Science.gov

Sample records for aeronautics subsonic fixed

  1. An Overview of the NASA Fundamental Aeronautics Program Subsonic Fixed Wing Project and Ultra High Bypass Partnership Research Goals

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.

    2009-01-01

    An overview of the NASA Fundamental Aeronautics Program (FAP) mission and goals is presented. One of the subprograms under the FAP, the Subsonic Fixed Wing Project (SFW), is the focus of the presentation. The SFW system environmental metrics are discussed, along with highlights of planned, systematic approach to research to reduce the environmental impact of commercial aircraft in the areas of acoustics, fuel burn and emissions. The presentation then focuses on collaborative research being conducted with U.S. Industry on the Ultra High Bypass (UHB) engine cycle, the propulsion cycle selected by the SFW to meet the system goals. The partnerships with General Electric Aviation to investigate Open Rotor propulsion concepts and with Pratt & Whitney to investigate the Geared Turbofan UHB engine are highlighted, including current and planned future collaborative research activities with NASA and each organization.

  2. Aeroelasticity Benchmark Assessment: Subsonic Fixed Wing Program

    NASA Technical Reports Server (NTRS)

    Florance, Jennifer P.; Chwalowski, Pawel; Wieseman, Carol D.

    2010-01-01

    Aeroelasticity Branch will examine other experimental efforts within the Subsonic Fixed Wing (SFW) program (such as testing of the NASA Common Research Model (CRM)) and other NASA programs and assess aeroelasticity issues and research topics.

  3. Materials and Structures Research for Gas Turbine Applications Within the NASA Subsonic Fixed Wing Project

    NASA Technical Reports Server (NTRS)

    Hurst, Janet

    2011-01-01

    A brief overview is presented of the current materials and structures research geared toward propulsion applications for NASA s Subsonic Fixed Wing Project one of four projects within the Fundamental Aeronautics Program of the NASA Aeronautics Research Mission Directorate. The Subsonic Fixed Wing (SFW) Project has selected challenging goals which anticipate an increasing emphasis on aviation s impact upon the global issue of environmental responsibility. These goals are greatly reduced noise, reduced emissions and reduced fuel consumption and address 25 to 30 years of technology development. Successful implementation of these demanding goals will require development of new materials and structural approaches within gas turbine propulsion technology. The Materials and Structures discipline, within the SFW project, comprise cross-cutting technologies ranging from basic investigations to component validation in laboratory environments. Material advances are teamed with innovative designs in a multidisciplinary approach with the resulting technology advances directed to promote the goals of reduced noise and emissions along with improved performance.

  4. An Analytical Assessment of NASA's N+1 Subsonic Fixed Wing Project Noise Goal

    NASA Technical Reports Server (NTRS)

    Berton, Jeffrey J.; Envia, Edmane; Burley, Casey L.

    2009-01-01

    The Subsonic Fixed Wing Project of NASA's Fundamental Aeronautics Program has adopted a noise reduction goal for new, subsonic, single-aisle, civil aircraft expected to replace current 737 and A320 airplanes. These so-called 'N+1' aircraft - designated in NASA vernacular as such since they will follow the current, in-service, 'N' airplanes - are hoped to achieve certification noise goal levels of 32 cumulative EPNdB under current Stage 4 noise regulations. A notional, N+1, single-aisle, twinjet transport with ultrahigh bypass ratio turbofan engines is analyzed in this study using NASA software and methods. Several advanced noise-reduction technologies are analytically applied to the propulsion system and airframe. Certification noise levels are predicted and compared with the NASA goal.

  5. An Analytical Assessment of NASA's N(+)1 Subsonic Fixed Wing Project Noise Goal

    NASA Technical Reports Server (NTRS)

    Berton, Jeffrey J.; Envia, Edmane; Burley, Casey L.

    2010-01-01

    The Subsonic Fixed Wing Project of NASA s Fundamental Aeronautics Program has adopted a noise reduction goal for new, subsonic, single-aisle, civil aircraft expected to replace current 737 and A320 airplanes. These so-called "N+1" aircraft--designated in NASA vernacular as such since they will follow the current, in-service, "N" airplanes--are hoped to achieve certification noise goal levels of 32 cumulative EPNdB under current Stage 4 noise regulations. A notional, N+1, single-aisle, twinjet transport with ultrahigh bypass ratio turbofan engines is analyzed in this study using NASA software and methods. Several advanced noise-reduction technologies are empirically applied to the propulsion system and airframe. Certification noise levels are predicted and compared with the NASA goal.

  6. Overview of the NASA Subsonic Rotary Wing Aeronautics Research Program in Rotorcraft Crashworthiness

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Kellas, Sotiris; Fuchs, Yvonne T.

    2009-01-01

    This paper provides an overview of rotorcraft crashworthiness research being conducted at NASA Langley Research Center under sponsorship of the Subsonic Rotary Wing (SRW) Aeronautics Program. The research is focused in two areas: development of an externally deployable energy attenuating concept and improved prediction of rotorcraft crashworthiness. The deployable energy absorber (DEA) is a composite honeycomb structure, with a unique flexible hinge design that allows the honeycomb to be packaged and remain flat until needed for deployment. The capabilities of the DEA have been demonstrated through component crush tests and vertical drop tests of a retrofitted fuselage section onto different surfaces or terrain. The research on improved prediction of rotorcraft crashworthiness is focused in several areas including simulating occupant responses and injury risk assessment, predicting multi-terrain impact, and utilizing probabilistic analysis methods. A final task is to perform a system-integrated simulation of a full-scale helicopter crash test onto a rigid surface. A brief description of each research task is provided along with a summary of recent accomplishments.

  7. Overview of the NASA Subsonic Rotary Wing Aeronautics Research Program in Rotorcraft Crashworthiness

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fuchs, Yvonne T.; Kellas, Sotiris

    2008-01-01

    This paper provides an overview of rotorcraft crashworthiness research being conducted at NASA Langley Research Center under sponsorship of the Subsonic Rotary Wing (SRW) Aeronautics Program. The research is focused in two areas: development of an externally deployable energy attenuating concept and improved prediction of rotorcraft crashworthiness. The deployable energy absorber (DEA) is a composite honeycomb structure, with a unique flexible hinge design that allows the honeycomb to be packaged and remain flat until needed for deployment. The capabilities of the DEA have been demonstrated through component crush tests and vertical drop tests of a retrofitted fuselage section onto different surfaces or terrain. The research on improved prediction of rotorcraft crashworthiness is focused in several areas including simulating occupant responses and injury risk assessment, predicting multi-terrain impact, and utilizing probabilistic analysis methods. A final task is to perform a system-integrated simulation of a full-scale helicopter crash test onto a rigid surface. A brief description of each research task is provided along with a summary of recent accomplishments.

  8. Aeronautical fuel conservation possibilities for advanced subsonic transports. [application of aeronautical technology for drag and weight reduction

    NASA Technical Reports Server (NTRS)

    Braslow, A. L.; Whitehead, A. H., Jr.

    1973-01-01

    The anticipated growth of air transportation is in danger of being constrained by increased prices and insecure sources of petroleum-based fuel. Fuel-conservation possibilities attainable through the application of advances in aeronautical technology to aircraft design are identified with the intent of stimulating NASA R and T and systems-study activities in the various disciplinary areas. The material includes drag reduction; weight reduction; increased efficiency of main and auxiliary power systems; unconventional air transport of cargo; and operational changes.

  9. Conceptual Design and Cost Estimate of a Subsonic NASA Testbed Vehicle (NTV) for Aeronautics Research

    NASA Technical Reports Server (NTRS)

    Nickol, Craig L.; Frederic, Peter

    2013-01-01

    A conceptual design and cost estimate for a subsonic flight research vehicle designed to support NASA's Environmentally Responsible Aviation (ERA) project goals is presented. To investigate the technical and economic feasibility of modifying an existing aircraft, a highly modified Boeing 717 was developed for maturation of technologies supporting the three ERA project goals of reduced fuel burn, noise, and emissions. This modified 717 utilizes midfuselage mounted modern high bypass ratio engines in conjunction with engine exhaust shielding structures to provide a low noise testbed. The testbed also integrates a natural laminar flow wing section and active flow control for the vertical tail. An eight year program plan was created to incrementally modify and test the vehicle, enabling the suite of technology benefits to be isolated and quantified. Based on the conceptual design and programmatic plan for this testbed vehicle, a full cost estimate of $526M was developed, representing then-year dollars at a 50% confidence level.

  10. ARMD Fundamental Aeronautics Program

    NASA Technical Reports Server (NTRS)

    Dryer, Jay; DelRosario, Ruben

    2010-01-01

    This slide presentation focuses work of the Aeronautics Research Mission Directorate (ARMD) with particular interest on the work being done to address the environmental and energy efficiency challenges. Particular interest is on the Subsonic Fixed Wing (SFW) project, though there is discussion of the rotorcraft and the supersonics environmental challenges.

  11. Focused Assessment of State-of-the-Art CFD Capabilities for Prediction of Subsonic Fixed Wing Aircraft Aerodynamics

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.; Wahls, Richard A.

    2008-01-01

    Several recent workshops and studies are used to make an assessment of the current status of CFD for subsonic fixed wing aerodynamics. Uncertainty quantification plays a significant role in the assessment, so terms associated with verification and validation are given and some methodology and research areas are highlighted. For high-subsonic-speed cruise through buffet onset, the series of drag prediction workshops and NASA/Boeing buffet onset studies are described. For low-speed flow control for high lift, a circulation control workshop and a synthetic jet flow control workshop are described. Along with a few specific recommendations, gaps and needs identified through the workshops and studies are used to develop a list of broad recommendations to improve CFD capabilities and processes for this discipline in the future.

  12. Advanced Civilian Aeronautical Concepts

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M.

    1996-01-01

    Paper discusses alternatives to currently deployed systems which could provide revolutionary improvements in metrics applicable to civilian aeronautics. Specific missions addressed include subsonic transports, supersonic transports and personal aircraft. These alternative systems and concepts are enabled by recent and envisaged advancements in electronics, communications, computing and Designer Fluid Mechanics in conjunction with a design approach employing extensive synergistic interactions between propulsion, aerodynamics and structures.

  13. 14 CFR 91.805 - Final compliance: Subsonic airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Final compliance: Subsonic airplanes. 91... § 91.805 Final compliance: Subsonic airplanes. Except as provided in §§ 91.809 and 91.811, on and after January 1, 1985, no person may operate to or from an airport in the United States any subsonic...

  14. 14 CFR 91.805 - Final compliance: Subsonic airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Final compliance: Subsonic airplanes. 91... § 91.805 Final compliance: Subsonic airplanes. Except as provided in §§ 91.809 and 91.811, on and after January 1, 1985, no person may operate to or from an airport in the United States any subsonic...

  15. 14 CFR 91.805 - Final compliance: Subsonic airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Final compliance: Subsonic airplanes. 91... § 91.805 Final compliance: Subsonic airplanes. Except as provided in §§ 91.809 and 91.811, on and after January 1, 1985, no person may operate to or from an airport in the United States any subsonic...

  16. 14 CFR 91.805 - Final compliance: Subsonic airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Final compliance: Subsonic airplanes. 91... § 91.805 Final compliance: Subsonic airplanes. Except as provided in §§ 91.809 and 91.811, on and after January 1, 1985, no person may operate to or from an airport in the United States any subsonic...

  17. 14 CFR 91.805 - Final compliance: Subsonic airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Final compliance: Subsonic airplanes. 91... § 91.805 Final compliance: Subsonic airplanes. Except as provided in §§ 91.809 and 91.811, on and after January 1, 1985, no person may operate to or from an airport in the United States any subsonic...

  18. Color/magnitude calibration for National Aeronautics and Space Administration (NASA) standard Fixed-Head Star Trackers (FHST)

    NASA Technical Reports Server (NTRS)

    Landis, J.; Leid, Terry; Garber, A.; Lee, M.

    1994-01-01

    This paper characterizes and analyzes the spectral response of Ball Aerospace fixed-head star trackers, (FHST's) currently in use on some three-axis stabilized spacecraft. The FHST output is a function of the frequency and intensity of the incident light and the position of the star image in the field of view. The FHST's on board the Extreme Ultraviolet Explorer (EUVE) have had occasional problems identifying stars with a high B-V value. These problems are characterized by inaccurate intensity counts observed by the tracker. The inaccuracies are due to errors in the observed star magnitude values. These errors are unique to each individual FHST. For this reason, data were also collected and analyzed from the Upper Atmosphere Research Satellite (UARS). As a consequence of this work, the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) hopes to improve the attitude accuracy on these missions and to adopt better star selection procedures for catalogs.

  19. 14 CFR 91.853 - Final compliance: Civil subsonic airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Final compliance: Civil subsonic airplanes... Noise Limits § 91.853 Final compliance: Civil subsonic airplanes. Except as provided in § 91.873, after... airplane subject to § 91.801(c) of this subpart, unless that airplane has been shown to comply with Stage...

  20. 14 CFR 91.853 - Final compliance: Civil subsonic airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Final compliance: Civil subsonic airplanes... Noise Limits § 91.853 Final compliance: Civil subsonic airplanes. Except as provided in § 91.873, after... airplane subject to § 91.801(c) of this subpart, unless that airplane has been shown to comply with Stage...

  1. 14 CFR 91.853 - Final compliance: Civil subsonic airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Final compliance: Civil subsonic airplanes... Noise Limits § 91.853 Final compliance: Civil subsonic airplanes. Except as provided in § 91.873, after... airplane subject to § 91.801(c) of this subpart, unless that airplane has been shown to comply with Stage...

  2. 14 CFR 91.853 - Final compliance: Civil subsonic airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Final compliance: Civil subsonic airplanes... Noise Limits § 91.853 Final compliance: Civil subsonic airplanes. Except as provided in § 91.873, after... airplane subject to § 91.801(c) of this subpart, unless that airplane has been shown to comply with Stage...

  3. 14 CFR 91.853 - Final compliance: Civil subsonic airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Final compliance: Civil subsonic airplanes... Noise Limits § 91.853 Final compliance: Civil subsonic airplanes. Except as provided in § 91.873, after... airplane subject to § 91.801(c) of this subpart, unless that airplane has been shown to comply with Stage...

  4. Progress Toward National Aeronautics Goals

    NASA Technical Reports Server (NTRS)

    Russo, Carlo J.; Sehra, Arun K.

    1999-01-01

    NASA has made definitive progress towards achieving several bold U.S. goals in aeronautics related to air breathing engines. The advanced technologies developed towards these goals span applications from general aviation to large subsonic and supersonic aircraft. The proof of successful technology development is demonstrated through successful technology transfer to U.S. industry and projected fleet impact. Specific examples of progress are discussed that quantifies the achievement towards these goals. In addition, a more detailed vision for NASA aeronautics is defined and key strategic issues are explored which invite international and national debate and involvement especially in reduced environmental impact for subsonic and supersonic aircraft, dramatic new capabilities in general aviation engines, and reduced development cycle time and costs.

  5. National facilities study. Volume 2: Task group on aeronautical research and development facilities report

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Task Group on Aeronautics R&D Facilities examined the status and requirements for aeronautics facilities against the competitive need. Emphasis was placed on ground-based facilities for subsonic, supersonic and hypersonic aerodynamics, and propulsion. Subsonic and transonic wind tunnels were judged to be most critical and of highest priority. Results of the study are presented.

  6. NASA aeronautics

    NASA Technical Reports Server (NTRS)

    Anderton, D. A.

    1982-01-01

    Aeronautical research programs are discussed in relation to research methods and the status of the programs. The energy efficient aircraft, STOL aircraft and general aviation aircraft are considered. Aerodynamic concepts, rotary wing aircraft, aircraft safety, noise reduction, and aircraft configurations are among the topics included.

  7. Subsonic Aircraft Safety Icing Study

    NASA Technical Reports Server (NTRS)

    Jones, Sharon Monica; Reveley, Mary S.; Evans, Joni K.; Barrientos, Francesca A.

    2008-01-01

    NASA's Integrated Resilient Aircraft Control (IRAC) Project is one of four projects within the agency s Aviation Safety Program (AvSafe) in the Aeronautics Research Mission Directorate (ARMD). The IRAC Project, which was redesigned in the first half of 2007, conducts research to advance the state of the art in aircraft control design tools and techniques. A "Key Decision Point" was established for fiscal year 2007 with the following expected outcomes: document the most currently available statistical/prognostic data associated with icing for subsonic transport, summarize reports by subject matter experts in icing research on current knowledge of icing effects on control parameters and establish future requirements for icing research for subsonic transports including the appropriate alignment. This study contains: (1) statistical analyses of accident and incident data conducted by NASA researchers for this "Key Decision Point", (2) an examination of icing in other recent statistically based studies, (3) a summary of aviation safety priority lists that have been developed by various subject-matter experts, including the significance of aircraft icing research in these lists and (4) suggested future requirements for NASA icing research. The review of several studies by subject-matter experts was summarized into four high-priority icing research areas. Based on the Integrated Resilient Aircraft Control (IRAC) Project goals and objectives, the IRAC project was encouraged to conduct work in all of the high-priority icing research areas that were identified, with the exception of the developing of methods to sense and document actual icing conditions.

  8. Compressibility Effects in Aeronautical Engineering

    NASA Technical Reports Server (NTRS)

    Stack, John

    1941-01-01

    Compressible-flow research, while a relatively new field in aeronautics, is very old, dating back almost to the development of the first firearm. Over the last hundred years, researches have been conducted in the ballistics field, but these results have been of practically no use in aeronautical engineering because the phenomena that have been studied have been the more or less steady supersonic condition of flow. Some work that has been done in connection with steam turbines, particularly nozzle studies, has been of value, In general, however, understanding of compressible-flow phenomena has been very incomplete and permitted no real basis for the solution of aeronautical engineering problems in which.the flow is likely to be unsteady because regions of both subsonic and supersonic speeds may occur. In the early phases of the development of the airplane, speeds were so low that the effects of compressibility could be justifiably ignored. During the last war and immediately after, however, propellers exhibited losses in efficiency as the tip speeds approached the speed of sound, and the first experiments of an aeronautical nature were therefore conducted with propellers. Results of these experiments indicated serious losses of efficiency, but aeronautical engineers were not seriously concerned at the time became it was generally possible. to design propellers with quite low tip. speeds. With the development of new engines having increased power and rotational speeds, however, the problems became of increasing importance.

  9. NASA Fixed Wing Project: Green Technologies for Future Aircraft Generation

    NASA Technical Reports Server (NTRS)

    Del Rosario, Ruben; Koudelka, John M.; Wahls, Rich; Madavan, Nateri

    2014-01-01

    Commercial aviation relies almost entirely on subsonic fixed wing aircraft to constantly move people and goods from one place to another across the globe. While air travel is an effective means of transportation providing an unmatched combination of speed and range, future subsonic aircraft must improve substantially to meet efficiency and environmental targets.The NASA Fundamental Aeronautics Fixed Wing (FW) Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. Multidisciplinary advances are required in aerodynamic efficiency to reduce drag, structural efficiency to reduce aircraft empty weight, and propulsive and thermal efficiency to reduce thrust-specific energy consumption (TSEC) for overall system benefit. Additionally, advances are required to reduce perceived noise without adversely affecting drag, weight, or TSEC, and to reduce harmful emissions without adversely affecting energy efficiency or noise.The paper will highlight the Fixed Wing project vision of revolutionary systems and technologies needed to achieve these challenging goals. Specifically, the primary focus of the FW Project is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe

  10. [Exploring Aeronautics

    NASA Technical Reports Server (NTRS)

    Robinson, Brandi

    2004-01-01

    This summer I have been working with the N.A.S.A. Project at Cuyahoga Community College (Tri-C) under the title of Exploring Aeronautics Project Leader. The class that I have worked with is comprised of students that will enter the eighth grade in the fall of 2004. The program primarily focuses upon math proficiency and individualized class projects. My duties have encompassed both realms. During the first 2-3 weeks of my internship, I worked at NASA Glenn Research Center (GRC) researching, organizing, and compiling information for weekly Scholastic Challenges and the Super Scholastic Challenge. I was able to complete an overview of Scholastic Challenge and staff responsibilities regarding the competition; a proposal for an interactive learning system, Quizdom; a schedule for challenge equipment, as well as a schedule listing submission deadlines for the staff. Also included in my tasks, during these first 2-3 weeks, were assisting Tammy Allen and Candice Thomas with the student application review and interview processes for student applicants. For the student and parent orientation, I was assigned publications and other varying tasks to complete before the start of the program. Upon the commencement of the program, I changed location from NASA GRC to Tri-C Metro Campus, where student classes for the Cleveland site are held. During the duration of the program, I work with the instructor for the Exploring Aeronautics class, kkkk, assisting in classroom management, daily attendance, curriculum, project building, and other tasks as needed. These tasks include the conducting of the weekly competition, known as Scholastic Challenge. As a Project Leader, I am also responsible for one subject area of the Scholastic Challenge aspect of the N.A.S.A. Project curriculum. Each week I have to prepare a mission that the participants will take home the following Monday and at least 10 questions that will be included in the pool of questions used for the Scholastic Challenge

  11. Fundamental Aeronautics Program Subsonic Rotary Wing Project: Aeromechanics Overview

    NASA Technical Reports Server (NTRS)

    Norman, Thomas

    2012-01-01

    The following presentation will cover the topic of Aeromechanics. This includes, the organization of the SRW project, as well as, the Aeromechanic task areas and corresponding facilities including ARC, GRC, and LARC. This presentation will also be covering Aeromechanics highlights like rotorcraft icing, Apache Active Twist Rotor and many more. Furthermore, near-term plans will also be discussed.

  12. Future directions in aeronautical research and technology

    NASA Technical Reports Server (NTRS)

    Bower, R. E.

    1978-01-01

    The aeronautical R & D effort in NASA is discussed with emphasis on those areas where major needs and opportunities exist. In aerodynamics, areas selected for discussion include computational aerodynamics, transonic test techniques, high Reynolds number research, skin friction drag reduction, and propulsive lift. In propulsion, consideration is given to the areas of fuel-efficient subsonic propulsion, variable-flow engines, hypersonic propulsion, alternate fuels, and aircraft noise reduction. Consideration is also given to the utilization of advanced composites and integrated avionic systems.

  13. Holographic subsonic flow visualization.

    PubMed

    Reinheimer, C J; Wiswall, C E; Schmiege, R A; Harris, R J; Dueker, J E

    1970-09-01

    A pulsed ruby laser holographic interferometer was used to detect density gradients in the airflow around an airfoil at subsonic speeds in a low speed wind tunnel. These experiments proved that vibration of the optical components or object between exposures of the interferometric hologram does not destroy the detection of density gradients but actually can aid in the flow visualization. The density gradients determined from the fringe pattern analysis are consistent with the anticipated flow pattern. PMID:20094197

  14. A Vision in Aeronautics: The K-12 Wind Tunnel Project

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A Vision in Aeronautics, a project within the NASA Lewis Research Center's Information Infrastructure Technologies and Applications (IITA) K-12 Program, employs small-scale, subsonic wind tunnels to inspire students to explore the world of aeronautics and computers. Recently, two educational K-12 wind tunnels were built in the Cleveland area. During the 1995-1996 school year, preliminary testing occurred in both tunnels.

  15. Aeronautics research and technology program and specific objectives

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Aeronautics research and technology program objectives in fluid and thermal physics, materials and structures, controls and guidance, human factors, multidisciplinary activities, computer science and applications, propulsion, rotorcraft, high speed aircraft, subsonic aircraft, and rotorcraft and high speed aircraft systems technology are addressed.

  16. Challenges in aeronautical research for the 1990's

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce

    1991-01-01

    Three areas of the specific NASA aeronautical research are discussed: (1) advanced subsonic transport airplanes; (2) next generation high speed civil transport aircraft (SST's); and (3) next century hypersonic vehicles. The research planning reflects an awareness of and sensitivity to modern, stringent environmental constraints, changing marketplace demands, and advanced technology driven opportunities. The technical foundations of those future systems are described.

  17. Continuous subsonic-sonic flows in a general nozzle

    NASA Astrophysics Data System (ADS)

    Wang, Chunpeng

    2015-10-01

    This paper concerns continuous subsonic-sonic potential flows in a two dimensional finite nozzle with a general upper wall and a straight lower wall. We give a class of nozzles where continuous subsonic-sonic flows may exist. Consider a continuous subsonic-sonic flow in such a nozzle after rescaling the upper wall in a small scale. It is shown that for a given inlet and a fixed point at the upper wall, there exists uniquely a continuous subsonic-sonic flow whose velocity vector is along the normal direction at the inlet and the sonic curve, which satisfies the slip conditions on the nozzle walls and whose sonic curve intersects the upper wall at the fixed point. Furthermore, the sonic curve of this flow is a free boundary, where the flow is singular in the sense that the speed is only C 1 / 2 Hölder continuous and the acceleration blows up at the sonic state. As the scale tends to zero, the precise convergent rate of the continuous subsonic-sonic flow converging to the sonic state is also determined.

  18. Fundamental Aeronautics Program

    NASA Technical Reports Server (NTRS)

    Misra, Ajay

    2009-01-01

    The Overarching Mission of NASA's Aeronautics Research Mission Directorate (ARMD) is: To advance U.S. technological leadership in aeronautics in partnership with industry, academia, and other government agencies that conduct aeronautics-related research. ARMD supports the Agency's goal of developing a balanced overall program of science, exploration, and aeronautics, and ARMD's research plans also directly support the National Aeronautics R&D Policy and accompanying Executive Order 131419.

  19. NASA Aeronautics: Research and Technology Program Highlights

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This report contains numerous color illustrations to describe the NASA programs in aeronautics. The basic ideas involved are explained in brief paragraphs. The seven chapters deal with Subsonic aircraft, High-speed transport, High-performance military aircraft, Hypersonic/Transatmospheric vehicles, Critical disciplines, National facilities and Organizations & installations. Some individual aircraft discussed are : the SR-71 aircraft, aerospace planes, the high-speed civil transport (HSCT), the X-29 forward-swept wing research aircraft, and the X-31 aircraft. Critical disciplines discussed are numerical aerodynamic simulation, computational fluid dynamics, computational structural dynamics and new experimental testing techniques.

  20. Achieving Aeronautics Leadership: Aeronautics Strategic Enterprise Plan

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Today, more than ever, aggressive leadership is required to ensure that our national investments in aeronautical research, technology, and facilities are shaped into a coordinated, and high-impact, strategy. Under the auspices of the National Science and Technology Council, and in conjunction with the domestic industry, universities, the Department of Defense, and the Federal Aviation Administration - our partners in aeronautics - we propose to provide that leadership, and this document is our plan.

  1. Western Aeronautical Test Range

    NASA Technical Reports Server (NTRS)

    Sakahara, Robert D.

    2008-01-01

    This viewgraph presentation reviews the work of the Western Aeronautical Test Range (WATR). NASA's Western Aeronautical Test Range is a network of facilities used to support aeronautical research, science missions, exploration system concepts, and space operations. The WATR resides at NASA's Dryden Flight Research Center located at Edwards Air Force Base, California. The WATR is a part of NASA's Corporate Management of Aeronautical Facilities and funded by the Strategic Capability Asset Program (SCAP). Maps show the general location of the WATR area that is used for aeronautical testing and evaluation. The products, services and facilities of WATR are discussed,

  2. Advanced Subsonic Combustion Rig

    NASA Technical Reports Server (NTRS)

    Lee, Chi-Ming

    1998-01-01

    Researchers from the NASA Lewis Research Center have obtained the first combustion/emissions data under extreme future engine operating conditions. In Lewis' new world-class 60-atm combustor research facility--the Advanced Subsonic Combustion Rig (ASCR)--a flametube was used to conduct combustion experiments in environments as extreme as 900 psia and 3400 F. The greatest challenge for combustion researchers is the uncertainty of the effects of pressure on the formation of nitrogen oxides (NOx). Consequently, U.S. engine manufacturers are using these data to guide their future combustor designs. The flametube's metal housing has an inside diameter of 12 in. and a length of 10.5 in. The flametube can be used with a variety of different flow paths. Each flow path is lined with a high-temperature, castable refractory material (alumina) to minimize heat loss. Upstream of the flametube is the injector section, which has an inside diameter of 13 in. and a length of 0.5-in. It was designed to provide for quick changeovers. This flametube is being used to provide all U.S. engine manufacturers early assessments of advanced combustion concepts at full power conditions prior to engine production. To date, seven concepts from engine manufacturers have been evaluated and improved. This collaborated development can potentially give U.S. engine manufacturers the competitive advantage of being first in the market with advanced low-emission technologies.

  3. Nomenclature for Aeronautics

    NASA Technical Reports Server (NTRS)

    1927-01-01

    This nomenclature for aeronautics was prepared by a Special Conference on Aeronautical Nomenclature by the executive committee of the National Advisory Committee for Aeronautics at a meeting held on August 19, 1924, at which meeting Dr. Joseph S. Ames was appointed chairman of the conference. The conference was composed of representatives of the National Advisory Committee for Aeronautics and specially appointed representatives officially designated by the Army Air Service, the Bureau of Aeronautics of the Navy Department, the Bureau of Standards, the American Society of Mechanical Engineers, the Society of Automotive Engineers, and the Aeronautical Chamber of Commerce. The purpose of the committee in the preparation and publication of this report is to secure uniformity in the official documents of the government and, as far as possible, in technical and other commercial publications

  4. Nomenclature for Aeronautics

    NASA Technical Reports Server (NTRS)

    1924-01-01

    This nomenclature for aeronautics was prepared by a special conference on aeronautical nomenclature by the Executive Committee of the National Advisory Committee for Aeronautics at a meeting held August 11, 1933. This publication supersedes all previous publications of the committee on this subject. The purpose of the committee in the preparation and publication of this report is to secure uniformity in the official documents of the government and, as far as possible, in technical and other commercial publications.

  5. Nomenclature for Aeronautics

    NASA Technical Reports Server (NTRS)

    1923-01-01

    This nomenclature for aeronautics was prepared by a special conference on aeronautical nomenclature, composed of representatives of the Army and Navy Air Services, the Air Mail Service, the Bureau of Standards, the National Advisory Committee for Aeronautics, and private life. This report supersedes all previous publications of the committee on this subject. It is published with the intention of securing greater uniformity and accuracy in official documents of the government, and, as far as possible, in technical and other commercial publications. (author)

  6. NASA thesaurus aeronautics vocabulary

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The controlled vocabulary used by the NASA Scientific and Technical Information effort to index documents in the area of aeronautics is presented. The terms comprise a subset of the 1988 edition of the NASA Thesaurus and its supplements issued through the end of 1990. The Aeronautics Vocabulary contains over 4700 terms presented in a hierarchical display format. In addition to aeronautics per se, the vocabulary covers supporting terminology from areas such as fluid dynamics, propulsion engineering, and test facilities and instrumentation.

  7. Civilian Aeronautical Futures - The Responsibly Imaginable

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M.

    2006-01-01

    Since 1940 Aeronautics has had an immense impact upon Global Human lifestyles and affairs - in both the Civilian and Military arenas. During this period Long distance Train and Ship passenger transport were largely supplanted by Air Travel and Aviation assumed a dominant role in warfare. The early 1940 s to the mid 1970 s was a particularly productive period in terms of Aeronautical Technology. What is interesting is that, since the mid 1970 s, the rate of Aeronautical Technological Progress has been far slower, the basic technology in nearly all of our current Aero Systems dates from the mid 70 s or earlier. This is especially true in terms of Configuration Aerodynamics, Aeronautics appears to have "settled" on the 707, double delta and rotary wing as the approach of choice for Subsonic long haul, supersonic cruise and VTOL respectively. Obviously there have been variants and some niche digression from this/these but in the main Aeronautics, particularly civilian Aeronautics, has become a self-professed "mature", Increasingly "Commodity", Industry. The Industry is far along an existing/deployed technology curve and focused, now for decades, on incremental/evolutionary change - largely Appliers vs. developers of technology. This is, of course, in sharp contrast to the situation in the early-to-later 20th century where Aeronautics was viewed as A Major Technological Engine, much the way IT/Bio/Nano/Energetics/Quantum Technologies are viewed today. A search for Visionary Aeronautical "Futures" papers/projections indicates a decided dearth thereof over the last 20 plus years compared to the previous quarter Century. Aeronautics is part of Aerospace and Aerospace [including Aeronautics] has seen major cutbacks over the last decades. Some numbers for the U.S. Aerospace Industry serve as examples. Order of 600,000 jobs lost, with some 180,000 more on the block over the next 10 years. Approximately 25% of the Aerospace workforce is eligible to retire and the average

  8. Aeronautical technologies for the twenty-first century

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This study gives an overview of the future technologies in aeronautics. This collaborative effort relies upon the input of numerous experts from around the country. Specific issues covered include subsonic transport aircraft, high-speed civil transport aircraft short-haul aircraft, environmental issues, operational issues, aerodynamics, propulsion, materials and structures, avionics and control, and cognitive engineering. The appendices include bibliography, abbreviations and acronyms, and NASA fiscal year 1992 aeronautics funding (table) and participants. The forward states that over the last decade, foreign aircraft manufacturers have made significant inroads into the global aircraft market, to the detriment of U.S. interests. Recommendations are made to counter that trend.

  9. Nomenclature for aeronautics

    NASA Technical Reports Server (NTRS)

    1920-01-01

    Report defines the principal terms which have come into use in the development of aeronautics. It was prepared in cooperation with a committee engaged upon a similar undertaking in Great Britain. As a result this nomenclature is in substantial agreement with the one which has been adopted by the aeronautical authorities of Great Britain.

  10. Subsonic Glideback Rocket Demonstrator Flight Testing

    NASA Technical Reports Server (NTRS)

    DeTurris, Dianne J.; Foster, Trevor J.; Barthel, Paul E.; Macy, Daniel J.; Droney, Christopher K.; Talay, Theodore A. (Technical Monitor)

    2001-01-01

    For the past two years, Cal Poly's rocket program has been aggressively exploring the concept of remotely controlled, fixed wing, flyable rocket boosters. This program, embodied by a group of student engineers known as Cal Poly Space Systems, has successfully demonstrated the idea of a rocket design that incorporates a vertical launch pattern followed by a horizontal return flight and landing. Though the design is meant for supersonic flight, CPSS demonstrators are deployed at a subsonic speed. Many steps have been taken by the club that allowed the evolution of the StarBooster prototype to reach its current size: a ten-foot tall, one-foot diameter, composite material rocket. Progress is currently being made that involves multiple boosters along with a second stage, third rocket.

  11. Bibliography of Aeronautics: 1926

    NASA Technical Reports Server (NTRS)

    Brockett, Paul

    1928-01-01

    This Bibliography of Aeronautics for 1926 covers the aeronautical literature published from January 1 to December 31, 1926. The first Bibliography of Aeronautics was published by the Smithsonian Institution as volume 55 of the Smithsonian Miscellaneous Collections and covered the material published prior to June 30, 1909. Supplementary volumes of the Bibliography of Aeronautics for the subsequent years have been published by the National Advisory Committee for Aeronautics. The last preceding volume was for the calendar year 1925. As in the previous volumes, citations of the publications of all nations are included in the languages in which these publications originally appeared. The arrangement is dictionary form with author find subject entry, and one alphabetical arrangement. Detail in the matter of subject reference has been omitted on aCC01.mt of the cost of presentation, but an attempt has been made to give sufficient cross reference for research in special lines.

  12. Bibliography of Aeronautics: 1928

    NASA Technical Reports Server (NTRS)

    Brockett, Paul

    1928-01-01

    This Bibliography of Aeronautics for 1928 covers the aeronautical literature published from January 1 to December 31, 1928. The first Bibliography of Aeronautics was published by the Smithsonian Institution as volume 55 of the Smithsonian Miscellaneous Collections and covered the material published prior to June 30, 1909. Supplementary volumes of the Bibliography of Aeronautics for the subsequent years have been published by the National Advisory Committee for Aeronautics. The last preceding volume was for the calendar year 1927. As in the previous volumes, citations of the publications of all nations are included in the languages in which these publications originally appeared. The arrangement is in dictionary form with author and subject entry, and one alphabetical arrangement. Detail in the matter of subject reference has been omitted on account of the cost of presentation, but an attempt has been made to give sufficient cross reference for research in special lines.

  13. Bibliography of Aeronautics: 1932

    NASA Technical Reports Server (NTRS)

    1935-01-01

    This Bibliography of Aeronautics for 1932 covers the aeronautical literature published from January 1 to December 31, 1932. The first Bibliography of Aeronautics was published by the Smithsonian Institution as volume 55 of the Smithsonian Miscellaneous Collections and covered the material published prior to June 30, 1909. Supplementary volumes of the Bibliography of Aeronautics for the subsequent years have been published by the National Advisory Committee for Aeronautics. The last preceding volume was for the calendar year 1931. As in the previous volumes, citations of the publications of all nations are included in the languages in which these publications originally appeared. The arrangement is in dictionary form with author and subject entry and one alphabetical arrangement. Detail in the matter of subject reference has been omitted on account of the cost of presentation, but an attempt has been made to give sufficient cross-reference for research in special lines.

  14. Bibliography of Aeronautics, 1929

    NASA Technical Reports Server (NTRS)

    Brockett, Paul

    1930-01-01

    This Bibliography of Aeronautics for 1929 covers the aeronautical literature published from January 1 to December 31, 1929. The first Bibliography of Aeronautics was published by the Smithsonian Institution as Volume 55 of the Smithsonian Miscellaneous Collections and covered the material published prior to June 30, 1909. Supplementary volumes of the Bibliography of Aeronautics for the subsequent years have been published by the National Advisory Committee for Aeronautics. The last preceding volume was for the calendar year 1928. As in the previous volumes, citations of the pUblications of all nations are included in th.e languages in which. these publications originally appeared. The arrangement is in dictionary form with author and subject entry, and one alphabetical arrangement. Detail in the matter of subject reference has been omitted on account of the cost of presentation, but an attempt has been made to give sufficient cross reference for research in special lines.

  15. Canadian aeronautical mobile data trials

    NASA Technical Reports Server (NTRS)

    Pedersen, Allister; Pearson, Andrea

    1993-01-01

    This paper describes a series of aeronautical mobile data trials conducted on small aircraft (helicopters and fixed wing) utilizing a low-speed store-and-forward mobile data service. The paper outlines the user requirements for aeronautical mobile satellite communications. 'Flight following' and improved wide-area dispatch communications were identified as high priority requirements. A 'proof-of-concept' trial in a Cessna Skymaster aircraft is described. This trial identified certain development work as essential to the introduction of commercial service including antenna development, power supply modifications and doppler software modifications. Other improvements were also proposed. The initial aeronautical mobile data service available for pre-operational (Beta) trials is outlined. Pre-operational field trials commenced in October 1992 and consisted of installations on a Gralen Communications Inc. Cessna 177 and an Aerospatiale Astar 350 series light single engine helicopter. The paper concludes with a discussion of desirable near term mobile data service developments, commercial benefits, current safety benefits and potential future applications for improved safety.

  16. NASA Fixed Wing Project: Green Technologies for Future Aircraft Generation

    NASA Technical Reports Server (NTRS)

    DelRosario, Ruben

    2014-01-01

    The NASA Fundamental Aeronautics Fixed Wing (FW) Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advances in multidisciplinary technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. The presentation will highlight the FW Project vision of revolutionary systems and technologies needed to achieve the challenging goals of aviation. Specifically, the primary focus of the FW Project is on the N+3 generation that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe.

  17. Robust, Optimal Subsonic Airfoil Shapes

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan

    2014-01-01

    A method has been developed to create an airfoil robust enough to operate satisfactorily in different environments. This method determines a robust, optimal, subsonic airfoil shape, beginning with an arbitrary initial airfoil shape, and imposes the necessary constraints on the design. Also, this method is flexible and extendible to a larger class of requirements and changes in constraints imposed.

  18. Nomenclature for Aeronautics

    NASA Technical Reports Server (NTRS)

    1939-01-01

    The nomenclature for aeronautics presented in this Report No. 474 is a revision of the last previous report on this subject (i.e., Report no. 240.) This report is published for the purpose of encouraging greater uniformity and precision in the use of terms relating to aeronautics, both in official documents of the Government and in commercial publications. Terms in general use in other branches of engineering have been included only where they have some special significance in aeronautics, or form an integral part of its terminology.

  19. Curriculum for modern aeronautics

    NASA Technical Reports Server (NTRS)

    Roberts, L.

    1975-01-01

    Methods for improving the university training of aeronautical engineering students are discussed. Specific topics considered are: (1) the kind of students which should be developed through aeronautical engineering education, (2) to what extent should aerospace engineering be prepared for diversity and change, (3) to what extent should theory be emphasized as compared with practical engineering and design, and (4) a suggestion for NASA/Industry/University collaboration.

  20. Western Aeronautical Test Range

    NASA Technical Reports Server (NTRS)

    Sakahara, Robert D.

    2008-01-01

    NASA's Western Aeronautical Test Range (WATR) is a network of facilities used to support aeronautical research, science missions, exploration system concepts, and space operations. The WATR resides at NASA's Dryden Flight Research Center located at Edwards Air Force Base, California. The WATR is a part of NASA's Corporate Management of Aeronautical Facilities and funded by the Strategic Capability Asset Program (SCAP). It is managed by the Aeronautics Test Program (ATP) of the Aeronautics Research Mission Directorate (ARMD) to provide the right facility at the right time. NASA is a tenant on Edwards Air Force Base and has an agreement with the Air Force Flight Test Center to use the land and airspace controlled by the Department of Defense (DoD). The topics include: 1) The WATR supports a variety of vehicles; 2) Dryden shares airspace with the AFFTC; 3) Restricted airspace, corridors, and special use areas are available for experimental aircraft; 4) WATR Products and Services; 5) WATR Support Configuration; 6) Telemetry Tracking; 7) Time Space Positioning; 8) Video; 9) Voice Communication; 10) Mobile Operations Facilities; 11) Data Processing; 12) Mission Control Center; 13) Real-Time Data Analysis; and 14) Range Safety.

  1. Robust, optimal subsonic airfoil shapes

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan (Inventor)

    2008-01-01

    Method system, and product from application of the method, for design of a subsonic airfoil shape, beginning with an arbitrary initial airfoil shape and incorporating one or more constraints on the airfoil geometric parameters and flow characteristics. The resulting design is robust against variations in airfoil dimensions and local airfoil shape introduced in the airfoil manufacturing process. A perturbation procedure provides a class of airfoil shapes, beginning with an initial airfoil shape.

  2. Diaphragms for Aeronautic Instruments

    NASA Technical Reports Server (NTRS)

    Hersey, M D

    1924-01-01

    This investigation was carried out at the request of the National Advisory Committee for Aeronautics and comprises an outline of historical developments and theoretical principles, together with a discussion of expedients for making the most effective use of existing diaphragms actuated by the hydrostatic pressure form an essential element of a great variety instruments for aeronautic and other technical purposes. The various physical data needed as a foundation for rational methods of diaphragm design have not, however, been available hitherto except in the most fragmentary form.

  3. Aeronautical facilities assessment

    NASA Technical Reports Server (NTRS)

    Penaranda, F. E. (Compiler)

    1985-01-01

    A survey of the free world's aeronautical facilities was undertaken and an evaluation made on where the relative strengths and weaknesses exist. Special emphasis is given to NASA's own capabilities and needs. The types of facilities surveyed are: Wind Tunnels; Airbreathing Propulsion Facilities; and Flight Simulators

  4. ACTS broadband aeronautical experiment

    NASA Technical Reports Server (NTRS)

    Abbe, Brian S.; Jedrey, Thomas C.; Estabrook, Polly; Agan, Martin J.

    1993-01-01

    In the last decade, the demand for reliable data, voice, and video satellite communication links between aircraft and ground to improve air traffic control, airline management, and to meet the growing demand for passenger communications has increased significantly. It is expected that in the near future, the spectrum required for aeronautical communication services will grow significantly beyond that currently available at L-band. In anticipation of this, JPL is developing an experimental broadband aeronautical satellite communications system that will utilize NASA's Advanced Communications Technology Satellite (ACTS) as a satellite of opportunity and the technology developed under JPL's ACTS Mobile Terminal (AMT) Task to evaluate the feasibility of using K/Ka-band for these applications. The application of K/Ka-band for aeronautical satellite communications at cruise altitudes is particularly promising for several reasons: (1) the minimal amount of signal attenuation due to rain; (2) the reduced drag due to the smaller K/Ka-band antennas (as compared to the current L-band systems); and (3) the large amount of available bandwidth. The increased bandwidth available at these frequencies is expected to lead to significantly improved passenger communications - including full-duplex compressed video and multiple channel voice. A description of the proposed broadband experimental system will be presented including: (1) applications of K/Ka-band aeronautical satellite technology to U.S. industry; (2) the experiment objectives; (3) the experiment set-up; (4) experimental equipment description; and (5) industrial participation in the experiment and the benefits.

  5. Subsonic Flow for the Multidimensional Euler-Poisson System

    NASA Astrophysics Data System (ADS)

    Bae, Myoungjean; Duan, Ben; Xie, Chunjing

    2016-04-01

    We establish the existence and stability of subsonic potential flow for the steady Euler-Poisson system in a multidimensional nozzle of a finite length when prescribing the electric potential difference on a non-insulated boundary from a fixed point at the exit, and prescribing the pressure at the exit of the nozzle. The Euler-Poisson system for subsonic potential flow can be reduced to a nonlinear elliptic system of second order. In this paper, we develop a technique to achieve a priori {C^{1,α}} estimates of solutions to a quasi-linear second order elliptic system with mixed boundary conditions in a multidimensional domain enclosed by a Lipschitz continuous boundary. In particular, we discovered a special structure of the Euler-Poisson system which enables us to obtain {C^{1,α}} estimates of the velocity potential and the electric potential functions, and this leads us to establish structural stability of subsonic flows for the Euler-Poisson system under perturbations of various data.

  6. Reshaping NASA's Aeronautics Program

    NASA Technical Reports Server (NTRS)

    Liang, Anita D.

    2007-01-01

    We will dedicate ourselves to the mastery and intellectual stewardship of the core competencies of Aeronautics for the Nation in all flight regimes. We will focus our research in areas that are appropriate to NASA's unique capabilities. we will directly address the R&D needs of the Next Generation Air Transportation System (NGATS) in partnership with the member agencies of the Joint Planning and development Office (JPDO).

  7. NASA's Role in Aeronautics: A Workshop. Volume VI - Aeronautical Research.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Assembly of Engineering.

    The central task of a 1980 workshop on the role of the National Aeronautics and Space Administration (NASA) in aeronautics was to examine the relationship of NASA's research capabilities to the state of U.S. aviation and to make recommendations about NASA's future role in aeronautics. Following a brief introduction, the Overview Panel on…

  8. An Overview of NASA's Subsonic Research Aircraft Testbed (SCRAT)

    NASA Technical Reports Server (NTRS)

    Baumann, Ethan; Hernandez, Joe; Ruhf, John C.

    2013-01-01

    National Aeronautics and Space Administration Dryden Flight Research Center acquired a Gulfstream III (GIII) aircraft to serve as a testbed for aeronautics flight research experiments. The aircraft is referred to as SCRAT, which stands for SubsoniC Research Aircraft Testbed. The aircraft's mission is to perform aeronautics research; more specifically raising the Technology Readiness Level (TRL) of advanced technologies through flight demonstrations and gathering high-quality research data suitable for verifying the technologies, and validating design and analysis tools. The SCRAT has the ability to conduct a range of flight research experiments throughout a transport class aircraft's flight envelope. Experiments ranging from flight-testing of a new aircraft system or sensor to those requiring structural and aerodynamic modifications to the aircraft can be accomplished. The aircraft has been modified to include an instrumentation system and sensors necessary to conduct flight research experiments along with a telemetry capability. An instrumentation power distribution system was installed to accommodate the instrumentation system and future experiments. An engineering simulation of the SCRAT has been developed to aid in integrating research experiments. A series of baseline aircraft characterization flights has been flown that gathered flight data to aid in developing and integrating future research experiments. This paper describes the SCRAT's research systems and capabilities.

  9. SUBSONIC WIND TUNNEL PERFORMANCE ANALYSIS SOFTWARE

    NASA Technical Reports Server (NTRS)

    Eckert, W. T.

    1994-01-01

    area corners, diffusing corners, diffusers, exits, flow straighteners, fans, and fixed, known losses. Input to this program consists of data describing each section; the section type, the section end shapes, the section diameters, and parameters which vary from section to section. Output from the program consists of a tabulation of the performance-related parameters for each section of the wind tunnel circuit and the overall performance values that include the total circuit length, the total pressure losses and energy ratios for the circuit, and the total operating power required. If requested, the output also includes an echo of the input data, a summary of the circuit characteristics and plotted results on the cumulative pressure losses and the wall pressure differentials. The Subsonic Wind Tunnel Performance Analysis Software is written in FORTRAN 77 (71%) and BASIC (29%) for IBM PC series computers and compatibles running MS-DOS 2.1 or higher. The machine requirements include either an 80286 or 80386 processor, a math co-processor and 640K of main memory. The PERFORM analysis software is written for the RM/FORTRAN v2.4 compiler. This portion of the code is portable to other platforms which support a standard FORTRAN 77 compiler. Source code and executables for the PC are included with the distribution. They are compressed using the PKWARE archiving tool; the utility to unarchive the files, PKUNZIP.EXE, is included. With the PERFINTER program interface the user is allowed to enter the wind tunnel characteristics via the menu driven program, but this is only available for the PC. The standard distribution medium for this package is a 5.25 inch 360K MS-DOS format diskette. This software package was developed in 1990. DEC, VAX and VMS are trademarks of Digital Equipment Corporation. RM/FORTRAN is trademark of Ryan McFarland Corporation. PERFORM is a trademark of Prime Computer Inc. MS-DOS is a registered trademark of Microsoft Corporation.

  10. Subsonic Round and Rectangular Twin Jet Flow Effects

    NASA Technical Reports Server (NTRS)

    Bozak, Rick; Wernet, Mark

    2014-01-01

    Subsonic and supersonic aircraft concepts proposed by NASAs Fundamental Aeronautics Program have integrated propulsion systems with asymmetric nozzles. The asymmetry in the exhaust of these propulsion systems creates asymmetric flow and acoustic fields. The flow asymmetries investigated in the current study are from two parallel round, 2:1, and 8:1 aspect ratio rectangular jets at the same nozzle conditions. The flow field was measured with streamwise and cross-stream particle image velocimetry (PIV). A large dataset of single and twin jet flow field measurements was acquired at subsonic jet conditions. The effects of twin jet spacing and forward flight were investigated. For round, 2:1, and 8:1 rectangular twin jets at their closest spacings, turbulence levels between the two jets decreased due to enhanced jet mixing at near static conditions. When the flight Mach number was increased to 0.25, the flow around the twin jet model created a velocity deficit between the two nozzles. This velocity deficit diminished the effect of forward flight causing an increase in turbulent kinetic energy relative to a single jet. Both of these twin jet flow field effects decreased with increasing twin jet spacing relative to a single jet. These variations in turbulent kinetic energy correlate with changes in far-field sound pressure level.

  11. Aeronautical Science Course of Study.

    ERIC Educational Resources Information Center

    Southbay Union High School District, Redondo Beach, CA.

    This revision of "Aeronautical Science Course of Study for California High Schools," first issued in 1967, is designed by and for the use of teachers of high school aeronautical courses. It differs from other aeronautical instructional materials in its emphasis on inquiry, exploration, and open-ended experimentation. The eleven units may be used…

  12. Aeronautics in the American Society

    NASA Technical Reports Server (NTRS)

    Fletcher, J. C.

    1975-01-01

    The trends in aeronautics and aeronautical education are discussed with respect to the roles of industry, government, and the universities. The importance of the aviation industry to the economy of the country is examined. The impact of reduced enrollment of aeronautical engineering students in the universities on the future of the aeronautical industry is stressed. It is stated that the role of the government should be to sponsor and conduct basic research and advanced technology programs for civil and military aviation, and the specification, development, procurement, and operation of military aircraft. Recommendations are made for approaches which may be taken to influence more qualified students to enter the field of aeronautics.

  13. NASA aeronautics research and technology

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The technical accomplishments and research highlights of 1986 are featured, along with information on possible areas of future research. These include hypersonic, supersonic, high performance, subsonic, and rotorcraft vehicle technology. Fundamental disciplinary research areas discussed include aerodynamics, propulsion, materials and structures, information sciences and human factors, and flight systems/safety. A description of the NASA organization and facilities is given.

  14. Fixed Wing Project: Technologies for Advanced Air Transports

    NASA Technical Reports Server (NTRS)

    Del Rosario, Ruben; Koudelka, John M.; Wahls, Richard A.; Madavan, Nateri

    2014-01-01

    The NASA Fundamental Aeronautics Fixed Wing (FW) Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. Multidisciplinary advances are required in aerodynamic efficiency to reduce drag, structural efficiency to reduce aircraft empty weight, and propulsive and thermal efficiency to reduce thrust-specific energy consumption (TSEC) for overall system benefit. Additionally, advances are required to reduce perceived noise without adversely affecting drag, weight, or TSEC, and to reduce harmful emissions without adversely affecting energy efficiency or noise.The presentation will highlight the Fixed Wing project vision of revolutionary systems and technologies needed to achieve these challenging goals. Specifically, the primary focus of the FW Project is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe.

  15. Aeronautic Instruments. Section II : Altitude Instruments

    NASA Technical Reports Server (NTRS)

    Mears, A H; Henrickson, H B; Brombacher, W G

    1923-01-01

    This report is Section two of a series of reports on aeronautic instruments (Technical Report nos. 125 to 132, inclusive). This section discusses briefly barometric altitude determinations, and describes in detail the principal types of altimeters and barographs used in aeronautics during the recent war. This is followed by a discussion of performance requirements for such instruments and an account of the methods of testing developed by the Bureau of Standards. The report concludes with a brief account of the results of recent investigations. For accurate measurements of altitude, reference must also be made to thermometer readings of atmospheric temperature, since the altitude is not fixed by atmospheric pressure alone. This matter is discussed in connection with barometric altitude determination.

  16. Aeronautical tubes and pipes

    NASA Astrophysics Data System (ADS)

    Beauclair, N.

    1984-12-01

    The main and subcomponent French suppliers of aircraft tubes and pipes are discussed, and the state of the industry is analyzed. Quality control is essential for tubes with regard to their i.d. and metallurgical compositions. French regulations do not allow welded seam tubes in hydraulic circuits unless no other form is available, and then rustproofed steel must be installed. The actual low level of orders for any run of tubes dictates that the product is only one of several among the manufacturers' line. Automation, both in NDT and quality control, assures that the tubes meet specifications. A total of 10 French companies participate in the industry, serving both civil and military needs, with some companies specializing only in titanium, steel, or aluminum materials. Concerns wishing to enter the market must upgrade their equipment to meet the higher aeronautical specifications and be prepared to furnish tubes and pipes that serve both functional and structural purposes simultaneously. Additionally, pipe-bending machines must also perform to tight specifications. Pipes can range from 0.2 mm exterior diameter to 40 mm, with wall thicknesses from 0.02 mm to 3 mm. A chart containing a list of manufacturers and their respective specifications and characteristics is presented, and a downtrend in production with reduction of personnel is noted.

  17. Power-by-Wire Development and Demonstration for Subsonic Civil Transport

    NASA Technical Reports Server (NTRS)

    1996-01-01

    During the last decade, three significant studies by the Lockheed Martin Corporation, the NASA Lewis Research Center, and McDonnell Douglas Corporation have clearly shown operational, weight, and cost advantages for commercial subsonic transport aircraft that use all-electric or more-electric technologies in the secondary electric power systems. Even though these studies were completed on different aircraft, used different criteria, and applied a variety of technologies, all three have shown large benefits to the aircraft industry and to the nation's competitive position. The Power-by-Wire (PBW) program is part of the highly reliable Fly-By-Light/Power-By-Wire (FBL/PBW) Technology Program, whose goal is to develop the technology base for confident application of integrated FBL/PBW systems for transport aircraft. This program is part of the NASA aeronautics strategic thrust in subsonic aircraft/national airspace (Thrust 1) to "develop selected high-leverage technologies and explore new means to ensure the competitiveness of U.S. subsonic aircraft and to enhance the safety and productivity of the national aviation system" (The Aeronautics Strategic Plan). Specifically, this program is an initiative under Thrust 1, Key Objective 2, to "develop, in cooperation with U.S. industry, selected high-payoff technologies that can enable significant improvements in aircraft efficiency and cost."

  18. Subsonic Ultra Green Aircraft Research

    NASA Technical Reports Server (NTRS)

    Bradley, Marty K.; Droney, Christopher K.

    2011-01-01

    This Final Report summarizes the work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team in Phase 1, which includes the time period of October 2008 through March 2010. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, and Georgia Tech. The team completed the development of a comprehensive future scenario for world-wide commercial aviation, selected baseline and advanced configurations for detailed study, generated technology suites for each configuration, conducted detailed performance analysis, calculated noise and emissions, assessed technology risks, and developed technology roadmaps. Five concepts were evaluated in detail: 2008 baseline, N+3 reference, N+3 high span strut braced wing, N+3 gas turbine battery electric concept, and N+3 hybrid wing body. A wide portfolio of technologies was identified to address the NASA N+3 goals. Significant improvements in air traffic management, aerodynamics, materials and structures, aircraft systems, propulsion, and acoustics are needed. Recommendations for Phase 2 concept and technology projects have been identified.

  19. Aeronautical Engineering: 1983 cumulative index

    NASA Technical Reports Server (NTRS)

    1984-01-01

    This bibliography is a cumulative index to the abstracts contained in NASA SP-7037 (158) through NASA SP-7037 (169) of Aeronautical Engineering: A Continuing Bibliography. NASA SP-7037 and its supplements have been compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, contract, report number, and accession number indexes.

  20. Aeronautics in NACA and NASA

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Initiated in 1915, the National Advisory Committee for Aeronautics/National Aeronautics and Space Administration (NACA/NASA) aeronautical programs have been the keystone of a sustained U.S. Government, industry, and university research effort which has been a primary factor in the development of our remarkable air transportation systems, the country's largest positive trade balance component, and the world's finest military Air Force. This overview summarizes the flow of events, and the major trends, that have led from the NACA origins to the present NASA Aeronautics program, and indicates some important directions for the years ahead.

  1. Atmospheric Effects of Aviation: First Report of the Subsonic Assessment Project

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M. (Editor); Friedl, Randall R. (Editor); Wesoky, Howard L. (Editor)

    1996-01-01

    This document is the first report from the Office of Aeronautics Advanced Subsonic Technology (AST) Program's Subsonic Assessment (SASS) Project. This effort, initiated in late 1993, has as its objective the assessment of the atmospheric effects of the current and predicted future aviation fleet. The two areas of impact are ozone (stratospheric and tropospheric) and radiative forcing. These are driven, respectively, by possible perturbations from aircraft emissions of NOX and soot and/or sulfur-containing particles. The report presents the major questions to which project assessments will be directed (Introduction) and the status of six programmatic elements: Emissions Scenarios, Exhaust Characterization, Near-Field Interactions, Kinetics and Laboratory Studies, Global Modeling, and Atmospheric Observations (field studies).

  2. Aeronautical Engineering: A continuing bibliography

    NASA Technical Reports Server (NTRS)

    1982-01-01

    This bibliography lists 347 reports, articles and other documents introduced into the scientific and technical information system. Documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated compounds, equipment, and systems are included. Research and development in aerodynamics, aeronautics and ground support equipment for aeronautical vehicles are also included.

  3. Fifty Years of Aeronautical Research.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This booklet contains a detailed review of the aeronautical research conducted at Langley Research Center during the 50 years after its construction in 1917 as the first research laboratory for the National Advisory Committee for Aeronautics. The research is discussed in five parts, by decades: 1917-27, 1928-37, 1938-47, 1948-57, 1958-67.…

  4. Evaluation of viscous drag reduction schemes for subsonic transports

    NASA Technical Reports Server (NTRS)

    Marino, A.; Economos, C.; Howard, F. G.

    1975-01-01

    The results are described of a theoretical study of viscous drag reduction schemes for potential application to the fuselage of a long-haul subsonic transport aircraft. The schemes which were examined included tangential slot injection on the fuselage and various synergetic combinations of tangential slot injection and distributed suction applied to wing and fuselage surfaces. Both passive and mechanical (utilizing turbo-machinery) systems were examined. Overall performance of the selected systems was determined at a fixed subsonic cruise condition corresponding to a flight Mach number of free stream M = 0.8 and an altitude of 11,000 m. The nominal aircraft to which most of the performance data was referenced was a wide-body transport of the Boeing 747 category. Some of the performance results obtained with wing suction are referenced to a Lockheed C-141 Star Lifter wing section. Alternate designs investigated involved combinations of boundary layer suction on the wing surfaces and injection on the fuselage, and suction and injection combinations applied to the fuselage only.

  5. NASA Aeronautics Research: An Assessment

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The U.S. air transportation system is vital to the economic well-being and security of the United States. To support continued U.S. leadership in aviation, Congress and NASA requested that the National Research Council undertake a decadal survey of civil aeronautics research and technology (R&T) priorities that would help NASA fulfill its responsibility to preserve U.S. leadership in aeronautics technology. In 2006, the National Research Council published the Decadal Survey of Civil Aeronautics. That report presented a set of six strategic objectives for the next decade of aeronautics R&T, and it described 51 high-priority R&T challenges--characterized by five common themes--for both NASA and non-NASA researchers. The National Research Council produced the present report, which assesses NASA's Aeronautics Research Program, in response to the National Aeronautics and Space Administration Authorization Act of 2005 (Public Law 109-155). This report focuses on three sets of questions: 1. How well does NASA's research portfolio implement appropriate recommendations and address relevant high-priority research and technology challenges identified in the Decadal Survey of Civil Aeronautics? If gaps are found, what steps should be taken by the federal government to eliminate them? 2. How well does NASA's aeronautics research portfolio address the aeronautics research requirements of NASA, particularly for robotic and human space exploration? How well does NASA's aeronautics research portfolio address other federal government department/agency non-civil aeronautics research needs? If gaps are found, what steps should be taken by NASA and/or other parts of the federal government to eliminate them? 3. Will the nation have a skilled research workforce and research facilities commensurate with the requirements in (1) and (2) above? What critical improvements in workforce expertise and research facilities, if any, should NASA and the nation make to achieve the goals of NASA

  6. NASA's Role in Aeronautics: A Workshop. Volume 6: Aeronautical research

    NASA Technical Reports Server (NTRS)

    1981-01-01

    While each aspect of its aeronautical technology program is important to the current preeminence of the United States in aeronautics, the most essential contributions of NASA derive from its research. Successes and challenges in NASA's efforts to improve civil and military aviation are discussed for the following areas: turbulence, noise, supercritical aerodynamics, computational aerodynamics, fuels, high temperature materials, composite materials, single crystal components, powder metallurgy, and flight controls. Spin offs to engineering and other sciences explored include NASTRAN, lubricants, and composites.

  7. Unsteady Aerodynamics - Subsonic Compressible Inviscid Case

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A. V.

    1999-01-01

    This paper presents a new analytical treatment of Unsteady Aerodynamics - the linear theory covering the subsonic compressible (inviscid) case - drawing on some recent work in Operator Theory and Functional Analysis. The specific new results are: (a) An existence and uniqueness proof for the Laplace transform version of the Possio integral equation as well as a new closed form solution approximation thereof. (b) A new representation for the time-domain solution of the subsonic compressible aerodynamic equations emphasizing in particular the role of the initial conditions.

  8. Hydrogen fueled subsonic aircraft - A prospective

    NASA Technical Reports Server (NTRS)

    Witcofski, R. D.

    1977-01-01

    The performance characteristics of hydrogen-fueled subsonic transport aircraft are compared with those of aircraft using conventional aviation kerosene. Results of the Cryogenically Fueled Aircraft Technology Program sponsored by NASA indicate that liquid hydrogen may be particularly efficient for subsonic transport craft when ranges of 4000 km or more are involved; however, development of advanced cryogenic tanks for liquid hydrogen fuel is required. The NASA-sponsored program also found no major technical obstacles for international airports converting the liquid hydrogen fueling systems. Resource utilization efficiency and fuel production costs for hydrogen produced by coal gasification or for liquid methane or synthetic aviation kerosene are also assessed.

  9. Analysis of an advanced ducted propeller subsonic inlet

    NASA Technical Reports Server (NTRS)

    Iek, Chanthy; Boldman, Donald R.; Ibrahim, Mounir

    1992-01-01

    A time marching Navier-Stokes code called PARC (PARC2D for 2-D/axisymmetric and PARC3D for 3-D flow simulations) was validated for an advanced ducted propeller (ADP) subsonic inlet. The code validation for an advanced ducted propeller (ADP) subsonic inlet. The code validation was implemented for a non-separated flow condition associated with the inlet operating at angles-of-attack of 0 and 25 degrees. The inlet test data were obtained in the 9 x 15 ft Low Speed Wind Tunnel at NASA Lewis Research Center as part of a cooperative study with Pratt and Whitney. The experimental study focused on the ADP inlet performance for take-off and approach conditions. The inlet was tested at a free stream Mach number of 0.2, at angles-of-attack between O and 35 degrees, and at a maximum propeller speed of 12,000 RPM which induced a corrected air flow rate of about 46 lb/sec based on standard day conditions. The computational grid and flow boundary conditions (BC) were based on the actual inlet geometry and the funnel flow conditions. At the propeller face, two types of BC's were applied: a mass flow BC and a fixed flow properties BC. The fixed flow properties BC was based on a combination of data obtained from the experiment and calculations using a potential flow code. Comparison of the computational results with the test data indicates that the PARC code with the propeller face fixed flow properties BC provided a better prediction of the inlet surface static pressures than the predictions when the mass flow BC was used. For an angle-of-attack of 0 degrees, the PARC2D code with the propeller face mass flow BC provided a good prediction of inlet static pressures except in the region of high pressure gradient. With the propeller face fixed flow properties BC, the PARC2D code provided a good prediction of the inlet static pressures. For an angle-of-attack of 25 degrees with the mass flow BC, the PARC3D code predicted statis pressures which deviated significantly from the test data

  10. Tunnel Correction for Compressible Subsonic Flow

    NASA Technical Reports Server (NTRS)

    Baranoff, A. V.

    1947-01-01

    This report presents a treatment of the effects of the tunnel walls on the flow velocity and direction in a compressible medium at subsonic speed by an approximate method. Calculations are given for the rotationally symmetric and two- dimensionl problems of the flow past bodies, as well for the downwash effect in the tunnel with circular cross section.

  11. Airfoil shape for flight at subsonic speeds

    DOEpatents

    Whitcomb, Richard T.

    1976-01-01

    An airfoil having an upper surface shaped to control flow accelerations and pressure distribution over the upper surface and to prevent separation of the boundary layer due to shock wave formulation at high subsonic speeds well above the critical Mach number. A highly cambered trailing edge section improves overall airfoil lifting efficiency.

  12. The transition from subsonic to supersonic cracks

    PubMed Central

    Behn, Chris; Marder, M.

    2015-01-01

    We present the full analytical solution for steady-state in-plane crack motion in a brittle triangular lattice. This allows quick numerical evaluation of solutions for very large systems, facilitating comparisons with continuum fracture theory. Cracks that propagate faster than the Rayleigh wave speed have been thought to be forbidden in the continuum theory, but clearly exist in lattice systems. Using our analytical methods, we examine in detail the motion of atoms around a crack tip as crack speed changes from subsonic to supersonic. Subsonic cracks feature displacement fields consistent with a stress intensity factor. For supersonic cracks, the stress intensity factor disappears. Subsonic cracks are characterized by small-amplitude, high-frequency oscillations in the vertical displacement of an atom along the crack line, while supersonic cracks have large-amplitude, low-frequency oscillations. Thus, while supersonic cracks are no less physical than subsonic cracks, the connection between microscopic and macroscopic behaviour must be made in a different way. This is one reason supersonic cracks in tension had been thought not to exist. PMID:25713443

  13. 14 CFR 77.35 - Aeronautical studies.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aeronautical studies. 77.35 Section 77.35 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRSPACE OBJECTS AFFECTING NAVIGABLE AIRSPACE Aeronautical Studies of Effect of Proposed Construction on Navigable Airspace § 77.35 Aeronautical studies....

  14. Statistical theories of Langmuir turbulence. II - Subsonic to sonic transition

    NASA Technical Reports Server (NTRS)

    Dubois, D. F.; Rose, H. A.; Nicholson, D. R.

    1985-01-01

    The subsonic limit of the quadratic direct interaction approximation (DIA) applied to the Zakharov equations is compared with the cubic DIA applied to the nonlinear Schroedinger equation, which is the subsonic limit of the Zakharov equations. Comparisons with Monte Carlo simulations of a truncated system show that the first theory more accurately describes the regime of stationary turbulence, while the second theory more accurately describes the subsonic evolution of the modulational instability. The weak turbulence limits of the two theories describe the sonic and subsonic regimes, respectively. The addition of vertex corrections to the DIA leads to a hybrid weak turbulence theory that smoothly interpolates between the sonic and subsonic regimes.

  15. National Advisory Committee for Aeronautics

    NASA Technical Reports Server (NTRS)

    1938-01-01

    NASA was created from the National Advisory Committee on Aeronautics in 1958. This is a photo of the members of the advisory board of NACA in 1938. NACA was the governmental organization charged with the supervision and conduct of scientific laboratory research in aeronautics. Its laboratories located at Langley Field, Virginia, provide new knowledge underlying the continuous improvement in the performance, efficiency, and safety of American aircraft. At this meeting Dr. Joesph S. Ames, President Emeritus of John Hopkins University, was re-elected Chairman, and Dr. Vannevar Bush, President- elect of the Carnegie Institution of Washington, was elected Vice Chairman. Dr. Ames' re-election as chairman was a recognition of his outstanding contributions to the science of aeronautics. He has been the leading scientific member of the Committee for over twenty-three years and chairman for eleven years. Under his visionary leadership the great laboratories of the N.A.C.A. at Langley Field have been developed. Left to Right: Hon. C. M. Hester, Administrator, Civil Aeronautics Authority Captain S. M. Kraus, U.S.N. Brig. General A. W. Robins, Chief, Materiel Division, Army Air Corps. Dr. L.J. Biggs, Director, National Bureau of Standards Dr. E.P. Warner Dr. Orville Wright Dr. Joesph S. Ames, Chairman Dr. C.J. Abbot, Secretary, Smithsonian Institution J.F. Victory, Secretary Rear Adm. A.B. Cook, U.S.N., Chief, Bureau Aeronautics Authority Dr. Vannevar Bush Dr. J.C. Hunsaker Dr. G.W. Lewis, Director of Aeronautical Research. Absent: Col. Charles A. Lindbergh and Maj. Gen. H. 'Hap' Arnold, Chief, Army Air Corps. One Vacany: U.S. Weather Bureau.

  16. The Impact of Subsonic Twin Jets on Airport Noise

    NASA Technical Reports Server (NTRS)

    Bozak, Richard, F.

    2012-01-01

    Subsonic and supersonic aircraft concepts proposed through NASA s Fundamental Aeronautics Program have multiple engines mounted near one another. Engine configurations with multiple jets introduce an asymmetry to the azimuthal directivity of the jet noise. Current system noise predictions add the jet noise from each jet incoherently, therefore, twin jets are estimated by adding 3 EPNdB to the far-field noise radiated from a single jet. Twin jet effects have the ability to increase or decrease the radiated noise to different azimuthal observation locations. Experiments have shown that twin jet effects are reduced with forward flight and increasing spacings. The current experiment investigates the impact of spacing, and flight effects on airport noise for twin jets. Estimating the jet noise radiated from twin jets as that of a single jet plus 3 EPNdB may be sufficient for horizontal twin jets with an s/d of 4.4 and 5.5, where s is the center-to-center spacing and d is the jet diameter. However, up to a 3 EPNdB error could be present for jet spacings with an s/d of 2.6 and 3.2.

  17. A CCIR aeronautical mobile satellite report

    NASA Astrophysics Data System (ADS)

    Davarian, Faramaz; Bishop, Dennis; Rogers, David; Smith, Ernest K.

    1989-08-01

    Propagation effects in the aeronautical mobile-satellite service differ from those in the fixed-satellite service and other mobile-satellite services because: small antennas are used on aircraft, and the aircraft body may affect the performance of the antenna; high aircraft speeds cause large Doppler spreads; aircraft terminals must accommodate a large dynamic range in transmission and reception; and due to their high speeds, banking maneuvers, and three-dimensional operation, aircraft routinely require exceptionally high integrity of communications, making even short-term propagation effects very important. Data and models specifically required to characterize the path impairments are discussed, which include: tropospheric effects, including gaseous attenuation, cloud and rain attenuation, fog attenuation, refraction and scintillation; surface reflection (multipath) effects; ionospheric effects such as scintillation; and environmental effects (aircraft motion, sea state, land surface type). Aeronautical mobile-satellite systems may operate on a worldwide basis, including propagation paths at low elevation angles. Several measurements of multipath parameters over land and sea were conducted. In some cases, laboratory simulations are used to compare measured data and verify model parameters. The received signals is considered in terms of its possible components: a direct wave subject to atmospheric effects, and a reflected wave, which generally contains mostly a diffuse component.

  18. A CCIR aeronautical mobile satellite report

    NASA Technical Reports Server (NTRS)

    Davarian, Faramaz; Bishop, Dennis; Rogers, David; Smith, Ernest K.

    1989-01-01

    Propagation effects in the aeronautical mobile-satellite service differ from those in the fixed-satellite service and other mobile-satellite services because: small antennas are used on aircraft, and the aircraft body may affect the performance of the antenna; high aircraft speeds cause large Doppler spreads; aircraft terminals must accommodate a large dynamic range in transmission and reception; and due to their high speeds, banking maneuvers, and three-dimensional operation, aircraft routinely require exceptionally high integrity of communications, making even short-term propagation effects very important. Data and models specifically required to characterize the path impairments are discussed, which include: tropospheric effects, including gaseous attenuation, cloud and rain attenuation, fog attenuation, refraction and scintillation; surface reflection (multipath) effects; ionospheric effects such as scintillation; and environmental effects (aircraft motion, sea state, land surface type). Aeronautical mobile-satellite systems may operate on a worldwide basis, including propagation paths at low elevation angles. Several measurements of multipath parameters over land and sea were conducted. In some cases, laboratory simulations are used to compare measured data and verify model parameters. The received signals is considered in terms of its possible components: a direct wave subject to atmospheric effects, and a reflected wave, which generally contains mostly a diffuse component.

  19. Job Prospects for Aeronautical Engineers.

    ERIC Educational Resources Information Center

    Basta, Nicholas

    1985-01-01

    Huge defense budgets and a commercial aircraft comeback are contributing to high demands for aeronautical engineers. Job offers are plentiful and are expected to rise by 41 percent from 1982 to 1995. Federal space programs will provide additional employment opportunities. (DH)

  20. NASA's role in aeronautical research

    NASA Technical Reports Server (NTRS)

    Parker, M.

    1983-01-01

    Past and current research in the aeronautical field conducted by NASA is reviewed. The first national center for aeronautical research, the Langley Memorial Aeronautical Laboratory, was established in 1917 by the then formed National Advisory Committee for Aeronautics (NACA). Two other research centers established later by NACA (Lewis and Ames) were staffed with research cadres from Langley. These three research centers formed the nucleus of NASA when it was established in 1958. Studies conducted today by NASA's research centers include: a concept for commuter-style aircraft, turbofan engines for military supersonic fighter aircraft, strength and durability of man-made fiber materials, and maneuverability problems in high speed aircraft. In addition, at Ames, research is being conducted on short-haul aviation, and short and vertical takeoff while at Lewis studies concentrate on propulsion system and engines. At Langley the emphasis is on basic research, stressing aircraft structure improvements, stall avoidance and noise abatement. Finally, the importance of NASA's educational program is discussed.

  1. Aeropropulsion 1987. Session 5: Subsonic Propulsion Technology

    NASA Technical Reports Server (NTRS)

    1987-01-01

    NASA is conducting aeropropulsion research over a broad range of Mach numbers. In addition to the high-speed propulsion research described, major progress was recorded in research aimed at the subsonic flight regimes of interest to many commercial and military users. Recent progress and future directions in such areas as small engine technology, rotorcraft transmissions, icing, Hot Section Technology (HOST) and the Advanced Turboprop Program (ATP) are covered.

  2. Flow quality measurements in compressible subsonic flows

    NASA Technical Reports Server (NTRS)

    Stainback, P. Calvin; Johnson, Charles B.

    1987-01-01

    The purpose is to re-examine the heat transfer from a hot-wire probe in the compressible subsonic flow regime; describe the three-wire hot-wire probe calibration and data reduction techniques used to measure the velocity, density, and total temperature fluctuation; and present flow quality results obtained in the Langley 0.3 meter Transonic Cryogenic Wind Tunnel and in flight with the NASA JetStar from the same three-wire hot-wire probe.

  3. An Overview of the NASA Aeronautics Test Program Strategic Plan

    NASA Technical Reports Server (NTRS)

    Marshall, Timothy J.

    2010-01-01

    U.S. leadership in aeronautics depends on ready access to technologically advanced, efficient, and affordable aeronautics test capabilities. These systems include major wind tunnels and propulsion test facilities and flight test capabilities. The federal government owns the majority of the major aeronautics test capabilities in the United States, primarily through the National Aeronautics and Space Administration (NASA) and the Department of Defense (DoD), however an overarching strategy for management of these national assets was needed. Therefore, in Fiscal Year (FY) 2006 NASA established the Aeronautics Test Program (ATP) as a two-pronged strategic initiative to: (1) retain and invest in NASA aeronautics test capabilities considered strategically important to the agency and the nation, and (2) establish a strong, high level partnership with the DoD Test Resources Management Center (TRMC), stewards of the DoD test and evaluation infrastructure. Since then, approximately seventy percent of the ATP budget has been directed to underpin fixed and variable costs of facility operations within its portfolio and the balance towards strategic investments in its test facilities, including maintenance and capability upgrades. Also, a strong guiding coalition was established through the National Partnership for Aeronautics Testing (NPAT), with governance by the senior leadership of NASA s Aeronautics Research Mission Directorate (ARMD) and the DoD's TRMC. As part of its strategic planning, ATP has performed or participated in many studies and analyses, including assessments of major NASA and DoD aeronautics test capabilities, test facility condition evaluations and market research. The ATP strategy has also benefitted from unpublished RAND research and analysis by Ant n et al. (2009). Together, these various studies, reports and assessments serve as a foundation for a new, five year strategic plan that will guide ATP through FY 2014. Our vision for the future is a balanced

  4. 1997 NASA Academy in Aeronautics

    NASA Technical Reports Server (NTRS)

    Andrisani, Dominick, II

    1998-01-01

    The NASA Academy in Aeronautics at the Dryden Flight Research Center (DFRC) was a ten-week summer leadership training program conducted for the first time in the summer of 1997. Funding was provided by a contract between DFRC and Purdue University. Mr. Lee Duke of DFRC was the contract monitor, and Professor Dominick Andrisani was the principal investigator. Five student research associates participated in the program. Biographies of the research associates are given in Appendix 1. Dominick Andrisani served as Dean of the NASA Academy in Aeronautics. NASA Academy in Aeronautics is a unique summer institute of higher learning that endeavors to provide insight into all of the elements that make NASA aeronautical research possible. At the same time the Academy assigns the research associate to be mentored by one of NASA!s best researchers so that they can contribute towards an active flight research program. Aeronautical research and development are an investment in the future, and NASA Academy is an investment in aeronautical leaders of the future. The Academy was run by the Indiana Space Grant Consortium at Purdue in strategic partnership with the National Space Grant College and Fellowship Program. Research associates at the Academy were selected with help from the Space Grant Consortium that sponsored the research associate. Research associate stipend and travel to DFRC were paid by the students' Space Grant Consortium. All other student expenses were paid by the Academy. Since the Academy at DFRC had only five students the opportunity for individual growth and attention was unique in the country. About 30% of the working time and most of the social time of the students were be spent as a "group" or "team." This time was devoted to exchange of ideas, on forays into the highest levels of decision making, and in executing aeronautical research. This was done by interviewing leaders throughout the aerospace industry, seminars, working dinners, and informal

  5. 14 CFR 61.185 - Aeronautical knowledge.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aeronautical knowledge. 61.185 Section 61... Flight Instructors With a Sport Pilot Rating § 61.185 Aeronautical knowledge. (a) A person who is... aeronautical knowledge areas for a recreational, private, and commercial pilot certificate applicable to...

  6. 14 CFR 61.125 - Aeronautical knowledge.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aeronautical knowledge. 61.125 Section 61... Aeronautical knowledge. (a) General. A person who applies for a commercial pilot certificate must receive and... aeronautical knowledge areas of paragraph (b) of this section that apply to the aircraft category and...

  7. 14 CFR 61.105 - Aeronautical knowledge.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Aeronautical knowledge. 61.105 Section 61.105 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Private Pilots § 61.105 Aeronautical knowledge. (a) General. A person who...

  8. 14 CFR 61.125 - Aeronautical knowledge.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Aeronautical knowledge. 61.125 Section 61.125 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Commercial Pilots § 61.125 Aeronautical knowledge. (a) General. A person...

  9. 14 CFR 61.97 - Aeronautical knowledge.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Aeronautical knowledge. 61.97 Section 61.97 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Recreational Pilots § 61.97 Aeronautical knowledge. (a) General. A person...

  10. Aeronautics. America in Space: The First Decade.

    ERIC Educational Resources Information Center

    Anderton, David A.

    The major research and developments in aeronautics during the late 1950's and 1960's are reviewed descriptively with a minimum of technical content. Topics covered include aeronautical research, aeronautics in NASA, The National Advisory Committee for Aeronautics, the X-15 Research Airplane, variable-sweep wing design, the Supersonic Transport…

  11. 14 CFR 61.97 - Aeronautical knowledge.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Aeronautical knowledge. 61.97 Section 61.97 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Recreational Pilots § 61.97 Aeronautical knowledge. (a) General. A person...

  12. 14 CFR 61.125 - Aeronautical knowledge.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Aeronautical knowledge. 61.125 Section 61.125 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Commercial Pilots § 61.125 Aeronautical knowledge. (a) General. A person...

  13. 14 CFR 61.185 - Aeronautical knowledge.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Aeronautical knowledge. 61.185 Section 61... Flight Instructors With a Sport Pilot Rating § 61.185 Aeronautical knowledge. (a) A person who is... aeronautical knowledge areas for a recreational, private, and commercial pilot certificate applicable to...

  14. 14 CFR 61.185 - Aeronautical knowledge.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Aeronautical knowledge. 61.185 Section 61... Flight Instructors With a Sport Pilot Rating § 61.185 Aeronautical knowledge. (a) A person who is... aeronautical knowledge areas for a recreational, private, and commercial pilot certificate applicable to...

  15. 14 CFR 61.185 - Aeronautical knowledge.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Aeronautical knowledge. 61.185 Section 61... Flight Instructors With a Sport Pilot Rating § 61.185 Aeronautical knowledge. (a) A person who is... aeronautical knowledge areas for a recreational, private, and commercial pilot certificate applicable to...

  16. 14 CFR 61.185 - Aeronautical knowledge.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Aeronautical knowledge. 61.185 Section 61... Flight Instructors With a Sport Pilot Rating § 61.185 Aeronautical knowledge. (a) A person who is... aeronautical knowledge areas for a recreational, private, and commercial pilot certificate applicable to...

  17. Atmospheric Effects of Subsonic Aircraft: Interim Assessment Report of the Advanced Subsonic Technology Program

    NASA Technical Reports Server (NTRS)

    Friedl, Randall R. (Editor)

    1997-01-01

    This first interim assessment of the subsonic assessment (SASS) project attempts to summarize concisely the status of our knowledge concerning the impacts of present and future subsonic aircraft fleets. It also highlights the major areas of scientific uncertainty, through review of existing data bases and model-based sensitivity studies. In view of the need for substantial improvements in both model formulations and experimental databases, this interim assessment cannot provide confident numerical predictions of aviation impacts. However, a number of quantitative estimates are presented, which provide some guidance to policy makers.

  18. Experimental investigation of subsonic combustion driven MHD generator performance

    NASA Astrophysics Data System (ADS)

    McClaine, A. W.; Swallom, D. W.; Kessler, R.

    1984-01-01

    Future mature combined cycle MHD/steam electrical power plants may use subsonic flow trains. To provide a data base of subsonic generator design and operating experience an experimental program was begun in 1977 at the Avco Everett Research Laboratory. During this program an MHD generator was operated with a subsonic flow train under both Faraday and diagonal loads. This paper reviews the work performed under this program and the results obtained.

  19. NASA/University Conference on Aeronautics

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The proceedings of a conference on the future of aeronautics are presented. The subjects discussed include the following: (1) aeronautics and the education of the engineer, (2) technical trends in aeronautics, and (3) the role of the university in aeronautics. The technical trends in aeronautics are concerned with aircraft noise control, the effect of the aircraft on the environment, airborne electronics for automated flight, and trends in aircraft design.

  20. Analysis of supersonic combustion flow fields with embedded subsonic regions

    NASA Technical Reports Server (NTRS)

    Dash, S.; Delguidice, P.

    1972-01-01

    The viscous characteristic analysis for supersonic chemically reacting flows was extended to include provisions for analyzing embedded subsonic regions. The numerical method developed to analyze this mixed subsonic-supersonic flow fields is described. The boundary conditions are discussed related to the supersonic-subsonic and subsonic-supersonic transition, as well as a heuristic description of several other numerical schemes for analyzing this problem. An analysis of shock waves generated either by pressure mismatch between the injected fluid and surrounding flow or by chemical heat release is also described.

  1. Propulsion technology for an advanced subsonic transport

    NASA Technical Reports Server (NTRS)

    Beheim, M. A.; Antl, R. J.; Povolny, J. H.

    1972-01-01

    Engine design studies for future subsonic commercial transport aircraft were conducted in parallel with airframe studies. These studies surveyed a broad distribution of design variables, including aircraft configuration, payload, range, and speed, with particular emphasis on reducing noise and exhaust emissions without severe economic and performance penalties. The results indicated that an engine for an advanced transport would be similar to the currently emerging turbofan engines. Application of current technology in the areas of noise suppression and combustors imposed severe performance and economic penalties.

  2. Rectangular subsonic jet flow field measurements

    NASA Technical Reports Server (NTRS)

    Morrison, Gerald L.; Swan, David H.

    1990-01-01

    Flow field measurements of three subsonic rectangular cold air jets are presented. The three cases had aspect ratios of 1x2, 1x4 at a Mach number of 0.09 and an aspect ratio of 1x2 at a Mach number of 0.9. All measurements were made using a 3-D laser Doppler anemometer system. The data includes the mean velocity vector, all Reynolds stress tensor components, turbulent kinetic energy and velocity correlation coefficients. The data are presented in tabular and graphical form. No analysis of the measured data or comparison to other published data is made.

  3. An aeronautical mobile satellite experiment

    NASA Technical Reports Server (NTRS)

    Jedrey, T. C.; Dessouky, K. I.; Lay, N. E.

    1990-01-01

    The various activities and findings of a NASA/FAA/COMSAT/INMARSAT collaborative aeronautical mobile satellite experiment are detailed. The primary objective of the experiment was to demonstrate and evaluate an advanced digital mobile satellite terminal developed at the Jet Propulsion Laboratory under the NASA Mobile Satellite Program. The experiment was a significant milestone for NASA/JPL, since it was the first test of the mobile terminal in a true mobile satellite environment. The results were also of interest to the general mobile satellite community because of the advanced nature of the technologies employed in the terminal.

  4. Program of Research in Aeronautics

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A prospectus of the educational and research opportunities available at the Joint Institute for Advancement of Flight Sciences, operated at NASA Langley Research Center in conjunction with George Washington University's School of Engineering and Applied Sciences is presented. Requirements of admission to various degree programs are given as well as the course offerings in the areas of acoustics, aeronautics, environmental modelling, materials science, and structures and dynamics. Research facilities for each field of study are described. Presentations and publications (including dissertations and theses) generated by each program are listed as well as faculty members visting scientists and engineers.

  5. Computational fluid dynamic studies of a solid and ribbon 12-gore parachute canopy in subsonic and supersonic flow

    SciTech Connect

    Nelsen, J.M.

    1995-06-01

    Computational fluid dynamic studies of 3-D, fixed geometry, gore-shaped parachute canopies are presented. Both solid and ribbon canopies with a 10% vent diameter are investigated. The flowfields analyzed are laminar and compressible, broaching both the subsonic and supersonic regimes. Results presented include characterization of the local and global flowfields and the internal and external canopy surface pressure distributions. The canopy surface pressure distributions may be utilized in subsequent structural analyses to assess the integrity of the parachute canopy fabric components.

  6. FPGA development for high altitude subsonic parachute testing

    NASA Technical Reports Server (NTRS)

    Kowalski, James E.; Gromov, Konstantin G.; Konefat, Edward H.

    2005-01-01

    This paper describes a rapid, top down requirements-driven design of a Field Programmable Gate Array (FPGA) used in an Earth qualification test program for a new Mars subsonic parachute. The FPGA is used to process and control storage of telemetry data from multiple sensors throughout launch, ascent, deployment and descent phases of the subsonic parachute test.

  7. FPGA development for high altitude subsonic parachute testing

    NASA Technical Reports Server (NTRS)

    Kowalski, James E.; Konefat, Edward H.; Gromovt, Konstantin

    2005-01-01

    This paper describes a rapid, top down requirements-driven design of an FPGA used in an Earth qualification test program for a new Mars subsonic parachute. The FPGA is used to process and store data from multiple sensors at multiple rates during launch, ascent, deployment and descent phases of the subsonic parachute test.

  8. High altitude subsonic parachute field programmable gate array

    NASA Technical Reports Server (NTRS)

    Kowalski, James E.; Gromov, Konstantin; Konefat, Edward H.

    2005-01-01

    This paper describes a rapid, top down requirements-driven design of an FPGA used in an Earth qualification test program for a new Mars subsonic parachute. The FPGA is used to process and control storage of telemetry data from multiple sensors throughout; launch, ascent, deployment and descent phases of the subsonic parachute test.

  9. Cavity Unsteady-Pressure Measurements at Subsonic and Transonic Speeds

    NASA Technical Reports Server (NTRS)

    Tracy, Maureen B.; Plentovich, E. B.

    1997-01-01

    An experimental investigation was conducted in the Langley 8-Foot Transonic Pressure Tunnel to determine the flow characteristics of rectangular cavities with varying relative dimensions at subsonic and transonic speeds. Cavities were tested with width-to-depth ratios of 1, 4, 8, and 16 for length-to-depth ratios l/h of 1 through 17.5. The maximum cavity depth was 2.4 in., and the turbulent boundary layer approaching the cavity was approximately 0.5 in. thick. Unsteady- and mean static-pressure measurements were made at free-stream Mach numbers from 0.20 to 0.95 at a unit Reynolds number per foot of approximately 3 x 10(exp 6); however, only unsteady-pressure results are presented in this paper. Results indicate that as l/h increases, cavity flows changed from resonant to nonresonant with resonant amplitudes decreasing gradually. Resonant spectra are obtained largely in cavities with mean static-pressure distributions characteristic of open and transitional flows. Resonance sometimes occurred for closed flow. Increasing cavity width or decreasing cavity depth while holding l/h fixed had the effect of increasing resonant amplitudes and sometimes induced resonance. The effects due to changes in width are more pronounced. Decreasing Mach number has the effect of broadening the resonances.

  10. An Analytical Study for Subsonic Oblique Wing Transport Concept

    NASA Technical Reports Server (NTRS)

    Bradley, E. S.; Honrath, J.; Tomlin, K. H.; Swift, G.; Shumpert, P.; Warnock, W.

    1976-01-01

    The oblique wing concept has been investigated for subsonic transport application for a cruise Mach number of 0.95. Three different mission applications were considered and the concept analyzed against the selected mission requirements. Configuration studies determined the best area of applicability to be a commercial passenger transport mission. The critical parameter for the oblique wing concept was found to be aspect ratio which was limited to a value of 6.0 due to aeroelastic divergence. Comparison of the concept final configuration was made with fixed winged configurations designed to cruise at Mach 0.85 and 0.95. The crossover Mach number for the oblique wing concept was found to be Mach 0.91 for takeoff gross weight and direct operating cost. Benefits include reduced takeoff distance, installed thrust and mission block fuel and improved community noise characteristics. The variable geometry feature enables the final configuration to increase range by 10% at Mach 0.712 and to increase endurance by as much as 44%.

  11. Vortex Wakes of Subsonic Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.; Nixon, David (Technical Monitor)

    1999-01-01

    A historical overview will be presented of the research conducted on the structure and modification of the vortices generated by the lifting surfaces of subsonic transport aircraft. The seminar will describe the three areas of vortex research; namely, the magnitude of the hazard posed, efforts to reduce the hazard to an acceptable level, and efforts to develop a systematic means for avoiding vortex wakes. It is first pointed out that the characteristics of lift-generated vortices are related to the aerodynamic shapes that produce them and that various arrangements of surfaces can be used to produce different vortex structures. The largest portion of the research conducted to date has been directed at finding ways to reduce the hazard potential of lift-generated vortices shed by subsonic transport aircraft in the vicinity of airports during landing and takeoff operations. It is stressed that lift-generated vortex wakes are so complex that progress towards a solution requires application of a combined theoretical and experimental research program because either alone often leads to incorrect conclusions. It is concluded that a satisfactory aerodynamic solution to the wake-vortex problem at airports has not yet been found but a reduction in the impact of the wake-vortex hazard on airport capacity may become available in the foreseeable future through wake-vortex avoidance concepts currently under study. The material to be presented in this overview is drawn from articles published in aerospace journals that are available publicly.

  12. Aeronautical record : no. 1 (to June, 1923)

    NASA Technical Reports Server (NTRS)

    1923-01-01

    "...considerations have prompted us to pay special attention to the development of aeronautical industries and aerial navigation as a commercial enterprise and to publish an analytical review of events in the aeronautical world and of the attendant problems."

  13. 14 CFR 61.105 - Aeronautical knowledge.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ....105 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED.... (b) Aeronautical knowledge areas. (1) Applicable Federal Aviation Regulations of this chapter that...) Recognition of critical weather situations from the ground and in flight, windshear avoidance, and...

  14. 14 CFR 61.97 - Aeronautical knowledge.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN.... (b) Aeronautical knowledge areas. (1) Applicable Federal Aviation Regulations of this chapter that... using pilotage with the aid of a magnetic compass; (5) Recognition of critical weather situations...

  15. 14 CFR 61.105 - Aeronautical knowledge.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ....105 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED.... (b) Aeronautical knowledge areas. (1) Applicable Federal Aviation Regulations of this chapter that...) Recognition of critical weather situations from the ground and in flight, windshear avoidance, and...

  16. 14 CFR 61.125 - Aeronautical knowledge.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ....125 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... rating sought. (b) Aeronautical knowledge areas. (1) Applicable Federal Aviation Regulations of this... principles of flight; (4) Meteorology to include recognition of critical weather situations,...

  17. 14 CFR 61.125 - Aeronautical knowledge.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ....125 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... rating sought. (b) Aeronautical knowledge areas. (1) Applicable Federal Aviation Regulations of this... principles of flight; (4) Meteorology to include recognition of critical weather situations,...

  18. Aeronautical audio broadcasting via satellite

    NASA Astrophysics Data System (ADS)

    Tzeng, Forrest F.

    A system design for aeronautical audio broadcasting, with C-band uplink and L-band downlink, via Inmarsat space segments is presented. Near-transparent-quality compression of 5-kHz bandwidth audio at 20.5 kbit/s is achieved based on a hybrid technique employing linear predictive modeling and transform-domain residual quantization. Concatenated Reed-Solomon/convolutional codes with quadrature phase shift keying are selected for bandwidth and power efficiency. RF bandwidth at 25 kHz per channel, and a decoded bit error rate at 10(exp -6) with E(sub b)/N(sub o) at 3.75 dB are obtained. An interleaver, scrambler, modem synchronization, and frame format were designed, and frequency-division multiple access was selected over code-division multiple access. A link budget computation based on a worst-case scenario indicates sufficient system power margins. Transponder occupancy analysis for 72 audio channels demonstrates ample remaining capacity to accommodate emerging aeronautical services.

  19. Aeronautical audio broadcasting via satellite

    NASA Technical Reports Server (NTRS)

    Tzeng, Forrest F.

    1993-01-01

    A system design for aeronautical audio broadcasting, with C-band uplink and L-band downlink, via Inmarsat space segments is presented. Near-transparent-quality compression of 5-kHz bandwidth audio at 20.5 kbit/s is achieved based on a hybrid technique employing linear predictive modeling and transform-domain residual quantization. Concatenated Reed-Solomon/convolutional codes with quadrature phase shift keying are selected for bandwidth and power efficiency. RF bandwidth at 25 kHz per channel, and a decoded bit error rate at 10(exp -6) with E(sub b)/N(sub o) at 3.75 dB are obtained. An interleaver, scrambler, modem synchronization, and frame format were designed, and frequency-division multiple access was selected over code-division multiple access. A link budget computation based on a worst-case scenario indicates sufficient system power margins. Transponder occupancy analysis for 72 audio channels demonstrates ample remaining capacity to accommodate emerging aeronautical services.

  20. 76 FR 40753 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-11

    ... SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Meeting AGENCY: National Aeronautics... Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space Administration announces a..., Executive Secretary for the Aeronautics Committee, National Aeronautics and Space......

  1. Technical needs and research opportunities provided by projected aeronautical and space systems

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.

    1992-01-01

    The overall goal of the present task is to identify the enabling and supporting technologies for projected aeronautical and space systems. A detailed examination was made of the technical needs in the structures, dynamics and materials areas required for the realization of these systems. Also, the level of integration required with other disciplines was identified. The aeronautical systems considered cover the broad spectrum of rotorcraft; subsonic, supersonic and hypersonic aircraft; extremely high-altitude aircraft; and transatmospheric vehicles. The space systems considered include space transportation systems; spacecrafts for near-earth observation; spacecrafts for planetary and solar exploration; and large space systems. A monograph is being compiled which summarizes the results of this study. The different chapters of the monograph are being written by leading experts from governmental laboratories, industry and universities.

  2. 14 CFR 61.105 - Aeronautical knowledge.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aeronautical knowledge. 61.105 Section 61... Aeronautical knowledge. (a) General. A person who is applying for a private pilot certificate must receive and... knowledge areas of paragraph (b) of this section that apply to the aircraft category and class rating...

  3. NASA's aeronautics research and technology base

    NASA Technical Reports Server (NTRS)

    1979-01-01

    NASA's research technology base in aeronautics is assessed in terms of: (1) US aeronautical technology needs and requirements in the future; (2) objectives of the aeronautics program; (3) magnitude and scope of the program; and (4) research and technology performed by NASA and other research organizations.

  4. Questions & Answers about Aeronautics and Space.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    Answers to 27 questions about aeronautics, space, and the National Aeronautics and Space Administration (NASA) are provided in this pamphlet. Among the topics dealt with in these questions are: costs of the space program; NASA's role in aeronautics; benefits received from the space program; why the United States hasn't developed means of rescuing…

  5. Dimensioning of Aeronautical Satellite Services

    NASA Astrophysics Data System (ADS)

    Holzbock, M.; Jahn, A.; Werner, M.

    2002-01-01

    This paper will provide a generalised baseline for a systematic AirCom design process and address in particular the dimensioning of satellite systems for aeronautical services. These services will roll out soon in medium- and long-haul aircraft. The offered services will range from low rate telephony, internet access, and streaming applications for video and audio. The aggregate bit rates on up- and downlink will certainly be statistically time-dependent and asymmetric in forward and backward direction. A tool will be described that is able to model this traffic. Furthermore the dimensioning of satellite constellations can be done. Due to the stochastic nature of the traffic, multi-service models for the traffic generation of different services will be described. Furthermore, the traffic will be affected by the available bit rate and shaping or blocking will equalize the peak loads. If fleets with many aircraft are considered, aeronautical traffic models must be based on actual aircraft routes, flight schedules, location and time of day, as well as seats per aircraft and type of aircraft (charter, business etc.). The regionally distributed traffic has to be served by several satellites and appropriate sharing of the serving satellites may spread the traffic in hot zones and yield a better load distribution. When aeronautical services will spread out, the capacity demand will grow quickly and the capacity of existing Ku-band GEO satellites will soon be exceeded. Changing to higher frequency bands will provide large spectrum portions and smaller spotbeams will allow better frequency reuse. Even constellations with non-geostationary satellites could be re-advent to serve better the higher latitude regions. Then, another mobility component for the fast changing satellite topology need to be addressed, and routing issues of the traffic must be considered. The paper will describe solutions for the mapping of satellites and traffic demand as well as routing algorithms

  6. An Overview of NASA's SubsoniC Research Aircraft Testbed (SCRAT)

    NASA Technical Reports Server (NTRS)

    Baumann, Ethan; Hernandez, Joe; Ruhf, John

    2013-01-01

    National Aeronautics and Space Administration Dryden Flight Research Center acquired a Gulfstream III (GIII) aircraft to serve as a testbed for aeronautics flight research experiments. The aircraft is referred to as SCRAT, which stands for SubsoniC Research Aircraft Testbed. The aircraft’s mission is to perform aeronautics research; more specifically raising the Technology Readiness Level (TRL) of advanced technologies through flight demonstrations and gathering high-quality research data suitable for verifying the technologies, and validating design and analysis tools. The SCRAT has the ability to conduct a range of flight research experiments throughout a transport class aircraft’s flight envelope. Experiments ranging from flight-testing of a new aircraft system or sensor to those requiring structural and aerodynamic modifications to the aircraft can be accomplished. The aircraft has been modified to include an instrumentation system and sensors necessary to conduct flight research experiments along with a telemetry capability. An instrumentation power distribution system was installed to accommodate the instrumentation system and future experiments. An engineering simulation of the SCRAT has been developed to aid in integrating research experiments. A series of baseline aircraft characterization flights has been flown that gathered flight data to aid in developing and integrating future research experiments. This paper describes the SCRAT’s research systems and capabilities

  7. Investigating Aeroacoustic Sources in a Subsonic Jet

    NASA Astrophysics Data System (ADS)

    Wachtor, Adam J.; Jordan, Peter; George, William K.

    2007-11-01

    George, W"anstr"om, and Jordan (2007) suggested an alternative approach to identifying aeroacoustic sources. Through this method, contributions to the pressure field are effectively separated into three separate terms. One term is unique in that it present only in compressible flows. This compressible term has been argued to be the only term that can radiate acoustically. An investigation into this approach is presented in the specific case of a subsonic jet. Particular attention is paid to the compressible term and its interaction with the mechanism that is responsible for the hydrodynamic pressure in an incompressible flow. We extend our thanks to Jonathan B. Freund for access to data from his DNS jet simulation.

  8. Rectangular subsonic jet flow field measurements

    NASA Technical Reports Server (NTRS)

    Morrison, Gerald L.; Swan, David H.

    1989-01-01

    Flow field measurements are presented of 3 subsonic rectangular cold air jets. The 3 cases presented had aspect ratios of 1 x 2, 1 x 4 at a Mach number of 0.09 and an aspect ratio of 1 x 2 at a Mach number of 0.9. All measurements were made using a 3-D laser Doppler anemoneter system. The presented data includes the mean velocity vector, all Reynolds stress tensor components, turbulent kinetic energy and velocity correlation coefficients. The data is presented in tabular and graphical form. No analysis of the measured data or comparison to other published data is made. All tabular data are available in ASCII format on MS-DOS compatible disks.

  9. On the stability of subsonic thermal fronts

    SciTech Connect

    Ibanez S, Miguel H.; Shchekinov, Yuri; Bessega L, Maria C.

    2005-08-15

    The stability of subsonic thermal fronts against corrugation is analyzed and an exact dispersion relation is obtained taking into account the compressibility of the gas. For heat fronts, this dispersion equation has an unstable root ({omega}{sub ex}) corresponding to the Landau-Darrieus unstable mode ({omega}{sub 0}) modified by the compressional effects. In particular, the exact solution shows a conspicuous maximum very close to the value of the intake Mach number M{sub 1} at which a Chapman-Jouguet deflagration wave behind the heat front is formed. Cooling fronts are stable for corrugation-like disturbances. A maximum damping as well as a maximum in the frequency occur at a value of M{sub 1} depending on the value of the normalized cooling q.

  10. Power spectral density of subsonic jet noise

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Yu, J. C.

    1985-01-01

    The power-spectrum density (PSD) of the far-field noise of a subsonic unheated axisymmetric jet is investigated by analysis of about 80 sets of published noise spectra and of spectra obtained using 12.7 and 25.4-mm-diameter compressed-air jets at exit velocities 66 and 104 m/s and 67 and 91 m/s, respectively, in the NASA Langley anechoic flow facility. The results are presented in tables and graphs and characterized in detail. Findings reported include Strouhal-number scaling of the PSD at theta = 30 deg or more, scaling with the product of the Helmholtz number and the Doppler factor at theta less than 30 deg, best collapse at source convection Mach number 0.5, variation of PSD amplitude as U to the 6.5th at theta = 90 deg, and no sharp PSD-amplitude variation at any critical Reynolds number.

  11. Simultaneous, Unsteady PIV and Photogrammetry Measurements of a Tension-Cone Decelerator in Subsonic Flow

    NASA Technical Reports Server (NTRS)

    Schairer, Edward T.; Heineck, James T.; Walker, Louise Ann; Kushner, Laura Kathryn; Zilliac, Gregory

    2010-01-01

    This paper describes simultaneous, synchronized, high-frequency measurements of both unsteady flow in the wake of a tension-cone decelerator in subsonic flow (by PIV) and the unsteady shape of the decelerator (by photogrammetry). The purpose of these measurements was to develop the test techniques necessary to validate numerical methods for computing fluid-structure interactions of flexible decelerators. A critical need for this effort is to map fabric surfaces that have buckled or wrinkled so that code developers can accurately represent them. This paper describes a new photogrammetric technique that performs this measurement. The work was done in support of the Entry, Descent, and Landing discipline within the Supersonics Project of NASA s Fundamental Aeronautics Program.

  12. Pressure recovery performance of conical diffusers at high subsonic Mach numbers

    NASA Technical Reports Server (NTRS)

    Dolan, F. X.; Runstadler, P. W., Jr.

    1973-01-01

    The pressure recovery performance of conical diffusers has been measured for a wide range of geometries and inlet flow conditions. The approximate level and location (in terms of diffuser geometry of optimum performance were determined. Throat Mach numbers from low subsonic (m sub t equals 0.2) through choking (m sub t equals 1.0) were investigated in combination with throat blockage from 0.03 to 0.12. For fixed Mach number, performance was measured over a fourfold range of inlet Reynolds number. Maps of pressure recovery are presented as a function of diffuser geometry for fixed sets of inlet conditions. The influence of inlet blockage, throat Mach number, and inlet Reynolds number is discussed.

  13. 1. VIEW SOUTHWEST OF SUBSONIC WIND TUNNEL BUILDING AND TRANSONIC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW SOUTHWEST OF SUBSONIC WIND TUNNEL BUILDING AND TRANSONIC WIND TUNNEL BUILDING - Naval Surface Warfare Center, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD

  14. 7. VIEW NORTHWEST OF SUBSONIC WIND TUNNEL BUILDING TO TRANSONIC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW NORTHWEST OF SUBSONIC WIND TUNNEL BUILDING TO TRANSONIC WIND TUNNEL BUILDING - Naval Surface Warfare Center, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD

  15. 5. VIEW NORTHWEST OF SUBSONIC WIND TUNNEL BUILDING TO TRANSONIC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW NORTHWEST OF SUBSONIC WIND TUNNEL BUILDING TO TRANSONIC WIND TUNNEL BUILDING - Naval Surface Warfare Center, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD

  16. 3. VIEW SOUTHEAST OF TRANSONIC WIND TUNNEL BUILDING TO SUBSONIC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW SOUTHEAST OF TRANSONIC WIND TUNNEL BUILDING TO SUBSONIC WIND TUNNEL BUILDING - Naval Surface Warfare Center, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD

  17. Aeronautical Engineering: A Continuing Bibliography. Supplement 421

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP#2000-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.

  18. The role of freestream turbulence scale in subsonic flow separation

    NASA Technical Reports Server (NTRS)

    Potter, J. L.; Seebaugh, W. R.; Barnett, R. J.; Gokhale, R. B.

    1984-01-01

    The ojective of this work is the clarification of the role of freestream turbulence scale in determining the location of boundary layer separation. An airfoil in subsonic wind tunnel flow is the specific case studied. Hot-film and hot-wire anemometry, liquid-film visualization and pressure measurements are the principal diagnostic techniques in use. The Vanderbilt University subsonic wind tunnel is the flow facility being used.

  19. Computation of subsonic flow around airfoil systems with multiple separation

    NASA Technical Reports Server (NTRS)

    Jacob, K.

    1982-01-01

    A numerical method for computing the subsonic flow around multi-element airfoil systems was developed, allowing for flow separation at one or more elements. Besides multiple rear separation also sort bubbles on the upper surface and cove bubbles can approximately be taken into account. Also, compressibility effects for pure subsonic flow are approximately accounted for. After presentation the method is applied to several examples and improved in some details. Finally, the present limitations and desirable extensions are discussed.

  20. Mobile-ip Aeronautical Network Simulation Study

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Tran, Diepchi T.

    2001-01-01

    NASA is interested in applying mobile Internet protocol (mobile-ip) technologies to its space and aeronautics programs. In particular, mobile-ip will play a major role in the Advanced Aeronautic Transportation Technology (AATT), the Weather Information Communication (WINCOMM), and the Small Aircraft Transportation System (SATS) aeronautics programs. This report presents the results of a simulation study of mobile-ip for an aeronautical network. The study was performed to determine the performance of the transmission control protocol (TCP) in a mobile-ip environment and to gain an understanding of how long delays, handoffs, and noisy channels affect mobile-ip performance.

  1. The future of very large subsonic transports

    NASA Technical Reports Server (NTRS)

    Justice, R. Steven; Hays, Anthony P.; Parrott, Ed L.

    1996-01-01

    The Very Large Subsonic Transport (VLST) is a multi-use commercial passenger, commercial cargo, and military airlifter roughly 50% larger than the current Lockheed C-5 and Boeing 747. Due to the large size and cost of the VLST, it is unlikely that the commercial market can support more than one aircraft production line, while declining defense budgets will not support a dedicated military VLST. A successful VLST must therefore meet airline requirements for more passenger and cargo capacity on congested routes into slot-limited airports and also provide a cost effective heavy airlift capacity to support the overseas deployment of US military forces. A successful VLST must satisfy three key missions: commercial passenger service with nominal seating capacity at a minimum of 650 passengers with a range capability of 7,000 to 10,000 miles; commercial air cargo service for containerized cargo to support global manufacturing of high value added products, 'just-in-time' parts delivery, and the general globalization of trade; and military airlift with adequate capacity to load current weapon systems, with minimal break-down, over global ranges (7,000 to 10,000 miles) required to reach the operational theater without need of overseas bases and midair refueling. The development of the VLST poses some technical issues specific to large aircraft, but also key technologies applicable to a wide range of subsonic transport aircraft. Key issues and technologies unique to the VLST include: large composite structures; dynamic control of a large, flexible structure; aircraft noise requirements for aircraft over 850,000 pounds; and increased aircraft separation due to increased wake vortex generation. Other issues, while not unique to the VLST, will critically impact the ability to build an efficient and affordable aircraft include: active control systems: Fly-By-Light/Power-By-Wire (FBL/PBW); high lift systems; flight deck associate systems; laminar flow; emergency egress; and

  2. Reynolds number influences in aeronautics

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M.; Yip, Long P.; Yao, Chung-Sheng; Lin, John C.; Lawing, Pierce L.; Batina, John T.; Hardin, Jay C.; Horvath, Thomas J.; Fenbert, James W.; Domack, Christopher S.

    1993-01-01

    Reynolds number, a measure of the ratio of inertia to viscous forces, is a fundamental similarity parameter for fluid flows and therefore, would be expected to have a major influence in aerodynamics and aeronautics. Reynolds number influences are generally large, but monatomic, for attached laminar (continuum) flow; however, laminar flows are easily separated, inducing even stronger, non-monatomic, Reynolds number sensitivities. Probably the strongest Reynolds number influences occur in connection with transitional flow behavior. Transition can take place over a tremendous Reynolds number range, from the order of 20 x 10(exp 3) for 2-D free shear layers up to the order of 100 x 10(exp 6) for hypersonic boundary layers. This variability in transition behavior is especially important for complex configurations where various vehicle and flow field elements can undergo transition at various Reynolds numbers, causing often surprising changes in aerodynamics characteristics over wide ranges in Reynolds number. This is further compounded by the vast parameterization associated with transition, in that any parameter which influences mean viscous flow development (e.g., pressure gradient, flow curvature, wall temperature, Mach number, sweep, roughness, flow chemistry, shock interactions, etc.), and incident disturbance fields (acoustics, vorticity, particulates, temperature spottiness, even electro static discharges) can alter transition locations to first order. The usual method of dealing with the transition problem is to trip the flow in the generally lower Reynolds number wind tunnel to simulate the flight turbulent behavior. However, this is not wholly satisfactory as it results in incorrectly scaled viscous region thicknesses and cannot be utilized at all for applications such as turbine blades and helicopter rotors, nacelles, leading edge and nose regions, and High Altitude Long Endurance and hypersonic airbreathers where the transitional flow is an innately critical

  3. 77 FR 61432 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-09

    ... SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Meeting AGENCY: National Aeronautics... Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space Administration announces a... Committee Management Officer, National Aeronautics and Space Administration. BILLING......

  4. 75 FR 41240 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-15

    ... From the Federal Register Online via the Government Publishing Office NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Meeting AGENCY: National Aeronautics... Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space Administration announces...

  5. 75 FR 50782 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-17

    ... From the Federal Register Online via the Government Publishing Office NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Meeting AGENCY: National Aeronautics... Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space Administration announces...

  6. 77 FR 38091 - NASA Advisory Council; Aeronautics Committee; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-26

    ... From the Federal Register Online via the Government Publishing Office NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Meeting. AGENCY: National Aeronautics... Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space Administration announces...

  7. The Cylinder and Semicylinder in Subsonic Flow

    NASA Technical Reports Server (NTRS)

    Bingham, Harry J.; Weimer, David K..; Griffith, Wayland

    1952-01-01

    In studying the diffraction of shock waves around various two-dimensional obstacles we have observed that flow separation and the formation of vortices contributes in an important way to transient loading of the obstacle. The cases of a cylinder and semicylinder are especially interesting because the breakaway point is not clearly defined as it is for objects having sharp corners. Accordingly a number of experiments have been made in the shock tube to observe the influence of Reynolds number and Mach number on the transient flow patterns about a cylinder and about a semicylinder mounted on a smooth plane. Some differences might be anticipated since the plane would impose a symmetry on the flow and produce a viscous boundary layer for which there is no counterpart with the cylinder. In the course of these experiments it was noted that a condition of steady subsonic flow about both the cylinder and semicylinder was approached. Thus a comparison with von Karrnan's theoretical calculation of the drag on a cylinder, from certain characteristics of its wake or "vortex street", was undertaken.

  8. Subsonic-transonic stall flutter study

    NASA Technical Reports Server (NTRS)

    Stardter, H.

    1979-01-01

    The objective of the Subsonic/Transonic Stall Flutter Program was to obtain detailed measurements of both the steady and unsteady flow field surrounding a rotor and the mechanical state of the rotor while it was operating in both steady and flutter modes to provide a basis for future analysis and for development of theories describing the flutter phenomenon. The program revealed that while all blades flutter at the same frequency, they do not flutter at the same amplitude, and their interblade phase angles are not equal. Such a pattern represents the superposition of a number of rotating nodal diameter patterns, each characterized by a different amplitude and different phase indexing, but each rotating at a speed that results in the same flutter frequency as seen in the rotor system. Review of the steady pressure contours indicated that flutter may alter the blade passage pressure distribution. The unsteady pressure amplitude contour maps reveal regions of high unsteady pressure amplitudes near the leading edge, lower amplitudes near the trailing.

  9. Technology benefits for very large subsonic transports

    NASA Technical Reports Server (NTRS)

    Arcara, Philip C., Jr.; Bartlett, Dennis W.; Mcgraw, Marvin E., Jr.; Geiselhart, Karl A.

    1993-01-01

    Results are presented for a study conducted at the NASA Langley Research Center which examined the effects of advanced technologies on the performance and size of very large, long-range subsonic transports. The study was performed using the Flight Optimization System (FLOPS). a multidisciplinary system of computer programs for conceptual and preliminary design and evaluation of advanced aircraft concepts. A four-engine, baseline configuration representative of existing transport technology was defined having a payload of 412 passengers plus baggage and a design range of 7300 nmi. New 600, 800 and 1000-passenger advanced transport concepts were then developed and compared to the baseline configuration. The technologies examined include 1995 entry-into-service (ELS) engines, high aspect ratio supercritical wings, composite materials for the wing, fuselage and empennage, and hybrid laminar flow control (HLFC). All operational and regulatory requirements and constraints, such as fuel reserves, balanced field length, and second segment climb gradient were satisfied during the design process. The effect of the advanced technologies on the size, weight and performance of the advanced transport concepts are presented. In addition, the sensitivity of the takeoff gross weight of the advanced transport concepts to increases in design range and payload, and designing for stretch capability are also discussed.

  10. Advanced Subsonic Airplane Design and Economic Studies

    NASA Technical Reports Server (NTRS)

    Liebeck, Robert H.; Andrastek, Donald A.; Chau, Johnny; Girvin, Raquel; Lyon, Roger; Rawdon, Blaine K.; Scott, Paul W.; Wright, Robert A.

    1995-01-01

    A study was made to examine the effect of advanced technology engines on the performance of subsonic airplanes and provide a vision of the potential which these advanced engines offered. The year 2005 was selected as the entry-into-service (EIS) date for engine/airframe combination. A set of four airplane classes (passenger and design range combinations) that were envisioned to span the needs for the 2005 EIS period were defined. The airframes for all classes were designed and sized using 2005 EIS advanced technology. Two airplanes were designed and sized for each class: one using current technology (1995) engines to provide a baseline, and one using advanced technology (2005) engines. The resulting engine/airframe combinations were compared and evaluated on the basis on sensitivity to basic engine performance parameters (e.g. SFC and engine weight) as well as DOC+I. The advanced technology engines provided significant reductions in fuel burn, weight, and wing area. Average values were as follows: reduction in fuel burn = 18%, reduction in wing area = 7%, and reduction in TOGW = 9%. Average DOC+I reduction was 3.5% using the pricing model based on payload-range index and 5% using the pricing model based on airframe weight. Noise and emissions were not considered.

  11. SHARP: Subsonic High Altitude Research Platform

    NASA Technical Reports Server (NTRS)

    Beals, Todd; Burton, Craig; Cabatan, Aileen; Hermano, Christine; Jones, Tom; Lee, Susan; Radloff, Brian

    1991-01-01

    The Universities Space Research Association is sponsoring an undergraduate program which is geared to designing an aircraft that can study the ozone layer at the equator. This aircraft must be able to satisfy four mission profiles. Mission one is a polar mission that ranges from Chile to the South Pole and back to Chile, a total range of 6000 n.mi. at 100,000 ft with a 2500 lb payload. The second mission is also a polar mission, with an altitude of 70,000 ft and an increased payload of 4000 lbs. For the third mission, the aircraft will takeoff at NASA Ames, cruise at 100,000 ft carrying a 2500 lb payload, and land at Puerto Montt, Chile. The final mission requires the aircraft to take off at NASA Ames, cruise at 100,000 ft with a 1000 lb payload, make an excursion to 120,000 ft, and land at Howard AFB, Panama. Three missions require that a subsonic Mach number be maintained due to constraints imposed by the air sampling equipment. The aircraft need not be manned for all four missions. Three aircraft configurations have been determined to be the most suitable for meeting the above requirements. In the event that a requirement cannot be obtained within the given constraints, recommendations for proposal modifications are given.

  12. NASA's Subsonic Jet Transport Noise Reduction Research

    NASA Technical Reports Server (NTRS)

    Powell, Clemans A.; Preisser, John S.

    2000-01-01

    Although new jet transport airplanes in today s fleet are considerably quieter than the first jet transports introduced about 40 years ago, airport community noise continues to be an important environmental issue. NASA s Advanced Subsonic Transport (AST) Noise Reduction program was begun in 1994 as a seven-year effort to develop technology to reduce jet transport noise 10 dB relative to 1992 technology. This program provides for reductions in engine source noise, improvements in nacelle acoustic treatments, reductions in the noise generated by the airframe, and improvements in the way airplanes are operated in the airport environs. These noise reduction efforts will terminate at the end of 2001 and it appears that the objective will be met. However, because of an anticipated 3-8% growth in passenger and cargo operations well into the 21st Century and the slow introduction of new the noise reduction technology into the fleet, world aircraft noise impact will remain essentially constant until about 2020 to 2030 and thereafter begin to rise. Therefore NASA has begun planning with the Federal Aviation Administration, industry, universities and environmental interest groups in the USA for a new noise reduction initiative to provide technology for significant further reductions.

  13. 14 CFR 61.97 - Aeronautical knowledge.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aeronautical knowledge. 61.97 Section 61.97... knowledge. (a) General. A person who applies for a recreational pilot certificate must receive and log... knowledge areas of paragraph (b) of this section that apply to the aircraft category and class rating...

  14. Economic analysis of aeronautical research and technology

    NASA Technical Reports Server (NTRS)

    Gellman, A. J.

    1982-01-01

    The appropriateness of government intervention in the civilian market for aeronautics research and technology (R&T) is examined. The economic rationale for government intervention is examined. The conclusion is that the institutional role played by NASA in civilian aeronautics R&T markets is economically justified.

  15. 14 CFR 77.35 - Aeronautical studies.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... physical and electromagnetic radiation effect the proposal may have on the operation of an air navigation... OBJECTS AFFECTING NAVIGABLE AIRSPACE (Eff. until 1-18-11) Aeronautical Studies of Effect of Proposed..., conducts the aeronautical study of the effect of the proposal upon the operation of air...

  16. University/government/industry relations in aeronautics

    NASA Technical Reports Server (NTRS)

    Schairer, G. S.

    1975-01-01

    Methods for improving the relationships between universities, the aircraft industry, and the Government are proposed. The author submits nine specific recommendations aimed at more effective aeronautical engineering education and employment of graduate engineers. The need for improved communication between the organizations which influence the advancement of aeronautical sciences is stressed.

  17. Fundamental Aeronautics Program. Subsonic Rotary Wing Project: SRW Aeromechanics Overview/UH-60 Airloads Wind Tunnel Test Summary

    NASA Technical Reports Server (NTRS)

    Norman, Thomas R.

    2011-01-01

    Objectives: a) Advance the understanding of phenomena in aerodynamics, dynamics, and active control of rotorcraft. b) Develop and validate first-principles tools. c) Acquire data for tool validation from small and large-scale testing of existing and novel rotorcraft configurations. Recent Accomplishments include: (CFD) - Made significant improvements in structured and unstructured rotorcraft CFD methods (OVERFLOW and FUN3D). (Icing) - a) Continued development of high-fidelity icing analysis tools. b) Completed test of oscillating airfoil in Icing Research Tunnel (IRT). c) Developed plans and began detailed preparations for subscale rotor test in IRT.

  18. Review of Aeronautical Wind Tunnel Facilities

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The nation's aeronautical wind tunnel facilities constitute a valuable technological resource and make a significant contribution to the global supremacy of U.S. aircraft, both civil and military. At the request of NASA, the National Research Council's Aeronautics and Space Engineering Board organized a commitee to review the state of repair, adequacy, and future needs of major aeronautical wind tunnel facilities in meeting national goals. The comittee identified three main areas where actions are needed to sustain the capability of NASA's aeronautical wind tunnel facilities to support the national aeronautical research and development activities: tunnel maintenance and upgrading, productivity enhancement, and accommodation of new requirements (particularly in hypersonics). Each of these areas are addressed and the committee recommendations for appropriate actions presented.

  19. Subsonic Ultra Green Aircraft Research: Phase II- Volume III-Truss Braced Wing Aeroelastic Test Report

    NASA Technical Reports Server (NTRS)

    Bradley, Marty K.; Allen, Timothy J.; Droney, Christopher

    2014-01-01

    This Test Report summarizes the Truss Braced Wing (TBW) Aeroelastic Test (Task 3.1) work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team, which includes the time period of February 2012 through June 2014. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, Virginia Tech, and NextGen Aeronautics. The model was fabricated by NextGen Aeronautics and designed to meet dynamically scaled requirements from the sized full scale TBW FEM. The test of the dynamically scaled SUGAR TBW half model was broken up into open loop testing in December 2013 and closed loop testing from January 2014 to April 2014. Results showed the flutter mechanism to primarily be a coalescence of 2nd bending mode and 1st torsion mode around 10 Hz, as predicted by analysis. Results also showed significant change in flutter speed as angle of attack was varied. This nonlinear behavior can be explained by including preload and large displacement changes to the structural stiffness and mass matrices in the flutter analysis. Control laws derived from both test system ID and FEM19 state space models were successful in suppressing flutter. The control laws were robust and suppressed flutter for a variety of Mach, dynamic pressures, and angle of attacks investigated.

  20. Subsonic Aerodynamics of Spinning and Non-Spinning Type 200 Lightcraft: Progress Report

    NASA Astrophysics Data System (ADS)

    Kenoyer, David A.; Myrabo, Leik N.

    2010-05-01

    A combined experimental and numerical investigation of subsonic aerodynamics for Type 200 laser lightcraft is underway for both spinning and non-spinning cases. A 12.2 cm diameter aluminum model with a "closed" annular airbreathing inlet was fitted to a sting balance in RPI's 61 cm by 61 cm subsonic wind tunnel. Aerodynamic forces and moments were measured first for the non-spinning case vs. angle of attack, at several freestream flow velocities (e.g., 30, 45, and 60 m/s) to assess Reynolds number effects. The CFD analysis was performed for 0-180° angles of attack for a fixed coordinate system (i.e., non-spinning Type 200 model), and predictions compared favorably with the experimental data. In the near future, for the spinning case, a brushless electric motor has been installed to rotate the wind tunnel model at 3000 to 13,000 RPM; Magnus force effects upon the coefficients (Cd, Cl, and Cm) are expected to reveal interesting departures from the non-spinning database in forthcoming experiments.

  1. Interference Analysis for an Aeronautical Mobile Airport Communications System

    NASA Technical Reports Server (NTRS)

    Wilson, Jeffrey D.; Kerczewski, Robert J.

    2011-01-01

    The next generation of aeronautical communications for airport surface applications has been identified through a NASA research program and an international collaborative future communications study. The result, endorsed by both the United States and European regulatory agencies is called AeroMACS (Aeronautical Mobile Airport Communications System) and is based upon the IEEE 802.16e mobile wireless standard. Coordinated efforts to develop appropriate aviation standards for the AeroMACS system are now underway within RTCA (United States) and Eurocae (Europe). AeroMACS will be implemented in a recently allocated frequency band, 5091-5150 MHz. As this band is also occupied by fixed satellite service uplinks, AeroMACS must be designed to avoid interference with this incumbent service. The aspects of AeroMACS operation that present potential interference to the fixed satellite service are under analysis in order to enable the definition of standards that assure that such interference will be avoided. The NASA Glenn Research Center has been involved in this analysis, and the first results of modeling and simulation efforts directed at this analysis are the subject of this presentation.

  2. Interference Analysis for an Aeronautical Mobile Airport Communications System

    NASA Technical Reports Server (NTRS)

    Wilson, Jeffrey D.; Kercewski, Robert J.

    2010-01-01

    The next generation of aeronautical communications for airport surface applications has been identified through a NASA research program and an international collaborative future communications study. The result, endorsed by both the United States and European regulatory agencies is called AeroMACS (Aeronautical Mobile Airport Communications System) and is based upon the IEEE 802.16e mobile wireless standard. Coordinated efforts to develop appropriate aviation standards for the AeroMACS system are now underway within RTCA (United States) and Eurocae (Europe). AeroMACS will be implemented in a recently allocated frequency band, 5091- 5150 MHz. As this band is also occupied by fixed satellite service uplinks, AeroMACS must be designed to avoid interference with this incumbent service. The aspects of AeroMACS operation that present potential interference to the fixed satellite service are under analysis in order to enable the definition of standards that assure that such interference will be avoided. The NASA Glenn Research Center has been involved in this analysis, and the first results of modeling and simulation efforts directed at this analysis are the subject of this paper.12

  3. A Lagrangian Simulation of Subsonic Aircraft Exhaust Emissions

    NASA Technical Reports Server (NTRS)

    Schoeberl, M. R.; Morris, G. A.

    1999-01-01

    To estimate the effect of subsonic and supersonic aircraft exhaust on the stratospheric concentration of NO(y), we employ a trajectory model initialized with air parcels based on the standard release scenarios. The supersonic exhaust simulations are in good agreement with 2D and 3D model results and show a perturbation of about 1-2 ppbv of NO(y) in the stratosphere. The subsonic simulations show that subsonic emissions are almost entirely trapped below the 380 K potential temperature surface. Our subsonic results contradict results from most other models, which show exhaust products penetrating above 380 K, as summarized. The disagreement can likely be attributed to an excessive vertical diffusion in most models of the strong vertical gradient in NO(y) that forms at the boundary between the emission zone and the stratosphere above 380 K. Our results suggest that previous assessments of the impact of subsonic exhaust emission on the stratospheric region above 380 K should be considered to be an upper bound.

  4. Aeronautical Engineering: A Continuing Bibliography. Supplment 385

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-1998-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract.

  5. Some vortical-flow flight experiments on slender aircraft that impacted the advancement of aeronautics

    NASA Astrophysics Data System (ADS)

    Lamar, John E.

    2009-08-01

    This paper highlights the three aerodynamic pillars of aeronautics; namely, theory/CFD, wind-tunnel experiments and flight tests, and notes that at any given time these three are not necessarily at the same level of maturity. After an initial history of these three pillars, the focus narrows to a brief history of some vortical-flow flight experiments on slender aircraft that have impacted the advancement of aeronautics in recent decades. They include the F-106, Concorde, SR-71, light-weight fighters (F-16, F/A-18), and F-16XL. These aircraft share in common the utilization of vortical flow and have flown at transonic speeds during a part of the flight envelope. Due to the vast amount of information from flight and CFD that has recently become available for the F-16XL, this aircraft is highlighted and its results detailed. Lastly, it is interesting to note that, though complicated, vortical flows over the F-16XL aircraft at subsonic speeds can be reliably and generally well-predicted with the current CFD flow solvers. However, these solvers still have some problems in matching flight pressure data at transonic speeds. That this problem has been highlighted is both an advancement in aeronautics and a tempting prize to those who would seek its solution.

  6. 14 CFR 61.155 - Aeronautical knowledge.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ....155 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... knowledge areas. (1) Applicable Federal Aviation Regulations of this chapter that relate to airline... aircraft's flight characteristics and performance in normal and abnormal flight regimes; (11) Human...

  7. 14 CFR 61.155 - Aeronautical knowledge.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ....155 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... knowledge areas. (1) Applicable Federal Aviation Regulations of this chapter that relate to airline... aircraft's flight characteristics and performance in normal and abnormal flight regimes; (11) Human...

  8. 14 CFR 61.155 - Aeronautical knowledge.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....155 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... knowledge areas. (1) Applicable Federal Aviation Regulations of this chapter that relate to airline... aircraft's flight characteristics and performance in normal and abnormal flight regimes; (11) Human...

  9. 14 CFR 61.155 - Aeronautical knowledge.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ....155 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... knowledge areas. (1) Applicable Federal Aviation Regulations of this chapter that relate to airline... aircraft's flight characteristics and performance in normal and abnormal flight regimes; (11) Human...

  10. NASA Aeronautics Showcased at Balloon Fiesta

    NASA Video Gallery

    Visitors at the 2010 International Balloon Fiesta in Albuquerque, N.M., got visual stimulation from hundreds of colorful hot-air balloons soaring skyward, but also learned about NASA's aeronautics ...

  11. NASA Aeronautics: A New Strategic Vision

    NASA Video Gallery

    The aviation landscape is shifting. Emerging global trends are creating challenges that are changing the face of aviation for the next 20-40 years. How is NASA Aeronautics responding? With a new st...

  12. Astronautics and aeronautics, 1977: A chronology

    NASA Technical Reports Server (NTRS)

    Ritchie, E. H.

    1986-01-01

    This publication is a chronology of events during the year 1977 in the fields of aeronautical and space research, development, activity, and policy. It includes appendixes, an index, and illustrations. Chronological entries list sources for further inquiry.

  13. Center for Aeronautics and Space Information Sciences

    NASA Technical Reports Server (NTRS)

    Flynn, Michael J.

    1992-01-01

    This report summarizes the research done during 1991/92 under the Center for Aeronautics and Space Information Science (CASIS) program. The topics covered are computer architecture, networking, and neural nets.

  14. Costs and Benefits of Advanced Aeronautical Technology

    NASA Technical Reports Server (NTRS)

    Bobick, J. C.; Denny, R. E.

    1983-01-01

    Programs available from COSMIC used to evaluate economic feasibility of applying advanced aeronautical technology to civil aircraft of future. Programs are composed of three major models: Fleet Accounting Module, Airframe manufacturer Module, and Air Carrier Module.

  15. Extension of the Blasius force theorem to subsonic speeds

    NASA Astrophysics Data System (ADS)

    Barsony-Nagy, A.

    1985-11-01

    The theorem considered by Blasius (1910) represents a well-known method for calculating the force on a body situated in an incompressible, inviscid two-dimensional flow. The efficiency of the Blasius theorem is due to its quality of expressing the forces with the aid of contour integrals of analytic functions of complex variables. The present note has the objective to deduce an analog of Blasius theorem for the aerodynamic forces in subsonic flow. It is assumed that an approximate velocity potential of the subsonic flow has been calculated by using the Imai-Lamla method. It is pointed out that this method is a variant specially suited for the two-dimensionally flows of the Janzen-Rayleigh expansion method. The derived formula expresses the aerodynamic forces with the aid of contour integrals of analytic complex functions. It can be regarded as the Blasius theorem with first-order compressibility correction for the subsonic speed regime.

  16. Aeronautics and space report of the President

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This report describes the activities and accomplishments of all agencies of the United States in the fields of aeronautics and space science during FY 1994. Activity summaries are presented for the following areas: space launch activities, space science, space flight and space technology, space communications, aeronuatics, and studies of the planet Earth. Several appendices providing data on U.S. launch activities, the Federal budget for space and aeronautics, remote sensing capabilities, and space policy are included.

  17. Aeronautical Engineering: A Continuing Bibliography with Indexes

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This bibliography lists 193 reports, journal articles, and other documents introduced in the NASA scientific and technical system in Aug. 1995. Subject coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles

  18. Acoustic mode in numerical calculations of subsonic combustion

    SciTech Connect

    O'Rourke, P.J.

    1984-01-01

    A review is given of the methods for treating the acoustic mode in numerical calculations of subsonic combustion. In numerical calculations of subsonic combustion, treatment of the acoustic mode has been a problem for many researchers. It is widely believed that Mach number and acoustic wave effects are negligible in many subsonic combustion problems. Yet, the equations that are often solved contain the acoustic mode, and many numerical techniques for solving these equations are inefficient when the Mach number is much smaller than one. This paper reviews two general approaches to ameliorating this problem. In the first approach, equations are solved that ignore acoustic waves and Mach number effects. Section II of this paper gives two such formulations which are called the Elliptic Primitive and the Stream and Potential Function formulations. We tell how these formulations are obtained and give some advantages and disadvantages of solving them numerically. In the second approach to the problem of calculating subsonic combustion, the fully compressible equations are solved by numerical methods that are efficient, but treat the acoustic mode inaccurately, in low Mach number calculations. Section III of this paper introduces two of these numerical methods in the context of an analysis of their stability properties when applied to the acoustic wave equations. These are called the ICE and acoustic subcycling methods. It is shown that even though these methods are more efficient than traditional methods for solving subsonic combustion problems, they still can be inefficient when the Mach number is very small. Finally, a method called Pressure Gradient Scaling is described that, when used in conjunction with either the ICE or acoustic subcycling methods, allows for very efficient numerical solution of subsonic combustion problems. 11 refs.

  19. An experimental study of sound radiation from a subsonic jet in simulated motion

    NASA Technical Reports Server (NTRS)

    Yu, J. C.; Dixon, N. R.

    1979-01-01

    A free-jet anechoic facility is used for quantitative determination of the effect of motion on the pure jet mixing noise from subsonic jets. The farfield measurements obtained outside the free jet are subjected to amplitude and angle corrections due to free-jet shear layer refraction; in addition, corrections are made to account for the distributed nature of the jet noise source as a function of frequency. The corrected results, which provide the changes in the jet mixing noise as a result of simulated jet motion, are presented for a range of jet velocities with a fixed free-jet velocity. Comparisons are made between the findings obtained and those related to other simulation and flight measurements. The results indicate that the effect of motion is to reduce jet mixing noise at all angles of measurement, and the reduction is broadband with the largest magnitude occurring around the spectral peak.

  20. Laser-induced fluorescence technique for velocity field measurements in subsonic gas flows

    NASA Technical Reports Server (NTRS)

    Hiller, B.; Mcdaniel, J. C.; Rea, E. C., Jr.; Hanson, R. K.

    1983-01-01

    A nonintrusive optical technique is reported for multiple-point velocity measurements in subsonic flows. The technique is based on the detection of fluorescence from a Doppler-shifted absorption line of seeded iodine molecules excited at a laser frequency fixed in the wing of the line. Counterpropagating laser sheets are used to illuminate the flow, in the present case a nitrogen round jet, thereby eliminating the need for an unshifted reference signal. The fluorescence is detected simultaneously at 10,000 points in a plane of the flow using a 100 x 100 element photodiode-array camera. The velocity at each point is computed from four successive camera frames, each recorded with a different beam direction. The measured mean velocities between 5 and 50 m/sec agree well with data from the literature.

  1. Second-order subsonic airfoil theory including edge effects

    NASA Technical Reports Server (NTRS)

    Van Dyke, Milton D

    1956-01-01

    Several recent advances in plane subsonic flow theory are combined into a unified second-order theory for airfoil sections of arbitrary shape. The solution is reached in three steps: the incompressible result is found by integration, it is converted into the corresponding subsonic compressible result by means of the second-order compressibility rule, and it is rendered uniformly valid near stagnation points by further rules. Solutions for a number of airfoils are given and are compared with the results of other theories and of experiment. A straight-forward computing scheme is outlined for calculating the surface velocities and pressures on any airfoil at any angle of attack

  2. Subsonic flow over thin oblique airfoils at zero lift

    NASA Technical Reports Server (NTRS)

    Jones, R. T.

    1976-01-01

    The pressure distribution over thin oblique airfoils at subsonic speeds is studied. It is found that the flows again can be obtained by the superposition of elementary conical flow fields. In the case of the sweptback wing the pressure distributions remain qualitatively similar at subsonic and supersonic speeds. Thus a distribution similar to the Ackeret type of distribution appears on the root sections of the sweptback wing at M = 0. The resulting positive pressure drag on the root section is balanced by negative drags on outboard sections.

  3. Overview of the Langley subsonic research effort on SCR configuration

    NASA Technical Reports Server (NTRS)

    Coe, P. L., Jr.; Thomas, J. D.; Huffman, J. K.; Weston, R. P.; Schoonover, W. E., Jr.; Gentry, C. L., Jr.

    1980-01-01

    Recent advances achieved in the subsonic aerodynamics of low aspect ratio, highly swept wing designs are summarized. The most significant of these advances was the development of leading edge deflection concepts which effectively reduce leading edge flow separation. The improved flow attachment results in substantial improvements in low speed performance, significant delay of longitudinal pitch up, increased trailing edge flap effectiveness, and increased lateral control capability. Various additional theoretical and/or experimental studies are considered which, in conjunction with the leading edge deflection studies, form the basis for future subsonic research effort.

  4. Subsonic annular wing theory with application to flow about nacelles

    NASA Technical Reports Server (NTRS)

    Mann, M. J.

    1974-01-01

    A method has recently been developed for calculating the flow over a subsonic nacelle at zero angle of attack. The method makes use of annular wing theory and boundary-layer theory and has shown good agreement with both experimental data and more complex theoretical solutions. The method permits variation of the mass flow by changing the size of a center body.

  5. Near-Field Noise Computation for a Subsonic Coannular Jet

    NASA Technical Reports Server (NTRS)

    Loh, Ching Y.; Hultgren, Lennart S.; Jorgenson, Philip C. E.

    2008-01-01

    A high-Reynolds-number, subsonic coannular jet is simulated, using a three-dimensional finite-volume LES method, with emphasis on the near field noise. The nozzle geometry used is the NASA Glenn 3BB baseline model. The numerical results are generally in good agreement with existing experimental findings.

  6. The requirements for a new full scale subsonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Kelly, M. W.; Mckinney, M. O.; Luidens, R. W.

    1972-01-01

    Justification and requirements are presented for a large subsonic wind tunnel capable of testing full scale aircraft, rotor systems, and advanced V/STOL propulsion systems. The design considerations and constraints for such a facility are reviewed, and the trades between facility test capability and costs are discussed.

  7. 27. VIEW OF EXHAUST AND DEFLECTOR FOR SUBSONIC AERODYNAMICS RESEARCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. VIEW OF EXHAUST AND DEFLECTOR FOR SUBSONIC AERODYNAMICS RESEARCH LABORATORY, BUILDING 25C, WHICH REPLACED THE 10-FOOT WIND TUNNEL (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH

  8. 26. VIEW OF EXHAUST AND DEFLECTOR FOR SUBSONIC AERODYNAMICS RESEARCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. VIEW OF EXHAUST AND DEFLECTOR FOR SUBSONIC AERODYNAMICS RESEARCH LABORATORY, BUILDING 25C, WHICH REPLACED THE 10-FOOT WIND TUNNEL (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH

  9. 28. VIEW OF EXHAUST AND DEFLECTOR FOR SUBSONIC AERODYNAMICS RESEARCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. VIEW OF EXHAUST AND DEFLECTOR FOR SUBSONIC AERODYNAMICS RESEARCH LABORATORY, BUILDING 25C, WHICH REPLACED THE 10-FOOT WIND TUNNEL (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH

  10. Emerging Options and Opportunities in Civilian Aeronautics

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M.

    2012-01-01

    This paper addresses the major problems/issues with civilian aeronautics going forward, the contextual ongoing technology revolutions, the several emerging civilian aeronautical "Big Ideas" and associated enabling technological approaches. The ongoing IT Revolution is increasingly providing, as 5 senses virtual presence/reality becomes available, along with Nano/Molecular Manufacturing, virtual alternatives to Physical transportation for both people and goods. Paper examines the potential options available to aeronautics to maintain and perhaps grow "market share" in the context of this evolving competition. Many of these concepts are not new, but the emerging technology landscape is enhancing their viability and marketability. The concepts vary from the "interesting" to the truly revolutionary and all require considerable research. Paper considers the speed range from personal/general aviation to supersonic transports and technologies from energetics to fabrication.

  11. Aeronautical Engineering: A Continuing Bibliography with Indexes

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This supplemental issue of Aeronautical Engineering: A Continuing Bibliography with Indexes lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes-subject and author are included after the abstract section.

  12. Aeronautical Engineering: A Continuing Bibliography with Indexes

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-1999-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes-subject and author are included after the abstract section.

  13. Aeronautics and space report of the President: 1981 activities

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Achievements in the aeronautics and space program by function are summarized. Activities in communications, Earth's resources and environment, space science, space transportation, international activities, and aeronautics are included.

  14. Wireless Sensor Applications in Extreme Aeronautical Environments

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Atkinson, Gary M.

    2013-01-01

    NASA aeronautical programs require rigorous ground and flight testing. Many of the testing environments can be extremely harsh. These environments include cryogenic temperatures and high temperatures (greater than 1500 C). Temperature, pressure, vibration, ionizing radiation, and chemical exposure may all be part of the harsh environment found in testing. This paper presents a survey of research opportunities for universities and industry to develop new wireless sensors that address anticipated structural health monitoring (SHM) and testing needs for aeronautical vehicles. Potential applications of passive wireless sensors for ground testing and high altitude aircraft operations are presented. Some of the challenges and issues of the technology are also presented.

  15. Langley aeronautics and space test highlights, 1984

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests which were performed during calendar year 1984 in Langley test facilities are highlighted. The broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research are illustrated.

  16. Inmarsat aeronautical mobile satellite system: Internetworking issues

    NASA Technical Reports Server (NTRS)

    Sengupta, Jay R.

    1990-01-01

    The Inmarsat Aeronautical Mobile Satellite System (AMSS) provides air-ground and air-air communications services to aero-mobile users on a global basis. Communicating parties may be connected either directly, or more commonly, via interconnecting networks to the Inmarsat AMSS, in order to construct end-to-end communications circuits. The aircraft earth station (AES) and the aeronautical ground earth station (GES) are the points of interconnection of the Inmarsat AMSS to users, as well as to interconnecting networks. This paper reviews the internetworking aspects of the Inmarsat AMSS, by introducing the Inmarsat AMSS network architecture and services concepts and then discussing the internetwork address/numbering and routing techniques.

  17. Bibliography of Aeronautics, 1920-1921

    NASA Technical Reports Server (NTRS)

    Brockett, Paul

    1925-01-01

    This work covers the literatme published from January 1, 1920, to December 31, 1921, and continues the work of the Smithsonian Institution issued as Volume 55 of the Smithsonian Miscellaneous Collections, which covered the material published prior to June 30, 1909, and the work of Lhe National Advisory Committee for Aeronautics as published in the Bibliography of Aeronautics for the years 1909 to 1916 and 1917 to 1919. As in the Smithsonian volume and in the Bibliography of Aeronautics for the years 1909 to 1916 and 1917 to 1919, citations of the publications of all nations have been included in the languages in which these publications originally appeared. The arrangement is in dictionary form with author and subject entry and one alphabetical arrangement. Detail in the matter of subject reference has been omitted on account of the cost of presentation, but an attempt has been made to give sufficient cross reference for research in special lines. The National Advisory Committee for Aeronautics will next present a bibliography for the year 1922.

  18. Developing a global aeronautical satellite system

    NASA Technical Reports Server (NTRS)

    Dement, Donald K.

    1988-01-01

    Arinc, an airline industry-owned and operated company in the United States, has taken steps toward establishing a global aeronautical satellite communications system. Plans call for initiation of a thin-route data operation in 1989, upgrading to establish voice communications via shared spot-beam transponders carried on other satellites, and deploying a worldwide network using dedicated satellites by 1994.

  19. The history of aeronautical medicine in Venezuela

    NASA Technical Reports Server (NTRS)

    Iriarte, D. R.

    1986-01-01

    The Aerial Medical Service of the Ministry of Transportation and Communications of Venezuela was created on June 1949, and later became the Department of Aeronautical Medicine. Its functions include the medical examinations of future pilots, navigators and flight engineers. The importance of good mental and physical health in all flight and ground personnel to ensure the safety of air travel is discussed.

  20. 14 CFR 61.97 - Aeronautical knowledge.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... using pilotage with the aid of a magnetic compass; (5) Recognition of critical weather situations from... recognition and avoidance of wake turbulence; (7) Effects of density altitude on takeoff and climb performance... airplane single-engine rating; (11) Aeronautical decision making and judgment; and (12) Preflight...

  1. Astronautics and aeronautics, 1985: A chronology

    NASA Technical Reports Server (NTRS)

    Janson, Bette R.

    1988-01-01

    This book is part of a series of annual chronologies of significant events in the fields of astronautics and aeronautics. Events covered are international as well as national, in political as well as scientific and technical areas. This series is an important reference work used by historians, NASA personnel, government agencies, and congressional staffs, as well as the media.

  2. Aeronautical Engineering: A Continuing Bibliography with indexes

    NASA Technical Reports Server (NTRS)

    1984-01-01

    This bibliography lists 426 reports, articles and other documents introduced into the NASA scientific and technical information system in August 1984. Reports are cited in the area of Aeronautical Engineering. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing operation and performance of aircraft (including aircraft engines) and associated components, equipment and systems.

  3. Experiment In Aeronautical-Mobile/Satellite Communication

    NASA Technical Reports Server (NTRS)

    Jedrey, Thomas C.; Lay, Norman E.; Dessouky, Khaled

    1992-01-01

    Report describes study of performance of digital mobile/satellite communication terminals of advanced design intended for use in ground stations and airplanes in aeronautical-mobile service. Study was collaboration of NASA, Federal Aviation Administration (FAA), Communications Satellite Corp. (COMSAT), and International Maritime Satellite System (INMARSAT).

  4. Astronautics and aeronautics, 1974: A chronology

    NASA Technical Reports Server (NTRS)

    Brun, N. L.

    1977-01-01

    The 14th volume in the NASA series of day-by-day records of aeronautical and space events has somewhat narrowed its scope and selectivity in its brief accounts from immediately available, open sources. This year the emphasis is even more directly focused on concrete air and space activities. The text continues to reflect some events in other agencies and countries.

  5. Aeronautical engineering. A continuing bibliography with indexes

    NASA Technical Reports Server (NTRS)

    1982-01-01

    This bibliography lists 326 reports, articles, and other documents introduced into the NASA scientific and technical information system in January 1982. Topics on aeronautical engineering and aerodynamics such as flight control systems, avionics, computer programs, computational fluid dynamics and composite structures are covered.

  6. Astronautics and aeronautics, 1976. A chronology

    NASA Technical Reports Server (NTRS)

    Ritchie, E. H.

    1984-01-01

    A chronology of events concerning astronautics and aeronautics for the year 1976 is presented. Some of the many and varied topics include the aerospace industry, planetary exploration, space transportation system, defense department programs, politics, and aerospace medicine. The entries are organized by the month and presented in a news release format.

  7. Astronautics and aeronautics, 1978: A chronology

    NASA Technical Reports Server (NTRS)

    Janson, Bette R.

    1986-01-01

    This is the 18th in a series of annual chronologies of significant events in the fields of astronautics and aeronautics. Events covered are international as well as national and political as well as scientific and technical. This series is a reference work for historians, NASA personnel, government agencies, congressional staffs, and the media.

  8. Ensuring US National Aeronautics Test Capabilities

    NASA Technical Reports Server (NTRS)

    Marshall, Timothy J.

    2010-01-01

    U.S. leadership in aeronautics depends on ready access to technologically advanced, efficient, and affordable aeronautics test capabilities. These systems include major wind tunnels and propulsion test facilities and flight test capabilities. The federal government owns the majority of the major aeronautics test capabilities in the United States, primarily through the National Aeronautics and Space Administration (NASA) and the Department of Defense (DoD). However, changes in the Aerospace landscape, primarily the decrease in demand for testing over the last 20 years required an overarching strategy for management of these national assets. Therefore, NASA established the Aeronautics Test Program (ATP) as a two-pronged strategic initiative to: (1) retain and invest in NASA aeronautics test capabilities considered strategically important to the agency and the nation, and (2) establish a strong, high level partnership with the DoD. Test facility utilization is a critical factor for ATP because it relies on user occupancy fees to recover a substantial part of the operations costs for its facilities. Decreasing utilization is an indicator of excess capacity and in some cases low-risk redundancy (i.e., several facilities with basically the same capability and overall low utilization). However, low utilization does not necessarily translate to lack of strategic importance. Some facilities with relatively low utilization are nonetheless vitally important because of the unique nature of the capability and the foreseeable aeronautics testing needs. Unfortunately, since its inception, the customer base for ATP has continued to shrink. Utilization of ATP wind tunnels has declined by more than 50% from the FY 2006 levels. This significant decrease in customer usage is attributable to several factors, including the overall decline in new programs and projects in the aerospace sector; the impact of computational fluid dynamics (CFD) on the design, development, and research

  9. Conversion of the Aeronautics Interactive Workstation

    NASA Technical Reports Server (NTRS)

    Riveras, Nykkita L.

    2004-01-01

    This summer I am working in the Educational Programs Office. My task is to convert the Aeronautics Interactive Workstation from a Macintosh (Mac) platform to a Personal Computer (PC) platform. The Aeronautics Interactive Workstation is a workstation in the Aerospace Educational Laboratory (AEL), which is one of the three components of the Science, Engineering, Mathematics, and Aerospace Academy (SEMAA). The AEL is a state-of-the-art, electronically enhanced, computerized classroom that puts cutting-edge technology at the fingertips of participating students. It provides a unique learning experience regarding aerospace technology that features activities equipped with aerospace hardware and software that model real-world challenges. The Aeronautics Interactive Workstation, in particular, offers a variety of activities pertaining to the history of aeronautics. When the Aeronautics Interactive Workstation was first implemented into the AEL it was designed with Macromedia Director 4 for a Mac. Today it is being converted to Macromedia DirectorMX2004 for a PC. Macromedia Director is the proven multimedia tool for building rich content and applications for CDs, DVDs, kiosks, and the Internet. It handles the widest variety of media and offers powerful features for building rich content that delivers red results, integrating interactive audio, video, bitmaps, vectors, text, fonts, and more. Macromedia Director currently offers two programmingkripting languages: Lingo, which is Director's own programmingkripting language and JavaScript. In the workstation, Lingo is used in the programming/scripting since it was the only language in use when the workstation was created. Since the workstation was created with an older version of Macromedia Director it hosted significantly different programming/scripting protocols. In order to successfully accomplish my task, the final product required correction of Xtra and programming/scripting errors. I also had to convert the Mac platform

  10. Subsonic Ultra Green Aircraft Research. Phase II - Volume I; Truss Braced Wing Design Exploration

    NASA Technical Reports Server (NTRS)

    Bradley, Marty K.; Droney, Christopher K.; Allen, Timothy J.

    2015-01-01

    This report summarizes the Truss Braced Wing (TBW) work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team, consisting of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, Georgia Tech, Virginia Tech, NextGen Aeronautics, and Microcraft. A multi-disciplinary optimization (MDO) environment defined the geometry that was further refined for the updated SUGAR High TBW configuration. Airfoil shapes were tested in the NASA TCT facility, and an aeroelastic model was tested in the NASA TDT facility. Flutter suppression was successfully demonstrated using control laws derived from test system ID data and analysis models. Aeroelastic impacts for the TBW design are manageable and smaller than assumed in Phase I. Flutter analysis of TBW designs need to include pre-load and large displacement non-linear effects to obtain a reasonable match to test data. With the updated performance and sizing, fuel burn and energy use is reduced by 54% compared to the SUGAR Free current technology Baseline (Goal 60%). Use of the unducted fan version of the engine reduces fuel burn and energy by 56% compared to the Baseline. Technology development roadmaps were updated, and an airport compatibility analysis established feasibility of a folding wing aircraft at existing airports.

  11. 78 FR 69885 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-21

    ... SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Meeting AGENCY: National Aeronautics... meeting of the Aeronautics Committee of the NASA Advisory Council. This Committee reports to the NAC. The... for the Aeronautics Committee, NASA Headquarters, Washington, DC 20546, (202) 358-0566, or...

  12. 14 CFR 63.37 - Aeronautical experience requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Aeronautical experience requirements. 63.37 Section 63.37 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: FLIGHT CREWMEMBERS OTHER THAN PILOTS Flight Engineers § 63.37 Aeronautical experience requirements. (a) Except...

  13. NASA's Role in Aeronautics: A Workshop. Volume I--Summary.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Assembly of Engineering.

    The central task of the workshop summarized in this report was to examine the relationship of the National Aeronautics and Space Administration's (NASA's) aeronautical research capabilities to the state of U.S. aviation and to make recommendations about NASA's future roles in aeronautics. Topics include NASA's role in: (1) aeronautics research and…

  14. Follow-On Technology Requirement Study for Advanced Subsonic Transport

    NASA Technical Reports Server (NTRS)

    Wendus, Bruce E.; Stark, Donald F.; Holler, Richard P.; Funkhouser, Merle E.

    2003-01-01

    A study was conducted to define and assess the critical or enabling technologies required for a year 2005 entry into service (EIS) engine for subsonic commercial aircraft, with NASA Advanced Subsonic Transport goals used as benchmarks. The year 2005 EIS advanced technology engine is an Advanced Ducted Propulsor (ADP) engine. Performance analysis showed that the ADP design offered many advantages compared to a baseline turbofan engine. An airplane/ engine simulation study using a long range quad aircraft quantified the effects of the ADP engine on the economics of typical airline operation. Results of the economic analysis show the ADP propulsion system provides a 6% reduction in direct operating cost plus interest, with half the reduction resulting from reduced fuel consumption. Critical and enabling technologies for the year 2005 EIS ADP were identified and prioritized.

  15. Aeroacoustic Data for a High Reynolds Number Axisymmetric Subsonic Jet

    NASA Technical Reports Server (NTRS)

    Ponton, Michael K.; Ukeiley, Lawrence S.; Lee, Sang W.

    1999-01-01

    The near field fluctuating pressure and aerodynamic mean flow characteristics of a cold subsonic jet issuing from a contoured convergent nozzle are presented. The data are presented for nozzle exit Mach numbers of 0.30, 0.60, and 0.85 at a constant jet stagnation temperature of 104 F. The fluctuating pressure measurements were acquired via linear and semi-circular microphone arrays and the presented results include plots of narrowband spectra, contour maps, streamwise/azimuthal spatial correlations for zero time delay, and cross-spectra of the azimuthal correlations. A pitot probe was used to characterize the mean flow velocity by assuming the subsonic flow to be pressure-balanced with the ambient field into which it exhausts. Presented are mean flow profiles and the momentum thickness of the free shear layer as a function of streamwise position.

  16. A study of sound generation in subsonic rotors, volume 2

    NASA Technical Reports Server (NTRS)

    Chalupnik, J. D.; Clark, L. T.

    1975-01-01

    Computer programs were developed for use in the analysis of sound generation by subsonic rotors. Program AIRFOIL computes the spectrum of radiated sound from a single airfoil immersed in a laminar flow field. Program ROTOR extends this to a rotating frame, and provides a model for sound generation in subsonic rotors. The program also computes tone sound generation due to steady state forces on the blades. Program TONE uses a moving source analysis to generate a time series for an array of forces moving in a circular path. The resultant time series are than Fourier transformed to render the results in spectral form. Program SDATA is a standard time series analysis package. It reads in two discrete time series and forms auto and cross covariances and normalizes these to form correlations. The program then transforms the covariances to yield auto and cross power spectra by means of a Fourier transformation.

  17. User's manual: Subsonic/supersonic advanced panel pilot code

    NASA Technical Reports Server (NTRS)

    Moran, J.; Tinoco, E. N.; Johnson, F. T.

    1978-01-01

    Sufficient instructions for running the subsonic/supersonic advanced panel pilot code were developed. This software was developed as a vehicle for numerical experimentation and it should not be construed to represent a finished production program. The pilot code is based on a higher order panel method using linearly varying source and quadratically varying doublet distributions for computing both linearized supersonic and subsonic flow over arbitrary wings and bodies. This user's manual contains complete input and output descriptions. A brief description of the method is given as well as practical instructions for proper configurations modeling. Computed results are also included to demonstrate some of the capabilities of the pilot code. The computer program is written in FORTRAN IV for the SCOPE 3.4.4 operations system of the Ames CDC 7600 computer. The program uses overlay structure and thirteen disk files, and it requires approximately 132000 (Octal) central memory words.

  18. Design of a subsonic airfoil with upstream blowing

    NASA Astrophysics Data System (ADS)

    Il'Inskii, N. B.; Mardanov, R. F.

    2007-10-01

    The problem is solved of designing a symmetric airfoil with upstream blowing opposite to subsonic irrotational steady flow of an inviscid incompressible fluid. The solution relies on Sedov’s idea of a stagnation region developing in the neighborhood of the stagnation point. An iterative solution process is developed, and examples of airfoils are constructed. The numerical results are analyzed, and conclusions are drawn about the effect of blowing parameters on the airfoil geometry and the resultant force acting on the airfoil.

  19. Advanced surface paneling method for subsonic and supersonic flow

    NASA Technical Reports Server (NTRS)

    Erickson, L. L.; Johnson, F. T.; Ehlers, F. E.

    1976-01-01

    Numerical results illustrating the capabilities of an advanced aerodynamic surface paneling method are presented. The method is applicable to both subsonic and supersonic flow, as represented by linearized potential flow theory. The method is based on linearly varying sources and quadratically varying doublets which are distributed over flat or curved panels. These panels are applied to the true surface geometry of arbitrarily shaped three dimensional aerodynamic configurations.

  20. Development of panel methods for subsonic analysis and design

    NASA Technical Reports Server (NTRS)

    Bristow, D. R.

    1980-01-01

    Two computer programs, developed for subsonic inviscid analysis and design are described. The first solves arbitrary mixed analysis design problems for multielement airfoils in two dimensional flow. The second calculates the pressure distribution for arbitrary lifting or nonlifting three dimensional configurations. In each program, inviscid flow is modelled by using distributed source doublet singularities on configuration surface panels. Numerical formulations and representative solutions are presented for the programs.

  1. Three dimensional supersonic flows with subsonic axial Mach numbers

    NASA Technical Reports Server (NTRS)

    Marconi, F.; Moretti, G.

    1976-01-01

    A numerical approach is presented for the computation of flows in which the component of velocity in the selected marching direction is subsonic although the total velocity is supersonic. A local coordinate rotation procedure is employed together with an implicit differencing scheme. Complex coordinate transformations and time-consuming iterations are avoided. The implementation of the described approach is illustrated with the aid of a two-dimensional problem. An application in the case of three-dimensional flows is also discussed.

  2. Future Aeronautical Communication Infrastructure Technology Investigation

    NASA Technical Reports Server (NTRS)

    Gilbert, Tricia; Jin, Jenny; Bergerm Jason; Henriksen, Steven

    2008-01-01

    This National Aeronautics and Space Administration (NASA) Contractor Report summarizes and documents the work performed to investigate technologies that could support long-term aeronautical mobile communications operating concepts for air traffic management (ATM) in the timeframe of 2020 and beyond, and includes the associated findings and recommendations made by ITT Corporation and NASA Glenn Research Center to the Federal Aviation Administration (FAA). The work was completed as the final phase of a multiyear NASA contract in support of the Future Communication Study (FCS), a cooperative research and development program of the United States FAA, NASA, and EUROCONTROL. This final report focuses on an assessment of final five candidate technologies, and also provides an overview of the entire technology assessment process, including final recommendations.

  3. Langley aeronautics and space test highlights, 1983

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests which were performed during calendar year 1983 in Langley test facilities, a number of which are unique in the world are highlighted. Both the broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research are illustrated.

  4. World-wide aeronautical satellite communications

    NASA Technical Reports Server (NTRS)

    Wood, Peter; Smith, Keith

    1988-01-01

    INMARSAT decided to expand the spectrum covered by its new generation of satellites, INMARSAT-2, to include 1 MHz (subsequently increased to 3 MHz) of the spectrum designed for aeronautical use. It began a design study that led to the specifications for the system that is now being implemented. Subsequently, INMARSAT awarded contracts for the design of avionics and high gain antennas to a number of manufactures, while several of the signatories that provide ground equipment for communicating with the INMARSAT satellites are modifying their earth stations to work with the avionic equipment. As a resullt of these activities, a world-wide aeronautical satellite system supporting both voice and data will become operational in 1989.

  5. Aeronautics and Space Report of the President

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The years 1989 to 1990 activities are reported including human space flight, unmanned expendable launch vehicles, space science and applications, space communications operations, space research and technology, and aeronautics research and technology. Contributions made by the 14 participating government organizations are outline. Each organization's aeronautics and/or space activities for the year are presented. The organizations involved include: (1) NASA; (2) Dept. of Defense; (3) Dept. of Commerce; (4) Dept. of Energy; (5) Dept. of the Interior; (6) Dept. of Agriculture; (7) Federal Communications Commission; (8) Dept. of Transportation; (9) Environmental Protection Agency; (10) National Science Foundation; (11) Smithsonian Institution; (12) Dept. of State; (13) Arms Control and Disarmament; and (14) United States Information Agency.

  6. Aeronautics and Space Report of the President

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Nineteen eighty-eight marked the United States' return to space flight with two successful space shuttle launches in September and December, as well as six successful expendable rocket launches. Meanwhile, many other less spectacular but important contributions were made in aeronautics and space by the 14 participating government organizations. Each organization's aeronautics and/or space activities for the year are presented. The organizations involved include: (1) NASA; (2) Department of Defense; (3) Department of Commerce; (4) Department of Energy; (5) Department of the Interior; (6) Department of Agriculture; (7) Federal Communications Commission; (8) Department of Transportation; (9) Environmental Protection Agency; (10) National Science Foundation; (11) Smithsonian Institution; (12) Department of State; (13) Arms Control and Disarmament Agency; and (14) United States Information Agency.

  7. Smart Aeronautical Chart Management System Design

    NASA Astrophysics Data System (ADS)

    Pakdil, M. E.; Celik, R. N.; Kaya, Ö.; Konak, Y. C.; Guney, C.

    2015-10-01

    Civil aviation is developing rapidly, and the number of domestic and international operations is increasing exponentially every year than the previous one. Airline companies with increased air traffic and the number of passengers increase the demand of new aircrafts. An aircraft needs not only fuel but also pilot and aeronautical information (charts, digital navigation information, flight plan, and etc.) to perform flight operation. One of the most important components in aeronautical information is the terminal chart. Authorized institution in every state is responsible to publish their terminal charts for certain periods. Although these charts are produced in accordance with ICAO's Annex 4 and Annex 15, cartographic representation and page layout differs in each state's publication. This situation makes difficult to read them by pilots. In this paper, standard instrument departure (SID) charts are analysed to produce by use of cutting-edge and competitive technologies instead of classical computer-aided drawing and vector based graphic applications that are currently used by main chart producers. The goal is to design efficient and commercial chart management system that is able to produce aeronautical charts with same cartographic representation for all states.

  8. ACTS Aeronautical Terminal Experiment System Description and Link Analysis

    NASA Technical Reports Server (NTRS)

    Sohn, Philip; Raquet, Charles; Reinhart, Richard; Nakamura, Dan

    1996-01-01

    During the summer of 1994, the performance of an experimental mobile satellite communication system was demonstrated to industry and government representatives by the NASA Lewis Research Center (LeRC) and the Jet Propulsion Laboratory (JPL). The system was based on the advanced communications technology satellite (ACTS) and consisted of a K-/Ka-band active monolithic microwave integrated circuit (MMIC) phased array antenna system, ACTS mobile terminal (AMT) and link evaluation terminal (LET). A LeRC research aircraft, Learjet model 25, was outfitted with the active MMIC phased array antenna system and AMT and served as the experimental 20/30 Ghz aeronautical terminal. The LET at LeRC in Cleveland, OH, was interfaced with portions of fixed-AMT equipment and together provided the gateway station functions including ACTS interface and public service telephone network (PSTN) interface. The ACTS was operated in its microwave switch matrix (MSM) mode with a spot beam for the Learjet and another spot beam dedicated to the LET. The Learjet was flown over several major cities across the US and demonstrated the feasibility of a full-duplex compressed voice links for an aeronautical terminal through the 20/30 Ghz ACTS channel. This paper presents a technical description of the system including the MMIC phased array antenna system, AMT, Learjet, LET, and ACTS. The array antenna system consists of a 30 Ghz transmit array (LeRc/Texas Instruments) and two 20 Ghz receive arrays (USAF Rome Lab., Boeing, and Martin Marietta), each one very small with sufficient performance for a satellite voice link. The AMT consists of 2.4/4.8/9.6 Kbps voice coder/decoder, modem, PSTN interface and RF/IF converters. Link analysis is presented and compared to the actual performance data collected during the demonstration flights.

  9. ACTS aeronautical terminal experiment: System description and link analysis

    NASA Technical Reports Server (NTRS)

    Sohn, Philip; Raquet, Charles; Reinhart, Richard; Nakamura, Dan

    1995-01-01

    During the summer of 1994, the performance of an experimental mobile satellite communication system was demonstrated to the industry and government representatives by the NASA Lewis Research Center (LeRC) and the Jet Propulsion Laboratory (JPL). The system was based on the Advanced Communications Technology Satellite (ACTS) and consisted of an K-/Ka-band active MMIC phased array antenna system, ACTS Mobile Terminal (AMT) and Link Evaluation Terminal (LET). A LeRC research aircraft, Learjet Model 25, was outfitted with the active MMIC phased array antenna system and AMT and served as the experimental 20/30 Ghz aeronautical terminal. The LET at LeRC in Cleveland, OH was interfaced with portions of fixed-AMT equipment and together provided the gateway station functions including ACTS satellite interface and Public Service Telephone Network (PSTN) interface. The ACTS was operated in its Microwave Switch Matrix (MSM) mode with a spot beam for the Learjet and another spot beam dedicated to the LET. The Learjet was flown over several major cities across the US and demonstrated the feasibility of full-duplex compressed voice link for an aeronautical terminal through the 20/30 Ghz ACTS satellite channel. This paper will present a technical description of the system including the MMIC phased array antenna system, AMT, Learjet, LET and ACTS satellite. The array antenna system consists of a 30 Ghz transmit array (LeRC/Texas Instruments) and two 20 Ghz receive arrays (USAF Rome Lab/Boeing and Martin Marietta), each one very small with sufficient performance for satellite voice link. The AMT consists of 2.4/4.8/9.6 Kbps voice coder/decoder, modem, PSTN interface and RF/IF converters. Link analysis will be presented and compared to the actual performance data collected during the demonstration flights.

  10. Graduate engineering research participation in aeronautics

    NASA Technical Reports Server (NTRS)

    Roberts, A. S., Jr.

    1986-01-01

    The Aeronautics Graduate Research Program commenced in 1971, with the primary goal of engaging students who qualified for regular admission to the Graduate School of Engineering at Old Dominion University in a graduate engineering research and study program in collaboration with NASA Langley Research Center, Hampton, Virginia. The format and purposes of this program are discussed. Student selection and program statistics are summarized. Abstracts are presented in the folowing areas: aircraft design, aerodynamics, lift/drag characteristics; avionics; fluid mechanics; solid mechanics; instrumentation and measurement techniques; thermophysical properties experiments; large space structures; earth orbital dynamics; and environmental engineering.

  11. The K-8 Aeronautics Internet Textbook

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Efforts were focused on web site migration, from UC (University of California) Davis to the National Business Aviation Association's (NBAA) web site. K8AIT (K-8 Aeronautics Internet Textbook), which has remained an unadvertised web site, receives almost two million hits per month. Project continuation funding with the National Business Aviation Association is being pursued. A Memorandum of Understanding (MOU) between NASA Ames LTP (Learning Technologies Project) and Cislunar has been drafted and approved by NASA's legal department. Additional web content on space flight and the Wright brothers has been added in English and Spanish.

  12. Solar energy and the aeronautics industry. Thesis

    NASA Technical Reports Server (NTRS)

    Benedek, L.

    1985-01-01

    An introduction to the physical aspects of solar energy, incidental energy and variations in solar flux is presented, along with an explanation of the physical principles of obtaining solar energy. The history of the application of solar energy to aeronautics, including the Gossamer Penguin and the Solar Challenger is given. Finally, an analysis of the possibilities of using a reaction motor with hybrid propulsion combining solar energy with traditional fuels as well as calculations of the proposed cycle and its mode of operation are given.

  13. MSAT aeronautical mobile satellite communications terminal development

    NASA Technical Reports Server (NTRS)

    Sutherland, C. A.; Sydor, J. T.

    1995-01-01

    CAL has undertaken the development of a new aeronautical mobile terminal for the North American MSAT market. The terminal is to meet the MSAT standard and is aimed in particular at the 300,000 general aviation and business aircraft in North America. The terminals are therefore relatively low cost and small in size when compared to those currently being produced for larger airline aircraft. The terminal incorporates a top mounted mechanical steered antenna and a unique antenna steering subsystem. An overview of the terminal design is presented.

  14. Graduate engineering research participation in aeronautics

    NASA Technical Reports Server (NTRS)

    Roberts, A. S., Jr.

    1984-01-01

    Graduate student engineering research in aeronautics at Old Dominion University is surveyed. Student participation was facilitated through a NASA sponsored university program which enabled the students to complete degrees. Research summaries are provided and plans for the termination of the grant program are outlined. Project topics include: Failure modes for mechanically fastened joints in composite materials; The dynamic stability of an earth orbiting satellite deploying hinged appendages; The analysis of the Losipescu shear test for composite materials; and the effect of boundary layer structure on wing tip vortex formation and decay.

  15. Acoustic Prediction Methodology and Test Validation for an Efficient Low-Noise Hybrid Wing Body Subsonic Transport

    NASA Technical Reports Server (NTRS)

    Kawai, Ronald T. (Compiler)

    2011-01-01

    This investigation was conducted to: (1) Develop a hybrid wing body subsonic transport configuration with noise prediction methods to meet the circa 2007 NASA Subsonic Fixed Wing (SFW) N+2 noise goal of -52 dB cum relative to FAR 36 Stage 3 (-42 dB cum re: Stage 4) while achieving a -25% fuel burned compared to current transports (re :B737/B767); (2) Develop improved noise prediction methods for ANOPP2 for use in predicting FAR 36 noise; (3) Design and fabricate a wind tunnel model for testing in the LaRC 14 x 22 ft low speed wind tunnel to validate noise predictions and determine low speed aero characteristics for an efficient low noise Hybrid Wing Body configuration. A medium wide body cargo freighter was selected to represent a logical need for an initial operational capability in the 2020 time frame. The Efficient Low Noise Hybrid Wing Body (ELNHWB) configuration N2A-EXTE was evolved meeting the circa 2007 NRA N+2 fuel burn and noise goals. The noise estimates were made using improvements in jet noise shielding and noise shielding prediction methods developed by UC Irvine and MIT. From this the Quiet Ultra Integrated Efficient Test Research Aircraft #1 (QUIET-R1) 5.8% wind tunnel model was designed and fabricated.

  16. Aeronautical Satellite Comunications at T1 Data Rates

    NASA Technical Reports Server (NTRS)

    Agan, M. J.; Densmore, A. C.

    1996-01-01

    The Advanced Communications Technology Satellite (ACTS) Broadband Aeronautical Terminal was developed by NASA's Jet Propulsion Laboratory together with various industry/government partners to investigate high data rate aeronautical applications of ACTS technologies.

  17. National Advisory Committee for Aeronautics Meeting

    NASA Technical Reports Server (NTRS)

    1921-01-01

    The National Advisory Committee for Aeronautics in session at Washington to discuss plans to place America foremost in the development of avaition. A report was heard from Dr. Ames, chairman of the executive committee, on research work to develop the new heavy oil fuel injection aircraft engine which does away with carburetor and spark plugs, and will lesson the fire hazard. Dr. S.W. Stratton, secretary of the committee and director of the Bureau of Standards, is shown seated at the extreme left. Around the table, left to right, are: Prof. Charles F. Marvin, chief of the weather bureau; Dr. John F. Hayford (Northwestern Univ.); Orville Wright; Major Thurman H. Bane (chief Engineer Div. Army); Paul Henderson, (Second Ass. Postmaster Gen.); Rear Adm. W.A. Moffet, Chief Bureau Aeronautics, Navy; Dr. Michael I. Pupin, (Columbia Univ.); Rear Adm. D.W. Taylor, U.S.N. (Chief Bureau Construction and repair); Dr. Charles D. Walcott, chairman, (Chief Air Service) and Dr. Joesph S. Ames, chairman executive committee (John Hopkins Univ.)

  18. Study of LH2 fueled subsonic passenger transport aircraft

    NASA Technical Reports Server (NTRS)

    Brewer, G. D.; Morris, R. E.

    1976-01-01

    The potential of using liquid hydrogen as fuel in subsonic transport aircraft was investigated to explore an expanded matrix of passenger aircraft sizes. Aircraft capable of carrying 130 passengers 2,780 km (1500 n.mi.); 200 passengers 5,560 km (3000 n.mi.); and 400 passengers on a 9,265 km (5000 n.mi.) radius mission, were designed parametrically. Both liquid hydrogen and conventionally fueled versions were generated for each payload/range in order that comparisons could be made. Aircraft in each mission category were compared on the basis of weight, size, cost, energy utilization, and noise.

  19. Minimizing life cycle cost for subsonic commercial aircraft

    SciTech Connect

    Johnson, V.S. )

    1990-02-01

    A methodology is presented which facilitates the identification of that aircraft design concept which will incur the lowest life-cycle costs (LCCs) while meeting mission requirements. The methodology consists of an LCC module whose constituent elements calculate the costs associated with R D, testing, evaluation, and production, as well as direct and indirect operating costs, in conjunction with the Flight Optimization System conceptual design/analysis code. Provision is made in the methodology for sensitivities to advanced technologies for the subsonic commercial aircraft in question, which are optimized with respect to minimum gross weight, fuel consumption, acquisition cost, and direct operating cost. 12 refs.

  20. Application of advanced technologies to very large subsonic transports

    NASA Technical Reports Server (NTRS)

    Bartlett, Dennis W.; Mcgraw, Marvin E., Jr.; Arcara, Philip C., Jr.; Geiselhart, Karl A.

    1992-01-01

    A NASA-Langley study has used the interdisciplinary Flight Optimization System to examine the impact of advanced technologies on the performance and plausible size of large, long-range subsonic transport aircraft. The baseline, four-engine configuration studied would carry 412 passengers over 7300 n. mi.; the technologies evaluated encompass high aspect ratio supercritical-airfoil wings, a composite wing structure, an all-composite primary structure, and hybrid laminar flow control. The results obtained indicate that 600-passenger transports, whose takeoff gross weight is no greater than that of the 412-passenger baseline, are made possible by the new technologies.

  1. Minimizing life cycle cost for subsonic commercial aircraft

    NASA Technical Reports Server (NTRS)

    Johnson, Vicki S.

    1990-01-01

    A methodology is presented which facilitates the identification of that aircraft design concept which will incur the lowest life-cycle costs (LCCs) while meeting mission requirements. The methodology consists of an LCC module whose constituent elements calculate the costs associated with R&D, testing, evaluation, and production, as well as direct and indirect operating costs, in conjunction with the 'Flight Optimization System' conceptual design/analysis code. Provision is made in the methodology for sensitivities to advanced technologies for the subsonic commercial aircraft in question, which are optimized with respect to minimum gross weight, fuel consumption, acquisition cost, and direct operating cost.

  2. Finite element analysis of inviscid subsonic boattail flow

    NASA Technical Reports Server (NTRS)

    Chima, R. V.; Gerhart, P. M.

    1981-01-01

    A finite element code for analysis of inviscid subsonic flows over arbitrary nonlifting planar or axisymmetric bodies is described. The code solves a novel primitive variable formulation of the coupled irrotationality and compressible continuity equations. Results for flow over a cylinder, a sphere, and a NACA 0012 airfoil verify the code. Computed subcritical flows over an axisymmetric boattailed afterbody compare well with finite difference results and experimental data. Interative coupling with an integral turbulent boundary layer code shows strong viscous effects on the inviscid flow. Improvements in code efficiency and extensions to transonic flows are discussed.

  3. Simulation of Atmospheric-Entry Capsules in the Subsonic Regime

    NASA Technical Reports Server (NTRS)

    Murman, Scott M.; Childs, Robert E.; Garcia, Joseph A.

    2015-01-01

    The accuracy of Computational Fluid Dynamics predictions of subsonic capsule aerodynamics is examined by comparison against recent NASA wind-tunnel data at high-Reynolds-number flight conditions. Several aspects of numerical and physical modeling are considered, including inviscid numerical scheme, mesh adaptation, rough-wall modeling, rotation and curvature corrections for eddy-viscosity models, and Detached-Eddy Simulations of the unsteady wake. All of these are considered in isolation against relevant data where possible. The results indicate that an improved predictive capability is developed by considering physics-based approaches and validating the results against flight-relevant experimental data.

  4. Acoustic measurement study 40 by 80 foot subsonic wind tunnel

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An acoustical study conducted during the period from September 1, 1973 to April 30, 1974 measured sound pressure levels and vibration amplitudes inside and outside of the subsonic tunnel and on the tunnel structure. A discussion of the technical aspects of the study, the field measurement and data reduction procedures, and results are presentd, and conclusions resulting from the study which bear upon near field and far field tunnel noise, upon the tunnel as an acoustical enclosure, and upon the sources of noise within the tunnel drive system are given.

  5. NASA Subsonic Rotary Wing Project - Structures and Materials Discipline

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Johnson, Susan M.

    2008-01-01

    The Structures & Materials Discipline within the NASA Subsonic Rotary Wing Project is focused on developing rotorcraft technologies. The technologies being developed are within the task areas of: 5.1.1 Life Prediction Methods for Engine Structures & Components 5.1.2 Erosion Resistant Coatings for Improved Turbine Blade Life 5.2.1 Crashworthiness 5.2.2 Methods for Prediction of Fatigue Damage & Self Healing 5.3.1 Propulsion High Temperature Materials 5.3.2 Lightweight Structures and Noise Integration The presentation will discuss rotorcraft specific technical challenges and needs as well as details of the work being conducted in the six task areas.

  6. Subsonic/transonic stall flutter investigation of a rotating rig

    NASA Technical Reports Server (NTRS)

    Jutras, R. R.; Fost, R. B.; Chi, R. M.; Beacher, B. F.

    1981-01-01

    Stall flutter is investigated by obtaining detailed quantitative steady and aerodynamic and aeromechanical measurements in a typical fan rotor. The experimental investigation is made with a 31.3 percent scale model of the Quiet Engine Program Fan C rotor system. Both subsonic/transonic (torsional mode) flutter and supersonic (flexural) flutter are investigated. Extensive steady and unsteady data on the blade deformations and aerodynamic properties surrounding the rotor are acquired while operating in both the steady and flutter modes. Analysis of this data shows that while there may be more than one traveling wave present during flutter, they are all forward traveling waves.

  7. Sound radiation from a subsonic rotor subjected to turbulence

    NASA Technical Reports Server (NTRS)

    Sevik, M.

    1974-01-01

    The broadband sound radiated by a subsonic rotor subjected to turbulence in the approach stream has been analyzed. The power spectral density of the sound intensity has been found to depend on a characteristic time scale-namely, the integral scale of the turbulence divided by the axial flow velocity-as well as several length-scale ratios. These consist of the ratio of the integral scale to the acoustic wavelength, rotor radius, and blade chord. Due to the simplified model chosen, only a limited number of cascade parameters appear. Limited comparisons with experimental data indicate good agreement with predicted values.

  8. Subsonic flow in the channel of a diagonal MHD generator

    SciTech Connect

    Isakova, N.P.; Medin, S.A.

    1981-05-01

    A numerical study has been made of the local and integral characteristics of the planar subsonic flow in the channel of an MHD generator with diagonal electrode connection. It is shown that the inhomogeneity in the parameter distribution is dependent on the electrical loading, and the largest deviations from homogeneous flow occur on open circuit and short circuit. A comparison is made with a channel of Faraday type as regards the main integral characteristics. The data from two-dimensional analysis are compared with those from a one-dimensional flow model.

  9. Ongoing Fixed Wing Research within the NASA Langley Aeroelasticity Branch

    NASA Technical Reports Server (NTRS)

    Bartels, Robert; Chwalowski, Pawel; Funk, Christie; Heeg, Jennifer; Hur, Jiyoung; Sanetrik, Mark; Scott, Robert; Silva, Walter; Stanford, Bret; Wiseman, Carol

    2015-01-01

    The NASA Langley Aeroelasticity Branch is involved in a number of research programs related to fixed wing aeroelasticity and aeroservoelasticity. These ongoing efforts are summarized here, and include aeroelastic tailoring of subsonic transport wing structures, experimental and numerical assessment of truss-braced wing flutter and limit cycle oscillations, and numerical modeling of high speed civil transport configurations. Efforts devoted to verification, validation, and uncertainty quantification of aeroelastic physics in a workshop setting are also discussed. The feasibility of certain future civil transport configurations will depend on the ability to understand and control complex aeroelastic phenomena, a goal that the Aeroelasticity Branch is well-positioned to contribute through these programs.

  10. 78 FR 41114 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-09

    ... SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Meeting AGENCY: National Aeronautics... meeting of the Aeronautics Committee of the NASA Advisory Council. This Committee reports to the NAC. The.... to 5:00 p.m.; Local Time. ADDRESSES: NASA Headquarters, Room 6E40, 300 E Street SW., Washington,...

  11. 76 FR 58843 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-22

    ... SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Meeting AGENCY: National Aeronautics... meeting of the Aeronautics Committee of the NASA Advisory Council. The meeting will be held for the...) 358-0566, or susan.l.minor@nasa.gov . SUPPLEMENTARY INFORMATION: The meeting will be open to...

  12. 75 FR 17166 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-05

    ... SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Meeting AGENCY: National Aeronautics... meeting of the Aeronautics Committee of the NASA Advisory Council. The meeting will be held for the.... ADDRESSES: NASA Langley Research Center, Building 1219, Room 225, Hampton, Virginia (Note that visitors...

  13. 78 FR 10640 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-14

    ... SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Meeting AGENCY: National Aeronautics... meeting of the Aeronautics Committee of the NASA Advisory Council. The meeting will be held for the... Administration Headquarters, Washington, DC 20546, (202) 358-0566, or susan.l.minor@nasa.gov ....

  14. NASA's Role in Aeronautics: A Workshop. Volume III - Transport Aircraft.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Assembly of Engineering.

    The central task of a 1980 workshop on the role of the National Aeronautics and Space Administration (NASA) in aeronautics was to examine the relationship of NASA's research capabilities to the state of U.S. aviation and to make recommendations about NASA's future role in aeronautics. The specific task of the Panel on Transport Aircraft was to…

  15. Aeronautics and Space Report of the President: 1975 Activities.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This report, submitted to the Congress by President Ford in accordance with the National Aeronautics and Space Act of 1958, summarizes the United States' space and aeronautics activities for the year 1975. Detailed summaries of the activities of the following governmental departments or agencies are provided: National Aeronautics and Space…

  16. 78 FR 52230 - Government/Industry Aeronautical Charting Forum Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-22

    ... Federal Aviation Administration Government/Industry Aeronautical Charting Forum Meeting AGENCY: Federal...-annual meeting of the Federal Aviation Administration (FAA) Aeronautical Charting Forum (ACF) to discuss...), notice is hereby given of a meeting of the FAA Aeronautical Charting Forum to be held from October...

  17. 76 FR 53530 - Government/Industry Aeronautical Charting Forum Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-26

    ... Federal Aviation Administration Government/Industry Aeronautical Charting Forum Meeting AGENCY: Federal...-annual meeting of the Federal Aviation Administration (FAA) Aeronautical Charting Forum (ACF) to discuss... given of a meeting of the FAA Aeronautical Charting Forum to be held from October 25 through October...

  18. 76 FR 12211 - Government/Industry Aeronautical Charting Forum Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-04

    ... Federal Aviation Administration Government/Industry Aeronautical Charting Forum Meeting AGENCY: Federal...-annual meeting of the Federal Aviation Administration (FAA) Aeronautical Charting Forum (ACF) to discuss... of a meeting of the FAA Aeronautical ] Charting Forum to be held from April 26 through April 28,...

  19. 75 FR 11225 - Government/Industry Aeronautical Charting Forum Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ... Federal Aviation Administration Government/Industry Aeronautical Charting Forum Meeting AGENCY: Federal... Forum (ACF 10-01) to discuss informational content and design of aeronautical charts and related.... App. II), notice is hereby given of a meeting of the FAA Aeronautical Charting Forum to be held...

  20. 77 FR 50759 - Government/Industry Aeronautical Charting Forum Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-22

    ... TRANSPORTATION Federal Aviation Administration Government/Industry Aeronautical Charting Forum Meeting AGENCY... announces the bi-annual meeting of the Federal Aviation Administration (FAA) Aeronautical Charting Forum... hereby given of a meeting of the FAA Aeronautical Charting Forum to be held from October 23...

  1. 78 FR 12415 - Government/Industry Aeronautical Charting Forum Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-22

    ... Federal Aviation Administration Government/Industry Aeronautical Charting Forum Meeting AGENCY: Federal...-annual meeting of the Federal Aviation Administration (FAA) Aeronautical Charting Forum (ACF) to discuss...), notice is hereby given of a meeting of the FAA Aeronautical Charting Forum to be held from April...

  2. 75 FR 54221 - Government/Industry Aeronautical Charting Forum Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-03

    ... Federal Aviation Administration Government/Industry Aeronautical Charting Forum Meeting AGENCY: Federal...-annual meeting of the Federal Aviation Administration (FAA) Aeronautical Charting Forum (ACF) to discuss... is hereby given of a meeting of the FAA Aeronautical Charting Forum to be held from October...

  3. NASA's Role in Aeronautics: A Workshop. Volume II - Military Aviation.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Assembly of Engineering.

    The central task of a 1980 workshop on the role of the National Aeronautics and Space Administration (NASA) in aeronautics was to examine the relationship of NASA's research capabilities to the state of U.S. aviation and to make recommendations about NASA's future role in aeronautics. The findings and recommendations of the Panel on Military…

  4. 14 CFR 61.159 - Aeronautical experience: Airplane category rating.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aeronautical experience: Airplane category... Transport Pilots § 61.159 Aeronautical experience: Airplane category rating. (a) Except as provided in... certificate with an airplane category and class rating must have at least 1,500 hours of total time as a...

  5. 76 FR 183 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-03

    ... SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Meeting AGENCY: National Aeronautics... meeting of the Aeronautics Committee of the NASA Advisory Council. The meeting will be held for the... Administration Headquarters, Washington, DC 20546, (202) 358-0566, or susan.l.minor@nasa.gov ....

  6. NASA's Role in Aeronautics: A Workshop. Volume IV - General Aviation.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Assembly of Engineering.

    The central task of a 1980 workshop on the role of the National Aeronautics and Space Administration (NASA) in aeronautics was to examine the relationship of NASA's research capabilities to the state of U.S. aviation and to make recommendations about NASA's future role in aeronautics. The findings and recommendations of the Panel on General…

  7. 14 CFR 45.25 - Location of marks on fixed-wing aircraft.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Location of marks on fixed-wing aircraft. 45.25 Section 45.25 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... surfaces of a single vertical tail or on the outer surfaces of a multivertical tail. However, on...

  8. 14 CFR 45.25 - Location of marks on fixed-wing aircraft.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Location of marks on fixed-wing aircraft. 45.25 Section 45.25 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... surfaces of a single vertical tail or on the outer surfaces of a multivertical tail. However, on...

  9. 14 CFR 45.25 - Location of marks on fixed-wing aircraft.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Location of marks on fixed-wing aircraft. 45.25 Section 45.25 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... surfaces of a single vertical tail or on the outer surfaces of a multivertical tail. However, on...

  10. 14 CFR 45.25 - Location of marks on fixed-wing aircraft.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Location of marks on fixed-wing aircraft. 45.25 Section 45.25 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... surfaces of a single vertical tail or on the outer surfaces of a multivertical tail. However, on...

  11. 14 CFR 45.25 - Location of marks on fixed-wing aircraft.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Location of marks on fixed-wing aircraft. 45.25 Section 45.25 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... surfaces of a single vertical tail or on the outer surfaces of a multivertical tail. However, on...

  12. Aeronautical concerns and National Aeronautics and Space Administration atmospheric electricity projects

    NASA Technical Reports Server (NTRS)

    Vaughan, W. W.

    1980-01-01

    The phenomenology of lightning and lightning measurement techniques are briefly examined with a particular reference to aeronautics. Developments made in airborne and satellite detection methods are reported. NASA research efforts are outlined which cover topics including in-situ measurements, design factors and protection, remote optical and radio frequency measurements, and space vehicle design.

  13. Hopf and two-multiple semi-stable limit cycle bifurcations of a restrained plate subjected to subsonic flow

    NASA Astrophysics Data System (ADS)

    Li, Peng; Yang, Yiren; Shi, Haijian

    2015-01-01

    This paper is mainly about the stabilities and bifurcations of a cantilevered plate with nonlinear motion constraints in an axial subsonic flow. The Galerkin method is employed to discretize the governing partial differential equation. The fixed points and their stabilities are presented in a parameter space based on qualitative analysis and numerical studies. The system loses stability by flutter and undergoes limit cycle oscillations after instability due to the nonlinearity. The stabilities of the limit cycle oscillations are addressed on the basis of the equivalent linearized method. The type of Hopf bifurcation (subcritical or supercritical) is dependent on the location of the nonlinear motion constraints. Interestingly, for some certain states the Hopf bifurcations are both subcritical and supercritical. The two-multiple semi-stable limit cycle bifurcation, which is due to the extreme point of the flutter curve, is also determined. Results of the numerical integration method sufficiently support the analytical method presented in this paper.

  14. Longitudinal aerodynamic characteristics of a subsonic, energy-efficient transport configuration in the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Jacobs, Peter F.; Gloss, Blair B.

    1989-01-01

    The Reynolds number, aeroelasticity, boundary layer transition, and nonadiabatic wall temperature effects, and data repeatability was determined in the National Transonic Facility (NTF) for a subsonic, energy efficient transport model. The model was tested over a Mach number range of 0.50 to 0.86 and a Reynolds number range of 1.9 million to approximately 23.0 million (based on mean geometric chord). The majority of the data was taken using cryogenic nitrogen (data at 1.9 million Reynolds number was taken in air). Force and moment, wing pressure, and wing thermocouple data are presented. The data indicate that increasing Reynolds number resulted in greater effective camber of the supercritical wing and horizontal tail, resulting in greater lift and pitching moment coefficients at nearly all angles of attack for M = 0.82. As Reynolds number was increased, untrimmed L/D increased, the angle of attack for maximum L/D decreased, drag creep was reduced significantly, and drag divergence Mach number increased slightly. Data repeatability for both modes of operation of the NTF (air and cryogenic nitrogen) was generally very good, and nonadiabatic wall effects were estimated to be small. Transition-free and transition-fixed configurations had significantly different force and moment data at M = 0.82 for low Reynolds number, and very small differences were noted at high Reynolds numbers.

  15. Numerical Simulation of Subsonic and Transonic Propeller Flow. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Snyder, Aaron

    1988-01-01

    The numerical simulation of 3-D transonic flow about a system of propeller blades is investigated. In particular, it is shown that the use of helical coordinates significantly simplifies the form of the governing equation when the propeller system is assumed to be surrounded by an irrotational flow field of an inviscid fluid. The unsteady small disturbance equation, valid for lightly loaded blades and expressed in helical coordinates, is derived from the general blade-fixed potential equation, given for an arbitrary coordinate system. The use of a coordinate system which inherently adapts to the mean flow results in a disturbance equation requiring relatively few terms to accurately model the physics of the flow. Furthermore, the helical coordinate system presented here is novel in that it is periodic in the circumferential direction while, simultaneously, maintaining orthogonal properties at the mean blade locations. The periodic characteristic allows a complete cascade of blades to be treated, and the orthogonality property affords straightforward treatment of blade boundary conditions. An ADI numerical scheme is used to compute the solution of the steady flow as an asymptotic limit of an unsteady flow. As an example of the method, solutions are presented for subsonic and transonic flow about a 5 percent thick bicircular arc blade of an 8-bladed cascade. Both high and low advance ratio cases are computed and include a lifting as well as nonlifting cases. The nonlifting solutions obtained are compared to solutions from a Euler code.

  16. Application of Mobile-ip to Space and Aeronautical Networks

    NASA Technical Reports Server (NTRS)

    Leung, Kent; Shell, Dan; Ivancic, William D.; Stewart, David H.; Bell, Terry L.; Kachmar, Brian A.

    2001-01-01

    The National Aeronautics and Space Administration (NASA) is interested in applying mobile Internet protocol (mobile-ip) technologies to its space and aeronautics programs. In particular, mobile-ip will play a major role in the Advanced Aeronautic Transportation Technology (AAT-F), the Weather Information Communication (WINCOMM), and the Small Aircraft Transportation System (SATS) aeronautics programs. This paper describes mobile-ip and mobile routers--in particular, the features, capabilities, and initial performance of the mobile router are presented. The application of mobile-router technology to NASA's space and aeronautics programs is also discussed.

  17. Future developments in aeronautical satellite communications

    NASA Technical Reports Server (NTRS)

    Wood, Peter

    1990-01-01

    Very shortly aeronautical satellite communications will be introduced on a world wide basis. By the end of the year, voice communications (both to the cabin and cockpit) and packet data communications will be available to both airlines and executive aircraft. During the decade following the introduction of the system, there will be many enhancements and developments which will increase the range of applications, expand the potential number of users, and reduce costs. A number of ways in which the system is expected to evolve over this period are presented. Among the issues which are covered are the impact of spot beam satellites, spectrum and power conservation techniques, and the expanding range of user services.

  18. Adaptive multisatellite systems for aeronautical services.

    NASA Technical Reports Server (NTRS)

    Bisaga, J. J.; Redisch, W. N.

    1971-01-01

    The use of satellite systems to provide operational communications and ATC services to aircraft flying the oceanic routes has been the subject of considerable interest recently. Since most of the link factors are functions of geometry and the aircraft traffic density varies with time, the satellite power needed to meet the communication demand varies considerably in an oceanic area as a function of both location and time. An adaptive system that tailors the use of system resources to the needs of the user can result in an additional system capacity improvement by a factor of between two and three. Results of studies conducted to date indicate that simple implementation of adaptive techniques in aeronautical satellite systems is feasible. Study is continuing in this area and on the application of satellite multibeam techniques to gain even further increase in capacity.

  19. Performance of a Regional Aeronautical Telecommunications Network

    NASA Technical Reports Server (NTRS)

    Bretmersky, Steven C.; Ripamonti, Claudio; Konangi, Vijay K.; Kerczewski, Robert J.

    2001-01-01

    This paper reports the findings of the simulation of the ATN (Aeronautical Telecommunications Network) for three typical average-sized U.S. airports and their associated air traffic patterns. The models of the protocols were designed to achieve the same functionality and meet the ATN specifications. The focus of this project is on the subnetwork and routing aspects of the simulation. To maintain continuous communication between the aircrafts and the ground facilities, a model based on mobile IP is used. The results indicate that continuous communication is indeed possible. The network can support two applications of significance in the immediate future FTP and HTTP traffic. Results from this simulation prove the feasibility of development of the ATN concept for AC/ATM (Advanced Communications for Air Traffic Management).

  20. A fuel level sensor for aeronautical applications

    NASA Astrophysics Data System (ADS)

    Petrazzuoli, L.; Persichetti, G.; Onorato, G.; Grimaldi, I. A.; Testa, G.; Bernini, R.

    2015-03-01

    A novel fuel level sensor for aeronautical applications is developed. The sensor is based on an array of total internal reflection (TIR) point sensors. Respect to conventional TIR sensors the new design permits to be sensitive to common jet fuels (JetA, JP4,JP7) but also to operate with new alternative fuels. The sensor doesn't require aircraft calibration, temperature compensation and furthermore is able to operate correctly when partially or totally exposed to presence of condensed water on its surface. The point sensors are multiplexed on a single fiber by optical couplers and interrogated simultaneously by Optical Time Domain Reflectometry (OTDR) at a wavelength of 1550nm. Experimental results show a resolution of +/-1.5mm could be achieved. The sensors is also able to measure the free water level in the fuel.

  1. Fourier time spectral method for subsonic and transonic flows

    NASA Astrophysics Data System (ADS)

    Zhan, Lei; Liu, Feng; Papamoschou, Dimitri

    2016-06-01

    The time accuracy of the exponentially accurate Fourier time spectral method (TSM) is examined and compared with a conventional 2nd-order backward difference formula (BDF) method for periodic unsteady flows. In particular, detailed error analysis based on numerical computations is performed on the accuracy of resolving the local pressure coefficient and global integrated force coefficients for smooth subsonic and non-smooth transonic flows with moving shock waves on a pitching airfoil. For smooth subsonic flows, the Fourier TSM method offers a significant accuracy advantage over the BDF method for the prediction of both the local pressure coefficient and integrated force coefficients. For transonic flows where the motion of the discontinuous shock wave contributes significant higher-order harmonic contents to the local pressure fluctuations, a sufficient number of modes must be included before the Fourier TSM provides an advantage over the BDF method. The Fourier TSM, however, still offers better accuracy than the BDF method for integrated force coefficients even for transonic flows. A problem of non-symmetric solutions for symmetric periodic flows due to the use of odd numbers of intervals is uncovered and analyzed. A frequency-searching method is proposed for problems where the frequency is not known a priori. The method is tested on the vortex shedding problem of the flow over a circular cylinder.

  2. Subsonic and Supersonic Effects in Bose-Einstein Condensate

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2003-01-01

    A paper presents a theoretical investigation of subsonic and supersonic effects in a Bose-Einstein condensate (BEC). The BEC is represented by a time-dependent, nonlinear Schroedinger equation that includes terms for an external confining potential term and a weak interatomic repulsive potential proportional to the number density of atoms. From this model are derived Madelung equations, which relate the quantum phase with the number density, and which are used to represent excitations propagating through the BEC. These equations are shown to be analogous to the classical equations of flow of an inviscid, compressible fluid characterized by a speed of sound (g/Po)1/2, where g is the coefficient of the repulsive potential and Po is the unperturbed mass density of the BEC. The equations are used to study the effects of a region of perturbation moving through the BEC. The excitations created by a perturbation moving at subsonic speed are found to be described by a Laplace equation and to propagate at infinite speed. For a supersonically moving perturbation, the excitations are found to be described by a wave equation and to propagate at finite speed inside a Mach cone.

  3. Mitigation of wind tunnel wall interactions in subsonic cavity flows

    DOE PAGESBeta

    Wagner, Justin L.; Casper, Katya Marie; Beresh, Steven J.; Henfling, John F.; Spillers, Russell Wayne; Pruett, Brian Owen Matthew

    2015-03-06

    In this study, the flow over an open aircraft bay is often represented in a wind tunnel with a cavity. In flight, this flow is unconfined, though in experiments, the cavity is surrounded by wind tunnel walls. If untreated, wind tunnel wall effects can lead to significant distortions of cavity acoustics in subsonic flows. To understand and mitigate these cavity–tunnel interactions, a parametric approach was taken for flow over an L/D = 7 cavity at Mach numbers 0.6–0.8. With solid tunnel walls, a dominant cavity tone was observed, likely due to an interaction with a tunnel duct mode. Furthermore, anmore » acoustic liner opposite the cavity decreased the amplitude of the dominant mode and its harmonics, a result observed by previous researchers. Acoustic dampeners were also placed in the tunnel sidewalls, which further decreased the dominant mode amplitudes and peak amplitudes associated with nonlinear interactions between cavity modes. This then indicates that cavity resonance can be altered by tunnel sidewalls and that spanwise coupling should be addressed when conducting subsonic cavity experiments. Though mechanisms for dominant modes and nonlinear interactions likely exist in unconfined cavity flows, these effects can be amplified by the wind tunnel walls.« less

  4. A model of unsteady subsonic flow with acoustics excluded

    NASA Astrophysics Data System (ADS)

    Fedorchenko, A. T.

    1997-03-01

    Diverse subsonic initial-boundary-value problems (flows in a closed volume initiated by blowing or suction through permeable walls, flows with continuously distributed sources, viscous flows with substantial heat fluxes, etc.) are considered, to show that they cannot be solved by using the classical theory of incompressible fluid motion which involves the equation div u = 0. Application of the most general theory of compressible fluid flow may not be best in such cases, because then we encounter difficulties in accurately resolving the complex acoustic phenomena as well as in assigning the proper boundary conditions. With this in mind a new non-local mathematical model, where div u [not equal] 0 in the general case, is proposed for the simulation of unsteady subsonic flows in a bounded domain with continuously distributed sources of mass, momentum and entropy, also taking into account the effects of viscosity and heat conductivity when necessary. The exclusion of sound waves is one of the most important features of this model which represents a fundamental extension of the conventional model of incompressible fluid flow. The model has been built up by modifying both the general system of equations for the motion of compressible fluid (viscous or inviscid as required) and the appropriate set of boundary conditions. Some particular cases of this model are discussed. A series of exact time-dependent solutions, one- and two-dimensional, is presented to illustrate the model.

  5. Fourier time spectral method for subsonic and transonic flows

    NASA Astrophysics Data System (ADS)

    Zhan, Lei; Liu, Feng; Papamoschou, Dimitri

    2016-01-01

    The time accuracy of the exponentially accurate Fourier time spectral method (TSM) is examined and compared with a conventional 2nd-order backward difference formula (BDF) method for periodic unsteady flows. In particular, detailed error analysis based on numerical computations is performed on the accuracy of resolving the local pressure coefficient and global integrated force coefficients for smooth subsonic and non-smooth transonic flows with moving shock waves on a pitching airfoil. For smooth subsonic flows, the Fourier TSM method offers a significant accuracy advantage over the BDF method for the prediction of both the local pressure coefficient and integrated force coefficients. For transonic flows where the motion of the discontinuous shock wave contributes significant higher-order harmonic contents to the local pressure fluctuations, a sufficient number of modes must be included before the Fourier TSM provides an advantage over the BDF method. The Fourier TSM, however, still offers better accuracy than the BDF method for integrated force coefficients even for transonic flows. A problem of non-symmetric solutions for symmetric periodic flows due to the use of odd numbers of intervals is uncovered and analyzed. A frequency-searching method is proposed for problems where the frequency is not known a priori. The method is tested on the vortex shedding problem of the flow over a circular cylinder.

  6. Mitigation of wind tunnel wall interactions in subsonic cavity flows

    SciTech Connect

    Wagner, Justin L.; Casper, Katya Marie; Beresh, Steven J.; Henfling, John F.; Spillers, Russell Wayne; Pruett, Brian Owen Matthew

    2015-03-06

    In this study, the flow over an open aircraft bay is often represented in a wind tunnel with a cavity. In flight, this flow is unconfined, though in experiments, the cavity is surrounded by wind tunnel walls. If untreated, wind tunnel wall effects can lead to significant distortions of cavity acoustics in subsonic flows. To understand and mitigate these cavity–tunnel interactions, a parametric approach was taken for flow over an L/D = 7 cavity at Mach numbers 0.6–0.8. With solid tunnel walls, a dominant cavity tone was observed, likely due to an interaction with a tunnel duct mode. Furthermore, an acoustic liner opposite the cavity decreased the amplitude of the dominant mode and its harmonics, a result observed by previous researchers. Acoustic dampeners were also placed in the tunnel sidewalls, which further decreased the dominant mode amplitudes and peak amplitudes associated with nonlinear interactions between cavity modes. This then indicates that cavity resonance can be altered by tunnel sidewalls and that spanwise coupling should be addressed when conducting subsonic cavity experiments. Though mechanisms for dominant modes and nonlinear interactions likely exist in unconfined cavity flows, these effects can be amplified by the wind tunnel walls.

  7. Advanced Configurations for Very Large Subsonic Transport Airplanes

    NASA Technical Reports Server (NTRS)

    McMasters, John H.; Paisley, David J.; Hubert, Richard J.; Kroo, Ilan; Bofah, Kwasi K.; Sullivan, John P.; Drela, Mark

    1996-01-01

    Recent aerospace industry interest in developing a subsonic commercial transport airplane with 50 percent greater passenger capacity than the largest existing aircraft in this category (the Boeing 747-400 with approximately 400-450 seats) has generated a range of proposals based largely on the configuration paradigm established nearly 50 years ago with the Boeing B-47 bomber. While this basic configuration paradigm has come to dominate subsonic commercial airplane development since the advent of the Boeing 707/Douglas DC-8 in the mid-1950's, its extrapolation to the size required to carry more than 600-700 passengers raises several questions. To explore these and a number of related issues, a team of Boeing, university, and NASA engineers was formed under the auspices of the NASA Advanced Concepts Program. The results of a Research Analysis focused on a large, unconventional transport airplane configuration for which Boeing has applied for a patent are the subject of this report. It should be noted here that this study has been conducted independently of the Boeing New Large Airplane (NLA) program, and with the exception of some generic analysis tools which may be common to this effort and the NLA (as will be described later), no explicit Boeing NLA data other than that published in the open literature has been used in the conduct of the study reported here.

  8. REVIEW ARTICLE: Recent developments in smart structures with aeronautical applications

    NASA Astrophysics Data System (ADS)

    Loewy, Robert G.

    1997-10-01

    The original version of this paper was presented and distributed as part of the 37th Israel Annual Conference on Aerospace Sciences Proceedings. Without attempting a thorough review of the burgeoning literature, the results of a representative sampling of recent papers dealing with smart materials and structures as actuators in aeronautical systems are summarized here. Their potential for improving performance, handling qualities in a stall, and increasing fatigue life is discussed briefly as requiring relatively slow-acting shape and shape-distribution changes. A similar review is made of applications for improving aeroelastic divergence, flutter instabilities, and tail buffeting on fixed-wing aircraft; and reducing vibrations, improving external acoustics, and providing flight controls for rotating-wing aircraft - all of which require a high-frequency response. The status of some of the most promising developments is noted and the remaining problems are touched on. Two approaches, which have not been given substantial attention elsewhere, are reviewed; these are: developing concentrated, namely nondistributed, piezoelectric actuators in helicoidal configurations, on the one hand, as a way to improve force - deflection output; and using control surfaces purposefully designed to be marginally unstable and stabilized by smart structures, on the other hand, as a means of reducing the force - deflection combinations required of smart-structure actuators.

  9. Modulation and Synchronization for Aeronautical Telemetry

    NASA Astrophysics Data System (ADS)

    Shaw, Christopher G.

    Aeronautical telemetry systems have historically been implemented with constant envelope modulations like CPM. Shifts in system constraints including reduced available bandwidth and increased throughput demands have caused many in the field to reevaluate traditional methods and design practices. This work examines the costs and benefits of using APSK for aeronautical telemetry instead of CPM. Variable rate turbo codes are used to improve the power efficiency of 16- and 32-APSK. Spectral regrowth in nonlinear power amplifiers when driven by non-constant envelope modulation is also considered. Simulation results show the improved spectral efficiency of this modulation scheme over those currently defined in telemetry standards. Additionally, the impact of transitioning from continuous transmission to burst-mode is considered. Synchronization loops are ineffective in burst-mode communication. Data-aided feedforward algorithms can be used to estimate offsets in carrier phase, frequency, and symbol timing between the transmitter and the receiver. If a data-aided algorithm is used, a portion of the transmitted signal is devoted to a known sequence of pilot symbols. Optimum pilot sequences for the three synchronization parameters are obtained analytically and numerically for different system constraints. The alternating sequence is shown to be optimal given a peak power constraint. Alternatively, synchronization can be accomplished using blind algorithms that do not rely on a priori knowledge of a pilot sequence. If blind algorithms are used, the observation interval can be longer than for data-aided algorithms. There are combinations of pilot sequence length and packet length where data-aided algorithms perform better than blind algorithms and vice versa. The conclusion is that a sequential arrangement of blind algorithms operating over an entire burst performs better than a CRB-achieving data-aided algorithm operating over a short pilot sequence.

  10. The revolutionary impact of evolving aeronautical technologies

    NASA Technical Reports Server (NTRS)

    Kayten, G. G.; Driver, C.; Maglieri, D. J.

    1984-01-01

    Recent advances in aeronautical technologies which could produce revolutionary changes in transport aircraft if fully implemented are delineated. Laminar flow control offers a L/D improvement from the current 18 to 22 if used with a 767 configuration. Higher aspect and thickness/chord ratios could yield more efficient structural designs and further drag reduction. High-strength, fiber-reinforced composite structures can reduce structural weight by 10-30 percent. Improved engine cooling methods, higher stage loadings and exhaust temperatures can lower the SFC by 15 percent, engine weight by 15 percent, and the parts count by 50 percent. Aft-mounted counterrotating propellers can potentially decrease the SFC an additional 15-20 percent. Supersonic transport aircraft with L/D ratios of 18 and 70 seat miles/gal fuel efficiency can now be built that weigh half as much as the Concorde and carry the same load. The new SST would have superplastic-molded Al alloy structures.

  11. Life prediction technologies for aeronautical propulsion systems

    NASA Technical Reports Server (NTRS)

    Mcgaw, Michael A.

    1990-01-01

    Fatigue and fracture problems continue to occur in aeronautical gas turbine engines. Components whose useful life is limited by these failure modes include turbine hot-section blades, vanes, and disks. Safety considerations dictate that catastrophic failures be avoided, while economic considerations dictate that catastrophic failures be avoided, while economic considerations dictate that noncatastrophic failures occur as infrequently as possible. Therefore, the decision in design is making the tradeoff between engine performance and durability. LeRC has contributed to the aeropropulsion industry in the area of life prediction technology for over 30 years, developing creep and fatigue life prediction methodologies for hot-section materials. At the present time, emphasis is being placed on the development of methods capable of handling both thermal and mechanical fatigue under severe environments. Recent accomplishments include the development of more accurate creep-fatigue life prediction methods such as the total strain version of LeRC's strain-range partitioning (SRP) and the HOST-developed cyclic damage accumulation (CDA) model. Other examples include the development of a more accurate cumulative fatigue damage rule - the double damage curve approach (DDCA), which provides greatly improved accuracy in comparison with usual cumulative fatigue design rules. Other accomplishments in the area of high-temperature fatigue crack growth may also be mentioned. Finally, we are looking to the future and are beginning to do research on the advanced methods which will be required for development of advanced materials and propulsion systems over the next 10-20 years.

  12. Study of Subsonic Flow Over a TOW 2B Missile

    NASA Astrophysics Data System (ADS)

    Goudarzi, Koorosh; Jamali, Mehdi

    2016-01-01

    The objective of this investigation is to study the subsonic flow over a missile. In this paper, a model of TOW 2B missile is studied. Two computational approaches are being explored, namely solutions based on the Reynolds-averaged compressible Navier-Stokes equations and solutions based on the inviscid flow (small disturbance theory). The simulations are performed at the Mach number of 0.6, 0.7, 0.8, 0.9 and 1.0 at four angles of attack of 2, 4, 6 and 8 degree. Results obtained from analytical simulation are compared with numerical data. It is found that lift and drag coefficients would go up by increasing of the angle of attack and the Mach number. Trend of changes of the results that obtained from the small disturbance theory is roughly as same as the numeric solution.

  13. Subsonic Static and Dynamic Aerodynamics of Blunt Entry Vehicles

    NASA Technical Reports Server (NTRS)

    Mitcheltree, Robert A.; Fremaux, Charles M.; Yates, Leslie A.

    1999-01-01

    The incompressible subsonic aerodynamics of four entry-vehicle shapes with variable c.g. locations are examined in the Langley 20-Foot Vertical Spin Tunnel. The shapes examined are spherically-blunted cones with half-cone angles of 30, 45, and 60 deg. The nose bluntness varies between 0.25 and 0.5 times the base diameter. The Reynolds number based on model diameter for these tests is near 500,000. Quantitative data on attitude and location are collected using a video-based data acquisition system and reduced with a six deg-of-freedom inverse method. All of the shapes examined suffered from strong dynamic instabilities which could produced limit cycles with sufficient amplitudes to overcome static stability of the configuration. Increasing cone half-angle or nose bluntness increases drag but decreases static and dynamic stability.

  14. Inviscid and Viscous Interactions in Subsonic Corner Flows

    PubMed Central

    Chung, Kung-Ming; Chang, Po-Hsiung; Chang, Keh-Chin

    2013-01-01

    A flap can be used as a high-lift device, in which a downward deflection results in a gain in lift at a given geometric angle of attack. To characterize the aerodynamic performance of a deflected surface in compressible flows, the present study examines a naturally developed turbulent boundary layer past the convex and concave corners. This investigation involves the analysis of mean and fluctuating pressure distributions. The results obtained indicate strong inviscid-viscous interactions. There are upstream expansion and downstream compression for the convex-corner flows, while the opposite trend is observed for the concave-corner flows. A combined flow similarity parameter, based on the small perturbation theory, is proposed to scale the flow characteristics in both subsonic convex- and concave-corner flows. PMID:23935440

  15. Subsonic Dynamic Stability Tests of a Sample Return Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Fremaux, C. Michael; Johnson, R. Keith

    2006-01-01

    An investigation has been conducted in the NASA Langley 20-Foot Vertical Spin Tunnel (VST) to determine the subsonic dynamic stability characteristics of a proposed atmospheric entry vehicle for sample return missions. In particular, the effects of changes in aft-body geometry on stability were examined. Freeflying tests of a dynamically scaled model with various geometric features were conducted, including cases in which the model was perturbed to measure dynamic response. Both perturbed and non-perturbed runs were recorded as motion time histories using the VST optical data acquisition system and reduced for post-test analysis. In addition, preliminary results from a static force and moment test of a similar model in the Langley 12-Foot Low Speed Tunnel are presented. Results indicate that the configuration is dynamically stable for the baseline geometry, but exhibits degraded dynamic behavior for the geometry modifications tested.

  16. Subsonic drag reduction of the Space Shuttle Orbiter

    NASA Astrophysics Data System (ADS)

    Khan, Mohammad Javed; Ahmed, Anwar; Varela-Rodriguez, Edmundo

    1995-01-01

    Various near-wake flow-modifying devices were experimentally evaluated for their effectiveness in increasing base pressure of the Space Shuttle Orbiter at low subsonic speed. The results confirmed the strong three-dimensional character of the orbiter near wake. A base cavity was found to be the most effective mechanism for increasing base pressure. However, for this mechanism to be effective, the cavity had to be longer than the main engine nozzles. Surface characteristics of the base cavity exposed to freestream had a strong influence on the base pressure. The trapped-vortex mechanism due to a back step was found to be effective in increasing the base pressure only in the region of the orbital-maneuvering-system pods. A combination of base-cavity and trapped-vortex mechanisms increased the base pressure by 25%, and the reduction in total drag was approximately 6%.

  17. Zero-length inlets for subsonic V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Glasgow, E. R.; Beck, W. E.; Woollett, R. R.

    1981-01-01

    Zero-length inlet performance and associated fan blade stresses were determined during model tests in the NASA-LeRC 9-by 15-foot low-speed wind tunnel. The inlet models, which were installed on a 20-inch diameter fan unit, had different inlet lip contraction ratios as well as unslotted, slotted, and double slotted inlet lips. The inlet angle-of-attack boundaries for onset of flow separation were identified and compared to the operating requirements of several generically different subsonic V/STOL aircraft. The zero-length inlets, especially those with slotted lips, were able to satisfy these requirements without compromising the maximum cowl forebody radius. As an aid to the inlet design process, a unique relationship was established between the maximum surface Mach number associated with the separation boundary and the maximum-to-throat surface velocity ratio.

  18. Subsonic Wing Optimization for Handling Qualities Using ACSYNT

    NASA Technical Reports Server (NTRS)

    Soban, Danielle Suzanne

    1996-01-01

    The capability to accurately and rapidly predict aircraft stability derivatives using one comprehensive analysis tool has been created. The PREDAVOR tool has the following capabilities: rapid estimation of stability derivatives using a vortex lattice method, calculation of a longitudinal handling qualities metric, and inherent methodology to optimize a given aircraft configuration for longitudinal handling qualities, including an intuitive graphical interface. The PREDAVOR tool may be applied to both subsonic and supersonic designs, as well as conventional and unconventional, symmetric and asymmetric configurations. The workstation-based tool uses as its model a three-dimensional model of the configuration generated using a computer aided design (CAD) package. The PREDAVOR tool was applied to a Lear Jet Model 23 and the North American XB-70 Valkyrie.

  19. Analysis of an advanced technology subsonic turbofan incorporating revolutionary materials

    NASA Technical Reports Server (NTRS)

    Knip, Gerald, Jr.

    1987-01-01

    Successful implementation of revolutionary composite materials in an advanced turbofan offers the possibility of further improvements in engine performance and thrust-to-weight ratio relative to current metallic materials. The present analysis determines the approximate engine cycle and configuration for an early 21st century subsonic turbofan incorporating all composite materials. The advanced engine is evaluated relative to a current technology baseline engine in terms of its potential fuel savings for an intercontinental quadjet having a design range of 5500 nmi and a payload of 500 passengers. The resultant near optimum, uncooled, two-spool, advanced engine has an overall pressure ratio of 87, a bypass ratio of 18, a geared fan, and a turbine rotor inlet temperature of 3085 R. Improvements result in a 33-percent fuel saving for the specified misssion. Various advanced composite materials are used throughout the engine. For example, advanced polymer composite materials are used for the fan and the low pressure compressor (LPC).

  20. Sub-sonic thermal explosions investigated by radiography

    SciTech Connect

    Smilowitz, Laura B; Henson, Bryan F; Romero, Jerry J; Asay, Blaine W

    2010-01-01

    This paper reviews the past 5 years of experiments utilizing radiographic techniques to study defiagration in thermal explosions in HMX based formulations. Details of triggering and timing synchronization are given. Radiographic images collected using both protons and x-rays are presented. Comparisons of experiments with varying size, case confinement, binder, and synchronization are presented. Techniques for quantifying the data in the images are presented and a mechanism for post-ignition burn propagation in a thermal explosion is discussed. From these experiments, we have observed a mechanism for sub-sonic defiagration with both gas phase convective and solid phase conductive burning. The convective front velocity is directly measured from the radiographic images and consumes only a small fraction of the HE. It lights the HE as it passes beginning the slower solid state conductive burn process. This mechanism is used to create a model to simulate the radiographic results and a comparison will be shown.

  1. Review of Propulsion Technologies for N+3 Subsonic Vehicle Concepts

    NASA Technical Reports Server (NTRS)

    Ashcraft, Scott W.; Padron, Andres S.; Pascioni, Kyle A.; Stout, Gary W., Jr.; Huff, Dennis L.

    2011-01-01

    NASA has set aggressive fuel burn, noise, and emission reduction goals for a new generation (N+3) of aircraft targeting concepts that could be viable in the 2035 timeframe. Several N+3 concepts have been formulated, where the term "N+3" indicate aircraft three generations later than current state-of-the-art aircraft, "N". Dramatic improvements need to be made in the airframe, propulsion systems, mission design, and the air transportation system in order to meet these N+3 goals. The propulsion system is a key element to achieving these goals due to its major role with reducing emissions, fuel burn, and noise. This report provides an in-depth description and assessment of propulsion systems and technologies considered in the N+3 subsonic vehicle concepts. Recommendations for technologies that merit further research and development are presented based upon their impact on the N+3 goals and likelihood of being operational by 2035.

  2. An Impact-Location Estimation Algorithm for Subsonic Uninhabited Aircraft

    NASA Technical Reports Server (NTRS)

    Bauer, Jeffrey E.; Teets, Edward

    1997-01-01

    An impact-location estimation algorithm is being used at the NASA Dryden Flight Research Center to support range safety for uninhabited aerial vehicle flight tests. The algorithm computes an impact location based on the descent rate, mass, and altitude of the vehicle and current wind information. The predicted impact location is continuously displayed on the range safety officer's moving map display so that the flightpath of the vehicle can be routed to avoid ground assets if the flight must be terminated. The algorithm easily adapts to different vehicle termination techniques and has been shown to be accurate to the extent required to support range safety for subsonic uninhabited aerial vehicles. This paper describes how the algorithm functions, how the algorithm is used at NASA Dryden, and how various termination techniques are handled by the algorithm. Other approaches to predicting the impact location and the reasons why they were not selected for real-time implementation are also discussed.

  3. Prediction of subsonic vortex shedding from forebodies with chines

    NASA Technical Reports Server (NTRS)

    Mendenhall, Michael R.; Lesieutre, Daniel J.

    1990-01-01

    An engineering prediction method and associated computer code VTXCHN to predict nose vortex shedding from circular and noncircular forebodies with sharp chine edges in subsonic flow at angles of attack and roll are presented. Axisymmetric bodies are represented by point sources and doublets, and noncircular cross sections are transformed to a circle by either analytical or numerical conformal transformations. The lee side vortex wake is modeled by discrete vortices in crossflow planes along the body; thus the three-dimensional steady flow problem is reduced to a two-dimensional, unsteady, separated flow problem for solution. Comparison of measured and predicted surface pressure distributions, flow field surveys, and aerodynamic characteristics are presented for noncircular bodies alone and forebodies with sharp chines.

  4. Anode effect elimination by subsonic and sonic vibrations

    NASA Astrophysics Data System (ADS)

    Karahan, Tuba; Duman, Ismail; Marsoglu, Muzeyyen

    2009-11-01

    The only method so far used industrially to produce primary aluminum is the combination of the Bayer process with the Hall-Héroult process. The production process of aluminum which was patented by Charles Martin Hall and Paul Louis Toussaint Héroult in 1886, has long been important in our daily lives and that importance is likely to increase year by year. In this study, different subsonic and sonic vibrations, which were obtained from a 0.30 kW, 1,400 rpm three-phase motor, also a 0.55 kW, 2,800 rpm three-phase motor and 0.75 kW frequency converter, were applied to a laboratory-type aluminum electrolysis cell and the possibility of eliminating the anode effect was investigated.

  5. Full scale subsonic wind tunnel requirements and design studies

    NASA Technical Reports Server (NTRS)

    Kelly, M. W.; Mort, K. W.; Hickey, D. H.

    1972-01-01

    The justification and requirements are summarized for a large subsonic wind tunnel capable of testing full-scale aircraft, rotor systems, and advanced V/STOL aircraft propulsion systems. The design considerations and constraints for such a facility are reviewed, and the trades between facility test capability and costs are discussed. The design studies showed that the structural cost of this facility is the most important cost factor. For this reason (and other considerations such as requirements for engine exhaust gas purging) an open-return wind tunnel having two test sections was selected. The major technical problem in the design of an open-return wind tunnel is maintaining good test section flow quality in the presence of external winds. This problem has been studied extensively, and inlet and exhaust systems which provide satisfactory attenuation of the effects of external winds on test section flow quality were developed.

  6. Evaluation of the Advanced Subsonic Technology Program Noise Reduction Benefits

    NASA Technical Reports Server (NTRS)

    Golub, Robert A.; Rawls, John W., Jr.; Russell, James W.

    2005-01-01

    This report presents a detailed evaluation of the aircraft noise reduction technology concepts developed during the course of the NASA/FAA Advanced Subsonic Technology (AST) Noise Reduction Program. In 1992, NASA and the FAA initiated a cosponsored, multi-year program with the U.S. aircraft industry focused on achieving significant advances in aircraft noise reduction. The program achieved success through a systematic development and validation of noise reduction technology. Using the NASA Aircraft Noise Prediction Program, the noise reduction benefit of the technologies that reached a NASA technology readiness level of 5 or 6 were applied to each of four classes of aircraft which included a large four engine aircraft, a large twin engine aircraft, a small twin engine aircraft and a business jet. Total aircraft noise reductions resulting from the implementation of the appropriate technologies for each class of aircraft are presented and compared to the AST program goals.

  7. Estimation of Rotary Stability Derivatives at Subsonic and Transonic Speeds

    NASA Technical Reports Server (NTRS)

    Tobak, Murray; Lessing, Henry C.

    1961-01-01

    The first part of this paper pertains to the estimation of subsonic rotary stability derivatives of wings. The unsteady potential flow problem is solved by a superposition of steady flow solutions. Numerical results for the damping coefficients of triangular wings are presented as functions of aspect ratio and Mach number, and are compared with experimental results over the Mach number range 0 to 1. In the second part, experimental results are used. to point out a close correlation between the nonlinear variations with angle of attack of the static pitching-moment curve slope and the damping-in-pitch coefficient. The underlying basis for the correlation is found as a result of an analysis in which the indicial function concept and. the principle of super-position are adapted to apply to the nonlinear problem. The form of the result suggests a method of estimating nonlinear damping coefficients from results of static wind-tunnel measurements.

  8. Subsonic jet pressure fluctuation characterization by tomographic laser interferometry

    NASA Astrophysics Data System (ADS)

    Martarelli, Milena; Castellini, Paolo; Tomasini, Enrico Primo

    2013-12-01

    This paper describes the application of a nonconventional experimental technique based on optical interferometry for the characterization of aeroacoustic sources. The specific test case studied is a turbulent subsonic jet. Traditional experimental methods exploited for the measurement of aerodynamic velocity fields are laser Doppler anemometer and particle image velocimetry which have an important drawback due to the fact that they can measure only if the flow is seeded with tracer particles. The technique proposed, by exploiting a laser Doppler interferometer and a tomographic algorithm for 3D field reconstruction, overcomes the problem of the flow seeding since it allows directly measuring the flow pressure fluctuation due to the flow turbulence. A laser Doppler interferometer indeed is sensitive to the density oscillation within the medium traversed by the laser beam even though it integrates the density oscillation along the entire path traveled by the laser. Consequently, the 3D distribution of the flow density fluctuation can be recovered only by exploiting a tomographic reconstruction algorithm applied to several projections. Finally, the flow pressure fluctuation can be inferred from the flow density measured, which comprehends both the aerodynamic pressure related to the turbulence and the sound pressure due to the propagation of the acoustic waves into the far field. In relation to the test case studied in this paper, e.g., the turbulent subsonic jet, the method allows a complete aeroacoustic characterization of the flow field since it measures both the aerodynamic "cause" of the noise, such as the vortex shedding, and the acoustic "effect" of it, i.e., the sound propagation in the 3D space. The performances and the uncertainty have been evaluated and discussed, and the technique has been experimentally validated.

  9. A cumulative index to a continuing bibliography on aeronautical engineering

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This bibliography is a cumulative index to the abstracts contained in NASA-SP-7037(184) through NASA-SP-7037(195) of Aeronautical Engineering: A Continuing Bibliography. NASA SP-7037 and its supplements have been compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, foreign technology, contract, report number, and accession number indexes.

  10. Aeronautical engineering: A cumulative index to a continuing bibliography

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This bibliography is a cumulative index to the abstracts contained in NASA SP-7037(210) through NASA SP-7037(221) of Aeronautical Engineering: A Continuing Bibliography. NASA SP-7037 and its supplements have been compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, foreign technology, contract number, report number, and accession number indexes.

  11. Aeronautical Engineering: A continuing bibliography, 1982 cumulative index

    NASA Technical Reports Server (NTRS)

    1983-01-01

    This bibliography is a cumulative index to the abstracts contained in NASA SP-7037 (145) through NASA SP-7037 (156) of Aeronautical Engineering: A Continuing Bibliography. NASA SP-7037 and its supplements have been compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, contract, and report number indexes.

  12. Cyber Technology for Materials and Structures in Aeronautics and Aerospace

    NASA Technical Reports Server (NTRS)

    Pipes, R. Byron

    2002-01-01

    The evolution of composites applications in aeronautics from 1970 to the present is discussed. The barriers and challenges to economic application and to certification are presented and recommendations for accelerated development are outlined. The potential benefits of emerging technologies to aeronautics and their foundation in composite materials are described and the resulting benefits in vehicle take off gross weight are quantified. Finally, a 21st century vision for aeronautics in which human mobility is increased by an order of magnitude is articulated.

  13. A cumulative index to Aeronautical Engineering: A continuing bibliography

    NASA Technical Reports Server (NTRS)

    1982-01-01

    This bibliography is a cumulated index to the abstracts contained in NASA SP-7037(132) through NASA SP-7037(143) of Aeronautical Engineering: A continuing bibliography. NASA SP-7037 and its supplements have been compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, contract, and report number indexes.

  14. Aeronautical engineering: A cumulative index to a continuing bibliography

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This bibliography is a cumulative index to the abstracts contained in NASA SP-7037 (197) through NASA SP-7037 (208) of Aeronautical Engineering: A Continuing Bibliography. NASA SP-7037 and its supplements have been compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, foreign technology, contract, report number, and accession number indexes.

  15. Aeroelastic characteristics of a cascade of mistuned blades in subsonic and supersonic flows. [turbofan engines

    NASA Technical Reports Server (NTRS)

    Kielb, R. E.; Kaza, K. R. V.

    1981-01-01

    The effects of mistuning on flutter and forced response of a cascade in subsonic in subsonic and supersonic flow were investigated. The aerodynamic and structural coupling between the bending and torsional motions and the aerodynamic coupling between the blades were studied. It is shown that frequency mistuning always has a beneficial effect on flutter. For the cascade considered, the potential for raising flutter speed is greater in subsonic than in supersonic flow. Preliminary results for structural damping mistuning show that there are no additional benefits over adding damping mistuning may have either a beneficial or an adverse effect on forced response, depending on the engine order of the excitation and Mach number.

  16. Aeronautics and Space Report of the President

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Fiscal Year (FY) 2002 brought advances on many fronts in support of NASA's new vision, announced by Administrator Sean O Keefe on April 12, "to improve life here, to extend life to there, to find life beyond." NASA successfully carried out four Space Shuttle missions, including three to the International Space Station (ISS) and one servicing mission to the Hubble Space Telescope (HST). By the end of the fiscal year, humans had occupied the ISS continuously for 2 years. NASA also managed five expendable launch vehicle (ELV) missions and participated in eight international cooperative ELV launches. In the area of space science, two of the Great Observatories, the Hubble Space Telescope and the Chandra X-Ray Observatory, continued to make spectacular observations. The Mars Global Surveyor and Mars Odyssey carried out their mapping missions of the red planet in unprecedented detail. Among other achievements, the Near Earth Asteroid Rendezvous (NEAR) Shoemaker spacecraft made the first soft landing on an asteroid, and the Solar and Heliospheric Observatory (SOHO) monitored a variety of solar activity, including the largest sunspot observed in 10 years. The education and public outreach program stemming from NASA's space science missions continues to grow. In the area of Earth science, attention focused on completing the first Earth Observing Satellite series. Four spacecraft were successfully launched. The goal is to understand our home planet as a system, as well as how the global environment responds to change. In aerospace technology, NASA conducted studies to improve aviation safety and environmental friendliness, progressed with its Space Launch Initiative Program, and explored a variety of pioneering technologies, including nanotechnology, for their application to aeronautics and aerospace. NASA remained broadly engaged in the international arena and concluded over 60 international cooperative and reimbursable international agreements during FY 2002.

  17. Preliminary Investigation of the Static Longitudinal and Lateral Stability Characteristics of a 0.05-Scale Model of the Convair F2Y-1 Airplane at High Subsonic Speeds

    NASA Technical Reports Server (NTRS)

    Spreemann, Kenneth P.; Few, Albert G., Jr.

    1954-01-01

    At the request of the Bureau of Aeronautics, Department of the Navy, National Advisory Committee for Aeronautics has conducted a preliminary investigation at high subsonic speeds of the static longitudinal and lateral stability characteristics of a 0.05-scale model of the Convair F2Y-1 water-based fighter airplane. The tests covered a Mach number range from 0.5 to 0.94 and corresponding Reynolds numbers, based on the wing mean aerodynamic chord, from 3.3 x 10(exp 6) to 4.3 x 10(exp 6). The maximum angle-of-attack range (obtained at the lower Mach numbers) was from -2 degrees to 25 degrees. Sideslip angles from -4 degrees to 12 degrees also were investigated. The investigation included effects of various arrangements of wing fences and of rocket packages.

  18. Overview and major characteristics of future aeronautical and space systems

    NASA Technical Reports Server (NTRS)

    Venneri, Samuel L.; Noor, Ahmed K.

    1992-01-01

    A systematic projection is made of prospective materials and structural systems' performance requirements in light of emerging applications. The applications encompass high-speed/long-range rotorcraft, advanced subsonic commercial aircraft, high speed (supersonic) commercial transports, hypersonic aircraft and missiles, extremely high-altitude cruise aircraft and missiles, and aerospace craft and launch vehicles. A tabulation is presented of the materials/structures/dynamics requirements associated with future aerospace systems, as well as the further development needs foreseen in each such case.

  19. Advancing Aeronautics: A Decision Framework for Selecting Research Agendas

    NASA Technical Reports Server (NTRS)

    Anton, Philip S.; Ecola, Liisa; Kallimani, James G.; Light, Thomas; Ohlandt, Chad J. R.; Osburg, Jan; Raman, Raj; Grammich, Clifford A.

    2011-01-01

    Publicly funded research has long played a role in the development of aeronautics, ranging from foundational research on airfoils to development of the air-traffic control system. Yet more than a century after the research and development of successful controlled, sustained, heavier-than-air flight vehicles, there are questions over the future of aeronautics research. The field of aeronautics is relatively mature, technological developments within it have become more evolutionary, and funding decisions are sometimes motivated by the continued pursuit of these evolutionary research tracks rather than by larger factors. These developments raise questions over whether public funding of aeronautics research continues to be appropriate or necessary and at what levels. Tightened federal budgets and increasing calls to address other public demands make these questions sharper still. To help it address the questions of appropriate directions for publicly funded aeronautics research, the National Aeronautics and Space Administration's (NASA's) Aeronautics Research Mission Directorate (ARMD) asked the RAND Corporation to assess the elements required to develop a strategic view of aeronautics research opportunities; identify candidate aeronautic grand challenges, paradigms, and concepts; outline a framework for evaluating them; and exercise the framework as an example of how to use it. Accordingly, this research seeks to address these questions: What aeronautics research should be supported by the U.S. government? What compelling and desirable benefits drive government-supported research? How should the government--especially NASA--make decisions about which research to support? Advancing aeronautics involves broad policy and decisionmaking challenges. Decisions involve tradeoffs among competing perspectives, uncertainties, and informed judgment.

  20. NASA aeronautics. [fact sheet on NASA programs for aeronautical research and aircraft development

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A fact sheet depicting the NASA programs involving aircraft development and aeronautics is presented. The fact sheet consists of artist concepts of the various aircraft which represent specific programs. Among the subjects discussed in the concise explanatory notes are: (1) the YF-12 aircraft, (2) hypersonic drag tests in wind tunnels, (3) augmentor wing concepts, (4) rotary wing development, (5) fly-by-wire aircraft control, (6) supercritical wings, (7) the quiet engine program for noise and emission abatement, (8) flight capabilities of lifting bodies, (9) tilt rotor concepts for improved helicopter performance, and (10) flight safety improvements for general aviation aircraft.

  1. Refined methods of aeroelastic analysis and optimization. [swept wings, propeller theory, and subsonic flutter

    NASA Technical Reports Server (NTRS)

    Ashley, H.

    1984-01-01

    Graduate research activity in the following areas is reported: the divergence of laminated composite lifting surfaces, subsonic propeller theory and aeroelastic analysis, and cross sectional resonances in wind tunnels.

  2. Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplement 405

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This report lists reports, articles and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.

  3. Aeronautical engineering: A continuing bibliography with indexes (supplement 313)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This bibliography lists 179 reports, articles, and other documents introduced into the NASA scientific and technical information system in Jan. 1995. Subject coverage includes: engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.

  4. Aeronautical engineering: A continuing bibliography with indexes (supplement 284)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This bibliography lists 974 reports, articles, and other documents introduced into the NASA scientific and technical information system in Oct. 1992. The coverage includes documents on design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.

  5. The Western Aeronautical Test Range of NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Moore, A. L.

    1984-01-01

    An overview of the Western Aeronautical Test Range (WATR) of NASA Ames Research Center (ARC) is presented in this paper. The three WATR facilities are discussed, and three WATR elements - mission control centerns, communications systems, real-time processing and display systems, and tracking systems -are reviewed. The relationships within the NASA WATR, with respect to the NASA aeronautics program, are also discussed.

  6. A cumulative index to Aeronautical Engineering: A special bibliography

    NASA Technical Reports Server (NTRS)

    1978-01-01

    This publication is a cumulative index to the abstracts contained in NASA SP-7037 (80) through NASA SP-7037 (91) of Aeronautical Engineering: A Special Bibliography. NASA SP-7037 and its supplements have been compiled through the cooperative efforts of the American Institute of Aeronautics (AIAA) and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, contract, and report number indexes.

  7. Aeronautical Engineering: A Continuing Bibliography With Indexes. Supplement 392

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This report lists reports, articles and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.

  8. NASA's Role in Aeronautics: A Workshop. Volume VII - Background Papers.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Assembly of Engineering.

    Sixteen background papers presented to a plenary session at a 1980 workshop on the role of the National Aeronautics and Space Administration (NASA) in aeronautics are presented. The central task of the workshop was to examine the relationship of NASA's research capabilities to the state of U.S. aviation and to make recommendations about NASA's…

  9. Aeronautical engineering: A continuing bibliography with indexes (supplement 310)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This bibliography lists 29 reports, articles, and other documents introduced into the NASA scientific and technical information system in Nov. 1994. Subject coverage includes: engineering and theoretical aspects of design, construction,evaluation testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.

  10. 14 CFR 61.159 - Aeronautical experience: Airplane category rating.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... rating. 61.159 Section 61.159 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Transport Pilots § 61.159 Aeronautical experience: Airplane category rating. (a) Except as provided in... certificate with an airplane category and class rating must have at least 1,500 hours of total time as a...

  11. 14 CFR 61.159 - Aeronautical experience: Airplane category rating.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... rating. 61.159 Section 61.159 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Transport Pilots § 61.159 Aeronautical experience: Airplane category rating. (a) Except as provided in... certificate with an airplane category and class rating must have at least 1,500 hours of total time as a...

  12. 14 CFR 61.159 - Aeronautical experience: Airplane category rating.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... rating. 61.159 Section 61.159 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Transport Pilots § 61.159 Aeronautical experience: Airplane category rating. (a) Except as provided in... certificate with an airplane category and class rating must have at least 1,500 hours of total time as a...

  13. 14 CFR 61.159 - Aeronautical experience: Airplane category rating.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... rating. 61.159 Section 61.159 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Transport Pilots § 61.159 Aeronautical experience: Airplane category rating. (a) Except as provided in... certificate with an airplane category and class rating must have at least 1,500 hours of total time as a...

  14. Aeronautical engineering: A continuing bibliography with indexes (supplement 324)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This bibliography lists 149 reports, articles, and other documents introduced into the NASA scientific and technical information system in December 1995. Subject coverage includes engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.

  15. Aeronautical Engineering: A Continuing Bibliography with Indexes. SUPPL-422

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This report lists reports, articles and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.

  16. Aeronautical engineering: A continuing bibliography with indexes (supplement 319)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This report lists 349 reports, articles and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.

  17. Aeronautics and Space Report of the President: 1977 Activities.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The national programs in aeronautics and space made steady progress in 1977 toward their long-term objectives. In aeronautics the goals were improved performance, energy efficiency, and safety in aircraft. In space the goals were: (1) better remote sensing systems to generate more sophisticated information about the Earth's environment; (2)…

  18. Aeronautical engineering: A continuing bibliography with indexes (supplement 294)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This issue of Aeronautical Engineering - A Continuing Bibliography with Indexes lists 590 reports, journal articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspect of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. The bibliographic series is compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). Seven indexes are included: subject, personal author, corporate source, foreign technology, contract number, report number, and accession number.

  19. Subsonic Aircraft With Regression and Neural-Network Approximators Designed

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Hopkins, Dale A.

    2004-01-01

    At the NASA Glenn Research Center, NASA Langley Research Center's Flight Optimization System (FLOPS) and the design optimization testbed COMETBOARDS with regression and neural-network-analysis approximators have been coupled to obtain a preliminary aircraft design methodology. For a subsonic aircraft, the optimal design, that is the airframe-engine combination, is obtained by the simulation. The aircraft is powered by two high-bypass-ratio engines with a nominal thrust of about 35,000 lbf. It is to carry 150 passengers at a cruise speed of Mach 0.8 over a range of 3000 n mi and to operate on a 6000-ft runway. The aircraft design utilized a neural network and a regression-approximations-based analysis tool, along with a multioptimizer cascade algorithm that uses sequential linear programming, sequential quadratic programming, the method of feasible directions, and then sequential quadratic programming again. Optimal aircraft weight versus the number of design iterations is shown. The central processing unit (CPU) time to solution is given. It is shown that the regression-method-based analyzer exhibited a smoother convergence pattern than the FLOPS code. The optimum weight obtained by the approximation technique and the FLOPS code differed by 1.3 percent. Prediction by the approximation technique exhibited no error for the aircraft wing area and turbine entry temperature, whereas it was within 2 percent for most other parameters. Cascade strategy was required by FLOPS as well as the approximators. The regression method had a tendency to hug the data points, whereas the neural network exhibited a propensity to follow a mean path. The performance of the neural network and regression methods was considered adequate. It was at about the same level for small, standard, and large models with redundancy ratios (defined as the number of input-output pairs to the number of unknown coefficients) of 14, 28, and 57, respectively. In an SGI octane workstation (Silicon Graphics

  20. Quasispherical subsonic accretion in X-ray pulsars

    NASA Astrophysics Data System (ADS)

    Shakura, Nikolai I.; Postnov, Konstantin A.; Kochetkova, A. Yu; Hjalmarsdotter, L.

    2013-04-01

    A theoretical model is considered for quasispherical subsonic accretion onto slowly rotating magnetized neutron stars. In this regime, the accreting matter settles down subsonically onto the rotating magnetosphere, forming an extended quasistatic shell. Angular momentum transfer in the shell occurs via large-scale convective motions resulting, for observed pulsars, in an almost iso-angular-momentum \\omega \\sim 1/R^2 rotation law inside the shell. The accretion rate through the shell is determined by the ability of the plasma to enter the magnetosphere due to Rayleigh-Taylor instabilities, with allowance for cooling. A settling accretion regime is possible for moderate accretion rates \\dot M \\lesssim \\dot M_* \\simeq 4\\times 10^{16} g s ^{-1}. At higher accretion rates, a free-fall gap above the neutron star magnetosphere appears due to rapid Compton cooling, and the accretion becomes highly nonstationary. Observations of spin-up/spin-down rates of quasispherically wind accreting equilibrium X-ray pulsars with known orbital periods (e.g., GX 301-2 and Vela X-1) enable us to determine the main dimensionless parameters of the model, as well as to estimate surface magnetic field of the neutron star. For equilibrium pulsars, the independent measurements of the neutron star magnetic field allow for an estimate of the stellar wind velocity of the optical companion without using complicated spectroscopic measurements. For nonequilibrium pulsars, a maximum value is shown to exist for the spin-down rate of the accreting neutron star. From observations of the spin-down rate and the X-ray luminosity in such pulsars (e.g., GX 1+4, SXP 1062, and 4U 2206+54), a lower limit can be put on the neutron star magnetic field, which in all cases turns out to be close to the standard value and which agrees with cyclotron line measurements. Furthermore, both explains the spin-up/spin-down of the pulsar frequency on large time-scales and also accounts for the irregular short

  1. Three-dimensional subsonic diffuser design optimization and analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Wei-Li

    A novel methodology is developed to integrate state-of-the-art CFD analysis, the Non-uniform Rational B-Spline technique (NURBS) and optimization theory to reduce total pressure distortion and sustain or improve total pressure recovery within a curved three dimensional subsonic diffuser. Diffusing S-shaped ducts are representative of curved subsonic diffusers and are characterized by the S-shaped curvature of the duct's centerline and their increasing cross-sectional area. For aircraft inlet applications the measure of duct aerodynamic performance is the ability to decelerate the flow to the desired velocity while maintaining high total pressure recovery and flow near-uniformity. Reduced total pressure recovery lowers propulsion efficiency, whereas nonuniform flow conditions at the engine face lower engine stall and surge limits. Three degrees of freedom are employed as the number of independent design variables. The change of the surface shape is assumed to be Gaussian. The design variables are the location of the flow separation, the width and height of the Gaussian change. The General Aerodynamic Simulation Program (GASP) with the Baldwin-Lomax turbulence model is employed for the flow field prediction and proved to give good agreement with the experimental results for the baseline diffuser geometry. With the automatic change of the design variables, the configuration of the diffuser surface shape is able to be changed while keeping the entrance and exit of the diffuser unchanged in order to meet the specification of the engine and inlet. A trade study was performed which analyzed more than 10 configurations of the modified diffuser. Surface static pressure, surface flow visualization, and exit plane total pressure and transverse velocity data were acquired. The aerodynamic performance of each configuration was assessed by calculating total pressure recovery and spatial distortion elements. The automated design optimization is performed with a gradient

  2. High frequency flow-structural interaction in dense subsonic fluids

    NASA Technical Reports Server (NTRS)

    Liu, Baw-Lin; Ofarrell, J. M.

    1995-01-01

    Prediction of the detailed dynamic behavior in rocket propellant feed systems and engines and other such high-energy fluid systems requires precise analysis to assure structural performance. Designs sometimes require placement of bluff bodies in a flow passage. Additionally, there are flexibilities in ducts, liners, and piping systems. A design handbook and interactive data base have been developed for assessing flow/structural interactions to be used as a tool in design and development, to evaluate applicable geometries before problems develop, or to eliminate or minimize problems with existing hardware. This is a compilation of analytical/empirical data and techniques to evaluate detailed dynamic characteristics of both the fluid and structures. These techniques have direct applicability to rocket engine internal flow passages, hot gas drive systems, and vehicle propellant feed systems. Organization of the handbook is by basic geometries for estimating Strouhal numbers, added mass effects, mode shapes for various end constraints, critical onset flow conditions, and possible structural response amplitudes. Emphasis is on dense fluids and high structural loading potential for fatigue at low subsonic flow speeds where high-frequency excitations are possible. Avoidance and corrective measure illustrations are presented together with analytical curve fits for predictions compiled from a comprehensive data base.

  3. Transition prediction and control in subsonic flow over a hump

    NASA Technical Reports Server (NTRS)

    Masad, Jamal A.; Iyer, Venkit

    1993-01-01

    The influence of a surface roughness element in the form of a two-dimensional hump on the transition location in a two-dimensional subsonic flow with a free-stream Mach number up to 0.8 is evaluated. Linear stability theory, coupled with the N-factor transition criterion, is used in the evaluation. The mean flow over the hump is calculated by solving the interacting boundary-layer equations; the viscous-inviscid coupling is taken into consideration, and the flow is solved within the separation bubble. The effects of hump height, length, location, and shape; unit Reynolds number; free-stream Mach number, continuous suction level; location of a suction strip; continuous cooling level; and location of a heating strip on the transition location are evaluated. The N-factor criterion predictions agree well with the experimental correlation of Fage; in addition, the N-factor criterion is more general and powerful than experimental correlations. The theoretically predicted effects of the hump's parameters and flow conditions on transition location are consistent and in agreement with both wind-tunnel and flight observations.

  4. Dynamics of a flexible cylinder in subsonic axial flow

    SciTech Connect

    Paidoussis, M.P.; Ostoja-Starzewski, M.

    1981-11-01

    This paper examines the dynamics of a flexible cylinder with pinned ends immersed in axial subsonic flow, either bounded or unconfined. The problem proves to be surprisingly resistant to exact solution, as compared to the incompressible flow case, because of difficulties in determining precisely the inviscid aerodynamic forces. This paper presents a number of distinct formulations of these forces, involving different approximations: (1) a slender-body approximation; (2) an approximate three-dimensional formulation where, in the determination of the aerodynamic forces, the axial shape is prescribed in advance; and (3) an exact integral formulation of the generalized aerodynamic forces. In each case, Galerkin-type solutions yield the system eigenfrequencies which describe the dynamical behavior of the system. It is found that for sufficiently high flow velocities, divergence and flutter are possible. The different methods yield similar, but not quantitatively identical results. Interestingly, dependence of the dynamical characteristics on Mach number is shown to be weak for slender cylinders; for nonslender ones, it is stronger. Finally, a brief discussion of wave propagation in an unconstrained cylinder indicates the existence of a cutoff flow velocity for backward propagating waves, followed by wave amplification at higher flow, which is closely related to loss of stability in the constrained system.

  5. Supersonic Jet Exhaust Noise at High Subsonic Flight Speed

    NASA Technical Reports Server (NTRS)

    Norum, Thomas D.; Garber, Donald P.; Golub, Robert A.; Santa Maria, Odilyn L.; Orme, John S.

    2004-01-01

    An empirical model to predict the effects of flight on the noise from a supersonic transport is developed. This model is based on an analysis of the exhaust jet noise from high subsonic flights of the F-15 ACTIVE Aircraft. Acoustic comparisons previously attainable only in a wind tunnel were accomplished through the control of both flight operations and exhaust nozzle exit diameter. Independent parametric variations of both flight and exhaust jet Mach numbers at given supersonic nozzle pressure ratios enabled excellent correlations to be made for both jet broadband shock noise and jet mixing noise at flight speeds up to Mach 0.8. Shock noise correlated with flight speed and emission angle through a Doppler factor exponent of about 2.6. Mixing noise at all downstream angles was found to correlate well with a jet relative velocity exponent of about 7.3, with deviations from this behavior only at supersonic eddy convection speeds and at very high flight Mach numbers. The acoustic database from the flight test is also provided.

  6. Experimental characterization of turbulent subsonic transitional-open cavity flow

    NASA Astrophysics Data System (ADS)

    Rokita, T.; Elimelech, Y.; Arieli, R.; Levy, Y.; Greenberg, J. B.

    2016-04-01

    Turbulent subsonic "transitional-open" cavity flow was investigated by wind-tunnel tests. The investigated cavity configuration had a length-to-depth ratio of 6.25 and a width-to-depth ratio of 2. The cavity was exposed to a free-stream Mach number of 0.40 and a Reynolds number (based on cavity depth) of 1.6× 10^6, with a turbulent incoming boundary layer. Measurements of velocity and wall pressures were taken simultaneously, which enabled the analysis of velocity-pressure cross-correlations. Special attention is paid to the shear layer that develops over the cavity and an emphasis is placed on the analysis of its characteristics and its stability. Application of linear hydrodynamic stability theory, together with examining velocity-pressure cross correlations, revealed that the behavior of the cavity shear layer is analogous to a free shear layer, approximately up to mid-length of the cavity, where further downstream nonlinear interactions occur.

  7. Planar Velocimetry of a Supersonic Jet in Subsonic Compressible Crossflow

    NASA Astrophysics Data System (ADS)

    Beresh, Steven; Henfling, John; Erven, Rocky; Spillers, Russell

    2004-11-01

    A stereoscopic particle image velocimetry (PIV) instrument has been constructed for a transonic wind tunnel to study the interaction created by a supersonic axisymmetric jet exhausting from a flat plate into a subsonic compressible crossflow. Data have been acquired in the crossplane of the interaction at a single station in the farfield, in which the bulk particle motion is aligned with the out-of-plane velocity component. The resulting vector fields distinctly show the strength and location of the induced counter-rotating vortex pair as well as the remnant of the horseshoe vortex that wraps around the jet plume as it first exhausts from the nozzle. The vortices are visible from the in-plane vorticity as well as a deficit in the streamwise velocity component. Data taken for four different values of the jet-to-freestream dynamic pressure ratio reveal that the vortex strength, size, and distance from the wall all increase with jet pressure. An uncertainty analysis also is provided.

  8. Isom's thickness noise for axial and centrifugal subsonic fans

    NASA Astrophysics Data System (ADS)

    Khelladi, S.; Kouidri, S.; Rey, R.

    2008-06-01

    The thickness noise predicted by the Ffowcs Williams and Hawkings (FW&H) equation depends on the normal velocity vn which is very sensitive to the meshing size. Isom showed that in a far field a monopolar source is equivalent to a dipolar source induced by a uniform distribution of the load on the entire moving surface. Consequently, the calculation of the thickness noise becomes completely independent of the normal velocity vn. Its expression, as suggested by Farassat, is for any moving surface. The main objective of this work is to determine a specific expression of Isom's thickness noise in time and frequency domains for axial and centrifugal subsonic fans. The proposed form of the thickness noise enables to highlight the effect of each geometrical parameter of the fan on the overall thickness noise, on the one hand, and presents a fast computational mean and low memory storage capability since the acoustic pressure in the frequency domain is calculated for only one blade, on the other.

  9. Response of High Subsonic Jet to Nonaxisymmetric Disturbances

    NASA Technical Reports Server (NTRS)

    Bayliss, A.; Maestrello, L.

    1997-01-01

    A model of sound generated in a high subsonic (Mach 0.9) circular jet is solved numerically in cylindrical coordinates for nonaxisymmetric disturbances. The jet is excited by transient mass injection by a finite duration pulse via a modulated ring source. The nonaxisymmetric solution is computed for long times after the initial disturbance has exited the computational domain. The long time behavior of the jet is dominated by vorticity and pressure disturbances generated at the nozzle lip and growing as they convect down-stream in the jet. These disturbances generate sound as they propagate. The primary non-axisymmetric effect that we simulate is that of a flapping mode where regions of high and low pressure alternate on opposite sides of the jet. The predominant feature of this mode is the appearance of relatively large deviations of the pressure from the ambient pressure on opposite sides of the jet and the convection of these regions downstream. We illustrate flow field, near field and far field data. Important nonaxisymmetric characteristics of the near and flow field disturbances include roughly periodic pressure elevations and depressions at opposite values of the azimuthal angle psi. These correspond to pressure disturbances propagating in the axial direction. The azimuthal velocity exhibits a sinusoidal dependence on psi with similar roughly periodic disturbances. For every azimuthal angle psi, the jet radiation peaks about 30 deg. from the jet axis, however there is now a pronounced dependence of the far field radiation pattern on psi.

  10. Chaos control for the plates subjected to subsonic flow

    NASA Astrophysics Data System (ADS)

    Norouzi, Hamed; Younesian, Davood

    2016-07-01

    The suppression of chaotic motion in viscoelastic plates driven by external subsonic air flow is studied. Nonlinear oscillation of the plate is modeled by the von-Kármán plate theory. The fluid-solid interaction is taken into account. Galerkin's approach is employed to transform the partial differential equations of the system into the time domain. The corresponding homoclinic orbits of the unperturbed Hamiltonian system are obtained. In order to study the chaotic behavior of the plate, Melnikov's integral is analytically applied and the threshold of the excitation amplitude and frequency for the occurrence of chaos is presented. It is found that adding a parametric perturbation to the system in terms of an excitation with the same frequency of the external force can lead to eliminate chaos. Variations of the Lyapunov exponent and bifurcation diagrams are provided to analyze the chaotic and periodic responses. Two perturbation-based control strategies are proposed. In the first scenario, the amplitude of control forces reads a constant value that should be precisely determined. In the second strategy, this amplitude can be proportional to the deflection of the plate. The performance of each controller is investigated and it is found that the second scenario would be more efficient.

  11. Unique Systems Analysis Task 7, Advanced Subsonic Technologies Evaluation Analysis

    NASA Technical Reports Server (NTRS)

    Eisenberg, Joseph D. (Technical Monitor); Bettner, J. L.; Stratton, S.

    2004-01-01

    To retain a preeminent U.S. position in the aircraft industry, aircraft passenger mile costs must be reduced while at the same time, meeting anticipated more stringent environmental regulations. A significant portion of these improvements will come from the propulsion system. A technology evaluation and system analysis was accomplished under this task, including areas such as aerodynamics and materials and improved methods for obtaining low noise and emissions. Previous subsonic evaluation analyses have identified key technologies in selected components for propulsion systems for year 2015 and beyond. Based on the current economic and competitive environment, it is clear that studies with nearer turn focus that have a direct impact on the propulsion industry s next generation product are required. This study will emphasize the year 2005 entry into service time period. The objective of this study was to determine which technologies and materials offer the greatest opportunities for improving propulsion systems. The goals are twofold. The first goal is to determine an acceptable compromise between the thermodynamic operating conditions for A) best performance, and B) acceptable noise and chemical emissions. The second goal is the evaluation of performance, weight and cost of advanced materials and concepts on the direct operating cost of an advanced regional transport of comparable technology level.

  12. Computational Study of Separating Flow in a Planar Subsonic Diffuser

    NASA Technical Reports Server (NTRS)

    DalBello, Teryn; Dippold, Vance, III; Georgiadis, Nicholas J.

    2005-01-01

    A computational study of the separated flow through a 2-D asymmetric subsonic diffuser has been performed. The Wind Computational Fluid Dynamics code is used to predict the separation and reattachment behavior for an incompressible diffuser flow. The diffuser inlet flow is a two-dimensional, turbulent, and fully-developed channel flow with a Reynolds number of 20,000 based on the centerline velocity and the channel height. Wind solutions computed with the Menter SST, Chien k-epsilon, Spalart-Allmaras and Explicit Algebraic Reynolds Stress turbulence models are compared with experimentally measured velocity profiles and skin friction along the upper and lower walls. In addition to the turbulence model study, the effects of grid resolution and use of wall functions were investigated. The grid studies varied the number of grid points across the diffuser and varied the initial wall spacing from y(sup +) = 0.2 to 60. The wall function study assessed the applicability of wall functions for analysis of separated flow. The SST and Explicit Algebraic Stress models provide the best agreement with experimental data, and it is recommended wall functions should only be used with a high level of caution.

  13. Propulsion System for Very High Altitude Subsonic Unmanned Aircraft

    NASA Technical Reports Server (NTRS)

    Bents, David J.; Mockler, Ted; Maldonado, Jaime; Harp, James L., Jr.; King, Joseph F.; Schmitz, Paul C.

    1998-01-01

    This paper explains why a spark ignited gasoline engine, intake pressurized with three cascaded stages of turbocharging, was selected to power NASA's contemplated next generation of high altitude atmospheric science aircraft. Beginning with the most urgent science needs (the atmospheric sampling mission) and tracing through the mission requirements which dictate the unique flight regime in which this aircraft has to operate (subsonic flight at greater then 80 kft) we briefly explore the physical problems and constraints, the available technology options and the cost drivers associated with developing a viable propulsion system for this highly specialized aircraft. The paper presents the two available options (the turbojet and the turbocharged spark ignited engine) which are discussed and compared in the context of the flight regime. We then show how the unique nature of the sampling mission, coupled with the economic considerations pursuant to aero engine development, point to the spark ignited engine as the only cost effective solution available. Surprisingly, this solution compares favorably with the turbojet in the flight regime of interest. Finally, some remarks are made about NASA's present state of development, and future plans to flight demonstrate the three stage turbocharged powerplant.

  14. A Hybrid Satellite-Terrestrial Approach to Aeronautical Communication Networks

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Chomos, Gerald J.; Griner, James H.; Mainger, Steven W.; Martzaklis, Konstantinos S.; Kachmar, Brian A.

    2000-01-01

    Rapid growth in air travel has been projected to continue for the foreseeable future. To maintain a safe and efficient national and global aviation system, significant advances in communications systems supporting aviation are required. Satellites will increasingly play a critical role in the aeronautical communications network. At the same time, current ground-based communications links, primarily very high frequency (VHF), will continue to be employed due to cost advantages and legacy issues. Hence a hybrid satellite-terrestrial network, or group of networks, will emerge. The increased complexity of future aeronautical communications networks dictates that system-level modeling be employed to obtain an optimal system fulfilling a majority of user needs. The NASA Glenn Research Center is investigating the current and potential future state of aeronautical communications, and is developing a simulation and modeling program to research future communications architectures for national and global aeronautical needs. This paper describes the primary requirements, the current infrastructure, and emerging trends of aeronautical communications, including a growing role for satellite communications. The need for a hybrid communications system architecture approach including both satellite and ground-based communications links is explained. Future aeronautical communication network topologies and key issues in simulation and modeling of future aeronautical communications systems are described.

  15. Astronautics and Aeronautics, 1991-1995: A Chronology

    NASA Technical Reports Server (NTRS)

    Gawdiak, Ihor Y. (Compiler); Shetland, Charles (Compiler)

    2000-01-01

    This chronology of events in aeronautics, aviation, space science, and space exploration was prepared by the Federal Research Division of the Library of Congress and RSIS for the History Division of the National Aeronautics and Space Administration (NASA). It covers the years 1991-1995 and continues the series of annual chronologies published by NASA. The present volume uses the format of the previous edition of this series, Astronautics and Aeronautics, 1986-1990: A Chronology. It also integrates, in the appendices, information presented in previous publication

  16. NASA's Role in Aeronautics: A Workshop. Volume 7: Background papers

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The nature and implications of the current state of U.S. aviation in a world setting are examined as well as their significance for NASA's role in the nation's aeronautical future. The outlook for the 1980's is examined from the point of view of legislation, economics and finance; petroleum; manpower, metallic materials, general aviation; military aviation; transport aircraft developments; and helicopters. Possible NASA assistance to DOD and the FAA is examined and the evolution of NACA and NASA in aeronautics and of NASA's aeronautics capabilities are described.

  17. Aeronautical Engineering: A Continuing Bibliography With Indexes. Supplement 404

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-1999-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. Two indexes-subject and author are included after the abstract section.

  18. Aeronautics and space report of the president, 1974 activities

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The U.S. Government activities for 1974 in aeronautics and space are presented. Significant contributions toward the fulfillment of the nation's goals in space and aeronautics are covered, including application of space systems and technology to beneficial uses on earth, exploration of space and increase of scientific knowledge, development of improved space systems and technology, international cooperation, and advancement of civil and military aeronautics. Also in 1974, space activities in the private sector expanded to provide additional services to the public. The accomplishments are summarized.

  19. Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplement 386

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-1998-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract.

  20. Aeronautical Engineering: A Continuing Bibliography With Indexes. Supplement 418

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-2000-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. Two indexes-subject and author are included after the abstract section.

  1. Aeronautical Engineering: A Continuing Bibliography With Indexes. Supplement 406

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-1999-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. Two indexes-subject and author are included after the abstract section.

  2. Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplement 389

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-1998-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract.

  3. Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplement 391

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-1999-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract.

  4. Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplement 396

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-1999-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. Two indexes-subject and author are included after the abstract section.

  5. Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplement 413

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-2000-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. Two indexes-subject and author are included after the abstract section.

  6. Astronautics and Aeronautics, 1986-1990: A Chronology

    NASA Technical Reports Server (NTRS)

    Gawdiak, Ihor Y.; Miro, Ramon J.; Stueland, Sam

    1997-01-01

    This chronology of events in aeronautics, aviation, space science, and space exploration was prepared by the Federal Research Division of the LibrarY of Congress for the History Division of the National Aeronautics and Space Administration (NASA). It covers the years 1996-1990 and continues the series of annual chronologies published by NASA. The present volume returns to the format used in the Astronautics and Aeronautics, 1979-1984: A Chronology volume. It also integrates in a single table the information presented in two or three previous publications.

  7. Aeronautical Engineering: A Continuing Bibliography With Indexes. Supplement 398

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This supplemental issue of Aeronautical Engineering lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes - subject and author are included after the abstract section.

  8. Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplement 419

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-2000-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. Two indexes-subject and author are included after the abstract section.

  9. Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplement 420

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-2000-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. Two indexes-subject and author are included after the abstract section.

  10. Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplement 387

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-1998-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract.

  11. NASA Aeronautics and Space Database for bibliometric analysis

    NASA Technical Reports Server (NTRS)

    Powers, R.; Rudman, R.

    2004-01-01

    The authors use the NASA Aeronautics and Space Database to perform bibliometric analysis of citations. This paper explains their research methodology and gives some sample results showing collaboration trends between NASA Centers and other institutions.

  12. The Aeronautical Laboratory of the Stockholm Technical Institute

    NASA Technical Reports Server (NTRS)

    Malmer, Ivar

    1935-01-01

    This report presents a detailed analysis and history of the construction and operation of the aeronautical laboratory of the Stockholm Technical Institute. Engines and balances are discussed and experimental results are also given.

  13. 77 FR 13683 - Government/Industry Aeronautical Charting Forum Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ... Charting Group, contact Valerie S. Watson, FAA, National Aeronautical Navigation Products (AeroNav Products... permits. Issued in Washington, DC, on February 28, 2012. Valerie S. Watson, Co-Chair,...

  14. National Aeronautics and Space Administration technology application team program

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Contracts are reported between the RTI TATeam and the National Aeronautics and Space Administration (NASA), the Environmental Protection Agency (EPA), and other governmental, educational, and industrial organizations participating in NASA's Technology Utilization Program.

  15. Bureau of Aeronautics, June 5, 1945, Photograph 519. ASERIAL OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Bureau of Aeronautics, June 5, 1945, Photograph 51-9. ASERIAL OF ROOSEVELT BASE, DIRECT OVERHEAD, SHOWING PIERS AND MOLE UNDER CONSTRUCTION - Roosevelt Base, Bounded by Ocean Boulevard, Pennsylvania Avenue, Richardson Avenue, & Idaho Street, Long Beach, Los Angeles County, CA

  16. Bureau of Aeronautics, October 16, 1943, Photograph #4875. AERIAL OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Bureau of Aeronautics, October 16, 1943, Photograph #4875. AERIAL OF ROOSEVELT BASE LOOKING EAST - Roosevelt Base, Bounded by Ocean Boulevard, Pennsylvania Avenue, Richardson Avenue, & Idaho Street, Long Beach, Los Angeles County, CA

  17. Aeronautical Engineering: A continuing bibliography with indexes (supplement 175)

    NASA Technical Reports Server (NTRS)

    1984-01-01

    This bibliography lists 467 reports, articles and other documents introduced into the NASA scientific and technical information system in May 1984. Topics cover varied aspects of aeronautical engineering, geoscience, physics, astronomy, computer science, and support facilities.

  18. Astronautics and Aeronautics, 1979-1984: A chronology

    NASA Technical Reports Server (NTRS)

    Janson, Bette R.; Ritchie, Eleanor H.

    1989-01-01

    This volume of the Astronautics and Aeronautics series covers 1979 through 1984. The series provides a chronological presentation of all significant events and developments in space exploration and the administration of the space program during the period covered.

  19. NASA's Role in Aeronautics: A Workshop. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The state of the U.S. aeronautic industry and progressive changes in national priorities as reflected in federal unified budget outlays are reviewed as well as the contribution of NACA and the character and substance of U.S. aeronautical research under NASA. Eight possible roles for the future defined by NASA are examined and the extent to which the agency should carry out these activities is considered. The roles include: (1) national facilities expertise; (2) flight sciences research; (3) generic technology evolution; (4) vehicle class evolution; (5) technology demonstration; (6) prototype development; (7) technology validation; and (8) operations feasibility; How NASA's roles varies in the areas of military aviation, general aviation, transport aircraft aeronautics, rotorcraft aeronautics, engineering education, information dissemination, and cooperation with other organizations and agencies is discussed with regard to research in aerodynamics; structures and materials; propulsion; electronics and avionics; vehicle operations; and human engineering.

  20. Aeronautical Engineering, a special bibliography with indexes, supplement 15

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This special bibliography lists 363 reports, articles, and other documents introduced into the NASA scientific and technical information system in January 1972. Emphasis is placed on engineering and theoretical aspects for design, construction, evaluation, testing, operation and performance of aircraft (including aircraft engines) and associated components, equipment and systems. Also included are entries on research and development in aeronautics and aerodynamics and research and ground support for aeronautical vehicles.

  1. First Semiannual Report of the National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    Glennan, T. Keith

    1959-01-01

    The First Semiannual Report of the National Aeronautics and Space Administration (NASA) is submitted to Congress pursuant to section 206 (a) of the National Aeronautics and Space Act of 1958 (Public Law 85-568) to provide for research into problems of flight within and outside the Earth's atmosphere, which states: The Administration shall submit to the President for transmittal to Congress, semiannually and at such other times as it deems desirable, a report on its activities and accomplishments.

  2. Aeronautical engineering: A continuing bibliography with indexes (supplement 282)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This bibliography lists 623 reports, articles, and other documents introduced into the NASA scientific and technical information system in Aug. 1992. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.

  3. Aeronautical engineering: A continuing bibliography with indexes (supplement 119)

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This bibliography lists 341 reports, articles, and other documents introduced into the NASA scientific and technical information system in January 1980. Abstracts on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems are presented. Research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles are also presented.

  4. Aeronautical Engineering: A special bibliography with indexes, supplement 13

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This special bibliography lists 283 reports, articles, and other documents introduced into the NASA scientific and technical information system in December, 1971. Emphasis is placed on engineering and theoretical aspects for design, construction, evaluation, testing, operation and performance of aircraft (including aircraft engines), and associated components, equipment and systems. Also included are entries on research and development in aeronautics and aerodynamics and research and ground support for aeronautical vehicles.

  5. Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplement 397

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This report lists reports, articles and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract.

  6. Kennedy Educate to Innovate (KETI) Aeronautics PowerPoint Presentation

    NASA Technical Reports Server (NTRS)

    Davila, Dina

    2010-01-01

    This slide presentation reviews some fundamental features of aeronautics. It is designed to introduce students to aeronautics and to engage them in Science Technology Education and Mathematics (STEM). It reviews the history of airflight, the aircraft components and their interaction with the forces that make flight possible (i.e. lift, weight drag and thrust), and the interaction of the components that create aircraft movements (roll, pitch and yaw)

  7. NASA Ames and Future of Space Exploration, Science, and Aeronautics

    NASA Technical Reports Server (NTRS)

    Cohen, Jacob

    2015-01-01

    Pushing the frontiers of aeronautics and space exploration presents multiple challenges. NASA Ames Research Center is at the forefront of tackling these issues, conducting cutting edge research in the fields of air traffic management, entry systems, advanced information technology, intelligent human and robotic systems, astrobiology, aeronautics, space, earth and life sciences and small satellites. Knowledge gained from this research helps ensure the success of NASA's missions, leading us closer to a world that was only imagined as science fiction just decades ago.

  8. Hot-wire calibration in subsonic/transonic flow regimes

    NASA Technical Reports Server (NTRS)

    Nagabushana, K. A.; Ash, Robert L.

    1995-01-01

    A different approach for calibrating hot-wires, which simplifies the calibration procedure and reduces the tunnel run-time by an order of magnitude was sought. In general, it is accepted that the directly measurable quantities in any flow are velocity, density, and total temperature. Very few facilities have the capability of varying the total temperature over an adequate range. However, if the overheat temperature parameter, a(sub w), is used to calibrate the hot-wire then the directly measurable quantity, voltage, will be a function of the flow variables and the overheat parameter i.e., E = f(u,p,a(sub w), T(sub w)) where a(sub w) will contain the needed total temperature information. In this report, various methods of evaluating sensitivities with different dependent and independent variables to calibrate a 3-Wire hot-wire probe using a constant temperature anemometer (CTA) in subsonic/transonic flow regimes is presented. The advantage of using a(sub w) as the independent variable instead of total temperature, t(sub o), or overheat temperature parameter, tau, is that while running a calibration test it is not necessary to know the recovery factor, the coefficients in a wire resistance to temperature relationship for a given probe. It was deduced that the method employing the relationship E = f (u,p,a(sub w)) should result in the most accurate calibration of hot wire probes. Any other method would require additional measurements. Also this method will allow calibration and determination of accurate temperature fluctuation information even in atmospheric wind tunnels where there is no ability to obtain any temperature sensitivity information at present. This technique greatly simplifies the calibration process for hot-wires, provides the required calibration information needed in obtaining temperature fluctuations, and reduces both the tunnel run-time and the test matrix required to calibrate hotwires. Some of the results using the above techniques are presented

  9. Mixing of Multiple Jets With a Confined Subsonic Crossflow

    NASA Technical Reports Server (NTRS)

    Holdeman, James D.

    1998-01-01

    Results from a recently completed enhanced mixing program are summarized in the two technical papers. These studies were parts of a High Speed Research (HSR)-supported joint Government/industry/university program that involved, in addition to the NASA Lewis Research Center, researchers at United Technologies Research Center, Allison Engine Company, CFD Research Corporation, and the University of California, Irvine. The studies investigated the mixing of jets injected normal to a confined subsonic mainsteam in both rectangular and cylindrical ducts. Experimental and computational studies were performed in both nonreacting and reacting flows. The orifice geometries and flow conditions were selected as typical of the complex three-dimensional flows in the combustion chambers in low-emission gas turbine engines. The principal conclusion from both the experiments and modeling was that the momentum-flux ratio J and orifice spacing S/H were the most significant flow and geometry variables, respectively. Conserved scalar distributions were similar-independent of reaction, orifice diameter H/d, and shape-when the orifice spacing and the square root of the momentum-flux ratio were inversely proportional. Jet penetration was critical, and penetration decreased as either momentum-flux ratio or orifice spacing decreased. We found that planar averages must be considered in context with the distributions. The mass-flow ratios and the orifices investigated were often very large. The jet-to-mainstream mass-flow ratio was varied from significantly less than 1 to greater than 1. The orifice-area to mainstream-cross-sectional-area was varied from approx. 0 to 0.5, and the axial planes of interest were often just downstream of the orifice trailing edge. Three-dimensional flow was a key part of efficient mixing and was observed for all configurations. As an example of the results, the accompanying figure shows the effects of different rates of mass addition on the opposite walls of a

  10. Computational Investigations of Noise Suppression in Subsonic Round Jets

    NASA Technical Reports Server (NTRS)

    Pruett, C. David

    1997-01-01

    NASA Grant NAG1-1802, originally submitted in June 1996 as a two-year proposal, was awarded one-year's funding by NASA LaRC for the period 5 Oct., 1996, through 4 Oct., 1997. Because of the inavailability (from IT at NASA ARC) of sufficient supercomputer time in fiscal 1998 to complete the computational goals of the second year of the original proposal (estimated to be at least 400 Cray C-90 CPU hours), those goals have been appropriately amended, and a new proposal has been submitted to LaRC as a follow-on to NAG1-1802. The current report documents the activities and accomplishments on NAG1-1802 during the one-year period from 5 Oct., 1996, through 4 Oct., 1997. NASA Grant NAG1-1802, and its predecessor, NAG1-1772, have been directed toward adapting the numerical tool of Large-Eddy Simulation (LES) to aeroacoustic applications, with particular focus on noise suppression in subsonic round jets. In LES, the filtered Navier-Stokes equations are solved numerically on a relatively coarse computational grid. Residual stresses, generated by scales of motion too small to be resolved on the coarse grid, are modeled. Although most LES incorporate spatial filtering, time-domain filtering affords certain conceptual and computational advantages, particularly for aeroacoustic applications. Consequently, this work has focused on the development of SubGrid-Scale (SGS) models that incorporate time- domain filters. The author is unaware of any previous attempt at purely time-filtered LES; however, Aldama and Dakhoul and Bedford have considered approaches that combine both spatial and temporal filtering. In our view, filtering in both space and time is redundant, because removal of high frequencies effects the removal of small spatial scales and vice versa.

  11. NASA N+3 Subsonic Fixed Wing Silent Efficient Low-Emissions Commercial Transport (SELECT) Vehicle Study. Revision A

    NASA Technical Reports Server (NTRS)

    Bruner, Sam; Baber, Scott; Harris,Chris; Caldwell, Nicholas; Keding, Peter; Rahrig, Kyle; Pho, Luck; Wlezian, Richard

    2010-01-01

    A conceptual commercial passenger transport study was performed to define a single vehicle for entry into service in the 2030 to 2035 timeframe, meeting customer demands as well as NASA goals for improved fuel economy, NOx emissions, noise, and operability into smaller airports. A study of future market and operational scenarios was used to guide the design of an advanced tube-and-wing configuration that utilized advanced material and structural concepts, an advanced three-shaft high-bypass turbofan engine, natural laminar flow technology, and a suite of other advanced technologies. This configuration was found to meet the goals for NOx emissions, noise, and field length. A 64 percent improvement in fuel economy compared to a current state-of-the-art airliner was achieved, which fell slightly short of the desired 70 percent goal. Technology maturation plans for the technologies used in the design were developed to help guide future research and development activities.

  12. [Advantages of fixed combinations].

    PubMed

    Lachkar, Y

    2008-07-01

    Fixed combinations are indicated in the treatment of glaucoma and ocular hypertension when monotherapy does not sufficiently reduce IOP. Fixed combinations show better efficacy than the instillation of each separate component and are at least equivalent to the administration of both components in a separate association. They simplify treatment, increase compliance and quality of life, and decrease exposure to preservatives. Although they are less aggressive for patients when a new drug needs to be added, the use of fixed combinations should not decrease the follow-up. PMID:18957922

  13. 78 FR 36013 - Public Notice for Waiver of Aeronautical Land-Use Assurance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-14

    ... Federal Aviation Administration Public Notice for Waiver of Aeronautical Land-Use Assurance AGENCY....03-acre portion of Parcel AA of airport land from aeronautical use to non- aeronautical use (for... surfaces and compatible land use. The change from aeronautical to non-aeronautical use would allow...

  14. Fully unsteady subsonic and supersonic potential aerodynamics for complex aircraft configurations with applications to flutter

    NASA Technical Reports Server (NTRS)

    Tseng, K.; Morino, L.

    1975-01-01

    A general formulation is presented for the analysis of steady and unsteady, subsonic and supersonic aerodynamics for complex aircraft configurations. The theoretical formulation, the numerical procedure, the description of the program SOUSSA (steady, oscillatory and unsteady, subsonic and supersonic aerodynamics) and numerical results are included. In particular, generalized forces for fully unsteady (complex frequency) aerodynamics for a wing-body configuration, AGARD wing-tail interference in both subsonic and supersonic flows as well as flutter analysis results are included. The theoretical formulation is based upon an integral equation, which includes completely arbitrary motion. Steady and oscillatory aerodynamic flows are considered. Here small-amplitude, fully transient response in the time domain is considered. This yields the aerodynamic transfer function (Laplace transform of the fully unsteady operator) for frequency domain analysis. This is particularly convenient for the linear systems analysis of the whole aircraft.

  15. Subsonic and Supersonic shear flows in laser driven high-energy-density plasmas

    NASA Astrophysics Data System (ADS)

    Harding, E. C.; Drake, R. P.; Gillespie, R. S.; Grosskopf, M. J.; Kuranz, C. C.; Visco, A.; Ditmar, J. R.; Aglitskiy, Y.; Weaver, J. L.; Velikovich, A. L.; Hurricane, O. A.; Hansen, J. F.; Remington, B. A.; Robey, H. F.; Bono, M. J.; Plewa, T.

    2009-05-01

    Shear flows arise in many high-energy-density (HED) and astrophysical systems, yet few laboratory experiments have been carried out to study their evolution in these extreme environments. Fundamentally, shear flows can initiate mixing via the Kelvin-Helmholtz (KH) instability and may eventually drive a transition to turbulence. We present two dedicated shear flow experiments that created subsonic and supersonic shear layers in HED plasmas. In the subsonic case the Omega laser was used to drive a shock wave along a rippled plastic interface, which subsequently rolled-upped into large KH vortices. In the supersonic shear experiment the Nike laser was used to drive Al plasma across a low-density foam surface also seeded with a ripple. Unlike the subsonic case, detached shocks developed around the ripples in response to the supersonic Al flow.

  16. Supersonic and subsonic aircraft noise effects on animals: A literature survey

    NASA Astrophysics Data System (ADS)

    Kull, Robert C., Jr.; Fisher, Alan D.

    1986-12-01

    We searched the literature concerning the effects of supersonic and subsonic aircraft noise on animals. Our search revealed many review papers of prior research accomplished, but few actual research papers. Out of all the reviews, Dufour's work is the most comprehensive. Many of the papers are anecdotal in nature and add little to our scientific knowledge - strictly circumstantial evidence. The literature reveals few effects on animals due to sonic booms. The effects of subsonic noise, however, needs much more investigation. One of the biggest problems with the research in this area is the lack of controls, lack of standardized ways of recording data and evaluating behaviors, and the number of variables involved. Specific recommendations to fill some of the technological gaps include a sonic boom study on a ground-nesting shorebird, effects of subsonic aircraft noise on endangered species, long term physiological effects causing immunosuppression, and noise versus visual aircraft stimuli effects.

  17. CFD-Based Design Optimization Tool Developed for Subsonic Inlet

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The traditional approach to the design of engine inlets for commercial transport aircraft is a tedious process that ends with a less-than-optimum design. With the advent of high-speed computers and the availability of more accurate and reliable computational fluid dynamics (CFD) solvers, numerical optimization processes can effectively be used to design an aerodynamic inlet lip that enhances engine performance. The designers' experience at Boeing Corporation showed that for a peak Mach number on the inlet surface beyond some upper limit, the performance of the engine degrades excessively. Thus, our objective was to optimize efficiency (minimize the peak Mach number) at maximum cruise without compromising performance at other operating conditions. Using a CFD code NPARC, the NASA Lewis Research Center, in collaboration with Boeing, developed an integrated procedure at Lewis to find the optimum shape of a subsonic inlet lip and a numerical optimization code, ADS. We used a GRAPE-based three-dimensional grid generator to help automate the optimization procedure. The inlet lip shape at the crown and the keel was described as a superellipse, and the superellipse exponents and radii ratios were considered as design variables. Three operating conditions: cruise, takeoff, and rolling takeoff, were considered in this study. Three-dimensional Euler computations were carried out to obtain the flow field. At the initial design, the peak Mach numbers for maximum cruise, takeoff, and rolling takeoff conditions were 0.88, 1.772, and 1.61, respectively. The acceptable upper limits on the takeoff and rolling takeoff Mach numbers were 1.55 and 1.45. Since the initial design provided by Boeing was found to be optimum with respect to the maximum cruise condition, the sum of the peak Mach numbers at takeoff and rolling takeoff were minimized in the current study while the maximum cruise Mach number was constrained to be close to that at the existing design. With this objective, the

  18. Aerodynamic Characteristics in Pitch and Sideslip at High Subsonic Speeds of a 1/14-Scale Model of the Grumman XF104 Airplane with Wing Sweepback of 42.5 Degrees

    NASA Technical Reports Server (NTRS)

    Kuhn, Richard E.; Draper, John W.

    1953-01-01

    An investigation has been made at high subsonic speeds of the aerodynamic'characteristics in pitch and sideslip of a l/l4-scale model of the Grumman XF10F airplane with a wing sweepback angle of 42.5. The longitudinal stability characteristics (with the horizontal tail fixed) indicate a pitch-up near the stall; however, this was somewhat alleviated by the addition of fins to the side of the fuselage below the horizontal tail. The original model configuration became directionally unstable for small sideslip angles at Mach numbers above 0.8; however, the instability was eliminated by several different modifications.

  19. 78 FR 13383 - Public Availability of the National Aeronautics and Space Administration FY 2012 Service Contract...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-27

    ... SPACE ADMINISTRATION Public Availability of the National Aeronautics and Space Administration FY 2012 Service Contract Inventory (SCI) AGENCY: Office of Procurement, National Aeronautics and Space... National Aeronautics and Space Administration (NASA) is publishing this notice to advise the public of...

  20. 78 FR 22024 - Twenty First Meeting: RTCA Special Committee 216, Aeronautical Systems Security (Joint Meeting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-12

    ... Federal Aviation Administration Twenty First Meeting: RTCA Special Committee 216, Aeronautical Systems... of Transportation (DOT). ACTION: Meeting Notice of RTCA Special Committee 216, Aeronautical Systems... of the twenty first meeting of RTCA Special Committee 216, Aeronautical Systems Security...

  1. 78 FR 5242 - 32nd Meeting: RTCA Special Committee 206, Aeronautical Information and Meteorological Data Link...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-24

    ... Federal Aviation Administration 32nd Meeting: RTCA Special Committee 206, Aeronautical Information and... Transportation (DOT). ACTION: Meeting Notice of RTCA Special Committee 206, Aeronautical Information and...-second meeting of the RTCA Special Committee 206, Aeronautical Information and Meteorological Data...

  2. 78 FR 8684 - Fifteenth Meeting: RTCA Special Committee 217-Aeronautical Databases Joint with EUROCAE WG-44...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-06

    ... Federal Aviation Administration Fifteenth Meeting: RTCA Special Committee 217--Aeronautical Databases Joint with EUROCAE WG-44--Aeronautical Databases AGENCY: Federal Aviation Administration (FAA), U.S. Department of Transportation (DOT). ACTION: Notice of RTCA Special Committee 217--Aeronautical...

  3. 78 FR 25134 - Sixteenth Meeting: RTCA Special Committee 217-Aeronautical Databases Joint With EUROCAE WG-44...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-29

    ... Federal Aviation Administration Sixteenth Meeting: RTCA Special Committee 217--Aeronautical Databases Joint With EUROCAE WG-44--Aeronautical Databases AGENCY: Federal Aviation Administration (FAA), U.S. Department of Transportation (DOT). ACTION: Notice of RTCA Special Committee 217--Aeronautical...

  4. 78 FR 51809 - Seventeenth Meeting: RTCA Special Committee 217-Aeronautical Databases Joint With EUROCAE WG-44...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-21

    ... Federal Aviation Administration Seventeenth Meeting: RTCA Special Committee 217--Aeronautical Databases Joint With EUROCAE WG-44--Aeronautical Databases AGENCY: Federal Aviation Administration (FAA), U.S. Department of Transportation (DOT). ACTION: Notice of RTCA Special Committee 217--Aeronautical...

  5. 78 FR 66418 - Eighteenth Meeting: RTCA Special Committee 217-Aeronautical Databases Joint With EUROCAE WG-44...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-05

    ... Federal Aviation Administration Eighteenth Meeting: RTCA Special Committee 217--Aeronautical Databases Joint With EUROCAE WG-44--Aeronautical Databases AGENCY: Federal Aviation Administration (FAA), U.S. Department of Transportation (DOT). ACTION: Notice of RTCA Special Committee 217--Aeronautical...

  6. 78 FR 7816 - NASA Advisory Council; Aeronautics Committee; Unmanned Aircraft Systems Subcommittee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-04

    ... From the Federal Register Online via the Government Publishing Office NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Unmanned Aircraft Systems... Aeronautics and Space Administration announces a meeting of the Unmanned Aircraft Systems (UAS)...

  7. 78 FR 25100 - NASA Advisory Council; Aeronautics Committee; Unmanned Aircraft Systems Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-29

    ... From the Federal Register Online via the Government Publishing Office NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Unmanned Aircraft Systems... Aeronautics and Space Administration announces a meeting of the Unmanned Aircraft Systems (UAS)...

  8. 77 FR 59020 - NASA Advisory Council; Aeronautics Committee; Unmanned Aircraft Systems Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-25

    ... From the Federal Register Online via the Government Publishing Office NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Unmanned Aircraft Systems... Aeronautics and Space Administration announces a meeting of the Unmanned Aircraft Systems (UAS)...

  9. 76 FR 75565 - NASA Advisory Council; Aeronautics Committee; Unmanned Aircraft Systems (UAS) Subcommittee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-02

    ... From the Federal Register Online via the Government Publishing Office NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Unmanned Aircraft Systems (UAS) Subcommittee Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of Meeting....

  10. An Integrated Low-Speed Performance and Noise Prediction Methodology for Subsonic Aircraft

    NASA Technical Reports Server (NTRS)

    Olson, E. D.; Mavris, D. N.

    2000-01-01

    An integrated methodology has been assembled to compute the engine performance, takeoff and landing trajectories, and community noise levels for a subsonic commercial aircraft. Where feasible, physics-based noise analysis methods have been used to make the results more applicable to newer, revolutionary designs and to allow for a more direct evaluation of new technologies. The methodology is intended to be used with approximation methods and risk analysis techniques to allow for the analysis of a greater number of variable combinations while retaining the advantages of physics-based analysis. Details of the methodology are described and limited results are presented for a representative subsonic commercial aircraft.

  11. Fully unsteady subsonic and supersonic potential aerodynamics for complex aircraft configurations for flutter applications

    NASA Technical Reports Server (NTRS)

    Tseng, K.; Morino, L.

    1975-01-01

    A general theory for study, oscillatory or fully unsteady potential compressible aerodynamics around complex configurations is presented. Using the finite-element method to discretize the space problem, one obtains a set of differential-delay equations in time relating the potential to its normal derivative which is expressed in terms of the generalized coordinates of the structure. For oscillatory flow, the motion consists of sinusoidal oscillations around a steady, subsonic or supersonic flow. For fully unsteady flow, the motion is assumed to consist of constant subsonic or supersonic speed for time t or = 0 and of small perturbations around the steady state for time t 0.

  12. A method for calculating a weakly nonisobaric supersonic turbulent jet in a subsonic slipstream

    NASA Astrophysics Data System (ADS)

    Kozlov, V. E.

    A novel approach for computing weakly nonisobaric turbulent jets in a subsonic slipstream is proposed whereby the flow is divided into a subsonic and a supersonic zone and two different evolutionary systems of equations are used in each of the two zones. The solutions are then joined at the Mach 1 line. Closure of the systems of equations is achieved by using a known one-parameter turbulence model that has been modified to allow for the effect of the Mach number on turbulent mixing. The results obtained are compared against experimental data.

  13. Prediction of vortex flow characteristics of wings at subsonic and supersonic speeds

    NASA Technical Reports Server (NTRS)

    Lamar, J. E.

    1975-01-01

    The leading-edge-suction analogy of Polhamus, which has been successful in the prediction of vortex lift characteristics on wings with pointed tips at subsonic and supersonic speeds, has recently been extended to account for the vortex flow characteristics for wings with side edges. Comparisons of experimental data and other currently used methods with the extended method are made for wings having side edges at subsonic and supersonic speeds. Recent data obtained for a low-aspect-ratio cropped-delta wing with various amounts of asymmetrical tip rake, simulating a roll control device, are also presented.

  14. The Liquid Hydrogen Option for the Subsonic Transport: A status report

    NASA Technical Reports Server (NTRS)

    Korycinski, P. F.

    1977-01-01

    Continued subsonic air transport design studies include the option for a liquid hydrogen fuel system as an aircraft fuel conservation measure. Elements of this option discussed include: (1) economical production of hydrogen; (2) efficient liquefaction of hydrogen; (3) materials for long service life LH2 fuel tanks; (4) insulation materials; (5) LH2 fuel service and installations at major air terminals; (6) assessment of LH2 hazards; and (7) the engineering definition of an LH2 fuel system for a large subsonic passenger air transport.

  15. Aeronautical engineering, a special bibliography, September 1971 (supplement 10)

    NASA Technical Reports Server (NTRS)

    1971-01-01

    This supplement to Aeronautical Engineering-A Special Bibliography (NASA SP-7037) lists 413 reports, journal articles, and other documents originally announced in September 1971 in Scientific and Technical Aerospace Reports (STAR) or in International Aerospace Abstracts (IAA). The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the bibliography consists of a standard bibliographic citation accompanied by an abstract. The listing of the entries is arranged in two major sections, IAA Entries and STAR Entries in that order. The citations and abstracts are reproduced exactly as they appeared originally in IAA or STAR, including the original accession numbers from the respective announcement journals.

  16. Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplement 411

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-2000-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes- subject and author are included after the abstract section.

  17. NASA's Role in Aeronautics: A Workshop. Volume 2: Military aviation

    NASA Technical Reports Server (NTRS)

    1981-01-01

    While the National Aeronautics and Space Act of 1958 makes DOD primarily responsible for military aeronautics, it stipulates a role for NASA in providing direct and indirect support for national defense. The existing role of NASA in support of military aeronautics is working well and is well coordinated. The role needs only to be kept effective and then improved by increasing its responsiveness to changing military requirements and by the selective application of additional people. Funding resources should also be made available to NASA for research. Specific roles that NASA could or should play were examined. It was determined that the most important areas for this support are in basic research, generic technology evolution, and facility support in the fields of aerodynamics, structures and materials, and propulsion.

  18. The Aeronautics Education, Research, and Industry Alliance (AERIAL) 2002 Report

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.; Box, Richard C.; Fink, Mary; Gogos, George; Lehrer, Henry R.; Narayanan, Ram M.; Nickerson, Jocelyn S.; Tarry, Scott E.; Vlasek, Karisa D.; O'Neil, Patrick D.

    2002-01-01

    The NASA Nebraska Space Grant Consortium (NSGC) & EPSCoR programs at the University of Nebraska at Omaha are involved in a variety of innovative research activities. Such research is supported through the Aeronautics Education, Research, and Industry Alliance (AERIAL) and collaborative seed funds. AERIAL is a comprehensive, multi-faceted, five year NASA EPSCoR initiative that contributes substantially to the strategic research and technology priorities of NASA while intensifying Nebraska s rapidly growing aeronautics research and development endeavors. AERIAL includes three major collaborative research teams (CRTs) whose nexus is a common focus in aeronautics research. Each CRT - Small Aircraft Transportation System (SATS), Airborne Remote Sensing for Agricultural Research and Commercialization Applications (ARS), and Numerical Simulation of the Combustion of Fuel Droplets: Finite Rate Kinetics and Flame Zone Grid Adaptation (CEFD) -has a distinct research agenda. This program provides the template for funding of new and innovative research that emphasizes aerospace technology.

  19. Application of the Iridium Satellite System to Aeronautical Communications

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Meza, Mike; Gupta, Om

    2008-01-01

    The next generation air transportation system will require greater air-ground communications capacity to accommodate more air traffic with increased safety and efficiency. Communications will remain primarily terrestrially based, but satellite communications will have an increased role. Inmarsat s aeronautical services have been approved and are in use for aeronautical safety communications provided by geostationary satellites. More recently the approval process for the Iridium low earth orbit constellation is nearing completion. The current Iridium system will be able to provide basic air traffic services communications suitable for oceanic, remote and polar regions. The planned second generation of the Iridium system, called Iridium NEXT, will provide enhanced capabilities and enable a greater role in the future of aeronautical communications. This paper will review the potential role of satellite communications in the future of air transportation, the Iridium approval process and relevant system testing, and the potential role of Iridium NEXT.

  20. Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplment 394

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-1999-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes-subject and author are included after the abstract section.

  1. Aeronautics Technology Possibilities for 2000: Report of a workshop

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The potential of aeronautical research and technology (R&T) development, which could provide the basis for facility planning and long range guidance of R&T programs and could establish justification for support of aeronautical research and technology was studied. The projections served specific purposes: (1) to provide a base for research and future facilities needed to support the projected technologies, and development advanced vehicles; (2) to provide insight on the possible state of the art in aeronautical technology by the year 2000 for civil and military planners of air vehicles and systems. Topics discussed include: aerodynamics; propulsion; structures; materials; guidance, navigation and control; computer and information technology; human factors; and systems integration.

  2. Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplement 408

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This supplemental issue of Aeronautical Engineering, a Continuing Bibliography with Indexes (NASA/SP#1999-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes#subject and author are included after the abstract section.

  3. Aeronautical Engineering: A Continuing Bibliography With Indexes. Supplement 407

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-1999-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes-subject and author are included after the abstract section.

  4. Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplement 415

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-2000-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes-subject and author are included after the abstract section.

  5. A Digital Library for the National Advisory Committee for Aeronautics

    NASA Technical Reports Server (NTRS)

    Nelson, Michael L.

    1999-01-01

    We describe the digital library (DL) for the National Advisory Committee for Aeronautics (NACA), the NACA Technical Report Server (NACATRS). The predecessor organization for the National Aeronautics and Space Administration (NASA), NACA existed from 1915 until 1958. The primary manifestation of NACA's research was the NACA report series. We describe the process of converting this collection of reports to digital format and making it available on the World Wide Web (WWW) and is a node in the NASA Technical Report Server (NTRS). We describe the current state of the project, the resulting DL technology developed from the project, and the future plans for NACATRS.

  6. The application of artificial intelligence technology to aeronautical system design

    NASA Technical Reports Server (NTRS)

    Bouchard, E. E.; Kidwell, G. H.; Rogan, J. E.

    1988-01-01

    This paper describes the automation of one class of aeronautical design activity using artificial intelligence and advanced software techniques. Its purpose is to suggest concepts, terminology, and approaches that may be useful in enhancing design automation. By understanding the basic concepts and tasks in design, and the technologies that are available, it will be possible to produce, in the future, systems whose capabilities far exceed those of today's methods. Some of the tasks that will be discussed have already been automated and are in production use, resulting in significant productivity benefits. The concepts and techniques discussed are applicable to all design activity, though aeronautical applications are specifically presented.

  7. Aeronautical Engineering: A Continuing Bibliography With Indexes. Supplement 414

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This report lists reports, articles and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes-subject and author are included after the abstract section.

  8. Astronautics and Aeronautics: A Chronology, 2001-2005

    NASA Technical Reports Server (NTRS)

    Ivey, William Noel; Lewis, Marieke

    2010-01-01

    This report is a chronological compilation of narrative summaries of news reports and government documents highlighting significant events and developments in U.S. and foreign aeronautics and astronautics. It covers the years 2001 through 2005. These summaries provide a day-by-day recounting of major activities, such as administrative developments, awards, launches, scientific discoveries, corporate and government research results, and other events in countries with aeronautics and astronautics programs. Researchers used the archives and files housed in the NASA History Division, as well as reports and databases on the NASA Web site.

  9. Astronautics and Aeronautics: A Chronology, 1996-2000

    NASA Technical Reports Server (NTRS)

    Lewis, Marieke; Swanson, Ryan

    2009-01-01

    This report is a chronological compilation of narrative summaries of news reports and government documents highlighting significant events and developments in United States and foreign aeronautics and astronautics. It covers the years 1996 through 2000. These summaries provide a day-by-day recounting of major activities, such as administrative developments, awards, launches, scientific discoveries, corporate and government research results, and other events in countries with aeronautics and astronautics programs. Researchers used the archives and files housed in the NASA History Division, as well as reports and databases on the NASA Web site.

  10. Aeronautics and space report of the President, 1982 activities

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Achievements of the space program are summerized in the area of communication, Earth resources, environment, space sciences, transportation, aeronautics, and space energy. Space program activities of the various deprtments and agencies of the Federal Government are discussed in relation to the agencies' goals and policies. Records of U.S. and world spacecraft launchings, successful U.S. launches for 1982, U.S. launched applications and scientific satellites and space probes since 1975, U.S. and Soviet manned spaceflights since 1961, data on U.S. space launch vehicles, and budget summaries are provided. The national space policy and the aeronautical research and technology policy statements are included.

  11. Aeronautical technology 2000 - A projection of advanced vehicle concepts

    NASA Technical Reports Server (NTRS)

    Rosen, C. C., III; Burger, R. J.; Sigalla, A.

    1984-01-01

    At the request of NASA and under the aegis of the National Research Council, representatives from industry, academic institutions and government have participated in a workshop to consider opportunities for the exploitation of aircraft technology in such fields as aerodynamics, materials, structures, guidance, navigation and control, human factors, propulsion, computers and data processing, and systems integration. Attention is given to the advanced vehicle concepts that have emerged for possible year-2000 implementation, which encompass such diverse aircraft types as supersonic transports, hypersonic airliners, missiles, and interceptors, transatmospheric vehicles, next-generation space shuttles, subsonic transports and attack aircraft, advanced helicopter, tilt-rotor VTOL configurations, and solar- and microwave beam-powered extremely high altitude aircraft.

  12. Future Fixed Target Facilities

    SciTech Connect

    Melnitchouk, Wolodymyr

    2009-01-01

    We review plans for future fixed target lepton- and hadron-scattering facilities, including the 12 GeV upgraded CEBAF accelerator at Jefferson Lab, neutrino beam facilities at Fermilab, and the antiproton PANDA facility at FAIR. We also briefly review recent theoretical developments which will aid in the interpretation of the data expected from these facilities.

  13. Fixing Dataset Search

    NASA Technical Reports Server (NTRS)

    Lynnes, Chris

    2014-01-01

    Three current search engines are queried for ozone data at the GES DISC. The results range from sub-optimal to counter-intuitive. We propose a method to fix dataset search by implementing a robust relevancy ranking scheme. The relevancy ranking scheme is based on several heuristics culled from more than 20 years of helping users select datasets.

  14. Pressure Distributions About Finite Wedges in Bounded and Unbounded Subsonic Streams

    NASA Technical Reports Server (NTRS)

    Donoughe, Patrick L; Prasse, Ernst I

    1953-01-01

    An analytical investigation of incompressible flow about wedges was made to determine effects of tunnel-wedge ratio and wedge angle on the wedge pressure distributions. The region of applicability of infinite wedge-type velocity distribution was examined for finite wedges. Theoretical and experimental pressure coefficients for various tunnel-wedge ratios, wedge angles, and subsonic Mach numbers were compared.

  15. The reversibility theorem for thin airfoils in subsonic and supersonic flow

    NASA Technical Reports Server (NTRS)

    Brown, Clinton E

    1950-01-01

    A method introduced by Munk is extended to prove that the light-curve slope of thin wings in either subsonic flow or supersonic flow is the same when the direction of flight of the wing is reversed. It is also shown that the wing reversal does not change the thickness drag, damping-in-roll parameter or the damping-in-pitch parameter.

  16. Data Reduction Functions for the Langley 14- by 22-Foot Subsonic Tunnel

    NASA Technical Reports Server (NTRS)

    Boney, Andy D.

    2014-01-01

    The Langley 14- by 22-Foot Subsonic Tunnel's data reduction software utilizes six major functions to compute the acquired data. These functions calculate engineering units, tunnel parameters, flowmeters, jet exhaust measurements, balance loads/model attitudes, and model /wall pressures. The input (required) variables, the output (computed) variables, and the equations and/or subfunction(s) associated with each major function are discussed.

  17. Two Dimensional Subsonic Euler Flows Past a Wall or a Symmetric Body

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Du, Lili; Xie, Chunjing; Xin, Zhouping

    2016-08-01

    The existence and uniqueness of two dimensional steady compressible Euler flows past a wall or a symmetric body are established. More precisely, given positive convex horizontal velocity in the upstream, there exists a critical value {ρ_cr} such that if the incoming density in the upstream is larger than {ρ_cr}, then there exists a subsonic flow past a wall. Furthermore, {ρ_cr} is critical in the sense that there is no such subsonic flow if the density of the incoming flow is less than {ρ_cr}. The subsonic flows possess large vorticity and positive horizontal velocity above the wall except at the corner points on the boundary. Moreover, the existence and uniqueness of a two dimensional subsonic Euler flow past a symmetric body are also obtained when the incoming velocity field is a general small perturbation of a constant velocity field and the density of the incoming flow is larger than a critical value. The asymptotic behavior of the flows is obtained with the aid of some integral estimates for the difference between the velocity field and its far field states.

  18. The similarity rules for second-order subsonic and supersonic flow

    NASA Technical Reports Server (NTRS)

    Van Dyke, Milton D

    1958-01-01

    The similarity rules for linearized compressible flow theory (Gothert's rule and its supersonic counterpart) are extended to second order. It is shown that any second-order subsonic flow can be related to "nearly incompressible" flow past the same body, which can be calculated by the Janzen-Rayleigh method.

  19. Method of Making a Composite Panel Having Subsonic Transverse Wave Speed Characteristics

    NASA Technical Reports Server (NTRS)

    Palumbo, Daniel L. (Inventor); Klos, Jacob (Inventor)

    2012-01-01

    A method of making a composite panel having subsonic transverse wave speed characteristics which has first and second sheets sandwiching a core with at least one of the sheets being attached to the core at first regions thereof and unattached to the core at second regions thereof.

  20. Subsonic Euler Flows with Large Vorticity Through an Infinitely Long Axisymmetric Nozzle

    NASA Astrophysics Data System (ADS)

    Du, Lili; Duan, Ben

    2016-04-01

    This paper is a sequel to the earlier work Du and Duan (J Diff Equ 250:813-847, 2011) on well-posedness of steady subsonic Euler flows through infinitely long three-dimensional axisymmetric nozzles. In Du and Duan (J Diff Equ 250:813-847, 2011), the authors showed the existence and uniqueness of the global subsonic Euler flows through an infinitely long axisymmetric nozzle, when the variation of Bernoulli's function in the upstream is sufficiently small and the mass flux of the incoming flow is less than some critical value. The smallness of the variation of Bernoulli's function in the upstream prevents the attendance of the possible singularity in the nozzles, however, at the same time it also leads that the vorticity of the ideal flow is sufficiently small in the whole nozzle and the flows are indeed adjacent to axisymmetric potential flows. The purpose of this paper is to investigate the effects of the vorticity for the smooth subsonic ideal flows in infinitely long axisymmetric nozzles. We modify the formulation of the problem in the previous work Du and Duan (J Diff Equ 250:813-847, 2011) and the existence and uniqueness results on the smooth subsonic ideal polytropic flows in infinitely long axisymmetric nozzles without the restriction on the smallness of the vorticity are shown in this paper.

  1. 12. SOUTHWEST VIEW OF BUILDING 25C (SUBSONIC AERODYNAMICS TEST FACILITY) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. SOUTHWEST VIEW OF BUILDING 25C (SUBSONIC AERODYNAMICS TEST FACILITY) (1992). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH

  2. Formal representation of the requirements for an Advanced Subsonic Civil Transport (ASCT) flight control system

    NASA Technical Reports Server (NTRS)

    Frincke, Deborah; Wolber, Dave; Fisher, Gene; Cohen, Gerald C.; Mclees, R. E.

    1992-01-01

    A partial requirement specification for an Advanced Subsonic Civil Transport (ASCT) Flight Control System is described. The example was adopted from requirements given in a NASA Contractor report. The language used to describe the requirements, Requirements Specification Language (RSL), is described in a companion document.

  3. Analysis of an advanced ducted propeller subsonic inlet

    NASA Technical Reports Server (NTRS)

    Iek, Chanthy; Boldman, Donald R.; Ibrahim, Mounir

    1992-01-01

    It is shown that a time marching Navier-Stokes code called PARC can be utilized to provide a reasonable prediction of the flow field within an inlet for an advanced ducted propeller. The code validation was implemented for a nonseparated flow condition associated with the inlet functioning at angles-of-attack of zero and 25 deg. Comparison of the computational results with the test data shows that the PARC code with the propeller face fixed flow properties boundary conditions (BC) provided a better prediction of the inlet surface static pressures than the prediction when the mass flow BC was employed.

  4. National Aeronautics and Space Administration (NASA) Education 1993-2009

    ERIC Educational Resources Information Center

    Ivie, Christine M.

    2009-01-01

    The National Aeronautics and Space Administration was established in 1958 and began operating a formal education program in 1993. The purpose of this study was to analyze the education program from 1993-2009 by examining strategic plan documents produced by the NASA education office and interviewing NASA education officials who served during that…

  5. Aeronautics Study Takes Off! Glider Design for Beginners

    ERIC Educational Resources Information Center

    Lazaros, Edward J.; Carlson, Katie

    2008-01-01

    Study of aeronautics is an interesting and motivating subject for students and educators alike. The activity described in this article--appropriate for upper elementary or middle school students--provides an excellent introduction to airplane design and the science of aerodynamics. It also gives students good experience applying knowledge from a…

  6. National Aeronautics and Space Administration Scientific and Technical Information Programs.

    ERIC Educational Resources Information Center

    Pinelli, Thomas E., Ed.

    1990-01-01

    Eleven articles discuss informational and educational programs of the National Aeronautics and Space Administration (NASA). Some of the areas discussed include scientific and technical information management, the new Space and Earth Science Information Systems, transfer of technology to other industries, intellectual property issues, and the…

  7. Aeronautical Envineering at Technion - Israel Institute of Technology.

    ERIC Educational Resources Information Center

    Mathieu, Richard D.

    The shortage of engineers in Israel and the role that the Technion - Israel Institute of Technology plays in the education of engineers is discussed. Emphasis is placed on the academic program, research, and related activities in the Department of Aeronautical Engineering. A brief description of the development of the institute and its…

  8. Aeronautical engineering: A special bibliography with indexes, supplement 49

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The bibliography contains 368 abstract citations of reports, journal articles, and other documents concerned with the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. Research and development in aerodynamics, aeronautics, and ground support equipment are also treated. Subject, personal, and contract number indexes are included for ease of access.

  9. Aeronautical Engineering: A cumulative index to the 1980 issue

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This bibliography is a cumulative index to reports, articles, and other documents introduced into the NASA scientific and technical information system. Abstracts for the entries cited appeared in issues 119 through 130 of Aeronautical Engineering: A Continuing Bibliography (NASA SP-7037). Subject, personal author, corporate author, contract number, and report/accession number indexes are provided.

  10. Astronautics and aeronautics, 1972. [a chronology of events

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Important events of the U. S. space program during 1972 are recorded in a chronology which encompasses all NASA, NASA related, and international cooperative efforts in aeronautics and astronautics. Personnel and budget concerns are documented, along with the major developments in aircraft research, manned space flight, and interplanetary exploration.

  11. 77 FR 71089 - Pilot Loading of Aeronautical Database Updates

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-29

    ... FAA issued regulations (61 FR 19498) categorizing pilot-performed updates of navigation databases as... regulations in the NPRM (76 FR 64859, October 19, 2011), by removing the task of updating databases used in... Federal Aviation Administration 14 CFR Part 43 RIN 2120-AJ91 Pilot Loading of Aeronautical...

  12. Aeronautical Engineering: A continuing bibliography with indexes, supplement 185

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This bibliography lists 462 reports, articles and other documents introduced into the NASA scientific and technical information system in February 1985. Aerodynamics, aeronautical engineering, aircraft design, aircraft stability and control, geophysics, social sciences, and space sciences are some of the areas covered.

  13. The role of computational fluid dynamics in aeronautical engineering

    NASA Astrophysics Data System (ADS)

    Kishimoto, Takuji; Uchida, Takashi

    1988-12-01

    Numerical analyses by solving Euler/Navier-Stokes Equations has been used in practical aeronautical engineerings. Here, the results of two dimensional Navier-Stokes analyses of a multiple slotted flap, and a three dimensional wing design problem using Euler analyses are shown.

  14. FY 1978 aeronautics and space technology program summary

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Highlights of the aeronautics program include research on aircraft energy efficiency, supersonic cruise aircraft, vertical takeoff and landing aircraft, short haul/short takeoff and landing aircraft, and general aviation aircraft. The space technology program includes work on space structures, propulsion systems, power systems, materials, and electronics.

  15. Vortex-Lattice Utilization. [in aeronautical engineering and aircraft design

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The many novel, innovative, and unique implementations and applications of the vortex-lattice method to aerodynamic design and analysis which have been performed by Industry, Government, and Universities were presented. Although this analytical tool is not new, it continues to be utilized and refined in the aeronautical community.

  16. A Case Study of Peer Learning in Higher Aeronautical Education

    ERIC Educational Resources Information Center

    Borglund, Dan

    2007-01-01

    In order to improve student learning in an advanced course in aeronautics, lectures are replaced with more student-centred sessions based on peer learning. The course is organised in student teams, with the main task of delivering lecture requests for full class discussions. For the same reason, the written theory exam is replaced by a peer review…

  17. Aeronautical mobile satellite service: Air traffic control applications

    NASA Technical Reports Server (NTRS)

    Sim, Dave

    1990-01-01

    Canada's history both in aviation and in satellite communications development spans several decades. The introduction of aeronautical mobile satellite communications will serve our requirements for airspace management in areas not served by line-of-sight radio and radar facilities. The ensuing improvements in air safety and operating efficiency are eagerly awaited by the aviation community.

  18. Aeronautical engineering: A continuing bibliography with indexes (supplement 316)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This bibliography lists 413 reports, articles, and other documents introduced into the NASA scientific and technical information system in April 1995. Subject coverage includes: aeronautics; mathematical and computer sciences; chemistry and material sciences; geosciences; design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  19. Quality Program Provisions for Aeronautical and Space System Contractors

    NASA Technical Reports Server (NTRS)

    1969-01-01

    This publication sets forth quality program requirements for NASA aeronautical and space programs, systems, subsystems, and related services. These requirements provide for the effective operation of a quality program which ensures that quality criteria and requirements are recognized, definitized, and performed satisfactorily.

  20. On the Importance of Very Light Internally Subsonic AGN Jets in Radio-mode AGN Feedback

    NASA Astrophysics Data System (ADS)

    Guo, Fulai

    2016-07-01

    Radio-mode active galactic nucleus (AGN) feedback plays a key role in the evolution of galaxy groups and clusters. Its physical origin lies in the kiloparsec-scale interaction of AGN jets with the intracluster medium. Large-scale jet simulations often initiate light internally supersonic jets with density contrast 0.01 < η < 1. Here we argue for the first time for the importance of very light (η < 0.01) internally subsonic jets. We investigated the shapes of young X-ray cavities produced in a suite of hydrodynamic simulations, and found that bottom-wide cavities are always produced by internally subsonic jets, while internally supersonic jets inflate cylindrical, center-wide, or top-wide cavities. We found examples of real cavities with shapes analogous to those inflated in our simulations by internally subsonic and internally supersonic jets, suggesting a dichotomy of AGN jets according to their internal Mach numbers. We further studied the long-term cavity evolution, and found that old cavities resulted from light jets spread along the jet direction, while those produced by very light jets are significantly elongated along the perpendicular direction. The northwestern ghost cavity in Perseus is pancake shaped, providing tentative evidence for the existence of very light jets. Our simulations show that very light internally subsonic jets decelerate faster and rise much slower in the intracluster medium than light internally supersonic jets, possibly depositing a larger fraction of jet energy to cluster cores and alleviating the problem of low coupling efficiencies found previously. The internal Mach number points to the jet’s energy content, and internally subsonic jets are energetically dominated by non-kinetic energy, such as thermal energy, cosmic rays, or magnetic fields.

  1. Aeronautics: An Educator's Guide with Activities in Science, Mathematics, and Technology Education.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This educator's guide, developed for students in grades 2-4, discusses the field of aeronautics. It begins with education standards and skill matrices for the classroom activities, a description of the National Aeronautics and Space Administration (NASA) aeronautics mission, and a brief history of aeronautics. Activities are written for the…

  2. 77 FR 47913 - Public Notice for Waiver of Aeronautical Land-Use Assurance; Southern Illinois Airport...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-10

    ... Federal Aviation Administration Public Notice for Waiver of Aeronautical Land-Use Assurance; Southern... to change a portion of airport land from aeronautical use to non-aeronautical use at the Southern... before modifying the land-use assurance that requires the property to be used for an aeronautical...

  3. Adaptive structures for fixed and rotary wing aircraft

    NASA Astrophysics Data System (ADS)

    Martin, Willi; Jänker, Peter; Siemetzki, Markus; Lorkowski, Thomas; Grohmann, Boris; Maier, Rudolf; Maucher, Christoph; Klöppel, Valentin; Enenkl, Bernhard; Roth, Dieter; Hansen, Heinz

    2007-07-01

    Since more than 10 years EADS Innovation Works, which is the corporate research centre of EADS (European Aeronautic Defence and Space Company), is investigating smart materials and adaptive structures for aircraft in cooperation with EADS business units. Focus of research efforts are adaptive systems for shape control, noise reduction and vibration control of both fixed and rotary wing aircraft as well as for lift optimisation of fixed wing aircraft. Two outstanding adaptive systems which have been pushed ahead in cooperation with Airbus Germany and Eurocopter Germany are adaptive servo flaps for helicopter rotor blades and innovative high lift devices for fixed wing aircraft which both were tested in flight for the first time representing world premieres. In this paper various examples of adaptive systems are presented which were developed and realized by EADS in recent years.

  4. Experimental Pressure Distributions over Wing Tips at Mach Number 1.9 I : Wing Tip with Subsonic Leading Edge

    NASA Technical Reports Server (NTRS)

    Jagger, James M; Mirels, Harold

    1949-01-01

    An investigation was conducted at a Mach number of 1.91 to determine spanwise pressure distribution over a wing tip in a region influenced by a sharp subsonic leading edge swept back at 70 degrees. Except for pressure distribution on the top surface in the immediate vicinity of the subsonic leading edge, the maximum difference between linearized theory and experimental data was 2 1/2 percent (of free-stream dynamic pressure) for angles of attack up to 4 degrees and 7 percent for angles of attack up to 8 degrees. Pressures on the top surface nearest the subsonic edge indicated local expansions beyond values predicted by linearized theory.

  5. The Effects of Safety Information on Aeronautical Decision Making

    NASA Technical Reports Server (NTRS)

    Lee, Jang R.; Fanjoy, Richard O.; Dillman, Brian G.

    2005-01-01

    The importance of aeronautical decision making (ADM) has been considered one of the most critical issues of flight education for future professional pilots. Researchers have suggested that a safety information system based on information from incidents and near misses is an important tool to improve the intelligence and readiness of pilots. This paper describes a study that examines the effect of safety information on aeronautical decision making for students in a collegiate flight program. Data was collected from study participants who were exposed to periodic information about local aircraft malfunctions. Participants were then evaluated using a flight simulator profile and a pen and pencil test of situational judgment. Findings suggest that regular access to the described safety information program significantly improves decision making of student pilots.

  6. NASA's Role in Aeronautics: A Workshop. Volume 4: General aviation

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A substantially improved flow of new technology is imperative if the general aviation industry is to maintain a strong world position. Although NASA is the most eminently suited entity available to carry out the necessary research and technology development effort because of its facilities, expertise, and endorsement by the aircraft industry, less than 3% of its aeronautical R&T budget is devoted to general aviation aeronautics. It is recommended that (1) a technology program, particularly one that focuses on improving fuel efficienty and safety, be aggressively pursued by NASA; (2) NASA be assigned the role of leading basic research technology effort in general aviation up through technology demonstration; (3) a strategic plan be developed by NASA, in cooperation with the industry, and implemented in time for the 1982 budget cycle; and (4) a NASA R&T budget be allocated for general aviation adequate to support the proposed plan.

  7. National Aeronautics and Space Administration FY 2001 Accountability Report

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The National Aeronautics and Space Administration (NASA) is an independent Agency established to plan and manage the future of the Nation's civil aeronautics and space program. This Accountability Report covers Federal Fiscal Year (FY) 2001 (October 1, 2000, through September 30, 2001), with discussion of some subsequent events The Report contains an overview addressing the Agency's critical programs and financial performance and includes highlights of performance organized by goals and objectives of the Enterprises and Crosscutting Processes. The Report also summarizes NASA's stewardship over budget and financial resources, including audited financial statements and footnotes. The financial statements reflect an overall position of offices and activities, including assets and liabilities, as well as results of operations, pursuant to requirements of Federal law (31 U.S.C. 3515(b)). The auditor's opinions on NASA's financial statements, reports on internal controls, and compliance with laws and regulations are included in this Report.

  8. Chemical Gas Sensors for Aeronautic and Space Applications 2

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Chen, Liong-Yu; Neudeck, Phil G.; Knight, Dale; Liu, C. C.; Wu, Q. H.; Zhou, H. J.; Makel, Darby; Liu, M.; Rauch, W. A.

    1998-01-01

    Aeronautic and space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Areas of interest include launch vehicle safety monitoring, emission monitoring, and fire detection. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensors is based on progress in two types of technology: 1) Micromachining and microfabrication technology to fabricate miniaturized sensors. 2) The development of high temperature semiconductors, especially silicon carbide. Sensor development for each application involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this microfabricated gas sensor technology make this area of sensor development a field of significant interest.

  9. Chemical Gas Sensors for Aeronautic and Space Applications 2

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Chen, L. Y.; Neudeck, P. G.; Knight, D.; Liu, C. C.; Wu, Q. H.; Zhou, H. J.; Makel, D.; Liu, M.; Rauch, W. A.

    1998-01-01

    Aeronautic and Space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Areas of most interest include launch vehicle safety monitoring emission monitoring and fire detection. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensor is based on progress two types of technology: 1) Micro-machining and micro-fabrication technology to fabricate miniaturized sensors. 2) The development of high temperature semiconductors, especially silicon carbide. Sensor development for each application involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this micro-fabricated gas sensor technology make this area of sensor development a field of significant interest.

  10. Chemical Gas Sensors for Aeronautic and Space Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Chen, Liang-Yu; Neudeck, Philip G.; Knight, Dak; Liu, Chung-Chiun; Wu, Quing-Hai; Zhou, Huan-Jun

    1997-01-01

    Aeronautic and space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Two areas of particular interest are safety monitoring and emission monitoring. In safety monitoring, detection of low concentrations of hydrogen at potentially low temperatures is important while for emission monitoring the detection of nitrogen oxides, hydrogen, hydrocarbons and oxygen is of interest. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensors is based on progress in two types of technology: (1) Micromachining and microfabrication technology to fabricate miniaturized sensors. (2) The development of high temperature semiconductors, especially silicon carbide. The detection of each type of gas involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this microfabricated gas sensor technology make this general area of sensor development a field of significant interest.

  11. Chemical Gas Sensors for Aeronautics and Space Applications III

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Neudeck, P. G.; Chen, L. Y.; Liu, C. C.; Wu, Q. H.; Sawayda, M. S.; Jin, Z.; Hammond, J.; Makel, D.; Liu, M.; Rauch, W. A.; Hall, G.

    1999-01-01

    Aeronautic and space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Areas of interest include launch vehicle safety monitoring, emission monitoring, and fire detection. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensors is based on progress in two types of technology: 1) Micromachining and microfabrication technology to fabricate miniaturized sensors. 2) The development of high temperature semiconductors, especially silicon carbide. Sensor development for each application involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this microfabricated gas sensor technology make this area of sensor development a field of significant interest.

  12. National Aeronautics and Space Administration Fiscal Year 2001 Accountability Report

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The National Aeronautics and Space Administration (NASA) is an independent Agency established to plan and manage the future of the Nation's civil aeronautics and space program. This Accountability Report covers Federal Fiscal Year (FY) 2001 (October 1, 2000, through September 30, 2001), with discussion of some subsequent events. The Report contains an overview addressing the Agency's critical programs and financial performance and includes highlights of performance organized by goals and objectives of the Enterprises and Crosscutting Processes. The Report also summarizes NASA's stewardship over budget and financial resources, including audited financial statements and footnotes. The financial statements reflect an overall position of offices and activities, including assets and liabilities, as well as results of operations, pursuant to requirements of Federal law (31 U.S.C. 3515(b)). The auditor's opinions on NASA's financial statements, reports on internal controls, and compliance with laws and regulations are included in this report.

  13. Tribology needs for future space and aeronautical systems

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1991-01-01

    Future aeronautical and space missions will push tribology technology beyond its current capability. The objective is to discuss the current state of the art of tribology as it is applied to advanced aircraft and spacecraft. Areas of discussion include materials lubrication mechanisms, factors affecting lubrication, current and future tribological problem areas, potential new lubrication techniques, and perceived technology requirements that need to be met in order to solve these tribology problems.

  14. NASA's Role in Aeronautics: A Workshop. Volume 3: Transport aircraft

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Segments of the spectrum of research and development activities that clearly must be within the purview of NASA in order for U.S. transport aircraft manufacturing and operating industries to succeed and to continue to make important contributions to the nation's wellbeing were examined. National facilities and expertise; basic research, and the evolution of generic and vehicle class technologies were determined to be the areas in which NASA has an essential role in transport aircraft aeronautics.

  15. The Aeronautics Education, Research, and Industry Alliance (AERIAL) 2002 Report

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.; Fink, Mary M.; Nickerson, Jocelyn S.

    2002-01-01

    This report presents and overview of the Aeronautics Education, Research, and Industry Alliance (AERIAL). It covers the University of Nebraska's areas of research, and its outreach to students at Native American schools as part of AERIAL. The report contains three papers: "Airborne Remote Sensing (ARS) for Agricultural Research and Commercialization Application" (White Paper), "Validated Numerical Models for the Convective Extinction of Fuel Droplets (CEFD)", and "The Small Aircraft Transportation System (SATS): Research Collaborations with the NASA Langley Research Center".

  16. Aeronautical technology 2000: A projection of advanced vehicle concepts

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The Aeronautics and Space Engineering Board (ASEB) of the National Research Council conducted a Workshop on Aeronautical Technology: a Projection to the Year 2000 (Aerotech 2000 Workshop). The panels were asked to project advances in aeronautical technologies that could be available by the year 2000. As the workshop was drawing to a close, it became evident that a more comprehensive investigation of advanced air vehicle concepts than was possible in the limited time available at the workshop would be valuable. Thus, a special panel on vehicle applications was organized. In the course of two meetings, the panel identified and described representative types of aircraft judged possible with the workshop's technology projections. These representative aircraft types include: military aircraft; transport aircraft; rotorcraft; extremely high altitude aircraft; and transatmospheric aircraft. Improvements in performance, efficiency, and operational characteristics possible through the application of the workshop's year 2000 technology projections were discussed. The subgroups also identified the technologies considered essential and enhancing or supporting to achieve the projected aircraft improvements.

  17. From Aeronautics to Space: Lessons in Human Automation

    NASA Technical Reports Server (NTRS)

    Connors, Mary M.; Rosekind, Mark R. (Technical Monitor)

    1996-01-01

    Civilian air flight continues on a growth curve, as more and more people utilize air travel to meet business and personal travel needs: This consumer-driven demand has resulted in the adoption of new methods to increase air system capacity and to make the air transportation system increasingly more efficient. As a consequence, civilian aviation, as an industry, has assumed a leading role in the use of automated systems, and, by implication, in the understanding of how human openers interact with these systems. Aeronautical automation systems serve a variety of roles. These include controlling aircraft and aiding, advising and monitoring numerous functions in the aircraft/airspace system. Experiences in the use of human/automation systems gathered from aviation are, in many cases, generalizable to other industries having similar requirements for human and non-human intelligent system interaction. However, the human/automation lessons learned from aviation have special relevance to the space application, where many of the same operational demands prevail. The application of aeronautical lessons of human-automated interaction to spaceflight is the subject of this paper. The discussion will address: the progress that has been made through aeronautically-based research and experience in understanding human/automation interaction, ways that this understanding can be applied to the needs of space, and the limits of our present understanding of human/automations systems. Suggestions will be offered related to human-automation research generally, and to the particular needs of the space endeavor.

  18. High-Lift Systems on Commercial Subsonic Airliners

    NASA Technical Reports Server (NTRS)

    Rudolph, Peter K. C.

    1996-01-01

    The early breed of slow commercial airliners did not require high-lift systems because their wing loadings were low and their speed ratios between cruise and low speed (takeoff and landing) were about 2:1. However, even in those days the benefit of high-lift devices was recognized. Simple trailing-edge flaps were in use, not so much to reduce landing speeds, but to provide better glide-slope control without sideslipping the airplane and to improve pilot vision over the nose by reducing attitude during low-speed flight. As commercial-airplane cruise speeds increased with the development of more powerful engines, wing loadings increased and a real need for high-lift devices emerged to keep takeoff and landing speeds within reasonable limits. The high-lift devices of that era were generally trailing-edge flaps. When jet engines matured sufficiently in military service and were introduced commercially, airplane speed capability had to be increased to best take advantage of jet engine characteristics. This speed increase was accomplished by introducing the wing sweep and by further increasing wing loading. Whereas increased wing loading called for higher lift coefficients at low speeds, wing sweep actually decreased wing lift at low speeds. Takeoff and landing speeds increased on early jet airplanes, and, as a consequence, runways worldwide had to be lengthened. There are economical limits to the length of runways; there are safety limits to takeoff and landing speeds; and there are speed limits for tires. So, in order to hold takeoff and landing speeds within reasonable limits, more powerful high-lift devices were required. Wing trailing-edge devices evolved from plain flaps to Fowler flaps with single, double, and even triple slots. Wing leading edges evolved from fixed leading edges to a simple Krueger flap, and from fixed, slotted leading edges to two- and three-position slats and variable-camber (VC) Krueger flaps. The complexity of high-lift systems probably

  19. Advanced subsonic Technology Noise Reduction Element Separate Flow Nozzle Tests for Engine Noise Reduction Sub-Element

    NASA Technical Reports Server (NTRS)

    Saiyed, Naseem H.

    2000-01-01

    Contents of this presentation include: Advanced Subsonic Technology (AST) goals and general information; Nozzle nomenclature; Nozzle schematics; Photograph of all baselines; Configurations tests and types of data acquired; and Engine cycle and plug geometry impact on EPNL.

  20. Subsonic Wake Characterization of the Orion Capsule Using PIV in the Ames UPWT 11-foot Wind Tunnel (Invited)

    NASA Technical Reports Server (NTRS)

    Heineck, James T.; Ross, James C.; Yamauchi, Gloria K.

    2015-01-01

    The subsonic regime of Crew Capsule reentry has a very turbulent waker through which the Drogue Chutes must deploy. This presentation describes the particle image velocimetry measurement campaign used to help retire the risk.