuselage, and fin). For supersonic flows, a quasi two-dimensional grid for Euler-marching codes is developed, and some sample results in graphical form are included. A type of grid for subsonic flow calculation is also described. The techniques are algebraic and are based on a generalization of the method of transfinite interpolation.

  5. Langley 14- by 22-foot subsonic tunnel test engineer's data acquisition and reduction manual

    NASA Technical Reports Server (NTRS)

    Quinto, P. Frank; Orie, Nettie M.

    1994-01-01

    The Langley 14- by 22-Foot Subsonic Tunnel is used to test a large variety of aircraft and nonaircraft models. To support these investigations, a data acquisition system has been developed that has both static and dynamic capabilities. The static data acquisition and reduction system is described; the hardware and software of this system are explained. The theory and equations used to reduce the data obtained in the wind tunnel are presented; the computer code is not included.

  6. Influence matrix program for aerodynamic lifting surface theory. [in subsonic flows

    NASA Technical Reports Server (NTRS)

    Medan, R. T.; Ray, K. S.

    1973-01-01

    A users manual is described for a USA FORTRAN 4 computer program which computes an aerodynamic influence matrix and is one of several computer programs used to analyze lifting, thin wings in steady, subsonic flow according to a kernel function method lifting surface theory. The most significant features of the program are that it can treat unsymmetrical wings, control points can be placed on the leading and/or trailing edges, and a stable, efficient algorithm is used to compute the influence matrix.

  7. Unsteady effects of a control surface in two dimensional subsonic and transonic flow

    NASA Technical Reports Server (NTRS)

    Grenon, R.; Desopper, A.; Sides, J.

    1980-01-01

    The experimental results of steady and unsteady pressure measurements, carried out in subsonic and transonic flow on a 16 percent relative thickness supercritical aerofoil, equipped with a trailing edge flap involving 25 percent of the chord, in a sinusoidal motion are given. These experimental results are compared with those obtained by various methods of steady and unsteady inviscid flow calculations. Some calculation results in which viscous effects have been taken into account, for both steady and unsteady flows, are also presented.

  8. 78 FR 38091 - Airworthiness Criteria: Proposed Airship Design Criteria for Lockheed Martin Aeronautics Model...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-25

    ... Martin Aeronautics Model LMZ1M Airship AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice... Aeronautics model LMZ1M airship. On March 12, 2012 Lockheed Martin Aeronautics submitted an application for... Hybrid Airships, Lockheed Martin Aeronautics Company Document Number 1008D0122 Rev. C dated January...

  9. Aeronautics: An Educator's Guide with Activities in Science, Mathematics, and Technology Education.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This educator's guide, developed for students in grades 2-4, discusses the field of aeronautics. It begins with education standards and skill matrices for the classroom activities, a description of the National Aeronautics and Space Administration (NASA) aeronautics mission, and a brief history of aeronautics. Activities are written for the…

  10. 78 FR 15804 - Waiver of Aeronautical Land-Use Assurance: Rolla National Airport (VIH), Rolla, MO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-12

    ... Federal Aviation Administration Waiver of Aeronautical Land-Use Assurance: Rolla National Airport (VIH... airport property at the Rolla National Airport (VIH) from aeronautical use to non-aeronautical for revenue... Airport (VIH) is proposing the release of one parcel, of 10 acres, more or less from aeronautical to...

  11. Subsonic flight test evaluation of a performance seeking control algorithm on an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Gilyard, Glenn B.; Orme, John S.

    1992-01-01

    The subsonic flight test evaluation phase of the NASA F-15 (powered by F 100 engines) performance seeking control program was completed for single-engine operation at part- and military-power settings. The subsonic performance seeking control algorithm optimizes the quasi-steady-state performance of the propulsion system for three modes of operation. The minimum fuel flow mode minimizes fuel consumption. The minimum thrust mode maximizes thrust at military power. Decreases in thrust-specific fuel consumption of 1 to 2 percent were measured in the minimum fuel flow mode; these fuel savings are significant, especially for supersonic cruise aircraft. Decreases of up to approximately 100 degree R in fan turbine inlet temperature were measured in the minimum temperature mode. Temperature reductions of this magnitude would more than double turbine life if inlet temperature was the only life factor. Measured thrust increases of up to approximately 15 percent in the maximum thrust mode cause substantial increases in aircraft acceleration. The system dynamics of the closed-loop algorithm operation were good. The subsonic flight phase has validated the performance seeking control technology, which can significantly benefit the next generation of fighter and transport aircraft.

  12. Nonlinear evolution of subsonic and supersonic disturbances on a compressible free shear layer

    NASA Technical Reports Server (NTRS)

    Leib, S. J.

    1991-01-01

    The effects of a nonlinear-nonequilibrium-viscous critical layer on the spatial evolution of subsonic and supersonic instability modes on a compressible free shear layer is considered. It is shown that the instability wave amplitude is governed by an integrodifferential equation with cubic-type nonlinearity. Numerical and asymptotic solutions to this equation show that the amplitude either ends in a singularity at a finite downstream distance or reaches an equilibrium value, depending on the Prandtl number, viscosity law, viscous parameter and a real parameter which is determined by the linear inviscid stability theory. A necessary condition for the existence of the equilibrium solution is derived, and whether or not this condition is met is determined numerically for a wide range of physical parameters including both subsonic and supersonic disturbances. it is found that no equilibrium solution exists for the subsonic modes unless the temperature ratio of the low-to-high-speed streams exceeds a critical value, while equilibrium solutions for the most rapidly growing supersonic mode exist over most of the parameter range examined.

  13. Subsonic Aerodynamic Assessment of Vortex Flow Management Devices on a High-Speed Civil Transport Configuration

    NASA Technical Reports Server (NTRS)

    Campbell, Bryan A.; Applin, Zachary T.; Kemmerly, Guy T.

    1999-01-01

    An experimental investigation of the effects of leading-edge vortex management devices on the subsonic performance of a high-speed civil transport (HSCT) configuration was conducted in the Langley 14- by 22-Foot Subsonic Tunnel. Data were obtained over a Mach number range of 0.14 to 0.27, with corresponding chord Reynolds numbers of 3.08 x 10 (sup 6) to 5.47 x 10 (sup 6). The test model was designed for a cruise Mach number of 2.7. During the subsonic high-lift phase of flight, vortical flow dominates the upper surface flow structure, and during vortex breakdown, this flow causes adverse pitch-up and a reduction of usable lift. The experimental results showed that the beneficial effects of small leading-edge vortex management devices located near the model reference center were insufficient to substantially affect the resulting aerodynamic forces and moments. However, devices located at or near the wiring apex region demonstrated potential for pitch control with little effect on overall lift.

  14. A New Density Variance-Mach Number Relation for Subsonic and Supersonic Isothermal Turbulence

    NASA Astrophysics Data System (ADS)

    Konstandin, L.; Girichidis, P.; Federrath, C.; Klessen, R. S.

    2012-12-01

    The probability density function of the gas density in subsonic and supersonic, isothermal, driven turbulence is analyzed using a systematic set of hydrodynamical grid simulations with resolutions of up to 10243 cells. We perform a series of numerical experiments with root-mean-square (rms) Mach number {M} ranging from the nearly incompressible, subsonic ( {M}=0.1) to the highly compressible, supersonic ( {M}=15) regime. We study the influence of two extreme cases for the driving mechanism by applying a purely solenoidal (divergence-free) and a purely compressive (curl-free) forcing field to drive the turbulence. We find that our measurements fit the linear relation between the rms Mach number and the standard deviation (std. dev.) of the density distribution in a wide range of Mach numbers, where the proportionality constant depends on the type of forcing. In addition, we propose a new linear relation between the std. dev. of the density distribution σρ and that of the velocity in compressible modes, i.e., the compressible component of the rms Mach number, {M}_{{comp}}. In this relation the influence of the forcing is significantly reduced, suggesting a linear relation between σρ and {M}_{{comp}}, independent of the forcing, and ranging from the subsonic to the supersonic regime.

  15. The Performance of a Subsonic Diffuser Designed for High Speed Turbojet-Propelled Flight

    NASA Technical Reports Server (NTRS)

    Biesiadny, Thomas J. (Technical Monitor); Wendt, Bruce J.

    2004-01-01

    An initial-phase subsonic diffuser has been designed for the turbojet flowpath of the hypersonic x43B flight demonstrator vehicle. The diffuser fit into a proposed mixed-compression supersonic inlet system and featured a cross-sectional shape transitioning flowpath (high aspect ratio rectangular throat-to-circular engine face) and a centerline offset. This subsonic diffuser has been fabricated and tested at the W1B internal flow facility at NASA Glenn Research Center. At an operating throat Mach number of 0.79, baseline Pitot pressure recovery was found to be just under 0.9, and DH distortion intensity was about 0.4 percent. The diffuser internal flow stagnated, but did not separate on the offset surface of this initial-phase subsonic diffuser. Small improvements in recovery (+0.4 percent) and DH distortion (-32 percent) were obtained from using vane vortex generator flow control applied just downstream of the diffuser throat. The optimum vortex generator array patterns produced inflow boundary layer divergence (local downwash) on the offset surface centerline of the diffuser, and an inflow boundary layer convergence (local upwash) on the centerline of the opposite surface.

  16. Fixed solar energy concentrator

    SciTech Connect

    Houghton, A.J.; Knasel, T.M.

    1981-01-20

    An apparatus for the concentration of solar energy upon a fixed array of solar cells is disclosed. A transparent material is overlayed upon the cell array, and a diffuse reflective coating is applied to the surface area of the transparent medium in between cells. Radiant light, which reflects through the transparent layer and does not fall directly incident to a cell surface is reflected by the coating layer in an approximate cosine pattern. Thereafter, such light undergoes internal reflection and rediffusion until subsequently it either strikes a solar cell surface or is lost through the upper surface of the transparent material.

  17. Outcomes of the 2015 World Radiocommunication Conference for Aeronautical Spectrum and Applications

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Jonasson, Loftur

    2016-01-01

    At the conclusion of a nearly four year study cycle following the closing of the 2012 World Radiocommunication Conference (WRC-12), the 2015 WRC in November of 2015 considered a number of agenda items and issues relevant to systems and spectrum allocations supporting communications, navigation and surveillance for the operation of civil aviation. Among a number of WRC-15 agenda items and issues, the key agenda items affecting civil aviation included: unmanned aircraft systems use of the Fixed Satellite Service for command and control communications; global flight tracking; new allocations to International Mobile Telecommunications (IMT); and protection of the Fixed Satellite Service to support safe operation of aircraft. A number of other agenda items affecting or potentially affecting civil aviation were also addressed by WRC-15. In this paper we describe the outcomes of WRC-15 for these civil aeronautical-relevant issues. We then outline the civil aviation-related agenda items and issues that will be considered at the upcoming 2019 WRC.

  18. Low subsonic aerodynamic characteristics of five irregular planform wings with systematically varying wing fillet geometry tested in the NASA/Ames 12 foot pressure tunnel (LA65)

    NASA Technical Reports Server (NTRS)

    Ball, J. W.; Watson, D. B.

    1976-01-01

    An experimental and analytical aerodynamic program to develop predesign guides for irregular planform wings (also referred to as cranked leading edge or double delta wings is reported; the benefits are linearization of subsonic lift curve slope to high angles of attack and avoidance of subsonic pitch instabilities at high lift by proper tailoring of the planform-fillet-wing combination while providing the desired hypersonic trim angle and stability. Because subsonic and hypersonic conditions were the two prime areas of concern in the initial application of this program to optimize shuttle orbiter landing and entry characteristics, the study was designated the Subsonic/Hypersonic Irregular Planforms Study (SHIPS).

  19. Apparatus for fixing latency

    DOEpatents

    Hall, David R.; Bartholomew, David B.; Moon, Justin; Koehler, Roger O.

    2009-09-08

    An apparatus for fixing computational latency within a deterministic region on a network comprises a network interface modem, a high priority module and at least one deterministic peripheral device. The network interface modem is in communication with the network. The high priority module is in communication with the network interface modem. The at least one deterministic peripheral device is connected to the high priority module. The high priority module comprises a packet assembler/disassembler, and hardware for performing at least one operation. Also disclosed is an apparatus for executing at least one instruction on a downhole device within a deterministic region, the apparatus comprising a control device, a downhole network, and a downhole device. The control device is near the surface of a downhole tool string. The downhole network is integrated into the tool string. The downhole device is in communication with the downhole network.

  20. National Aeronautics and Space Administration Fiscal Year 2001 Accountability Report

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The National Aeronautics and Space Administration (NASA) is an independent Agency established to plan and manage the future of the Nation's civil aeronautics and space program. This Accountability Report covers Federal Fiscal Year (FY) 2001 (October 1, 2000, through September 30, 2001), with discussion of some subsequent events. The Report contains an overview addressing the Agency's critical programs and financial performance and includes highlights of performance organized by goals and objectives of the Enterprises and Crosscutting Processes. The Report also summarizes NASA's stewardship over budget and financial resources, including audited financial statements and footnotes. The financial statements reflect an overall position of offices and activities, including assets and liabilities, as well as results of operations, pursuant to requirements of Federal law (31 U.S.C. 3515(b)). The auditor's opinions on NASA's financial statements, reports on internal controls, and compliance with laws and regulations are included in this report.

  1. Chemical Gas Sensors for Aeronautic and Space Applications 2

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Chen, L. Y.; Neudeck, P. G.; Knight, D.; Liu, C. C.; Wu, Q. H.; Zhou, H. J.; Makel, D.; Liu, M.; Rauch, W. A.

    1998-01-01

    Aeronautic and Space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Areas of most interest include launch vehicle safety monitoring emission monitoring and fire detection. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensor is based on progress two types of technology: 1) Micro-machining and micro-fabrication technology to fabricate miniaturized sensors. 2) The development of high temperature semiconductors, especially silicon carbide. Sensor development for each application involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this micro-fabricated gas sensor technology make this area of sensor development a field of significant interest.

  2. Chemical Gas Sensors for Aeronautic and Space Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Chen, Liang-Yu; Neudeck, Philip G.; Knight, Dak; Liu, Chung-Chiun; Wu, Quing-Hai; Zhou, Huan-Jun

    1997-01-01

    Aeronautic and space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Two areas of particular interest are safety monitoring and emission monitoring. In safety monitoring, detection of low concentrations of hydrogen at potentially low temperatures is important while for emission monitoring the detection of nitrogen oxides, hydrogen, hydrocarbons and oxygen is of interest. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensors is based on progress in two types of technology: (1) Micromachining and microfabrication technology to fabricate miniaturized sensors. (2) The development of high temperature semiconductors, especially silicon carbide. The detection of each type of gas involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this microfabricated gas sensor technology make this general area of sensor development a field of significant interest.

  3. Chemical Gas Sensors for Aeronautic and Space Applications 2

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Chen, Liong-Yu; Neudeck, Phil G.; Knight, Dale; Liu, C. C.; Wu, Q. H.; Zhou, H. J.; Makel, Darby; Liu, M.; Rauch, W. A.

    1998-01-01

    Aeronautic and space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Areas of interest include launch vehicle safety monitoring, emission monitoring, and fire detection. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensors is based on progress in two types of technology: 1) Micromachining and microfabrication technology to fabricate miniaturized sensors. 2) The development of high temperature semiconductors, especially silicon carbide. Sensor development for each application involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this microfabricated gas sensor technology make this area of sensor development a field of significant interest.

  4. Chemical Gas Sensors for Aeronautics and Space Applications III

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Neudeck, P. G.; Chen, L. Y.; Liu, C. C.; Wu, Q. H.; Sawayda, M. S.; Jin, Z.; Hammond, J.; Makel, D.; Liu, M.; Rauch, W. A.; Hall, G.

    1999-01-01

    Aeronautic and space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Areas of interest include launch vehicle safety monitoring, emission monitoring, and fire detection. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensors is based on progress in two types of technology: 1) Micromachining and microfabrication technology to fabricate miniaturized sensors. 2) The development of high temperature semiconductors, especially silicon carbide. Sensor development for each application involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this microfabricated gas sensor technology make this area of sensor development a field of significant interest.

  5. National Aeronautics and Space Administration FY 2001 Accountability Report

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The National Aeronautics and Space Administration (NASA) is an independent Agency established to plan and manage the future of the Nation's civil aeronautics and space program. This Accountability Report covers Federal Fiscal Year (FY) 2001 (October 1, 2000, through September 30, 2001), with discussion of some subsequent events The Report contains an overview addressing the Agency's critical programs and financial performance and includes highlights of performance organized by goals and objectives of the Enterprises and Crosscutting Processes. The Report also summarizes NASA's stewardship over budget and financial resources, including audited financial statements and footnotes. The financial statements reflect an overall position of offices and activities, including assets and liabilities, as well as results of operations, pursuant to requirements of Federal law (31 U.S.C. 3515(b)). The auditor's opinions on NASA's financial statements, reports on internal controls, and compliance with laws and regulations are included in this Report.

  6. Implementation of aeronautic image compression technology on DSP

    NASA Astrophysics Data System (ADS)

    Wang, Yujing; Gao, Xueqiang; Wang, Mei

    2007-11-01

    According to the designed characteristics and demands of aeronautic image compression system, lifting scheme wavelet and SPIHT algorithm was selected as the key part of software implementation, which was introduced with details. In order to improve execution efficiency, border processing was simplified reasonably and SPIHT (Set Partitioning in Hierarchical Trees) algorithm was also modified partly. The results showed that the selected scheme has a 0.4dB improvement in PSNR(peak-peak-ratio) compared with classical Shaprio's scheme. To improve the operating speed, the hardware system was then designed based on DSP and many optimization measures were then applied successfully. Practical test showed that the system can meet the real-time demand with good quality of reconstruct image, which has been used in an aeronautic image compression system practically.

  7. The Effects of Safety Information on Aeronautical Decision Making

    NASA Technical Reports Server (NTRS)

    Lee, Jang R.; Fanjoy, Richard O.; Dillman, Brian G.

    2005-01-01

    The importance of aeronautical decision making (ADM) has been considered one of the most critical issues of flight education for future professional pilots. Researchers have suggested that a safety information system based on information from incidents and near misses is an important tool to improve the intelligence and readiness of pilots. This paper describes a study that examines the effect of safety information on aeronautical decision making for students in a collegiate flight program. Data was collected from study participants who were exposed to periodic information about local aircraft malfunctions. Participants were then evaluated using a flight simulator profile and a pen and pencil test of situational judgment. Findings suggest that regular access to the described safety information program significantly improves decision making of student pilots.

  8. Fixed Access Network Sharing

    NASA Astrophysics Data System (ADS)

    Cornaglia, Bruno; Young, Gavin; Marchetta, Antonio

    2015-12-01

    Fixed broadband network deployments are moving inexorably to the use of Next Generation Access (NGA) technologies and architectures. These NGA deployments involve building fiber infrastructure increasingly closer to the customer in order to increase the proportion of fiber on the customer's access connection (Fibre-To-The-Home/Building/Door/Cabinet… i.e. FTTx). This increases the speed of services that can be sold and will be increasingly required to meet the demands of new generations of video services as we evolve from HDTV to "Ultra-HD TV" with 4k and 8k lines of video resolution. However, building fiber access networks is a costly endeavor. It requires significant capital in order to cover any significant geographic coverage. Hence many companies are forming partnerships and joint-ventures in order to share the NGA network construction costs. One form of such a partnership involves two companies agreeing to each build to cover a certain geographic area and then "cross-selling" NGA products to each other in order to access customers within their partner's footprint (NGA coverage area). This is tantamount to a bi-lateral wholesale partnership. The concept of Fixed Access Network Sharing (FANS) is to address the possibility of sharing infrastructure with a high degree of flexibility for all network operators involved. By providing greater configuration control over the NGA network infrastructure, the service provider has a greater ability to define the network and hence to define their product capabilities at the active layer. This gives the service provider partners greater product development autonomy plus the ability to differentiate from each other at the active network layer.

  9. The Aeronautics Education, Research, and Industry Alliance (AERIAL) 2002 Report

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.; Fink, Mary M.; Nickerson, Jocelyn S.

    2002-01-01

    This report presents and overview of the Aeronautics Education, Research, and Industry Alliance (AERIAL). It covers the University of Nebraska's areas of research, and its outreach to students at Native American schools as part of AERIAL. The report contains three papers: "Airborne Remote Sensing (ARS) for Agricultural Research and Commercialization Application" (White Paper), "Validated Numerical Models for the Convective Extinction of Fuel Droplets (CEFD)", and "The Small Aircraft Transportation System (SATS): Research Collaborations with the NASA Langley Research Center".

  10. NASA's Role in Aeronautics: A Workshop. Volume 3: Transport aircraft

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Segments of the spectrum of research and development activities that clearly must be within the purview of NASA in order for U.S. transport aircraft manufacturing and operating industries to succeed and to continue to make important contributions to the nation's wellbeing were examined. National facilities and expertise; basic research, and the evolution of generic and vehicle class technologies were determined to be the areas in which NASA has an essential role in transport aircraft aeronautics.

  11. Tribology needs for future space and aeronautical systems

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1991-01-01

    Future aeronautical and space missions will push tribology technology beyond its current capability. The objective is to discuss the current state of the art of tribology as it is applied to advanced aircraft and spacecraft. Areas of discussion include materials lubrication mechanisms, factors affecting lubrication, current and future tribological problem areas, potential new lubrication techniques, and perceived technology requirements that need to be met in order to solve these tribology problems.

  12. The Literature of Aeronautics, Astronautics, and Air Power

    DTIC Science & Technology

    1984-01-01

    the reader with a thorough and accurate account of aviation history; John W. R. Taylor and Kenneth Munson, History of Aviation (New York: Putnam ...London: Putnam , 1971). Claudia Oakes, Aircraft of the National Air and Space Museum (Washington: Smithsonian Institution Press, 1981) is an excellent...34 written by the NASM’s curatorial staff. A special mention must be made of the Putnam Aeronautical Books series published since the early 1960s by Putnam

  13. Aeronautical technology 2000: A projection of advanced vehicle concepts

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The Aeronautics and Space Engineering Board (ASEB) of the National Research Council conducted a Workshop on Aeronautical Technology: a Projection to the Year 2000 (Aerotech 2000 Workshop). The panels were asked to project advances in aeronautical technologies that could be available by the year 2000. As the workshop was drawing to a close, it became evident that a more comprehensive investigation of advanced air vehicle concepts than was possible in the limited time available at the workshop would be valuable. Thus, a special panel on vehicle applications was organized. In the course of two meetings, the panel identified and described representative types of aircraft judged possible with the workshop's technology projections. These representative aircraft types include: military aircraft; transport aircraft; rotorcraft; extremely high altitude aircraft; and transatmospheric aircraft. Improvements in performance, efficiency, and operational characteristics possible through the application of the workshop's year 2000 technology projections were discussed. The subgroups also identified the technologies considered essential and enhancing or supporting to achieve the projected aircraft improvements.

  14. From Aeronautics to Space: Lessons in Human Automation

    NASA Technical Reports Server (NTRS)

    Connors, Mary M.; Rosekind, Mark R. (Technical Monitor)

    1996-01-01

    Civilian air flight continues on a growth curve, as more and more people utilize air travel to meet business and personal travel needs: This consumer-driven demand has resulted in the adoption of new methods to increase air system capacity and to make the air transportation system increasingly more efficient. As a consequence, civilian aviation, as an industry, has assumed a leading role in the use of automated systems, and, by implication, in the understanding of how human openers interact with these systems. Aeronautical automation systems serve a variety of roles. These include controlling aircraft and aiding, advising and monitoring numerous functions in the aircraft/airspace system. Experiences in the use of human/automation systems gathered from aviation are, in many cases, generalizable to other industries having similar requirements for human and non-human intelligent system interaction. However, the human/automation lessons learned from aviation have special relevance to the space application, where many of the same operational demands prevail. The application of aeronautical lessons of human-automated interaction to spaceflight is the subject of this paper. The discussion will address: the progress that has been made through aeronautically-based research and experience in understanding human/automation interaction, ways that this understanding can be applied to the needs of space, and the limits of our present understanding of human/automations systems. Suggestions will be offered related to human-automation research generally, and to the particular needs of the space endeavor.

  15. Aeronautics and Aviation Science: Careers and Opportunities Project

    NASA Technical Reports Server (NTRS)

    Texter, P. Cardie

    1998-01-01

    The National Aeronautics and Space Administration funded project, Aeronautics and Aviation Science: Careers and Opportunities has been in operation since July, 1995. This project operated as a collaboration with Massachusetts Corporation for Educational Telecommunications, the Federal Aviation Administration, Bridgewater State College and four targeted "core sites" in the greater Boston area. In its first and second years, a video series on aeronautics and aviation science was developed and broadcast via "live, interactive" satellite feed. Accompanying teacher and student supplementary instructional materials for grades 6-9 were produced and disseminated by the Massachusetts Corporation for Educational Telecommunications (MCET). In the MCET grant application it states that project Take Off! in its initial phase would recruit and train teachers at "core" sites in the greater Boston area, as well as opening participation to other on-line users of MCET's satellite feeds. "Core site" classrooms would become equipped so that teachers and students might become engaged in an interactive format which aimed at not only involving the students during the "live" broadcast of the instructional video series, but which would encourage participation in electronic information gathering and sharing among participants. As a Take Off! project goal, four schools with a higher than average proportion of minority and underrepresented youth were invited to become involved with the project to give these students the opportunity to consider career exploration and development in the field of science aviation and aeronautics. The four sites chosen to participate in this project were: East Boston High School, Dorchester High School, Randolph Junior-Senior High School and Malden High School. In year 3 Dorchester was unable to continue to fully participate and exited out. Danvers was added to the "core site" list in year 3. In consideration of Goals 2000, the National Science Foundation

  16. Prediction of Foreign Object Debris/Damage (FOD) type for elimination in the aeronautics manufacturing environment through logistic regression model

    NASA Astrophysics Data System (ADS)

    Espino, Natalia V.

    Foreign Object Debris/Damage (FOD) is a costly and high-risk problem that aeronautics industries such as Boeing, Lockheed Martin, among others are facing at their production lines every day. They spend an average of $350 thousand dollars per year fixing FOD problems. FOD can put pilots, passengers and other crews' lives into high-risk. FOD refers to any type of foreign object, particle, debris or agent in the manufacturing environment, which could contaminate/damage the product or otherwise undermine quality control standards. FOD can be in the form of any of the following categories: panstock, manufacturing debris, tools/shop aids, consumables and trash. Although aeronautics industries have put many prevention plans in place such as housekeeping and "clean as you go" philosophies, trainings, use of RFID for tooling control, etc. none of them has been able to completely eradicate the problem. This research presents a logistic regression statistical model approach to predict probability of FOD type under given specific circumstances such as workstation, month and aircraft/jet being built. FOD Quality Assurance Reports of the last three years were provided by an aeronautical industry for this study. By predicting type of FOD, custom reduction/elimination plans can be put in place and by such means being able to diminish the problem. Different aircrafts were analyzed and so different models developed through same methodology. Results of the study presented are predictions of FOD type for each aircraft and workstation throughout the year, which were obtained by applying proposed logistic regression models. This research would help aeronautic industries to address the FOD problem correctly, to be able to identify root causes and establish actual reduction/elimination plans.

  17. Configurable hot spot fixing system

    NASA Astrophysics Data System (ADS)

    Kajiwara, Masanari; Kobayashi, Sachiko; Mashita, Hiromitsu; Aburada, Ryota; Furuta, Nozomu; Kotani, Toshiya

    2014-03-01

    Hot spot fixing (HSF) method has been used to fix many hot spots automatically. However, conventional HSF based on a biasing based modification is difficult to fix many hot spots under a low-k1 lithography condition. In this paper we proposed a new HSF, called configurable hotspot fixing system. The HSF has two major concepts. One is a new function to utilize vacant space around a hot spot by adding new patterns or extending line end edges around the hot spot. The other is to evaluate many candidates at a time generated by the new functions. We confirmed the proposed HSF improves 73% on the number of fixing hot spots and reduces total fixing time by 50% on a device layout equivalent to 28nm-node. The result shows the proposed HSF is effective for layouts under the low-k1 lithography condition.

  18. Improved Performances in Subsonic Flows of an SPH Scheme with Gradients Estimated Using an Integral Approach

    NASA Astrophysics Data System (ADS)

    Valdarnini, R.

    2016-11-01

    In this paper, we present results from a series of hydrodynamical tests aimed at validating the performance of a smoothed particle hydrodynamics (SPH) formulation in which gradients are derived from an integral approach. We specifically investigate the code behavior with subsonic flows, where it is well known that zeroth-order inconsistencies present in standard SPH make it particularly problematic to correctly model the fluid dynamics. In particular, we consider the Gresho-Chan vortex problem, the growth of Kelvin-Helmholtz instabilities, the statistics of driven subsonic turbulence and the cold Keplerian disk problem. We compare simulation results for the different tests with those obtained, for the same initial conditions, using standard SPH. We also compare the results with the corresponding ones obtained previously with other numerical methods, such as codes based on a moving-mesh scheme or Godunov-type Lagrangian meshless methods. We quantify code performances by introducing error norms and spectral properties of the particle distribution, in a way similar to what was done in other works. We find that the new SPH formulation exhibits strongly reduced gradient errors and outperforms standard SPH in all of the tests considered. In fact, in terms of accuracy, we find good agreement between the simulation results of the new scheme and those produced using other recently proposed numerical schemes. These findings suggest that the proposed method can be successfully applied for many astrophysical problems in which the presence of subsonic flows previously limited the use of SPH, with the new scheme now being competitive in these regimes with other numerical methods.

  19. Effect of impinging plate geometry on the self-excitation of subsonic impinging jets

    NASA Astrophysics Data System (ADS)

    Vinoth, B. R.; Rathakrishnan, E.

    2011-11-01

    In the generation of discrete tones by subsonic impinging jets, there exists a difference of opinion as how the feedback is achieved, i.e., the path of the feedback acoustic waves is whether inside the jet or outside the jet? The only available model (Tam and Ahuja model) for the prediction of an average subsonic jet impingement tone frequency assumes that the upstream part of the feedback loop is closed by an upstream propagating neutral wave of the jet. But, there is no information about the plate geometry in the model. The present study aims at understanding the effect of the plate geometry (size and co-axial hole in the plate) on the self-excitation process of subsonic impinging jets and the path of the acoustic feedback to the nozzle exit. The present results show that there is no effect of plate diameter on the frequency of the self-excitation. A new type of tones is generated for plates with co-axial hole (hole diameter is equal to nozzle exit diameter) for Mach numbers 0.9 and 0.95, in addition to the axisymmetric and helical mode tones observed for plates without co-axial hole. The stability results show that the Strouhal number of the least dispersive upstream propagating neutral waves match with the average Strouhal number of the new tones observed in the present experiments. The present study extends the validity of the model of Tam and Ahuja to a plate with co-axial hole (annular plate) and by doing so, we indirectly confirmed that the major acoustic feedback path to the nozzle exit is inside the jet.

  20. Observations of subsonic and supersonic shear flows in laser driven high-energy-density plasmas

    NASA Astrophysics Data System (ADS)

    Harding, E. C.

    2009-11-01

    Shear layers containing strong velocity gradients appear in many high-energy-density (HED) systems and play important roles in mixing and the transition to turbulence. Yet few laboratory experiments have been carried out to study their detailed evolution in this extreme environment where plasmas are compressible, actively ionizing, often involve strong shock waves and have complex material properties. Many shear flows produce the Kelvin-Helmholtz (KH) instability, which initiates the mixing at a fluid interface. We present results from two dedicated shear flow experiments that produced overall subsonic and supersonic flows using novel target designs. In the subsonic case, the Omega laser was used to drive a blast wave along a rippled interface between plastic and foam, shocking both the materials to produce two fluids separated by a sharp shear layer. The interface subsequently rolled-upped into large KH vortices that were accompanied by bubble-like structures of unknown origin. This was the first time the evolution of a well-resolved KH instability was observed in a HED plasma in the laboratory. We have analyzed the properties and dynamics of the plasma based on the data and fundamental models, without resorting to simulated values. In the second, supersonic experiment the Nike laser was used to drive a supersonic flow of Al plasma along a rippled, low-density foam surface. Here again the flowing plasma drove a shock into the second material, so that two fluids were separated by a shear layer. In contrast to the subsonic case, the flow developed shocks around the ripples in response to the supersonic flow of Al. Collaborators: R.P. Drake, O.A. Hurricane, J.F. Hansen, Y. Aglitskiy, T. Plewa, B.A. Remington, H.F. Robey, J.L. Weaver, A.L. Velikovich, R.S. Gillespie, M.J. Bono, M.J. Grosskopf, C.C. Kuranz, A. Visco.