Sample records for aeronomy space physics

  1. (?) The Air Force Geophysics Laboratory: Aeronomy, aerospace instrumentation, space physics, meteorology, terrestrial sciences and optical physics

    NASA Astrophysics Data System (ADS)

    McGinty, A. B.

    1982-04-01

    Contents: The Air Force Geophysics Laboratory; Aeronomy Division--Upper Atmosphere Composition, Middle Atmosphere Effects, Atmospheric UV Radiation, Satellite Accelerometer Density Measurement, Theoretical Density Studies, Chemical Transport Models, Turbulence and Forcing Functions, Atmospheric Ion Chemistry, Energy Budget Campaign, Kwajalein Reference Atmospheres, 1979, Satellite Studies of the Neutral Atmosphere, Satellite Studies of the Ionosphere, Aerospace Instrumentation Division--Sounding Rocket Program, Satellite Support, Rocket and Satellite Instrumentation; Space Physics Division--Solar Research, Solar Radio Research, Environmental Effects on Space Systems, Solar Proton Event Studies, Defense Meteorological Satellite Program, Ionospheric Effects Research, Spacecraft Charging Technology; Meteorology Division--Cloud Physics, Ground-Based Remote-Sensing Techniques, Mesoscale Observing and Forecasting, Design Climatology, Aircraft Icing Program, Atmospheric Dynamics; Terrestrial Sciences Division--Geodesy and Gravity, Geokinetics; Optical Physics Division--Atmospheric Transmission, Remote Sensing, INfrared Background; and Appendices.

  2. Research and technology 1988

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This report presents the on-going research activities at the NASA Marshall Space Flight Center for the year 1988. The subjects presented are space transportation systems, shuttle cargo vehicle, materials processing in space, environmental data base management, microgravity science, astronomy, astrophysics, solar physics, magnetospheric physics, aeronomy, atomic physics, rocket propulsion, materials and processes, telerobotics, and space systems.

  3. Research and technology, 1990

    NASA Technical Reports Server (NTRS)

    Potter, P. Y.

    1990-01-01

    The annual report of the Marshall Space Flight Center for 1990 is presented. Brief summaries of research are presented for work in the fields of transportation systems, space systems, data systems, microgravity science, astronomy, astrophysics, solar physics, magnetospheric physics, atomic physics, aeronomy, Earth science and applications, propulsion technology, materials and processes, structures and dynamics, automated systems, space systems, and avionics.

  4. Research and technology 1989

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Marshall Space Flight Center annual report summarizes their advanced studies, research programs, and technological developments. Areas covered include: transportation systems; space systems such as Gravity Probe-B and Gamma Ray Imaging Telescope; data systems; microgravity science; astronomy and astrophysics; solar, magnetospheric, and atomic physics; aeronomy; propulsion; materials and processes; structures and dynamics; automated systems; space systems; and avionics.

  5. In Memoriam

    NASA Astrophysics Data System (ADS)

    Delbert M. Utile died on September 6, 1991, at age 95. He had been a member of AGU (Atmospheric Sciences) since 1935.AGU Fellow Vincent J. Schaefer, 87, died on July 25. He joined AGU (Space Physics and Aeronomy) in 1946.

  6. The Efforts of the American Geophysical Union Space Physics and Aeronomy Section Education and Public Outreach Committee to Use NASA Research in Education and Outreach

    NASA Astrophysics Data System (ADS)

    Bering, E. A., III; Dusenbery, P.; Gross, N. A.; Johnson, R.; Lopez, R. E.; Lysak, R. L.; Moldwin, M.; Morrow, C. A.; Nichols-Yehling, M.; Peticolas, L. M.; Reiff, P. H.; Scherrer, D. K.; Thieman, J.; Wawro, M.; Wood, E. L.

    2017-12-01

    The American Geophysical Union Space Physics and Aeronomy Section Education and Public Outreach Committee (AGU SPA-EPO Committee) was established in 1990 to foster the growth of a culture of outreach and community engagement within the SPA Section of the AGU. The SPA was the first AGU Section to establish an EPO Committee. The Committee has initiated several key Section EPO programs that have grown to become Union programs. NASA sponsored research is central to the mission of the SPE-EPO. Programs highlighting NASA research include the Student Paper Competition, Exploration Station, a precursor to the GIFT workshops, the Student mixer, and more. The Committee played a key role in coordinating the AGU's outreach activities relating to the International Heliophysical Year in 2007-2008. This paper will review the triumphs, the failures, and the lessons learned about recruiting colleagues to join with us from the last quarter century of effort.

  7. Candidates for office 2004-2006

    NASA Astrophysics Data System (ADS)

    Timothy L. Killeen. AGU member since 1981. Director of the National Center for Atmospheric Research (NCAR); Senior Scientist, High Altitude Observatory; Adjunct Professor, University of Michigan. Major areas of interest include space physics and aeronomy remote sensing, and interdisciplinary science education. B.S., Physics and Astronomy (first class honors), 1972, University College London; Ph.D., Atomic and Molecular Physics, 1975, University College London. University of Michigan: Researcher and Professor of Atmospheric, Oceanic, and Space Sciences, 1978-2000 Director of the Space Physics Research Laboratory 1993-1998 Associate Vice-President for Research, 1997-2000. Visiting senior scientist at NASA Goddard Space Flight Center, 1992. Program Committee, American Association for the Advancement of Science; Council Member, American Meteorological Society; Editor-in-Chief, Journal of Atmospheric and Solar-Terrestrial Physics; Chair, Jerome K.Weisner National Policy Symposium on the Integration of Research and Education, 1999. Authored over 140 publications, 57 in AGU journals. Significant publications include: Interaction of low energy positrons with gaseous atoms and molecules, Atomic Physics, 4, 1975; Energetics and dynamics of the thermosphere, Reviews of Geophysics, 1987; The upper mesosphere and lower thermosphere, AGU Geophysical Monograph, 1995, Excellence in Teaching and Research awards, College of Engineering, University of Michigan; recipient of two NASA Achievement Awards; former chair, NASA Space Physics Subcommittee; former chair, National Science Foundation (NSF) Coupling, Energetics and Dynamics of Atmospheric Regions (CEDAR) program; former member, NSF Advisory Committee for Geosciences, and chair of NSF's Atmospheric Sciences Subcommittee, 1999-2002 member, NASA Earth Science Enterprise Advisory Committee; member of various National Academy of Science/National Research Council Committees; cochair, American Association for the Advancement of Science National Meeting, 2003. AGU service includes: term as associate editor of Journal of Geophysical Research-Space Physics; chair, Panel on International Space Station; Global Climate Change Panel; Federal Budget Review Committee; member of AGU Program, Public Information, Awards, and Public Affairs committees; Chapman Conference Convener and Monograph editor; Section Secretary and Program Chair, Space and Planetary Relations Section; President of Space Physics and Aeronomy Section; AGU Council Member.

  8. A Perspective of the Science and Mission Challenges in Aeronomy

    NASA Technical Reports Server (NTRS)

    Spann, James F.

    2010-01-01

    There are significant fundamental problems for which aeronomy can provide solutions and a critical role in applied science and space weather that only aeronomy can address. Examples of unresolved problems include the interaction of neutral and charged, the role of mass and energy transfer across Earth's interface with space, and the predictability of ionospheric density and composition variability. These and other problems impact the productivity of space assets and thus have a tangible applied dimension. This talk will explore open science problems and barriers to potential mission solutions in an era of constrained resources.

  9. Workshop on the evolution of the Martian atmosphere

    NASA Technical Reports Server (NTRS)

    Luhmann, J. G. (Editor); Jakosky, B. M. (Editor)

    1992-01-01

    Thirty-three papers based on the state of our knowledge prior to the anticipated new results from Mars Observer were presented at the workshop. Because of the nature of the subject, the scope of the papers covered a broad disciplinary range encompassing astronomy and solar physics, geology and geophysics, climatology, atmospheric science, aeronomy, and space physics. The 42 participants heard about topics from the evolution of solar-type stars to candidate instrumentation for measuring escape to space on yet-unscheduled future missions.

  10. Physics of the Space Environment

    NASA Astrophysics Data System (ADS)

    Vasyliünas, Vytenis M.

    This book, one in the Cambridge Atmospheric and Space Science Series, joins a growing list of advanced-level textbooks in a field of study and research known under a variety of names: space plasma physics, solar-terrestrial or solar-planetary relations, space weather, or (the official name of the relevant AGU section) space physics and aeronomy. On the basis of graduate courses taught by the author in various departments at the University of Michigan, complete with problems and with appendices of physical constants and mathematical identities, this is indeed a textbook, systematic and severe in its approach. The book is divided into three parts, in length ratios of roughly 6:4:5. Part I, “Theoretical Description of Gases and Plasmas,” starts by writing down Maxwell's equations and the Lorentz transformation (no nonsense about any introductory material of a descriptive or historical nature) and proceeds through particle orbit theory, kinetics, and plasma physics with fluid and MHD approximations to waves, shocks, and energetic particle transport. Part II, “The Upper Atmosphere,” features chapters on the terrestrial upper atmosphere, airglow and aurora, and the ionosphere. Part III, “Sun-Earth Connection,” deals with the Sun, the solar wind, cosmic rays, and the terrestrial magnetosphere. The book thus covers, with two exceptions, just about all the topics of interest to Space Physics and Aeronomy scientists, and then some (the chapter on the Sun, for instance, briefly discusses also topics of the solar interior: thermonuclear energy generation, equilibrium structure, energy transfer, with a page or two on each). One exception reflects a strong geocentric bias: there is not one word in the main text on magnetospheres and ionospheres of other planets and their interaction with the solar wind (they are mentioned in a few problems). The other exception: the chapter on the terrestrial magnetosphere lacks a systematic exposition of the theory of magnetosphereionosphere coupling.

  11. Space Weather Research Presented at the 2007 AGU Fall Meeting

    NASA Astrophysics Data System (ADS)

    Kumar, Mohi

    2007-12-01

    AGU's 47th annual Fall Meeting, held 10-14 December 2007 in San Francisco, Calif., was the largest gathering of geoscientists in the Union's history. More than 14,600 people attended. The Space Physics and Aeronomy (SPA) sections sported excellent turnout, with more than 1300 abstracts submitted over 114 poster and oral sessions. Topics discussed that related to space weather were manifold: the nature of the Sun-Earth system revealed through newly launched satellites, observations and models of ionospheric convection, advances in the understanding of radiation belt physics, Sun-Earth coupling via energetic coupling, data management and archiving into virtual observatories, and the applications of all this research to space weather forecasting and prediction.

  12. Report on active and planned spacecraft and experiments

    NASA Technical Reports Server (NTRS)

    Vette, J. I. (Editor); Vostreys, R. W. (Editor); Horowitz, R. (Editor)

    1978-01-01

    Information is presented, concerning active and planned spacecraft and experiments known to the National Space Science Data Center. The information included a wide range of disciplines: astronomy, earth sciences, meteorology, planetary sciences, aeronomy, particles and fields, solar physics, life sciences, and material sciences. These spacecraft projects represented the efforts and funding of individual countries as well as cooperative arrangements among different countries.

  13. The French balloon and sounding rocket space program

    NASA Astrophysics Data System (ADS)

    Coutin/Faye, S.; Sadourny, I.

    1987-08-01

    Stratospheric and long duration flight balloon programs are outlined. Open stratospheric balloons up to 1 million cu m volume are used to carry astronomy, solar system, aeronomy, stratosphere, biology, space physics, and geophysics experiments. The long duration balloons can carry 50 kg payloads at 20 to 30 km altitude for 10 days to several weeks. Pressurized stratospheric balloons, and infrared hot air balloons are used. They are used to study the dynamics of stratospheric waves and atmospheric water vapor. Laboratories participating in sounding rocket programs are listed.

  14. Report on active and planned spacecraft and experiments

    NASA Technical Reports Server (NTRS)

    Brecht, J. J. (Editor)

    1974-01-01

    Information dealing with active and planned spacecraft and experiments known to the National Space Science Data Center (NSSDC) is presented. Included is information concerning a wide range of disciplines: astronomy, earth sciences, meteorology, planetary sciences, aeronomy, particles and fields, solar physics, life sciences, and material sciences. These spacecraft represent the efforts and funding of individual countries, as well as cooperative arrangements among different countries.

  15. Report on Active and Planned Spacecraft and Experiments. [bibliographies

    NASA Technical Reports Server (NTRS)

    Vostreys, R. W. (Editor); Horwitz, R. (Editor)

    1979-01-01

    Information concerning concerning active and planned spacecraft and experiments known to the National Space Science Data Center are included. The information contains a wide range of disciplines: astronomy, earth sciences, meteorology, planetary sciences, aeronomy, particles and fields, solar physics, life sciences, and material sciences. These spacecraft projects represent the efforts and funding of individual countries as well as cooperative arrangements among different countries. Approximately 850 articles are included.

  16. The Spark of Disruptive Innovation for Space Physics and Aeronomy

    NASA Astrophysics Data System (ADS)

    MacDonald, E.

    2017-12-01

    What is disruptive innovation and why does it matter for Space Physics and Aeronomy (SPA)? This presentation will define disruptive innovation and present several examples relevant to SPA. These examples range from Cubesats to Citizen Science. Disruptive innovation requires not just an idea but also execution. Why do we need disruptive innovation? Simply put, we need to break out of our comfortable rut to solve bigger problems and evolve as a field for the future. These opportunities are exciting and they are difficult. SPA is well-suited to these types of interdisciplinary applications, due to its dual fundamental and applied nature that dovetails with many other fields. Challenges are that we do not incentivize disruptive innovation, we do not recognize it, and we typically do not fund it. As a result we are risk averse and we suffer from the "Matthew effect" of accumulated advantage. We do not allow ourselves to learn from new and uncomfortable angles and recognize the innovation that comes from there. The strength of having a more diverse and inclusive field is that a range of more diverse ideas and perspectives will be promoted. The next big innovations for SPA may come from the outside, and the best way to capture such ideas may be to promote diversity and inclusion at all levels.

  17. Kivelson Receives 2005 John Adam Fleming Medal

    NASA Astrophysics Data System (ADS)

    Singer, Howard J.; Kivelson, Margaret G.

    2006-01-01

    Margaret G. Kivelson was awarded the Fleming Medal at the AGU Fall Meeting Honors Ceremony, which was held on 7 December 2005, in San Francisco, Calif. The medal recognizes original research and technical leadership in geomagnetism, atmospheric electricity, aeronomy, space physics, and related sciences. After a Ph.D. in theoretical physics (with Nobel Prize winner Julian Schwinger) and part-time work at the RAND Corporation during her children's early childhood, Margaret Kivelson entered geophysics in the 1960s. Since then, Margaret has led a remarkable career in the fields of solar-terrestrial physics, heliospheric and planetary science, and, in particular, planetary magnetism. Her achievementsinclude the following.

  18. Report on Active and Planned Spacecraft and Experiments

    NASA Technical Reports Server (NTRS)

    Vostreys, R. W. (Editor); Maitson, H. H. (Editor)

    1981-01-01

    Active and planned spacecraft activity and experiments between June 1, 1980 and May 31, 1981 known to the National Space Science Data Center are described. The information covers a wide range of disciplines: astronomy, Earth sciences, meteorology, planetary sciences, aeronomy, particles and fields, solar physics, life sciences, and material sciences. Each spacecraft and experiment is described and its current status presented. Descriptions of navigational and communications satellites and of spacecraft that contain only continuous radio beacons used for ionospheric studies are specifically excluded.

  19. Sripathi Receives 2009 Sunanda and Santimay Basu Early Career Award

    NASA Astrophysics Data System (ADS)

    2010-03-01

    Samireddipalle Sripathi has been awarded the AGU Sunanda and Santimay Basu Early Career Award in Sun-Earth Systems Science. The award recognizes an individual scientist from a developing nation for making outstanding contributions to research in Sun-Earth systems science that further the understanding of both plasma physical processes and their applications for the benefit of society. Sripathi's thesis is entitled “VHF radar studies of E-region plasma irregularities at low latitude.” He was formally presented with the award at the Space Physics and Aeronomy section dinner during the 2009 AGU Fall Meeting, held 14-18 December in San Francisco, Calif.

  20. Jian Receives 2009 F. L. Scarf Award

    NASA Astrophysics Data System (ADS)

    2010-03-01

    Lan Jian has been awarded the AGU F. L. Scarf Award, given annually to recent Ph.D recipients for outstanding dissertation research that contributes directly to solar planetary sciences. Jian's thesis is entitled “Radial evolution of large-scale solar wind structures.” She was formally presented with the award at the Space Physics and Aeronomy section dinner during the 2009 AGU Fall Meeting, held 14-18 December in San Francisco, Calif. Lan Jian received her B.S. in geophysics from University of Science and Technology of China in 2003. She received her M.S. and Ph.D. degrees in geophysics and space physics, under the supervision of Christopher T. Russell, at University of California, Los Angeles in 2006 and 2008, respectively. Her research interests include various structures in the solar wind, their origin and evolution, and their effect on the space environment of planets.

  1. Morrow, Reiff, Receive 2013 Space Physics and Aeronomy Richard Carrington Awards: Response

    NASA Astrophysics Data System (ADS)

    Morrow, Cherilynn

    2014-08-01

    I am delighted to receive the SPARC award, which recognizes education and public outreach (E/PO) efforts that incorporate our community's scientific achievements while addressing authentic educational needs. No one is honored in isolation, and I owe a large debt of gratitude to many fellow pioneers, including the author of the citation above and my fellow SPARC awardee, Pat Reiff. Back in 1994, she was one of two committee members to be overtly supportive as I made the first ever E/PO presentations to the (then) NASA Space Science Advisory Committee. Today all of the recent space science decadal reports include explicit support for E/PO programs integrated within NASA and National Science Foundation research missions.

  2. Atmospheric and Space Sciences: Ionospheres and Plasma Environments

    NASA Astrophysics Data System (ADS)

    Yiǧit, Erdal

    2018-01-01

    The SpringerBriefs on Atmospheric and Space Sciences in two volumes presents a concise and interdisciplinary introduction to the basic theory, observation & modeling of atmospheric and ionospheric coupling processes on Earth. The goal is to contribute toward bridging the gap between meteorology, aeronomy, and planetary science. In addition recent progress in several related research topics, such atmospheric wave coupling and variability, is discussed. Volume 1 will focus on the atmosphere, while Volume 2 will present the ionospheres and the plasma environments. Volume 2 is aimed primarily at (research) students and young researchers that would like to gain quick insight into the basics of space sciences and current research. In combination with the first volume, it also is a useful tool for professors who would like to develop a course in atmospheric and space physics.

  3. Dombeck Receives 2006 F. L. Scarf Award

    NASA Astrophysics Data System (ADS)

    2006-11-01

    John Dombeck has been awarded the F. L. Scarf Award, which is given annually to a recent Ph.D. recipient for outstanding dissertation research that contributes directly to solar-planetary sciences. Dombeck's thesis is entitled ``Properties of Alfvén waves in the magnetotail below 9 RE and their relation to auroral acceleration and major geomagnetic storms.'' He will be formally presented with the award during the 2006 AGU Fall Meeting, which will be held 11-15 December in San Francisco, Calif., at the Space Physics and Aeronomy Section dinner.

  4. Outstanding Student Paper Awards

    NASA Astrophysics Data System (ADS)

    2004-04-01

    The following members in the Space Physics & Aeronomy Section received Outstanding Student Paper Awards at the 2003 AGU Fall Meeting in San Francisco, California. Arve Aksnes; Aroh Barjatya; Jacob Bortnik; Amir Caspi; Ruben Delgado; Galen Fowler; Paul G. Hanlon; Sid Henderson; Tara B. Hiebert; Chia-Lin Huang; Steven P. Joy; Eun-Hwa Kim; Colby Lemon; Yingjuan Ma; Elizabeth A. MacDonald; Jaco Minnie; Mitsuo Oka; Yoshitaka Okazaki; Erin J. Rigler; Ina P. Robertson; Patrick A. Roddy; Sang-Il Roh; Albert Y. Shih; Christopher Smithtro; Emma Spanswick; Maria Spasojevic; Hiroki Tanaka; Linghua Wang; Deirdre E. Wendel; Jichun Zhang>

  5. Outstanding Student Paper Awards

    NASA Astrophysics Data System (ADS)

    2003-01-01

    The following members in the Space Physics & Aeronomy Section received Outstanding Student Paper Awards at the 2003 AGU Fall Meeting in San Francisco, California. Arve Aksnes; Aroh Barjatya; Jacob Bortnik; Amir Caspi; Ruben Delgado; Galen Fowler; Paul G. Hanlon; Sid Henderson; Tara B. Hiebert; Chia-Lin Huang; Steven P. Joy; Eun-Hwa Kim; Colby Lemon; Yingjuan Ma; Elizabeth A. MacDonald; Jaco Minnie; Mitsuo Oka; Yoshitaka Okazaki; Erin J. Rigler; Ina P. Robertson; Patrick A. Roddy; Sang-Il Roh; Albert Y. Shih; Christopher Smithtro; Emma Spanswick; Maria Spasojevic; Hiroki Tanaka; Linghua Wang; Deirdre E. Wendel; Jichun Zhang>

  6. The Long, Bumpy Road to a Mars Aeronomy Mission (Invited)

    NASA Astrophysics Data System (ADS)

    Grebowsky, J. M.; Luhmann, J. G.; Bougher, S. W.; Jakosky, B. M.

    2013-12-01

    With the advent of the space age, early focus was put into characterizing the Earth's upper atmosphere with aeronomy missions. These missions were designed to study the upper atmosphere region of a planet where the ionosphere is produced with particular attention given to the composition, properties and motion of atmosphere constituents. In particular a very successful US series of Atmosphere Explorer aeronomy spacecraft (1963-1977) was implemented. This upper atmosphere region is the envelope that all energy from the sun must penetrate and is recognized as an inseparable part of a planet's entire atmosphere. Venus was the next planet to have its upper atmosphere/ionosphere deeply probed via the Pioneer Venus Orbiter (1978-1986) that carried a complement of instruments similar to some flown on the Atmosphere Explorers. The planet which humans have long set their imagination on, Mars, has yet to be subjected to the same detailed upper atmosphere perusal until now, with MAVEN. Not that attempts have been wanting. More than 30 spacecraft launches to Mars were attempted, but half were not successful and those that attained orbit came far short of attaining the same level of knowledge of the Martian upper atmosphere. Other countries had planned Mars aeronomy missions that didn't bear fruit - e.g. Mars-96 and Nozomi and the US did studies for two missions, Mars Aeronomy Orbiter and MUADEE, that never were implemented. This is about to change. NASA's Scout Program singled out two aeronomy missions in its final competition and the selected mission, MAVEN, will fly with the needed sophistication of instruments to finally probe and understand the top of Mars' atmosphere. Was this late selection of a NASA aeronomy mission to Mars a philosophy change in US priorities or was it an accident of planning and budget constraints? Was it driven by the developing knowledge that Mars really had an early atmosphere environment conducive to life and that an aeronomy mission is indeed needed to determine where and how fast the life-capable atmosphere disappeared. Or was it thought that other orbiting missions like MEx or MGS that sampled the ionosphere were inadequate to the task? In a way the delay in executing a Mars aeronomy mission has a positive side; i.e. instruments are better developed than in earlier proposals and we have the benefit of MEx and MGS better defining the science objectives for an aeronomy mission. The bumps and potholes that planners of missions to Mars encountered makes an interesting story

  7. The LYRA Instrument Onboard PROBA2: Description and In-Flight Performance

    NASA Astrophysics Data System (ADS)

    Dominique, M.; Hochedez, J.-F.; Schmutz, W.; Dammasch, I. E.; Shapiro, A. I.; Kretzschmar, M.; Zhukov, A. N.; Gillotay, D.; Stockman, Y.; BenMoussa, A.

    2013-08-01

    The Large Yield Radiometer (LYRA) is an XUV-EUV-MUV (soft X-ray to mid-ultraviolet) solar radiometer onboard the European Space Agency Project for On-Board Autonomy 2 (PROBA2) mission, which was launched in November 2009. LYRA acquires solar-irradiance measurements at a high cadence (nominally 20 Hz) in four broad spectral channels, from soft X-ray to MUV, which have been chosen for their relevance to solar physics, space weather, and aeronomy. We briefly review the design of the instrument, give an overview of the data products distributed through the instrument website, and describe how the data are calibrated. We also briefly present a summary of the main fields of research currently under investigation by the LYRA consortium.

  8. Imaging Spectrograph as a Tool to Enhance the Undergraduate Student Research Experience

    NASA Astrophysics Data System (ADS)

    Williams, B.; Nielsen, K.; Johnson, S.

    2015-12-01

    Undergraduate students often engage in research activities that are part of a larger project outlined by research faculty, while it is less common for students to explore and define their own research project. The later has been shown to have tremendous impact on the learning outcome of the students and provide a stronger sense of pride and ownership of the research project. It is unrealistic to expect starting undergraduate students to define transformative research projects. However, with the proper training and guidance student-driven transformative research is possible for upper division students. We have instituted a student research paradigm with focus on the development of student research skills in coordination with their course progress. We present here a specific student project that engage students in aeronomy research activities and provide them with a solid base to establish their own research projects for senior year. The core of the project is an imaging spectrograph, which is constructed, tested, and calibrated by the students. The instrument provides unique opportunities student research projects across subject such as optics, quantum mechanics, and how these subjects are applied in the geosciences of aeronomy and space physics.

  9. The Future of Systems Aeronomy in Addressing New Science Frontiers

    NASA Astrophysics Data System (ADS)

    Kozyra, J. U.; Paxton, L. J.; Ridley, A.

    2005-12-01

    The future will see a new era in our ability to characterize the state of the sun-Earth system using the SEC Great Observatory, new electronic data handling and data mining technologies, high-performance sun-to-Earth models, new techniques for assimilation of sparse data, and the development of innovative worldwide research tools through integration of ground-based observing sites. The time has come to pull these developing capabilities together into an investigation that seeks to understand aeronomy at a higher level than has previously been possible. Systems Aeronomy is a study of this global system behavior but, more than that, it investigates the large-scale systems-level features that result from elemental processes, like ion-neutral coupling, plasma drifts or radiative cooling. Currently the TIMED mission is making important contributions in identifying and characterizing the "building block" processes that change, evolve and combine to form the system response. Systems Aeronomy must have observational, theoretical and computational components to succeed. One of the key requirements is the ability to capture global data sets and integrate them into a coherent picture of the ITM system and its relationship to geospace. Success requires enhanced coordination between operating satellites throughout the sun-Earth system, new techniques for creating global maps from networks of ground-based and satellite-based sensors, and a new level of international cooperation leveraging off IPY2007, IHY2007, eGY2007, CAWSES, ICESTAR, and other planned worldwide programs. Twenty years down the road, Systems Aeronomy will provide the foundation for understanding planetary atmospheres, significantly extend the range of useful space weather prediction, and provide an important approach for investigating the impacts of anthropogenic and climatological changes in the ITM and on the geospace system as a whole.

  10. Space and planetary environment criteria guidelines for use in space vehicle development, 1971 revision

    NASA Technical Reports Server (NTRS)

    Smith, R. E. (Editor)

    1971-01-01

    A consolidation of natural environment data is presented for use as design criteria guidelines in space and planetary exploration vehicle development programs. In addition to information in the disciplinary areas of aeronomy, radiation, geomagnetism, astrodynamic constants, and meteoroids for the earth's environment above 90 kilometers, interplanetary space, and the planetary environments, the upper atmosphere model currently recommended for use at MSFC is discussed in detail.

  11. French space program: report to Cospar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1975-01-01

    Programs and results obtained are reviewed for all French laboratories working in areas of research related to space. Main topics include lunar specimen studies; spectroscopic planetology; space radiation; ionospheric and magnetospherics; aeronomy; meteorology, comprising the Meteosat program and the Eole experiment and earth resources investigations; geodesy; and geodynamics-research covering space biology and exobiology is also discussed. French satellites and sounding rockets are listed, as well as French experiments onboard foreign spacecraft. (GRA)

  12. Spiro K. Antiochos Receives 2013 John Adam Fleming Medal: Citation

    NASA Astrophysics Data System (ADS)

    Klimchuk, James A.

    2014-01-01

    The John Adam Fleming Medal is awarded for "original research and technical leadership in geomagnetism, atmospheric electricity, aeronomy, space physics, and related sciences." Originality and technical leadership are exactly the characteristics that distinguish the research of Spiro K. Antiochos. Spiro possesses a truly unique combination of physical insight, creativity, and mastery of the concepts and mathematical and numerical tools of space physics. These talents have allowed him to develop completely original theories for major observational problems and to test and refine those theories using sophisticated numerical simulation codes that he himself helped to develop. Spiro's physical insight is especially impressive. He has an uncanny ability to identify the fundamental aspects of complex problems and to see physical connections where others do not. This can sometimes involve ideas that may initially seem counterintuitive to those with less creativity. Many of Spiro's revolutionary advances have opened up whole new areas of study and shaped the course of space physics. Examples include the breakout model for coronal mass ejections (CMEs), the S-web model for the slow solar wind, and the thermal nonequilibrium model for solar prominences. The breakout model is of special significance to AGU as it strives to promote science for the betterment of humanity. CMEs are enormous explosions on the Sun that can have major "space weather" impacts here on Earth. They affect technologies ranging from communication and navigation systems to electrical power grids. Breakout is the leading theory for why CMEs occur and may one day be the foundation for more accurate space weather forecasting.

  13. Solar and Space Physics PhD Production and Job Availability: Implications for the Future of the Space Weather Research Workforce

    NASA Astrophysics Data System (ADS)

    Moldwin, M.; Morrow, C. A.; Moldwin, L. A.; Torrence, J.

    2012-12-01

    To assess the state-of-health of the field of Solar and Space Physics an analysis of the number of Ph.D.s produced and number of Job Postings each year was done for the decade 2001-2010. To determine the number of Ph.D's produced in the field, the University of Michigan Ph.D. Dissertation Archive (Proquest) was queried for Solar and Space Physics dissertations produced in North America. The field generated about 30 Ph.D. per year from 2001 to 2006, but then saw the number increase to 50 to 70 per year for the rest of the decade. Only 14 institutions account for the majority of Solar and Space Physics PhDs. To estimate the number of jobs available each year in the field, a compilation of the job advertisements listed in the American Astronomical Society's Solar Physics Division (SPD) and the American Geophysical Union's Space Physics and Aeronomy (SPA) electronic newsletters was done. The positions were sorted into four types (Faculty, Post-doctoral Researcher, and Scientist/Researcher or Staff), institution type (academic, government lab, or industry) and if the position was located inside or outside the United States. Overall worldwide, 943 Solar and Space Physics positions were advertised over the decade. Of this total, 52% were for positions outside the US. Within Solar Physics, 44% of the positions were in the US, while in Space Physics 57% of the positions were for US institutions. The annual average for positions in the US were 26.9 for Solar Physics and 31.5 for Space Physics though there is much variability year-to-year particularly in Solar Physics positions outside the US. A disconcerting trend is a decline in job advertisements in the last two years for Solar Physics positions and between 2009 and 2010 for Space Physics positions. For both communities within the US in 2010, the total job ads reached their lowest levels in the decade (14), approximately half the decadal average number of job advertisements.

  14. The Transition from Mathematician to Astrophysicist

    NASA Astrophysics Data System (ADS)

    Flannery, M. R.

    Various landmarks in the evolution of Alexander Dalgarno from a gifted mathematician to becoming the acknowledged Father of Molecular Astrophysics are noted. His researches in basic atomic and molecular physics, aeronomy (the study of the upper atmosphere) and astrophysics are highlighted.

  15. JOVE NASA-FIT program: Microgravity and aeronomy projects

    NASA Technical Reports Server (NTRS)

    Patterson, James D.; Mantovani, James G.; Rassoul, Hamid K.

    1994-01-01

    This semi-annual status report is divided into two sections: Scanning Tunneling Microscopy Lab and Aeronomy Lab. The Scanning Tunneling Microscopy (STM) research involves studying solar cell materials using the STM built at Florida Tech using a portion of our initial Jove equipment funding. One result of the participation in the FSEC project will be to design and build an STM system which is portable. This could serve as a prototype STM system which might be used on the Space Shuttle during a Spacelab mission, or onboard the proposed Space Station. The scanning tunneling microscope is only able to image the surface structure of electrically conductive crystals; by building an atomic force microscope (AFM) the surface structure of any sample, regardless of its conductivity, will be able to be imaged. With regards to the Aeronomy Lab, a total of four different mesospheric oxygen emission codes were created to calculate the intensity along the line of sight of the shuttle observations for 2972A, Herzberg I, Herzberg II, and Chamberlain bands. The thermosphere-ionosphere coupling project was completed with two major accomplishments: collection of 500 data points on modulation of neutral wind with geophysical variables, and establishment of constraints on behavior of the height of the ionosphere as a result of interaction between geophysical and geometrical factors. The magnetotail plasma project has been centered around familiarization with the subject in the form of a literature search and preprocessing of IMP-8 data.

  16. The last SPR dinner awards

    NASA Astrophysics Data System (ADS)

    Tsurutani, Bruce

    1992-03-01

    Because the Solar-Planetary Relationships section of AGU has officially changed its name to Space Physics and Aeronomy (SPA), the December 10, 1991, section dinner award ceremony at the AGU Fall Meeting in San Francisco was the last of the series. Presumably an SPA dinner award series will be started under President-elect Andy Nagy.We have followed our tradition of recognizing the special talents of section members at the annual dinner. This year we had eight awardees. These awards are given in fun and are intended to be humorous. The selection committee defining the awards (the awards are changed regularly to keep people from trying to win one) and selecting the awardees will have to remain anonymous. (The committee is similar to Skull and Bones, but we are politically correct in that we allow women as members.)

  17. History and perspectives of scientific ballooning

    NASA Astrophysics Data System (ADS)

    Lefevre, Frank

    2001-08-01

    Prehistory: Robertson, Biot and Gay-Lussac; Glaisher and the first studies of the atmosphere; Flammarion. The rebirth of scientific ballooning: polyethylene and mylar vehicles at Minneapolis. Super-pressurized balloons. The CNES and the Nasa programs; meteorology, aeronomy and astronomy, The Eole program. The Venus and Mars balloons in the French-Soviet space program. The future.

  18. Report on active and planned spacecraft and experiments

    NASA Technical Reports Server (NTRS)

    Vette, J. I. (Editor); Vostreys, R. W. (Editor)

    1977-01-01

    Information concerning active and planned spacecraft and experiments is reported. The information includes a wide range of disciplines: astronomy, earth sciences, meteorology, planetary sciences, aeronomy, particles and fields, solar physics, life sciences, and material sciences. These spacecraft projects represent the efforts and funding of individual countries as well as cooperative arrangements among different countries.

  19. Report on active and planned spacecraft and experiments

    NASA Technical Reports Server (NTRS)

    Littlefield, R. G. (Editor)

    1983-01-01

    Information concerning active and planned spacecraft and experiments is included. The information covers a wide range of scientific disciplines: astronomy, earth sciences, meteorology, planetary sciences, aeronomy, particles and fields, solar physics, life sciences, and material sciences. These spacecraft projects represent the efforts and fundng of individual countries as well as cooperative arrangements among different countries.

  20. PICASSO VISION instrument design, engineering model test results, and flight model development status

    NASA Astrophysics Data System (ADS)

    Näsilä, Antti; Holmlund, Christer; Mannila, Rami; Näkki, Ismo; Ojanen, Harri J.; Akujärvi, Altti; Saari, Heikki; Fussen, Didier; Pieroux, Didier; Demoulin, Philippe

    2016-10-01

    PICASSO - A PICo-satellite for Atmospheric and Space Science Observations is an ESA project led by the Belgian Institute for Space Aeronomy, in collaboration with VTT Technical Research Centre of Finland Ltd, Clyde Space Ltd. (UK) and Centre Spatial de Liège (BE). The test campaign for the engineering model of the PICASSO VISION instrument, a miniaturized nanosatellite spectral imager, has been successfully completed. The test results look very promising. The proto-flight model of VISION has also been successfully integrated and it is waiting for the final integration to the satellite platform.

  1. Catalog of ionospheric and atmospheric data

    NASA Technical Reports Server (NTRS)

    Liles, J. N.

    1975-01-01

    Available data from planetary atmospheres and ionospheric physics (aeronomy) are announced. Most of the data sets identified result from individual experiments carried on board various spacecraft. A spacecraft Automated Internal Management File and a Nonsatellite Data File are utilized to maintain information on these data. Photoreduced reports produced by these information files are presented. A variety of user oriented indexes are included.

  2. Report on active and planned spacecraft and experiments

    NASA Technical Reports Server (NTRS)

    Horowitz, R. (Editor); Nostreys, R. W. (Editor)

    1980-01-01

    Information on current and planned spacecraft activity for a broad range of scientific disciplines is presented. The information covers a wide range of disciplines: astronomy, Earth sciences, meteorology, planetary sciences, aeronomy, particles and fields, solar physics, life sciences, and material sciences. These spacecraft projects represent the efforts and funding of individual countries as well as cooperative arrangements among different countries.

  3. Billy M. McCormac (1920-1999)

    NASA Astrophysics Data System (ADS)

    Walt, Martin

    Billy M. McCormac died on September 13, 1999, at age 79. His many friends and colleagues will remember him for the legendary International Institutes on Space Science and Aeronomy, which he organized between 1965 and 1975.Billy was born and raised in Zanesville, Ohio, and graduated from Ohio State University in 1943 in the midst of World War II. He joined the Army as a 2nd Lieutenant and served in Europe and Korea. As a career officer he was sent to graduate school at the University of Virginia, where he received his Ph.D. in nuclear physics in 1957. He held various scientific positions in the Army until his retirement as a Lieutenant Colonel in 1963. His last military position was Chief of Electromagnetics at the Defense Atomic Support Agency, where he was responsible for experiments measuring the effects of the high-altitude nuclear weapon explosions in the Pacific.

  4. Radio techniques for probing the terrestrial ionosphere.

    NASA Astrophysics Data System (ADS)

    Hunsucker, R. D.

    The subject of the book is a description of the basic principles of operation, plus the capabilities and limitations of all generic radio techniques employed to investigate the terrestrial ionosphere. The purpose of this book is to present to the reader a balanced treatment of each technique so they can understand how to interpret ionospheric data and decide which techniques are most effective for studying specific phenomena. The first two chapters outline the basic theory underlying the techniques, and each following chapter discusses a separate technique. This monograph is entirely devoted to techniques in aeronomy and space physics. The approach is unique in its presentation of the principles, capabilities and limitations of the most important presently used radio techniques. Typical examples of data are shown for the various techniques, and a brief historical account of the technique development is presented. An extended annotated bibliography of the salient papers in the field is included.

  5. Detection of Ionospheric Alfven Resonator Signatures in the Equatorial Ionosphere

    NASA Technical Reports Server (NTRS)

    Simoes, Fernando; Klenzing, Jeffrey; Ivanov, Stoyan; Pfaff, Robert; Freudenreich, Henry; Bilitza, Dieter; Rowland, Douglas; Bromund, Kenneth; Liebrecht, Maria Carmen; Martin, Steven; hide

    2012-01-01

    The ionosphere response resulting from minimum solar activity during cycle 23/24 was unusual and offered unique opportunities for investigating space weather in the near-Earth environment. We report ultra low frequency electric field signatures related to the ionospheric Alfven resonator detected by the Communications/Navigation Outage Forecasting System (C/NOFS) satellite in the equatorial region. These signatures are used to constrain ionospheric empirical models and offer a new approach for monitoring ionosphere dynamics and space weather phenomena, namely aeronomy processes, Alfven wave propagation, and troposphere24 ionosphere-magnetosphere coupling mechanisms.

  6. Meteoroids: The Smallest Solar System Bodies

    NASA Technical Reports Server (NTRS)

    Moser, Danielle E. (Compiler); Hardin, B. F. (Compiler); Janches, Diego (Compiler)

    2011-01-01

    This volume is a compilation of articles reflecting the current state of knowledge on the physics, chemistry, astronomy, and aeronomy of small bodies in the solar system. The articles included here represent the most recent results in meteor, meteoroid, and related research fields and were presented May 24-28, 2010, in Breckenridge, Colorado, USA at Meteoroids 2010: An International Conference on Minor Bodies in the Solar System.

  7. Apollo-Soyuz pamphlet no. 9: General science. [experimental design in Astronomy, Biology, Geophysics, Aeronomy and Materials science

    NASA Technical Reports Server (NTRS)

    Page, L. W.; From, T. P.

    1977-01-01

    The objectives and planning activities for the Apollo-Soyuz mission are summarized. Aspects of the space flight considered include the docking module and launch configurations, spacecraft orbits, and weightlessness. The 28 NASA experiments conducted onboard the spacecraft are summarized. The contributions of the mission to the fields of astronomy, geoscience, biology, and materials sciences resulting from the experiments are explored.

  8. Space Science

    NASA Image and Video Library

    2003-07-30

    Microbiologist Dr. Elena V. Pikuta, and Astrobiologist Richard Hoover culture extremophiles, microorganisms that can live in extreme environments, in the astrobiology laboratory at the National Space Science and Technology Center (NSSTC) in Huntsville, Alabama. The scientists recently discovered a new species of extremophiles, Spirochaeta Americana. The species was found in Northern California's Mono Lake, an alkaline, briny oxygen-limited lake in a closed volcanic crater that Hoover believes may offer new clues to help identify sites to research for potential life on Mars. Hoover is an astrobiologist at NASA's Marshall Space Flight Center (MSFC), and Pikuta is a microbiologist with the Center for Space Plasma and Aeronomy Research Laboratory at the University of Alabama in Huntsville. The NSSTC is a partnership with MSFC, Alabama universities, industry, research institutes, and federal agencies.

  9. Heliophysics as a Scientific Discipline

    NASA Astrophysics Data System (ADS)

    Greb, K.

    2015-12-01

    Heliophysics is a developing scientific discipline integrating studies of the Sun's variability, the surrounding heliosphere, and climate environments. Over the past few centuries our understanding of how the Sun drives space weather and climate on the Earth and other planets has advanced at an ever-increasing rate. NASA Living With a Star and the UCAR Visiting Scientist Progams sponsor the annual Heliophysics Summer Schools to build the next generation of scientists in this emerging field. The highly successful series of the summer schools (commencing 2007) trains a select group of graduate students, postdoctoral fellows and university faculty to learn and develop the science of heliophysics as a broad, coherent discipline that reaches in space from the Earth's troposphere to the depths of the Sun, and in time from the formation of the solar system to the distant future. Now in its tenth year, the School has resulted in the publication of five Heliophysics textbooks now being used at universities worldwide. The books provide a foundational reference for researchers in space physics, solar physics, aeronomy, space weather, planetary science and climate science, astrophysics, plasma physics,. In parallel, the School also developed the complementary materials that support teaching of heliophysics at both graduate and undergraduate levels. The Jack Eddy Postdoctoral Fellowship Program matches newly graduated postdoctorates with hosting mentors for the purpose of training the next generation researchers needed in heliophysics. The fellowships are for two years, and any U.S. university or research lab may apply to host a fellow. Two major topics of focus for the program are the science of space weather and of the Sun-climate connection. Since the goal of this fellowship program is to train Sun-Earth system researchers, preference is also given to research projects that cross the traditional heliophysics subdomains of the Sun, heliosphere, magnetosphere, and ionosphere/upper atmosphere, as well as Sun-climate investigations. Host mentors plan critical roles. Potential hosts may enter information about their research on a central database.

  10. Heliophysics as a Scientific Discipline

    NASA Astrophysics Data System (ADS)

    Greb, K.; Austin, M.; Guhathakurta, M.

    2016-12-01

    Heliophysics is a developing scientific discipline integrating studies of the Sun's variability, the surrounding heliosphere, and climate environments. Over the past few centuries our understanding of how the Sun drives space weather and climate on the Earth and other planets has advanced at an ever-increasing rate. NASA Living With a Star and the UCAR Visiting Scientist Progams sponsor the annual Heliophysics Summer Schools to build the next generation of scientists in this emerging field. The highly successful series of the summer schools (commencing 2007) trains a select group of graduate students, postdoctoral fellows and university faculty to learn and develop the science of heliophysics as a broad, coherent discipline that reaches in space from the Earth's troposphere to the depths of the Sun, and in time from the formation of the solar system to the distant future. Now in its tenth year, the School has resulted in the publication of five Heliophysics textbooks now being used at universities worldwide. The books provide a foundational reference for researchers in space physics, solar physics, aeronomy, space weather, planetary science and climate science, astrophysics, plasma physics,. In parallel, the School also developed the complementary materials that support teaching of heliophysics at both graduate and undergraduate levels. The Jack Eddy Postdoctoral Fellowship Program matches newly graduated postdoctorates with hosting mentors for the purpose of training the next generation researchers needed in heliophysics. The fellowships are for two years, and any U.S. university or research lab may apply to host a fellow. Two major topics of focus for the program are the science of space weather and of the Sun-climate connection. Since the goal of this fellowship program is to train Sun-Earth system researchers, preference is also given to research projects that cross the traditional heliophysics subdomains of the Sun, heliosphere, magnetosphere, and ionosphere/upper atmosphere, as well as Sun-climate investigations. Host mentors play critical roles. Potential hosts may enter information about their research on a central database.

  11. LYRA, solar uv radiometer on the technology demonstration platform PROBA-2

    NASA Astrophysics Data System (ADS)

    Stockman, Y.; Hochedez, J.-F.; Schmutz, W.; BenMoussa, A.; Defise, J.-M.; Denis, F.; D'Olieslaeger, M.; Dominique, M.; Haenen, K.; Halain, J.-P.; Koller, S.; Koizumi, S.; Mortet, V.; Rochus, P.; Schühle, U.; Soltani, A.; Theissen, A.

    2017-11-01

    LYRA is a solar radiometer part of the PROBA 2 micro satellite payload. LYRA will monitor the solar irradiance in four soft X-Ray - VUV passbands. They have been chosen for their relevance to Solar Physics, Aeronomy and SpaceWeather: 1/ Lyman Alpha channel, 2/ Herzberg continuum range, 3/ Aluminium filter channel (including He II at 30.4 nm) and 4/ Zirconium filter channel. The radiometric calibration is traceable to synchrotron source standards. The stability will be monitored by on-board calibration sources (LEDs), which allow us to distinguish between potential degradations of the detectors and filters. Additionally, a redundancy strategy maximizes the accuracy and the stability of the measurements. LYRA will benefit from wide bandgap detectors based on diamond: it will be the first space assessment of revolutionary UV detectors. Diamond sensors make the instruments radiation-hard and solar-blind (insensitive to visible light) and therefore, make dispensable visible light blocking filters. To correlate the data of this new detector technology, well known technology, such as Si detectors are also embarked. The SWAP EUV imaging telescope will operate next to LYRA on PROBA-2. Together, they will provide a high performance solar monitor for operational space weather nowcasting and research. LYRA demonstrates technologies important for future missions such as the ESA Solar Orbiter.

  12. Obituary: Thomas Michael Donahue, 1921-2004

    NASA Astrophysics Data System (ADS)

    Gombosi, Tamás I.

    2004-12-01

    Thomas M. Donahue, one of the nation's leading space and planetary scientists and a pioneer of space exploration, died Saturday October 16, 2004, from complications following heart surgery. The Edward H. White II Distinguished University Professor of Planetary Science at the University of Michigan, Tom shaped space exploration through his scientific achievements and policy positions. His work started with the first use of sounding rockets following World War II and continued for almost 60 years. Tom was born in Healdton, Oklahoma on May 23, 1921 to Robert Emmet and Mary (Lyndon) Donahue. His father was a plumber in the oil fields when Tom was born (Healdton OK was an oil town) and worked as a plumber in Kansas City for a time. Tom grew up in Kansas City, graduating in 1942 from Rockhurst College in that city with degrees in classics and physics. His graduate work in physics at Johns Hopkins University was interrupted by service in the Army Signal Corps. He obtained his PhD degree in atomic physics from Hopkins in the fall of 1947. After three years as a post-doctoral research associate and assistant professor at Hopkins, Tom joined the University of Pittsburgh Physics Department in 1951. At Pittsburgh he organized an atomic physics and atmospheric science program that led to experimental and theoretical studies of the upper atmosphere of the Earth and other solar system planets with instruments flown on sounding rockets and spacecraft. He became Professor of Physics in 1959 and eventually Director of the Laboratory for Atmospheric and Space Sciences and the Space Research Coordination Center at the University. In 1960 he spent a sabbatical year on a Guggenheim Fellowship at the Service d'Aeronomie in Paris, which began collaborations with French colleagues that flourished for more than 40 years. In 1974 he became the Chairman of the Atmospheric and Oceanic Science Department, University of Michigan, a position he held until 1981. In 1986, he was named the Henry Russel Lecturer at the University of Michigan, the highest honor the University confers on a faculty member, and received the Atwood Award for excellence in research in 1994. Elected to the National Academy of Sciences in 1983 and to the International Academy of Astronautics in 1986, Tom was a Fellow of the American Geophysical Union and the AAAS, and received an honorary degree of ScD from Rockhurst College in 1981. The same year he was awarded the Arctowski Medal by the National Academy of Sciences and the John Adam Fleming Medal by the American Geophysical Union. He received the NASA Distinguished Public Service Medal, two NASA Public Service Awards, the Space Science Award of the American Institute of Aeronautics and Astronautics, and the National Space Club Science Award. From 1982 to 1988 he was Chairman of the Space Science Board of the National Research Council of the National Academy of Science, where he was a strong advocate for unmanned space science missions within the federal space budget. He also served on numerous governmental, NRC, and National Academy of Science advisory boards and committees, and was an officer on the boards of several university consortia, such as the University Corporation for Atmospheric Research and the Universities Space Research Association. He recently served terms as chairman of the Visiting Committee for the Space Telescope Science Institute, the Arecibo Advisory Board and Visiting Committee, the Max Planck Institute for Aeronomy, and the Committee to Visit the Department of Earth and Planetary Sciences at Harvard University. He was Chairman of the Committee on Public Policy of the American Geophysical Union and authored more than 200 research publications. Tom's influence in space exploration spanned many decades and diverse projects. He was an experimenter or interdisciplinary scientist on the orbiting Geophysical Observatory Missions, Apollo-17, Apollo-Soyuz, Voyager, Pioneer Venus Multiprobe and Orbiter, Galileo, Comet Rendezvous Asteroid Flyby, and Cassini. Based on observations by the Pioneer Venus entry probe, he concluded that Venus once had an ocean before a runaway greenhouse effect led to its current state. Analyzing similar data from Martian meteorites, he again argued for a substantial Martian ocean, anticipating the current series of missions to Mars. In these and many other cases he laid the foundation for our current understanding of planetary atmospheres. In 1999, Tom described his career this way, "I parlayed my training in atomic physics into a faculty position at Pitt, doing research in aeronomy and laboratory studies of atomic physics. This led to rocket and satellite exploration of the upper atmosphere of Earth in the 60s and spacecraft exploration of Mars, Venus and the Outer Planets beginning in the 70s. Along the way my students, post-docs and I were deeply involved in the problem of anthropogenic destruction of the stratospheric ozone in the early 70s. This led to my continuing interest in global change." Throughout his life Tom retained a keen interest in the history of his family in Ireland, as his mother and grandfather both emigrated from County Kerry. He studied oral and written sources, writing as early as 1942 on the family and the early history of the Eóghanachta Rathleinn. Recently his efforts supported the establishment of the international O'Donoghue society, in particular spearheading a project that continues to reveal fresh detail about family migrations from the High Kings to the Cromwellian period. Tom brought his powerful intellect and drive to a broad range of lifelong passions beyond science. Fluent in several languages, from classical Greek to modern Irish, he was also widely read in American, Irish and French history and literature, and was an exacting student of French wine. He loved classical and folk music, often singing hundreds of songs for his family in keys only he knew. A devotee of tennis, he continued playing weekly matches until early 2004, and was able to attend one last ceremony honoring him when the University of Michigan and his home department, awarded his friend and fellow Space Science Board chair, Lennard Fisk, the "Thomas M. Donahue Collegiate Professor of Space Science." He is survived by his wife of 54 years, Esther McPherson Donahue of Ann Arbor, Michigan; their three sons -- Brian of Boston MA, Kevin of Berkeley CA and Neil of Pittsburgh PA; six grandchildren; a brother, Robert Donahue, and sister, Mary Marshall, both of Missouri.

  13. Orbiting solar observatory 8 high resolution ultraviolet spectrometer experiment

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Oscillations, physical properties of the solar atmosphere, motions in the quiet solar atmosphere, coronal holes, motions in solar active regions, solar flares, the structure of plage regions, an atlas, and aeronomy are summarized. Photometric sensitivity, scattered light, ghosts, focus and spectral resolution, wavelength drive, photometric sensitivity, and scattered light, are also summarized. Experiments are described according to spacecraft made and experiment type. Some of the most useful data reduction programs are described.

  14. Meteor Observations as Big Data Citizen Science

    NASA Astrophysics Data System (ADS)

    Gritsevich, M.; Vinkovic, D.; Schwarz, G.; Nina, A.; Koschny, D.; Lyytinen, E.

    2016-12-01

    Meteor science represents an excellent example of the citizen science project, where progress in the field has been largely determined by amateur observations. Over the last couple of decades technological advancements in observational techniques have yielded drastic improvements in the quality, quantity and diversity of meteor data, while even more ambitious instruments are about to become operational. This empowers meteor science to boost its experimental and theoretical horizons and seek more advanced scientific goals. We review some of the developments that push meteor science into the Big Data era that requires more complex methodological approaches through interdisciplinary collaborations with other branches of physics and computer science. We argue that meteor science should become an integral part of large surveys in astronomy, aeronomy and space physics, and tackle the complexity of micro-physics of meteor plasma and its interaction with the atmosphere. The recent increased interest in meteor science triggered by the Chelyabinsk fireball helps in building the case for technologically and logistically more ambitious meteor projects. This requires developing new methodological approaches in meteor research, with Big Data science and close collaboration between citizen science, geoscience and astronomy as critical elements. We discuss possibilities for improvements and promote an opportunity for collaboration in meteor science within the currently established BigSkyEarth http://bigskyearth.eu/ network.

  15. Mars Aeronomy Observer: Report of the Science Working Team

    NASA Technical Reports Server (NTRS)

    Hunten, Donald M.; Slavin, James A.; Brace, Lawrence H.; Deming, Drake; Frank, Louis A.; Grebowsky, Joseph M.; Haberle, Robert M.; Hanson, William B.; Intriligator, Devrie S.; Killeen, Timothy L.; hide

    1986-01-01

    The Mars Aeronomy Observer (MAO) is a candidate follow-on mission to Mars Observer (MO) in the Planetary Observer Program. The four Mariner and two Viking spacecraft sent to Mars between 1965 and 1976 have provided a wealth of information concerning Martian planetology. The Mars Observer, to be launched in 1990, will build on their results by further examining the elemental and mineralogical composition of the surface, the strength and multipolar composition of the planetary magnetic field, the gravitational field and topography, and the circulation of the lower atmosphere. The Mars Aeronomy Observer is intended to address the last major aspects of Martian environment which have yet to be investigated: the upper atmosphere, the ionsphere, and the solar wind interaction region.

  16. Some topics and historical episodes in geomagnetism and aeronomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukushima, N.

    1994-10-01

    The author provides historical perspective on work in the area of geomagnetism and aeronomy. He discusses early ideas discussed in the literature, work by Birkelund on current flows, ideas on the curl-freeness of the geomagnetic fields, studies of auroral records recorded by man, studies of magnetic storms, geomagnetic field measurements, and of late the wealth of satellite information of the magnetosphere and solar wind effects.

  17. Minutes of SPR Executive Committee Meeting

    NASA Astrophysics Data System (ADS)

    Hudson, Mary; Killeen, Tim

    The meeting was called to order at 7:10 AM by President-Elect Chris Russell, who announced the results of the 1988 election in SPR. Vince Wickwar, Dan Baker, and Mel Goldstein are the new Aeronomy, Magnetospheric Physics, and Solar and Heliospheric Physics section secretaries, respectively, and Bruce Tsurutani is the new President-Elect. Chris also reported that ballots were not received at four institutions: University of Californa— Los Angeles, Jet Propulsion Laboratory, Los Alamos National Laboratory, and Task. Therefore 329 members did not receive ballots (or first and second AGU subscription notices). AGU claims, as far as they can tell, that this is a U.S. mail or institutional mail handling problem.

  18. Solar Spectrum (SOLSPEC) measurement from 180 to 3000 nanometers

    NASA Technical Reports Server (NTRS)

    Thuiller, G.; Simon, P. C.

    1988-01-01

    The SOLSPEC experiment, planned for the Atmospheric Laboratory for Applications and Science (ATLAS 1) NASA mission, is described. The purpose of this experiment is the measurement of the absolute solar irradiances in the wavelength range from 180 to 3000 nm and the variabilities of the solar irradiances in this wavelength range. Measurements of the irradiances and variabilities are used in: (1) solar-terrestrial/planetary relationships, in particular aeronomy of the stratosphere and mesosphere; (2) climatoglogy; and (3) solar physics.

  19. The 1975 report on active and planned spacecraft and experiments. [index

    NASA Technical Reports Server (NTRS)

    Horowitz, R. (Editor); Davis, L. R. (Editor)

    1975-01-01

    Information is presented on current and planned spacecraft activity for various disciplines: astronomy, earth sciences, meteorology, planetary sciences, aeronomy, solar physics, and life sciences. For active orbiting spacecraft, the epoch date, orbit type, orbit period, apoasis, periapsis, and inclination are given along with the spacecraft weight, launch date, launch site, launch vehicle, and sponsoring agency. For each planned orbiting spacecraft, the orbit parameters, planned launch date, launch site, launch vehicle, spacecraft weight, and sponsoring agency are given.

  20. The Aeronomy of Ice in the Mesosphere (AIM) mission: Overview and early science results

    NASA Astrophysics Data System (ADS)

    Russell, James M., III; Bailey, Scott M.; Gordley, Larry L.; Rusch, David W.; Horányi, Mihály; Hervig, Mark E.; Thomas, Gary E.; Randall, Cora E.; Siskind, David E.; Stevens, Michael H.; Summers, Michael E.; Taylor, Michael J.; Englert, Christoph R.; Espy, Patrick J.; McClintock, William E.; Merkel, Aimee W.

    2009-03-01

    The Aeronomy of Ice in the Mesosphere (AIM) mission was launched from Vandenberg Air Force Base in California at 1:26:03 PDT on April 25, 2007 becoming the first satellite mission dedicated to the study of polar mesospheric clouds. A Pegasus XL rocket launched the satellite into a near perfectly circular 600 km sun synchronous orbit. AIM carries three instruments selected because of their ability to provide key measurements needed to address the AIM goal which is to determine why these clouds form and vary. The instrument payload includes a nadir imager, a solar occultation instrument and an in-situ cosmic dust detector. Detailed descriptions of the science, instruments and observation scenario are presented. Early science results from the first northern and southern hemisphere seasons show a highly variable cloud morphology, clouds that are ten times brighter than measured by previous space-based instruments, and complex features that are reminiscent of tropospheric weather phenomena. The observations also confirm a previously theorized but never before directly observed population of small ice particles in the altitude region above the main Polar Mesospheric Cloud (PMC) layer that are widely believed to be the indirect cause of summertime radar echoes.

  1. Heliophysics

    NASA Astrophysics Data System (ADS)

    Austin, M.; Guhathakurta, M.; Schrijver, C. J.; Bagenal, F.; Sojka, J. J.

    2013-12-01

    Title: Heliophysics Presentation Type: Poster Current Section/Focus Group: SPA-Solar and Heliosphere Physics (SH) Current Session: SH-01. SPA-Solar and Heliosphere Physics General Contributions Authors: Meg Austin1, Madhulika Guhathakurta2, Carolus Schrijver3, Frances Bagenal4, Jan Sojka5 1. UCAR Visiting Scientist Programs 2. NASA Living With a Star Program 3. Lockheed Martin Advanced Technology Center 4. Laboratory for Atmospheric and Space Physics, University of Colorado 5. Utah State University Abstract: Heliophysics is a developing scientific discipline integrating studies of the Sun's variability, the surrounding heliosphere, and climate environments. Over the past few centuries our understanding of how the Sun drives space weather and climate on the Earth and other planets has advanced at an ever-increasing rate. NASA Living With a Star and the UCAR Visiting Scientist Progams sponsor the annual Heliophysics Summer Schools to build the next generation of scientists in this emerging field. The highly successful series of the summer schools (commencing 2007) trains a select group of graduate students, postdoctoral fellows and university faculty to learn and develop the science of heliophysics as a broad, coherent discipline that reaches in space from the Earth's troposphere to the depths of the Sun, and in time from the formation of the solar system to the distant future. The first three years of the school resulted in the publication of three textbooks now being used at universities worldwide. Subsequent years have also developed the complementary materials that support teaching of heliophysics at both graduate and undergraduate levels. The textbooks are edited by Carolus J. Schrijver, Lockheed Martin, and George L. Siscoe, Boston University. The books provide a foundational reference for researchers in heliophysics, astrophysics, plasma physics, space physics, solar physics aeronomy, space weather, planetary science and climate science. The Jack Eddy Postdoctoral Fellowship Program matches newly graduated postdoctorates with hosting mentors for the purpose of training the next generation researchers needed in heliophysics. The fellowships are for two years, and any U.S. university or research lab may apply to host a fellow. Two major topics of focus for the program are the science of space weather and of the Sun-climate connection. Since the goal of this fellowship program is to train Sun-Earth system researchers, preference is also given to research projects that cross the traditional heliophysics subdomains of the Sun, heliosphere, magnetosphere, and ionosphere/upper atmosphere, as well as Sun-climate investigations. Host mentors plan critical roles. Potential hosts may enter information about their research on a central database.

  2. Heliophysics

    NASA Astrophysics Data System (ADS)

    Austin, M.; Guhathakurta, M.; Bhattacharjee, A.; Longcope, D. W.; Sojka, J. J.; Schrijver, C. J.; Siscoe, G. L.

    2011-12-01

    Heliophysics is a developing scientific discipline integrating studies of the Sun's variability, the surrounding heliopsphere, and climate environments. Over the past few centuries, our understanding of how the Sun drives space weather and climate on the Earth and other planets has advanced at an ever-increasing rate. NASA Living With a Star and the UCAR Visiting Scientist Programs, sponsor the annual Heliophysics Summer Schools to build the next generation of scientists in this emerging field. The highly successful series of summer schools (commencing 2007) trains a select group of graduate students, postdoctoral fellows and university faculty to learn and develop the science of heliophysics as a broad, coherent discipline that reaches in space from the Earth's troposphere to the depths of the Sun, and in time from the formation of the solar system to the distant future. The first three years of the school resulted in the publication of three textbooks now being used at universities worldwide. Subsequent years have also developed the complementary materials that support teaching of heliophysics at both graduate and undergraduate levels. The textbooks are edited by Carolus J. Schrijver, Lockheed Martin, and George L. Siscoe, Boston University. The books provide a foundational reference for researchers in heliophysics, astrophysics, plasma physics, space physics, solar physics, aeronomy, space weather, planetary science and climate science. The Jack Eddy Postdoctoral Fellowship program matches newly graduated postdoctorates with hosting mentors for the purpose of training the next generation of researchers needed in heliophysics. The fellowships are for two years, and any U.S university or research lab may apply to host a fellow. Two major topics of focus for the program are the science of space weather and of the Sun-climate connection. Since the goal of this fellowship program is to train Sun-Earth system researchers, preference is also given to research projects that cross the traditional heliophysics subdomains of the Sun, heliosphere, magnetosphere, and ionosphere/upper atmosphere, as well as Sun-climate investigations. Host mentors play critical roles. Potential hosts may enter information about their research on a central database. Application deadline: January 11, 2012

  3. Heliophysics

    NASA Astrophysics Data System (ADS)

    Austin, M.; Guhathakurta, M.

    2012-12-01

    Heliophysics is a developing scientific discipline integrating studies of the Sun's variability, the surrounding heliosphere, and climate environments. Over the past few centuries our understanding of how the Sun drives space weather and climate on the Earth and other planets has advanced at an ever-increasing rate. NASA Living With a Star and the UCAR Visiting Scientist Progams sponsor the annual Heliophysics Summer Schools to build the next generation of scientists in this emerging field. The highly successful series of the summer schools (commencing 2007) trains a select group of graduate students, postdoctoral fellows and university faculty to learn and develop the science of heliophysics as a broad, coherent discipline that reaches in space from the Earth's troposphere to the depths of the Sun, and in time from the formation of the solar system to the distant future. The first three years of the school resulted in the publication of three textbooks now being used at universities worldwide. Complementary materials that support teaching of heliophysics at both graduate and undergraduate levels have been developed in subsequent years. The textbooks are edited by Carolus J. Schrijver, Lockheed Martin, and George L. Siscoe, Boston University. The books provide a foundational reference for researchers in heliophysics, astrophysics, plasma physics, space physics, solar physics aeronomy, space weather, planetary science and climate science. The Jack Eddy Postdoctoral Fellowship Program matches newly graduated postdoctorates with hosting mentors for the purpose of training the next generation researchers needed in heliophysics. The fellowships are for two years, and any U.S. university or research lab may apply to host a fellow. Two major topics of focus for the program are the science of space weather and of the Sun-climate connection. Since the goal of this fellowship program is to train Sun-Earth system researchers, preference is also given to research projects that cross the traditional heliophysics subdomains of the Sun, heliosphere, magnetosphere, and ionosphere/upper atmosphere, as well as Sun-climate investigations. Host mentors plan critical roles. Potential hosts may enter information about their research on a central database. Application deadline: January 2013

  4. Heliophysics

    NASA Astrophysics Data System (ADS)

    Austin, M.; Guhathakurta, M.; Bhattacharjee, A.; Longcope, D. W.; Sojka, J. J.

    2010-12-01

    Heliophysics Summer Schools. NASA Living With a Star and the University Corporation for Atmospheric Research, Visiting Scientist Programs sponsor the Heliophysics Summer Schools to build the next generation of scientists in this new field. The series of summer schools (commencing 2007) trains graduate students, postdoctoral fellows and university faculty to learn and develop the science of heliophysics as a broad, coherent discipline that reaches in space from the Earth’s troposphere to the depths of the Sun, and in time from the formation of the solar system to the distant future. The first three years of the school resulted in the publication of three textbooks for use at universities worldwide. Subsequent years will both teach generations of students and faculty and develop the complementary materials that support teaching of heliophysics at both graduate and undergraduate levels. Heliophysics is a developing scientific discipline integrating studies of the Sun’s variability, the surrounding heliopsphere, and climate environments. Over the past few centuries, our understanding of how the Sun drives space weather and climate on the Earth and other planets has advanced at an ever-increasing rate. The three volumes, “Plasma Physics of the Local Cosmos”, “Space Storms and Radiation: Causes and Effects” and “Evolving Solar Activity and the Climates of Space and Earth”, edited by Carolus J. Schrijver, Lockheed Martin, and George L. Siscoe, Boston University, integrate such diverse topics for the first time as a coherent intellectual discipline. The books may be ordered through Cambridge University Press, and provide a foundational reference for researchers in heliophysics, astrophysics, plasma physics, space physics, solar physics, aeronomy, space weather, planetary science and climate science. Heliophysics Postdoctoral Program. Hosting/mentoring scientists and postdoctoral fellows are invited to apply to this new program designed to train the next generation of researchers in heliophysics. Two major topics of focus for LWS are the science of space weather and of the Sun-climate connection. Preference is given to applicants whose proposed research addresses one of these two foci; but any research program relevant to LWS is considered. Since the goal of this fellowship program is to train Sun-Earth system researchers, preference is also given to research projects that cross the traditional heliophysics subdomains of the Sun, heliosphere, magnetosphere, and ionosphere/upper atmosphere, as well as Sun-climate investigations. Host institutions and mentoring scientists will play critical roles. Interested hosts may submit information about their research on a central database for this program: http://www.vsp.ucar.edu/Heliophysics/

  5. Finding Multi-scale Connectivity in Our Geospace Observational System: A New Perspective for Total Electron Content Data Through Network Analysis

    NASA Astrophysics Data System (ADS)

    McGranaghan, R. M.; Mannucci, A. J.; Verkhoglyadova, O. P.; Malik, N.

    2017-12-01

    How do we evolve beyond current traditional methods in order to innovate into the future? In what disruptive innovations will the next frontier of space physics and aeronomy (SPA) be grounded? We believe the answer to these compelling, yet equally challenging, questions lies in a shift of focus: from a narrow, field-specific view to a radically inclusive, interdisciplinary new modus operandi at the intersection of SPA and the information and data sciences. Concretely addressing these broader themes, we present results from a novel technique for knowledge discovery in the magnetosphere-ionosphere-thermosphere (MIT) system: complex network analysis (NA). We share findings from the first NA of ionospheric total electron content (TEC) data, including hemispheric and interplanetary magnetic field clock angle dependencies [1]. Our work shows that NA complements more traditional approaches for the investigation of TEC structure and dynamics, by both reaffirming well-established understanding, giving credence to the method, and identifying new connections, illustrating the exciting potential. We contextualize these new results through a discussion of the potential of data-driven discovery in the MIT system when innovative data science techniques are embraced. We address implications and potentially disruptive data analysis approaches for SPA in terms of: 1) the future of the geospace observational system; 2) understanding multi-scale phenomena; and 3) machine learning. [1] McGranaghan, R. M., A. J. Mannucci, O. Verkhoglyadova, and N. Malik (2017), Finding multiscale connectivity in our geospace observational system: Network analysis of total electron content, J. Geophys. Res. Space Physics, 122, doi:10.1002/2017JA024202.

  6. Training Early Career Space Weather Researchers and other Space Weather Professionals at the CISM Space Weather Summer School

    NASA Astrophysics Data System (ADS)

    Gross, N. A.; Hughes, W.

    2011-12-01

    This talk will outline the organization of a summer school designed to introduce young professions to a sub-discipline of geophysics. Through out the 10 year life time of the Center for Integrated Space Weather Modeling (CISM) the CISM Team has offered a two week summer school that introduces new graduate students and other interested professional to the fundamentals of space weather. The curriculum covers basic concepts in space physics, the hazards of space weather, and the utility of computer models of the space environment. Graduate students attend from both inside and outside CISM, from all the sub-disciplines involved in space weather (solar, heliosphere, geomagnetic, and aeronomy), and from across the nation and around the world. In addition, between 1/4 and 1/3 of the participants each year are professionals involved in space weather in some way, such as: forecasters from NOAA and the Air Force, Air Force satellite program directors, NASA specialists involved in astronaut radiation safety, and representatives from industries affected by space weather. The summer school has adopted modern pedagogy that has been used successfully at the undergraduate level. A typical daily schedule involves three morning lectures followed by an afternoon lab session. During the morning lectures, student interaction is encouraged using "Timeout to Think" questions and peer instruction, along with question cards for students to ask follow up questions. During the afternoon labs students, working in groups of four, answer thought provoking questions using results from simulations and observation data from a variety of source. Through the interactions with each other and the instructors, as well as social interactions during the two weeks, students network and form bonds that will last them through out their careers. We believe that this summer school can be used as a model for summer schools in a wide variety of disciplines.

  7. The Ionospheric Connection Explorer - A pioneering research mission for space physics and aeronomy.

    NASA Astrophysics Data System (ADS)

    Immel, T. J.; Mende, S. B.; Heelis, R. A.; Englert, C. R.; Edelstein, J.; Forbes, J. M.; England, S.; Maute, A. I.; Makela, J. J.; Crowley, G.; Stephan, A. W.; Huba, J. D.; Harlander, J. M.; Swenson, G. R.; Frey, H. U.; Bust, G. S.; Hysell, D. L.; Saito, A.; Yigit, E.

    2012-12-01

    Earth's ionosphere, the 'inner edge of space,' is a highly variable boundary that is influenced from below by internal atmospheric waves of various scales and from above by solar and geomagnetic activity. Recent observational findings and modeling studies have raised many questions about the effects and interaction of these drivers in our geospace environment, and how these vary between extremes in solar activity. ICON will address the most compelling science issues that deal with the coupling of the ionosphere to the neutral atmosphere below and space above: 1) The highly variable nature of the electric field in the ionosphere and its potential link to thermospheric wind, 2) the effect of forcing from below: how large-scale atmospheric waves penetrate into the thermosphere and ionosphere, and 3) the effect of forcing from above: how ion-neutral coupling changes during solar and geomagnetically active periods. To address these, ICON will measure all key parameters of the atmosphere and ionosphere simultaneously and continuously with a combination of remote sensing and in-situ measurements. The scientific return from ICON is enhanced by dynamic operational modes of the observatory that provide capabilities well beyond that afforded by a static space platform. If selected for development by NASA, ICON will launch in late 2016 into a low-inclination orbit that is particularly well suited to address the above-noted scientific problems and to make a number of coordinated measurements with ground based facilities at low and middle latitudes.The ICON observatory is depicted with solar arrays deployed. The scientific payload is on the nadir facing portion of the spacecraft.

  8. ICON: The Ionospheric Connection Explorer - NASA's Next Space Physics and Aeronomy Mission

    NASA Astrophysics Data System (ADS)

    Immel, T. J.; Mende, S. B.; Heelis, R. A.; Englert, C. R.; Edelstein, J.; Forbes, J. M.; England, S.; Maute, A. I.; Makela, J. J.; Kamalabadi, F.; Crowley, G.; Stephan, A. W.; Huba, J. D.; Harlander, J.; Swenson, G. R.; Frey, H. U.; Bust, G. S.; Gerard, J. M.; Hubert, B. A.; Rowland, D. E.; Hysell, D. L.; Saito, A.; Frey, S.; Bester, M.; Valladares, C. E.

    2013-12-01

    Earth's ionosphere is a highly variable layer of plasma surrounding earth that is influenced from below by internal atmospheric waves of various scales and from above by solar and geomagnetic activity. Recent observational findings and modeling studies have raised many questions about the effects and interaction of these drivers in our geospace environment, and how these vary between extremes in solar activity. ICON will address the most compelling science issues that deal with the coupling of the ionosphere to the neutral atmosphere below and space above: 1) The highly variable nature of the electric field in the ionosphere and its potential link to thermospheric wind, 2) the effect of forcing from below: how large-scale atmospheric waves penetrate into the thermosphere and ionosphere, and 3) the effect of forcing from above: how ion-neutral coupling changes during solar and geomagnetically active periods. To address these, ICON will measure all key parameters of the atmosphere and ionosphere simultaneously and continuously with a combination of remote sensing and in-situ measurements. The scientific return from ICON is enhanced by dynamic operational modes of the observatory that provide capabilities well beyond that afforded by a static space platform. Selected for development by NASA, ICON will launch in early 2017 into a low-inclination orbit that is particularly well suited to address the above-noted scientific problems and to make a number of coordinated measurements with other ground- and space-based facilities at low and middle latitudes. The ICON Observatory carries a compliment of 4 instruments on the nadir facing payload integration plate.

  9. Dissociative recombination in aeronomy

    NASA Technical Reports Server (NTRS)

    Fox, J. L.

    1989-01-01

    The importance of dissociative recombination in planetary aeronomy is summarized, and two examples are discussed. The first is the role of dissociative recombination of N2(+) in the escape of nitrogen from Mars. A previous model is updated to reflect new experimental data on the electronic states of N produced in this process. Second, the intensity of the atomic oxygen green line on the nightside of Venus is modeled. Use is made of theoretical rate coefficients for production of O (1S) in dissociative recombination from different vibrational levels of O2(+).

  10. Design of an adiabatic demagnetization refrigerator for studies in astrophysics

    NASA Technical Reports Server (NTRS)

    Castles, S.

    1983-01-01

    An adiabatic demagnetization refrigerator was designed for cooling infrared bolometers for studies in astrophysics and aeronomy. The design was tailored to the requirements of a Shuttle sortie experiment. The refrigerator should be capable of maintaining three bolometers at 0.1 K with a 90% cycle. The advantage are of operations the bolometer at 0.1K. greater sensitivity, faster response time, and the ability to use larger bolometer elements without compromising the response time. The design presented is the first complete design of an ADR intended for use in space. The most important of these specifications are to survive a Shuttle launch, to operate with 1.5 K - 2.0 K space-pumped liquid helium as a heat sink, to have a 90% duty cycle, and to be highly efficient.

  11. Report on monitoring and support instruments for solar physics research from Spacelab

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The Quick Reaction and Special Purpose Facility Definition Team for Solar Physics Spacelab Payloads examined a variety of instruments to fulfill the following functions: (1) solar physics research appropriate to Spacelab, (2) correlative data for research in such fields as aeronomy, magnetospheric physics, ionospheric physics, meteorology and climatology, (3) target selection for activity alert monitoring and (4) pointing accuracy monitoring of Spacelab platforms. In this examination the team accepted a number of restrictions and qualifications: (1) the cost of such instruments must be low, so as not to adversely impact the development of new, research class instrumentation in the early Spacelab era; (2) the instruments should be of such a size that they each would occupy a small fraction of a pointing system, and (3) the weight and power consumption of the instruments should also be small. With these restrictions, the instruments chosen are: the visible light telescope and magnetograph, the extreme-ultraviolet telescope, and the solar irradiance monitor.

  12. Global multi-sensor satellite monitoring of volcanic SO2 and ash emissions in support to aviation control

    NASA Astrophysics Data System (ADS)

    Brenot, H.; Theys, N.; van Gent, J.; Van Roozendael, M.; van der A, R.; Clarisse, L.; Hurtmans, D.; Ngadi, Y.; Coheur, P.-F.; Clerbaux, C.

    2012-04-01

    The "Support to Aviation Control Service" (SACS; http://sacs.aeronomie.be) is an ESA-funded project hosted by the Belgian Institute for Space Aeronomy. The service provides near real-time (NRT) global SO2 and volcanic ash data, as well as alerts in case of volcanic eruptions. The SACS service is primarily designed to support the Volcanic Ash Advisory Centers (VAACs) in their mandate to gather information on volcanic clouds and give advice to airline and air traffic control organisations. SACS also serves other users that subscribe to the service, in particular local volcano observatories and research scientists. SACS is based on the combined use of UV-visible (SCIAMACHY, OMI, GOME-2) and infrared (AIRS, IASI) satellite instruments. When a volcanic eruption is detected, SACS issues an alert that takes the form of a notification sent by e-mail to users. This notification points to a dedicated web page where all relevant information is available and can be visualized with user-friendly tools. The strength of a multi-sensor approach relies in the use of satellite data with different overpasses times, minimizing the time-lag for detection and enhancing the reliability of such alerts. This paper will give a general presentation of the SACS service, different techniques used to detect volcanic plumes. It will also highlight the strengths and limitations of the service and measurements.

  13. The NASA Mars Conference

    NASA Astrophysics Data System (ADS)

    Reiber, Duke B.

    Papers about Mars and Mars exploration are presented, covering topics such as Martian history, geology, volcanism, channels, moons, atmosphere, meteorology, water on the planet, and the possibility of life. The unmanned exploration of Mars is discussed, including the Phobos Mission, the Mars Observer, the Mars Aeronomy Observer, the seismic network, Mars sample return missions, and the Mars Ball, an inflatable-sectored-tire rover concept. Issues dealing with manned exploration of Mars are examined, such as the reasons for exploring Mars, mission scenarios, a transportation system for routine visits, technologies for Mars expeditions, the human factors for Mars missions, life support systems, living and working on Mars, and the report of the National Commission on Space.

  14. KSC-07pd0993

    NASA Image and Video Library

    2007-04-04

    KENNEDY SPACE CENTER, FLA. -- At Vandenberg Air Force Base in California, a technician mates the AIM spacecraft, at left, to the Orbital Sciences Pegasus XL rocket, at right. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. Launch from the Pegasus XL rocket is scheduled for April 25.

  15. Preface of the special issue: "Vertical coupling in the atmosphere-ionosphere system: Recent progress"

    NASA Astrophysics Data System (ADS)

    2018-06-01

    This special issue of the Journal of Atmospheric and Solar-Terrestrial Physics comprises papers dealing with investigation of the coupling phenomena in the neutral Atmosphere-Ionosphere System of the Earth. The core of the special issue is formed by the recent results presented during the 6th IAGA/ICMA/SCOSTEP Workshop on the Vertical Coupling in the Neutral Atmosphere-Ionosphere System held in Taipei, Taiwan, July 2016. Workshops are organized with a substantial support of the scientific international bodies, such as the International Association of Geomagnetism and Aeronomy (IAGA), International Commission for the Middle Atmosphere (ICMA) and Committee on Solar-Terrestrial Physics (SCOSTEP). The special issue includes also recent results of other members of the aeronomic research community. Hence it represents the state-of-art knowledge in the associated research fields.

  16. A Review of Low Frequency Electromagnetic Wave Phenomena Related to Tropospheric-Ionospheric Coupling Mechanisms

    NASA Technical Reports Server (NTRS)

    Simoes, Fernando; Pfaff, Robert; Berthelier, Jean-Jacques; Klenzing, Jeffrey

    2012-01-01

    Investigation of coupling mechanisms between the troposphere and the ionosphere requires a multidisciplinary approach involving several branches of atmospheric sciences, from meteorology, atmospheric chemistry, and fulminology to aeronomy, plasma physics, and space weather. In this work, we review low frequency electromagnetic wave propagation in the Earth-ionosphere cavity from a troposphere-ionosphere coupling perspective. We discuss electromagnetic wave generation, propagation, and resonance phenomena, considering atmospheric, ionospheric and magnetospheric sources, from lightning and transient luminous events at low altitude to Alfven waves and particle precipitation related to solar and magnetospheric processes. We review in situ ionospheric processes as well as surface and space weather phenomena that drive troposphere-ionosphere dynamics. Effects of aerosols, water vapor distribution, thermodynamic parameters, and cloud charge separation and electrification processes on atmospheric electricity and electromagnetic waves are reviewed. We also briefly revisit ionospheric irregularities such as spread-F and explosive spread-F, sporadic-E, traveling ionospheric disturbances, Trimpi effect, and hiss and plasma turbulence. Regarding the role of the lower boundary of the cavity, we review transient surface phenomena, including seismic activity, earthquakes, volcanic processes and dust electrification. The role of surface and atmospheric gravity waves in ionospheric dynamics is also briefly addressed. We summarize analytical and numerical tools and techniques to model low frequency electromagnetic wave propagation and solving inverse problems and summarize in a final section a few challenging subjects that are important for a better understanding of tropospheric-ionospheric coupling mechanisms.

  17. KSC-07pd0973

    NASA Image and Video Library

    2007-04-16

    KENNEDY SPACE CENTER, FLA. -- The mated Pegasus XL rocket - AIM spacecraft is moved onto a transporter in Building 1655 at Vandenberg Air Force Base in California. The launch vehicle will be transferred to a waiting Orbital Sciences Stargazer L-1011 aircraft for launch. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. Launch is scheduled for April 25.

  18. KSC-07pd0794

    NASA Image and Video Library

    2007-03-27

    KENNEDY SPACE CENTER, FLA. -- At North Vandenberg Air Force Base in California, the AIM spacecraft is moved into a clean room for testing. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  19. KSC-07pd0991

    NASA Image and Video Library

    2007-04-03

    KENNEDY SPACE CENTER, FLA. -- At Vandenberg Air Force Base in California, the third stage of the Orbital Sciences Pegasus XL rocket is being mated to the AIM spacecraft, at right. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. Launch from the Pegasus XL rocket is scheduled for April 25.

  20. KSC-07pd0974

    NASA Image and Video Library

    2007-04-16

    KENNEDY SPACE CENTER, FLA. -- The mated Pegasus XL rocket - AIM spacecraft is secured onto a transporter at Vandenberg Air Force Base in California. The rocket will be transferred to a waiting Orbital Sciences Stargazer L-1011 aircraft for launch. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. Launch is scheduled for April 25.

  1. Preface to special issue: Layered Phenomena in the Mesopause Region

    NASA Astrophysics Data System (ADS)

    Chu, Xinzhao; Marsh, Daniel R.

    2017-09-01

    Historically, the Layered Phenomena in the Mesopause Region (LPMR) workshops have focused on studies of mesospheric clouds and their related science, including spectacular noctilucent clouds (NLCs), polar mesospheric clouds (PMCs), and polar mesospheric summer echoes (PMSEs). This is because, in the pre-technology era, these high-altitude ( 85 km) clouds revealed the existence of substance above the 'normal atmosphere' - our near-space environment is not empty! The occurrence and nature of these clouds have commanded the attention of atmospheric and space scientists for generations. Modern technologies developed in the last 50 years have enabled scientists to significantly advance our understanding of these layered phenomena. Satellite observations expanded these studies to global scales, while lidar and radar observations from the ground enabled fine-scale studies. The launch of the Aeronomy of Ice in the Mesosphere (AIM) satellite in 2007 brought mesospheric cloud research to a more mature level.

  2. Systems Engineering Challenges for GSFC Space Science Mission Operations

    NASA Technical Reports Server (NTRS)

    Thienel, Julie; Harman, Richard R.

    2017-01-01

    The NASA Goddard Space Flight Center Space Science Mission Operations (SSMO) project currently manages19 missions for the NASA Science Mission Directorate, within the Planetary, Astrophysics, and Heliophysics Divisions. The mission lifespans range from just a few months to more than20 years. The WIND spacecraft, the oldest SSMO mission, was launched in 1994. SSMO spacecraft reside in low earth, geosynchronous,highly elliptical, libration point, lunar, heliocentric,and Martian orbits. SSMO spacecraft range in size from 125kg (Aeronomy of Ice in the Mesosphere (AIM)) to over 4000kg (Fermi Gamma-Ray Space Telescope (Fermi)). The attitude modes include both spin and three-axis stabilized, with varying requirements on pointing accuracy. The spacecraft are operated from control centers at Goddard and off-site control centers;the Lunar Reconnaissance Orbiter (LRO), the Solar Dynamics Observatory (SDO) and Magnetospheric MultiScale (MMS)mission were built at Goddard. The Advanced Composition Explorer (ACE) and Wind are operated out of a multi-mission operations center, which will also host several SSMO-managed cubesats in 2017. This paper focuses on the systems engineeringchallenges for such a large and varied fleet of spacecraft.

  3. The Aeronomy of Ice in the Mesosphere Mission: Overview and Early Results

    NASA Astrophysics Data System (ADS)

    Russell, J. M.; Bailey, S. M.; Thomas, G.; Rusch, D.; Gordley, L. L.; Hervig, M.; Horanyi, M.; Randall, C.; McClintock, W.; Siskind, D. E.; Stevens, M.; Englert, C.; Taylor, M.; Summeers, M.; Merkel, A.

    2007-12-01

    The Aeronomy of Ice in the Mesosphere (AIM) mission was launched from Vandenberg Air Force Base in California at 1:26:03 PDT on April 25, 2007 becoming the first satellite mission dedicated to the study of noctilucent clouds. A Pegasus XL rocket launched the satellite into a near perfect 600 km sun synchronous circular orbit. AIM carries three instruments - a nadir imager, a solar occultation instrument and in-situ cosmic dust detectors - that were specifically selected because of their ability to provide key measurements needed to address the six AIM science objectives. Brief descriptions of the science, instruments and observation scenario will be presented along with early science results.

  4. Metrology of the Solar Spectral Irradiance at the Top Of Atmosphere in the Near Infrared using Ground Based Instruments. Presentation of the PYR-ILIOS campaign (Mauna Loa Observatory, June-July 2016).

    NASA Astrophysics Data System (ADS)

    Cessateur, G.; Bolsée, D.; Pereira, N.; Sperfeld, P.; Pape, S.

    2016-12-01

    The availability of reference spectra for the Solar Spectral Irradiance (SSI) is of the most importance for the solar physics, the studies of planetary atmospheres and climatology. The near infrared (NIR) part of these spectra is of great interest for its main role for example, in the Earth's radiative budget. However, some large and unsolved discrepancies (up to 10 %) are observed in the 1.6 μm region between recent measurements from space instruments and modelling. We developed a ground-based instrumentation dedicated to SSI measurements of the Top Of Atmosphere (TOA), obtained through atmospheric NIR windows using the Bouguer-Langley technique. The instruments are a double spectroradiometer designed by Bentham (UK) and a 6-channels NIR filters radiometer. Both were radiometrically characterized at the Royal Belgian Institute for Space Aeronomy. In the following they were calibrated against a high-temperature blackbody as primary standard for spectral irradiance at the Physikalisch-Technische Bundesanstalt (Germany). The PYR-ILIOS campaign carried out in June to July 2016 at the Mauna Loa Observatory (Hawaii, USA, 3396 m a.s.l.) is a follower of the four-month IRESPERAD campaign which was carried out in 2011 at the Izaña Atmospheric Observatory (Canary Islands, 2367 m a.s.l.). We present here the results of the 3 weeks PYR-ILIOS campaign and compare them with the outcome from IRESPERAD as well as from other ground-based, airborne or space experiments will be presented. The standard uncertainty of the PYR-ILIOS results will be discussed.

  5. Laboratory studies on the excitation and collisional deactivation of metastable atoms and molecules in the aurora and airglow

    NASA Technical Reports Server (NTRS)

    Zipf, E. C.

    1974-01-01

    The aeronomy group at the University of Pittsburgh is actively engaged in a series of coordinated satellite, sounding rocket, and laboratory studies designed to expand and clarify knowledge of the physics and chemistry of planetary atmospheres. Three major discoveries have been made that will lead ultimately to a complete and dramatic revision of our ideas on the ionospheres of Mars, Venus, and the Earth and on the origin of their vacuum ultraviolet airglows. The results have already suggested a new generation of ionosphere studies which probably can be carried out best by laser heterodyning techniques. Laboratory studies have also identified, for the first time, the physical mechanism responsible for the remarkable nitric oxide buildup observed in some auroral arcs. This development is an important break-through in auroral physics, and has military ramifications of considerable interest to the Department of Defense. This work may also shed some light on related NO and atomic nitrogen problems in the mesosphere.

  6. Modifying the ionosphere with intense radio waves.

    PubMed

    Utlaut, W F; Cohen, R

    1971-10-15

    The ionospheric modification experiments provide an opportunity to better understand the aeronomy of the natural ionosphere and also afford the control of a naturally occurring plasma, which will make possible further progress in plasma physics. The ionospheric modification by powerful radio waves is analogous to studies of laser and microwave heating of laboratory plasmas (20). " Anomalous" reflectivity effects similar to the observed ionospheric attenuation have already been noted in plasmas modulated by microwaves, and anomalous heating may have been observed in plasmas irradiated by lasers. Contacts have now been established between the workers in these diverse areas, which span a wide range of the electromagnetic spectrum. Perhaps ionospheric modification will also be a valuable technique in radio communications.

  7. Recent Advances in Narrowband Stimulated Electromagnetic Emission NSEE Investigations at HAARP and EISCAT

    NASA Astrophysics Data System (ADS)

    Scales, Wayne

    2016-07-01

    Investigation of stimulated radiation, commonly known as Stimulated Electromagnetic Emissions (SEE), produced by the interaction of high-power, High Frequency HF radiowaves with the ionospheric plasma has been a vibrant area of research since the early 1980's. Substantial diagnostic information about ionospheric plasma characteristics, dynamics, and turbulence can be obtained from the frequency spectrum of the stimulated radiation. During the past several decades, so-called wideband SEE (WSEE) which exists in a frequency band of ±100 KHz or so of the transmit wave frequency (which is several MHz) has been investigated relatively thoroughly. Upgrades both in transmitter power and diagnostic receiver frequency sensitivity at major ionosphere interaction facilities (i.e. HAARP and EISCAT) have allowed new breakthroughs in the ability to study a plethora of processes associated with the ionospheric plasma during these active experiments. A primary advance is in observations of so-called narrowband SEE (NSEE) which exists roughly within ±1 kHz of the transmit wave frequency. NSEE investigation has opened the door for a potentially powerful tool for aeronomy investigations as well. An overview of several important new results associated with NSEE are discussed in this presentation, including observations, theory, computational modeling, as well as implications to new diagnostics of space plasma physics occurring during ionospheric interaction experiments.

  8. ICESTAR - An IHY/IPY study of interhemispheric relationships in space physics

    NASA Astrophysics Data System (ADS)

    Donovan, E.; Kauristi, K.; Harrison, R.; Stamper, R.; Weatherwax, A.; Papitashvili, V.

    2006-05-01

    ICESTAR (Interhemispheric Conjugacy Effects in Solar-Terrestrial and Aeronomy Research) is a programme coordinating multinational research on Sun-Earth connections. ICESTAR concentrates on magnetospheric and upper atmospheric responses to solar inputs, with a particular focus on inter-hemispheric relationships. Key aspects of our approach include the networking of ground-based instruments, the closely related issue of fostering international collboration, and open web-based access to the relevant data. To accomplish the latter, we are involved in the development of virtual observatories and are adhering to the overarching philosophies of the IHY and eGY. IHY and ICESTAR have submitted a proposal for a core project status to the Joint Committee of the International Polar Year (IPY). This initiative, "ICESTAR/IHY - Interhemispheric Conjugacy in Geospace Phenomena and their Heliospheric Drivers", includes 24 research groups from more than twenty countries. Harvesting the unique opportunities of IPY in a timely fashion will be challenging. In addition to far- reaching interdisciplinary scientific work IPY is looking forward to exciting new education and outreach activities and efficient utilization of the latest advancements in computer and communications technology. Preparatory work to meet these ambitious objectives has already started within the ICESTAR/IHY community. In the presentation we outline our scientific goals and implementation plan, our progress to date, and describe activities to facilitate cooperative research.

  9. Detection and Characterisation of Meteors as a Big Data Citizen Science project

    NASA Astrophysics Data System (ADS)

    Gritsevich, M.

    2017-12-01

    Out of a total around 50,000 meteorites currently known to science, the atmospheric passage was recorded instrumentally in only 30 cases with the potential to derive their atmospheric trajectories and pre-impact heliocentric orbits. Similarly, while the observations of meteors, add thousands of new entries per month to existing databases, it is extremely rare they lead to meteorite recovery. Meteor studies thus represent an excellent example of the Big Data citizen science project, where progress in the field largely depends on the prompt identification and characterisation of meteor events as well as on extensive and valuable contributions by amateur observers. Over the last couple of decades technological advancements in observational techniques have yielded drastic improvements in the quality, quantity and diversity of meteor data, while even more ambitious instruments are about to become operational. This empowers meteor science to boost its experimental and theoretical horizons and seek more advanced scientific goals. We review some of the developments that push meteor science into the Big Data era that requires more complex methodological approaches through interdisciplinary collaborations with other branches of physics and computer science. We argue that meteor science should become an integral part of large surveys in astronomy, aeronomy and space physics, and tackle the complexity of micro-physics of meteor plasma and its interaction with the atmosphere. The recent increased interest in meteor science triggered by the Chelyabinsk fireball helps in building the case for technologically and logistically more ambitious meteor projects. This requires developing new methodological approaches in meteor research, with Big Data science and close collaboration between citizen science, geoscience and astronomy as critical elements. We discuss possibilities for improvements and promote an opportunity for collaboration in meteor science within the currently established EU COST BigSkyEarth http://bigskyearth.eu/ network.

  10. Summaries of physical research in the geosciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-10-01

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of the geosciences which are germane to the Department of Energy's many missions. The Division of Engineering and Geosciences, part of the Office of Basic Energy Sciences of the Office of Energy Research, supports the Geosciences Research Program. The participants in this program include Department of Energy laboratories, industry, universities, and other governmental agencies. The summaries in this document, prepared by the investigators, briefly describe the scope of the individual programs. The Geosciences Research Program includes research inmore » geology, petrology, geophysics, geochemistry, solar physics, solar-terrestrial relationships, aeronomy, seismology, and natural resource modeling and analysis, including their various subdivisions and interdisciplinary areas. All such research is related either directly or indirectly to the Department of Energy's long-range technological needs.« less

  11. X ray, extreme and far ultraviolet optical thin films for space applications

    NASA Technical Reports Server (NTRS)

    Zukic, Muamer; Torr, Douglas G.; Kim, Jongmin

    1993-01-01

    Far and extreme ultraviolet optical thin film filters find many uses in space astronomy, space astrophysics, and space aeronomy. Spacebased spectrographs are used for studying emission and absorption features of the earth, planets, sun, stars, and the interstellar medium. Most of these spectrographs use transmission or reflection filters. This requirement has prompted a search for selective filtering coatings with high throughput in the FUV and EUV spectral region. Important progress toward the development of thin film filters with improved efficiency and stability has been made in recent years. The goal for this field is the minimization of absorption to get high throughput and enhancement of wavelength selection. The Optical Aeronomy Laboratory (OAL) at the University of Alabama in Huntsville has recently developed the technology to determine optical constants of bulk and film materials for wavelengths extending from x-rays (0.1 nm) to the FUV (200 nm), and several materials have been identified that were used for designs of various optical devices which previously have been restricted to space application in the visible and near infrared. A new design concept called the Pi-multilayer was introduced and applied to the design of optical coatings for wavelengths extending from x-rays to the FUV. Section 3 of this report explains the Pi-multilayer approach and demonstrates its application for the design and fabrication of the FUV coatings. Two layer Pi-stacks have been utilized for the design of reflection filters in the EUV wavelength range from 70 - 100 nm. In order to eliminate losses due to the low reflection of the imaging optics and increase throughput and out-of-band rejection of the EUV instrumentation we introduced a self-filtering camera concept. In the FUV region, MgF2 and LiF crystals are known to be birefringent. Transmission polarizers and quarterwave retarders made of MgF2 or LiF crystals are commercially available but the performances are poor. New techniques for the design of the EUV and FUV polarizers and quarterwave retarders are described in Section 5. X- and gamma-ray detectors rely on a measurement of the electron which is effected when a ray interacts with matter. The design of an x- and gamma-ray telescope to operate in a particular region of the spectrum is, therefore, largely dictated by the mechanism through which the rays interact. Energy selection and the focusing of the incident high energy rays can be achieved with spectrally selective high reflective multilayers. The design and spectral performance of narrowband reflective x-ray Pi-multilayers are presented in section 6.

  12. Solar EUV irradiance from the San Marco ASSI - A reference spectrum

    NASA Technical Reports Server (NTRS)

    Schmidtke, Gerhard; Woods, Thomas N.; Worden, John; Rottman, Gary J.; Doll, Harry; Wita, Claus; Solomon, Stanley C.

    1992-01-01

    The only satellite measurement of the solar EUV irradiance during solar cycle 22 has been obtained with the Airglow Solar Spectrometer Instrument (ASSI) aboard the San Marco 5 satellite flown in 1988. The ASSI in-flight calibration parameters are established by using the internal capabilities of ASSI and by comparing ASSI results to the results from other space-based experiments on the ASSI calibration rocket and the Solar Mesospheric Explorer (SME). A solar EUV irradiance spectrum derived from ASSI observations on November 10, 1988 is presented as a reference spectrum for moderate solar activity for the aeronomy community. This ASSI spectrum should be considered as a refinement and extension of the solar EUV spectrum published for the same day by Woods and Rottman (1990).

  13. Research in aeronomy

    NASA Technical Reports Server (NTRS)

    Edwards, B. (Editor)

    1981-01-01

    Progress in aeronomic research is reported. The following topics are discussed: ionospheric theory; rocket experiments; system development for Urbana measurements; meteor radar; coherent and incoherent scatter radar; and laser radar.

  14. The cloud imaging and particle size experiment on the aeronomy of ice in the mesosphere mission: Cloud morphology for the northern 2007 season

    NASA Astrophysics Data System (ADS)

    Rusch, D. W.; Thomas, G. E.; McClintock, W.; Merkel, A. W.; Bailey, S. M.; Russell, J. M., III; Randall, C. E.; Jeppesen, C.; Callan, M.

    2009-03-01

    The Aeronomy of Ice in the Mesosphere (AIM) mission was launched from Vandenberg Air Force Base in California at 4:26:03 EDT on April 25, 2007, becoming the first satellite mission dedicated to the study of noctilucent clouds (NLCs), also known as polar mesospheric clouds (PMC) when viewed from space. We present the first results from one of the three instruments on board the satellite, the Cloud Imaging and Particle Size (CIPS) instrument. CIPS has produced detailed morphology of the Northern 2007 PMC and Southern 2007/2008 seasons with 5 km horizontal spatial resolution. CIPS, with its very large angular field of view, images cloud structures at multiple scattering angles within a narrow spectral bandpass centered at 265 nm. Spatial coverage is 100% above about 70° latitude, where camera views overlap from orbit to orbit, and terminates at about 82°. Spatial coverage decreases to about 50% at the lowest latitudes where data are collected (35°). Cloud structures have for the first time been mapped out over nearly the entire summertime polar region. These structures include [`]ice rings', spatially small but bright clouds, and large regions ([`]ice-free regions') in the heart of the cloud season essentially devoid of ice particles. The ice rings bear a close resemblance to tropospheric convective outflow events, suggesting a point source of mesospheric convection. These rings (often circular arcs) are most likely Type IV NLC ([`]whirls' in the standard World Meteorological Organization (WMO) nomenclature).

  15. Metrology of the Solar Spectral Irradiance at the Top Of Atmosphere in the Near Infrared using Ground Based Instruments. Final results of the PYR-ILIOS campaign (Mauna Loa Observatory, June-July 2016).

    NASA Astrophysics Data System (ADS)

    Cessateur, G.; Bolsée, D.; Pereira, N.; Sperfeld, P.; Pape, S.

    2017-12-01

    The availability of reference spectra for the Solar Spectral Irradiance (SSI) is important for the solar physics, the studies of planetary atmospheres and climatology. The near infrared (NIR) part of these spectra is of great interest for its main role for example, in the Earth's radiative budget. Until recently, some large and unsolved discrepancies (up to 10 %) were observed in the 1.6 μm region between space instruments, models and ground-based measurements. We designed a ground-based instrumentation for SSI measurements at the Top Of Atmosphere (TOA) through atmospheric NIR windows using the Bouguer-Langley technique. The main instrument is a double NIR spectroradiometer designed by Bentham (UK), radiometrically characterized at the Royal Belgian Institute for Space Aeronomy. It was absolute calibrated against a high-temperature blackbody as primary standard for spectral irradiance at the Physikalisch-Technische Bundesanstalt (Germany). The PYR-ILIOS campaign was carried out in June to July 2016 at the Mauna Loa Observatory (Hawaii, USA, 3396 m a.s.l.) follows the four-month IRESPERAD campaign which was carried out in the summer 2011 at the Izaña Atmospheric Observatory (Canary Islands, 2367 m a.s.l.). We present here the results of the 3'week PYR-ILIOS campaign and compare them with the ATLAS 3 spectrum as well as from recently reprocessed NIR solar spectra obtained with SOLAR/SOLSPEC on ISS and SCIAMACHY on ENVISAT. The uncertainty budget of the PYR-ILIOS results will be discussed.

  16. Earth Observation taken by STS-117 crewmember on Space Shuttle Atlantis

    NASA Image and Video Library

    2007-06-10

    S117-E-06998 (10 June 2007) --- Polar Mesospheric Clouds are featured in this image photographed by a STS-117 crewmember onboard Space Shuttle Atlantis. Sometimes in the summertime in the far northern (or southern) latitudes, high in the Earth's atmosphere at the edge of space, thin silvery clouds form and are observed just after sunset. These high clouds, occurring at altitudes of about 80 kilometers (50 miles), are called Polar Mesospheric Clouds (PMC) or noctilucent clouds, and are the subject of new studies to determine whether their occurrence is related to global climate change. Observations over the past few years suggest that PMC are now observed more frequently and at lower latitudes than historical observations. Several studies related to the International Polar Year (IPY), and the AIM (Aeronomy of Ice in the Mesosphere) spacecraft are underway to collect relevant data on the chemistry and physics of the mesosphere that might explain the occurrence of PMC. Astronauts in orbiting spacecraft frequently observe PMC over Canada, northern Europe and Asia during June, July and August. While PMC also occur over the high latitudes in the southern hemisphere in December, January and February, astronaut observations of southern PMC are less frequent. Earlier in June 2007, the shuttle crew visiting the International Space Station observed spectacular PMC over north-central Asia. This image was taken looking north while the shuttle and station were docking and flying over the border between western China, Mongolia and Kazakhstan. The red-to-dark region at the bottom of the image is the dense part of the Earth's atmosphere. Because this image was taken with a long lens (180mm), the entire profile of the Earth's limb is not captured. To support IPY research over the next 2 years, station crewmembers will be looking for and documenting PMC in both hemispheres.

  17. Morrow, Reiff, Receive 2013 Space Physics and Aeronomy Richard Carrington Awards: Response

    NASA Astrophysics Data System (ADS)

    Reiff, Patricia H.

    2014-08-01

    It is a special privilege to receive this award honoring Richard Carrington's discovery of what we now call space weather. It is particularly appropriate that this award also recognizes Cherilynn Morrow, who 20 years ago made a presentation to the Space Science Advisory Committee on Jeff Rosendhal's idea of mission-based E/PO. We worked together, bringing that idea to the successful, but threatened, network it is today. For me, learning and teaching go hand in hand—as we publish our findings for our peers, we should also repay the public investment in our research with accurate, understandable results. My interest in space science was sparked by a father-daughter course in astronomy sponsored by the Brownies at the Oklahoma City Planetarium and kindled by the Bell Labs production The Strange Case of the Cosmic Rays directed by Frank Capra. Knowing that planetarium shows and educational movies can change lives, I have devoted a large portion of my last 25 years to creating software, shows, and portable planetariums to inspire and engage youth. This has not been a one-person effort, of course. My work Cherilynn Ann Morrow would have been impossible without the collaboration of Carolyn Sumners, vice president of the Houston Museum of Natural Science. Our museum kiosk and planetarium control software would not have happened without the skill and perseverance of my chief programmer, Colin Law. Jim Burch has been first a mentor and then a colleague on both the research and outreach sides of my career. I share this honor with a long line of highly talented students and postdocs who have contributed science content and outreach efforts. Most importantly, without the support of my husband, Tom Hill, I would not have had the time and freedom to build an educational network while continuing research and raising a family. I thank AGU for bestowing this honor.

  18. Comparative Planetology - Atmospheres and Aeronomy

    NASA Astrophysics Data System (ADS)

    Huestis, D. L.

    2006-05-01

    The Earth, planets, moons, comets, and other small bodies in the solar system are quite diverse, yet share a number of characteristics. Each has something to teach us about the others and about the extrasolar planets we are now discovering. Having multiple examples of similar phenomena under different local conditions provides the best means of identifying the underlying mechanisms and of quantitative testing of our understanding. This special session is one of a sequence of events attempting to define and document the comparative planetology vision and provide specific recommendations for actions by the research community and the funding agencies. This presentation will summarize the progress so far and solicit additional ideas and suggestions from the research community, with an emphasis on the atmosphere and aeronomy of the Earth, planets, moons, and comets in the solar system.

  19. Orbital Sciences Pegasus XL Mate

    NASA Image and Video Library

    2007-02-28

    At Vandenberg Air Force Base in California, the three stages of the Orbital Sciences Pegasus XL are being mated for the launch of NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft. AIM is the seventh Small Explorers mission under NASA's Explorer Program. The program provides frequent flight opportunities for world-class scientific investigations from space within heliophysics and astrophysics. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  20. KSC-07pd0992

    NASA Image and Video Library

    2007-04-04

    KENNEDY SPACE CENTER, FLA. -- At Vandenberg Air Force Base in California, technicians prepare to mate the AIM spacecraft (at left) to the SoftRide isolation system on the Orbital Sciences Pegasus XL rocket. The Cosmic Dust Experiment surfaces can be clearly seen as 12 rectangular areas on the aft portion of the spacecraft. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. Launch from the Pegasus XL rocket is scheduled for April 25.

  1. KSC-07pd0793

    NASA Image and Video Library

    2007-03-27

    KENNEDY SPACE CENTER, FLA. -- At North Vandenberg Air Force Base in California, the AIM spacecraft is prepared for its move to the clean room for testing. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  2. Orbital Sciences Pegasus XL AIM Processing

    NASA Image and Video Library

    2007-03-10

    Inside a clean room at Vandenberg Air Force Base in California, NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft is weighed. AIM is the seventh Small Explorers mission under NASA's Explorer Program. The program provides frequent flight opportunities for world-class scientific investigations from space within heliophysics and astrophysics. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  3. KSC-07pd0791

    NASA Image and Video Library

    2007-03-24

    KENNEDY SPACE CENTER, FLA. -- In Building 1555 on North Vandenberg Air Force Base in California, technicians roll the AIM spacecraft back under the protective clean tent. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  4. KSC-07pd0787

    NASA Image and Video Library

    2007-03-24

    KENNEDY SPACE CENTER, FLA. -- In Building 1555 on North Vandenberg Air Force Base in California, technicians lift the AIM spacecraft via the spacecraft handling fixture attached to it. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  5. KSC-07pd0780

    NASA Image and Video Library

    2007-03-24

    KENNEDY SPACE CENTER, FLA. -- In Building 1555 on North Vandenberg Air Force Base in California, technicians work on the separation system to be mated to the AIM spacecraft, hovering above it. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  6. Orbital Sciences Pegasus XL AIM Arrival

    NASA Image and Video Library

    2007-03-10

    NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft arrives in a clean room at Vandenberg Air Force Base in California. AIM is the seventh Small Explorers mission under NASA's Explorer Program. The program provides frequent flight opportunities for world-class scientific investigations from space within heliophysics and astrophysics. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  7. KSC-07pd0786

    NASA Image and Video Library

    2007-03-24

    KENNEDY SPACE CENTER, FLA. -- In Building 1555 on North Vandenberg Air Force Base in California, technicians lower the spacecraft handling fixture around the AIM spacecraft. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  8. KSC-07pd0789

    NASA Image and Video Library

    2007-03-24

    KENNEDY SPACE CENTER, FLA. -- In Building 1555 on North Vandenberg Air Force Base in California, technicians lower the AIM spacecraft onto a moveable stand. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  9. KSC-07pd0785

    NASA Image and Video Library

    2007-03-24

    KENNEDY SPACE CENTER, FLA. -- In Building 1555 on North Vandenberg Air Force Base in California, technicians maneuver the spacecraft handling fixture toward the AIM spacecraft. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  10. KSC-07pd0776

    NASA Image and Video Library

    2007-03-24

    KENNEDY SPACE CENTER, FLA. -- In Building 1555 on North Vandenberg Air Force Base in California, technicians work on the separation system to be mated to the AIM spacecraft. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  11. BRAMS --- the Belgian RAdio Meteor Stations

    NASA Astrophysics Data System (ADS)

    Lamy, H.; Ranvier, S.; Martinez Picar, A.; Gamby, E.; Calders, S.; Anciaux, M.; De Keyser, J.

    2014-07-01

    BRAMS is a new radio observing facility developed by the Belgian Institute for Space Aeronomy (BISA) to detect and characterize meteors using forward scattering. It consists of a dedicated beacon located in the south-east of Belgium and in 25 identical receiving stations spread over the Belgian territory. The beacon transmits a pure sinusoidal wave at a frequency of 49.97 MHz with a power of 150 watts. A complete description of the BRAMS network and the data produced will be provided. The main scientific goals of the project are to compute fluxes, retrieve trajectories of individual objects, and determine physical parameters (speed, ionization, mass) for some of the observed meteor echoes. All these goals require a good knowledge of the radiation patterns of the transmitting and receiving antennas. Simulations have been made and will be validated with in-situ measurements using a UAV/drone equipped with a transmitter flying in the far-field region. The results will be provided. Each receiving station generates around 1 GB of data per day with typical numbers of sporadic meteor echoes of 1500--2000. An automatic detection method of these meteor echoes is therefore mandatory but is complicated by spurious echoes mostly due to airplanes. The latest developments of this automatic detection method will be presented and compared to manual counts for validation. Strong and weak points of the method will be presented as well as a possible alternative method using neural networks.

  12. Multi-sensor satellite monitoring of ash and SO2 volcanic plume in support to aviation control

    NASA Astrophysics Data System (ADS)

    Brenot, Hugues; Theys, Nicolas; Clarisse, Lieven; van Geffen, Jos; van Gent, Jeroen; Van Roozendael, Michel; van der A, Ronald; Hurtmans, Daniel; Coheur, Pierre-Francois; Clerbaux, Cathy; Valks, Pieter; Hedelt, Pascal; Prata, Fred; Rasson, Olivier; Sievers, Klaus; Zehner, Claus

    2014-05-01

    The 'Support to Aviation Control Service' (SACS; http://sacs.aeronomie.be) is an ESA-funded project hosted by the Belgian Institute for Space Aeronomy since 2007. The service provides near real-time (NRT) global volcanic ash and SO2 observations, as well as notifications in case of volcanic eruptions (success rate >95% for ash and SO2). SACS is based on the combined use of UV-visible (OMI, GOME-2 MetOp-A, GOME-2 MetOp-B) and infrared (AIRS, IASI MetOp-A, IASI MetOp-B) satellite instruments. The SACS service is primarily designed to support the Volcanic Ash Advisory Centers (VAACs) in their mandate to gather information on volcanic clouds and give advice to airline and air traffic control organisations. SACS also serves other users that subscribe to the service, in particular local volcano observatories, research scientists and airliner pilots. When a volcanic eruption is detected, SACS issues a warning that takes the form of a notification sent by e-mail to users. The SACS notification points to a dedicated web page where all relevant information is available and can be visualised with user-friendly tools. Information about the volcanic plume height from GOME-2 (MetOp-A and MetOp-B) are also available. The strength of a multi-sensor approach relies in the use of satellite data with different overpasses times, minimising the time-lag for detection and enhancing the reliability of such alerts. This presentation will give an overview of the SACS service, and of the different techniques used to detect volcanic plumes (ash, SO2 and plume height). It will also highlight the strengths and limitations of the service and measurements, and some perspectives.

  13. International Reference Ionosphere (IRI): Task Force Activity 2000

    NASA Technical Reports Server (NTRS)

    Bilitza, D.

    2000-01-01

    The annual IRI Task Force Activity was held at the Abdus Salam International Center for Theoretical Physics in Trieste, Italy from July 10 to July 14. The participants included J. Adeniyi (University of Ilorin, Nigeria), D. Bilitza (NSSDC/RITSS, USA), D. Buresova (Institute of Atmospheric Physics, Czech Republic), B. Forte (ICTP, Italy), R. Leitinger (University of Graz, Austria), B. Nava (ICTP, Italy), M. Mosert (University National Tucuman, Argentina), S. Pulinets (IZMIRAN, Russia), S. Radicella (ICTP, Italy), and B. Reinisch (University of Mass. Lowell, USA). The main topic of this Task Force Activity was the modeling of the topside ionosphere and the development of strategies for modeling of ionospheric variability. Each day during the workshop week the team debated a specific modeling problem in the morning during informal presentations and round table discussions of all participants. Ways of resolving the specific modeling problem were devised and tested in the afternoon in front of the computers of the ICTP Aeronomy and Radiopropagation Laboratory using ICTP s computer networks and internet access.

  14. Mars orbiter conceptual systems design study

    NASA Technical Reports Server (NTRS)

    Dixon, W.; Vogl, J.

    1982-01-01

    Spacecraft system and subsystem designs at the conceptual level to perform either of two Mars Orbiter missions, a Climatology Mission and an Aeronomy Mission were developed. The objectives of these missions are to obtain and return data.

  15. SMM-UVSP ozone profile inversion programs

    NASA Technical Reports Server (NTRS)

    Smith, H. J. P.

    1983-01-01

    The documentation and user manual for the software used to invert the UVSP aeronomy data taken by the SMM are provided. The programs are described together with their interfaces and what inputs are required from the user.

  16. HF Accelerated Electron Fluxes, Spectra, and Ionization

    NASA Astrophysics Data System (ADS)

    Carlson, Herbert C.; Jensen, Joseph B.

    2015-10-01

    Wave particle interactions, an essential aspect of laboratory, terrestrial, and astrophysical plasmas, have been studied for decades by transmitting high power HF radio waves into Earth's weakly ionized space plasma, to use it as a laboratory without walls. Application to HF electron acceleration remains an active area of research (Gurevich in Usp Fizicheskikh Nauk 177(11):1145-1177, 2007) today. HF electron acceleration studies began when plasma line observations proved (Carlson et al. in J Atmos Terr Phys 44:1089-1100, 1982) that high power HF radio wave-excited processes accelerated electrons not to ~eV, but instead to -100 times thermal energy (10 s of eV), as a consequence of inelastic collision effects on electron transport. Gurevich et al (J Atmos Terr Phys 47:1057-1070, 1985) quantified the theory of this transport effect. Merging experiment with theory in plasma physics and aeronomy, enabled prediction (Carlson in Adv Space Res 13:1015-1024, 1993) of creating artificial ionospheres once ~GW HF effective radiated power could be achieved. Eventual confirmation of this prediction (Pedersen et al. in Geophys Res Lett 36:L18107, 2009; Pedersen et al. in Geophys Res Lett 37:L02106, 2010; Blagoveshchenskaya et al. in Ann Geophys 27:131-145, 2009) sparked renewed interest in optical inversion to estimate electron spectra in terrestrial (Hysell et al. in J Geophys Res Space Phys 119:2038-2045, 2014) and planetary (Simon et al. in Ann Geophys 29:187-195, 2011) atmospheres. Here we present our unpublished optical data, which combined with our modeling, lead to conclusions that should meaningfully improve future estimates of the spectrum of HF accelerated electron fluxes. Photometric imaging data can significantly improve detection of emissions near ionization threshold, and confirm depth of penetration of accelerated electrons many km below the excitation altitude. Comparing observed to modeled emission altitude shows future experiments need electron density profiles to derive more accurate HF electron flux spectra.

  17. The third stage of the Orbital Sciences Pegasus XL rocket is bei

    NASA Image and Video Library

    2007-04-03

    At Vandenberg Air Force Base in California, the Orbital Sciences Pegasus XL rocket is ready for mating to the AIM spacecraft. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. Launch from the Pegasus XL rocket is scheduled for April 25.

  18. Tunable filters for multispectral imaging of aeronomical features

    NASA Astrophysics Data System (ADS)

    Goenka, C.; Semeter, J. L.; Noto, J.; Dahlgren, H.; Marshall, R.; Baumgardner, J.; Riccobono, J.; Migliozzi, M.

    2013-10-01

    Multispectral imaging of optical emissions in the Earth's upper atmosphere unravels vital information about dynamic phenomena in the Earth-space environment. Wavelength tunable filters allow us to accomplish this without using filter wheels or multiple imaging setups, but with identifiable caveats and trade-offs. We evaluate one such filter, a liquid crystal Fabry-Perot etalon, as a potential candidate for the next generation of imagers for aeronomy. The tunability of such a filter can be exploited in imaging features such as the 6300-6364 Å oxygen emission doublet, or studying the rotational temperature of N2+ in the 4200-4300 Å range, observations which typically require multiple instruments. We further discuss the use of this filter in an optical instrument, called the Liquid Crystal Hyperspectral Imager (LiCHI), which will be developed to make simultaneous measurements in various wavelength ranges.

  19. Orbital Sciences Pegasus XL Flight Simulation

    NASA Image and Video Library

    2007-02-28

    Seen at Vandenberg Air Force Base in California is the fairing (foreground) for the Orbital Sciences Pegasus XL rocket. In the background is the third stage, under the clean room tent. The rocket is the launch vehicle for NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft. AIM is the seventh Small Explorers mission under NASA's Explorer Program. The program provides frequent flight opportunities for world-class scientific investigations from space within heliophysics and astrophysics. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  20. Orbital Sciences Pegasus XL Mate

    NASA Image and Video Library

    2007-02-28

    At Vandenberg Air Force Base in California, the second and third stages of the Orbital Sciences Pegasus XL rocket wait for mating. The rocket is the launch vehicle for the NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft. AIM is the seventh Small Explorers mission under NASA's Explorer Program. The program provides frequent flight opportunities for world-class scientific investigations from space within heliophysics and astrophysics. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  1. Orbital Sciences Pegasus XL Mate

    NASA Image and Video Library

    2007-02-28

    At Vandenberg Air Force Base in California, a technician on the work stand prepares the second stage of the Orbital Sciences Pegasus XL rocket to be mated to the first stage, at left, for the launch of NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft. AIM is the seventh Small Explorers mission under NASA's Explorer Program. The program provides frequent flight opportunities for world-class scientific investigations from space within heliophysics and astrophysics. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  2. Orbital Sciences Pegasus XL Mate

    NASA Image and Video Library

    2007-02-28

    At Vandenberg Air Force Base in California, a technician on the work stand prepares the first stage of the Orbital Sciences Pegasus XL rocket, at left, to be mated to the second stage, at right, for the launch of NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft. AIM is the seventh Small Explorers mission under NASA's Explorer Program. The program provides frequent flight opportunities for world-class scientific investigations from space within heliophysics and astrophysics. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  3. Orbital Sciences Pegasus XL Mate

    NASA Image and Video Library

    2007-02-28

    At Vandenberg Air Force Base in California, a technician on the work stand (center) prepares the second stage of the Orbital Sciences Pegasus XL rocket to be mated to the first stage, at left, for the launch of NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft. AIM is the seventh Small Explorers mission under NASA's Explorer Program. The program provides frequent flight opportunities for world-class scientific investigations from space within heliophysics and astrophysics. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  4. Orbital Sciences Pegasus XL Flight Simulation

    NASA Image and Video Library

    2007-02-28

    At Vandenberg Air Force Base in California, workers monitor the data produced by the second flight simulation of the Orbital Sciences Pegasus XL rocket. The rocket is the launch vehicle for NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft. AIM is the seventh Small Explorers mission under NASA's Explorer Program. The program provides frequent flight opportunities for world-class scientific investigations from space within heliophysics and astrophysics. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  5. Orbital Sciences Pegasus XL Flight Simulation

    NASA Image and Video Library

    2007-02-28

    At Vandenberg Air Force Base in California, the Orbital Sciences Pegasus XL rocket undergoes its second flight simulation. The rocket is the launch vehicle for NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft. AIM is the seventh Small Explorers mission under NASA's Explorer Program. The program provides frequent flight opportunities for world-class scientific investigations from space within heliophysics and astrophysics. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  6. Orbital Sciences Pegasus XL Mate

    NASA Image and Video Library

    2007-02-28

    At Vandenberg Air Force Base in California, a technician checks the final step in mating of the first and second stages of the Orbital Sciences Pegasus XL rocket. The rocket is the launch vehicle for NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft. AIM is the seventh Small Explorers mission under NASA's Explorer Program. The program provides frequent flight opportunities for world-class scientific investigations from space within heliophysics and astrophysics. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  7. Orbital Sciences Pegasus XL Flight Simulation

    NASA Image and Video Library

    2007-02-28

    At Vandenberg Air Force Base in California, a worker monitors the data produced by the second flight simulation of the Orbital Sciences Pegasus XL rocket. The rocket is the launch vehicle for NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft. AIM is the seventh Small Explorers mission under NASA's Explorer Program. The program provides frequent flight opportunities for world-class scientific investigations from space within heliophysics and astrophysics. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  8. Orbital Sciences Pegasus XL Mate

    NASA Image and Video Library

    2007-02-28

    At Vandenberg Air Force Base in California, technicians discuss the process for mating the first and second stages of the Orbital Sciences Pegasus XL rocket in front of them. The rocket is the launch vehicle for NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft. AIM is the seventh Small Explorers mission under NASA's Explorer Program. The program provides frequent flight opportunities for world-class scientific investigations from space within heliophysics and astrophysics. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  9. Orbital Sciences Pegasus XL Flight Simulation

    NASA Image and Video Library

    2007-02-28

    At Vandenberg Air Force Base in California, a worker monitors the Orbital Sciences Pegasus XL rocket after a second flight simulation. The rocket is the launch vehicle for NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft. AIM is the seventh Small Explorers mission under NASA's Explorer Program. The program provides frequent flight opportunities for world-class scientific investigations from space within heliophysics and astrophysics. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  10. Aeronomy of the Venus Upper Atmosphere

    NASA Astrophysics Data System (ADS)

    Gérard, J.-C.; Bougher, S. W.; López-Valverde, M. A.; Pätzold, M.; Drossart, P.; Piccioni, G.

    2017-11-01

    We present aeronomical observations collected using remote sensing instruments on board Venus Express, complemented with ground-based observations and numerical modeling. They are mostly based on VIRTIS and SPICAV measurements of airglow obtained in the nadir mode and at the limb above 90 km. They complement our understanding of the behavior of Venus' upper atmosphere that was largely based on Pioneer Venus observations mostly performed over thirty years earlier. Following a summary of recent spectral data from the EUV to the infrared, we examine how these observations have improved our knowledge of the composition, thermal structure, dynamics and transport of the Venus upper atmosphere. We then synthesize progress in three-dimensional modeling of the upper atmosphere which is largely based on global mapping and observations of time variations of the nitric oxide and O2 nightglow emissions. Processes controlling the escape flux of atoms to space are described. Results based on the VeRA radio propagation experiment are summarized and compared to ionospheric measurements collected during earlier space missions. Finally, we point out some unsolved and open questions generated by these recent datasets and model comparisons.

  11. IASB-BIRA contribution to VESPA for planetary aeronomy studies

    NASA Astrophysics Data System (ADS)

    Trompet, L.; Vandaele, A. C.; Geunes, Y.; Mahieux, A.; Wilquet, V.; Chamberlain, S.; Robert, S.; Thomas, I.; Erard, S.; Cecconi, B.; Le Sidaner, P.

    2017-09-01

    IASB-BIRA is contributing to VESPA activities by developing all necessary facilities to make accessible through the VESPA infrastructure: a) SOIR profiles of the atmosphere of Venus and b) the radiative transfer code ASIMUT for simulation or retrievals of spectra.

  12. SWAP: an EUV imager for solar monitoring on board of PROBA2

    NASA Astrophysics Data System (ADS)

    Katsiyannis, Athanassios C.; Berghmans, David; Hochedez, Jean-Francois; Nicula, Bogdan; Lawrence, Gareth; Defise, Jean-Marc; Ben-Moussa, Ali; Delouille, Veronique; Dominique, Marie; Lecat, Jean-Herve; Schmutz, W.; Theissen, Armin; Slemzin, Vladimir

    2005-08-01

    PROBA2 is an ESA technology demonstration mission to be launched in early 2007. The two primary scientific instruments on board of PROBA2 are SWAP (Sun Watcher using Active Pixel System detector and Image Processing) and the LYRA VUV radiometer. SWAP provides a full disk solar imaging capability with a bandpass filter centred at 17.5 nm (FeIX-XI) and a fast cadence of ≈1 min. The telescope is based on an off-axis Ritchey Chretien design while an extreme ultraviolet (EUV) enhanced APS CMOS will be used as a detector. As the prime goal of the SWAP is solar monitoring and advance warning of Coronal Mass Ejections (CME), on-board intellige nce will be implemented. Image recognition software using experimental algorithms will be used to detect CMEs during the first phase of eruption so the event can be tracked by the spacecraft without huma n intervention. LYRA will monitor solar irradiance in four different VUV passbands with a cadence of up to 100 Hz. The four channels were chosen for their relevance to solar physics, aeronomy and space weather: 115-125 nm (Lyman-α), 200-220 nm Herzberg continuum, the 17-70 nm Aluminium filter channel (that includes the HeII line at 30.4 nm) and the 1-20 nm Zirconium filter channel. On-board calibration sources will monitor the stability of the detectors and the filters throughout the duration of the mission.

  13. Advancements in Chinese Geomagnetism and Aeronomy during the Last Thirty Years,

    DTIC Science & Technology

    1981-02-09

    movements of charged particles in geomagnetic fields and neutral line magnetic fields and they vigorously initiated simulated tests. References (120-121... telluric prospecting and related probems; (6) Magnetic prospecting and interpretation of data; (7) Some research on geomagnetic instruments; (8

  14. Tools to Manage and Access the NOMAD Data

    NASA Astrophysics Data System (ADS)

    Trompet, L.; Vandaele, A. C.; Thomas, I. R.

    2018-04-01

    The NOMAD instrument on-board the ExoMars spacecraft will generate a large amount of data of the atmosphere of Mars. The Planetary Aeronomy Division at IASB is willing to make their tools and these data available to the whole planetary science community.

  15. The third stage of the Orbital Sciences Pegasus XL rocket is bei

    NASA Image and Video Library

    2007-04-03

    At Vandenberg Air Force Base in California, the third stage of the Orbital Sciences Pegasus XL rocket is being mated to the AIM spacecraft, at right. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. Launch from the Pegasus XL rocket is scheduled for April 25.

  16. The mated Pegasus XL rocket - AIM spacecraft leaves Building 165

    NASA Image and Video Library

    2007-04-16

    The mated Pegasus XL rocket - AIM spacecraft is secured onto a transporter at Vandenberg Air Force Base in California. The rocket will be transferred to a waiting Orbital Sciences Stargazer L-1011 aircraft for launch. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. Launch is scheduled for April 25.

  17. The mated Pegasus XL rocket - AIM spacecraft leaves Building 165

    NASA Image and Video Library

    2007-04-16

    The mated Pegasus XL rocket - AIM spacecraft is moved onto a transporter in Building 1655 at Vandenberg Air Force Base in California. The launch vehicle will be transferred to a waiting Orbital Sciences Stargazer L-1011 aircraft for launch. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. Launch is scheduled for April 25.

  18. The third stage of the Orbital Sciences Pegasus XL rocket is bei

    NASA Image and Video Library

    2007-04-03

    At Vandenberg Air Force Base in California, a technician mates the AIM spacecraft, at left, to the Orbital Sciences Pegasus XL rocket, at right. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. Launch from the Pegasus XL rocket is scheduled for April 25.

  19. The mated Pegasus XL rocket - AIM spacecraft leaves Building 165

    NASA Image and Video Library

    2007-04-16

    The mated Pegasus XL rocket - AIM spacecraft leaves Building 1655 at Vandenberg Air Force Base in California. The rocket will be transferred to a waiting Orbital Sciences Stargazer L-1011 aircraft for launch. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. Launch is scheduled for April 25.

  20. HF-START: A Regional Radio Propagation Simulator

    NASA Astrophysics Data System (ADS)

    Hozumi, K.; Maruyama, T.; Saito, S.; Nakata, H.; Rougerie, S.; Yokoyama, T.; Jin, H.; Tsugawa, T.; Ishii, M.

    2017-12-01

    HF-START (HF Simulator Targeting for All-users' Regional Telecommunications) is a user-friendly simulator developed to meet the needs of space weather users. Prediction of communications failure due to space weather disturbances is of high priority. Space weather users from various backgrounds with high economic impact, i.e. airlines, telecommunication companies, GPS-related companies, insurance companies, international amateur radio union, etc., recently increase. Space weather information provided by Space Weather Information Center of NICT is, however, too professional to be understood and effectively used by the users. To overcome this issue, I try to translate the research level data to the user level data based on users' needs and provide an immediate usable data. HF-START is positioned to be a space weather product out of laboratory based truly on users' needs. It is originally for radio waves in HF band (3-30 MHz) but higher frequencies up to L band are planned to be covered. Regional ionospheric data in Japan and southeast Asia are employed as a reflector of skywave mode propagation. GAIA (Ground-to-topside model of Atmosphere and Ionosphere for Aeronomy) model will be used as ionospheric input for global simulation. To evaluate HF-START, an evaluation campaign for Japan region will be launched in coming months. If the campaign successes, it will be expanded to southeast Asia region as well. The final goal of HF-START is to provide the near-realtime necessary radio parameters as well as the warning message of radio communications failure to the radio and space weather users.

  1. Mars Aeronomy Explorer (MAX): Study Employing Distributed Micro-Spacecraft

    NASA Technical Reports Server (NTRS)

    Shotwell, Robert F.; Gray, Andrew A.; Illsley, Peter M.; Johnson, M.; Sherwood, Robert L.; Vozoff, M.; Ziemer, John K.

    2005-01-01

    An overview of a Mars Aeronomy Explorer (MAX) mission design study performed at NASA's Jet Propulsion Laboratory is presented herein. The mission design consists of ten micro-spacecraft orbiters launched on a Delta IV to Mars polar orbit to determine the spatial, diurnal and seasonal variation of the constituents of the Martian upper atmosphere and ionosphere over the course of one Martian year. The spacecraft are designed to allow penetration of the upper atmosphere to at least 90 km. This property coupled with orbit precession will yield knowledge of the nature of the solar wind interaction with Mars, the influence of the Mars crustal magnetic field on ionospheric processes, and the measurement of present thermal and nonthermal escape rates of atmospheric constituents. The mission design incorporates alternative design paradigms that are more appropriate for-and in some cases motivate-distributed micro-spacecraft. These design paradigms are not defined by a simple set of rules, but rather a way of thinking about the function of instruments, mission reliability/risk, and cost in a systemic framework.

  2. The aeronomy of odd nitrogen in the thermosphere. II - Twilight emissions

    NASA Technical Reports Server (NTRS)

    Strobel, D. F.; Oran, E. S.; Feldman, P. D.

    1976-01-01

    A model developed for the aeronomy of odd nitrogen in the thermosphere is used to analyze rocket measurements of N(4S) and NO densities. Data from Atmosphere Explorer were used to develop a consistent reaction kinetics model for odd nitrogen chemistry. It is concluded that most NO(+) dissociative recombination events must produce N(2D), that N(2D) is quenched by O at a rate of 1 trillionth cu cm per sec, and that the atmospheric O2 quenching rate of N(2D) is consistent with the laboratory rate. The major quenching agent of N(2D) between 140 and 220 km is atomic oxygen, and this reaction is the major source of N(4S). Peak N(4S) densities of about (20-60) million per cu cm at 140-150 km are predicted, with the variability being indicative of the model sensitivity to a factor of 2 change in the O/O2 ratio in the thermosphere.

  3. Molecules of significance in planetary aeronomy

    NASA Technical Reports Server (NTRS)

    Mohan, H.

    1979-01-01

    This monograph is basically devoted to spectroscopic information of the molecules of planetary interest. Only those molecules have been dealt with which have been confirmed spectroscopically to be present in the atmosphere of major planets of our solar system and play an important role in the aeronomy of the respective planets. An introduction giving the general conditions of planets and their atmospheres including the gaseous molecules is given. Some typical planetary spectra is presented and supported with a discussion on some basic concepts of optical absorption and molecular parameters that are important to the study of planetary atmospheres. Quantities like dipole moments, transition probabilities, Einstein coefficients and line strengths, radiative life times, absorption cross sections, oscillator strengths, line widths and profiles, equivalent widths, growth curves, bond strengths, electronic transition moments, Franck-Condon factors and r-centroids, etc., are discussed. Spectroscopic information and relevant data of 6 diatomic (HF, HCL, CO, H2, O2, N2) and 6 polyatomic (CO2, N2), O3, HeO, NH3, CH4) molecules are presented.

  4. The Aeronomy of Ice in the Mesosphere Mission: Science Results After Three PMC Seasons

    NASA Astrophysics Data System (ADS)

    Russell, J. M.; Bailey, S. M.; Rusch, D.; Thomas, G. E.; Gordley, L. L.; Hervig, M. E.; Horanyi, M.

    2008-12-01

    The Aeronomy of Ice in the Mesosphere (AIM) satellite was launched from Vandenberg Air Force Base in California at 1:26:03 PDT on April 25, 2007 becoming the first satellite mission dedicated to the study of Polar Mesospheric Clouds (PMCs). A Pegasus XL rocket launched the satellite into a near perfect 600 km sun synchronous circular orbit. AIM carries three instruments - a nadir imager, a solar occultation sounder and an in-situ cosmic dust detector. Brief instrument descriptions, data quality and key science results will be presented. AIM has observed three PMC seasons at this point in time including two in the northern hemisphere (2007 and 2008) and one in the south (2007/2008). The observations are providing extraordinary detail on the horizontal and vertical extent of PMCs and their variability. Results show that the mesospheric ice layer extends up to the mesopause, there are voids in the PMC fields of both hemispheres and for the two northern seasons, temporal trends are remarkably similar.

  5. Aeronomy of Ice in the Mesosphere (AIM)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The overall goal of the Aeronomy of Ice in the Mesosphere (AIM) experiment is to resolve why Polar Mesospheric Clouds form and why they vary. By measuring PMCs and the thermal, chemical and dynamical environment in which they form, we will quanti@ the connection between these clouds and the meteorology of the polar mesosphere. In the end, this will provide the basis for study of long-term variability in the mesospheric climate and its relationship to global change. The results of AIM will be a rigorous validation of predictive models that can reliably use past PMC changes and present trends as indicators of global change. The AIM goal will be achieved by measuring PMC extinction, brightness, spatial distribution, particle size distributions, gravity wave activity, dust influx to the atmosphere and precise, vertical profile measurements of temperature, H20, C&, 0 3 , C02, NO. and aerosols. These data can only be obtained by a complement of instruments on an orbiting spacecraft (S/C).

  6. Geophysical and solar activity indices

    NASA Astrophysics Data System (ADS)

    Bossy, L.; Lemaire, J.

    1984-04-01

    A large number of geophysicists try to correlate their observations with one or even a series of different geophysical or solar activity indices. Yet the right choice of the most appropriate index with which to correlate depends mainly on our understanding of the physical cause-effect relationship between the new set of observations and the index chosen. This best choice will therefore depend on our good understanding of the methods of measurement and derivation of the adopted index in such correlative studies. It relies also on our awareness of the range of applicability of the indices presently available as well as on our understanding of their limitations. It was to achieve these goals that a series of general lectures on geophysical and solar activity indices was organized by L. Bossy and J. Lemaire (Institut d'Aeronomie Spatiale de Belgique (IASB), Brussels), March 26-29, 1984 at Han-sur-Lesse, Belgium.

  7. Waves from the Sun: to the 100th anniversary of V.A. Troitskaya's birth

    NASA Astrophysics Data System (ADS)

    Guglielmi, Anatol; Potapov, Alexander

    2017-09-01

    It has been one hundred years since the birth of the outstanding scientist Professor V.A. Troitskaya. Her remarkable achievements in solar-terrestrial physics are widely known. For many years, Valeria A. Troitskaya was the President of the International Association of Geomagnetism and Aeronomy. This article deals with only one aspect of the multifaceted creative activity of V.A. Troitskaya. It relates to the problem of sources of ultra-low frequency (ULF) electromagnetic oscillations and waves outside Earth’s magnetosphere. We were fortunate to work under the leadership of V.A. Troitskaya on this problem. In this paper, we briefly describe the history from the emergence of the idea of the extramagnetospheric origin of dayside permanent ULF oscillations in the late 1960s to the modern quest made by ground and satellite means for ULF waves excited by solar surface oscillations propagating in the interplanetary medium and reaching Earth.

  8. Mars Orbiter Study. Volume 2: Mission Design, Science Instrument Accommodation, Spacecraft Design

    NASA Technical Reports Server (NTRS)

    Drean, R.; Macpherson, D.; Steffy, D.; Vargas, T.; Shuman, B.; Anderson, K.; Richards, B.

    1982-01-01

    Spacecraft system and subsystem designs were developed at the conceptual level to perform either of two Mars Orbiter Missions, a Climatology Mission and an Aeronomy Mission. The objectives of these missions are to obtain and return data to increase knowledge of Mars.

  9. StarGuides Plus

    NASA Astrophysics Data System (ADS)

    Heck, A.

    StarGuides Plus represents the most comprehensive and accurately validated collection of practical data on organizations involved in astronomy, related space sciences and other related fields. This invaluable reference source (and its companion volume, StarBriefs Plus) should be on the reference shelf of every library, organization or individual with any interest in these areas. The coverage includes relevant universities, scientific committees, institutions, associations, societies, agencies, companies, bibliographic services, data centers, museums, dealers, distributors, funding organizations, journals, manufacturers, meteorological services, national norms & standard institutes, parent associations & societies, publishers, software producers & distributors, and so on. Besides astronomy and associated space sciences, related fields such as aeronautics, aeronomy, astronautics, atmospheric sciences, chemistry, communications, computer sciences, data processing, education, electronics, engineering, energetics, environment, geodesy, geophysics, information handling, management, mathematics, meteorology, optics, physics, remote sensing, and so on, are also covered where appropriate. After some thirty years in continuous compilation, verification and updating, StarGuides Plus currently gathers together some 6,000 entries from 100 countries. The information is presented in a clear, uncluttered manner for direct and easy use. For each entry, all practical data are listed: city, postal and electronic-mail addresses, telephone and fax numbers, URLs for WWW access, foundation years, numbers of members and/or numbers of staff, main activities, publications titles (with frequencies, ISS-Numbers and circulations), names and geographical coordinates of observing sites, names of planetariums, awards (prizes and/or distinctions) granted, etc. The entries are listed alphabetically in each country. An exhaustive index gives a breakdown not only by different designations and acronyms, but also by location and major terms in names. Thematic sub-indices are also provided as well as a list of telephone and telefax national codes. In short, almost anyone involved in any way in the fields of astronomy and related space sciences will find invaluable contact and background information in this volume. All entries have been compiled from data supplied by the listed organizations and all data have been independently verified - making this compilation the most accurate and relevant source available. Link: http://www.wkap.nl/prod/b/1-4020-1926-2

  10. NOAA News Online (Story 2249)

    Science.gov Websites

    ON OZONE HOLE NOAA image of Susan Solomon in her office in Boulder, Colo. June 23, 2004 - Susan Solomon, a leading atmospheric scientist at the NOAA Aeronomy Laboratory in Boulder, Colo., was awarded larger view of Susan Solomon in her office in Boulder, Colo. Click here for high resolution version

  11. PoSSUM: Polar Suborbital Science in the Upper Mesosphere

    NASA Astrophysics Data System (ADS)

    Reimuller, J. D.; Fritts, D. C.; Thomas, G. E.; Taylor, M. J.; Mitchell, S.; Lehmacher, G. A.; Watchorn, S. R.; Baumgarten, G.; Plane, J. M.

    2013-12-01

    Project PoSSUM (www.projectpossum.org) is a suborbital research project leveraging imaging and remote sensing techniques from Reusable Suborbital Launch Vehicles (rSLVs) to gather critical climate data through use of the PoSSUM Observatory and the PoSSUM Aeronomy Laboratory. An acronym for Polar Suborbital Science in the Upper Mesosphere, PoSSUM grew from the opportunity created by the Noctilucent Cloud Imagery and Tomography Experiment, selected by the NASA Flight Opportunities Program as Experiment 46-S in March 2012. This experiment will employ an rSLV (e.g. the XCOR Lynx Mark II) launched from a high-latitude spaceport (e.g. Eielson AFB, Alaska or Kiruna, Sweden) during a week-long deployment scheduled for July 2015 to address critical questions concerning noctilucent clouds (NLCs) through flights that transition the cloud layer where the clouds will be under direct illumination from the sun. The 2015 Project PoSSUM NLC campaign will use the unique capability of rSLVs to address key under-answered questions pertaining to NLCs. Specifically, PoSSUM will answer: 1) What are the small-scale dynamics of NLCs and what does this tell us about the energy and momentum deposition from the lower atmosphere? 2) What is the seasonal variability of NLCs, mesospheric dynamics, and temperatures? 3) Are structures observed in the OH layer coupled with NLC structures? 4) How do NLCs nucleate? and 5) What is the geometry of NLC particles and how do they stratify? Instrumentation will include video and still-frame visible cameras (PoSSUMCam), infrared cameras, a mesospheric temperatures experiment, a depolarization LiDAR, a mesospheric density and temperatures experiment (MCAT), a mesospheric winds experiment, and a meteoric smoke detector (MASS). The instrument suite used on PoSSUM will mature through subsequent campaigns to develop an integrated, modular laboratory (the ';PoSSUM Observatory') that will provide repeatable, low cost, in-situ NLC and aeronomy observations as well as validate a method to serve the broader Earth Observation science, atmospheric science, and aeronomy communities.

  12. Mars exploration advances: Missions to Mars - Mars base

    NASA Technical Reports Server (NTRS)

    Dejarnette, Fred R.; Mckay, Christopher P.

    1992-01-01

    An overview is presented of Mars missions and related planning with attention given to four mission architectures in the light of significant limitations. Planned unpiloted missions are discussed including the Mars Orbital Mapping Mission, the Mars Rover Sample Return, the Mars Aeronomy Orbiter, and the Mars Environmental Survey. General features relevant to the missions are mentioned including launch opportunities, manned-mission phases, and propulsion options. The four mission architectures are set forth and are made up of: (1) the Mars-exploration infrastructures; (2) science emphasis for the moon and Mars; (3) the moon to stay and Mars exploration; and (4) space resource utilization. The possibility of robotic missions to the moon and Mars is touched upon and are concluded to be possible by the end of the century. The ramifications of a Mars base are discussed with specific reference to habitability and base activities, and the human missions are shown to require a heavy-lift launcher and either chemical/aerobrake or nuclear-thermal propulsion system.

  13. AIM being prepared for integrated testing and flight simulation

    NASA Image and Video Library

    2007-03-24

    At North Vandenberg Air Force Base in California, the AIM spacecraft has been rotated to horizontal prior to its move to the clean room for testing. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  14. AIM being prepared for integrated testing and flight simulation

    NASA Image and Video Library

    2007-03-24

    Flight simulation No. 3 is on the schedule for the Pegasus XL launch vehicle, seen here in Building 1555 on North Vandenberg Air Force Base in California. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  15. Technicians prepare the AIM spacecraft for fairing installation

    NASA Image and Video Library

    2007-04-12

    At Vandenberg Air Force Base in California, technicians prepare the AIM spacecraft for fairing installation. The fairing is a molded structure that fits around the spacecraft and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch. Launch will be from a Pegasus XL rocket, carried and released by Orbital Sciences L-1011 jet aircraft. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. Launch is scheduled for April 25.

  16. AIM being prepared for integrated testing and flight simulation

    NASA Image and Video Library

    2007-03-24

    In Building 1555 on North Vandenberg Air Force Base in California, technicians carry the separation system, at left, toward the AIM spacecraft hovering above the stand at right. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  17. AIM being prepared for integrated testing and flight simulation

    NASA Image and Video Library

    2007-03-24

    In Building 1555 on North Vandenberg Air Force Base in California, technicians work on the separation system to be mated to the AIM spacecraft. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  18. AIM being prepared for integrated testing and flight simulation

    NASA Image and Video Library

    2007-03-24

    In Building 1555 on North Vandenberg Air Force Base in California, technicians look over the spacecraft handling fixture that will be used to lift the AIM spacecraft. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  19. AIM being prepared for integrated testing and flight simulation

    NASA Image and Video Library

    2007-03-24

    In Building 1555 on North Vandenberg Air Force Base in California, technicians work on the separation system to be mated to the AIM spacecraft, hovering above it. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  20. AIM being prepared for integrated testing and flight simulation

    NASA Image and Video Library

    2007-03-24

    In Building 1555 on North Vandenberg Air Force Base in California, technicians lift the AIM spacecraft via the spacecraft handling fixture attached to it. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  1. AIM being prepared for integrated testing and flight simulation

    NASA Image and Video Library

    2007-03-24

    In Building 1555 on North Vandenberg Air Force Base in California, technicians roll the AIM spacecraft back under the protective clean tent. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  2. AIM being prepared for integrated testing and flight simulation

    NASA Image and Video Library

    2007-03-24

    In Building 1555 on North Vandenberg Air Force Base in California, technicians maneuver the spacecraft handling fixture toward the AIM spacecraft. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  3. AIM being prepared for integrated testing and flight simulation

    NASA Image and Video Library

    2007-03-24

    At North Vandenberg Air Force Base in California, the AIM spacecraft is prepared for its move to the clean room for testing. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  4. AIM being prepared for integrated testing and flight simulation

    NASA Image and Video Library

    2007-03-24

    In Building 1555 on North Vandenberg Air Force Base in California, technicians lower the spacecraft handling fixture around the AIM spacecraft. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  5. The third stage of the Orbital Sciences Pegasus XL rocket is bei

    NASA Image and Video Library

    2007-04-03

    At Vandenberg Air Force Base in California, technicians prepare to mate the AIM spacecraft (at left) to the SoftRide isolation system on the Orbital Sciences Pegasus XL rocket. The Cosmic Dust Experiment surfaces can be clearly seen as 12 rectangular areas on the aft portion of the spacecraft. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. Launch from the Pegasus XL rocket is scheduled for April 25.

  6. AIM being prepared for integrated testing and flight simulation

    NASA Image and Video Library

    2007-03-24

    In Building 1555 on North Vandenberg Air Force Base in California, technicians lower the AIM spacecraft onto a moveable stand. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  7. AIM being prepared for integrated testing and flight simulation

    NASA Image and Video Library

    2007-03-24

    At North Vandenberg Air Force Base in California, the AIM spacecraft is moved into a clean room for testing. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  8. AIM being prepared for integrated testing and flight simulation

    NASA Image and Video Library

    2007-03-24

    In Building 1555 on North Vandenberg Air Force Base in California, technicians move a mobile stand toward the AIM spacecraft suspended via a crane at left. . AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  9. The 2010 Polar Aeronomy and Radio Science (PARS) Summer School

    DTIC Science & Technology

    2011-12-30

    Ionospheric Plasma ........................................................................26 3.7. Measurements of HF Wave-Induced Micropulsations Using GMOS ...facility‟s most distant diagnostic pad. This instrument, called the Geomagnetic Observatory System ( GMOS ) is capable of measuring very small...angles 3.7. Measurements of HF Wave-Induced Micropulsations Using GMOS 3.7.1. Investigators J. Gancarz, R. Pradipta, and Min-Chang Lee (Mentor

  10. Report on active and planned spacecraft and experiments

    NASA Technical Reports Server (NTRS)

    Schofield, N. J., Jr.; Littlefield, R. G.; Elsen, M. F.

    1985-01-01

    This report provides the professional community with information on current and planned spacecraft activity (including both free-flying spacecraft and Shuttle-attached payloads) for a broad range of scientific disciplines. By providing a brief description of each spacecraft and experiment as well as its current status, it is hoped that this document will be useful to many people interested in the scientific, applied, and operational uses of the data collected. Furthermore, for those investigators who are planning or coordinating future observational programs employing a number of different techniques such as rockets, balloons, aircraft, ships, and buoys, this document can provide some insight into the contributions that may be provided by orbiting instruments. The document includes information concerning active and planned spacecraft and experiments. The information covers a wide range of scientific disciplines: astronomy, earth sciences, meteorology, planetary sciences, aeronomy, particles and fields, solar physics, life sciences, and material sciences. These spacecraft projects represent the efforts and funding of individual countries, as well as cooperative arrangements among different countries.

  11. A Study on Various Meteoroid Disintegration Mechanisms as Observed from the Resolute Bay Incoherent Scatter Radar (RISR)

    NASA Technical Reports Server (NTRS)

    Malhotra, A.; Mathews, J. D.

    2011-01-01

    There has been much interest in the meteor physics community recently regarding the form that meteoroid mass flux arrives in the upper atmosphere. Of particular interest are the relative roles of simple ablation, differential ablation, and fragmentation in the meteoroid mass flux observed by the Incoherent Scatter Radars (ISR). We present here the first-ever statistical study showing the relative contribution of the above-mentioned three mechanisms. These are also one of the first meteor results from the newly-operational Resolute Bay ISR. These initial results emphasize that meteoroid disintegration into the upper atmosphere is a complex process in which all the three above-mentioned mechanisms play an important role though fragmentation seems to be the dominant mechanism. These results prove vital in studying how meteoroid mass is deposited in the upper atmosphere which has important implications to the aeronomy of the region and will also contribute in improving current meteoroid disintegration/ablation models.

  12. Radiation Transport Modeling and Assessment to Better Predict Radiation Exposure, Dose, and Toxicological Effects to Human Organs on Long Duration Space Flights

    NASA Technical Reports Server (NTRS)

    Denkins, Pamela; Badhwar, Gautam; Obot, Victor

    2000-01-01

    NASA's long-range plans include possible human exploratory missions to the moon and Mars within the next quarter century. Such missions beyond low Earth orbit will expose crews to transient radiation from solar particle events which include high-energy galactic cosmic rays and high-energy protons. Because the radiation levels in space are high and the missions long, adequate shielding is needed to minimize the deleterious health effects of exposure to radiation. The focus of this study is radiation exposure to the blood-forming organs of the NASA astronauts. NASA/JSC developed the Phantom Torso Experiment for Organ Dose Measurements which housed active and passive dosimeters that would monitor and record absorbed radiation levels at vital organ locations. This experiment was conducted during the STS-9 I mission in May '98 and provided the necessary space radiation data for correlation to results obtained from the current analytical models used to predict exposure to the blood-forming organs. Numerous models (i.e., BRYNTRN and HZETRN) have been developed and used to predict radiation exposure. However, new models are continually being developed and evaluated. The Space Environment Information Systems (SPENVIS) modeling program, developed by the Belgian Institute for Space Aeronomy, is to be used and evaluated as a part of the research activity. It is the intent of this research effort to compare the modeled data to the findings from the STS-9 I mission; assess the accuracy and efficiency of this model; and to determine its usefulness for predicting radiation exposure and developing better guidelines for shielding requirements for long duration manned missions.

  13. MOOSE: A Multi-Spectral Observatory Of Sensitive EMCCDs for innovative research in space physics and aeronomy

    NASA Astrophysics Data System (ADS)

    Samara, M.; Michell, R. G.; Hampton, D. L.; Trondsen, T.

    2012-12-01

    The Multi-Spectral Observatory Of Sensitive EMCCDs (MOOSE) consists of 5 imaging systems and is the result of an NSF-funded Major Research Instrumentation project. The main objective of MOOSE is to provide a resource to all members of the scientific community that have interests in imaging low-light-level phenomena, such as aurora, airglow, and meteors. Each imager consists of an Andor DU-888 Electron Multiplying CCD (EMCCD), combined with a telecentric optics section, made by Keo Scientific Ltd., with a selection of available angular fields of view. During the northern hemisphere winter the system is typically based and operated at Poker Flat Research Range in Alaska, but any or all imagers can be shipped anywhere in individual stand-alone cases. We will discuss the main components of the MOOSE project, including the imagers, optics, lenses and filters, as well as the Linux-based control software that enables remote operation. We will also discuss the calibration of the imagers along with the initial deployments and testing done. We are requesting community input regarding operational modes, such as filter and field of view combinations, frame rates, and potentially moving some imagers to other locations, either for tomography or for larger spatial coverage. In addition, given the large volume of auroral image data already available, we are encouraging collaborations for which we will freely distribute the data and any analysis tools already developed. Most significantly, initial science highlights relating to aurora, airglow and meteors will be discussed in the context of the creative and innovative ways that the MOOSE observatory can be used in order to address a new realm of science topics, previously unachievable with traditional single imager systems.

  14. Detection of Ionospheric Alfven Resonator Signatures Onboard C/NOFS: Implications for IRI Modeling

    NASA Technical Reports Server (NTRS)

    Simoes, F.; Klenzing, J.; Ivanov, S.; Pfaff, R.; Rowland, D.; Bilitza, D.

    2011-01-01

    The 2008-2009 long-lasting solar minimum activity has been the one of its kind since the dawn of space age, offering exceptional conditions for investigating space weather in the near-Earth environment. First ever detection of Ionospheric Alfven Resonator (IAR) signatures in orbit offers new means for investigating ionospheric electrodynamics, namely MHD (MagnetoHydroDynamics) wave propagation, aeronomy processes, ionospheric dynamics, and Sun-Earth connection mechanisms at a local scale. Local and global plasma density heterogeneities in the ionosphere and magnetosphere allow for formation of waveguides and resonators where magnetosonic and shear Alfven waves propagate. The ionospheric magnetosonic waveguide results from complete magnetosonic wave reflection about the ionospheric F-region peak, where the Alfven index of refraction presents a maximum. MHD waves can also be partially trapped in the vertical direction between the lower boundary of the ionosphere and the magnetosphere, a resonance mechanism known as IAR. In this work we present C/NOFS (Communications/Navigation Outage Forecasting System) Extremely Low Frequency (ELF) electric field measurements related to IAR signatures, discuss the resonance and wave propagation mechanisms in the ionosphere, and address the electromagnetic inverse problem from which electron/ion distributions can be derived. These peculiar IAR electric field measurements provide new, complementary methodologies for inferring ionospheric electron and ion density profiles, and also contribute for the investigation of ionosphere dynamics and space weather monitoring. Specifically, IAR spectral signatures measured by C/NOFS contribute for improving the International Reference Ionosphere (IRI) model, namely electron density and ion composition.

  15. Aeronomy coexperiments on drag-free satellites with proportional thrusters: GP-B and STEP

    NASA Astrophysics Data System (ADS)

    Jafry, Yusuf R.

    1992-01-01

    GP-B and STEP are two proposed experiments in basic physics which will utilize drag-free spacecraft in 600 km polar orbits around the earth. By monitoring the activity of the drag-free compensators, it will be possible to obtain in situ drag measurements from which variations in atmospheric density and winds can be observed with unprecedented resolution. With the inclusion of neutral mass spectrometers, it will be possible to distinguish the effects of the various species; thus significantly enhancing the aeronomic contribution of the drag data. The drag information will be contained in both the motion of the spacecraft about the drag-free proof-mass, and the thruster activity. A new smoother has been developed to deconvolve the net forces from the proof-mass sensor measurements. The smoother is an adaptation of an existing algorithm, which has been tailored to cater for completely unknown inputs. After the deconvolution process, the thrust force must be subtracted from the net force to yield the estimate of the drag. Hence, the accuracy of the drag measurements will ultimately depend on the accuracy of the thruster calibration. Perhaps the largest source of uncertainty will be associated with impingement of the thruster plumes on the spacecraft surfaces. It is thus desirable to model these effects. Owing to the low thrust levels, the flow through the GP-B nozzles will be highly rarefied, rendering the conventional continuum model invalid. An experimental procedure was thus devised to characterize the plume structure. A mass spectrometer, modified from a helium leak detector, was used to measure the mass flux distribution. The observed plume shapes were found to be essentially unchanged with mass flow. The experimental results were compared with Boyd's DSMC solutions pertaining to the nozzle geometries and flow conditions used in the experiments. For the assumption of diffuse interaction with the nozzle walls, the numerical results were found to be in excellent agreement with the experimental results. From the results of the plume study, it is concluded that the impingement effects will not be significantly detrimental to the aeronomy coexperiments.

  16. Spectral imagery with an acousto-optic tunable filter

    NASA Technical Reports Server (NTRS)

    Smith, W. Hayden; Schempp, W. V.; Conner, C. P.; Katzka, P.

    1987-01-01

    .A spectral imager for astronomy and aeronomy has been fabricated using collinear or non-collinear acoustooptic tunable filters (AOTFs). The AOTF provides high transparency, rapid tunability over a wide wavelength range, a capability of varying the bandwidth by more than an order of magnitude, high etendue, and linearly polarized output. Some typical observational applications of acoustooptic tunable filters used in several configurations at astronomical telescopes are demonstrated.

  17. Low Latitude Aeronomy Study in Africa

    DTIC Science & Technology

    2016-02-09

    In our first attempt, we went to Cape Verde Atmospheric Observatory, which is a British and German joint atmospheric research facility. The...facility has reliable power and internet link. The project PI went to Cape Verde and deployed the instrument at the observatory (Figure 3). However...After careful consideration, we decide to take the instrument back to NCAR. Figure 3. The small FPI (left) and Cape Verde Atmospheric

  18. Remote Sounding of the Earth's Atmospheric Limb From a Micro-Satellite Platform: a Feasibility Study of the ALTIUS Mission

    NASA Astrophysics Data System (ADS)

    Vrancken, D.; Paijmans, B.; Fussen, D.; Neefs, E.; Loodts, N.; Dekemper, E.; Vahellemont, F.; Devos, L.; Moelans, W.; Nevejans, D.; Schroeven-Deceuninck, H.; Bernaerts, D.; Zender, J.

    2008-08-01

    There is more and more interest in the understanding and the monitoring of the physics and chemistry of the Earth's atmosphere and its impact on the climate change. Currently a significantly high number of sounders provide the required data to monitor the changes in atmosphere composition, but a dramatic drop in operational atmosphere monitoring missions is expected around 2010. This drop is mainly visible in sounders capable of a high vertical resolution. Currently, instruments on ENVISAT and METOP provide relevant data but this is envisaged to be insufficient to ensure full spatial and temporal coverage and redundancy in the measurement data set. ALTIUS (Atmospheric Limb Tracker for the Investigation of the Upcoming Stratosphere) is a remote sounding experiment proposed by the Belgian Institute for Space Aeronomy (BIRA/IASB) for which a feasibility study was initiated with BELSPO (Belgian Science Policy) and ESA support. The main objective of this study phase was to establish a mission concept, to define the required payload and to establish a satellite platform design. The study was led by the BIRA/IASB team and performed in close collaboration with OIP (payload developer) and Verhaert Space (spacecraft developer). The mission scenario includes bright limb observations in basically all directions, solar occultations around the terminator passages and star occultations during eclipse. These observation modes allow imaging the atmosphere with a high vertical resolution. The spacecraft will be operated in a 10:00 sun-synchronous orbit at an altitude of 695 km, allowing a 3-day revisit time. The envisaged payload for the ALTIUS mission is an imaging spectrometer, observing in the UV, the VIS and the NIR spectral ranges. For each spectral range, an AOTF (Acousto-Optical Tunable Filter) will permit to perform observations of selectable small wavelength domains. A typical set of 10 wavelengths will be recorded within 1 second. The different operational modes impose a high agility capability on the platform. Furthermore, the quasi- continuous monitoring by the payload will drive the design of the platform in terms of power and downlink capabilities. The mission will be performed using a derivative of the PROBA platform, developed by Verhaert Space. This paper will present the mission requirements for the ALTIUS mission, the envisaged instrument, the spacecraft concept design and the related mission analysis.

  19. The sixteenth presentation of the John Adam Fleming medal to Thomas M. Donahue

    NASA Astrophysics Data System (ADS)

    Nagy, Andrew F.; Donahue, Thomas M.

    Citations are supposed to begin with a statement of the sort ‘It is an honor and a pleasure for me to introduce…’ however, in the case of Tom Donahue I do not think that I have to introduce him, since most everyone here this evening already knows him. His 30-plus-year career spans a very broad field of scientific endeavors as well as numerous institutions. We at Michigan are lucky to have had him with us since 1974. He has made his lasting mark in the field of aeronomy through his publications, which number over 140, his many graduate students, postdocs, and colleagues who have had the good fortune to have worked with him. Sydney Chapman must have been thinking of someone like Tom Donahue when he coined the word aeronomy. Tom was born in Oklahoma, receive his B.A. from Rockhurst College in Kansas City and his Ph.D. from The Johns Hopkins University in 1947. Perhaps it is appropriate that he is now receiving the Fleming Award here in Baltimore, where his professional career began. His deep lifelong involvement in solar system studies really began when he moved to The University of Pittsburgh in 1951, and he has been going full steam ever since.

  20. Investigating Near Space Interaction Regions: Developing a Remote Observatory

    NASA Astrophysics Data System (ADS)

    Gallant, M.; Mierkiewicz, E. J.; Oliversen, R. J.; Jaehnig, K.; Percival, J.; Harlander, J.; Englert, C. R.; Kallio, R.; Roesler, F. L.; Nossal, S. M.; Gardner, D.; Rosborough, S.

    2016-12-01

    The Investigating Near Space Interaction Regions (INSpIRe) effort will (1) establish an adaptable research station capable of contributing to terrestrial and planetary aeronomy; (2) integrate two state-of-the-art second generation Fabry-Perot (FP) and Spatial Heteorodyne Spectrometers (SHS) into a remotely operable configuration; (3) deploy this instrumentation to a clear-air site, establishing a stable, well-calibrated observatory; (4) embark on a series of observations designed to contribute to three major areas of geocoronal research: geocoronal physics, structure/coupling, and variability. This poster describes the development of the INSpIRe remote observatory. Based at Embry-Riddle Aeronautical University (ERAU), initiative INSpIRe provides a platform to encourage the next generation of researchers to apply knowledge gained in the classroom to real-world science and engineering. Students at ERAU contribute to the INSpIRe effort's hardware and software needs. Mechanical/optical systems are in design to bring light to any of four instruments. Control software is in development to allow remote users to control everything from dome and optical system operations to calibration and data collection. In April 2016, we also installed and tested our first science instrument in the INSpIRe trailer, the Redline DASH Demonstration Instrument (REDDI). REDDI uses Doppler Asymmetric Spatial Heterodyne (DASH) spectroscopy, and its deployment as part of INSpIRe is a collaborative research effort between the Naval Research Lab, St Cloud State University, and ERAU. Similar to a stepped Michelson device, REDDI measures oxygen (630.0 nm) winds from the thermosphere. REDDI is currently mounted in a temporary location under INSpIRe's main siderostat until its entrance optical system can be modified. First light tests produced good signal-to-noise fringes in ten minute integrations, indicating that we will soon be able to measure thermospheric winds from our Daytona Beach testing site. Future work will involve installation and software integration of FP and SHS systems and the Embry-Riddle Instrument Control System. The INSpIRe project is funded through NSF-CAREER award AGS135231 and the NASA Planetary Solar System Observations Program. The REDDI instrument was supported by the Chief of Naval Research.

  1. Patrol of the short wavelength activity and flares of Sun as star

    NASA Astrophysics Data System (ADS)

    Afanasiev, I.; Avakyan, S.; Leonov, N.; Serova, A.; Voronin, N.

    Monitoring of the spectral range which most affects solar-terrestrial relationship - soft X-ray and extreme UV-radiations allows to solve ? problem of solar activity influence on all aspects of the Sun - Earth ties and to select the most important precursors of solar flares and the solar events related with a flare (such as proton events, high-velocity plasma streams in the solar wind, shock waves, coronal mass ejection and, the most important, the beginning of principal magnetic storms). Solar activity is constantly monitored at present (in the USA) only in two sections of the spectrum of ionizing radiation: <0.8 nm and >115 (119) nm. However, so far there has been no monitoring of the flux in the most geoeffective region of the spectrum (0.8-115 nm) from the entire disk of the sun; this region completely monitors the main part of the ionosphere of the earth and the ionosphere of the other planets of the solar system, including the formation and status of the main ionospheric maxima. This occurs solely because of technical and methodological difficulties in performing the measurements and calibration in this spectral range on spacecraft, because it is necessity to use only windowless optics. At the present the solar the optical - electronic equipment (OEE) is testing and there are plans to launch OEE of Space Solar Patrol (SSP) consisting of solar radiometers and spectrometers at the Russian Module of the International Space Station. So the solving the problem of the permanent monitoring-patrol of ionizing radiation from the full disk of the Sun appears in the main tasks of fundamental scientific studies in space. The results of this monitoring can be contribution in development of simultaneous studies in several sciences, such as: - solar astrophysics (state of all solar atmospheric regions), - meteorology, physics of atmosphere (the influence of solar activity on global changes, climate and weather including the effects of atmo s pheric electricity), - aeronomy, astronautics (the influence of solar activity on density of upper atmo s phere and space craft slowing clown by it and characteristics of spacecraft outer atmo s phere), - radiophysics (determination and forecast ionospheric state of planets and radiowave transfer conditions), - heliobiology (the role of solar activity in biology and medical events), - seismology, possible sociology. There are the Resolutions with support of SSP Mission of the importance of this project from Commissions C, D and E of COSPAR, 1996, Commission G of URSI, 1996 and General Assembly of IAGA, 1999.

  2. Update of the DTM thermosphere model in the framework of the H2020 project `SWAMI'

    NASA Astrophysics Data System (ADS)

    Bruinsma, S.; Jackson, D.; Stolle, C.; Negrin, S.

    2017-12-01

    In the framework of the H2020 project SWAMI (Space Weather Atmosphere Model and Indices), which is expected to start in January 2018, the CIRA thermosphere specification model DTM2013 will be improved through the combination of assimilating more density data to drive down remaining biases and a new high cadence kp geomagnetic index in order to improve storm-time performance. Five more years of GRACE high-resolution densities from 2012-2016, densities from the last year of the GOCE mission, Swarm mean densities, and mean densities from 2010-2017 inferred from the geodetic satellites at about 800 km are available now. The DTM2013 model will be compared with the new density data in order to detect possible systematic errors or other kinds of deficiencies and a first analysis will be presented. Also, a more detailed analysis of model performance under storm conditions will be provided, which will then be the benchmark to quantify model improvement expected with the higher cadence kp indices. In the SWAMI project, the DTM model will be coupled in the 120-160 km altitude region to the Met Office Unified Model in order to create a whole atmosphere model. It can be used for launch operations, re-entry computations, orbit prediction, and aeronomy and space weather studies. The project objectives and time line will be given.

  3. Space Weather Forecasting: An Enigma

    NASA Astrophysics Data System (ADS)

    Sojka, J. J.

    2012-12-01

    The space age began in earnest on October 4, 1957 with the launch of Sputnik 1 and was fuelled for over a decade by very strong national societal concerns. Prior to this single event the adverse effects of space weather had been registered on telegraph lines as well as interference on early WWII radar systems, while for countless eons the beauty of space weather as mid-latitude auroral displays were much appreciated. These prior space weather impacts were in themselves only a low-level science puzzle pursued by a few dedicated researchers. The technology boost and innovation that the post Sputnik era generated has almost single handedly defined our present day societal technology infrastructure. During the decade following Neil's walk on the moon on July 21, 1969 an international thrust to understand the science of space, and its weather, was in progress. However, the search for scientific understand was parsed into independent "stove pipe" categories: The ionosphere-aeronomy, the magnetosphere, the heliosphere-sun. The present day scientific infrastructure of funding agencies, learned societies, and international organizations are still hampered by these 1960's logical divisions which today are outdated in the pursuit of understanding space weather. As this era of intensive and well funded scientific research progressed so did societies innovative uses for space technologies and space "spin-offs". Well over a decade ago leaders in technology, science, and the military realized that there was indeed an adverse side to space weather that with each passing year became more severe. In 1994 several U.S. agencies established the National Space Weather Program (NSWP) to focus scientific attention on the system wide issue of the adverse effects of space weather on society and its technologies. Indeed for the past two decades a significant fraction of the scientific community has actively engaged in understanding space weather and hence crossing the "stove-pipe" disciplines. The perceived progress in space weather understanding differs significantly depending upon which community (scientific, technology, forecaster, society) is addressing the question. Even more divergent are these thoughts when the question is how valuable is the scientific capability of forecasting space weather. This talk will discuss present day as well as future potential for forecasting space weather for a few selected examples. The author will attempt to straddle the divergent community opinions.

  4. Visible Airglow Experiment data analysis

    NASA Technical Reports Server (NTRS)

    Abreu, Vincent J.

    1990-01-01

    The Visible Airglow Experiment (VAE) was designed to provide detailed profiles of the distribution of excited states of atoms and molecules in the upper atmosphere. The studies supported during the funding period (1983 - 1989) have made significant contributions in the area of thermospheric aeronomy, and the progress during the first four years of this period has been reviewed by Hays et al. (1988). The investigations carried out have resulted in more than 20 publications, and these are summarized.

  5. Monitoring D-Region Variability from Lightning Measurements

    NASA Technical Reports Server (NTRS)

    Simoes, Fernando; Berthelier, Jean-Jacques; Pfaff, Robert; Bilitza, Dieter; Klenzing, Jeffery

    2011-01-01

    In situ measurements of ionospheric D-region characteristics are somewhat scarce and rely mostly on sounding rockets. Remote sensing techniques employing Very Low Frequency (VLF) transmitters can provide electron density estimates from subionospheric wave propagation modeling. Here we discuss how lightning waveform measurements, namely sferics and tweeks, can be used for monitoring the D-region variability and day-night transition, and for local electron density estimates. A brief comparison among D-region aeronomy models is also presented.

  6. Aeronomy of Ice in the Mesosphere Mission Overview and Collaborative Studies Using the AIM and TIMED Data Sets

    NASA Astrophysics Data System (ADS)

    Rusell, J. M.; Bailey, S. M.; Rusch, D.; Gordley, L. L.; Hervig, M. E.; Merkel, A.

    2007-12-01

    The Aeronomy of Ice in the Mesosphere (AIM) mission was launched from Vandenberg Air Force Base in California on April 25, 2007 becoming the first satellite mission dedicated to the study of noctilucent clouds that occur at approximately 83km altitude. A Pegasus XL rocket launched the satellite into a near perfect 600 km sun synchronous circular orbit. AIM carries three instruments - a nadir imager, a solar occultation instrument and an in-situ cosmic dust detector - that were specifically selected because of their ability to provide key measurements needed to address the six AIM science objectives. The Thermosphere Ionosphere Mesosphere Energetics and Dynamics mission was launched from Vandenberg Air Force Base on December 7, 2001 and is dedicated to the study of the structure, chemistry, energetics and dynamics of the atmospheric region between 60 km and 180 km altitude. TIMED carries four instruments including an infrared limb sounder to characteristic the temperature, chemistry, energetics and dynamics of the region; a global ultraviolet imager; a solar flux monitor and an instrument to measure winds. Together AIM and TIMED form an important component of the Heliophysics Great Observatory. This paper will provide an overview of the AIM mission and will discuss collaborative studies using the combined AIM/TIMED data sets in a synergistic way to advance our knowledge of this region where the sun first interacts with Earth's atmosphere.

  7. Mini MAX-DOAS Measurements of Air Pollutants over China

    NASA Astrophysics Data System (ADS)

    Staadt, Steffen; Hao, Nan; Trautmann, Thomas

    2016-08-01

    This study continues the work of Clémer et al., (2010) and is aimed to improve trace gas retrievals with mini MAX-DOAS measurements in Nanjing. Based on that work, aerosol extinction vertical profiles are retrieved using the bePRO inversion algorithm developed by the Royal Belgian Institute for Space Aeronomy (BIRA- IASB). Afterwards, the tropospheric trace gas vertical profiles and vertical column densities (VCDs) are retrieved by applying the optimal estimation method to the O4 MAX-DOAS measurements. The Profiles for N O2 , S O2 , glyoxal, formaldehyde and nitrous acid are obtained with different results and different settings for the DOAS measurement. The AODs show small positive correlation against the AERONET values. For NO2, the retrieval shows reasonable concentrations in winter as opposed to summer and has small positive correlations with GOME-2 data. The SO2 VCDs are not correlated with the GOME-2 data, due to high uncertainties from MAX-DOAS and satellite retrievals, while the vertical mixing ratios (VMR) show good agreement with in-situ data (SORPES) at Nanjing. Nitrous acid shows a maximum in winter and a minimum in summer, while glyoxal has its maximum in August and September.

  8. The Atmosphere as Laboratory: Aeronomy by Astronomy

    NASA Technical Reports Server (NTRS)

    Slanger, T. G.; Cosby, P. C.; Huestis, D. L.

    2002-01-01

    Astronomical sky spectra, which are byproducts of long-slit observations with echelle spectrographs on large telescopes, provide a unique platform for studying the optical emissions of excited molecules and atoms in the terrestrial atmosphere that can greatly extend present knowledge based on laboratory spectra. This paper summarizes some of the advances that have been made in our understanding of the lower electronic states of O2 and other species from the sky spectra and from direct observations of the Venus nightglow.

  9. Performance of the Colorado wind-profiling network, part 1.5A

    NASA Technical Reports Server (NTRS)

    Strauch, R. G.; Earnshaw, K. B.; Merritt, D. A.; Moran, K. P.; Vandekamp, D. W.

    1984-01-01

    The Wave Propagation Laboratory (WPL) has operated a network of radar wind Profilers in Colorado for about 1 year. The network consists of four VHF (50-MHz) radars and a UHF (915-MHz) radar. The Platteville VHF radar was developed by the Aeronomy Laboratory (AL) and has been operated jointly by WPL and AL for several years. The other radars were installed between February and May 1983. Experiences with these radars and some general aspects of tropospheric wind measurements with Doppler radar are discussed.

  10. Atomic hydrogen and nitrogen distributions from atmosphere explorer measurements

    NASA Technical Reports Server (NTRS)

    Breig, Edward L.

    1992-01-01

    We were selective as to our approach to research activities, and devoted primary attention to two investigations concerning the global behavior of atomic hydrogen in the Earth's upper atmosphere. We derive the thermospheric concentration of H by applying the condition of charge-exchange equilibrium between hydrogen and oxygen atoms and ions to in-situ measurements of F-region composition and temperature from the series of Atmosphere Explorer (AE) aeronomy satellites. Progress and accomplishments on these chosen research projects are summarized.

  11. Studies of the differential absorption rocket experiment. [to measure atmospheric electron density

    NASA Technical Reports Server (NTRS)

    Ginther, J. C.; Smith, L. G.

    1975-01-01

    Investigations of the ionosphere, in the rocket program of the Aeronomy Laboratory, include a propagation experiment, the data from which may be analyzed in several modes. This report considers in detail the differential absorption experiment. The sources of error and limitations of sensitivity are discussed. Methods of enhancing the performance of the experiment are described. Some changes have been made in the system and the improvement demonstrated. Suggestions are made for further development of the experiment.

  12. International geomagnetic reference field 1980: a report by IAGA Division I working group.

    USGS Publications Warehouse

    Peddie, N.W.

    1982-01-01

    Describes the recommendations of the working group, which suggested additions to IGRF because of the cumulative effect of the inevitable uncertainties in the secular variation models which had led to unacceptable inaccuracies in the IGRF by the late 1970's. The recommendations were accepted by the International Association of Geomagnetism and Aeronomy on August 15, 1981 at the 4th Scientific Assembly, Edinburgh. An extended table sets out spherical harmonic coefficients of the IGRF 1980.-R.House

  13. Rocket and laboratory studies in aeronomy and astronomy

    NASA Technical Reports Server (NTRS)

    Feldman, P. D.

    1983-01-01

    Data extracted from semi-annual status reports presented include: a list of all sounding rocket launches performed under NASA sponsorship; a list of Ph.D. and M.A. degrees awarded to students who worked in these programs; a summary bibliography of all publications through 1983; the most recent list of the publications from the IUE program; a summary of instrument development supported by the Johns Hopkins sounding rocket program; and a list of faculty and post-doctoral research associates whose work was supported by this grant.

  14. The International Symposium on Equatorial Aeronomy (10th) Held in Antalya, Turkey on May 17-23, 2000

    DTIC Science & Technology

    2000-10-23

    Paulo - FAPESP, and the Programa de Nicleos de Excelencia - PRONEX. Nu- merical values for the model tides were taken from the GSWM homepage at http...FAPESP, and the Programa de Nilcleos de Excel~ncia-PRONEX. References Batista, P. P., B. R. Clemesha, I. S. Batista and D. M. Simonich, Characteristics...based on M. J. Taylor, H. Takahashi, D. Gobbi, and A. Chemical and Dynamical Processes, Tarun Kumar F. de Medeiros. Pant and R. SRIDHARAN. 13. 17:30-17

  15. Laser Measurements of the H Atom + Ozone Rate Constant at Atmospheric Temperatures

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Smith, G. P.; Peng, J.; Reppert, K. J.; Callahan, S. L.

    2015-12-01

    The exothermic H + O3 reaction produces OH(v) Meinel band emissions, used to derive mesospheric H concentrations and chemical heating rates. We have remeasured its rate constant to reduce resulting uncertainties and the measurement extend to lower mesospheric temperatures using modern laser techniques. H atoms are produced by pulsed ultraviolet laser trace photolysis of O3, followed by reaction of O(D) with added H2. A second, delayed, frequency-mixed dye laser measures the reaction decay rate with the remaining ozone by laser induced fluorescence. We monitor either the H atom decay by 2 photon excitation at 205 nm and detection of red fluorescence, or the OH(v=9) product time evolution with excitation of the B-X (0,9) band at 237 nm and emission in blue B-A bands. By cooling the enclosed low pressure flow cell we obtained measurements from 146-305 K. Small kinetic modeling corrections are made for secondary regeneration of H atoms. The results fully confirm the current NASA JPL recommendation for this rate constant, and establish its extrapolation down to the lower temperatures of the mesosphere. This work was supported by the NSF Aeronomy Program and an NSF Physics summer REU student grant.

  16. Paleomagnetism and rock magnetism at Liblice-A personal view from a participant

    NASA Astrophysics Data System (ADS)

    Hoffman, Ken

    The New Trends and Databases in Paleomagnetism and Rock Magnetism Conference held in Liblice, Czechoslovakia, from June 27 to July 2, 1988, was indeed a most memorable event. In ways seldom experienced at large International Association of Geomagnetism and Aeronomy (IAGA) assemblies, the quality of two-way exchange between “east” and “west” was magical. For 5 days, “home” for most of the 68 participants was the baroque Liblice Castle, a remnant of 18th century Bohemian feudalism. The setting was serene, among acres of wheat produced by the local communal farm, located some 40 km north of Prague. Beyond the physical environment, the uniqueness of the gathering resulted from the demographic makeup of the participants. With small delegations from Scandanavia and the west—just four of us from the United States—the vast majority who descended on the castle came from the Soviet Union, Czechoslovakia, and nearly every other eastern bloc neighbor. Even at IAGA in Prague just 3 years ago, where participation was more uniform, the sheer size of the assembly was to some degree an obstacle toward east-west communication and perhaps tended to promote western views only. Not so at Liblice; we were definitely on different turf!

  17. Next Generation Transport Phenomenology Model

    NASA Technical Reports Server (NTRS)

    Strickland, Douglas J.; Knight, Harold; Evans, J. Scott

    2004-01-01

    This report describes the progress made in Quarter 3 of Contract Year 3 on the development of Aeronomy Phenomenology Modeling Tool (APMT), an open-source, component-based, client-server architecture for distributed modeling, analysis, and simulation activities focused on electron and photon transport for general atmospheres. In the past quarter, column emission rate computations were implemented in Java, preexisting Fortran programs for computing synthetic spectra were embedded into APMT through Java wrappers, and work began on a web-based user interface for setting input parameters and running the photoelectron and auroral electron transport models.

  18. High Altitude Pollution Program Stratospheric Measurement System Laboratory Performance Capability Report Chemical Conversion Techniques.

    DTIC Science & Technology

    1980-02-01

    TRAIS) The Perkin-Elmer Corporation Electro-Optical Division on . Norwalk, Connecticut 06856 1 DdT-FA77WA 8 1_ 3. Type of eport ond Period Cover d 12...Harvard University, D . Kley and M. McFarland of the NOAA Aeronomy Laboratory, R. Shetter and D . H. Stedman of the University ot Michigan, and H...Volltrauer of the AeroChem Research Laboratories. We wish to thank also L. Glasgow of the E.I. DuPont de Nemours and Company for a supply of chlorine nitrate

  19. Planet-B: A Japanese Mars aeronomy observer

    NASA Technical Reports Server (NTRS)

    Tsuruda, K.

    1992-01-01

    An introduction is given to a Japanese Mars mission (Planet-B) which is being planned at the Institute of Space and Aeronautical Science (ISAS), Japan. Planet-B aims to study the upper atmosphere of Mars and its interaction with the solar wind. The launch of Planet-B is planned for 1996 on a new launcher, M-L, which is being developed at ISAS. In addition to the interaction with the solar wind, the structure of the Martian upper atmosphere is thought to be controlled by the meteorological condition in the lower atmosphere. The orbit of Planet-B was chosen so that it will pass two important regions, the region where the solar wind interacts with the Martian upper atmosphere and the tail region where ion acceleration is taking place. Considering the drag due to the Martian atmosphere, the periapsis altitude of 150 km and apoapsis of 10 Martian radii are planned. The orbit plane will be nearly parallel to the ecliptic plane. The altitude of the spacecraft will be spin stabilized and its spin axis will be controlled to the point of the earth. The dry weight of the spacecraft will be about 250 kg, including the scientific payload which consists of a magnetometer, plasma instruments, HF sounder, UV imaging spectrometer, and lower atmosphere monitor.

  20. To Boldly Go: America's Next Era in Space. The Plasma Universe

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Dr. France Cordova, NASA's Chief Scientist, chaired this, the eighth seminar in the Administrator's Seminar Series. She introduced the NASA Administrator, Daniel S. Goldin, who, in turn, introduced the subject of plasma. Plasma, an ionized gas, is a function of temperature and density. We ve learned that, at Jupiter, the radiation is dense. But, Goldin asked, what else do we know? Dr. Cordova then introduced Dr. James Van Allen, for whom the Van Allen radiation belt was named. Dr. Van Allen, a member of the University of Iowa faculty, discussed the growing interest in practical applications of space physics, including radiation fields and particles, plasmas and ionospheres. He listed a hierarchy of magnetic fields, beginning at the top, as pulsars, the Sun, planets, interplanetary medium, and interstellar medium. He pointed out that we have investigated eight of the nine known planets,. He listed three basic energy sources as 1) kinetic energy from flowing plasma such as constitutional solar wind or interstellar wind; 2) rotational energy of the planet, and 3) orbital energy of satellites. He believes there are seven sources of energetic particles and five potential places where particles may go. The next speaker, Dr. Ian Axford of New Zealand, has been associated with the Max Planck Institut fuer Aeronomie and plasma physics. He has studied solar and galactic winds and clusters of galaxies of which there are several thousand. He believes that the solar wind temperature is in the millions of degrees. The final speaker was Dr. Roger Blanford of the California Institute of Technology. He classified extreme plasmas as lab plasmas and cosmic plasmas. Cosmic plasmas are from supernovae remnants. These have supplied us with heavy elements and may come via a shock front of 10(sup 15) electron volts. To understand the physics of plasma, one must learn about x-rays, the maximum energy of acceleration by supernova remnants, particle acceleration and composition of cosmic rays, maximum acceleration, and how fast protons are heated by ions. He asked questions about where high energy cosmic rays are made, what accelerates electrons, radiates gamma rays, makes electronpositron plasma, and finally noted that pulsars are good time keepers, but we need a better understanding of their mechanism and of plasmas, both cosmic and ground-based. In the discussion period, Goldin asked if NASA should put up an x-ray interferometer. The answer was no; gamma rays are of greater interest just now. Goldin also asked what the assembled scientists would like to see for a future mission? They expressed an interest in learning more about the origin of galaxies, cosmic rays, solar systems, planets, the existence of life "out there", gamma ray sources, the nature of gamma ray bursts, and the flow of gases around black holes. The discussion concluded with a suggestion that NASA should communicate to the general public more information regarding actual technological trials and tribulations involved in getting an experiment to work. The speakers thought that this would help non-scientists to better appreciate what it is that NASA does in connection with the benefits that are achieved.

  1. Correlative measurements of the stratospheric aerosols

    NASA Astrophysics Data System (ADS)

    Santer, R.; Brogniez, C.; Herman, M.; Diallo, S.; Ackerman, M.

    1992-12-01

    Joint experiments were organized or available during stratospheric flights of a photopolarimeter, referred to as RADIBAL (radiometer balloon). In May 1984, RADIBAL flew simultaneously with another balloonborne experiment conducted by the Institut d'Aeronomie Spatiale de Belgique (IASB), which provides multiwavelength vertical profiles of the aerosol scattering coefficient. At this time, the El Chichon layer was observable quite directly from mountain sites. A ground-based station set up at Pic du Midi allowed an extensive description of the aerosol optical properties. The IASB and the Pic du Midi observations are consistent with the aerosol properties derived from the RADIBAL measurement analysis.

  2. Airglow and aurora in the atmospheres of Venus and Mars

    NASA Astrophysics Data System (ADS)

    Fox, J. L.

    Measurements and models of the luminosity that originates in the Martian and Venusian atmospheres, including dayglow, nightglow and aurora, are compared. Most of the emission features considered appear in the UV and visible regions of the spectrum and arise from electronic transitions of thermospheric species. Spatially and temporally variable intensities of the oxygen 1304 and 1356 A lines have been observed on the nightside of Venus and have been labeled 'auroral', that is, ascribed to electron precipitation. Only a future aeronomy mission to Mars could unequivocally determine whether such emissions are present on the nightside of Mars.

  3. The Third General Scientific Assembly of the International Association of Geomagnetism and Aeronomy - Special sessions of auroral processes

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1978-01-01

    Methods of timing magnetic substorms, the rapid fluctuations of aurorae, electromagnetic and electrostatic instabilities observed on the field lines of aurorae, the auroral microstructure, and the relationship of currents, electric field and particle precipitation to auroral form are discussed. Attention is given to such topics as D-perturbations as an indicator of substorm onset, the role of the magnetotail in substorms, spectral information derived from imaging data on aurorae, terrestrial kilometric radiation, and the importance of the mirror force in self-consistent models of particle fluxes, currents and potentials on auroral field lines.

  4. Visible spectral imager for occultation and nightglow (VISION) for the PICASSO Mission

    NASA Astrophysics Data System (ADS)

    Saari, Heikki; Näsilä, Antti; Holmlund, Christer; Mannila, Rami; Näkki, Ismo; Ojanen, Harri J.; Fussen, Didier; Pieroux, Didier; Demoulin, Philippe; Dekemper, Emmanuel; Vanhellemont, Filip

    2015-10-01

    PICASSO - A PICo-satellite for Atmospheric and Space Science Observations is an ESA project led by the Belgian Institute for Space Aeronomy, in collaboration with VTT, Clyde Space Ltd. (UK), and the Centre Spatial de Liège (BE). VTT Technical Research Centre of Finland Ltd. will deliver the Visible Spectral Imager for Occultation and Nightglow (VISION) for the PICASSO mission. The VISION targets primarily the observation of the Earth's atmospheric limb during orbital Sun occultation. By assessing the radiation absorption in the Chappuis band for different tangent altitudes, the vertical profile of the ozone is retrieved. A secondary objective is to measure the deformation of the solar disk so that stratospheric and mesospheric temperature profiles are retrieved by inversion of the refractive raytracing problem. Finally, occasional full spectral observations of polar auroras are also foreseen. The VISION design realized with commercial of the shelf (CoTS) parts is described. The VISION instrument is small, lightweight (~500 g), Piezo-actuated Fabry-Perot Interferometer (PFPI) tunable spectral imager operating in the visible and near-infrared (430 - 800 nm). The spectral resolution over the whole wavelength range will be better than 10 nm @ FWHM. VISION has is 2.5° x 2.5° total field of view and it delivers maximum 2048 x 2048 pixel spectral images. The sun image size is around 0.5° i.e. ~500 pixels. To enable fast spectral data image acquisition VISION can be operated with programmable image sizes. VTT has previously developed PFPI tunable filter based AaSI Spectral Imager for the Aalto-1 Finnish CubeSat. In VISION the requirements of the spectral resolution and stability are tighter than in AaSI. Therefore the optimization of the of the PFPI gap control loop for the operating temperature range and vacuum conditions has to be improved. VISION optical, mechanical and electrical design is described.

  5. Evaluation and cross-validation of Environmental Models

    NASA Astrophysics Data System (ADS)

    Lemaire, Joseph

    Before scientific models (statistical or empirical models based on experimental measurements; physical or mathematical models) can be proposed and selected as ISO Environmental Standards, a Commission of professional experts appointed by an established International Union or Association (e.g. IAGA for Geomagnetism and Aeronomy, . . . ) should have been able to study, document, evaluate and validate the best alternative models available at a given epoch. Examples will be given, indicating that different values for the Earth radius have been employed in different data processing laboratories, institutes or agencies, to process, analyse or retrieve series of experimental observations. Furthermore, invariant magnetic coordinates like B and L, commonly used in the study of Earth's radiation belts fluxes and for their mapping, differ from one space mission data center to the other, from team to team, and from country to country. Worse, users of empirical models generally fail to use the original magnetic model which had been employed to compile B and L , and thus to build these environmental models. These are just some flagrant examples of inconsistencies and misuses identified so far; there are probably more of them to be uncovered by careful, independent examination and benchmarking. A meter prototype, the standard unit length that has been determined on 20 May 1875, during the Diplomatic Conference of the Meter, and deposited at the BIPM (Bureau International des Poids et Mesures). In the same token, to coordinate and safeguard progress in the field of Space Weather, similar initiatives need to be undertaken, to prevent wild, uncontrolled dissemination of pseudo Environmental Models and Standards. Indeed, unless validation tests have been performed, there is guaranty, a priori, that all models on the market place have been built consistently with the same units system, and that they are based on identical definitions for the coordinates systems, etc... Therefore, preliminary analyses should be carried out under the control and authority of an established international professional Organization or Association, before any final political decision is made by ISO to select a specific Environmental Models, like for example IGRF and DGRF. Of course, Commissions responsible for checking the consistency of definitions, methods and algorithms for data processing might consider to delegate specific tasks (e.g. bench-marking the technical tools, the calibration procedures, the methods of data analysis, and the software algorithms employed in building the different types of models, as well as their usage) to private, intergovernmental or international organization/agencies (e.g.: NASA, ESA, AGU, EGU, COSPAR, . . . ); eventually, the latter should report conclusions to the Commissions members appointed by IAGA or any established authority like IUGG.

  6. Recent developments in the BRAMS project

    NASA Astrophysics Data System (ADS)

    Calders, Stijn; Lamy, Hervé; Gamby, Emmanuel; Ranvier, Sylvain

    2014-01-01

    In 2009, the Belgian Institute for Space Aeronomy (BIRA-IASB) initiated the development of BRAMS, a Belgian network of radio receiving stations using forward scattering techniques to detect meteors. The primary goals of the project are (1) to collect data and to provide them to the community; (2) to retrieve information about the meteoroid trajectory; and (3) to study the activity profiles of the main meteor showers. In this paper, the work performed since the 2012 International Meteor Conference in La Palma, Canary Islands, Spain, is presented: (1) a software to decode the GPS signal has been developed and added to all BRAMS stations; (2) a workshop about automatic detection of features in radio data was organized in order to discuss about suitable image processing techniques that can be used for radio meteor echoes detection in the BRAMS spectrograms; (3) to assess the quality of such an image processing technique, a big set of manually counted meteors is necessary. A web application has been developed to support this task and facilitate the comparison of counts by different users; (4) to compute the meteoroid flux and for other applications, the radiation pattern of the different antennas must be known. Someone has been hired recently to make simulations of these radiations patterns as well as to carry out measurement campaigns; and (5) detection of solar flares in BRAMS data has been investigated.

  7. A comparison of thunderstorm reflectivities measured at the VHF and UHF

    NASA Technical Reports Server (NTRS)

    Larsen, M. F.; Rottger, J.

    1986-01-01

    Observations of thunderstorms made with two radars operating at different wavelengths of 70 cm and 5.67 m are compared. The first set of observations was made with the UHF radar at the Arecibo Observatory in Puerto Rico, and the second set was made with the Max-Planck-Institut fur Aeronomie VHF radar in the Harz Mountains in West Germany. Both sets of observations show large echo strengths in the convective region above the -10 C isothem. At UHF, there appears to be a contribution from both the precipitation echoes and the normal echoes due to scatter from turbulent variations in the refractive index.

  8. Book review: Geomagnetism of baked clays and recent sediments

    USGS Publications Warehouse

    Mankinen, Edward A.

    1984-01-01

    This book is an outgrowth of the symposium entitled “Time Scales of Geomagnetic Secular Variations,” which was held at the 4th Assembly of the International Association of Geomagnetism and Aeronomy (Edinburgh, U.K., August 1981). The volume includes many of the papers presented, which described paleomagnetic results from both archeologic materials and Holocene geologic deposits, as well as contributions solicited from other researchers in the fields of archeomagnetism and paleomagnetism. In a remarkably short time after the conclusion of the symposium the editors were able to elicit, edit, and assemble a large body of material from 40 individuals into a thoughtful, wellorganized product.

  9. Aeronomy report no. 74: The Urbana meteor-radar system; design, development, and first observations

    NASA Technical Reports Server (NTRS)

    Hess, G. C.; Geller, M. A.

    1976-01-01

    The design, development, and first observations of a high power meteor-radar system located near Urbana, Illinois are described. The roughly five-fold increase in usable echo rate compared to other facilities, along with automated digital data processing and interferometry measurement of echo arrival angles, permits unsurpassed observations of tidal structure and shorter period waves. Such observations are discussed. The technique of using echo decay rates to infer density and scale height and the method of inferring wind shear from radial acceleration are examined. An original experiment to test a theory of the Delta-region winter anomaly is presented.

  10. Space physics and policy for contemporary society

    NASA Astrophysics Data System (ADS)

    Cassak, P. A.; Emslie, A. G.; Halford, A. J.; Baker, D. N.; Spence, H. E.; Avery, S. K.; Fisk, L. A.

    2017-04-01

    Space physics is the study of Earth's home in space. Elements of space physics include how the Sun works from its interior to its atmosphere, the environment between the Sun and planets out to the interstellar medium, and the physics of the magnetic barriers surrounding Earth and other planets. Space physics is highly relevant to society. Space weather, with its goal of predicting how Earth's technological infrastructure responds to activity on the Sun, is an oft-cited example, but there are many more. Space physics has important impacts in formulating public policy.

  11. Space physics strategy-implementation study. Volume 1: Goals, objectives, strategy. A report to the Space Physics Subcommittee of the Space Science and Applications Advisory Committee

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Space physics is defined as the study of the heliosphere as one system; that is, of the Sun and solar wind, and their interactions with the upper atmospheres, ionospheres, and magnetospheres of the planets and comets, with energetic particles, and with the interstellar medium. This report contains a number of reports by different panels on the major topics in the space physics program including: (1) the cosmic and heliospheric physics program for the years 1995 to 2010; (2) ionosphere, thermosphere, and mesosphere studies; (3) magnetospheric physics; (4) solar physics; and (5) space physics theory.

  12. Aeronomy report no. 73: Analysis of sounding rocket data from Punta Chilca, Peru

    NASA Technical Reports Server (NTRS)

    Fillinger, R. W., Jr.; Mechtly, E. A.; Walton, E. K.

    1976-01-01

    A technique is described for measuring electron concentrations in the lower portion of the ionosphere above Punta Chilca. A radio-propagation experiment for measuring Faraday rotation is combined with a dc/Langmuir probe experiment for measuring electron current. The results obtained from the analysis of radio and probe data from Nike Apache 14.532, which was launched at 20:26 UT on May 28, 1975, at a solar zenith angle of 60 deg are presented. A comparison of the profiles of electron concentration indicates that the value of the maximum ionization in the D region under quiet conditions is proportional to the square of the cosine of the solar zenith angle.

  13. Pioneer Mars 1979 mission options

    NASA Technical Reports Server (NTRS)

    Friedlander, A. L.; Hartmann, W. K.; Niehoff, J. C.

    1974-01-01

    A preliminary investigation of lower cost Mars missions which perform useful exploration objectives after the Viking/75 mission was conducted. As a study guideline, it was assumed that significant cost savings would be realized by utilizing Pioneer hardware currently being developed for a pair of 1978 Venus missions. This in turn led to the additional constraint of a 1979 launch with the Atlas/Centaur launch vehicle which has been designated for the Pioneer Venus missions. Two concepts, using an orbiter bus platform, were identified which have both good science potential and mission simplicity indicative of lower cost. These are: (1) an aeronomy/geology orbiter, and (2) a remote sensing orbiter with a number of deployable surface penetrometers.

  14. A Novel Concept to Explore the Coupling of the Solar-Terrestrial System

    NASA Technical Reports Server (NTRS)

    Spann, James

    2014-01-01

    A revolutionary opportunity to explore the consequences of reconnection in the ionosphere as never before will be presented. It is a revolutionary opportunity to explore key Aeronomy emissions on a global scale with spatial and temporal resolution not possible today. For example, observations of the signature of dayside merging and nightside reconnection that are reflected in the auroral oval evolution during disturbed periods and quiet times, will be described; observations that will open a window of discovery for coupling phenomena within Geospace and with the solar wind. The description of this new concept will be presented, and its impact and contribution to understanding magnetic merging will be discussed.

  15. Effects of Distant Green Space on Physical Activity in Sydney, Australia.

    PubMed

    Chong, Shanley; Byun, Roy; Mazumdar, Soumya; Bauman, Adrian; Jalaludin, Bin

    2017-01-01

    The aim was to investigate the association between distant green space and physical activity modified by local green space. Information about physical activity, demographic and socioeconomic background at the individual level was extracted from the New South Wales Population Health Survey. The proportion of a postcode that was parkland was used as a proxy measure for access to parklands and was calculated for each individual. There was a significant relationship between distant green space and engaging in moderate-to-vigorous physical activity (MVPA) at least once a week. No significant relationship was found between adequate physical activity and distant green space. No significant relationships were found between adequate physical activity, engaging in MVPA, and local green space. However, if respondents lived in greater local green space (≥25%), there was a significant relationship between engaging in MVPA at least once a week and distance green space of ≥20%. This study highlights the important effect of distant green space on physical activity. Our findings also suggest that moderate size of local green space together with moderate size of distant green space are important levers for participation of physical activity.

  16. Overview of Space Station attached payloads in the areas of solar physics, solar terrestrial physics, and plasma processes

    NASA Technical Reports Server (NTRS)

    Roberts, W. T.; Kropp, J.; Taylor, W. W. L.

    1986-01-01

    This paper outlines the currently planned utilization of the Space Station to perform investigations in solar physics, solar terrestrial physics, and plasma physics. The investigations and instrumentation planned for the Solar Terrestrial Observatory (STO) and its associated Space Station accommodation requirements are discussed as well as the planned placement of the STO instruments and typical operational scenarios. In the area of plasma physics, some preliminary plans for scientific investigations and for the accommodation of a plasma physics facility attached to the Space Station are outlined. These preliminary experiment concepts use the space environment around the Space Station as an unconfined plasma laboratory. In solar physics, the initial instrument complement and associated accommodation requirements of the Advanced Solar Observatory are described. The planned evolutionary development of this observatory is outlined, making use of the Space Station capabilities for servicing and instrument reconfiguration.

  17. Laboratory space physics: Investigating the physics of space plasmas in the laboratory

    NASA Astrophysics Data System (ADS)

    Howes, Gregory G.

    2018-05-01

    Laboratory experiments provide a valuable complement to explore the fundamental physics of space plasmas without the limitations inherent to spacecraft measurements. Specifically, experiments overcome the restriction that spacecraft measurements are made at only one (or a few) points in space, enable greater control of the plasma conditions and applied perturbations, can be reproducible, and are orders of magnitude less expensive than launching spacecraft. Here, I highlight key open questions about the physics of space plasmas and identify the aspects of these problems that can potentially be tackled in laboratory experiments. Several past successes in laboratory space physics provide concrete examples of how complementary experiments can contribute to our understanding of physical processes at play in the solar corona, solar wind, planetary magnetospheres, and the outer boundary of the heliosphere. I present developments on the horizon of laboratory space physics, identifying velocity space as a key new frontier, highlighting new and enhanced experimental facilities, and showcasing anticipated developments to produce improved diagnostics and innovative analysis methods. A strategy for future laboratory space physics investigations will be outlined, with explicit connections to specific fundamental plasma phenomena of interest.

  18. Book Review: Dolores Knipp’s Understanding Space Weather and the Physics Behind It

    NASA Astrophysics Data System (ADS)

    Moldwin, Mark

    2012-08-01

    Delores Knipp's textbook Understanding Space Weather and the Physics Behind It provides a comprehensive resource for space physicists teaching in a variety of academic departments to introduce space weather to advanced undergraduates. The book benefits from Knipp's extensive experience teaching introductory and advanced undergraduate physics courses at the U.S. Air Force Academy. The fundamental physics concepts are clearly explained and are connected directly to the space physics concepts being discussed. To expand upon the relevant basic physics, current research areas and new observations are highlighted, with many of the chapters including contributions from a number of leading space physicists.

  19. Charging of Space Debris and Their Dynamical Consequences

    DTIC Science & Technology

    2016-01-08

    field of plasmas and space physics . 15. SUBJECT TERMS Space Plasma Physics , Space Debris 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...opens up potential new areas of fundamental and applied research in the field of plasmas and space physics ...object in a plasma”, accepted for publication in Physics of Plasmas. (attached as Annexure III) For details on (iv) please refer to the

  20. BIRA-IASB Mars activities and instrument capabilities

    NASA Astrophysics Data System (ADS)

    Drummond, R.; Vandaele, A.-C.; Gillotay, D.; Willame, Y.; Depiesse, C.; Patel, M.; Daerden, F.; Neefs, E.; Ristic, B.; Montmessin, F.

    2009-04-01

    The Belgian Institute of Space Aeronomy (BIRA-IASB) is involved in many areas of Mars exploration, and has been for a long time. Current activities include analysis of SPICAM data, 3D atmospheric modelling as well as instrument development and characterization. This paper will focus on two different instruments to study the Martian atmosphere. UVIS(Patel, 2006) is part of the Exomars payload, that will gather information on the UV levels on the ground, study climatology and sterilisation and also be able to detect organic material in sublimating permafrost. BIRA-IASB is carrying out the characterization and calibration of UVIS. SOIR is an infra-red spectrometer that uses solar occultation measurements to examine major and minor constituents of planetary atmospheres. SOIR is currently orbiting Venus on the VEX spacecraft and has already made several interesting discoveries including the first observations of a new band of a CO2 isotopologue. The data from SOIR-VEX has allowed us to study the instrumental characteristics and perform a sensitivity study(Mahieux, 2008). These properties have been used to simulate realistic SOIR measurements of Mars atmospheric spectra. This work is supported by extensive 3D chemistry modeling work, as described in a paper by Frank Daerden (PS2.9Atmospheres of terrestrial planets). M. R. Patel, et al.,(2006) The UV-VIS spectrometer for the ExoMars mission, in 36th COSPAR Scientific Assembly, Beijing, China. A. Mahieux, et al.,(2008), Appl. Opt. 47 (13), 2252-65.

  1. The Dynamic Family Home: a qualitative exploration of physical environmental influences on children's sedentary behaviour and physical activity within the home space.

    PubMed

    Maitland, Clover; Stratton, Gareth; Foster, Sarah; Braham, Rebecca; Rosenberg, Michael

    2014-12-24

    Recent changes in home physical environments, such as decreasing outdoor space and increasing electronic media, may negatively affect health by facilitating sedentariness and reducing physical activity. As children spend much of their time at home they are particularly vulnerable. This study qualitatively explored family perceptions of physical environmental influences on sedentary behaviour and physical activity within the home space. Home based interviews were conducted with 28 families with children aged 9-13 years (total n = 74 individuals), living in Perth, Australia. Families were stratified by socioeconomic status and selected to provide variation in housing. Qualitative methods included a family interview, observation and home tour where families guided the researcher through their home, enabling discussion while in the physical home space. Audio recordings were transcribed verbatim and thematically analysed. Emergent themes related to children's sedentariness and physical activity included overall size, space and design of the home; allocation of home space; equipment within the home space; perceived safety of the home space; and the changing nature of the home space. Families reported that children's activity options were limited when houses and yards were small. In larger homes, multiple indoor living rooms usually housed additional sedentary entertainment options, although parents reported that open plan home layouts could facilitate monitoring of children's electronic media use. Most families reported changing the allocation and contents of their home space in response to changing priorities and circumstances. The physical home environment can enhance or limit opportunities for children's sedentary behaviour and physical activity. However, the home space is a dynamic ecological setting that is amenable to change and is largely shaped by the family living within it, thus differentiating it from other settings. While size and space were considered important, how families prioritise the use of their home space and overcome the challenges posed by the physical environment may be of equal or greater importance in establishing supportive home environments. Further research is required to tease out how physical, social and individual factors interact within the family home space to influence children's sedentary behaviour and physical activity at home.

  2. Computational Physics for Space Flight Applications

    NASA Technical Reports Server (NTRS)

    Reed, Robert A.

    2004-01-01

    This paper presents viewgraphs on computational physics for space flight applications. The topics include: 1) Introduction to space radiation effects in microelectronics; 2) Using applied physics to help NASA meet mission objectives; 3) Example of applied computational physics; and 4) Future directions in applied computational physics.

  3. [Reflections on physical spaces and mental spaces].

    PubMed

    Chen, Hung-Yi

    2013-08-01

    This article analyzes certain reciprocal impacts from physical spaces to mental spaces. If the epistemological construction and the spatial imagination from the subject of cogito or the social collectivities are able to influence the construction and creation of the physical spaces of that subject, then the context of that physical space may also affect the cognitive or social subject's mental cognition. This article applies the methodology of iconology from art history (E. Panofsky) and sociology (P. Bourdieu) to explore correlations between the creation of imaginative and physical spaces from the collective consciousness and mental cognition. The author uses Gilles Deleuses's opinion regarding the 17th-century Baroque style and contemporary social collective symptoms as an explanation. From these theoretical studies, the author analyzes the differences of spatial epistemology generated by Taiwan's special geological text. Finally, the author applies Michel Foucault's studies on spatial context to assess the possible application of this thesis of reciprocal impacts from mental spaces to physical spaces in a nursing context.

  4. Public open space, physical activity, urban design and public health: Concepts, methods and research agenda.

    PubMed

    Koohsari, Mohammad Javad; Mavoa, Suzanne; Villanueva, Karen; Sugiyama, Takemi; Badland, Hannah; Kaczynski, Andrew T; Owen, Neville; Giles-Corti, Billie

    2015-05-01

    Public open spaces such as parks and green spaces are key built environment elements within neighbourhoods for encouraging a variety of physical activity behaviours. Over the past decade, there has been a burgeoning number of active living research studies examining the influence of public open space on physical activity. However, the evidence shows mixed associations between different aspects of public open space (e.g., proximity, size, quality) and physical activity. These inconsistencies hinder the development of specific evidence-based guidelines for urban designers and policy-makers for (re)designing public open space to encourage physical activity. This paper aims to move this research agenda forward, by identifying key conceptual and methodological issues that may contribute to inconsistencies in research examining relations between public open space and physical activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. SO2 plume height retrieval from direct fitting of GOME-2 backscattered radiance measurements

    NASA Astrophysics Data System (ADS)

    van Gent, J.; Spurr, R.; Theys, N.; Lerot, C.; Brenot, H.; Van Roozendael, M.

    2012-04-01

    The use of satellite measurements for SO2 monitoring has become an important aspect in the support of aviation control. Satellite measurements are sometimes the only information available on SO2 concentrations from volcanic eruption events. The detection of SO2 can furthermore serve as a proxy for the presence of volcanic ash that poses a possible hazard to air traffic. In that respect, knowledge of both the total vertical column amount and the effective altitude of the volcanic SO2 plume is valuable information to air traffic control. The Belgian Institute for Space Aeronomy (BIRA-IASB) hosts the ESA-funded Support to Aviation Control Service (SACS). This system provides Volcanic Ash Advisory Centers (VAACs) worldwide with near real-time SO2 and volcanic ash data, derived from measurements from space. We present results from our algorithm for the simultaneous retrieval of total vertical columns of O3 and SO2 and effective SO2 plume height from GOME-2 backscattered radiance measurements. The algorithm is an extension to the GODFIT direct fitting algorithm, initially developed at BIRA-IASB for the derivation of improved total ozone columns from satellite data. The algorithm uses parameterized vertical SO2 profiles which allow for the derivation of the peak height of the SO2 plume, along with the trace gas total column amounts. To illustrate the applicability of the method, we present three case studies on recent volcanic eruptions: Merapi (2010), Grímsvotn (2011), and Nabro (2011). The derived SO2 plume altitude values are validated with the trajectory model FLEXPART and with aerosol altitude estimations from the CALIOP instrument on-board the NASA A-train CALIPSO platform. We find that the effective plume height can be obtained with a precision as fine as 1 km for moderate and strong volcanic events. Since this is valuable information for air traffic, we aim at incorporating the plume height information in the SACS system.

  6. SWUIS-A: A Versatile, Low-Cost UV/VIS/IR Imaging System for Airborne Astronomy and Aeronomy Research

    NASA Technical Reports Server (NTRS)

    Durda, Daniel D.; Stern, S. Alan; Tomlinson, William; Slater, David C.; Vilas, Faith

    2001-01-01

    We have developed and successfully flight-tested on 14 different airborne missions the hardware and techniques for routinely conducting valuable astronomical and aeronomical observations from high-performance, two-seater military-type aircraft. The SWUIS-A (Southwest Universal Imaging System - Airborne) system consists of an image-intensified CCD camera with broad band response from the near-UV to the near IR, high-quality foreoptics, a miniaturized video recorder, an aircraft-to-camera power and telemetry interface with associated camera controls, and associated cables, filters, and other minor equipment. SWUIS-A's suite of high-quality foreoptics gives it selectable, variable focal length/variable field-of-view capabilities. The SWUIS-A camera frames at 60 Hz video rates, which is a key requirement for both jitter compensation and high time resolution (useful for occultation, lightning, and auroral studies). Broadband SWUIS-A image coadds can exceed a limiting magnitude of V = 10.5 in <1 sec with dark sky conditions. A valuable attribute of SWUIS-A airborne observations is the fact that the astronomer flies with the instrument, thereby providing Space Shuttle-like "payload specialist" capability to "close-the-loop" in real-time on the research done on each research mission. Key advantages of the small, high-performance aircraft on which we can fly SWUIS-A include significant cost savings over larger, more conventional airborne platforms, worldwide basing obviating the need for expensive, campaign-style movement of specialized large aircraft and their logistics support teams, and ultimately faster reaction times to transient events. Compared to ground-based instruments, airborne research platforms offer superior atmospheric transmission, the mobility to reach remote and often-times otherwise unreachable locations over the Earth, and virtually-guaranteed good weather for observing the sky. Compared to space-based instruments, airborne platforms typically offer substantial cost advantages and the freedom to fly along nearly any groundtrack route for transient event tracking such as occultations and eclipses.

  7. Mesospheric Simulations with the NOGAPS-ALPHA model: Applications to the Summer Polar Mesosphere and AIM data

    NASA Astrophysics Data System (ADS)

    Siskind, D. E.; Eckermann, S. D.; McCormack, J. P.; Hoppel, K. W.; Russell, J. M.; Bailey, S.; Hervig, M.; Rusch, D.

    2007-12-01

    The Navy Operational Global Atmospheric Prediction System (NOGAPS), the Department of Defense's global numerical weather prediction (NWP) system, consists of two main components: the Naval Research Laboratory (NRL) Atmospheric Variational Data Assimilation System (NAVDAS) and a global spectral general circulation model (GCM) for forecasting. NRL researchers are currently developing an Advanced-Level Physics High-Altitude (ALPHA) NOGAPS prototype that extends the currently operational 1 hPa upper boundary of NOGAPS through the mesosphere and lower thermosphere (MLT) to ~110 km. We report results of preliminary experiments with this NOGAPS-ALPHA system during May-June 2007, focused on the northern hemisphere (NH) summer mesosphere observed from the Aeronomy of Ice in the Mesosphere (AIM) satellite. These AIM-period NOGAPS-ALPHA experiments have two main goals: to provide global modeling support for AIM science and to allow objective validation of these new NOGAPS-ALPHA MLT fields using independent observations from AIM. We report results of runs which assimilate temperature and water vapor data from the SABER and MLS instruments up to ~0.01 hPa. We investigate the development of the cold NH summer mesopause in NOGAPS-ALPHA and its sensitivity to parameterized nonorographic gravity wave drag (GWD) and radiative heating/cooling by comparing with temperatures and water vapor measured by AIM's SOFIE instrument. We can also compare the variability in the NOGAPS-ALPHA temperature and water vapor fields with mesospheric cloud occurrence statistics measured by CIPS on AIM.

  8. Fukushima to receive Smith Medal

    NASA Astrophysics Data System (ADS)

    The 1990 Waldo E. Smith Medal for extraordinary service to geophysics will be given to Naoshi Fukushima, who earned an international reputation for his pioneering work in geomagnetic disturbance and ionospheric electric currents. Now retired from the University of Tokyo, Japan, Fukushima is being cited for his public service to international geophysics, and, in particular, his contributions to the International Association of Geomagnetism and Aeronomy, of which he was Secretary General from September 1975 to August 1983.The Smith Medal will be presented as part of the AGU Fall Meeting Honors Night festivities, Wednesday, December 5, in San Francisco, Calif. Three James B. Macelwane Medals, the John Adam Fleming Medal, and the Maurice Ewing Medal will also be presented (see Eos, February 20, 1990, p. 294).

  9. On public space design for Chinese urban residential area based on integrated architectural physics environment evaluation

    NASA Astrophysics Data System (ADS)

    Dong, J. Y.; Cheng, W.; Ma, C. P.; Tan, Y. T.; Xin, L. S.

    2017-04-01

    The residential public space is an important part in designing the ecological residence, and a proper physics environment of public space is of greater significance to urban residence in China. Actually, the measure to apply computer aided design software into residential design can effectively avoid an inconformity of design intent with actual using condition, and a negative impact on users due to bad architectural physics environment of buildings, etc. The paper largely adopts a design method of analyzing architectural physics environment of residential public space. By analyzing and evaluating various physics environments, a suitability assessment is obtained for residential public space, thereby guiding the space design.

  10. Research and technology: Fiscal year 1984 report

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Topics covered include extraterrestrial physics, high energy astrophysics, astronomy, solar physics, atmospheres, oceans, terrestrial physics, space technology, sensors, techniques, user space data systems, space communications and navigation, and system and software engineering.

  11. Space physics education via examples in the undergraduate physics curriculum

    NASA Astrophysics Data System (ADS)

    Martin, R.; Holland, D. L.

    2011-12-01

    The field of space physics is rich with examples of basic physics and analysis techniques, yet it is rarely seen in physics courses or textbooks. As space physicists in an undergraduate physics department we like to use research to inform teaching, and we find that students respond well to examples from magnetospheric science. While we integrate examples into general education courses as well, this talk will focus on physics major courses. Space physics examples are typically selected to illustrate a particular concept or method taught in the course. Four examples will be discussed, from an introductory electricity and magnetism course, a mechanics/nonlinear dynamics course, a computational physics course, and a plasma physics course. Space physics provides examples of many concepts from introductory E&M, including the application of Faraday's law to terrestrial magnetic storm effects and the use of the basic motion of charged particles as a springboard to discussion of the inner magnetosphere and the aurora. In the mechanics and nonlinear dynamics courses, the motion of charged particles in a magnetotail current sheet magnetic field is treated as a Newtonian dynamical system, illustrating the Poincaré surface-of-section technique, the partitioning of phase space, and the KAM theorem. Neural network time series analysis of AE data is used as an example in the computational physics course. Finally, among several examples, current sheet particle dynamics is utilized in the plasma physics course to illustrate the notion of adiabatic/guiding center motion and the breakdown of the adiabatic approximation. We will present short descriptions of our pedagogy and student assignments in this "backdoor" method of space physics education.

  12. Physics of Colloids in Space: Microgravity Experiment Launched, Installed, and Activated on the International Space Station

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    2002-01-01

    The Physics of Colloids in Space (PCS) experiment is a Microgravity Fluids Physics investigation that is presently located in an Expedite the Process of Experiments to Space Station (EXPRESS) Rack on the International Space Station. PCS was launched to the International Space Station on April 19, 2001, activated on May 31, 2001, and will continue to operate about 90 hr per week through May 2002.

  13. Solar physics in the space age

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A concise and brief review is given of the solar physics' domain, and how its study has been affected by NASA Space programs which have enabled space based observations. The observations have greatly increased the knowledge of solar physics by proving some theories and challenging others. Many questions remain unanswered. To exploit coming opportunities like the Space Station, solar physics must continue its advances in instrument development, observational techniques, and basic theory. Even with the Advance Solar Observatory, other space based observation will still be required for the sure to be ensuing questions.

  14. Space physics strategy: Implementation study. Volume 2: Program plan

    NASA Technical Reports Server (NTRS)

    1991-01-01

    In June, 1989, the Space Science and Applications Advisory Committee (SSAAC) authorized its Space Physics Subcommittee (SPS) to prepare a plan specifying the future missions, launch sequence, and encompassing themes of the Space Physics Division. The plan, now complete, is the product of a year-long study comprising two week-long workshops - in January and June 1990 - assisted by pre-workshop, inter-workshop, and post-workshop preparation and assessment activities. The workshops engaged about seventy participants, drawn equally from the Division's four science disciplines: cosmic and heliospheric physics, solar physics, magnetosphere physics, and ionosphere-thermosphere-mesospheric physics. An earlier report records the outcome of the first workshop; this is the report of the final workshop.

  15. A Science Strategy for Space Physics

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This report by the Committee on Solar and Space Physics and the Committee on Solar-Terrestrial Research recommends the major directions for scientific research in space physics for the coming decade. As a field of science, space physics has passed through the stage of simply looking to see what is out beyond Earth's atmosphere. It has become a 'hard' science, focusing on understanding the fundamental interactions between charged particles, electromagnetic fields, and gases in the natural laboratory consisting of the galaxy, the Sun, the heliosphere, and planetary magnetospheres, ionospheres, and upper atmospheres. The motivation for space physics research goes far beyond basic physics and intellectual curiosity, however, because long-term variations in the brightness of the Sun virtually affect the habitability of the Earth, while sudden rearrangements of magnetic fields above the solar surface can have profound effects on the delicate balance of the forces that shape our environment in space and on the human technology that is sensitive to that balance. The several subfields of space physics share the following objectives: to understand the fundamental laws or processes of nature as they apply to space plasmas and rarefied gases both on the microscale and in the larger complex systems that constitute the domain of space physics; to understand the links between changes in the Sun and the resulting effects at the Earth, with the eventual goal of predicting the significant effects on the terrestrial environment; and to continue the exploration and description of the plasmas and rarefied gases in the solar system.

  16. Book Review: Physics of the Space Environment

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.

    1998-01-01

    Space physics, narrowly defined as the study of Earth's plasma environment, has had an identity crisis throughout its relatively brief existence as a discipline. - The limited and often serendipitous nature of the data requires the research style of an astrophysicist. However, the in situ observations and instrumentation that are central to the field are quite different from the remote observations and instrumentation of astronomy. Compared to neutral gases, the wealth of additional phenomena and the complexity associated with magnetized plasmas and their interaction leaves little in common with the atmospheric scientist. Although the phenomena studied in space physics are ultimately important to astrophysics, the intimate measurements of plasma properties provide a greater commonality with the plasma physicist. Space physics has experienced something of a renaissance in the past few years. The interdisciplinary umbrella "Solar-Terrestrial Physics" or "Sun-Earth Connection" has stimulated an increasing interaction of space physicists, solar physicists and atmospheric scientists. Spectacular images of the Sun from Yohkoh and SOHO and solar-activity-related damage to communications satellites have increased the public's awareness of and interest in "space weather". The dangers of energetic particles and currents in space to technological systems and to future space exploration have elevated space physics observations from interesting scientific measurements that can be included on a space probe to critically important measurements that must be made.

  17. REU Solar and Space Physics Summer School

    NASA Astrophysics Data System (ADS)

    Snow, M. A.; Wood, E. L.

    2011-12-01

    The Research Experience for Undergrads (REU) program in Solar and Space Physics at the University of Colorado begins with a week of lectures and labs on Solar and Space Physics. The students in our program come from a variety of majors (physics, engineering, meteorology, etc.) and from a wide range of schools (small liberal arts colleges up through large research universities). The majority of the students have never been exposed to solar and space physics before arriving in Boulder to begin their research projects. We have developed a week-long crash course in the field using the expertise of scientists in Boulder and the labs designed by the Center for Integrated Space Weather Modeling (CISM).

  18. Green Space Visits among Adolescents: Frequency and Predictors in the PIAMA Birth Cohort Study.

    PubMed

    Bloemsma, Lizan D; Gehring, Ulrike; Klompmaker, Jochem O; Hoek, Gerard; Janssen, Nicole A H; Smit, Henriëtte A; Vonk, Judith M; Brunekreef, Bert; Lebret, Erik; Wijga, Alet H

    2018-04-30

    Green space may influence health through several pathways, for example, increased physical activity, enhanced social cohesion, reduced stress, and improved air quality. For green space to increase physical activity and social cohesion, spending time in green spaces is likely to be important. We examined whether adolescents visit green spaces and for what purposes. Furthermore, we assessed the predictors of green space visits. In this cross-sectional study, data for 1911 participants of the Dutch PIAMA (Prevention and Incidence of Asthma and Mite Allergy) birth cohort were analyzed. At age 17, adolescents reported how often they visited green spaces for physical activities, social activities, relaxation, and to experience nature and quietness. We assessed the predictors of green space visits altogether and for different purposes by log-binomial regression. Fifty-three percent of the adolescents visited green spaces at least once a week in summer, mostly for physical and social activities. Adolescents reporting that a green environment was (very) important to them visited green spaces most frequently {adjusted prevalence ratio (PR) [95% confidence interval (CI)] very vs. not important: 6.84 (5.10, 9.17) for physical activities and 4.76 (3.72, 6.09) for social activities}. Boys and adolescents with highly educated fathers visited green spaces more often for physical and social activities. Adolescents who own a dog visited green spaces more often to experience nature and quietness. Green space visits were not associated with the objectively measured quantity of residential green space, i.e., the average normalized difference vegetation index (NDVI) and percentages of urban, agricultural, and natural green space in circular buffers around the adolescents' homes. Subjective variables are stronger predictors of green space visits in adolescents than the objectively measured quantity of residential green space. https://doi.org/10.1289/EHP2429.

  19. Twenty years of space radiation physics at the BNL AGS and NASA Space Radiation Laboratory.

    PubMed

    Miller, J; Zeitlin, C

    2016-06-01

    Highly ionizing atomic nuclei HZE in the GCR will be a significant source of radiation exposure for humans on extended missions outside low Earth orbit. Accelerators such as the LBNL Bevalac and the BNL AGS, designed decades ago for fundamental nuclear and particle physics research, subsequently found use as sources of GCR-like particles for ground-based physics and biology research relevant to space flight. The NASA Space Radiation Laboratory at BNL was constructed specifically for space radiation research. Here we review some of the space-related physics results obtained over the first 20 years of NASA-sponsored research at Brookhaven. Copyright © 2016 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  20. Research and technology

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Activities of the Goddard Space Flight Center are described in the areas of planets and interplanetary media, comets, astronomy and high-energy physics, solar physics, atmospheres, terrestrial physics, ocean science, sensors and space technology, techniques, user space data systems, space communications and navigation, and system and software engineering. Flight projects and mission definition studies are presented, and institutional technology is described.

  1. Neighbourhood green space, physical function and participation in physical activities among elderly men: the Caerphilly Prospective study

    PubMed Central

    2014-01-01

    Background The built environment in which older people live plays an important role in promoting or inhibiting physical activity. Most work on this complex relationship between physical activity and the environment has excluded people with reduced physical function or ignored the difference between groups with different levels of physical function. This study aims to explore the role of neighbourhood green space in determining levels of participation in physical activity among elderly men with different levels of lower extremity physical function. Method Using data collected from the Caerphilly Prospective Study (CaPS) and green space data collected from high resolution Landmap true colour aerial photography, we first investigated the effect of the quantity of neighbourhood green space and the variation in neighbourhood vegetation on participation in physical activity for 1,010 men aged 66 and over in Caerphilly county borough, Wales, UK. Second, we explored whether neighbourhood green space affects groups with different levels of lower extremity physical function in different ways. Results Increasing percentage of green space within a 400 meters radius buffer around the home was significantly associated with more participation in physical activity after adjusting for lower extremity physical function, psychological distress, general health, car ownership, age group, marital status, social class, education level and other environmental factors (OR = 1.21, 95% CI 1.05, 1.41). A statistically significant interaction between the variation in neighbourhood vegetation and lower extremity physical function was observed (OR = 1.92, 95% CI 1.12, 3.28). Conclusion Elderly men living in neighbourhoods with more green space have higher levels of participation in regular physical activity. The association between variation in neighbourhood vegetation and regular physical activity varied according to lower extremity physical function. Subjects reporting poor lower extremity physical function living in neighbourhoods with more homogeneous vegetation (i.e. low variation) were more likely to participate in regular physical activity than those living in neighbourhoods with less homogeneous vegetation (i.e. high variation). Good lower extremity physical function reduced the adverse effect of high variation vegetation on participation in regular physical activity. This provides a basis for the future development of novel interventions that aim to increase levels of physical activity in later life, and has implications for planning policy to design, preserve, facilitate and encourage the use of green space near home. PMID:24646136

  2. Neighbourhood green space, physical function and participation in physical activities among elderly men: the Caerphilly Prospective study.

    PubMed

    Gong, Yi; Gallacher, John; Palmer, Stephen; Fone, David

    2014-03-19

    The built environment in which older people live plays an important role in promoting or inhibiting physical activity. Most work on this complex relationship between physical activity and the environment has excluded people with reduced physical function or ignored the difference between groups with different levels of physical function. This study aims to explore the role of neighbourhood green space in determining levels of participation in physical activity among elderly men with different levels of lower extremity physical function. Using data collected from the Caerphilly Prospective Study (CaPS) and green space data collected from high resolution Landmap true colour aerial photography, we first investigated the effect of the quantity of neighbourhood green space and the variation in neighbourhood vegetation on participation in physical activity for 1,010 men aged 66 and over in Caerphilly county borough, Wales, UK. Second, we explored whether neighbourhood green space affects groups with different levels of lower extremity physical function in different ways. Increasing percentage of green space within a 400 meters radius buffer around the home was significantly associated with more participation in physical activity after adjusting for lower extremity physical function, psychological distress, general health, car ownership, age group, marital status, social class, education level and other environmental factors (OR = 1.21, 95% CI 1.05, 1.41). A statistically significant interaction between the variation in neighbourhood vegetation and lower extremity physical function was observed (OR = 1.92, 95% CI 1.12, 3.28). Elderly men living in neighbourhoods with more green space have higher levels of participation in regular physical activity. The association between variation in neighbourhood vegetation and regular physical activity varied according to lower extremity physical function. Subjects reporting poor lower extremity physical function living in neighbourhoods with more homogeneous vegetation (i.e. low variation) were more likely to participate in regular physical activity than those living in neighbourhoods with less homogeneous vegetation (i.e. high variation). Good lower extremity physical function reduced the adverse effect of high variation vegetation on participation in regular physical activity. This provides a basis for the future development of novel interventions that aim to increase levels of physical activity in later life, and has implications for planning policy to design, preserve, facilitate and encourage the use of green space near home.

  3. Anisotropy of the permittivity field inferred from aspect-sensitive radar echoes

    NASA Technical Reports Server (NTRS)

    Waterman, A. T.

    1984-01-01

    An attempt is made to draw some quantitative conclusions regarding the anisotropy of the clear-air back-scattering mechanism based on the measured variation of echo power with zenith angle. The measurements were made by the SOUSY group of the Max Planck Institute for Aeronomy at Lindau, FRG. They installed their 47-MHz transmitter and antenna feed in the 300-meter diameter reflector at Arecibo. The resulting 1.7-degree beam was stepped successively through seven 1.7-degree intervals from 1.7 to 11.7 degrees in zenith angle, obtaining about four minutes of data at each setting. This procedure was carried out in an eastward pointing azimuth and in a northward pointing azimuth, the entire set of measurements consuming an hour and twenty minutes. Range resolution was 150 meters.

  4. International Geomagnetic Reference Field: the 12th generation

    NASA Astrophysics Data System (ADS)

    Thébault, Erwan; Finlay, Christopher C.; Beggan, Ciarán D.; Alken, Patrick; Aubert, Julien; Barrois, Olivier; Bertrand, Francois; Bondar, Tatiana; Boness, Axel; Brocco, Laura; Canet, Elisabeth; Chambodut, Aude; Chulliat, Arnaud; Coïsson, Pierdavide; Civet, François; Du, Aimin; Fournier, Alexandre; Fratter, Isabelle; Gillet, Nicolas; Hamilton, Brian; Hamoudi, Mohamed; Hulot, Gauthier; Jager, Thomas; Korte, Monika; Kuang, Weijia; Lalanne, Xavier; Langlais, Benoit; Léger, Jean-Michel; Lesur, Vincent; Lowes, Frank J.; Macmillan, Susan; Mandea, Mioara; Manoj, Chandrasekharan; Maus, Stefan; Olsen, Nils; Petrov, Valeriy; Ridley, Victoria; Rother, Martin; Sabaka, Terence J.; Saturnino, Diana; Schachtschneider, Reyko; Sirol, Olivier; Tangborn, Andrew; Thomson, Alan; Tøffner-Clausen, Lars; Vigneron, Pierre; Wardinski, Ingo; Zvereva, Tatiana

    2015-05-01

    The 12th generation of the International Geomagnetic Reference Field (IGRF) was adopted in December 2014 by the Working Group V-MOD appointed by the International Association of Geomagnetism and Aeronomy (IAGA). It updates the previous IGRF generation with a definitive main field model for epoch 2010.0, a main field model for epoch 2015.0, and a linear annual predictive secular variation model for 2015.0-2020.0. Here, we present the equations defining the IGRF model, provide the spherical harmonic coefficients, and provide maps of the magnetic declination, inclination, and total intensity for epoch 2015.0 and their predicted rates of change for 2015.0-2020.0. We also update the magnetic pole positions and discuss briefly the latest changes and possible future trends of the Earth's magnetic field.

  5. The International Geomagnetic Reference Field: the twelfth generation

    NASA Astrophysics Data System (ADS)

    Thebault, Erwan; Finlay, Christopher; The IGRF Working Group

    2015-04-01

    The IGRF is an internationally-agreed reference model of the Earth's magnetic field produced under the auspices of the International Association of Geomagnetism and Aeronomy. The IGRF-12 is the latest update of this well-known model which is used each year by many thousands of users for both industrial and scientific purposes. In October 2014, ten institutions worldwide have made contributions to the IGRF. These models were evaluated and the twelfth generation of the International Geomagnetic Reference Field (IGRF) was adopted in December 2014. In this presentation, we will report on the IGRF activities, briefly describe the candidate models, summarize the evaluation of models performed by different independent teams, show how the IGRF-12 models were calculated and finally discuss some of the main magnetic features of this new model.

  6. Validation of the CME Geomagnetic forecast alerts under COMESEP alert system

    NASA Astrophysics Data System (ADS)

    Dumbovic, Mateja; Srivastava, Nandita; Khodia, Yamini; Vršnak, Bojan; Devos, Andy; Rodriguez, Luciano

    2017-04-01

    An automated space weather alert system has been developed under the EU FP7 project COMESEP (COronal Mass Ejections and Solar Energetic Particles: http://comesep.aeronomy.be) to forecast solar energetic particles (SEP) and coronal mass ejection (CME) risk levels at Earth. COMESEP alert system uses automated detection tool CACTus to detect potentially threatening CMEs, drag-based model (DBM) to predict their arrival and CME geo-effectiveness tool (CGFT) to predict their geomagnetic impact. Whenever CACTus detects a halo or partial halo CME and issues an alert, DBM calculates its arrival time at Earth and CGFT calculates its geomagnetic risk level. Geomagnetic risk level is calculated based on an estimation of the CME arrival probability and its likely geo-effectiveness, as well as an estimate of the geomagnetic-storm duration. We present the evaluation of the CME risk level forecast with COMESEP alert system based on a study of geo-effective CMEs observed during 2014. The validation of the forecast tool is done by comparing the forecasts with observations. In addition, we test the success rate of the automatic forecasts (without human intervention) against the forecasts with human intervention using advanced versions of DBM and CGFT (self standing tools available at Hvar Observatory website: http://oh.geof.unizg.hr). The results implicate that the success rate of the forecast is higher with human intervention and using more advanced tools. This work has received funding from the European Commission FP7 Project COMESEP (263252). We acknowledge the support of Croatian Science Foundation under the project 6212 „Solar and Stellar Variability".

  7. Making limb and nadir measurements comparable: A common volume study of PMC brightness observed by Odin OSIRIS and AIM CIPS

    NASA Astrophysics Data System (ADS)

    Benze, Susanne; Gumbel, Jörg; Randall, Cora E.; Karlsson, Bodil; Hultgren, Kristoffer; Lumpe, Jerry D.; Baumgarten, Gerd

    2018-01-01

    Combining limb and nadir satellite observations of Polar Mesospheric Clouds (PMCs) has long been recognized as problematic due to differences in observation geometry, scattering conditions, and retrieval approaches. This study offers a method of comparing PMC brightness observations from the nadir-viewing Aeronomy of Ice in the Mesosphere (AIM) Cloud Imaging and Particle Size (CIPS) instrument and the limb-viewing Odin Optical Spectrograph and InfraRed Imaging System (OSIRIS). OSIRIS and CIPS measurements are made comparable by defining a common volume for overlapping OSIRIS and CIPS observations for two northern hemisphere (NH) PMC seasons: NH08 and NH09. We define a scattering intensity quantity that is suitable for either nadir or limb observations and for different scattering conditions. A known CIPS bias is applied, differences in instrument sensitivity are analyzed and taken into account, and effects of cloud inhomogeneity and common volume definition on the comparison are discussed. Not accounting for instrument sensitivity differences or inhomogeneities in the PMC field, the mean relative difference in cloud brightness (CIPS - OSIRIS) is -102 ± 55%. The differences are largest for coincidences with very inhomogeneous clouds that are dominated by pixels that CIPS reports as non-cloud points. Removing these coincidences, the mean relative difference in cloud brightness reduces to -6 ± 14%. The correlation coefficient between the CIPS and OSIRIS measurements of PMC brightness variations in space and time is remarkably high, at 0.94. Overall, the comparison shows excellent agreement despite different retrieval approaches and observation geometries.

  8. Moving through Life-Space Areas and Objectively Measured Physical Activity of Older People.

    PubMed

    Portegijs, Erja; Tsai, Li-Tang; Rantanen, Taina; Rantakokko, Merja

    2015-01-01

    Physical activity-an important determinant of health and function in old age-may vary according to the life-space area reached. Our aim was to study how moving through greater life-space areas is associated with greater physical activity of community-dwelling older people. The association between objectively measured physical activity and life-space area reached on different days by the same individual was studied using one-week longitudinal data, to provide insight in causal relationships. One-week surveillance of objectively assessed physical activity of community-dwelling 70-90-year-old people in central Finland from the "Life-space mobility in old age" cohort substudy (N = 174). In spring 2012, participants wore an accelerometer for 7 days and completed a daily diary including the largest life-space area reached (inside home, outside home, neighborhood, town, and beyond town). The daily step count, and the time in moderate (incl. walking) and low activity and sedentary behavior were assessed. Differences in physical activity between days on which different life-space areas were reached were tested using Generalized Estimation Equation models (within-group comparison). Participants' mean age was 80.4±4.2 years and 63.5% were female. Participants had higher average step counts (p < .001) and greater moderate and low activity time (p < .001) on days when greater life-space areas were reached, from the home to the town area. Only low activity time continued to increase when moving beyond the town. Community-dwelling older people were more physically active on days when they moved through greater life-space areas. While it is unknown whether physical activity was a motivator to leave the home, intervention studies are needed to determine whether facilitation of daily outdoor mobility, regardless of the purpose, may be beneficial in terms of promoting physical activity.

  9. Design and implementation of space physics multi-model application integration based on web

    NASA Astrophysics Data System (ADS)

    Jiang, Wenping; Zou, Ziming

    With the development of research on space environment and space science, how to develop network online computing environment of space weather, space environment and space physics models for Chinese scientific community is becoming more and more important in recent years. Currently, There are two software modes on space physics multi-model application integrated system (SPMAIS) such as C/S and B/S. the C/S mode which is traditional and stand-alone, demands a team or workshop from many disciplines and specialties to build their own multi-model application integrated system, that requires the client must be deployed in different physical regions when user visits the integrated system. Thus, this requirement brings two shortcomings: reducing the efficiency of researchers who use the models to compute; inconvenience of accessing the data. Therefore, it is necessary to create a shared network resource access environment which could help users to visit the computing resources of space physics models through the terminal quickly for conducting space science research and forecasting spatial environment. The SPMAIS develops high-performance, first-principles in B/S mode based on computational models of the space environment and uses these models to predict "Space Weather", to understand space mission data and to further our understanding of the solar system. the main goal of space physics multi-model application integration system (SPMAIS) is to provide an easily and convenient user-driven online models operating environment. up to now, the SPMAIS have contained dozens of space environment models , including international AP8/AE8 IGRF T96 models and solar proton prediction model geomagnetic transmission model etc. which are developed by Chinese scientists. another function of SPMAIS is to integrate space observation data sets which offers input data for models online high-speed computing. In this paper, service-oriented architecture (SOA) concept that divides system into independent modules according to different business needs is applied to solve the problem of the independence of the physical space between multiple models. The classic MVC(Model View Controller) software design pattern is concerned to build the architecture of space physics multi-model application integrated system. The JSP+servlet+javabean technology is used to integrate the web application programs of space physics multi-model. It solves the problem of multi-user requesting the same job of model computing and effectively balances each server computing tasks. In addition, we also complete follow tasks: establishing standard graphical user interface based on Java Applet application program; Designing the interface between model computing and model computing results visualization; Realizing three-dimensional network visualization without plug-ins; Using Java3D technology to achieve a three-dimensional network scene interaction; Improved ability to interact with web pages and dynamic execution capabilities, including rendering three-dimensional graphics, fonts and color control. Through the design and implementation of the SPMAIS based on Web, we provide an online computing and application runtime environment of space physics multi-model. The practical application improves that researchers could be benefit from our system in space physics research and engineering applications.

  10. Latency-Information Theory: The Mathematical-Physical Theory of Communication-Observation

    DTIC Science & Technology

    2010-01-01

    Werner Heisenberg of quantum mechanics; 3) the source-entropy and channel-capacity lossless performance bounds of Claude Shannon that guide...through noisy intel-space channels, and where the physical time-dislocations of intel-space exhibit a passing of time Heisenberg information...life-space sensor, and where the physical time- dislocations of life-space exhibit a passing of time Heisenberg information-uncertainty; and 4

  11. Instructional computing in space physics moves ahead

    NASA Astrophysics Data System (ADS)

    Russell, C. T.; Omidi, N.

    As the number of spacecraft stationed in the Earth's magnetosphere exponentiates and society becomes more technologically sophisticated and dependent on these spacebased resources, both the importance of space physics and the need to train people in this field will increase.Space physics is a very difficult subject for students to master. Both mechanical and electromagnetic forces are important. The treatment of problems can be very mathematical, and the scale sizes of phenomena are usually such that laboratory studies become impossible, and experimentation, when possible at all, must be carried out in deep space. Fortunately, computers have evolved to the point that they are able to greatly facilitate instruction in space physics.

  12. Time: the enigma of space

    NASA Astrophysics Data System (ADS)

    Yu, Francis T. S.

    2017-08-01

    In this article we have based on the laws of physics to illustrate the enigma time as creating our physical space (i.e., the universe). We have shown that without time there would be no physical substances, no space and no life. In reference to Einstein's energy equation, we see that energy and mass can be traded, and every mass can be treated as an Energy Reservoir. We have further shown that physical space cannot be embedded in absolute empty space and cannot have any absolute empty subspace in it. Since all physical substances existed with time, our cosmos is created by time and every substance including our universe is coexisted with time. Although time initiates the creation, it is the physical substances which presented to us the existence of time. We are not alone with almost absolute certainty. Someday we may find a right planet, once upon a time, had harbored a civilization for a short period of light years.

  13. Paying attention to working memory: Similarities in the spatial distribution of attention in mental and physical space.

    PubMed

    Sahan, Muhammet Ikbal; Verguts, Tom; Boehler, Carsten Nicolas; Pourtois, Gilles; Fias, Wim

    2016-08-01

    Selective attention is not limited to information that is physically present in the external world, but can also operate on mental representations in the internal world. However, it is not known whether the mechanisms of attentional selection operate in similar fashions in physical and mental space. We studied the spatial distributions of attention for items in physical and mental space by comparing how successfully distractors were rejected at varying distances from the attended location. The results indicated very similar distribution characteristics of spatial attention in physical and mental space. Specifically, we found that performance monotonically improved with increasing distractor distance relative to the attended location, suggesting that distractor confusability is particularly pronounced for nearby distractors, relative to distractors farther away. The present findings suggest that mental representations preserve their spatial configuration in working memory, and that similar mechanistic principles underlie selective attention in physical and in mental space.

  14. Plasma Physics of the Subauroral Space Weather

    DTIC Science & Technology

    2016-03-20

    AFRL-RV-PS- AFRL-RV-PS- TR-2016-0068 TR-2016-0068 PLASMA PHYSICS OF THE SUBAURORAL SPACE WEATHER Evgeny V. Mishin, et al. 20 March 2016 Final...Oct 2013 to 30 Sep 2015 4. TITLE AND SUBTITLE Plasma Physics of the Subauroral Space Weather 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...5 4.3. Physics -based hybrid model with finite Larmor radius effects

  15. The space shuttle payload planning working groups. Volume 2: Atmospheric and space physics

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The findings of the Atmospheric and Space Physics working group of the space shuttle mission planning activity are presented. The principal objectives defined by the group are: (1) to investigate the detailed mechanisms which control the near-space environment of the earth, (2) to perform plasma physics investigations not feasible in ground-based laboratories, and (3) to conduct investigations which are important in understanding planetary and cometary phenomena. The core instrumentation and laboratory configurations for conducting the investigations are defined.

  16. Green space definition affects associations of green space with overweight and physical activity.

    PubMed

    Klompmaker, Jochem O; Hoek, Gerard; Bloemsma, Lizan D; Gehring, Ulrike; Strak, Maciej; Wijga, Alet H; van den Brink, Carolien; Brunekreef, Bert; Lebret, Erik; Janssen, Nicole A H

    2018-01-01

    In epidemiological studies, exposure to green space is inconsistently associated with being overweight and physical activity, possibly because studies differ widely in their definition of green space exposure, inclusion of important confounders, study population and data analysis. We evaluated whether the association of green space with being overweight and physical activity depended upon definition of greenspace. We conducted a cross-sectional study using data from a Dutch national health survey of 387,195 adults. Distance to the nearest park entrance and surrounding green space, based on the Normalized Difference Vegetation Index (NDVI) or a detailed Dutch land-use database (TOP10NL), was calculated for each residential address. We used logistic regression analyses to study the association of green space exposure with being overweight and being moderately or vigorously physically active outdoors at least 150min/week (self-reported). To study the shape of the association, we specified natural splines and quintiles. The distance to the nearest park entrance was not associated with being overweight or outdoor physical activity. Associations of surrounding green space with being overweight or outdoor physical activity were highly non-linear. For NDVI surrounding greenness, we observed significantly decreased odds of being overweight [300m buffer, odds ratio (OR) = 0.88; 95% CI: 0.86, 0.91] and increased odds for outdoor physical activity [300m buffer, OR = 1.14; 95% CI: 1.10, 1.17] in the highest quintile compared to the lowest quintile. For TOP10NL surrounding green space, associations were mostly non-significant. Associations were generally stronger for subjects living in less urban areas and for the smaller buffers. Associations of green space with being overweight and outdoor physical activity differed considerably between different green space definitions. Associations were strongest for NDVI surrounding greenness. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. NASA physics and chemistry experiments in-space program

    NASA Technical Reports Server (NTRS)

    Gabris, E. A.

    1981-01-01

    The Physics and Chemistry Experiments Program (PACE) is part of the Office of Aeronautics and Space Technology (OAST) research and technology effort in understanding the fundamental characteristics of physics and chemical phenomena. This program seeks to increase the basic knowledge in these areas by well-planned research efforts which include in-space experiments when the limitations of ground-based activities precludes or restricts the achievement of research goals. Overview study areas are concerned with molecular beam experiments for Space Shuttle, experiments on drops and bubbles in a manned earth-orbiting laboratory, the study of combustion experiments in space, combustion experiments in orbiting spacecraft, gravitation experiments in space, and fluid physics, thermodynamics, and heat-transfer experiments. Procedures for the study program have four phases. An overview study was conducted in the area of materials science.

  18. Applied Physics Lab Kennedy Space Center: Recent Contributions

    NASA Technical Reports Server (NTRS)

    Starr, Stan; Youngquist, Robert

    2006-01-01

    The mission of the Applied Physics Lab is: (1) Develop and deliver novel sensors and devices to support KSC mission operations. (2) Analyze operational issues and recommend or deliver practical solutions. (3) Apply physics to the resolution of long term space flight issues that affect space port operation on Earth or on other planets.

  19. The space physics analysis network

    NASA Astrophysics Data System (ADS)

    Green, James L.

    1988-04-01

    The Space Physics Analysis Network, or SPAN, is emerging as a viable method for solving an immediate communication problem for space and Earth scientists and has been operational for nearly 7 years. SPAN and its extension into Europe, utilizes computer-to-computer communications allowing mail, binary and text file transfer, and remote logon capability to over 1000 space science computer systems. The network has been used to successfully transfer real-time data to remote researchers for rapid data analysis but its primary function is for non-real-time applications. One of the major advantages for using SPAN is its spacecraft mission independence. Space science researchers using SPAN are located in universities, industries and government institutions all across the United States and Europe. These researchers are in such fields as magnetospheric physics, astrophysics, ionosperic physics, atmospheric physics, climatology, meteorology, oceanography, planetary physics and solar physics. SPAN users have access to space and Earth science data bases, mission planning and information systems, and computational facilities for the purposes of facilitating correlative space data exchange, data analysis and space research. For example, the National Space Science Data Center (NSSDC), which manages the network, is providing facilities on SPAN such as the Network Information Center (SPAN NIC). SPAN has interconnections with several national and international networks such as HEPNET and TEXNET forming a transparent DECnet network. The combined total number of computers now reachable over these combined networks is about 2000. In addition, SPAN supports full function capabilities over the international public packet switched networks (e.g. TELENET) and has mail gateways to ARPANET, BITNET and JANET.

  20. Space physics educational outreach

    NASA Technical Reports Server (NTRS)

    Copeland, Richard A.

    1995-01-01

    The goal of this Space Physics Educational Outreach project was to develop a laboratory experiment and classroom lecture on Earth's aurora for use in lower division college physics courses, with the particular aim of implementing the experiment and lecture at Saint Mary's College of California. The strategy is to teach physics in the context of an interesting natural phenomenon by investigating the physical principles that are important in Earth's aurora, including motion of charged particles in electric and magnetic fields, particle collisions and chemical reactions, and atomic and molecular spectroscopy. As a by-product, the undergraduate students would develop an appreciation for naturally occurring space physics phenomena.

  1. Challenges in Teaching Space Physics to Different Target Groups From Space Weather Forecasters to Heavy-weight Theorists

    NASA Astrophysics Data System (ADS)

    Koskinen, H. E.

    2008-12-01

    Plasma physics as the backbone of space physics is difficult and thus the space physics students need to have strong foundations in general physics, in particular in classical electrodynamics and thermodynamics, and master the basic mathematical tools for physicists. In many universities the number of students specializing in space physics at Master's and Doctoral levels is rather small and the students may have quite different preferences ranging from experimental approach to hard-core space plasma theory. This poses challenges in building up a study program that has both the variety and depth needed to motivate the best students to choose this field. At the University of Helsinki we require all beginning space physics students, regardless whether they enter the field as Master's or Doctoral degree students, to take a one-semester package consisting of plasma physics and its space applications. However, some compromises are necessary. For example, it is not at all clear, how thoroughly Landau damping should be taught at the first run or how deeply should the intricacies of collisionless reconnection be discussed. In both cases we have left the details to an optional course in advanced space physics, even with the risk that the student's appreciation of, e.g., reconnection may remain at the level of a magic wand. For learning experimental work, data analysis or computer simulations we have actively pursued arrangements for the Master's degree students to get a summer employments in active research groups, which usually lead to the Master's theses. All doctoral students are members of research groups and participate in experimental work, data analysis, simulation studies or theory development, or any combination of these. We emphasize strongly "learning by doing" all the way from the weekly home exercises during the lecture courses to the PhD theses which in Finland consist typically of 4-6 peer-reviewed articles with a comprehensive introductory part.

  2. Activating Public Space: How to Promote Physical Activity in Urban Environment

    NASA Astrophysics Data System (ADS)

    Kostrzewska, Małgorzata

    2017-10-01

    Physical activity is an essential component of a healthy lifestyle. The quality and equipment of urban public space plays an important role in promoting physical activity among people (residents, tourists). In order for recreation and sports activities to be undertaken willingly, in a safe and comprehensive manner, certain spatial conditions and requirements must be met. The distinctive feature of contemporary large cities is the disappearance of local, neighbourly relations, and the consequent loneliness, alienation, and atomization of the residents. Thus, the design of public spaces should be an expression of the values of social inclusion and integration. A properly designed urban space would encourage people to leave their homes and integrate, also by undertaking different forms of physical activities. This, in turn, can lead to raising the quality of the space, especially in the context of its “familiarization” and “domestication”. The aim of the research was to identify the architectural and urban features of the public spaces of contemporary cities that can contribute to the promotion of physical activity. The paper presents the research results and the case studies of such spatial solutions and examples of good practices, which invite residents to undertake different forms of physical activities in public spaces. The issue of the integrating, inclusionary, and social function of physical recreation and sport is discussed as well, and so are the possibilities of translating these values into physical characteristics of an urban space. The main conclusions are that taking into account the diverse needs of different social groups, participation in the design and construction process, aesthetic and interesting design, vicinity of the residence, open access for all age groups and the disabled would be the most important spatial determinants of a properly designed, physically activating public space. Strategies of planning the sports and recreation infrastructure should also make sure of their multifunctionality and variability in time to adjust it to the changing needs of the residents.

  3. 20th National Solar Physics Meeting

    NASA Astrophysics Data System (ADS)

    Dorotovic, Ivan

    2010-12-01

    These proceedings (ISBN: 978-80-85221-68-8) provide an overview of current research on solar physics, geophysics and space weather in the astronomical, geophysical and space physics institutions in the Slovak Republic and the Czech Republic. Several researchers from other countries participated in the meeting as well. The different parts address: solar interior, solar photosphere, chromosphere, corona, total solar eclipses, space weather, instrumentation. Most of the papers are published in Slovak and Czech, respectively. The proceedings are intended for researchers, graduate and PhD. students, workers of astronomical observatories interested in solar physics, geophysics and space weather.

  4. Winter in Northern Europe (WINE). The project Winter in Northern Europe (MAP/WINE): Introduction and outlook

    NASA Technical Reports Server (NTRS)

    Vonzahn, U.

    1989-01-01

    The project Winter in Northern Europe (WINE) of the international Middle Atmosphere Program (MAP) comprised a multinational study of the structure, dynamics and composition of the middle atmosphere in winter at high latitudes. Coordinated field measurements were performed during the winter 1983 to 1984 by a large number of ground-based, air-borne, rocket-borne and satellite-borne instruments. Many of the individual experiments were performed in the European sector of the high latitude and polar atmosphere. Studies of the stratosphere, were, in addition, expanded to hemispheric scales by the use of data obtained from remotely sensing satellites. Beyond its direct scientific results, which are reviewed, MAP/WINE has stimulated quite a number of follow-on experiments and projects which address the aeronomy of the middle atmosphere at high and polar latitudes.

  5. Venus' night side ionosphere - Its origin and maintenance

    NASA Technical Reports Server (NTRS)

    Butler, D. M.; Chamberlain, J. W.

    1976-01-01

    A substantial nightside ionosphere has been observed on Venus by both Mariner 5 and Mariner 10. Major dayside ionic species such as O2(+) and other molecular ions have chemical lifetimes much shorter than the 244.3-day rotation period of the planet. Rapid transport of ions from the dayside to the nightside to the extent required seems most unlikely. Consequently, possibilities are investigated for local production of ions on the nightside itself. Constraints imposed by chemical lifetimes require atomic ions with low ionization potentials. It is suggested that metallic ions of meteoric origin are the positive charge carriers, and the plausibility of this mechanism is demonstrated. Other possibilities are examined and shown to be less likely. Meteor ablation on Venus, the aeronomy of metallic species, and the role of negative ions near the electron peaks of the atmosphere are discussed.

  6. Do we understand what creates 150-km echoes and gives them their distinct structure?

    NASA Astrophysics Data System (ADS)

    Oppenheim, M. M.; Kudeki, E.; Salas Reyes, P.; Dimant, Y. S.

    2017-12-01

    Researchers first discovered 150-km echoes over 50 years ago using the first large VHF radars near the geomagnetic equator. However, the underlying mechanism that creates and modulates them remains largely a mystery. Despite this lack of understanding the aeronomy community uses them to monitor daytime vertical plasma drifts between 130 and 160 km altitude. In a 2016 paper, Oppenheim and Dimant used simulations to show that photoelectrons can generate the type of echoes seen by the radars but this theory doesn't explain any of the detailed structures. This paper will show the modern observations of 150 km echoes using simultaneous radar and ionosonde measurements. It will then describe the latest analysis to attempt to explain these features using large-scale kinetic simulations of photoelectrons interacting with the ambient ionospheric plasma under a range of conditions.

  7. Touring the saturnian system: the atmospheres of titan and saturn

    NASA Astrophysics Data System (ADS)

    Owen, Tobias; Gautier, Daniel

    2002-07-01

    This report follows the presentation originally given in the ESA Phase A Study for the Cassini Huygens Mission. The combination of the Huygens atmospheric probe into Titan's atmosphere with the Cassini orbiter allows for both in-situ and remote-sensing observations of Titan. This not only provides a rich harvest of data about Saturn's famous satellite but will permit a useful calibration of the remote-sensing instruments which will also be used on Saturn itself. Composition, thermal structure, dynamics, aeronomy, magnetosphere interactions and origins will all be investigated for the two atmospheres, and the spacecraft will also deliver information on the interiors of both Titan and Saturn. As the surface of Titan is intimately linked with the atmosphere, we also discuss some of the surface studies that will be carried out by both probe and orbiter.

  8. Playing in parallel: the effects of multiplayer modes in active video game on motivation and physical exertion.

    PubMed

    Peng, Wei; Crouse, Julia

    2013-06-01

    Although multiplayer modes are common among contemporary video games, the bulk of game research focuses on the single-player mode. To fill the gap in the literature, the current study investigated the effects of different multiplayer modes on enjoyment, future play motivation, and the actual physical activity intensity in an active video game. One hundred sixty-two participants participated in a one-factor between-subject laboratory experiment with three conditions: (a) single player: play against self pretest score; (b) cooperation with another player in the same physical space; (c) parallel competition with another player in separated physical spaces. We found that parallel competition in separate physical spaces was the optimal mode, since it resulted in both high enjoyment and future play motivation and high physical intensity. Implications for future research on multiplayer mode and play space as well as active video game-based physical activity interventions are discussed.

  9. Beyond Physical Activity: The Importance of Play and Nature-Based Play Spaces for Children's Health and Development.

    PubMed

    Herrington, Susan; Brussoni, Mariana

    2015-12-01

    The reduction of child obesity continues to be a challenge worldwide. Research indicates that playing outdoors, particularly in natural play spaces, boosts children's physical activity, potentially decreasing childhood obesity. We present evidence that natural play spaces also provide for more diverse forms of play for children of varying ages and competencies. This is crucial because play spaces designed expressly for physical activity may not increase physical activity among less active children. Moreover, when researchers only examine physical activity in play, they overlook the valuable contributions that play makes to other aspects of children's health and development. To enhance research on children and their play environments, we introduce the theory of play affordances. To assist in the creation of more natural play spaces, we describe the Seven Cs, an evidence-based approach for designing children's play spaces that promotes diverse play. We end with some preliminary insights from our current research using the Seven Cs to illustrate the connections between play, nature, and children's healthy development.

  10. Technique for forcing high Reynolds number isotropic turbulence in physical space

    NASA Astrophysics Data System (ADS)

    Palmore, John A.; Desjardins, Olivier

    2018-03-01

    Many common engineering problems involve the study of turbulence interaction with other physical processes. For many such physical processes, solutions are expressed most naturally in physical space, necessitating the use of physical space solutions. For simulating isotropic turbulence in physical space, linear forcing is a commonly used strategy because it produces realistic turbulence in an easy-to-implement formulation. However, the method resolves a smaller range of scales on the same mesh than spectral forcing. We propose an alternative approach for turbulence forcing in physical space that uses the low-pass filtered velocity field as the basis of the forcing term. This method is shown to double the range of scales captured by linear forcing while maintaining the flexibility and low computational cost of the original method. This translates to a 60% increase of the Taylor microscale Reynolds number on the same mesh. An extension is made to scalar mixing wherein a scalar field is forced to have an arbitrarily chosen, constant variance. Filtered linear forcing of the scalar field allows for control over the length scale of scalar injection, which could be important when simulating scalar mixing.

  11. An implementation plan for priorities in solar-system space physics

    NASA Technical Reports Server (NTRS)

    Krimigis, Stamatios M.; Athay, R. Grant; Baker, Daniel; Fisk, Lennard A.; Fredricks, Robert W.; Harvey, John W.; Jokipii, Jack R.; Kivelson, Margaret; Mendillo, Michael; Nagy, Andrew F.

    1985-01-01

    The scientific objectives and implementation plans and priorities of the Space Science Board in areas of solar physics, heliospheric physics, magnetospheric physics, upper atmosphere physics, solar-terrestrial coupling, and comparative planetary studies are discussed and recommended programs are summarized. Accomplishments of Skylab, Solar Maximum Mission, Nimbus-7, and 11 other programs are highlighted. Detailed mission plans in areas of solar and heliospheric physics, plasma physics, and upper atmospheric physics are also described.

  12. Proceedings of the Space Shuttle Sortie Workshop. Volume 2: Working group reports

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Details are presented on the mission planning progress in each of the working paper reports. The general topics covered are the following: space technology; materials processing and space manufacturing; communications and navigation; earth and ocean physics; oceanography; earth resources and surface environmental quality; meteorology and atmospheric environmental quality; life sciences; atmospheric and space physics; solar physics; high energy cosmic rays; X-ray and gamma ray astronomy; ultraviolet-optical astronomy; planetary astronomy; and infrared astronomy.

  13. Laboratory Experiments to Simulate and Investigate the Physics Underlying the Dynamics of Merging Solar Corona Structures

    DTIC Science & Technology

    2016-06-05

    have attended and made presen- tations at the annual APS Division of Plasma Physics Meeting, the bi-annual High Energy Laboratory Astrophysics meeting...the AFOSR Space Science Pro- gram Review, the SHINE solar physics meeting, the International Astrophysics Conference, and the workshop “Complex plasma...tor k and Resolving Space-time Ambiguity. GR-Space Physics . submitted. Bellan, P. M., Zhai, X., Chai, K. B., & Ha, B. N. 2015. Complex astrophysical

  14. Fighting the War above Iraq. Employing Space Forces to Defeat an Insurgency

    DTIC Science & Technology

    2007-05-01

    Before discussing the part space forces can play, we must first validate that current operations in Iraq actu­ ally require isolating the physical ...borders.”24 In order to overcome the previous challenges and achieve this objec­ tive, we can look for past attempts to isolate the physical ... physical battlespace through surveil­ lance will likely be countered. Space Forces’ Role We have seen that the need to isolate the physical battle­

  15. Physical Origins of Space Weather Impacts: Open Physics Questions

    NASA Astrophysics Data System (ADS)

    Lanzerotti, L. J.

    2011-12-01

    Beginning with the era of development of electrical telegraph systems in the early 19th century, physical processes in the space environment on the Sun, in the interplanetary medium, and around Earth have influenced the design and operations of ever-increasing and sophisticated technical systems, both in space and on the ground. Understanding of Earth's space environment has increased enormously in the last century and one-half. Nevertheless, many of the physical processes that produced effects on early cable and wireless technologies continue to plague modern-day systems. And as new technologies are developed for improved communications, surveillance, navigation, and conditions for human space flight, the solar-terrestrial environment often offers surprises to their safe, secure and uninterrupted operations. This talk will address some of the challenges that I see to the successful operations of some modern-day technical systems that are posed by significant deficiencies of understanding of physical processes operating from the Sun to the Earth.

  16. Implementation of the Boston University Space Physics Acquisition Center

    NASA Technical Reports Server (NTRS)

    Spence, Harlan E.

    1998-01-01

    The tasks carried out during this grant achieved the goals as set forth in the initial proposal. The Boston University Space Physics Acquisition CEnter (BUSPACE) now provides World Wide Web access to data from a large suite of both space-based and ground-based instruments, archived from different missions, experiments, or campaigns in which researchers associated with the Center for Space Physics (CSP) at Boston University have been involved. These archival data sets are in digital form and are valuable for retrospective data analysis studies of magnetospheric as well as ionospheric, thermospheric, and mesospheric physics. We have leveraged our grass-roots effort with the NASA seed money to establish dedicated hardware (computer and hard disk augmentation) and student support to grow and maintain the system. This leveraging of effort now permits easy access by the space physics community to many underutilized, yet important data sets, one example being that of the SCATHA satellite.

  17. Space, body, time and relationship experiences of recess physical activity: a qualitative case study among the least physical active schoolchildren.

    PubMed

    Pawlowski, Charlotte Skau; Andersen, Henriette Bondo; Tjørnhøj-Thomsen, Tine; Troelsen, Jens; Schipperijn, Jasper

    2016-01-06

    Increasing recess physical activity has been the aim of several interventions, as this setting can provide numerous physical activity opportunities. However, it is unclear if these interventions are equally effective for all children, or if they only appeal to children who are already physically active. This study was conducted to explore the least physically active children's "lived experiences" within four existential lifeworlds linked to physical activity during recess: space, body, time, and relations. The study builds on ethnographic fieldwork in a public school in Denmark using a combination of participatory photo interviews and participant observation. Thirty-seven grade five children (11-12 years old) were grouped in quartiles based on their objectively measured daily physical activity levels. Eight children in the lowest activity quartile (six girls) were selected to participate in the study. To avoid stigmatising and to make generalisations more reliable we further recruited eight children from the two highest activity quartiles (four girls) to participate. An analysis of the least physically active children's "lived experiences" of space, body, time and relations revealed several key factors influencing their recess physical activity: perceived classroom safety, indoor cosiness, lack of attractive outdoor facilities, bodily dissatisfaction, bodily complaints, tiredness, feeling bored, and peer influence. We found that the four existential lifeworlds provided an in-depth understanding of the least physically active children's "lived experiences" of recess physical activity. Our findings imply that specific intervention strategies might be needed to increase the least physically active children's physical activity level. For example, rethinking the classroom as a space for physical activity, designing schoolyards with smaller secluded spaces and varied facilities, improving children's self-esteem and body image, e.g., during physical education, and creating teacher organised play activities during recess.

  18. Centralising Space: The Physical Education and Physical Activity Experiences of South Asian, Muslim Girls

    ERIC Educational Resources Information Center

    Stride, Annette

    2016-01-01

    This paper explores the physical education (PE) and physical activity experiences of a group of South Asian, Muslim girls, a group typically marginalised in PE and physical activity research. The study responds to ongoing calls for research to explore across different spaces in young people's lives. Specifically, I draw on a…

  19. How does mental-physical multimorbidity express itself in lived time and space? A phenomenological analysis of encounters with depression and chronic physical illness.

    PubMed

    Coventry, Peter A; Dickens, Chris; Todd, Chris

    2014-10-01

    Mental-physical multimorbidity (the co-existence of mental and physical ill health) is highly prevalent and associated with significant impairments and high healthcare costs. While the sociology of chronic illness has developed a mature discourse on coping with long term physical illness the impact of mental and physical health have remained analytically separated, highlighting the need for a better understanding of the day-to-day complexities encountered by people living with mental-physical multimorbidity. We used the phenomenological paradigm of the lived body to elucidate how the experience of mental-physical multimorbidity shapes people's lifeworlds. Nineteen people with chronic obstructive pulmonary disease (COPD) and depression (defined as a score ≥8 on depression scale of Hospital Anxiety and Depression Scale) were recruited from secondary NHS care and interviewed at their homes. Data were analysed phenomenologically using van Manen's lifeworld existential framework of the lived body, lived time, lived space, lived relations. Additionally, we re-analysed data (using the same framework) collected from 13 people recruited from secondary NHS care with either COPD, rheumatoid arthritis, heart disease, or type 1 or type 2 diabetes and depression. The phenomenology of mental-physical multimorbidity was articulated through embodied and emotional encounters with day-to-day life in four ways: [a] participants' perception of lived time and lived space contracted; [b] time and [c] space were experienced as liminal categories, enforcing negative mood and temporal and spatial contraction; and [d] time and space could also be customised to reinstate agency and self-determination. Mental-physical multimorbidity negatively impacts on individuals' perceptions of lived time and lived space, leading to a loss of agency, heightened uncertainty, and poor well-being. Harnessing people's capacity to modify their experience of time and space may be a novel way to support people with mental-physical multimorbidity to live well with illness. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. An Inquiry-Based Approach to Teaching Space Weather to Undergraduate Non-Science Majors

    NASA Astrophysics Data System (ADS)

    Cade, W. B., III

    2016-12-01

    Undergraduate Space Weather education is an important component of creating a society that is knowledgeable about space weather and its societal impacts. The space physics community has made great strides in providing academic education for students, typically physics and engineering majors, who are interested in pursuing a career in the space sciences or space weather. What is rarely addressed, however, is providing a broader space weather education to undergraduate students as a whole. To help address this gap, I have created an introductory space weather course for non-science majors, with the idea of expanding exposure to space weather beyond the typical physics and engineering students. The philosophy and methodologies used in this course will be presented, as well as the results of the first attempts to teach it. Using an approach more tailored to the non-scientist, courses such as this can be an effective means of broadening space weather education and outreach.

  1. Generic results of the space physics community survey

    NASA Technical Reports Server (NTRS)

    Sharma, Rikhi R.; Cohen, Nathaniel B.

    1993-01-01

    This report summarizes the results of a survey of the members of the space physics research community conducted in 1990-1991 to ascertain demographic information on the respondents and information on their views on a number of facets of their space physics research. The survey was conducted by questionnaire and the information received was compiled in a database and analyzed statistically. The statistical results are presented for the respondent population as a whole and by four different respondent cross sections: individual disciplines of space physics, type of employers, age groups, and research techniques employed. Data from a brief corresponding survey of the graduate students of respondents are also included.

  2. Creating Inclusive Physical Activity Spaces: The Case of Body-Positive Yoga.

    PubMed

    Pickett, Andrew C; Cunningham, George B

    2017-09-01

    Within the modern cultural climate, those in larger bodies face high levels of weight stigma, particularly in sport and physical activity spaces, which serves as a strong barrier to their participation. However, given the strong link between physical activity and general health and well-being for participants, it is important to explore strategies that encourage participation of these individuals. Thus, the current research examined strategies that physical activity instructors use to develop inclusive exercise spaces for all body sizes. This study employed a series of semistructured qualitative interviews (n = 9) with instructors of body-inclusive yoga classes to explore the ways in which they encourage participation for those in larger bodies. Emergent themes from the current study suggested support for 6 factors for creating body-inclusive physical activity spaces: authentic leadership, a culture of inclusion, a focus on health, inclusive language, leader social activism, and a sense of community. This study revealed that leaders must intentionally cultivate inclusion in their spaces to encourage those in nonconforming bodies to participate. These findings have important health and management implications for the sport and physical activity context and provide a basic outline of practical strategies that practitioners can use to foster inclusion in their spaces.

  3. Role of Fundamental Physics in Human Space Exploration

    NASA Technical Reports Server (NTRS)

    Turyshev, Slava

    2004-01-01

    This talk will discuss the critical role that fundamental physics research plays for the human space exploration. In particular, the currently available technologies can already provide significant radiation reduction, minimize bone loss, increase crew productivity and, thus, uniquely contribute to overall mission success. I will discuss how fundamental physics research and emerging technologies may not only further reduce the risks of space travel, but also increase the crew mobility, enhance safety and increase the value of space exploration in the near future.

  4. Clock Technology Development in the Laser Cooling and Atomic Physics (LCAP) Program

    NASA Technical Reports Server (NTRS)

    Seidel, Dave; Thompson, R. J.; Klipstein, W. M.; Kohel, J.; Maleki, L.

    2000-01-01

    This paper presents the Laser Cooling and Atomic Physics (LCAP) program. It focuses on clock technology development. The topics include: 1) Overview of LCAP Flight Projects; 2) Space Clock 101; 3) Physics with Clocks in microgravity; 4) Space Clock Challenges; 5) LCAP Timeline; 6) International Space Station (ISS) Science Platforms; 7) ISS Express Rack; 8) Space Qualification of Components; 9) Laser Configuration; 10) Clock Rate Comparisons: GPS Carrier Phase Frequency Transfer; and 11) ISS Model Views. This paper is presented in viewgraph form.

  5. Research in space science and technology. [including X-ray astronomy and interplanetary plasma physics

    NASA Technical Reports Server (NTRS)

    Beckley, L. E.

    1977-01-01

    Progress in various space flight research programs is reported. Emphasis is placed on X-ray astronomy and interplanetary plasma physics. Topics covered include: infrared astronomy, long base line interferometry, geological spectroscopy, space life science experiments, atmospheric physics, and space based materials and structures research. Analysis of galactic and extra-galactic X-ray data from the Small Astronomy Satellite (SAS-3) and HEAO-A and interplanetary plasma data for Mariner 10, Explorers 47 and 50, and Solrad is discussed.

  6. On the physical Hilbert space of loop quantum cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noui, Karim; Perez, Alejandro; Vandersloot, Kevin

    2005-02-15

    In this paper we present a model of Riemannian loop quantum cosmology with a self-adjoint quantum scalar constraint. The physical Hilbert space is constructed using refined algebraic quantization. When matter is included in the form of a cosmological constant, the model is exactly solvable and we show explicitly that the physical Hilbert space is separable, consisting of a single physical state. We extend the model to the Lorentzian sector and discuss important implications for standard loop quantum cosmology.

  7. Report of the solar physics panel

    NASA Technical Reports Server (NTRS)

    Withbroe, George L.; Fisher, Richard R.; Antiochos, Spiro; Brueckner, Guenter; Hoeksema, J. Todd; Hudson, Hugh; Moore, Ronald; Radick, Richard R.; Rottman, Gary; Scherrer, Philip

    1991-01-01

    Recent accomplishments in solar physics can be grouped by the three regions of the Sun: the solar interior, the surface, and the exterior. The future scientific problems and areas of interest involve: generation of magnetic activity cycle, energy storage and release, solar activity, solar wind and solar interaction. Finally, the report discusses a number of future space mission concepts including: High Energy Solar Physics Mission, Global Solar Mission, Space Exploration Initiative, Solar Probe Mission, Solar Variability Explorer, Janus, as well as solar physics on Space Station Freedom.

  8. Observing Atmospheric Formaldehyde (HCHO) from Space: Validation and Intercomparison of Six Retrievals from Four Satellites (OMI, GOME2A, GOME2B, OMPS) with SEAC4RS Aircraft Observations over the Southeast US

    NASA Technical Reports Server (NTRS)

    Zhu, Lei; Jacob, Daniel J.; Kim, Patrick S.; Fisher, Jenny A.; Yu, Karen; Travis, Katherine R.; Mickley, Loretta J.; Yantosca, Robert M.; Sulprizio, Melissa P.; De Smedt, Isabelle; hide

    2016-01-01

    Formaldehyde (HCHO) column data from satellites are widely used as a proxy for emissions of volatile organic compounds (VOCs), but validation of the data has been extremely limited. Here we use highly accurate HCHO aircraft observations from the NASA SEAC4RS (Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) campaign over the southeast US in August-September 2013 to validate and intercompare six retrievals of HCHO columns from four different satellite instruments (OMI (Ozone Monitoring Instrument), GOME (Global Ozone Monitoring Experiment) 2A, GOME (Global Ozone Monitoring Experiment) 2B and OMPS (Ozone Mapping and Profiler Suite)) and three different research groups. The GEOS (Goddard Earth Observing System)-Chem chemical transport model is used as a common intercomparison platform. All retrievals feature a HCHO maximum over Arkansas and Louisiana, consistent with the aircraft observations and reflecting high emissions of biogenic isoprene. The retrievals are also interconsistent in their spatial variability over the southeast US (r equals 0.4 to 0.8 on a 0.5 degree by 0.5 degree grid) and in their day-to-day variability (r equals 0.5 to 0.8). However, all retrievals are biased low in the mean by 20 to 51 percent, which would lead to corresponding bias in estimates of isoprene emissions from the satellite data. The smallest bias is for OMI-BIRA (Ozone Monitoring Instrument - Belgian Institute for Space Aeronomy), which has high corrected slant columns relative to the other retrievals and low scattering weights in its air mass factor (AMF) calculation. OMI-BIRA has systematic error in its assumed vertical HCHO shape profiles for the AMF calculation, and correcting this would eliminate its bias relative to the SEAC (sup 4) RS data. Our results support the use of satellite HCHO data as a quantitative proxy for isoprene emission after correction of the low mean bias. There is no evident pattern in the bias, suggesting that a uniform correction factor may be applied to the data until better understanding is achieved.

  9. Comparisons of the error budgets associated with ground-based FTIR measurements of atmospheric CH4 profiles at Île de la Réunion and Jungfraujoch.

    NASA Astrophysics Data System (ADS)

    Vanhaelewyn, Gauthier; Duchatelet, Pierre; Vigouroux, Corinne; Dils, Bart; Kumps, Nicolas; Hermans, Christian; Demoulin, Philippe; Mahieu, Emmanuel; Sussmann, Ralf; de Mazière, Martine

    2010-05-01

    The Fourier Transform Infra Red (FTIR) remote measurements of atmospheric constituents at the observatories at Saint-Denis (20.90°S, 55.48°E, 50 m a.s.l., Île de la Réunion) and Jungfraujoch (46.55°N, 7.98°E, 3580 m a.s.l., Switzerland) are affiliated to the Network for the Detection of Atmospheric Composition Change (NDACC). The European NDACC FTIR data for CH4 were improved and homogenized among the stations in the EU project HYMN. One important application of these data is their use for the validation of satellite products, like the validation of SCIAMACHY or IASI CH4 columns. Therefore, it is very important that errors and uncertainties associated to the ground-based FTIR CH4 data are well characterized. In this poster we present a comparison of errors on retrieved vertical concentration profiles of CH4 between Saint-Denis and Jungfraujoch. At both stations, we have used the same retrieval algorithm, namely SFIT2 v3.92 developed jointly at the NASA Langley Research Center, the National Center for Atmospheric Research (NCAR) and the National Institute of Water and Atmosphere Research (NIWA) at Lauder, New Zealand, and error evaluation tools developed at the Belgian Institute for Space Aeronomy (BIRA-IASB). The error components investigated in this study are: smoothing, noise, temperature, instrumental line shape (ILS) (in particular the modulation amplitude and phase), spectroscopy (in particular the pressure broadening and intensity), interfering species and solar zenith angle (SZA) error. We will determine if the characteristics of the sites in terms of altitude, geographic locations and atmospheric conditions produce significant differences in the error budgets for the retrieved CH4 vertical profiles

  10. Ground testing and flight demonstration of charge management of insulated test masses using UV-LED electron photoemission

    NASA Astrophysics Data System (ADS)

    Saraf, Shailendhar; Buchman, Sasha; Balakrishnan, Karthik; Lui, Chin Yang; Soulage, Michael; Faied, Dohy; Hanson, John; Ling, Kuok; Jaroux, Belgacem; Suwaidan, Badr Al; AlRashed, Abdullah; Al-Nassban, Badr; Alaqeel, Faisal; Harbi, Mohammed Al; Salamah, Badr Bin; Othman, Mohammed Bin; Qasim, Bandar Bin; Alfauwaz, Abdulrahman; Al-Majed, Mohammed; DeBra, Daniel; Byer, Robert

    2016-12-01

    The UV-LED mission demonstrates the precise control of the potential of electrically isolated test masses. Test mass charge control is essential for the operation of space accelerometers and drag-free sensors which are at the core of geodesy, aeronomy and precision navigation missions as well as gravitational wave experiments and observatories. Charge management using photoelectrons generated by the 254 nm UV line of Hg was first demonstrated on Gravity Probe B and is presently part of the LISA Pathfinder technology demonstration. The UV-LED mission and prior ground testing demonstrates that AlGaN UVLEDs operating at 255 nm are superior to Hg lamps because of their smaller size, lower power draw, higher dynamic range, and higher control authority. We show laboratory data demonstrating the effectiveness and survivability of the UV-LED devices and performance of the charge management system. We also show flight data from a small satellite experiment that was one of the payloads on KACST’s SaudiSat-4 mission that demonstrates ‘AC charge control’ (UV-LEDs and bias are AC modulated with adjustable relative phase) between a spherical test mass and its housing. The result of the mission brings the UV-LED device Technology Readiness Level (TRL) to TRL-9 and the charge management system to TRL-7. We demonstrate the ability to control the test mass potential on an 89 mm diameter spherical test mass over a 20 mm gap in a drag-free system configuration, with potential measured using an ultra-high impedance contact probe. Finally, the key electrical and optical characteristics of the UV-LEDs showed less than 7.5% change in performance after 12 months in orbit.

  11. Validation of the CME Geomagnetic Forecast Alerts Under the COMESEP Alert System

    NASA Astrophysics Data System (ADS)

    Dumbović, Mateja; Srivastava, Nandita; Rao, Yamini K.; Vršnak, Bojan; Devos, Andy; Rodriguez, Luciano

    2017-08-01

    Under the European Union 7th Framework Programme (EU FP7) project Coronal Mass Ejections and Solar Energetic Particles (COMESEP, http://comesep.aeronomy.be), an automated space weather alert system has been developed to forecast solar energetic particles (SEP) and coronal mass ejection (CME) risk levels at Earth. The COMESEP alert system uses the automated detection tool called Computer Aided CME Tracking (CACTus) to detect potentially threatening CMEs, a drag-based model (DBM) to predict their arrival, and a CME geoeffectiveness tool (CGFT) to predict their geomagnetic impact. Whenever CACTus detects a halo or partial halo CME and issues an alert, the DBM calculates its arrival time at Earth and the CGFT calculates its geomagnetic risk level. The geomagnetic risk level is calculated based on an estimation of the CME arrival probability and its likely geoeffectiveness, as well as an estimate of the geomagnetic storm duration. We present the evaluation of the CME risk level forecast with the COMESEP alert system based on a study of geoeffective CMEs observed during 2014. The validation of the forecast tool is made by comparing the forecasts with observations. In addition, we test the success rate of the automatic forecasts (without human intervention) against the forecasts with human intervention using advanced versions of the DBM and CGFT (independent tools available at the Hvar Observatory website, http://oh.geof.unizg.hr). The results indicate that the success rate of the forecast in its current form is unacceptably low for a realistic operation system. Human intervention improves the forecast, but the false-alarm rate remains unacceptably high. We discuss these results and their implications for possible improvement of the COMESEP alert system.

  12. Ground-based Observations and Atmospheric Modelling of Energetic Electron Precipitation Effects on Antarctic Mesospheric Chemistry

    NASA Astrophysics Data System (ADS)

    Newnham, D.; Clilverd, M. A.; Horne, R. B.; Rodger, C. J.; Seppälä, A.; Verronen, P. T.; Andersson, M. E.; Marsh, D. R.; Hendrickx, K.; Megner, L. S.; Kovacs, T.; Feng, W.; Plane, J. M. C.

    2016-12-01

    The effect of energetic electron precipitation (EEP) on the seasonal and diurnal abundances of nitric oxide (NO) and ozone in the Antarctic middle atmosphere during March 2013 to July 2014 is investigated. Geomagnetic storm activity during this period, close to solar maximum, was driven primarily by impulsive coronal mass ejections. Near-continuous ground-based atmospheric measurements have been made by a passive millimetre-wave radiometer deployed at Halley station (75°37'S, 26°14'W, L = 4.6), Antarctica. This location is directly under the region of radiation-belt EEP, at the extremity of magnetospheric substorm-driven EEP, and deep within the polar vortex during Austral winter. Superposed epoch analyses of the ground based data, together with NO observations made by the Solar Occultation For Ice Experiment (SOFIE) onboard the Aeronomy of Ice in the Mesosphere (AIM) satellite, show enhanced mesospheric NO following moderate geomagnetic storms (Dst ≤ -50 nT). Measurements by co-located 30 MHz riometers indicate simultaneous increases in ionisation at 75-90 km directly above Halley when Kp index ≥ 4. Direct NO production by EEP in the upper mesosphere, versus downward transport of NO from the lower thermosphere, is evaluated using a new version of the Whole Atmosphere Community Climate Model incorporating the full Sodankylä Ion Neutral Chemistry Model (WACCM SIC). Model ionization rates are derived from the Polar orbiting Operational Environmental Satellites (POES) second generation Space Environment Monitor (SEM 2) Medium Energy Proton and Electron Detector instrument (MEPED). The model data are compared with observations to quantify the impact of EEP on stratospheric and mesospheric odd nitrogen (NOx), odd hydrogen (HOx), and ozone.

  13. The relationship of physical activity and overweight to objectively measured green space accessibility and use

    PubMed Central

    2013-01-01

    This study examines the association between objectively measured access to green space, frequency of green space use, physical activity, and the probability of being overweight or obese in the city of Bristol, England. Data from the Bristol Quality of Life in your Neighbourhood survey for 6,821 adults were combined with a comprehensive GIS database of neighbourhood and green space characteristics.. A range of green space accessibility measures were computed. Associations between accessibility and the odds of respondents achieving a recommended 30 minutes or more of moderate activity five times a week, or being overweight or obese, were examined using logistic regression. Results showed that the reported frequency of green space use declined with increasing distance. The study also found that respondents living closest to the type of green space classified as a Formal park were more likely to achieve the physical activity recommendation and less likely to be overweight or obese. The association with physical activity, but not with overweight or obesity, remained after adjustment for respondent characteristics, area deprivation, and a range of characteristics of the neighbourhood environment. The findings suggest that the provision of good access to green spaces in urban areas may help promote population physical activity. PMID:20060635

  14. Reference earth orbital research and applications investigations (blue book). Volume 3: Physics

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The definition of physics experiments to be conducted aboard the space station is presented. The four functional program elements are: (1) space physics research laboratory, (2) plasma physics and environmental perturbation laboratory, (3) cosmic ray physics laboratory, and (4) physics and chemistry laboratory. The experiments to be conducted by each facility are defined and the crew member requirements to accomplish the experiments are presented.

  15. Reduced Pseudoneglect for Physical Space, but Not Mental Representations of Space, for Adults with Autistic Traits

    ERIC Educational Resources Information Center

    English, Michael C.; Maybery, Murray T.; Visser, Troy A.

    2017-01-01

    Neurotypical individuals display a leftward attentional bias, called pseudoneglect, for physical space (e.g. landmark task) and mental representations of space (e.g. mental number line bisection). However, leftward bias is reduced in autistic individuals viewing faces, and neurotypical individuals with autistic traits viewing "greyscale"…

  16. Place-People-Practice-Process: Using Sociomateriality in University Physical Spaces Research

    ERIC Educational Resources Information Center

    Acton, Renae

    2017-01-01

    Pedagogy is an inherently spatial practice. Implicit in much of the rhetoric of physical space designed for teaching and learning is an ontological position that assumes material space as distinct from human practice, often conceptualising space as causally (and simplistically) impacting upon people's behaviours. An alternative, and growing,…

  17. Space Particle Hazard Measurement and Modeling

    DTIC Science & Technology

    2016-09-01

    understand the interactions of the physical processes driving, then specify and ultimately predict the state of the energetic particle populations...Hudson, and B. T. Kress (2013), Direct observation of the CRAND proton radiation belt source, J. Geophys. Res. Space Physics , 118, doi:10.1002...anticritical temperature for spacecraft charging, J. Geophys Res.: Space Physics , 113, 2156-2202, doi: 10.1029/2008JA013161 2010 – Tested basic

  18. 5 CFR 792.230 - May an agency use appropriated funds to improve the physical space of the family child care homes...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... improve the physical space of the family child care homes or child care centers? 792.230 Section 792.230... EMPLOYEES' HEALTH AND COUNSELING PROGRAMS Agency Use of Appropriated Funds for Child Care Costs for Lower... May an agency use appropriated funds to improve the physical space of the family child care homes or...

  19. Space War Meets Info War: The Integration of Space and Information Operations

    DTIC Science & Technology

    2000-04-01

    spacelift, command and control of satellites, and surveillance and deconfliction of systems in space.” (4, xi) These operations provide the physical ...PSYOPS), electronic warfare (EW), physical attack/destruction, special information operations (SIO), and may include computer network attack. (3, viii... physical security, counter-deception, counter- propaganda, counter-intelligence, EW, and SIO. (3, viii) Information operations employ both lethal and non

  20. Space Biophysics: Accomplishments, Trends, Challenges

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey D.

    2015-01-01

    Physics and biology are inextricably linked. All the chemical and biological processes of life are dutifully bound to follow the rules and laws of physics. In space, these physical laws seem to turn on their head and biological systems, from microbes to humans, adapt and evolve in myriad ways to cope with the changed physical influences of the space environment. Gravity is the most prominent change in space that influences biology. In microgravity, the physical processes of sedimentation, density-driven convective flow, influence of surface tension and fluid pressure profoundly influence biology at the molecular and cellular level as well as at the whole-body level. Gravity sensing mechanisms are altered, structural and functional components of biology (such as bone and muscle) are reduced and changes in the way fluids and gasses behave also drive the way microbial systems and biofilms grow as well as the way plants and animals adapt. The radiation environment also effects life in space. Solar particle events and high energy cosmic radiation can cause serious damage to DNA and other biomolecules. The results can cause mutation, cellular damage or death, leading to health consequences of acute radiation damage or long-term health consequences such as increased cancer risk. Space Biophysics is the study and utilization of physical changes in space that cause changes in biological systems. The unique physical environment in space has been used successfully to grow high-quality protein crystals and 3D tissue cultures that could not be grown in the presence of unidirectional gravitational acceleration here on Earth. All biological processes that change in space have their root in a biophysical alteration due to microgravity and/or the radiation environment of space. In order to fully-understand the risks to human health in space and to fully-understand how humans, plants, animals and microbes can safely and effectively travel and eventually live for long periods beyond the protective environment of Earth, the biophysical properties underlying these changes must be studied, characterized and understood. This lecture reviews the current state of NASA biophysics research accomplishments and identifies future trends and challenges for biophysics research on the International Space Station and beyond.

  1. Space plasma branch at NRL

    NASA Astrophysics Data System (ADS)

    The Naval Research Laboratory (Washington, D.C.) formed the Space Plasma Branch within its Plasma Physics Division on July 1. Vithal Patel, former Program Director of Magnetospheric Physics, National Science Foundation, also joined NRL on the same date as Associate Superintendent of the Plasma Physics Division. Barret Ripin is head of the newly organized branch. The Space Plasma branch will do basic and applied space plasma research using a multidisciplinary approach. It consolidates traditional rocket and satellite space experiments, space plasma theory and computation, with laboratory space-related experiments. About 40 research scientists, postdoctoral fellows, engineers, and technicians are divided among its five sections. The Theory and Computation sections are led by Joseph Huba and Joel Fedder, the Space Experiments section is led by Paul Rodriguez, and the Pharos Laser Facility and Laser Experiments sections are headed by Charles Manka and Jacob Grun.

  2. Space Science at Los Alamos National Laboratory

    NASA Astrophysics Data System (ADS)

    Smith, Karl

    2017-09-01

    The Space Science and Applications group (ISR-1) in the Intelligence and Space Research (ISR) division at the Los Alamos National Laboratory lead a number of space science missions for civilian and defense-related programs. In support of these missions the group develops sensors capable of detecting nuclear emissions and measuring radiations in space including γ-ray, X-ray, charged-particle, and neutron detection. The group is involved in a number of stages of the lifetime of these sensors including mission concept and design, simulation and modeling, calibration, and data analysis. These missions support monitoring of the atmosphere and near-Earth space environment for nuclear detonations as well as monitoring of the local space environment including space-weather type events. Expertise in this area has been established over a long history of involvement with cutting-edge projects continuing back to the first space based monitoring mission Project Vela. The group's interests cut across a large range of topics including non-proliferation, space situational awareness, nuclear physics, material science, space physics, astrophysics, and planetary physics.

  3. The influence of neighbourhood green space on children's physical activity and screen time: findings from the longitudinal study of Australian children.

    PubMed

    Sanders, Taren; Feng, Xiaoqi; Fahey, Paul P; Lonsdale, Chris; Astell-Burt, Thomas

    2015-09-30

    It is often hypothesised that neighbourhood green space may help prevent well-known declines in physical activity and increases in sedentary behaviour that occur across childhood. As most studies in this regard are cross-sectional, the purpose of our study was to use longitudinal data to examine whether green space promotes active lifestyles as children grow older. Data came from participants (n = 4983; age = 4-5) of the Longitudinal Study of Australian Children, a nationally representative study on health and child development. Physical activity and screen time were measured biennially (2004-2012) using questionnaires and time use diaries. Quantity of neighbourhood green space was objectively measured using Australian Bureau of Statistics mesh block data for each participant's statistical area level 2. Multilevel regression was used to test for associations between physical activity and screen time with green space quantity, adjusting for socio-economic confounders. Boys living in areas with 10% more neighbourhood green space had a: 7% (95% CI = 1.02, 1.13) greater odds of choosing physically active pastimes; 8% (95 % CI = 0.85, 1.00) lower odds of not enjoying physical activity; 2.3 min reduction in weekend television viewing (95% CI = -4.00, -0.69); and 7% (95% CI = 1.02; 1.12) and 9% (95% CI = 1.03; 1.15) greater odds of meeting physical activity guidelines on weekdays and weekends, respectively. No statistically (or practically) significant results were observed for girls. Current provisions of neighbourhood green space may be more amenable to promoting active lifestyles among boys than girls. Research is needed to explore what types of green space promote active lifestyles in all children.

  4. Inner space/outer space - The interface between cosmology and particle physics

    NASA Astrophysics Data System (ADS)

    Kolb, Edward W.; Turner, Michael S.; Lindley, David; Olive, Keith; Seckel, David

    A collection of papers covering the synthesis between particle physics and cosmology is presented. The general topics addressed include: standard models of particle physics and cosmology; microwave background radiation; origin and evolution of large-scale structure; inflation; massive magnetic monopoles; supersymmetry, supergravity, and quantum gravity; cosmological constraints on particle physics; Kaluza-Klein cosmology; and future directions and connections in particle physics and cosmology.

  5. The association between objectively measured physical activity and life-space mobility among older people.

    PubMed

    Tsai, L-T; Portegijs, E; Rantakokko, M; Viljanen, A; Saajanaho, M; Eronen, J; Rantanen, T

    2015-08-01

    The purpose of this cross-sectional study was to investigate the association between objectively measured physical activity and life-space mobility in community-dwelling older people. Life-space refers to the spatial area a person purposefully moves through in daily life (bedroom, home, yard, neighborhood, town, and beyond) and life-space mobility to the frequency of travel and the help needed when moving through different life-space areas. The study population comprised community-living 75- to 90-year-old people {n = 174; median age 79.7 [interquartile range (IQR) 7.1]}, participating in the accelerometer substudy of Life-Space Mobility in Old Age (LISPE) project. Step counts and activity time were measured by an accelerometer (Hookie "AM20 Activity Meter") for 7 days. Life-space mobility was assessed with Life-Space Assessment (LSA) questionnaire. Altogether, 16% had a life-space area restricted to the neighborhood when moving independently. Participants with a restricted life space were less physically active and about 70% of them had exceptionally low values in daily step counts (≤ 615 steps) and moderate activity time (≤ 6.8 min). Higher step counts and activity time correlated positively with life-space mobility. Prospective studies are needed to clarify the temporal order of low physical activity level and restriction in life-space mobility. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Two Years of the STEREO Heliospheric Imagers: Invited Review

    DTIC Science & Technology

    2009-01-01

    impact of CMEs and CIRs on planets. The very nature of this area of research—which brings together aspects of solar physics, space -environmentphysics...Include area code) Standard Form 298 (Rev 8/98) Prescribed by ANSI Sid Z39 18 13. SUPPLEMENTARY NOTES (Continued) 1. Space Science and Technology...Department, STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire, 0X11OQX UK. 2. Space Environment Physics Group, School of Physics

  7. A Proposal to Study the Scientific Uses of Solar Electric Propulsion for Space Physics Missions

    NASA Technical Reports Server (NTRS)

    Kurth, William S.

    1999-01-01

    This effort was for the participation of Dr. William S. Kurth in the study of the application of spacecraft using solar electric propulsion (SEP) for a range of space physics missions. This effort included the participation of Dr. Kurth in the Tropix Science Definition Team but also included the generalization to various space physics and planetary missions, including specific Explorer mission studies.

  8. Orbit-Attitude Changes of Objects in Near Earth Space Induced by Natural Charging

    DTIC Science & Technology

    2017-05-02

    depends upon Earth’s magnetosphere. Typically, magneto-sphere models can be grouped under two classes: statistical and physics -based. The Physics ...models were primarily physics -based due to unavailability of sufficient space-data, but over the last three decades, with the availability of huge...Attitude Determination and Control,” Astrophysics and Space Sci- ence Library, Vol. 73, D. Reidel Publishing Company, London, 1978 [17] Fairfield

  9. Spacelab

    NASA Image and Video Library

    1983-11-28

    A Space Shuttle mission STS-9 onboard view show's Spacelab-1 (SL-1) module in orbiter Columbia's payload bay. Spacelab-1 was a cooperative venture of NASA and the European Space Agency. Scientists from eleven European nations plus Canada, Japan and the U.S. provided instruments and experimental procedures for over 70 different investigations in five research areas of disciplines: astronomy and solar physics, space plasma physics, atmospheric physics and Earth observations, life sciences and materials science.

  10. The Space-Time Topography of English Speakers

    ERIC Educational Resources Information Center

    Duman, Steve

    2016-01-01

    English speakers talk and think about Time in terms of physical space. The past is behind us, and the future is in front of us. In this way, we "map" space onto Time. This dissertation addresses the specificity of this physical space, or its topography. Inspired by languages like Yupno (Nunez, et al., 2012) and Bamileke-Dschang (Hyman,…

  11. Promoting Physical Activity Through the Shared Use of School Recreational Spaces: A Policy Statement From the American Heart Association

    PubMed Central

    Young, Deborah R.; Spengler, John O.; Frost, Natasha; Evenson, Kelly R.; Vincent, Jeffrey M.; Whitsel, Laurie

    2014-01-01

    Most Americans are not sufficiently physically active, even though regular physical activity improves health and reduces the risk of many chronic diseases. Those living in rural, non-White, and lower-income communities often have insufficient access to places to be active, which can contribute to their lower level of physical activity. The shared use of school recreational facilities can provide safe and affordable places for communities. Studies suggest that challenges to shared use include additional cost, liability protection, communication among constituencies interested in sharing space, and decision-making about scheduling and space allocation. This American Heart Association policy statement has provided recommendations for federal, state, and local decision-makers to support and expand opportunities for physical activity in communities through the shared use of school spaces. PMID:24134355

  12. Promoting physical activity through the shared use of school recreational spaces: a policy statement from the American Heart Association.

    PubMed

    Young, Deborah R; Spengler, John O; Frost, Natasha; Evenson, Kelly R; Vincent, Jeffrey M; Whitsel, Laurie

    2014-09-01

    Most Americans are not sufficiently physically active, even though regular physical activity improves health and reduces the risk of many chronic diseases. Those living in rural, non-White, and lower-income communities often have insufficient access to places to be active, which can contribute to their lower level of physical activity. The shared use of school recreational facilities can provide safe and affordable places for communities. Studies suggest that challenges to shared use include additional cost, liability protection, communication among constituencies interested in sharing space, and decision-making about scheduling and space allocation. This American Heart Association policy statement has provided recommendations for federal, state, and local decision-makers to support and expand opportunities for physical activity in communities through the shared use of school spaces.

  13. News Teaching: The epiSTEMe project: KS3 maths and science improvement Field trip: Pupils learn physics in a stately home Conference: ShowPhysics welcomes fun in Europe Student numbers: Physics numbers increase in UK Tournament: Physics tournament travels to Singapore Particle physics: Hadron Collider sets new record Astronomy: Take your classroom into space Forthcoming Events

    NASA Astrophysics Data System (ADS)

    2010-05-01

    Teaching: The epiSTEMe project: KS3 maths and science improvement Field trip: Pupils learn physics in a stately home Conference: ShowPhysics welcomes fun in Europe Student numbers: Physics numbers increase in UK Tournament: Physics tournament travels to Singapore Particle physics: Hadron Collider sets new record Astronomy: Take your classroom into space Forthcoming Events

  14. Plasma physics and the 2013-2022 decadal survey in solar and space physics

    NASA Astrophysics Data System (ADS)

    Baker, Daniel N.

    2016-11-01

    The U.S. National Academies established in 2011 a steering committee to develop a comprehensive strategy for solar and space physics research. This updated and extended the first (2003) solar and space physics decadal survey. The latest decadal study implemented a 2008 Congressional directive to NASA for the fields of solar and space physics, but also addressed research in other federal agencies. The new survey broadly canvassed the fields of research to determine the current state of the discipline, identified the most important open scientific questions, and proposed the measurements and means to obtain them so as to advance the state of knowledge during the years 2013-2022. Research in this field has sought to understand: dynamical behaviour of the Sun and its heliosphere; properties of the space environments of the Earth and other solar system bodies; multiscale interaction between solar system plasmas and the interstellar medium; and energy transport throughout the solar system and its impact on the Earth and other solar system bodies. Research in solar and space plasma processes using observation, theory, laboratory studies, and numerical models has offered the prospect of understanding this interconnected system well enough to develop a predictive capability for operational support of civil and military space systems. We here describe the recommendations and strategic plans laid out in the 2013-2022 decadal survey as they relate to measurement capabilities and plasma physical research. We assess progress to date. We also identify further steps to achieve the Survey goals with an emphasis on plasma physical aspects of the program.

  15. Electron temperature and density probe for small aeronomy satellites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyama, K.-I.; Institute of Space and Plasma Sciences, National Cheng Kung University, Tainan, Taiwan; International Center for Space Weather Study and education, Kyushu University, Fukuoka

    2015-08-15

    A compact and low power consumption instrument for measuring the electron density and temperature in the ionosphere has been developed by modifying the previously developed Electron Temperature Probe (ETP). A circuit block which controls frequency of the sinusoidal signal is added to the ETP so that the instrument can measure both T{sub e} in low frequency mode and N{sub e} in high frequency mode from the floating potential shift of the electrode. The floating potential shift shows a minimum at the upper hybrid resonance frequency (f{sub UHR}). The instrument which is named “TeNeP” can be used for tiny satellites whichmore » do not have enough conductive surface area for conventional DC Langmuir probe measurements. The instrument also eliminates the serious problems associated with the contamination of satellite surface as well as the sensor electrode.« less

  16. Heliophysics: Active Stars, their Astrospheres, and Impacts on Planetary Environments

    NASA Astrophysics Data System (ADS)

    Schrijver, C. J.; Bagenal, F.; Sojka, J. J.

    2016-04-01

    Preface; 1. Introduction Carolus J. Schrijver, Frances Bagenal and Jan J. Sojka; 2. Solar explosive activity throughout the evolution of the Solar System Rachel Osten; 3. Astrospheres, stellar winds, and the interstellar medium Brian Wood and Jeffrey L. Linsky; 4. Effects of stellar eruptions throughout astrospheres Ofer Cohen; 5. Characteristics of planetary systems Debra Fischer and Ji Wang; 6. Planetary dynamos: updates and new frontiers Sabine Stanley; 7. Climates of terrestrial planets David Brain; 8. Upper atmospheres of the giant planets Luke Moore, Tom Stallard and Marina Garland; 9. Aeronomy of terrestrial upper atmospheres David E. Siskind and Stephen W. Bougher; 10. Moons, asteroids, and comets interacting with their surroundings Margaret G. Kivelson; 11. Dusty plasmas Mihály Horányi; 12. Energetic-particle environments in the Solar System Norbert Krupp; 13. Heliophysics with radio scintillation and occultation Mario M. Bisi; Appendix 1. Authors and editors; List of illustrations; List of tables; References; Index.

  17. The LPSP instrument on OSO 8. II - In-flight performance and preliminary results

    NASA Technical Reports Server (NTRS)

    Bonnet, R. M.; Lemaire, P.; Vial, J. C.; Artzner, G.; Gouttebroze, P.; Jouchoux, A.; Vidal-Madjar, A.; Leibacher, J. W.; Skumanich, A.

    1978-01-01

    The paper describes the in-flight performance for the first 18 months of operation of the LPSP (Laboratoire de Physique Stellaire et Planetaire) instrument incorporated in the OSO 8 launched June 1975. By means of the instrument, an absolute pointing accuracy of nearly one second was achieved in orbit during real-time operations. The instrument uses a Cassegrain telescope and a spectrometer simultaneously observing six wavelengths. In-flight performance is discussed with attention to angular resolution, spectral resolution, dispersion and grating mechanism (spectral scanner) stability, scattered light background and dark current, photometric standardization, and absolute calibration. Real-time operation and problems are considered with reference to pointing system problems, target acquisition, and L-alpha modulation. Preliminary results involving the observational program, quiet sun and chromospheric studies, quiet chromospheric oscillation and transients, sunspots and active regions, prominences, and aeronomy investigations are reported.

  18. International Geomagnetic Reference Field: the third generation.

    USGS Publications Warehouse

    Peddie, N.W.

    1982-01-01

    In August 1981 the International Association of Geomagnetism and Aeronomy revised the International Geomagnetic Reference Field (IGRF). It is the second revision since the inception of the IGRF in 1968. The revision extends the earlier series of IGRF models from 1980 to 1985, introduces a new series of definitive models for 1965-1976, and defines a provisional reference field for 1975- 1980. The revision consists of: 1) a model of the main geomagnetic field at 1980.0, not continuous with the earlier series of IGRF models together with a forecast model of the secular variation of the main field during 1980-1985; 2) definitive models of the main field at 1965.0, 1970.0, and 1975.0, with linear interpolation of the model coefficients specified for intervening dates; and 3) a provisional reference field for 1975-1980, defined as the linear interpolation of the 1975 and 1980 main-field models.-from Author

  19. A critical note on the IAGA-endorsed Polar Cap (PC) indices: excessive excursions in the real-time index values

    NASA Astrophysics Data System (ADS)

    Stauning, Peter

    2018-04-01

    The Polar Cap (PC) indices were approved by the International Association for Geomagnetism and Aeronomy (IAGA) in 2013 and made available at the web portal http://pcindex.org holding prompt (real-time) as well as archival index values. The present note provides the first reported examination of the validity of the IAGA-endorsed method to generate real-time PC index values. It is demonstrated that features of the derivation procedure defined by Janzhura and Troshichev (2011) may cause considerable excursions in the real-time PC index values compared to the final index values. In examples based on occasional downloads of index values, the differences between real-time and final values of PC indices were found to exceed 3 mV m-1, which is a magnitude level that may indicate (or hide) strong magnetic storm activity.

  20. A Mars Riometer: Antenna Considerations

    NASA Technical Reports Server (NTRS)

    Fry, Craig D.

    2001-01-01

    This is the final report on NASA Grant NAG5-9706. This project explored riometer (relative ionospheric opacity meter) antenna designs that would be practical for a Mars surface or balloon mission. The riometer is an important radio science instrument for terrestrial aeronomy investigations. The riometer measures absorption of cosmic radio waves by the overhead ionosphere. Studies have shown the instrument should work well on Mars, which has an appreciable daytime ionosphere. There has been concern that the required radio receiver antenna (with possibly a 10 meter scale size) would be too large or too difficult to deploy on Mars. This study addresses those concerns and presents several antenna designs and deployment options. It is found that a Mars balloon would provide an excellent platform for the riometer antenna. The antenna can be incorporated into the envelope design, allowing self-deployment of the antenna as the balloon inflates.

  1. The Ionosphere's Pocket Litter: Exploiting Crowd-Sourced Observations

    NASA Astrophysics Data System (ADS)

    Miller, E. S.; Frissell, N. A.; Kaeppler, S. R.; Demajistre, R.; Knuth, A. A.

    2015-12-01

    One of the biggest challenges faced in developing and testing our understanding of the ionosphere is acquiring data that characterizes the latitudinal and longitudinal variability of the ionosphere. While there are extensive networks of ground sites that sample the vertical distribution, we have rather poor coverage over the oceans and in parts of the southern hemisphere. Our ability to validate the ionospheric models is limited by the lack of point measurements and those measurements that essentially constitute characterization of horizontal gradients. In this talk, we discuss and demonstrate the use of various types of crowd-sourced information that enables us to extend our coverage over these regions. We will discuss new sources of these data, concepts for new experiments and the use of these data in assimilative models. We note that there are new, low cost options for obtaining data that broaden the participation beyond the aeronomy/ionospheric community.

  2. Research and technology, fiscal year 1982

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Advanced studies are reviewed. Atmospheric sciences, magnetospheric physics, solar physics, gravitational physics, astronomy, and materials processing in space comprise the research programs. Large space systems, propulsion technology, materials and processes, electrical/electronic systems, data bases/design criteria, and facilities development comprise the technology development activities.

  3. National Aeronautics and Space Administration Biological and Physical Research Enterprise Strategy

    NASA Technical Reports Server (NTRS)

    2003-01-01

    As the 21st century begins, NASA's new Vision and Mission focuses the Agency's Enterprises toward exploration and discovery.The Biological and Physical Research Enterprise has a unique and enabling role in support of the Agency's Vision and Mission. Our strategic research seeks innovations and solutions to enable the extension of life into deep space safely and productively. Our fundamental research, as well as our research partnerships with industry and other agencies, allow new knowledge and tech- nologies to bring improvements to life on Earth. Our interdisciplinary research in the unique laboratory of microgravity addresses opportunities and challenges on our home planet as well as in space environments. The Enterprise maintains a key role in encouraging and engaging the next generation of explorers from primary school through the grad- uate level via our direct student participation in space research.The Biological and Physical Research Enterprise encompasses three themes. The biological sciences research theme investigates ways to support a safe human presence in space. This theme addresses the definition and control of physiological and psychological risks from the space environment, including radiation,reduced gravity, and isolation. The biological sciences research theme is also responsible for the develop- ment of human support systems technology as well as fundamental biological research spanning topics from genomics to ecologies. The physical sciences research theme supports research that takes advantage of the space environment to expand our understanding of the fundamental laws of nature. This theme also supports applied physical sciences research to improve safety and performance of humans in space. The research partnerships and flight support theme establishes policies and allocates space resources to encourage and develop entrepreneurial partners access to space research.Working together across research disciplines, the Biological and Physical Research Enterprise is performing vital research and technology development to extend the reach of human space flight.

  4. Oblique propagation of monsoon gravity waves during the northern hemisphere 2007 summer

    NASA Astrophysics Data System (ADS)

    Thurairajah, Brentha; Siskind, David E.; Bailey, Scott M.; Carstens, Justin N.; Russell, James M.; Mlynczak, Martin G.

    2017-05-01

    We present a combination of satellite observation and high-resolution model output to understand monsoon convection as a source of high-latitude mesospheric gravity waves (GWs). The GWs generated over the Northern Hemisphere (NH) monsoon region during the 2007 summer and the role of the winds in focusing these GWs toward the high-latitude middle atmosphere are analyzed using the Sounding of the Atmosphere using Broadband Emission Radiometry/Thermosphere Ionosphere Mesosphere Energetics and Dynamics (SABER/TIMED) satellite temperature data and the high-resolution Navy Operational Global Atmospheric Prediction System-Advanced Level Physics High Altitude (NOGAPS/ALPHA) model results. In the NH, above the stratosphere, the monsoon GW Momentum Flux (GWMF) exhibits a poleward tilt that follows the slanted structure of the easterly jet. The correlation coefficients (>0.5) between the time series of NH tropical stratospheric GWMF and the global winds also have a slanted structure that coincide with the easterly jet, confirming the modeling theory that stratospheric monsoon GWs are refracted into the summer easterly jet and can reach the high-latitude mesosphere. Since Polar Mesospheric Clouds (PMCs) are sensitive indicators of changes in the polar summer mesosphere, we compared the time series of tropical stratospheric GWMF to the PMC occurrence frequency (OF) obtained from the Cloud Imaging and Particle Size/Aeronomy of Ice in the Mesosphere satellite data to assess the influence of this wave focusing in the mesosphere. There is a significant positive correlation between the high-latitude PMC OF and the tropical stratospheric GWMF suggesting a definite influence of monsoon GWs on the high-latitude mesosphere. The disagreement in correlation at the end of the PMC season is attributed to the enhancement of the quasi 5 day planetary wave dominating over the influence of monsoon GWs on PMCs.

  5. Inspire Your Students.

    ERIC Educational Resources Information Center

    Pine, William E.; Taylor, William W. L.

    1991-01-01

    Describes a science project, Interactive Space Physics Ionosphere Radio Experiments (INSPIRE), that allows students to work with physicists to address unanswered questions about the physics of space. (ZWH)

  6. Assessing the Associations Between Types of Green Space, Physical Activity, and Health Indicators Using GIS and Participatory Survey

    NASA Astrophysics Data System (ADS)

    Akpinar, A.

    2017-11-01

    This study explores whether specific types of green spaces (i.e. urban green spaces, forests, agricultural lands, rangelands, and wetlands) are associated with physical activity, quality of life, and cardiovascular disease prevalence. A sample of 8,976 respondents from the Behavioral Risk Factor Surveillance System, conducted in 2006 in Washington State across 291 zip-codes, was analyzed. Measures included physical activity status, quality of life, and cardiovascular disease prevalence (i.e. heart attack, angina, and stroke). Percentage of green spaces was derived from the National Land Cover Dataset and measured with Geographical Information System. Multilevel regression analyses were conducted to analyze the data while controlling for age, sex, race, weight, marital status, occupation, income, education level, and zip-code population and socio-economic situation. Regression results reveal that no green space types were associated with physical activity, quality of life, and cardiovascular disease prevalence. On the other hand, the analysis shows that physical activity was associated with general health, quality of life, and cardiovascular disease prevalence. The findings suggest that other factors such as size, structure and distribution (sprawled or concentrated, large or small), quality, and characteristics of green space might be important in general health, quality of life, and cardiovascular disease prevalence rather than green space types. Therefore, further investigations are needed.

  7. Gymnastics in Phase Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chao, Alexander Wu; /SLAC

    2012-03-01

    As accelerator technology advances, the requirements on accelerator beam quality become increasingly demanding. Facing these new demands, the topic of phase space gymnastics is becoming a new focus of accelerator physics R&D. In a phase space gymnastics, the beam's phase space distribution is manipulated and precision tailored to meet the required beam qualities. On the other hand, all realization of such gymnastics will have to obey accelerator physics principles as well as technological limitations. Recent examples of phase space gymnastics include Emittance exchanges, Phase space exchanges, Emittance partitioning, Seeded FELs and Microbunched beams. The emittance related topics of this listmore » are reviewed in this report. The accelerator physics basis, the optics design principles that provide these phase space manipulations, and the possible applications of these gymnastics, are discussed. This fascinating new field promises to be a powerful tool of the future.« less

  8. Autonomous perception and decision making in cyber-physical systems

    NASA Astrophysics Data System (ADS)

    Sarkar, Soumik

    2011-07-01

    The cyber-physical system (CPS) is a relatively new interdisciplinary technology area that includes the general class of embedded and hybrid systems. CPSs require integration of computation and physical processes that involves the aspects of physical quantities such as time, energy and space during information processing and control. The physical space is the source of information and the cyber space makes use of the generated information to make decisions. This dissertation proposes an overall architecture of autonomous perception-based decision & control of complex cyber-physical systems. Perception involves the recently developed framework of Symbolic Dynamic Filtering for abstraction of physical world in the cyber space. For example, under this framework, sensor observations from a physical entity are discretized temporally and spatially to generate blocks of symbols, also called words that form a language. A grammar of a language is the set of rules that determine the relationships among words to build sentences. Subsequently, a physical system is conjectured to be a linguistic source that is capable of generating a specific language. The proposed technology is validated on various (experimental and simulated) case studies that include health monitoring of aircraft gas turbine engines, detection and estimation of fatigue damage in polycrystalline alloys, and parameter identification. Control of complex cyber-physical systems involve distributed sensing, computation, control as well as complexity analysis. A novel statistical mechanics-inspired complexity analysis approach is proposed in this dissertation. In such a scenario of networked physical systems, the distribution of physical entities determines the underlying network topology and the interaction among the entities forms the abstract cyber space. It is envisioned that the general contributions, made in this dissertation, will be useful for potential application areas such as smart power grids and buildings, distributed energy systems, advanced health care procedures and future ground and air transportation systems.

  9. Natural world physical, brain operational, and mind phenomenal space-time

    NASA Astrophysics Data System (ADS)

    Fingelkurts, Andrew A.; Fingelkurts, Alexander A.; Neves, Carlos F. H.

    2010-06-01

    Concepts of space and time are widely developed in physics. However, there is a considerable lack of biologically plausible theoretical frameworks that can demonstrate how space and time dimensions are implemented in the activity of the most complex life-system - the brain with a mind. Brain activity is organized both temporally and spatially, thus representing space-time in the brain. Critical analysis of recent research on the space-time organization of the brain's activity pointed to the existence of so-called operational space-time in the brain. This space-time is limited to the execution of brain operations of differing complexity. During each such brain operation a particular short-term spatio-temporal pattern of integrated activity of different brain areas emerges within related operational space-time. At the same time, to have a fully functional human brain one needs to have a subjective mental experience. Current research on the subjective mental experience offers detailed analysis of space-time organization of the mind. According to this research, subjective mental experience (subjective virtual world) has definitive spatial and temporal properties similar to many physical phenomena. Based on systematic review of the propositions and tenets of brain and mind space-time descriptions, our aim in this review essay is to explore the relations between the two. To be precise, we would like to discuss the hypothesis that via the brain operational space-time the mind subjective space-time is connected to otherwise distant physical space-time reality.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emmanuel, Glory Ruth; Silva, Austin Ray

    Sandia Labs has corporate, lab-wide efforts to enhance the research environment as well as improve physical space. However, these two efforts are usually done in isolation. The integration of physical space design with the nurturing of what we call psychosocial space can foster more efficient and effective creativity, innovation, collaboration, and performance. This paper presents a brief literature review on how academia and industry are studying the integration of physical and psychosocial space and focuses on the efforts that we, the authors, have made to improve the research environment in the Cyber Engineering Research Lab (CERL), home to Group 1460.more » Interviews with subject matter experts from Silicon Valley and the University of New Mexico plus changes to actual spaces in CERL provided us with six lessons learned when integrating physical and psychosocial space. We describe these six key takeaways in hopes that Sandia will see this area as an evolving research capability that Sandia can both contribute to and benefit from.« less

  11. The extent of visual space inferred from perspective angles

    PubMed Central

    Erkelens, Casper J.

    2015-01-01

    Retinal images are perspective projections of the visual environment. Perspective projections do not explain why we perceive perspective in 3-D space. Analysis of underlying spatial transformations shows that visual space is a perspective transformation of physical space if parallel lines in physical space vanish at finite distance in visual space. Perspective angles, i.e., the angle perceived between parallel lines in physical space, were estimated for rails of a straight railway track. Perspective angles were also estimated from pictures taken from the same point of view. Perspective angles between rails ranged from 27% to 83% of their angular size in the retinal image. Perspective angles prescribe the distance of vanishing points of visual space. All computed distances were shorter than 6 m. The shallow depth of a hypothetical space inferred from perspective angles does not match the depth of visual space, as it is perceived. Incongruity between the perceived shape of a railway line on the one hand and the experienced ratio between width and length of the line on the other hand is huge, but apparently so unobtrusive that it has remained unnoticed. The incompatibility between perspective angles and perceived distances casts doubt on evidence for a curved visual space that has been presented in the literature and was obtained from combining judgments of distances and angles with physical positions. PMID:26034567

  12. How can laboratory plasma experiments contribute to space and &astrophysics?

    NASA Astrophysics Data System (ADS)

    Yamada, M.

    Plasma physics plays key role in a wide range of phenomena in the universe, from laboratory plasmas to the magnetosphere, the solar corona, and to the tenuous interstellar and intergalactic gas. Despite the huge difference in physical scales, there are striking similarities in plasma behavior of laboratory and space plasmas. Similar plasma physics problems have been investigated independently by both laboratory plasma physicists and astrophysicists. Since 1991, cross fertilization has been increased among laboratory plasma physicists and space physicists through meeting such as IPELS [Interrelationship between Plasma Experiments in the Laboratory and Space] meeting. The advances in laboratory plasma physics, along with the recent surge of astronomical data from satellites, make this moment ripe for research collaboration to further advance plasma physics and to obtain new understanding of key space and astrophysical phenomena. The recent NRC review of astronomy and astrophysics notes the benefit that can accrue from stronger connection to plasma physics. The present talk discusses how laboratory plasma studies can contribute to the fundamental understandings of the space and astrophysical phenomena by covering common key physics topics such as magnetic reconnection, dynamos, angular momentum transport, ion heating, and magnetic self-organization. In particular, it has recently been recognized that "physics -issue- dedicated" laboratory experiments can contribute significantly to the understanding of the fundamental physics for space-astrophysical phenomena since they can create fundamental physics processes in controlled manner and provide well-correlated plasma parameters at multiple plasma locations simultaneously. Such dedicated experiments not only can bring about better understanding of the fundamental physics processes but also can lead to findings of new physics principles as well as new ideas for fusion plasma confinement. Several dedicated experiments have provided the fundamental physics data for magnetic reconnection [1]. Linear plasma devices have been utilized to investigate Whistler waves and Alfven wave phenomena [2,3]. A rotating gallium disk experiment has been initiated to study magneto-rotational instability [4]. This talk also presents the most recent progress of these dedicated laboratory plasma research. 1. M. Yamada et al., Phys. Plasmas 4, 1936, (1997) 2. R. Stenzel, Phys. Rev. Lett. 65, 3001 (1991) 3. W. Gekelman et al, Plasma Phys. Contr. Fusion, v42, B15-B26, Suppl.12B (2000) 4. H. Ji, J. Goodman, A. Kageyama Mon. Not. R. Astron. Soc. 325, L1- (2001)

  13. 3DView: Space physics data visualizer

    NASA Astrophysics Data System (ADS)

    Génot, V.; Beigbeder, L.; Popescu, D.; Dufourg, N.; Gangloff, M.; Bouchemit, M.; Caussarieu, S.; Toniutti, J.-P.; Durand, J.; Modolo, R.; André, N.; Cecconi, B.; Jacquey, C.; Pitout, F.; Rouillard, A.; Pinto, R.; Erard, S.; Jourdane, N.; Leclercq, L.; Hess, S.; Khodachenko, M.; Al-Ubaidi, T.; Scherf, M.; Budnik, E.

    2018-04-01

    3DView creates visualizations of space physics data in their original 3D context. Time series, vectors, dynamic spectra, celestial body maps, magnetic field or flow lines, and 2D cuts in simulation cubes are among the variety of data representation enabled by 3DView. It offers direct connections to several large databases and uses VO standards; it also allows the user to upload data. 3DView's versatility covers a wide range of space physics contexts.

  14. NASA-HBCU Space Science and Engineering Research Forum Proceedings

    NASA Technical Reports Server (NTRS)

    Sanders, Yvonne D. (Editor); Freeman, Yvonne B. (Editor); George, M. C. (Editor)

    1989-01-01

    The proceedings of the Historically Black Colleges and Universities (HBCU) forum are presented. A wide range of research topics from plant science to space science and related academic areas was covered. The sessions were divided into the following subject areas: Life science; Mathematical modeling, image processing, pattern recognition, and algorithms; Microgravity processing, space utilization and application; Physical science and chemistry; Research and training programs; Space science (astronomy, planetary science, asteroids, moon); Space technology (engineering, structures and systems for application in space); Space technology (physics of materials and systems for space applications); and Technology (materials, techniques, measurements).

  15. Solo Life to Second Life: The Design of Physical and Virtual Learning Spaces Inspired by the Drama Classroom

    ERIC Educational Resources Information Center

    Nicholls, Jennifer; Philip, Robyn

    2012-01-01

    This paper explores the design of virtual and physical learning spaces developed for students of drama and theatre studies. What can we learn from the traditional drama workshop that will inform the design of drama and theatre spaces created in technology-mediated learning environments? The authors examine four examples of spaces created for…

  16. Inerton fields: very new ideas on fundamental physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krasnoholovets, Volodymyr

    2010-12-22

    Modern theories of everything, or theories of the grand unification of all physical interactions, try to describe the whole world starting from the first principles of quantum theory. However, the first principles operate with undetermined notions, such as the wave {psi}-function, particle, lepton and quark, de Broglie and Compton wavelengths, mass, electric charge, spin, electromagnetic field, photon, gravitation, physical vacuum, space, etc. From a logical point of view this means that such modern approach to the theory of everything is condemned to failure... Thus, what should we suggest to improve the situation? It seems quite reasonable to develop initially amore » theory of something, which will be able to clarify the major fundamental notions (listed above) that physics operates with every day. What would be a starting point in such approach? Of course a theory of space as such, because particles and all physical fields emerge just from space. After that, when a particle and fields (and hence the fields' carriers) are well defined and introduced in the well defined physical space, different kinds of interactions can be proposed and investigated. Moreover, we must also allow for a possible interaction of a created particle with the space that generated the appearance of the particle. The mathematical studies of Michel Bounias and the author have shown what the real physical space is, how the space is constituted, how it is arranged and what its elements are. Having constructed the real physical space we can then derive whatever we wish, in particular, such basic notions as mass, particle and charge. How are mechanics of such objects (a massive particle, a charged massive particle) organised? The appropriate theory of motion has been called a sub microscopic mechanics of particles, which is developed in the real physical space, not an abstract phase space, as conventional quantum mechanics does. A series of questions arise: can these two mechanics (submicroscopic and conventional quantum mechanics) be unified?, what can such unification bring new for us?, can such submicroscopic mechanics be a starting point for the derivation of the phenomenon of gravity?, can this new theory be a unified physical theory?, does the theory allow experimental verification? These major points have been clarified in detail. And, perhaps, the most intriguing aspect of the theory is the derivation of a new physical field associated with the notion of mass (or rather inertia of a particle, which has been called the inerton field and which represents a real sense of the particle's wave {psi}-function). This field emerges by analogy with the electromagnetic field associated with the notion of the electric charge. Yes, the postulated inerton field has being tested in a series of different experiments. Even more, the inerton field might have a number of practical applications...« less

  17. Kuipers works to remove the Marangoni Suface Fluid Physics Experiment

    NASA Image and Video Library

    2012-03-15

    ISS030-E-142784 (15 March 2012) --- European Space Agency astronaut Andre Kuipers, Expedition 30 flight engineer, works to remove the Marangoni Surface fluid physics experiment from the Fluid Physics Experiment Facility (FPEF) in the Kibo laboratory of the International Space Station.

  18. Kuipers works to remove the Marangoni Suface Fluid Physics Experiment

    NASA Image and Video Library

    2012-03-15

    ISS030-E-142785 (15 March 2012) --- European Space Agency astronaut Andre Kuipers, Expedition 30 flight engineer, works to remove the Marangoni Surface fluid physics experiment from the Fluid Physics Experiment Facility (FPEF) in the Kibo laboratory of the International Space Station.

  19. A summary of the OV1-19 satellite dose, depth dose, and linear energy transfer spectral measurements

    NASA Technical Reports Server (NTRS)

    Cervini, J. T.

    1972-01-01

    Measurements of the biophysical and physical parameters in the near earth space environment, specifically, the Inner Van Allen Belt are discussed. This region of space is of great interest to planners of the Skylab and the Space Station programs because of the high energy proton environment, especially during periods of increased solar activity. Many physical measurements of charged particle flux, spectra, and pitch angle distribution have been conducted and are programmed in the space radiation environment. Such predictions are not sufficient to accurately predict the effects of space radiations on critical biological and electronic systems operating in these environments. Some of the difficulties encountered in transferring from physical data to a prediction of the effects of space radiation on operational systems are discussed.

  20. The design and development of a space laboratory to conduct magnetospheric and plasma research

    NASA Technical Reports Server (NTRS)

    Rosen, A.

    1974-01-01

    A design study was conducted concerning a proposed shuttle-borne space laboratory for research on magnetospheric and plasma physics. A worldwide survey found two broad research disciplines of interest: geophysical studies of the dynamics and structure of the magnetosphere (including wave characteristics, wave-particle interactions, magnetospheric modifications, beam-plasma interactions, and energetic particles and tracers) and plasma physics studies (plasma physics in space, wake and sheath studies, and propulsion and devices). The Plasma Physics and Environmental Perturbation Laboratory (PPEPL) designed to perform experiments in these areas will include two 50-m booms and two maneuverable subsatellites, a photometer array, standardized proton, electron, and plasma accelerators, a high-powered transmitter for frequencies above 100 kHz, a low-power transmitter for VLF and below, and complete diagnostic packages. Problem areas in the design of a space plasma physics laboratory are indicated.

  1. Spacelab

    NASA Image and Video Library

    1983-01-01

    This photograph shows the Spacelab 1 module and pallet ready to be installed in the cargo bay of the Space Shuttle Orbiter Columbia at the Kennedy Space Center. The overall goal of the first Spacelab mission was to verify its Space performance through a variety of scientific experiments. The investigation selected for this mission tested the Spacelab hardware, flight and ground systems, and crew to demonstrate their capabilities for advanced research in space. However, Spacelab 1 was not merely a checkout flight or a trial run. Important research problems that required a laboratory in space were scheduled for the mission. Spacelab 1 was a multidisciplinary mission; that is, investigations were performed in several different fields of scientific research. These fields were Astronomy and Solar Physics, Space Plasma Physics, Atmospheric Physics and Earth Observations, Life Sciences, and Materials Science. Spacelab 1 was launched aboard the Space Shuttle Columbia (STS-9 mission) on November 28, 1983.

  2. Being with woman: claiming midwifery space.

    PubMed

    Hunter, Louise

    2015-03-01

    Being 'with woman' is characterised as presence, a spiritual concept which is nevertheless bound up with physical space. In this article, the work of the American philosopher Judith Butler is used to explore the interplay between space and relationships in midwifery practice. Butler argues that relationships based on mutual recognition and respect define the actions possible within physical space. In midwifery, being with woman creates a therapeutic space necessary for the wellbeing and empowerment of women and midwives alike.

  3. Undeveloped green space and free-time physical activity in 11 to 13-year-old children.

    PubMed

    Janssen, Ian; Rosu, Andrei

    2015-02-21

    Research on the association between the physical environment and physical activity in children has focused on built and developed features or total green space. The impact of natural, undeveloped green spaces is unknown. The objective of this study was to determine whether the presence of undeveloped green spaces in the home neighborhood are associated with physical activity in 11 to 13-year-olds. This was a cross-sectional study of grade 6 to 8 urban residing Canadian students who participated in the 2009/10 Health Behaviour in School-Aged Children survey. Children self-reported the frequency they participated in physical activity in their free-time outside of school hours. Geographic Information Systems (GIS) were used to assess the proportion of land area within 1 km of participants' homes that was devoted to publicly accessible meadows (i.e., field vegetated primarily by grass and other non-woody plants) and treed areas (i.e., field vegetated primarily by trees and shrubs). Ordinal logistic regression models were used to examine the relationships between the undeveloped green space areas and free-time physical activity. Several intrapersonal, family, and neighborhood environment factors were controlled for in these regression models. The proportion of neighborhood land covered by meadows was not associated with the physical activity outcome (p > 0.6). However, the proportion of neighborhood land covered by treed areas was independently associated with the physical activity outcome (p = 0.02). For each additional 5% increase in the proportion of neighborhood land covered by treed areas there was a corresponding 5% increase (95% confidence interval: 1-10% increase) in the relative odds of increasing free-time physical activity outside of school hours. The physical activity levels of 11 to 13-year-old children was associated with the amount of space in their home neighborhood devoted to treed areas.

  4. Spacelab to Space Station; Proceedings of the International Symposium on Spacelab 1 - Results, Implications and Perspectives, Naples and Capri, Italy, June 11-16, 1984

    NASA Technical Reports Server (NTRS)

    Napolitano, L. G. (Editor)

    1985-01-01

    Consideration is given to the scientific objectives of the Spacelab program, a review of data obtained during the STS-9/Spacelab 1 mission on board the Shuttle, and the coordination of future Spacelab research among participating European nations. Among the specific fields of study covered by Spacelab 1 were space plasma physics, materials and fluid sciences and technology, astronomy and solar physics, and atmospheric physics and earth observations. Consideration is also given to the legal aspects of space manufacturing activities, the role of private industry in space-based manufacturing ventures, plant production and breeding in space, and the development of remote sensing systems for use in a microgravity environment.

  5. Time and space: undergraduate Mexican physics in motion

    NASA Astrophysics Data System (ADS)

    Candela, Antonia

    2010-09-01

    This is an ethnographic study of the trajectories and itineraries of undergraduate physics students at a Mexican university. In this work learning is understood as being able to move oneself and, other things (cultural tools), through the space-time networks of a discipline (Nespor in Knowledge in motion: space, time and curriculum in undergraduate physics and management. Routledge Farmer, London, 1994). The potential of this socio-cultural perspective allows an analysis of how students are connected through extended spaces and times with an international core discipline as well as with cultural features related to local networks of power and construction. Through an example, I show that, from an actor-network-theory (Latour in Science in action. Harvard University Press, Cambridge, 1987), that in order to understand the complexities of undergraduate physics processes of learning you have to break classroom walls and take into account students' movements through complex spatial and temporal traces of the discipline of physics. Mexican professors do not give classes following one textbook but in a moment-to-moment open dynamism tending to include undergraduate students as actors in classroom events extending the teaching space-time of the classroom to the disciplinary research work of physics. I also find that Mexican undergraduate students show initiative and display some autonomy and power in the construction of their itineraries as they are encouraged to examine a variety of sources including contemporary research articles, unsolved physics problems, and even to participate in several physicists' spaces, as for example being speakers at the national congresses of physics. Their itineraries also open up new spaces of cultural and social practices, creating more extensive networks beyond those associated with a discipline. Some economic, historical and cultural contextual features of this school of sciences are analyzed in order to help understanding the particular way students are encouraged to develop their autonomy.

  6. Physical Sciences Research Priorities and Plans in OBPR

    NASA Technical Reports Server (NTRS)

    Trinh, Eugene

    2002-01-01

    This paper presents viewgraphs of physical sciences research priorities and plans at the Office of Biological and Physical Sciences Research (OBPR). The topics include: 1) Sixth Microgravity Fluid Physics and Transport Phenomena Conference; 2) Beneficial Characteristics of the Space Environment; 3) Windows of Opportunity for Research Derived from Microgravity; 4) Physical Sciences Research Program; 5) Fundamental Research: Space-based Results and Ground-based Applications; 6) Nonlinear Oscillations; and 7) Fundamental Research: Applications to Mission-Oriented Research.

  7. Solar and Space Physics: A Science for a Technological Society

    NASA Technical Reports Server (NTRS)

    2013-01-01

    From the interior of the Sun, to the upper atmosphere and near-space environment of Earth, and outward to a region far beyond Pluto where the Sun's influence wanes, advances during the past decade in space physics and solar physics the disciplines NASA refers to as heliophysics have yielded spectacular insights into the phenomena that affect our home in space. This report, from the National Research Council's (NRC's) Committee for a Decadal Strategy in Solar and Space Physics, is the second NRC decadal survey in heliophysics. Building on the research accomplishments realized over the past decade, the report presents a program of basic and applied research for the period 2013-2022 that will improve scientific understanding of the mechanisms that drive the Sun's activity and the fundamental physical processes underlying near-Earth plasma dynamics, determine the physical interactions of Earth's atmospheric layers in the context of the connected Sun-Earth system, and enhance greatly the capability to provide realistic and specific forecasts of Earth's space environment that will better serve the needs of society. Although the recommended program is directed primarily to NASA (Science Mission Directorate -- Heliophysics Division) and the National Science Foundation (NSF) (Directorate for Geosciences -- Atmospheric and Geospace Sciences) for action, the report also recommends actions by other federal agencies, especially the National Oceanic and Atmospheric Administration (NOAA) those parts of NOAA charged with the day-to-day (operational) forecast of space weather. In addition to the recommendations included in this summary, related recommendations are presented in the main text of the report.

  8. Stealing Zeus’s Thunder: Physical Space-Control Advantages Against Hostile Satellites

    DTIC Science & Technology

    2006-01-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP023956 TITLE: Stealing Zeus’s Thunder: Physical Space-Control Advantages ...e .d co ne t to a pj@naxwel af. ni Stealing eus’s Thunder Physical Space-Control Advantages against Hostile Satellites CAPT JOSEPH T. PAGE 11, USAF...and ICBM combat crew comander (Squadron Command Post) at he 741st Mi6sse Squadon, 91st Spae Wing, Minor AFB, North akota. 26 its advantage via active

  9. The NASA Microgravity Fluid Physics Program: Knowledge for Use on Earth and Future Space Missions

    NASA Technical Reports Server (NTRS)

    Kohl, Fred J.; Singh, Bhim S.; Alexander, J. Iwan; Shaw, Nancy J.; Hill, Myron E.; Gati, Frank G.

    2002-01-01

    Building on over four decades of research and technology development related to the behavior of fluids in low gravity environments, the current NASA Microgravity Fluid Physics Program continues the quest for knowledge to further understand and design better fluids systems for use on earth and in space. The purpose of the Fluid Physics Program is to support the goals of NASA's Biological and Physical Research Enterprise which seeks to exploit the space environment to conduct research and to develop commercial opportunities, while building the vital knowledge base needed to enable efficient and effective systems for protecting and sustaining humans during extended space flights. There are currently five major research areas in the Microgravity Fluid Physics Program: complex fluids, multiphase flows and phase change, interfacial phenomena, biofluid mechanics, and dynamics and instabilities. Numerous investigations into these areas are being conducted in both ground-based laboratories and facilities and in the flight experiments program. Most of the future NASA-sponsored fluid physics and transport phenomena studies will be carried out on the International Space Station in the Fluids Integrated Rack, in the Microgravity Science Glovebox, in EXPRESS racks, and in other facilities provided by international partners. This paper will present an overview of the near- and long-term visions for NASA's Microgravity Fluid Physics Research Program and brief descriptions of hardware systems planned to achieve this research.

  10. Ninth Conference on Space Simulation

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The papers presented in this conference provided an international dialogue and a meaningful exchange in the simulation of space environments as well as the evolution of these technological advances into other fields. The papers represent a significant contribution to the understanding of space simulation problems and the utilization of this knowledge. The topics of the papers include; spacecraft testing; facilities and test equipment; system and subsystem test; life sciences, medicine and space; physical environmental factors; chemical environmental factors; contamination; space physics; and thermal protection.

  11. Studying the unfolding process of protein G and protein L under physical property space

    PubMed Central

    Zhao, Liling; Wang, Jihua; Dou, Xianghua; Cao, Zanxia

    2009-01-01

    Background The studies on protein folding/unfolding indicate that the native state topology is an important determinant of protein folding mechanism. The folding/unfolding behaviors of proteins which have similar topologies have been studied under Cartesian space and the results indicate that some proteins share the similar folding/unfolding characters. Results We construct physical property space with twelve different physical properties. By studying the unfolding process of the protein G and protein L under the property space, we find that the two proteins have the similar unfolding pathways that can be divided into three types and the one which with the umbrella-shape represents the preferred pathway. Moreover, the unfolding simulation time of the two proteins is different and protein L unfolding faster than protein G. Additionally, the distributing area of unfolded state ensemble of protein L is larger than that of protein G. Conclusion Under the physical property space, the protein G and protein L have the similar folding/unfolding behaviors, which agree with the previous results obtained from the studies under Cartesian coordinate space. At the same time, some different unfolding properties can be detected easily, which can not be analyzed under Cartesian coordinate space. PMID:19208146

  12. Social Distance Evaluation in Human Parietal Cortex

    PubMed Central

    Yamakawa, Yoshinori; Kanai, Ryota; Matsumura, Michikazu; Naito, Eiichi

    2009-01-01

    Across cultures, social relationships are often thought of, described, and acted out in terms of physical space (e.g. “close friends” “high lord”). Does this cognitive mapping of social concepts arise from shared brain resources for processing social and physical relationships? Using fMRI, we found that the tasks of evaluating social compatibility and of evaluating physical distances engage a common brain substrate in the parietal cortex. The present study shows the possibility of an analytic brain mechanism to process and represent complex networks of social relationships. Given parietal cortex's known role in constructing egocentric maps of physical space, our present findings may help to explain the linguistic, psychological and behavioural links between social and physical space. PMID:19204791

  13. Astro Academy: Principia--A Suite of Physical Science Demonstrations Conducted Aboard the ISS

    ERIC Educational Resources Information Center

    McMurray, Andy

    2016-01-01

    Astro Academy: Principia is an education programme developed by the UK National Space Academy for the UK Space Agency (UKSA) and the European Space Agency (ESA). The Academy designed, constructed, flight-qualified and developed experimental procedures for a suite of physics and chemistry demonstration experiments that were conducted by ESA…

  14. Time and Space: Undergraduate Mexican Physics in Motion

    ERIC Educational Resources Information Center

    Candela, Antonia

    2010-01-01

    This is an ethnographic study of the trajectories and itineraries of undergraduate physics students at a Mexican university. In this work learning is understood as being able to move oneself and, other things (cultural tools), through the space-time networks of a discipline (Nespor in Knowledge in motion: space, time and curriculum in…

  15. Space-time-modulated stochastic processes

    NASA Astrophysics Data System (ADS)

    Giona, Massimiliano

    2017-10-01

    Starting from the physical problem associated with the Lorentzian transformation of a Poisson-Kac process in inertial frames, the concept of space-time-modulated stochastic processes is introduced for processes possessing finite propagation velocity. This class of stochastic processes provides a two-way coupling between the stochastic perturbation acting on a physical observable and the evolution of the physical observable itself, which in turn influences the statistical properties of the stochastic perturbation during its evolution. The definition of space-time-modulated processes requires the introduction of two functions: a nonlinear amplitude modulation, controlling the intensity of the stochastic perturbation, and a time-horizon function, which modulates its statistical properties, providing irreducible feedback between the stochastic perturbation and the physical observable influenced by it. The latter property is the peculiar fingerprint of this class of models that makes them suitable for extension to generic curved-space times. Considering Poisson-Kac processes as prototypical examples of stochastic processes possessing finite propagation velocity, the balance equations for the probability density functions associated with their space-time modulations are derived. Several examples highlighting the peculiarities of space-time-modulated processes are thoroughly analyzed.

  16. Highlights from the First Ever Demographic Study of Solar Physics, Space Physics, and Upper Atmospheric Physics

    NASA Astrophysics Data System (ADS)

    Moldwin, M.; Morrow, C. A.; White, S. C.; Ivie, R.

    2014-12-01

    Members of the Education & Workforce Working Group and the American Institute of Physics (AIP) conducted the first ever National Demographic Survey of working professionals for the 2012 National Academy of Sciences Solar and Space Physics Decadal Survey to learn about the demographics of this sub-field of space science. The instrument contained questions for participants on: the type of workplace; basic demographic information regarding gender and minority status, educational pathways (discipline of undergrad degree, field of their PhD), how their undergraduate and graduate student researchers are funded, participation in NSF and NASA funded spaceflight missions and suborbital programs, and barriers to career advancement. Using contact data bases from AGU, the American Astronomical Society's Solar Physics Division (AAS-SPD), attendees of NOAA's Space Weather Week and proposal submissions to NSF's Atmospheric, Geospace Science Division, the AIP's Statistical Research Center cross correlated and culled these data bases resulting in 2776 unique email addresses of US based working professionals. The survey received 1305 responses (51%) and generated 125 pages of single space answers to a number of open-ended questions. This talk will summarize the highlights of this first-ever demographic survey including findings extracted from the open-ended responses regarding barriers to career advancement which showed significant gender differences.

  17. Physics issues of gamma ray burst emissions

    NASA Technical Reports Server (NTRS)

    Liang, Edison

    1987-01-01

    The critical physics issues in the interpretation of gamma-ray-burst spectra are reviewed. An attempt is made to define the emission-region parameter space satisfying the maximum number of observational and theoretical constraints. Also discussed are the physical mechanisms responsible for the bursts that are most consistent with the above parameter space.

  18. Solar Physics in the Space Age.

    ERIC Educational Resources Information Center

    Dittmer, Phil D.; And Others

    This amply illustrated booklet provides a physical description of the sun as well as present and future tasks for solar physics study. The first chapter, an introduction, describes the history of solar study, solar study in space, and the relevance of solar study. The second chapter describes the five heliographic domains including the interior,…

  19. Phase space deformations in phantom cosmology

    NASA Astrophysics Data System (ADS)

    López, J. L.; Sabido, M.; Yee-Romero, C.

    2018-03-01

    We discuss the physical consequences of general phase space deformations on the minisuperspace of phantom cosmology. Based on the principle of physically equivalent descriptions in the deformed theory, we investigate for what values of the deformation parameters the arising descriptions are physically equivalent. We also construct and solve the quantum model and derive the semiclassical dynamics.

  20. The impact of interventions to promote physical activity in urban green space: a systematic review and recommendations for future research.

    PubMed

    Hunter, Ruth F; Christian, Hayley; Veitch, Jenny; Astell-Burt, Thomas; Hipp, J Aaron; Schipperijn, Jasper

    2015-01-01

    Evidence is mounting on the association between the built environment and physical activity (PA) with a call for intervention research. A broader approach which recognizes the role of supportive environments that can make healthy choices easier is required. A systematic review was undertaken to assess the effectiveness of interventions to encourage PA in urban green space. Five databases were searched independently by two reviewers using search terms relating to 'physical activity', 'urban green space' and 'intervention' in July 2014. Eligibility criteria included: (i) intervention to encourage PA in urban green space which involved either a physical change to the urban green space or a PA intervention to promote use of urban green space or a combination of both; and (ii) primary outcome of PA. Of the 2405 studies identified, 12 were included. There was some evidence (4/9 studies showed positive effect) to support built environment only interventions for encouraging use and increasing PA in urban green space. There was more promising evidence (3/3 studies showed positive effect) to support PAprograms or PA programs combined with a physical change to the built environment, for increasing urban green space use and PA of users. Recommendations for future research include the need for longer term follow-up post-intervention, adequate control groups, sufficiently powered studies, and consideration of the social environment, which was identified as a significantly under-utilized resource in this area. Interventions that involve the use of PA programs combined with a physical change to the built environment are likely to have a positive effect on PA. Robust evaluations of such interventions are urgently required. The findings provide a platform to inform the design, implementation and evaluation of future urban green space and PAintervention research. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Evidence for Type Ia Supernova Diversity from Ultraviolet Observations with the Hubble Space Telescope

    DTIC Science & Technology

    2012-04-20

    Observational Cosmology , NASA Goddard Space Flight Center, Code 665, Greenbelt, MD 20771, USA 31 Enrico Fermi Institute, Department of Physics, and Kavli...Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA 32 Department of Physics and Astronomy, Rutgers, the State University...Austin, TX 78712, USA 59 Pittsburgh Particle Physics, Astrophysics, and Cosmology Center (Pitt-PACC), University of Pittsburgh, Pittsburgh, PA 15260, USA

  2. KSC-2012-6221

    NASA Image and Video Library

    2012-11-08

    CAPE CANAVERAL, Fla. -- Inside the Applied Physics Laboratory in the Operations and Checkout Building at NASA’s Kennedy Space Center in Florida, lead researcher Dr. Bob Youngquist demonstrates a technology developed for the Space Shuttle Program to a group of Society of Physics students. About 800 graduate and undergraduate physics students toured Kennedy facilities. A group of about 40 students toured laboratories in the Operations and Checkout Building and the EDL during their visit. The physics students were in Orlando for the 2012 Quadrennial Physics Congress. Photo credit: NASA/Cory Huston

  3. KSC-2012-6220

    NASA Image and Video Library

    2012-11-08

    CAPE CANAVERAL, Fla. -- Inside the Applied Physics Laboratory in the Operations and Checkout Building at NASA’s Kennedy Space Center in Florida, lead researcher Dr. Bob Youngquist describes technologies developed for the Space Shuttle Program to a group of Society of Physics students. About 800 graduate and undergraduate physics students toured Kennedy facilities. A group of about 40 students toured laboratories in the Operations and Checkout Building and the EDL during their visit. The physics students were in Orlando for the 2012 Quadrennial Physics Congress. Photo credit: NASA/Cory Huston

  4. Inertial frames and breakthrough propulsion physics

    NASA Astrophysics Data System (ADS)

    Millis, Marc G.

    2017-09-01

    The term ;Breakthrough Propulsion Physics; comes from the NASA project by that name which examined non-rocket space drives, gravity control, and faster-than-light travel. The focus here is on space drives and the related unsolved physics of inertial frames. A ;space drive; is a generic term encompassing any concept for using as-yet undiscovered physics to move a spacecraft instead of existing rockets, sails, or tethers. The collective state of the art spans mostly steps 1-3 of the scientific method: defining the problem, collecting data, and forming hypotheses. The key issues include (1) conservation of momentum, (2) absence of obvious reaction mass, and (3) the net-external thrusting requirement. Relevant open problems in physics include: (1) the sources and mechanisms of inertial frames, (2) coupling of gravitation to the other fundamental forces, and (3) the nature of the quantum vacuum. Rather than following the assumption that inertial frames are an immutable, intrinsic property of space, this paper revisits Mach's Principle, where it is posited that inertia is relative to the distant surrounding matter. This perspective allows conjectures that a space drive could impart reaction forces to that matter, via some as-yet undiscovered interaction with the inertial frame properties of space. Thought experiments are offered to begin a process to derive new hypotheses. It is unknown if this line of inquiry will be fruitful, but it is hoped that, by revisiting unsolved physics from a propulsion point of view, new insights will be gained.

  5. Physics of Colloids in Space: Flight Hardware Operations on ISS

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Bailey, Arthur E.; Jankovsky, Amy L.; Lorik, Tibor

    2002-01-01

    The Physics of Colloids in Space (PCS) experiment was launched on Space Shuttle STS-100 in April 2001 and integrated into EXpedite the PRocess of Experiments to Space Station Rack 2 on the International Space Station (ISS). This microgravity fluid physics investigation is being conducted in the ISS U.S. Lab 'Destiny' Module over a period of approximately thirteen months during the ISS assembly period from flight 6A through flight 9A. PCS is gathering data on the basic physical properties of simple colloidal suspensions by studying the structures that form. A colloid is a micron or submicron particle, be it solid, liquid, or gas. A colloidal suspension consists of these fine particles suspended in another medium. Common colloidal suspensions include paints, milk, salad dressings, cosmetics, and aerosols. Though these products are routinely produced and used, we still have much to learn about their behavior as well as the underlying properties of colloids in general. The long-term goal of the PCS investigation is to learn how to steer the growth of colloidal structures to create new materials. This experiment is the first part of a two-stage investigation conceived by Professor David Weitz of Harvard University (the Principal Investigator) along with Professor Peter Pusey of the University of Edinburgh (the Co-Investigator). This paper describes the flight hardware, experiment operations, and initial science findings of the first fluid physics payload to be conducted on ISS: The Physics of Colloids in Space.

  6. An Adaptive Mesh Algorithm: Mesh Structure and Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scannapieco, Anthony J.

    2016-06-21

    The purpose of Adaptive Mesh Refinement is to minimize spatial errors over the computational space not to minimize the number of computational elements. The additional result of the technique is that it may reduce the number of computational elements needed to retain a given level of spatial accuracy. Adaptive mesh refinement is a computational technique used to dynamically select, over a region of space, a set of computational elements designed to minimize spatial error in the computational model of a physical process. The fundamental idea is to increase the mesh resolution in regions where the physical variables are represented bymore » a broad spectrum of modes in k-space, hence increasing the effective global spectral coverage of those physical variables. In addition, the selection of the spatially distributed elements is done dynamically by cyclically adjusting the mesh to follow the spectral evolution of the system. Over the years three types of AMR schemes have evolved; block, patch and locally refined AMR. In block and patch AMR logical blocks of various grid sizes are overlaid to span the physical space of interest, whereas in locally refined AMR no logical blocks are employed but locally nested mesh levels are used to span the physical space. The distinction between block and patch AMR is that in block AMR the original blocks refine and coarsen entirely in time, whereas in patch AMR the patches change location and zone size with time. The type of AMR described herein is a locally refi ned AMR. In the algorithm described, at any point in physical space only one zone exists at whatever level of mesh that is appropriate for that physical location. The dynamic creation of a locally refi ned computational mesh is made practical by a judicious selection of mesh rules. With these rules the mesh is evolved via a mesh potential designed to concentrate the nest mesh in regions where the physics is modally dense, and coarsen zones in regions where the physics is modally sparse.« less

  7. Newton's Metaphysics of Space as God's Emanative Effect

    NASA Astrophysics Data System (ADS)

    Jacquette, Dale

    2014-09-01

    In several of his writings, Isaac Newton proposed that physical space is God's "emanative effect" or "sensorium," revealing something interesting about the metaphysics underlying his mathematical physics. Newton's conjectures depart from Plato and Aristotle's metaphysics of space and from classical and Cambridge Neoplatonism. Present-day philosophical concepts of supervenience clarify Newton's ideas about space and offer a portrait of Newton not only as a mathematical physicist but an independent-minded rationalist philosopher.

  8. Using the FLUKA Monte Carlo Code to Simulate the Interactions of Ionizing Radiation with Matter to Assist and Aid Our Understanding of Ground Based Accelerator Testing, Space Hardware Design, and Secondary Space Radiation Environments

    NASA Technical Reports Server (NTRS)

    Reddell, Brandon

    2015-01-01

    Designing hardware to operate in the space radiation environment is a very difficult and costly activity. Ground based particle accelerators can be used to test for exposure to the radiation environment, one species at a time, however, the actual space environment cannot be duplicated because of the range of energies and isotropic nature of space radiation. The FLUKA Monte Carlo code is an integrated physics package based at CERN that has been under development for the last 40+ years and includes the most up-to-date fundamental physics theory and particle physics data. This work presents an overview of FLUKA and how it has been used in conjunction with ground based radiation testing for NASA and improve our understanding of secondary particle environments resulting from the interaction of space radiation with matter.

  9. Teaching Reciprocal Space to Undergraduates via Theory and Code Components of an IPython Notebook

    ERIC Educational Resources Information Center

    Srnec, Matthew N.; Upadhyay, Shiv; Madura, Jeffrey D.

    2016-01-01

    In this technology report, a tool is provided for teaching reciprocal space to undergraduates in physical chemistry and materials science courses. Reciprocal space plays a vital role in understanding a material's electronic structure and physical properties. Here, we provide an example based on previous work in the "Journal of Chemical…

  10. Courses and Resources to Teach Space Physics to Standards

    NASA Astrophysics Data System (ADS)

    Reiff, P. H.

    2008-12-01

    We have created four courses for teachers, and inquiry-based materials to go with them, that embed space physics concepts while teaching Space Physics to National and State standards. The state of Texas recently adopted a "4x4" standard, which makes the "recommended" graduation requirement for high school students to include four science and four math courses. Space Physics is not specifically listed as a topic, but falls naturally as part of three of the Texas High School courses: "Physics", "Astronomy" and "Earth and Space Science", a new course whose syllabus is being decided now. The national standards which are most relevant at the high school level are "Change, Constancy and Measurement", "Motions and Forces", "Interactions of Energy and Matter" and "Natural and Human-induced hazards" [National Science Ed Standards, 1996]. The "Texas Essential Knowledge and Skills" includes circuits, electricity and magnetism, and waves in their Physics course syllabus, and include "describe the Sun's effects on the Earth" in the Astronomy class. In the new Earth and Space Science class we expect that additional heliospheric concepts will be included. At Rice we have four Astronomy courses (and four Earth Science courses) for teachers, two of which involve a substantial space physics content. By taking those eight courses, plus a research project and another content or education elective, the teachers can earn a "Masters of Science Teaching" degree. In "Teaching Earth and Space Science" (ASTR 402) we dedicate about 4 weeks on the Sun and the Earth and its environment. The "Physics of Ham Radio" course (PHYS 401) has an even more relevant focus. That class introduces electricity and magnetism, with hands-on activities on circuits and electromagnetic waves. The students earn their "Technician" class amateur license by making at least 75 per cent on the first quiz, which allows them VHF and UHF broadcast privileges. The second half of the course covers more space weather topics including the ionosphere, solar activity, radio propagation and absorption, antennas, etc. Some students pass the more detailed "General" amateur license by the end of the semester, which allows them to transmit at HF frequencies. Ham radio clubs are becoming more interesting to students as internet-based and digital modes allow more extensive communication even with minimum licensing, and amateur radio clubs are an excellent resource to teachers who want to set up a station in their school. A Technician license can also allow even communication with the Space Station.

  11. Creating Inclusive Physical Activity Spaces: The Case of Body-Positive Yoga

    ERIC Educational Resources Information Center

    Pickett, Andrew C.; Cunningham, George B.

    2017-01-01

    Purpose: Within the modern cultural climate, those in larger bodies face high levels of weight stigma, particularly in sport and physical activity spaces, which serves as a strong barrier to their participation. However, given the strong link between physical activity and general health and well-being for participants, it is important to explore…

  12. Low-gravity fluid physics: A program overview

    NASA Technical Reports Server (NTRS)

    1990-01-01

    An overview is presented of the microgravity fluid physics program at Lewis Research Center. One of the main reasons for conducting low gravity research in fluid physics is to study phenomena such as surface tension, interfacial contact angles, and diffusion independent of such gravitationally induced effects as buoyant convection. Fluid physics is at the heart of many space-based technologies including power systems, thermal control systems, and life support systems. Fundamental understanding of fluid physics is a key ingredient to successful space systems design. In addition to describing ground-based and space-based low-gravity facilities, selected experiments are presented which highlight Lewis work in fluid physics. These experiments can be categorized into five theme areas which summarize the work being conducted at Lewis for OSSA: (1) isothermal/iso-solutal capillary phenomena; (2) capillary phenomena with thermal/solutal gradients; (3) thermal-solutal convection; (4) first- and second-order phase transitions in a static fluid; and (5) multiphase flow.

  13. Overview of NASA Heliophysics and the Science of Space Weather

    NASA Astrophysics Data System (ADS)

    Talaat, E. R.

    2017-12-01

    In this paper, an overview is presented on the various activities within NASA that address space weather-related observations, model development, and research to operations. Specific to space weather, NASA formulates and implements, through the Heliophysics division, a national research program for understanding the Sun and its interactions with the Earth and the Solar System and how these phenomena impact life and society. NASA researches and prototypes new mission and instrument capabilities in this area, providing new physics-based algorithms to advance the state of solar, space physics, and space weather modeling.

  14. The Adventures of Space-Time

    NASA Astrophysics Data System (ADS)

    Bertolami, Orfeu

    Since the nineteenth century, it is known, through the work of Lobatchevski, Riemann, and Gauss, that spaces do not need to have a vanishing curvature. This was for sure a revolution on its own, however, from the point of view of these mathematicians, the space of our day to day experience, the physical space, was still an essentially a priori concept that preceded all experience and was independent of any physical phenomena. Actually, that was also the view of Newton and Kant with respect to time, even though, for these two space-time explorers, the world was Euclidean.

  15. Networks In Real Space: Characteristics and Analysis for Biology and Mechanics

    NASA Astrophysics Data System (ADS)

    Modes, Carl; Magnasco, Marcelo; Katifori, Eleni

    Functional networks embedded in physical space play a crucial role in countless biological and physical systems, from the efficient dissemination of oxygen, blood sugars, and hormonal signals in vascular systems to the complex relaying of informational signals in the brain to the distribution of stress and strain in architecture or static sand piles. Unlike their more-studied abstract cousins, such as the hyperlinked internet, social networks, or economic and financial connections, these networks are both constrained by and intimately connected to the physicality of their real, embedding space. We report on the results of new computational and analytic approaches tailored to these physical networks with particular implications and insights for mammalian organ vasculature.

  16. ISPAE Research Highlights 1995-1997

    NASA Technical Reports Server (NTRS)

    Harwell, Ken

    1997-01-01

    This paper presents ISPAE (Institute for Space Physics, Astrophysics and Education) research highlights from 1995-1997. The topics include: 1) High-Energy Astrophysics (Finding the smoking gun in gamma-ray bursts, Playing peekaboo with gamma ray bursts, and Spectral pulses muddle burst source study, Einstein was right: Black holes do spin, Astronomers find "one-man X-ray band", and Cosmic rays from the supernova next door?); 2) Solar Physics (Bright burst confirms solar storm model, Model predicts speed of solar wind in space, and Angry sunspots snap under the strain); 3) Gravitational Physics; 4) Tether Dynamics; and 5) Space Physics (Plasma winds blow form polar regions, De-SCIFERing thermal electrons, and UVI lets scientists see daytime aurora).

  17. AlGaN UV LED and Photodiodes Radiation Hardness and Space Qualifications and Their Applications in Space Science and High Energy Density Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, K. X.

    2011-05-31

    This presentation provides an overview of robust, radiation hard AlGaN optoelectronic devices and their applications in space exploration & high energy density physics. Particularly, deep UV LED and deep UV photodiodes are discussed with regard to their applications, radiation hardness and space qualification. AC charge management of UV LED satellite payload instruments, which were to be launched in late 2012, is covered.

  18. Committee on solar and space physics

    NASA Astrophysics Data System (ADS)

    Lanzerotti, L. J.

    The Committee on Solar and Space Physics (CSSP) is the Committee of the Space Science Board (SSB) of the National Research Council that is responsible for providing scientific advice to NASA in areas of solar/solar-terrestrial/space-plasma physics. The committee, composed of members who serve 3-year terms, wishes to solicit comments from colleagues on topics of interest to them and related to issues in the field.Current subjects on which the committee is devoting considerable effort include the following: (a) considerations of data handling and data systems in solar-terrestrial research for the future (This is being carried out with the encouragement of the SSB and its Committee on Data Management. The activity is in collaboration with the Committee on Solar-Terrestrial Research (CSTR) of the Geophysics Research Board. The handling, integration, and dissemination of solar-terrestrial data obtained by all techniques will be addressed. Chairmen of the responsible subgroup are D. J. Williams (CSSP) and M. A. Shea (CSTR).); (b) consideration of the policies and issues associated with a revitalized Explorer satellite program responsive to the requirements of the solar-terrestrial physics community (Inputs of ideas for potential Explorer missions have been received from a wide range of the community and will be further elaborated upon by additional community participation. A number of these ideas and examples will form a portion of a report discussing solar-terrestrial science topics of high contemporary interest that could be well addressed with Explorerclass missions.); (c) inputs to a more comprehensive consideration of the requirements for theoretical research in all the space sciences (This is an overall task of the Space Science Board. The CSSP response relies heavily upon the Colgate committee report on space plasma physics.); (d) a future workshop, in collaboration with the Space Science Committee of the European Science foundation, on potential cooperative work in space plasma physics with European nations (Four major program items will be addressed, including reviews of several major scientific achievements within the field, a review of the status of solar and space plasma physics as academic subjects in the U.S. and in Western Europe, a review of future research programs, and a discussion of the forms of collaboration between the U.S. and European space plasma physics communities, with recommendations for the future. The workshop will be held in the U.S., tentatively during the 1982-83 academic year.); (e) continuing dialogue with NASA public relations officials and other knowledgeable individuals regarding the status of public knowledge of the results, importance, and applications of solar-terrestrial research.); (f) discussions with relevant officials concerning the issues of scientific funding in the United States, particularly as related to solar-terrestrial research.

  19. 14 CFR 1203b.105 - Use of non-deadly physical force when making an arrest.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Use of non-deadly physical force when making an arrest. 1203b.105 Section 1203b.105 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.105...

  20. 14 CFR 1203b.105 - Use of non-deadly physical force when making an arrest.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Use of non-deadly physical force when making an arrest. 1203b.105 Section 1203b.105 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.105...

  1. 14 CFR 1203b.105 - Use of non-deadly physical force when making an arrest.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Use of non-deadly physical force when making an arrest. 1203b.105 Section 1203b.105 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.105...

  2. 14 CFR 1203b.105 - Use of non-deadly physical force when making an arrest.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Use of non-deadly physical force when making an arrest. 1203b.105 Section 1203b.105 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.105...

  3. Level of Abstraction and Feelings of Presence in Virtual Space: Business English Negotiation in Open Wonderland

    ERIC Educational Resources Information Center

    Chen, Judy F.; Warden, Clyde A.; Tai, David Wen-Shung; Chen, Farn-Shing; Chao, Chich-Yang

    2011-01-01

    Virtual spaces allow abstract representations of reality that not only encourage student self-directed learning but also reinforce core content of the learning objective through visual metaphors not reproducible in the physical world. One of the advantages of such a space is the ability to escape the restrictions of the physical classroom, yet…

  4. NASA payload data book: Payload analysis for space shuttle applications, volume 2

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Data describing the individual NASA payloads for the space shuttle are presented. The document represents a complete issue of the original payload data book. The subjects discussed are: (1) astronomy, (2) space physics, (3) planetary exploration, (4) earth observations (earth and ocean physics), (5) communications and navigation, (6) life sciences, (7) international rendezvous and docking, and (8) lunar exploration.

  5. School Libraries Are Essential: Meeting the Virtual Access and Collaboration Needs of the 21st-Century Learner and Teacher

    ERIC Educational Resources Information Center

    Darrow, Rob

    2009-01-01

    School librarians have excelled in providing a physical library space that is welcoming, making sure students have an inviting space to access print and digital materials, and developing collections that provide access for all ages of students. In the physical library space services such as collaborating with teachers and consulting with students…

  6. Space-weather assets developed by the French space-physics community

    NASA Astrophysics Data System (ADS)

    Rouillard, A. P.; Pinto, R. F.; Brun, A. S.; Briand, C.; Bourdarie, S.; Dudok De Wit, T.; Amari, T.; Blelly, P.-L.; Buchlin, E.; Chambodut, A.; Claret, A.; Corbard, T.; Génot, V.; Guennou, C.; Klein, K. L.; Koechlin, L.; Lavarra, M.; Lavraud, B.; Leblanc, F.; Lemorton, J.; Lilensten, J.; Lopez-Ariste, A.; Marchaudon, A.; Masson, S.; Pariat, E.; Reville, V.; Turc, L.; Vilmer, N.; Zucarello, F. P.

    2016-12-01

    We present a short review of space-weather tools and services developed and maintained by the French space-physics community. They include unique data from ground-based observatories, advanced numerical models, automated identification and tracking tools, a range of space instrumentation and interconnected virtual observatories. The aim of the article is to highlight some advances achieved in this field of research at the national level over the last decade and how certain assets could be combined to produce better space-weather tools exploitable by space-weather centres and customers worldwide. This review illustrates the wide range of expertise developed nationally but is not a systematic review of all assets developed in France.

  7. How Much Space Does a Library Need? Justifying Collections Space in an Electronic Age

    ERIC Educational Resources Information Center

    Butkovich, Nancy J.

    2010-01-01

    In 2002, plans to merge Penn State's Physical Sciences Library and Mathematics Library provoked a controversy in the Eberly College of Science over the size of the library needed to support its departments. The College contended that a physical collection no more than 5 years old was adequate. A study of astronomy, chemistry, mathematics, physics,…

  8. Adaptive space warping to enhance passive haptics in an arthroscopy surgical simulator.

    PubMed

    Spillmann, Jonas; Tuchschmid, Stefan; Harders, Matthias

    2013-04-01

    Passive haptics, also known as tactile augmentation, denotes the use of a physical counterpart to a virtual environment to provide tactile feedback. Employing passive haptics can result in more realistic touch sensations than those from active force feedback, especially for rigid contacts. However, changes in the virtual environment would necessitate modifications of the physical counterparts. In recent work space warping has been proposed as one solution to overcome this limitation. In this technique virtual space is distorted such that a variety of virtual models can be mapped onto one single physical object. In this paper, we propose as an extension adaptive space warping; we show how this technique can be employed in a mixed-reality surgical training simulator in order to map different virtual patients onto one physical anatomical model. We developed methods to warp different organ geometries onto one physical mock-up, to handle different mechanical behaviors of the virtual patients, and to allow interactive modifications of the virtual structures, while the physical counterparts remain unchanged. Various practical examples underline the wide applicability of our approach. To the best of our knowledge this is the first practical usage of such a technique in the specific context of interactive medical training.

  9. The contribution of travel-related urban zones, cycling and pedestrian networks and green space to commuting physical activity among adults - a cross-sectional population-based study using geographical information systems.

    PubMed

    Mäki-Opas, Tomi E; Borodulin, Katja; Valkeinen, Heli; Stenholm, Sari; Kunst, Anton E; Abel, Thomas; Härkänen, Tommi; Kopperoinen, Leena; Itkonen, Pekka; Prättälä, Ritva; Karvonen, Sakari; Koskinen, Seppo

    2016-08-11

    The current political agenda aims to promote active environments and physical activity while commuting to work, but research on it has provided mixed results. This study examines whether the proximity of green space and people's residence in different travel-related urban zones contributes to commuting physical activity. Population-based cross-sectional health examination survey, Health 2011 study, and geographical information system (GIS) data were utilized. The GIS data on green space and travel-related urban zones were linked to the individuals of the Health 2011 study, based on their home geocoordinates. Commuting physical activity was self-reported. Logistic regression models were applied, and age, gender, education, leisure-time and occupational physical activity were adjusted. Analyses were limited to those of working age, living in the core-urban areas of Finland and having completed information on commuting physical activity (n = 2 098). Home location in a pedestrian zone of a main centre (odds ratio = 1.63; 95 % confidence interval = 1.06-2.51) or a pedestrian zone of a sub-centre (2.03; 1.09-3.80) and higher proportion of cycling and pedestrian networks (3.28; 1.71-6.31) contributed to higher levels of commuting physical activity. The contribution remained after adjusting for all the environmental attributes and individuals. Based on interaction analyses, women living in a public transport zone were almost two times more likely to be physically active while commuting compared to men. A high proportion of recreational green space contributed negatively to the levels of commuting physical activity (0.73; 0.57-0.94) after adjusting for several background factors. Based on interaction analyses, individuals aged from 44 to 54 years and living in sub-centres, men living in pedestrian zones of sub-centres, and those individuals who are physically inactive during leisure-time were less likely to be physically active while commuting. Good pedestrian and cycling infrastructure may play an important role in promoting commuting physical activity among the employed population, regardless of educational background, leisure-time and occupational physical activity. Close proximity to green space and a high proportion of green space near the home may not be sufficient to initiate commuting physical activity in Finland, where homes surrounded by green areas are often situated in car-oriented zones far from work places.

  10. Affine Kac-Moody symmetric spaces related with A1^{(1)}, A2^{(1)},} A2^{(2)}

    NASA Astrophysics Data System (ADS)

    Nayak, Saudamini; Pati, K. C.

    2014-08-01

    Symmetric spaces associated with Lie algebras and Lie groups which are Riemannian manifolds have recently got a lot of attention in various branches of Physics for their role in classical/quantum integrable systems, transport phenomena, etc. Their infinite dimensional counter parts have recently been discovered which are affine Kac-Moody symmetric spaces. In this paper we have (algebraically) explicitly computed the affine Kac-Moody symmetric spaces associated with affine Kac-Moody algebras A1^{(1)}, A2^{(1)}, A2^{(2)}. We hope these types of spaces will play similar roles as that of symmetric spaces in many physical systems.

  11. Physics of Colloids in Space

    NASA Technical Reports Server (NTRS)

    Weitz, Dave; Weeks, Eric; Gasser, Urs; Dinsmore, Tony; Mawley, Suliana; Segre, Phil; Cipelletti, Lucia

    2000-01-01

    This talk will present recent results from ground-based research to support the "Physics of Colloids in Space" project which is scheduled to fly in the ISS approximately one year from now. In addition, results supporting future planned flights will be discussed.

  12. Microgravity Fluids for Biology, Workshop

    NASA Technical Reports Server (NTRS)

    Griffin, DeVon; Kohl, Fred; Massa, Gioia D.; Motil, Brian; Parsons-Wingerter, Patricia; Quincy, Charles; Sato, Kevin; Singh, Bhim; Smith, Jeffrey D.; Wheeler, Raymond M.

    2013-01-01

    Microgravity Fluids for Biology represents an intersection of biology and fluid physics that present exciting research challenges to the Space Life and Physical Sciences Division. Solving and managing the transport processes and fluid mechanics in physiological and biological systems and processes are essential for future space exploration and colonization of space by humans. Adequate understanding of the underlying fluid physics and transport mechanisms will provide new, necessary insights and technologies for analyzing and designing biological systems critical to NASAs mission. To enable this mission, the fluid physics discipline needs to work to enhance the understanding of the influence of gravity on the scales and types of fluids (i.e., non-Newtonian) important to biology and life sciences. In turn, biomimetic, bio-inspired and synthetic biology applications based on physiology and biology can enrich the fluid mechanics and transport phenomena capabilities of the microgravity fluid physics community.

  13. Scientific uses of the space shuttle

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A survey was conducted to determine the possible missions which could be accomplished by the space shuttle. The areas of scientific endeavor which were considered are as follows: (1) atmospheric and space physics, (2) high energy astrophysics, (3) infrared astronomy, (4) optical and ultraviolet astronomy, (5) solar physics, (6) life sciences, and (7) planetary exploration. Specific projects to be conducted in these broader areas are defined. The modes of operation of the space shuttle are analyzed. Instruments and equipment required for conducting the experiments are identified.

  14. ESA's space science programme

    NASA Astrophysics Data System (ADS)

    Volonte, S.

    2018-04-01

    The Space Science Programme of ESA encompasses three broad areas of investigation, namely solar system science (the Sun, the planets and space plasmas), fundamental physics and space astronomy and astrophysics.

  15. Workshop on Research for Space Exploration: Physical Sciences and Process Technology

    NASA Technical Reports Server (NTRS)

    Singh, Bhim S.

    1998-01-01

    This report summarizes the results of a workshop sponsored by the Microgravity Research Division of NASA to define contributions the microgravity research community can provide to advance the human exploration of space. Invited speakers and attendees participated in an exchange of ideas to identify issues of interest in physical sciences and process technologies. This workshop was part of a continuing effort to broaden the contribution of the microgravity research community toward achieving the goals of the space agency in human exploration, as identified in the NASA Human Exploration and Development of Space (HEDS) strategic plan. The Microgravity program is one of NASA'a major links to academic and industrial basic research in the physical and engineering sciences. At present, it supports close to 400 principal investigators, who represent many of the nation's leading researchers in the physical and engineering sciences and biotechnology. The intent of the workshop provided a dialogue between NASA and this large, influential research community, mission planners and industry technical experts with the goal of defining enabling research for the Human Exploration and Development of Space activities to which the microgravity research community can contribute.

  16. Getting the Word Out: Undergradute Space Physics at Rice University

    NASA Astrophysics Data System (ADS)

    Reiff, P. H.; Alexander, D.

    2006-12-01

    At Rice University we emphasize space physics in our non-major Physics and Astronomy undergraduate classes in addition to our graduate and majors program. In "ASTR 202" (solar system exploration for non- majors), we typically use a textbook which includes magnetospheric and auroral topics in it (many do not). In recent years, we have also created two new courses for undergraduates which highlight space physics. In spring 2005 we began PHYS 401, The Physics of Ham Radio, which includes a significant portion on the Sun, ionosphere, radio propagation, and space storms. It is a fun hands-on way to learn about circuits, electrical theory, antennas, and the effects of space weather, while creating a new hobby at the same time. The students are required to attempt the FCC "Technician" exam as their midterm exam, and all of the class members passed. This course is taken both by undergraduates and by local teachers in the Master of Science Teaching program (the teacher tuition is partially supported by CISM), and is offered every other year (it will be offered again in Spring 2007). In fall 2005 one of us (Alexander) started a new course, ASTR 243 "Exploring the Sun-Earth Connection", which focuses entirely on solar and space weather topics. It required the students to perform several projects over the course of the semester, and used many online resources. The feedback from the first session was very favorable, so it also will likely be offered every other year. Two of the students extended their experience by participating in summer research, one at an REU at the National Solar Observatory working on helioseismology data, and one at an international summer school in the U.K. where she focused on coronal heating. Thus with two courses in an every-other-year rotation, each academic year one undergraduate course in space physics is available at Rice. Furthermore, all senior majors are required to perform research, and each year several students choose a solar or space physics topic for their senior research, and often go on to graduate study at schools around the nation. Sun-Earth course page: http://www.owlnet.rice.edu/~astr243/ Ham radio course page: http://space.rice.edu/PHYS401/

  17. The link between perceived characteristics of neighbourhood green spaces and adults' physical activity in UK cities: analysis of the EURO-URHIS 2 Study.

    PubMed

    Ali, Omer; Di Nardo, Francesco; Harrison, Annie; Verma, Arpana

    2017-08-01

    Urban dwellers represent half the world's population and are increasing worldwide. Their health and behaviours are affected by the built environment and green areas may play a major role in promoting physical activity, thus decreasing the burden of chronic diseases, overweight and inactivity. However, the availability of green areas may not guarantee healthy levels of physical activity among the urban dwellers. It is therefore necessary to study how the perceived characteristics of green areas affect physical activity. Data from the EURO-URHIS 2 survey of residents of 13 cities across the UK were analyzed and a multivariable model was created in order to assess the association between their perceptions of the green areas in their neighbourhood and their engagement in physical activity. Results were adjusted for age, gender and other potential confounders. Those who felt unable to engage in active recreational activities in their local green spaces were significantly less likely to carry out moderate physical exercise for at least 60 min per week (adjusted OR: 0.50; 95% 0.37-0.68). Availability of green areas within walking distance did not affect engagement in physical activity. Other characteristics such as accessibility and safety may play an important role. This study showed that the presence of green space may not itself encourage the necessary preventative health behaviours to tackle physical inactivity in urban populations. Development of more appropriate green spaces may be required. Further research is needed to shed light on the types green spaces that are most effective. © The Author 2017. Published by Oxford University Press on behalf of the European Public Health Association. All rights reserved.

  18. Through Microgravity and Towards the Stars: Microgravity and Strategic Research at Marshall's Biological and Physical Space Research Laboratory

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A.

    2003-01-01

    The Microgravity and Strategic research at Marshall s Biological and Physical Space Research Laboratory will be reviewed. The environment in orbit provides a unique opportunity to study Materials Science and Biotechnology in the absence of sedimentation and convection. There are a number of peer-selected investigations that have been selected to fly on the Space Station that have been conceived and are led by Marshall s Biological and Physical Research Laboratory s scientists. In addition to Microgravity research the Station will enable research in "Strategic" Research Areas that focus on enabling humans to live, work, and explore the solar system safely. New research in Radiation Protection, Strategic Molecular Biology, and In-Space Fabrication will be introduced.

  19. Physical, chemical and biological characteristics of space flown tomato (Lycopersicum esculentum) seeds

    NASA Astrophysics Data System (ADS)

    Esyanti, Rizkita R.; Dwivany, Fenny M.; Almeida, Maria; Swandjaja, Leonita

    2016-11-01

    Several research showed that space flown treated seeds had a different characteristic with that of ground treated seed, which eventually produced a different characteristic of growth and productivity. Research was conducted to study the physical, chemical and biological properties, such as the rate of germination and the growth of tomato (Lycopersicum esculentum) space flown seeds compared with that of control one. Observations of physical properties using a SEM showed that there were pores on the surface of some tomato space flown seeds. Observations using a stereo and inverted microscope showed that the coat layer of space flown seeds was thinner than control seeds. The total mineral content in the control seeds (22.88%) was averagely higher than space flown seeds (18.66%), but the average carbohydrate content in control seed was lower (15.2 ± 2.79%) than the space flown seeds (9.02 ± 1.87%). The level of auxin (IAA) of control seeds (142 ± 6.88 ppm) was averagely lower than the space flown seeds (414 ± 78.84 ppm), whereas the level of cytokinins (zeatin) for the control seeds (381 ± 68.86 ppm) was higher than the space flown seeds (68 ± 9.53 ppm), and the level of gibberellin (GA3) for the control seeds (335 ± 10.7 ppm) was higher than the space flown seeds (184 ± 7.4 ppm). The results of this study showed that the physical and chemical properties of tomato space flown seeds were generally different compare with that to control seeds, so that it might also be resulted in different germination and growth characteristic. The germination test showed that space flown seeds had lower germination rate compare to control. The growth pattern indicated that planted space flown seeds generally grew better than control. However, those data were more homogenous in control seeds compare to that in space flown tomato seeds.

  20. Overview of the SHIELDS Project at LANL

    NASA Astrophysics Data System (ADS)

    Jordanova, V.; Delzanno, G. L.; Henderson, M. G.; Godinez, H. C.; Jeffery, C. A.; Lawrence, E. C.; Meierbachtol, C.; Moulton, D.; Vernon, L.; Woodroffe, J. R.; Toth, G.; Welling, D. T.; Yu, Y.; Birn, J.; Thomsen, M. F.; Borovsky, J.; Denton, M.; Albert, J.; Horne, R. B.; Lemon, C. L.; Markidis, S.; Young, S. L.

    2015-12-01

    The near-Earth space environment is a highly dynamic and coupled system through a complex set of physical processes over a large range of scales, which responds nonlinearly to driving by the time-varying solar wind. Predicting variations in this environment that can affect technologies in space and on Earth, i.e. "space weather", remains a big space physics challenge. We present a recently funded project through the Los Alamos National Laboratory (LANL) Directed Research and Development (LDRD) program that is developing a new capability to understand, model, and predict Space Hazards Induced near Earth by Large Dynamic Storms, the SHIELDS framework. The project goals are to specify the dynamics of the hot (keV) particles (the seed population for the radiation belts) on both macro- and micro-scale, including important physics of rapid particle injection and acceleration associated with magnetospheric storms/substorms and plasma waves. This challenging problem is addressed using a team of world-class experts in the fields of space science and computational plasma physics and state-of-the-art models and computational facilities. New data assimilation techniques employing data from LANL instruments on the Van Allen Probes and geosynchronous satellites are developed in addition to physics-based models. This research will provide a framework for understanding of key radiation belt drivers that may accelerate particles to relativistic energies and lead to spacecraft damage and failure. The ability to reliably distinguish between various modes of failure is critically important in anomaly resolution and forensics. SHIELDS will enhance our capability to accurately specify and predict the near-Earth space environment where operational satellites reside.

  1. Future space. A new blueprint for business architecture.

    PubMed

    Huang, J

    2001-04-01

    Although the Internet is an essential conduit for many business activities, it isn't rendering the physical world any less important, as the failures of many Web merchants demonstrate. People need social and sensual contact. The companies that succeed will be those best able to integrate the physical and the virtual. But that requires a new kind of business architecture--a new approach to designing stores, offices, factories, and other spaces where business is conducted. The author, a faculty member at Harvard Graduate School of Design, provides practical guidelines to help managers and entrepreneurs think creatively about the structures in which their businesses operate. He outlines four challenges facing designers of such "convergent" structures, so-called because they function in both physical and virtual space: matching form to function, allowing visitors to visualize the presence of others, personalizing spaces, and choreographing connectivity. Using numerous examples, from a fashion retailer that wants to sell in stores as well as through a Web site to a radically new kind of consulate, the author shows how businesses can meet each challenge. For instance, allowing customers to visualize the presence of others means that visitors to a Web site should be given a sense of other site visitors. Personalizing physical and virtual spaces involves using databases to enable those spaces to adapt quickly to user preferences. The success of companies attempting to merge on-line and traditional operations will depend on many factors. But without a well-designed convergent architecture, no company will fully reap the synergies of physical space and Internet technology.

  2. Constraining the physical state by symmetries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fatibene, L., E-mail: lorenzo.fatibene@unito.it; INFN - Sezione Torino - IS QGSKY; Ferraris, M.

    After reviewing the hole argument and its relations with initial value problem and general covariance, we shall discuss how much freedom one has to define the physical state in a generally covariant field theory (with or without internal gauge symmetries). Our analysis relies on Cauchy problems, thus it is restricted to globally hyperbolic spacetimes. We shall show that in generally covariant theories on a compact space (as well as for internal gauge symmetries on any spacetime) one has no freedom and one is forced to declare as physically equivalent two configurations which differ by a global spacetime diffeomorphism (or bymore » an internal gauge transformation) as it is usually prescribed. On the contrary, when space is not compact, the result does not hold true and one may have different options to define physically equivalent configurations, still preserving determinism. - Highlights: • Investigate the relation between the hole argument, covariance, determinism and physical state. • Show that if space is compact then any diffeomorphism is a gauge symmetry. • Show that if space is not compact then there may be more freedom in choosing gauge group.« less

  3. Physics-based Space Weather Forecasting in the Project for Solar-Terrestrial Environment Prediction (PSTEP) in Japan

    NASA Astrophysics Data System (ADS)

    Kusano, K.

    2016-12-01

    Project for Solar-Terrestrial Environment Prediction (PSTEP) is a Japanese nation-wide research collaboration, which was recently launched. PSTEP aims to develop a synergistic interaction between predictive and scientific studies of the solar-terrestrial environment and to establish the basis for next-generation space weather forecasting using the state-of-the-art observation systems and the physics-based models. For this project, we coordinate the four research groups, which develop (1) the integration of space weather forecast system, (2) the physics-based solar storm prediction, (3) the predictive models of magnetosphere and ionosphere dynamics, and (4) the model of solar cycle activity and its impact on climate, respectively. In this project, we will build the coordinated physics-based model to answer the fundamental questions concerning the onset of solar eruptions and the mechanism for radiation belt dynamics in the Earth's magnetosphere. In this paper, we will show the strategy of PSTEP, and discuss about the role and prospect of the physics-based space weather forecasting system being developed by PSTEP.

  4. 14 CFR § 1203b.105 - Use of non-deadly physical force when making an arrest.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Use of non-deadly physical force when making an arrest. § 1203b.105 Section § 1203b.105 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.105...

  5. Algebra and topology for applications to physics

    NASA Technical Reports Server (NTRS)

    Rozhkov, S. S.

    1987-01-01

    The principal concepts of algebra and topology are examined with emphasis on applications to physics. In particular, attention is given to sets and mapping; topological spaces and continuous mapping; manifolds; and topological groups and Lie groups. The discussion also covers the tangential spaces of the differential manifolds, including Lie algebras, vector fields, and differential forms, properties of differential forms, mapping of tangential spaces, and integration of differential forms.

  6. Semantic e-Science in Space Physics - A Case Study

    NASA Astrophysics Data System (ADS)

    Narock, T.; Yoon, V.; Merka, J.; Szabo, A.

    2009-05-01

    Several search and retrieval systems for space physics data are currently under development in NASA's heliophysics data environment. We present a case study of two such systems, and describe our efforts in implementing an ontology to aid in data discovery. In doing so we highlight the various aspects of knowledge representation and show how they led to our ontology design, creation, and implementation. We discuss advantages that scientific reasoning allows, as well as difficulties encountered in current tools and standards. Finally, we present a space physics research project conducted with and without e-Science and contrast the two approaches.

  7. Research in space physics at the University of Iowa. [astronomical observatories, spaceborne astronomy, satellite observation

    NASA Technical Reports Server (NTRS)

    Vanallen, J. A.

    1974-01-01

    Various research projects in space physics are summarized. Emphasis is placed on: (1) the study of energetic particles in outer space and their relationships to electric, magnetic, and electromagnetic fields associated with the earth, the sun, the moon, the planets, and interplanetary medium; (2) observational work on satellites of the earth and the moon, and planetary and interplanetary spacecraft; (3) phenomenological analysis and interpretation; (4) observational work by ground based radio-astronomical and optical techniques; and (5) theoretical problems in plasma physics. Specific fields of current investigations are summarized.

  8. Physical performance is maintained in women consuming only foods used on the U.S. Space Shuttle.

    PubMed

    Gretebeck, R J; Siconolfi, S F; Rice, B; Lane, H W

    1994-11-01

    In-flight reductions in caloric intake, body weight, lean body mass (LBM), aerobic capacity, and other measures of physical performance have been consistent findings in the U.S. and Russian space programs. The diet provided for astronauts in space has been suggested as a possible contributor to these changes because food selection, preparation, and storage facilities are limited on spacecraft. In this ground-based study, consuming only foods used on the Space Shuttle for 28 d did not affect aerobic capacity, LBM, or measures of muscle strength or endurance in 12 healthy women (ages 28-47 years). However, normal consumption patterns were affected by restriction to the Space Shuttle diet, namely a proportional increase in carbohydrate consumed, with compensatory decreases in protein and fat. These results suggest that physical performance and LBM can be maintained under normal gravity conditions in active women who consume a Space Shuttle food-system diet for 28 d.

  9. Office of Biological and Physical Research: Overview Transitioning to the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Crouch, Roger

    2004-01-01

    Viewgraphs on NASA's transition to its vision for space exploration is presented. The topics include: 1) Strategic Directives Guiding the Human Support Technology Program; 2) Progressive Capabilities; 3) A Journey to Inspire, Innovate, and Discover; 4) Risk Mitigation Status Technology Readiness Level (TRL) and Countermeasures Readiness Level (CRL); 5) Biological And Physical Research Enterprise Aligning With The Vision For U.S. Space Exploration; 6) Critical Path Roadmap Reference Missions; 7) Rating Risks; 8) Current Critical Path Roadmap (Draft) Rating Risks: Human Health; 9) Current Critical Path Roadmap (Draft) Rating Risks: System Performance/Efficiency; 10) Biological And Physical Research Enterprise Efforts to Align With Vision For U.S. Space Exploration; 11) Aligning with the Vision: Exploration Research Areas of Emphasis; 12) Code U Efforts To Align With The Vision For U.S. Space Exploration; 13) Types of Critical Path Roadmap Risks; and 14) ISS Human Support Systems Research, Development, and Demonstration. A summary discussing the vision for U.S. space exploration is also provided.

  10. The Space Puppets

    NASA Astrophysics Data System (ADS)

    Lago, M. Miguel; Esteban Berea, J.; Miñambres Fernández, M.; Rufino, M.

    2002-01-01

    This proposal is a response to the initiative "Physics on Stage 2" to excite interest in physics and science by a dance and puppetry performance. The purpose of this piece is to show the possibilities and characteristics of entertainment with space knowledge and education for the audience of teachers and children through a show. Two virtually opposite areas (science and arts), both generally inaccessible for children, will be introduced in a funny and amusing way, with the interaction of puppets. Education is not "fashion"... we need to develop an educational package to focus the attention of children on the uses of Space in everyday life. Our world today is mainly logic and mathematical. The presence of art in the children's lives is often scarce or even inexistent. With the performance children will gain a better understanding of space physics through the joy of a dance performance like an educational tool. Dance as body expression, is a very powerful tool to explain and interact with children and teachers. Through dance the physics of movement may be studied in a visual way, within the body's limits. We consider as priority the use of dance as well as theater (in this case, puppet theater) as an efficient and fun didactic method, which we may go further and explain in an imaginative funny way all those complex processes of physics, which are further unknown. Aiming to teach in a relaxing atmosphere the performance is based on the " Earth Space Alphabet", a first dictionary for Primary Schools combining Science, Space and Education... Did you ever realize that people are not interested in something because they do not understand the words or the meaning? The alphabet is intended to meet the overwhelming need that exists for education on space, and allows both teachers and children to learn about the "Art of Teaching Space" combining earth and space language linked by space technology. The performance explains many concepts of physics through a comet puppet, which travels in Space driving the dance artist on its tail. On the journey, they discover the alphabet letters, letters that make words, words which are concepts of physics, physics which is on the stage this stage being space. The teacher before, during and after the performance, will analyse, review and discuss through this simple tool "an alphabet", space vocabulary and also the meaning of communication and teaching. They will relate to the present situation of physics and science education in general and Space in particular and how to address this problem through our language. Instructions Name of Conference to which this abstract is53rd IAC submitted FirstFirst Submission Subrnission/Update/Correction/Withdrawal Title of Contribution in plain ASCII.The Space Puppets Author(s): a) Last Name, Initial(s) - b) LastMIGUEL LAGO., M. Name, lnitial(s) - c) etc. Number and Title or Abbreviation of SessionP. Space and Education Symposium to which this abstract is submitted.P.3. Educational and Outreach Name of Chairs of that SessionFrank Friedlaender and Dennis Stone Indicate any equipment you need in addition to the standard equipment: One overhead projector and screen will be available in ail IAC sessions. A limited number of LCD and 35mm slide projectors will be provided in sessions based on advance notice of need and availability of projectors. All presenters should bring copies of their computer presentations in overhead format in case LCD projection is not available for a specific session. Type of abstract file added/attached/sentWord file sent by e-mail separately Address of Main Author:Miguel Lago NameMónica. First Name Dept. Company/University: PO Box/Street:P.O. Box ZIP Code:D-22415 City: Country: Telephone: E-mail:+31 71 565 36 84 E-mail:+31 71 565 55 90 Have you obtained or will you obtain approval to attend the Congress? Yes Are you willing to present this paper at the IAC Public Outreach Program: Yes

  11. Mars Exploration: Is There Water on Mars? An Educator's Guide with Activities for Physical and Earth and Space Science.

    ERIC Educational Resources Information Center

    TERC, Cambridge, MA.

    This educator's guide discusses whether there is water on the planet Mars. The activities, written for grades 9-12, concern physical, earth, and space sciences. By experimenting with water as it changes state and investigating some effects of air pressure, students not only learn core ideas in physical science but can also deduce the water…

  12. Planetary atmospheric physics and solar physics research

    NASA Technical Reports Server (NTRS)

    1973-01-01

    An overview is presented on current and planned research activities in the major areas of solar physics, planetary atmospheres, and space astronomy. The approach to these unsolved problems involves experimental techniques, theoretical analysis, and the use of computers to analyze the data from space experiments. The point is made that the research program is characterized by each activity interacting with the other activities in the laboratory.

  13. Recent measurements for hadrontherapy and space radiation: nuclear physics

    NASA Technical Reports Server (NTRS)

    Miller, J.

    2001-01-01

    The particles and energies commonly used for hadron therapy overlap the low end of the charge and energy range of greatest interest for space radiation applications, Z=1-26 and approximately 100-1000 MeV/nucleon. It has been known for some time that the nuclear interactions of the incident ions must be taken into account both in treatment planning and in understanding and addressing the effects of galactic cosmic ray ions on humans in space. Until relatively recently, most of the studies of nuclear fragmentation and transport in matter were driven by the interests of the nuclear physics and later, the hadron therapy communities. However, the experimental and theoretical methods and the accelerator facilities developed for use in heavy ion nuclear physics are directly applicable to radiotherapy and space radiation studies. I will briefly review relevant data taken recently at various accelerators, and discuss the implications of the measurements for radiotherapy, radiobiology and space radiation research.

  14. Introduction to the Space Physics Analysis Network (SPAN)

    NASA Technical Reports Server (NTRS)

    Green, J. L. (Editor); Peters, D. J. (Editor)

    1985-01-01

    The Space Physics Analysis Network or SPAN is emerging as a viable method for solving an immediate communication problem for the space scientist. SPAN provides low-rate communication capability with co-investigators and colleagues, and access to space science data bases and computational facilities. The SPAN utilizes up-to-date hardware and software for computer-to-computer communications allowing binary file transfer and remote log-on capability to over 25 nationwide space science computer systems. SPAN is not discipline or mission dependent with participation from scientists in such fields as magnetospheric, ionospheric, planetary, and solar physics. Basic information on the network and its use are provided. It is anticipated that SPAN will grow rapidly over the next few years, not only from the standpoint of more network nodes, but as scientists become more proficient in the use of telescience, more capability will be needed to satisfy the demands.

  15. Comment on “Error made in reports of main field decay”

    NASA Astrophysics Data System (ADS)

    IAGA Working Group V-MOD on Geomagnetic Field Modeling,; Maus, Stefan; Macmillan, Susan

    2004-09-01

    As the International Association of Geomagnetism and Aeronomy (IAGA) Working Group on Geomagnetic Field Modeling (http://www.ngdc.noaa.gov/IAGA/vmod/), responsible for the International Geomagnetic Reference Field (IGRF) [Macmillan et al., 2003], we would like to comment on the Forum article by Wallace H.Campbell (Eos,85(16),20 April 2004). Campbell claims that reports of dipole decay at a special session held at the AGU 2003 Fall Meeting were misleading due to an incorrect choice of the coordinate system for the spherical harmonic analysis (SHA) of the geomagnetic field used for the IGRF the model on which the decay calculation was based.Campbell alleges that the dipole moment of a spherical harmonic expansion depends on the choice of the origin of the coordinate system. In his textbook on geomagnetism, Campbell goes one step further in asserting that, without changing the origin, the process of “tilting the analysis axis to align with the geomagnetic axis…would enhance the dipole term at the expense of the higher multipoles” [Campbell, 2003].

  16. Evaluation of the 1985-1990 IGRF secular variation candidates

    USGS Publications Warehouse

    Cain, J.C.; Kluth, C.

    1987-01-01

    The IGRF secular variation model for 1985-1990 was adopted by the International Association of Geomagnetism and Aeronomy at its Prague meeting in August 1985 as an average of the three candidate models submitted to the committee. We compared the three models at epoch 1985.0 against each other and against a new model based on observatory data available as of July 1, 1985. These comparisons showed that one of the three candidate models disagreed more with the other two and our model, especially in the eastern Pacific. None of the candidate models was seen to respond to a change in the secular variation of the vertical component that appears to have taken place most strongly in the western Pacific area since 1982. The lack of satellite data was seen to be a significant handicap towards prediction of the field change over most of the Earth's surface, especially the southern oceans. Maximum errors of any model are estimated to be of the order of 80 nT a-1. ?? 1987.

  17. Geomagnetic Workshop, Canberra

    NASA Astrophysics Data System (ADS)

    Barton, C. E.; Lilley, F. E. M.; Milligan, P. R.

    On May 14-15, 1985, 63 discerning geomagnetists flocked to Canberra to attend the Geomagnetic Workshop coorganized by the Australian Bureau of Mineral Resources (BMR) and the Research School of Earth Sciences, Australian National University (ANU). With an aurorally glowing cast that included an International Association of Geomagnetism and Aeronomy (IAGA) president, former president, and division chairman, the Oriental Magneto-Banquet (which was the center of the meeting), was assured of success. As a cunning ploy to mask the true nature of this gastronomic extravagance from the probings of income tax departments, a presentation of scientific papers on Australian geomagnetism in its global setting was arranged.The Australian region, including New Zealand, Papua New Guinea, Indonesia, and a large sector of the Antarctic, covers one eighth of the Earth's surface and historically has played an important role in the study of geomagnetism. The region contains both the south magnetic and geomagnetic poles, and two Australian Antarctic stations (Casey and Davis) are situated in the region of the south polar cusp (see Figure 1).

  18. New AIM/CIPS global observations of gravity waves near 50-55 km

    NASA Astrophysics Data System (ADS)

    Randall, C. E.; Carstens, J.; France, J. A.; Harvey, V. L.; Hoffmann, L.; Bailey, S. M.; Alexander, M. J.; Lumpe, J. D.; Yue, J.; Thurairajah, B.; Siskind, D. E.; Zhao, Y.; Taylor, M. J.; Russell, J. M.

    2017-07-01

    This paper describes a new data set from the Aeronomy of Ice in the Mesosphere (AIM) Cloud Imaging and Particle Size (CIPS) instrument, from which gravity waves (GWs) at an altitude of 50-55 km can be inferred. CIPS is sensitive to GWs with horizontal wavelengths from 15 to 600 km and vertical wavelengths longer than 15 km. Several examples of GWs in CIPS observations are shown, including waves associated with the Andes Mountains, island topography, convection, the polar night jet, and the tropospheric jet stream. GW signatures in the CIPS data are shown to agree well with near-coincident but lower altitude measurements from the Atmospheric Infrared Sounder (AIRS) in June of 2016. Results suggest the power of combining CIPS measurements with those from other instruments to investigate GW filtering and propagation. The CIPS data set opens new areas of inquiry, enabling comprehensive investigations of GWs in the middle atmosphere on a near-global scale.

  19. Dual Vector Spaces and Physical Singularities

    NASA Astrophysics Data System (ADS)

    Rowlands, Peter

    Though we often refer to 3-D vector space as constructed from points, there is no mechanism from within its definition for doing this. In particular, space, on its own, cannot accommodate the singularities that we call fundamental particles. This requires a commutative combination of space as we know it with another 3-D vector space, which is dual to the first (in a physical sense). The combination of the two spaces generates a nilpotent quantum mechanics/quantum field theory, which incorporates exact supersymmetry and ultimately removes the anomalies due to self-interaction. Among the many natural consequences of the dual space formalism are half-integral spin for fermions, zitterbewegung, Berry phase and a zero norm Berwald-Moor metric for fermionic states.

  20. Formation and Decay of the Inner Electron Radiation Belt

    DTIC Science & Technology

    2017-01-09

    Colorado Boulder, Boulder, Colorado, USA, 4NASA/Goddard Space Flight Center, Greenbelt, Maryland, USA, 5Department of Physics and Astronomy , Dartmouth...Colorado Boulder, Boulder, Colorado, USA, 4NASA Goddard Space Flight Center, Greenbelt, Maryland, USA, 5Department of Physics and Astronomy , Dartmouth

  1. FPEF (Fluid Physics Experiment Facility) for the planned MS (Marangoni Surface) experiment

    NASA Image and Video Library

    2009-07-01

    ISS020-E-016214 (1 July 2009) --- Canadian Space Agency astronaut Robert Thirsk, Expedition 20 flight engineer, prepares the Fluid Physics Experiment Facility (FPEF) for the planned Marangoni Surface experiment in the Kibo laboratory of the International Space Station.

  2. Models of Solar Wind Structures and Their Interaction with the Earth's Space Environment

    NASA Astrophysics Data System (ADS)

    Watermann, J.; Wintoft, P.; Sanahuja, B.; Saiz, E.; Poedts, S.; Palmroth, M.; Milillo, A.; Metallinou, F.-A.; Jacobs, C.; Ganushkina, N. Y.; Daglis, I. A.; Cid, C.; Cerrato, Y.; Balasis, G.; Aylward, A. D.; Aran, A.

    2009-11-01

    The discipline of “Space Weather” is built on the scientific foundation of solar-terrestrial physics but with a strong orientation toward applied research. Models describing the solar-terrestrial environment are therefore at the heart of this discipline, for both physical understanding of the processes involved and establishing predictive capabilities of the consequences of these processes. Depending on the requirements, purely physical models, semi-empirical or empirical models are considered to be the most appropriate. This review focuses on the interaction of solar wind disturbances with geospace. We cover interplanetary space, the Earth’s magnetosphere (with the exception of radiation belt physics), the ionosphere (with the exception of radio science), the neutral atmosphere and the ground (via electromagnetic induction fields). Space weather relevant state-of-the-art physical and semi-empirical models of the various regions are reviewed. They include models for interplanetary space, its quiet state and the evolution of recurrent and transient solar perturbations (corotating interaction regions, coronal mass ejections, their interplanetary remnants, and solar energetic particle fluxes). Models of coupled large-scale solar wind-magnetosphere-ionosphere processes (global magnetohydrodynamic descriptions) and of inner magnetosphere processes (ring current dynamics) are discussed. Achievements in modeling the coupling between magnetospheric processes and the neutral and ionized upper and middle atmospheres are described. Finally we mention efforts to compile comprehensive and flexible models from selections of existing modules applicable to particular regions and conditions in interplanetary space and geospace.

  3. [The Museu da Saúde in Portugal: a physical space, a virtual space].

    PubMed

    Oliveira, Inês Cavadas de; Andrade, Helena Rebelo de; Miguel, José Pereira

    2015-12-01

    Museu da Saúde (Museum of Health) in Portugal, based on the dual concept of a multifaceted physical space and a virtual space, is preparing an inventory of its archive. So far, it has studied five of its collections in greater depth: tuberculosis, urology, psychology, medicine, and malaria. In this article, these collections are presented, and the specificities of developing museological activities within a national laboratory, Instituto Nacional de Saúde Doutor Ricardo Jorge, are also discussed, highlighting the issues of the store rooms and exhibition spaces, the inventory process, and the communication activities, with a view to overcoming the challenges inherent to operating in a non-museological space.

  4. Skylab experiments. Volume 5: Astronomy and space physics. [Skylab observations of galactic radiation, solar energy, and interplanetary composition for high school level education

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The astronomy and space physics investigations conducted in the Skylab program include over 20 experiments in four categories to explore space phenomena that cannot be observed from earth. The categories of space research are as follows: (1) phenomena within the solar system, such as the effect of solar energy on Earth's atmosphere, the composition of interplanetary space, the possibility of an inner planet, and the X-ray radiation from Jupiter, (2) analysis of energetic particles such as cosmic rays and neutrons in the near-earth space, (3) stellar and galactic astronomy, and (4) self-induced environment surrounding the Skylab spacecraft.

  5. Patient Perceptions of the Environment of Care in Which Their Healthcare is Delivered.

    PubMed

    LaVela, Sherri L; Etingen, Bella; Hill, Jennifer N; Miskevics, Scott

    2016-04-01

    To measure patients' perceptions of the environment of care (EOC), with a focus on the physical environment, in which healthcare is delivered. The EOC may impact patient experiences, care perceptions, and health outcomes. EOC may be improved through redesign of existing physical structures or spaces or by adding nurturing amenities. Demographics, health status, hospital use, and data on the environment (physical, comfort, orientation, and privacy) were collected via a mailed cross-sectional survey sent to patients seen at four hospital Centers of Innovation (COIs; that implemented many modifications to the healthcare environment to address physical, comfort, orientation, and privacy factors) and four matched controls, supplemented with checklist and VA administrative data. A modified Perceived Hospital Environment Quality Indicators instrument was used to measure patients' EOC perceptions. Respondents (3,321/5,117; 65% response) rated, [mean (SD)], exterior space highest, 3.09 (0.73), followed by interior space, 2.96 (0.74), and privacy, 2.44 (1.01). COIs had significantly higher ratings than controls on interior space (2.99 vs. 2.96, p = .02) and privacy (2.48 vs. 2.38, p = .005) but no differences for exterior space. Subscales with significantly higher ratings in COIs (vs. controls) in interior space were "spatial-physical comfort" and "orientation," for example, clean, good signage, spacious rooms, and for privacy included "not too crowded" and "able to talk without being overheard." Checklist findings confirmed the presence of EOC innovations rated highly by patients. Patients identified cleanliness, good signs/information points, adequate seating, nonovercrowding, and privacy for conversations as important. Hospital design modifications, with particular attention to the physical environment, can improve patient EOC perceptions. © The Author(s) 2015.

  6. Overview of Pre-Flight Physical Training, In-Flight Exercise Countermeasures and the Post-Flight Reconditioning Program for International Space Station Astronauts

    NASA Technical Reports Server (NTRS)

    Kerstman, Eric

    2011-01-01

    International Space Station (ISS) astronauts receive supervised physical training pre-flight, utilize exercise countermeasures in-flight, and participate in a structured reconditioning program post-flight. Despite recent advances in exercise hardware and prescribed exercise countermeasures, ISS crewmembers are still found to have variable levels of deconditioning post-flight. This presentation provides an overview of the astronaut medical certification requirements, pre-flight physical training, in-flight exercise countermeasures, and the post-flight reconditioning program. Astronauts must meet medical certification requirements on selection, annually, and prior to ISS missions. In addition, extensive physical fitness testing and standardized medical assessments are performed on long duration crewmembers pre-flight. Limited physical fitness assessments and medical examinations are performed in-flight to develop exercise countermeasure prescriptions, ensure that the crewmembers are physically capable of performing mission tasks, and monitor astronaut health. Upon mission completion, long duration astronauts must re-adapt to the 1 G environment, and be certified as fit to return to space flight training and active duty. A structured, supervised postflight reconditioning program has been developed to prevent injuries, facilitate re-adaptation to the 1 G environment, and subsequently return astronauts to training and space flight. The NASA reconditioning program is implemented by the Astronaut Strength, Conditioning, and Rehabilitation (ASCR) team and supervised by NASA flight surgeons. This program has evolved over the past 10 years of the International Space Station (ISS) program and has been successful in ensuring that long duration astronauts safely re-adapt to the 1 g environment and return to active duty. Lessons learned from this approach to managing deconditioning can be applied to terrestrial medicine and future exploration space flight missions.

  7. Proceedings of the Workshop on the Scientific Applications of Clocks in Space

    NASA Technical Reports Server (NTRS)

    Maleki, Lute (Editor)

    1997-01-01

    The Workshop on Scientific Applications of Clocks in space was held to bring together scientists and technologists interested in applications of ultrastable clocks for test of fundamental theories, and for other science investigations. Time and frequency are the most precisely determined of all physical parameters, and thus are the required tools for performing the most sensitive tests of physical theories. Space affords the opportunity to make measurement, parameters inaccessible on Earth, and enables some of the most original and sensitive tests of fundamental theories. In the past few years, new developments in clock technologies have pointed to the opportunity for flying ultrastable clocks in support of science investigations of space missions. This development coincides with the new NASA paradigm for space flights, which relies on frequent, low-cost missions in place of the traditional infrequent and high-cost missions. The heightened interest in clocks in space is further advanced by new theoretical developments in various fields. For example, recent developments in certain Grand Unified Theory formalisms have vastly increased interest in fundamental tests of gravitation physics with clocks. The workshop included sessions on all related science including relativity and gravitational physics, cosmology, orbital dynamics, radio science, geodynamics, and GPS science and others, as well as a session on advanced clock technology.

  8. The CompreHensive collaborativE Framework (CHEF)

    NASA Astrophysics Data System (ADS)

    Knoop, P. A.; Hardin, J.; Killeen, T.; Middleton, D.

    2002-12-01

    Data integration, publication, and archiving have become important considerations in most fields of science as experiments and models increase in complexity, and the collaborations necessary to conduct the research grow broader. The development of well thought out strategies and standards for such data handling, however, only goes part way in supporting the scientific process. A primary driving force for such efforts is the need of scientists to access and work with data in a timely, reasonable, and often collaborative fashion. Internet-based collaborative environments are one way to help complete this picture, linking scientists to the data they seek and to one another (e.g., Towards a Robust, Agile, and Comprehensive Information Infrastructure for the Geosciences: A Strategic Plan For High Performance Simulation, NCAR, 2000, http://www.ncar.ucar.edu/Director/plan.pdf). The CompreHensive collaborativE Framework (CHEF, http://chefproject.org) is a generic, extensible, web-based, open-source environment for collaboration. CHEF's goal is to provide the basic building blocks from which a community can assemble a collaborative environment that fits their needs. The design of CHEF has been influenced by our experience developing the Space Physics and Aeronomy Research Collaboratory (SPARC, http://www.si.umich.edu/SPARC), which provides integrated access to a wide variety of heterogeneous data sources, including community-standardized data bases. The design has also been heavily influenced by our involvement with an effort to extract and codify the broad underlying technical and social elements that lead to successful collaboratories (http://www.scienceofcollaboratories.org). A collaborative environment is in itself also not the complete answer to data handling, rather, it provides a facilitating environment in which community efforts to integrate, publish, archive, and share data using standard formats and practices can be taken advantage of by the end-users, the scientists. We present examples of how CHEF and its predecessors are utilized in a wide variety of scientific communities, including engineering, chemistry, and the geosciences. In particular, we focus on CHEF's utilization by the earthquake engineering community, whose Network for Earthquake Engineering Simulation (NEES, http://www.nees.org) involves a community effort to develop data standards and practices. In this context NEES is using CHEF as the "integration" environment in which to place the "tools" that bring together scientists and data; this includes data browsers, meta-data search engines, real-time and archival data viewers, etc. By developing these tools within the CHEF framework and exposing the community-developed data standards to the framework, they automatically gain the features, functionality, and capabilities offered by the collaborative environment. We also explore how a collaborative environment, in conjunction with community developed standards and practices for data integration, publishing, and archiving, could benefit the ocean science community.

  9. Physics and astrophysics from a lunar base; Proceedings of the 1st NASA Workshop, Stanford, CA, May 19, 20, 1989

    NASA Technical Reports Server (NTRS)

    Potter, A. E. (Editor); Wilson, T. L. (Editor)

    1990-01-01

    The present conference on physics and astrophysics from a lunar base encompasses space physics, cosmic ray physics, neutrino physics, experiments in gravitation and general relativity, gravitational radiation physics, cosmic background radiation, particle astrophysics, surface physics, and the physics of gamma rays and X-rays. Specific issues addressed include space-plasma physics research at a lunar base, prospects for neutral particle imaging, the atmosphere as particle detector, medium- and high-energy neutrino physics from a lunar base, muons on the moon, a search for relic supernovae antineutrinos, and the use of clocks in satellites orbiting the moon to test general relativity. Also addressed are large X-ray-detector arrays for physics experiments on the moon, and the measurement of proton decay, arcsec-source locations, halo dark matter and elemental abundances above 10 exp 15 eV at a lunar base.

  10. Phenomenological Modeling of Infrared Sources: Recent Advances

    NASA Technical Reports Server (NTRS)

    Leung, Chun Ming; Kwok, Sun (Editor)

    1993-01-01

    Infrared observations from planned space facilities (e.g., ISO (Infrared Space Observatory), SIRTF (Space Infrared Telescope Facility)) will yield a large and uniform sample of high-quality data from both photometric and spectroscopic measurements. To maximize the scientific returns of these space missions, complementary theoretical studies must be undertaken to interpret these observations. A crucial step in such studies is the construction of phenomenological models in which we parameterize the observed radiation characteristics in terms of the physical source properties. In the last decade, models with increasing degree of physical realism (in terms of grain properties, physical processes, and source geometry) have been constructed for infrared sources. Here we review current capabilities available in the phenomenological modeling of infrared sources and discuss briefly directions for future research in this area.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Znojil, Miloslav

    For many quantum models an apparent non-Hermiticity of observables just corresponds to their hidden Hermiticity in another, physical Hilbert space. For these models we show that the existence of observables which are manifestly time-dependent may require the use of a manifestly time-dependent representation of the physical Hilbert space of states.

  12. Kuipers during replacement of the Marangoni Surface Fluid Dynamics Experiment

    NASA Image and Video Library

    2012-03-15

    ISS030-E-142827 (15 March 2012) --- European Space Agency astronaut Andre Kuipers, Expedition 30 flight engineer, works to remove the Marangoni Surface fluid physics experiment from the Fluid Physics Experiment Facility (FPEF) in the Kibo laboratory of the International Space Station.

  13. Special Relativity

    NASA Astrophysics Data System (ADS)

    Dixon, W. G.

    1982-11-01

    Preface; 1. The physics of space and time; 2. Affine spaces in mathematics and physics; 3. Foundations of dynamics; 4. Relativistic simple fluids; 5. Electrodynamics of polarisable fluids; Appendix: Vector and dyadic notation in three dimensions; Publications referred to in the text; Summary and index of symbols and conventions; Subject index.

  14. Statistical physics of the symmetric group.

    PubMed

    Williams, Mobolaji

    2017-04-01

    Ordered chains (such as chains of amino acids) are ubiquitous in biological cells, and these chains perform specific functions contingent on the sequence of their components. Using the existence and general properties of such sequences as a theoretical motivation, we study the statistical physics of systems whose state space is defined by the possible permutations of an ordered list, i.e., the symmetric group, and whose energy is a function of how certain permutations deviate from some chosen correct ordering. Such a nonfactorizable state space is quite different from the state spaces typically considered in statistical physics systems and consequently has novel behavior in systems with interacting and even noninteracting Hamiltonians. Various parameter choices of a mean-field model reveal the system to contain five different physical regimes defined by two transition temperatures, a triple point, and a quadruple point. Finally, we conclude by discussing how the general analysis can be extended to state spaces with more complex combinatorial properties and to other standard questions of statistical mechanics models.

  15. Statistical physics of the symmetric group

    NASA Astrophysics Data System (ADS)

    Williams, Mobolaji

    2017-04-01

    Ordered chains (such as chains of amino acids) are ubiquitous in biological cells, and these chains perform specific functions contingent on the sequence of their components. Using the existence and general properties of such sequences as a theoretical motivation, we study the statistical physics of systems whose state space is defined by the possible permutations of an ordered list, i.e., the symmetric group, and whose energy is a function of how certain permutations deviate from some chosen correct ordering. Such a nonfactorizable state space is quite different from the state spaces typically considered in statistical physics systems and consequently has novel behavior in systems with interacting and even noninteracting Hamiltonians. Various parameter choices of a mean-field model reveal the system to contain five different physical regimes defined by two transition temperatures, a triple point, and a quadruple point. Finally, we conclude by discussing how the general analysis can be extended to state spaces with more complex combinatorial properties and to other standard questions of statistical mechanics models.

  16. Navigating Mythic Space in the Digital Age

    ERIC Educational Resources Information Center

    Foley, Drew Thomas

    2012-01-01

    In prior ages, alternate worlds are associated with symbolic expressions of storied space, here termed "mythic space." The digital age brings new forms of virtual space that are co-existent with physical space. These virtual spaces may be understood as a contemporary representation of mythic space. This dissertation explores the paths by…

  17. [Musculoskeletal rehabilitation and bone. Musculoskeletal response to human space flight and physical countermeasures].

    PubMed

    Ohshima, Hiroshi

    2010-04-01

    The assembly of the Japanese Experiment Module "Kibo" to international space station was completed in 2009 and Koichi Wakata became the first Japanese station astronaut who spent more than 4 months in the station. Bone and muscle losses are significant medical concerns for long duration human space flight. Effective countermeasure program for bone loss and muscle atrophy is necessary to avoid post flight bone fracture and joint sprain after landing. The musculoskeletal response to human space flight and current physical countermeasure program for station astronauts are described.

  18. Physics of Colloids in Space--Plus (PCS+) Experiment Completed Flight Acceptance Testing

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    2004-01-01

    The Physics of Colloids in Space--Plus (PCS+) experiment successfully completed system-level flight acceptance testing in the fall of 2003. This testing included electromagnetic interference (EMI) testing, vibration testing, and thermal testing. PCS+, an Expedite the Process of Experiments to Space Station (EXPRESS) Rack payload will deploy a second set of colloid samples within the PCS flight hardware system that flew on the International Space Station (ISS) from April 2001 to June 2002. PCS+ is slated to return to the ISS in late 2004 or early 2005.

  19. Exhaustive search system and method using space-filling curves

    DOEpatents

    Spires, Shannon V.

    2003-10-21

    A search system and method for one agent or for multiple agents using a space-filling curve provides a way to control one or more agents to cover an area of any space of any dimensionality using an exhaustive search pattern. An example of the space-filling curve is a Hilbert curve. The search area can be a physical geography, a cyberspace search area, or an area searchable by computing resources. The search agent can be one or more physical agents, such as a robot, and can be software agents for searching cyberspace.

  20. LECTURES ON PHYSICS, BIOPHYSICS, AND CHEMISTRY FOR HIGH SCHOOL SCIENCE TEACHERS GIVEN AT THE ERNEST O. LAWRENCE RADIATION LABORATORY, BERKELEY, CALIFORNIA, JUNE-AUGUST 1959

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calhoon, E.C.; Starring, P.W. eds.

    1959-08-01

    Lectures given at the Ernest 0. Lawrence Radiation Laboratory on physics, biophysics, and chemistry for high school science teachers are presented. Topics covered include a mathematics review, atomic physics, nuclear physics, solid-state physics, elementary particles, antiparticies, design of experiments, high-energy particle accelerators, survey of particle detectors, emulsion as a particle detector, counters used in high-energy physics, bubble chambers, computer programming, chromatography, the transuranium elements, health physics, photosynthesis, the chemistry and physics of virus, the biology of virus, lipoproteins and heart disease, origin and evolution of the solar system, the role of space satellites in gathering astronomical data, and radiation andmore » life in space. (M.C.G.)« less

  1. Study of energetic particle dynamics in Harbin Dipole eXperiment (HDX) on Space Plasma Environment Research Facility (SPERF)

    NASA Astrophysics Data System (ADS)

    Zhibin, W.; Xiao, Q.; Wang, X.; Xiao, C.; Zheng, J.; E, P.; Ji, H.; Ding, W.; Lu, Q.; Ren, Y.; Mao, A.

    2015-12-01

    Zhibin Wang1, Qingmei Xiao1, Xiaogang Wang1, Chijie Xiao2, Jinxing Zheng3, Peng E1, Hantao Ji1,5, Weixing Ding4, Quaming Lu6, Y. Ren1,5, Aohua Mao11 Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, China 150001 2 State Key Lab of Nuclear Physics & Technology, and School of Physics, Peking University, Beijing, China 100871 3ASIPP, Hefei, China, 230031 4University of California at Los Angeles, Los Angeles, CA, 90095 5Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 6University of Science and Technology of China, Hefei, China, 230026 A new terrella device for laboratory studies of space physics relevant to the inner magnetospheric plasmas, Harbin Dipole eXperiment (HDX), is scheduled to be built at Harbin Institute of Technology (HIT), China. HDX is one of two essential parts of Space Plasma Environment Research Facility (SPERF), which is a major national research facility for space physics studies. HDX is designed to provide a laboratory experimental platform to reproduce the earth's magnetospheric structure for investigations on the mechanism of acceleration/loss and wave-particle interaction of energetic particles in radiation belt, and on the influence of magnetic storms on the inner magnetosphere. It can be operated together with Harbin Reconnection eXperiment (HRX), which is another part of SPERF, to study the fundamental processes during interactions between solar wind and Earth's magnetosphere. In this presentation, the scientific goals and experimental plans for HDX, together with the means applied to generate the plasma with desired parameters, including multiple plasma sources and different kinds of coils with specific functions, as well as advanced diagnostics designed to be equipped to the facility for multi-functions, are reviewed. Three typical scenarios of HDX with operations of various coils and plasma sources to study specific physical processes in space plasmas will also be presented.

  2. Neighbourhood access to open spaces and the physical activity of residents: a national study.

    PubMed

    Witten, Karen; Hiscock, Rosemary; Pearce, Jamie; Blakely, Tony

    2008-09-01

    Increasing population levels of physical activity is high on the health agenda in many countries. There is some evidence that neighbourhood access to public open space can increase physical activity by providing easier and more direct access to opportunities for exercise. This national study examines the relationship between travel time access to parks and beaches, BMI and physical activity in New Zealand neighbourhoods. Access to parks and beaches, measured in minutes taken by a car, was calculated for 38,350 neighbourhoods nationally using Geographic Information Systems. Multilevel regression analyses were used to establish the significance of access to these recreational amenities as a predictor of BMI, and levels of physical activity and sedentary behaviour in the 12,529 participants, living in 1178 neighbourhoods, of the New Zealand Health Survey 2002/3. Neighbourhood access to parks was not associated with BMI, sedentary behaviour or physical activity, after controlling for individual-level socio-economic variables, and neighbourhood-level deprivation and urban/rural status. There was some evidence of a relationship between beach access and BMI and physical activity in the expected direction. This study found little evidence of an association between locational access to open spaces and physical activity.

  3. Alignment achieved? The learning landscape and curricula in health profession education.

    PubMed

    Nordquist, Jonas

    2016-01-01

    The overall aim of this review is to map the area around the topic of the relationship between physical space and learning and to then draw further potential implications from this for the specific area of health profession education. The nature of the review is a scoping review following a 5-step-model by Arksey & O'Malley. The charting of the data has been conducted with the help of the networked learning landscape framework from Nordquist and Laing. The majority of the research studies on classroom-scale level have focused on how technology may enable active learning. There are no identified research studies on the building-scale level. Hence, the alignment of curricula and physical learning spaces has scarcely been addressed in research from other sectors. In order to 'create a field', conclusions from both case studies and research in related areas must be identified and taken into account to provide insights into health profession education. Four areas have been identified as having potential for future development in health profession education: (i) active involvement of faculty members in the early stages of physical space development; (ii) further development of the assessment strategies for evaluating how physical space impacts learning; (iii) exploration of how informal spaces are being developed in other sectors; and (iv) initiating research projects in HPE to study how informal spaces impact on students' learning. Potentially, the results of this scoping review will result in better future research questions and better-designed studies in this new and upcoming academic field of aligning physical learning spaces and curricula in health profession education. © 2015 John Wiley & Sons Ltd.

  4. The space laboratory of University College London

    NASA Astrophysics Data System (ADS)

    Johnstone, Alan

    1994-10-01

    University College London was one of the first universities in the world to become involved in making scientific observations in space. Since its laboratory, the Mullard Space Science Laboratory was established, it has participated in 40 satellite missions and more than 200 sounding rocket experiments. Its scientific research in five fields, space plasma physics, high energy astronomy, solar astronomy, Earth remote sensing, and detector physics is internationally renowned. The scientific and technological expertise development through the construction and use of space instrumentation has been fed back into an educational program which leads to degrees at the three levels of B.Sc., M.Sc., and Ph.D.

  5. Physics: A Career for You?

    ERIC Educational Resources Information Center

    American Inst. of Physics, New York, NY.

    Information is provided for students who may be interested in pursuing a career in physics. This information includes the type of work done and areas studied by physicists in the following areas: nuclear physics, solid-state physics, elementary-particle physics, atomic/molecular/electron physics, fluid/plasma physics, space/planetary physics,…

  6. Investigations of Physical Processes in Microgravity Relevant to Space Electrochemical Power Systems

    NASA Technical Reports Server (NTRS)

    Lvovich, Vadim F.; Green, Robert; Jakupca, Ian

    2015-01-01

    NASA has performed physical science microgravity flight experiments in the areas of combustion science, fluid physics, material science and fundamental physics research on the International Space Station (ISS) since 2001. The orbital conditions on the ISS provide an environment where gravity driven phenomena, such as buoyant convection, are nearly negligible. Gravity strongly affects fluid behavior by creating forces that drive motion, shape phase boundaries and compress gases. The need for a better understanding of fluid physics has created a vigorous, multidisciplinary research community whose ongoing vitality is marked by the continuous emergence of new fields in both basic and applied science. In particular, the low-gravity environment offers a unique opportunity for the study of fluid physics and transport phenomena that are very relevant to management of fluid - gas separations in fuel cell and electrolysis systems. Experiments conducted in space have yielded rich results. These results provided valuable insights into fundamental fluid and gas phase behavior that apply to space environments and could not be observed in Earth-based labs. As an example, recent capillary flow results have discovered both an unexpected sensitivity to symmetric geometries associated with fluid container shape, and identified key regime maps for design of corner or wedge-shaped passive gas-liquid phase separators. In this presentation we will also briefly review some of physical science related to flight experiments, such as boiling, that have applicability to electrochemical systems, along with ground-based (drop tower, low gravity aircraft) microgravity electrochemical research. These same buoyancy and interfacial phenomena effects will apply to electrochemical power and energy storage systems that perform two-phase separation, such as water-oxygen separation in life support electrolysis, and primary space power generation devices such as passive primary fuel cell.

  7. Audiovisual Aids for Astronomy and Space Physics at an Urban College

    ERIC Educational Resources Information Center

    Moche, Dinah L.

    1973-01-01

    Discusses the use of easily available audiovisual aids to teach a one semester course in astronomy and space physics to liberal arts students of both sexes at Queensborough Community College. Included is a list of teaching aids for use in astronomy instruction. (CC)

  8. Nex-Gen Space Observatory

    NASA Image and Video Library

    2011-10-26

    Adam Reiss, recipient of the 2011 Nobel Prize in Physics and professor of astronomy and physics at Johns Hopkins University speaks at the presentation of the permanent exhibit of the James Webb Space Telescope at the Maryland Science Center on Wednesday, Oct. 26, 2011 in Baltimore. Photo Credit: (NASA/Carla Cioffi)

  9. Measuring accessibility of sustainable transportation using space syntax in Bojonggede area

    NASA Astrophysics Data System (ADS)

    Suryawinata, B. A.; Mariana, Y.; Wijaksono, S.

    2017-12-01

    Changes in the physical structure of regional space as a result of the increase of planned and unplanned settlements in the Bojonggede area have an impact on the road network pattern system. Changes in road network patterns will have an impact on the permeability of the area. Permeability measures the extent to which road network patterns provide an option in traveling. If the permeability increases the travel distance decreases and the route of travel choice increases, permeability like this can create an easy access system and physically integrated. This study aims to identify the relationship of physical characteristics of residential area and road network pattern to the level of space permeability in Bojonggede area. By conducting this research can be a reference for the arrangement of circulation, accessibility, and land use in the vicinity of Bojonggede. This research uses quantitative method and space syntax method to see global integration and local integration on the region which become the parameter of permeability level. The results showed that the level of permeability globally and locally high in Bojonggede physical area is the physical characteristics of the area that has a grid pattern of road network grid.

  10. Obituary: Tor Hagfors, 1930-2007

    NASA Astrophysics Data System (ADS)

    Aksnes, Kaare

    2007-12-01

    Tor Hagfors, a world leader in the use of radar techniques to observe ionospheres, surfaces and interiors of planetary bodies, died of heart-failure on 17 January 2007, in Puerto Rico, at the age of 76. He was born on 8 December 1930, in Oslo, Norway, and received his education there and in Trondheim, where he graduated with exceptionally good grades with a degree in technical physics from the Norwegian Institute of Technology (NTH) in 1955. Hagfors was then until 1963 employed at the Norwegian Defence Research Establishment (NDRE) where he worked mainly on scattering of high-frequency radio waves in the Earth's ionosphere. This work earned him a PhD in physics from the University of Oslo in 1959. With leave of absence from NDRE, he worked as a Research Associate at Stanford University in 1959/1960, developing a fundamental theory on incoherent scattering of radio waves from electrons in the ionosphere and also participating in radar studies of the Moon's surface in preparation for the later lunar landings. Back in Norway Hagfors continued his scattering studies but, finding that the opportunities for experimental work were limited there, he accepted in 1963 a position at the Massachusetts Institute of Technology's Lincoln Laboratory where he stayed until 1971, interrupted by two years as Director of the Jicamarca Radio Observatory near Lima in Peru 1967-1969. There he gained a reputation as a very inspiring and efficient leader who handled difficult negotiations with the Peruvian military junta very well. In 1971 Hagfors was appointed Director of Operations of the Arecibo Radio Observatory in Puerto Rico, a position that he held and executed in an excellent way until 1973. Although Tor had by now become a United States citizen with a brilliant scientific career, he chose to return to his alma mater, NTH, in Trondheim, where he worked as a Professor of Electronics between 1973 and 1982. From 1975 to 1982 he also served as Director of the European Incoherent Scatter Association (EISCAT) and was in charge of the construction of its radar facilities in Scandinavia. In 1982 Tor was back in USA as Director of the National Astronomy and Ionosphere Center (NAIC), which manages the Arecibo Observatory. At the same time he was Professor of both Astronomy and Electrical Engineering at Cornell University in Ithaca, New York. In 1992 Hagfors accepted a call as Director of the Max-Planck Institut für Aeronomie in Lindau, Germany, where he remained until his retirement in 1998. During this period he was also Adjunct Professor at the Institute of Theoretical Astrophysics, University of Oslo, where he helped to start research projects in space research. The University of Tromsö, Norway; University of Nagoya, Japan; and University of Lancaster, UK, also benefited from visits by Tor as a Guest Professor. Hagfors was widely valued as a member of many national and international scientific committees and unions, e. g., as head of a committee on space research for the Norwegian Research Council. He received many honors, notably the Van der Pol Gold Medal (1987), a Senior Humboldt Fellowship (1989), Membership in the Norwegian Academy of Science (1995), Extraordinary Membership in the Royal Astronomical Society (1998), the Sir Granville Beynon Medal (2002), a Doctorate Honoris Causa from the University of Oulu (2002), and a Honorary Doctorate from the University of Tromsö (2003). Tor Hagfors had very wide interests; he was a brilliant researcher who published around 170 scientific papers. His many achievements in radio astronomy, in addition to what is already mentioned, included determination of the dielectric constant of the Moon's surface, radar mapping of the surfaces of Venus and of rapidly rotating planetary bodies, scattering studies of the surfaces of the Galilean satellites and of the interiors of comets and asteroids by radio sounding, and lastly the search for water on Mars by means of Mars Express data. He had a profound knowledge of not only the underlying physics of the phenomena that he studied, but was also a very skilled engineer who gave important contributions to antenna designs and equipment. Tor was an inspiring scientist who gave generously of his time as teacher and adviser in fields such as information theory, plasma physics, radio astronomy, and antenna designs. He loved to socialize with friends and colleagues and he enjoyed outdoors activities, especially skiing. Despite his many accomplishments, he was a modest and friendly person who will be sorely missed.

  11. Perspective Space as a Model for Distance and Size Perception.

    PubMed

    Erkelens, Casper J

    2017-01-01

    In the literature, perspective space has been introduced as a model of visual space. Perspective space is grounded on the perspective nature of visual space during both binocular and monocular vision. A single parameter, that is, the distance of the vanishing point, transforms the geometry of physical space into that of perspective space. The perspective-space model predicts perceived angles, distances, and sizes. The model is compared with other models for distance and size perception. Perspective space predicts that perceived distance and size as a function of physical distance are described by hyperbolic functions. Alternatively, power functions have been widely used to describe perceived distance and size. Comparison of power and hyperbolic functions shows that both functions are equivalent within the range of distances that have been judged in experiments. Two models describing perceived distance on the ground plane appear to be equivalent with the perspective-space model too. The conclusion is that perspective space unifies a number of models of distance and size perception.

  12. Perspective Space as a Model for Distance and Size Perception

    PubMed Central

    2017-01-01

    In the literature, perspective space has been introduced as a model of visual space. Perspective space is grounded on the perspective nature of visual space during both binocular and monocular vision. A single parameter, that is, the distance of the vanishing point, transforms the geometry of physical space into that of perspective space. The perspective-space model predicts perceived angles, distances, and sizes. The model is compared with other models for distance and size perception. Perspective space predicts that perceived distance and size as a function of physical distance are described by hyperbolic functions. Alternatively, power functions have been widely used to describe perceived distance and size. Comparison of power and hyperbolic functions shows that both functions are equivalent within the range of distances that have been judged in experiments. Two models describing perceived distance on the ground plane appear to be equivalent with the perspective-space model too. The conclusion is that perspective space unifies a number of models of distance and size perception. PMID:29225765

  13. Evaluation of candidate geomagnetic field models for IGRF-11

    NASA Astrophysics Data System (ADS)

    Finlay, C. C.; Maus, S.; Beggan, C. D.; Hamoudi, M.; Lowes, F. J.; Olsen, N.; Thébault, E.

    2010-10-01

    The eleventh generation of the International Geomagnetic Reference Field (IGRF) was agreed in December 2009 by a task force appointed by the International Association of Geomagnetism and Aeronomy (IAGA) Division V Working Group V-MOD. New spherical harmonic main field models for epochs 2005.0 (DGRF-2005) and 2010.0 (IGRF-2010), and predictive linear secular variation for the interval 2010.0-2015.0 (SV-2010-2015) were derived from weighted averages of candidate models submitted by teams led by DTU Space, Denmark (team A); NOAA/NGDC, U.S.A. (team B); BGS, U.K. (team C); IZMIRAN, Russia (team D); EOST, France (team E); IPGP, France (team F); GFZ, Germany (team G) and NASA-GSFC, U.S.A. (team H). Here, we report the evaluations of candidate models carried out by the IGRF-11 task force during October/November 2009 and describe the weightings used to derive the new IGRF-11 model. The evaluations include calculations of root mean square vector field differences between the candidates, comparisons of the power spectra, and degree correlations between the candidates and a mean model. Coefficient by coefficient analysis including determination of weighting factors used in a robust estimation of mean coefficients is also reported. Maps of differences in the vertical field intensity at Earth's surface between the candidates and weighted mean models are presented. Candidates with anomalous aspects are identified and efforts made to pinpoint both troublesome coefficients and geographical regions where large variations between candidates originate. A retrospective analysis of IGRF-10 main field candidates for epoch 2005.0 and predictive secular variation candidates for 2005.0-2010.0 using the new IGRF-11 models as a reference is also reported. The high quality and consistency of main field models derived using vector satellite data is demonstrated; based on internal consistency DGRF-2005 has a formal root mean square vector field error over Earth's surface of 1.0 nT. Difficulties nevertheless remain in accurately forecasting field evolution only five years into the future.

  14. Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING) from an Unmanned Aerial Vehicle (UAV): Results from the 2014 AROMAT campaign

    NASA Astrophysics Data System (ADS)

    Merlaud, Alexis; Tack, Frederik; Constantin, Daniel; Fayt, Caroline; Maes, Jeroen; Mingireanu, Florin; Mocanu, Ionut; Georgescu, Lucian; Van Roozendael, Michel

    2015-04-01

    The Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING) is an instrument dedicated to atmospheric trace gas retrieval from an Unmanned Aerial Vehicle (UAV). The payload is based on a compact visible spectrometer and a scanning mirror to collect scattered sunlight. Its weight, size, and power consumption are respectively 920 g, 27x12x12 cm3, and 6 W. The custom-built 2.5 m flying wing UAV is electrically powered, has a typical airspeed of 100 km/h, and can operate at a maximum altitude of 3 km. Both the payload and the UAV were developed in the framework of a collaboration between the Belgian Institute for Space Aeronomy (BIRA-IASB) and the Dunarea de Jos University of Galati, Romania. We present here SWING-UAV test flights dedicated to NO2 measurements and performed in Romania on 10 and 11 September 2014, during the Airborne ROmanian Measurements of Aerosols and Trace gases (AROMAT) campaign. The UAV performed 5 flights in the vicinity of the large thermal power station of Turceni (44.67° N, 23.4° E). The UAV was operated in visual range during the campaign, up to 900 m AGL , downwind of the plant and crossing its exhaust plume. The spectra recorded on flight are analyzed with the Differential Optical Absorption Spectroscopy (DOAS) method. The retrieved NO2 Differential Slant Column Densities (DSCDs) are up to 1.5e17 molec/cm2 and reveal the horizontal gradients around the plant. The DSCDs are converted to vertical columns and compared with coincident car-based DOAS measurements. We also present the near-future perspective of the SWING-UAV observation system, which includes flights in 2015 above the Black Sea to quantify ship emissions, the addition of SO2 as a target species, and autopilot flights at higher altitudes to cover a typical satellite pixel extent (10x10 km2).

  15. The SPICAV-SOIR instrument probing the atmosphere of Venus: an overview

    NASA Astrophysics Data System (ADS)

    Trompet, Loïc; Mahieux, Arnaud; Wilquet, Valérie; Robert, Séverine; Chamberlain, Sarah; Thomas, Ian; Carine Vandaele, Ann; Bertaux, Jean-Loup

    2016-04-01

    The Solar Occultation in the Infrared (SOIR) channel mounted on top of the SPICAV instrument of the ESA's Venus Express mission has observed the atmosphere of Venus during more than eight years. This IR spectrometer (2.2-4.3 μm) with a high spectral resolution (0.12 cm-1) combined an echelle grating with an acousto-optic tunable filter for order selection. SOIR performed more than 1500 solar occultation measurements leading to about two millions spectra. The Royal Belgian Institute for Space Aeronomy (BIRA-IASB) was in charge of SOIR's development and operations as well as its data pipeline. BIRA-IASB carried out several studies on the composition of Venus mesosphere and lower thermosphere: carbon dioxide, carbon monoxide, hydrogen halide (HF, HCl, DF, DCl), sulfur dioxide, water (H2O, HDO) as well as sulphuric acid aerosols in the upper haze of Venus. Density and temperature profiles of the upper atmosphere of Venus (60 km to 170 km) at the terminator have been retrieved from SOIR's spectra using different assumptions, wherein the hydrostatic equilibrium and the local thermodynamical equilibrium in the radiative transfer calculations. These results allow us to produce an Atmospheric model of Venus called Venus Atmosphere from SOIR measurements at the Terminator (VAST). Data obtained by SOIR will also contribute to update the Venus International Reference Atmosphere (VIRA). Recently, the treatment of the raw data to transmittance has been optimized, and a new dataset of spectra has been produced. All raw spectra (PSA level 2) as well as calibrated spectra (PSA level 3) have been delivered to ESA's Planetary Science Archive (PDSPSA). Consequently the re-analysis of all spectra has been undergone. We will briefly present the improvements implemented in the data pipeline. We will also show a compilation of results obtained by the instrument considering the complete mission duration.

  16. The ASSET intercomparison of stratosphere and lower mesosphere humidity analyses

    NASA Astrophysics Data System (ADS)

    Thornton, H. E.; Jackson, D. R.; Bekki, S.; Bormann, N.; Errera, Q.; Geer, A. J.; Lahoz, W. A.; Rharmili, S.

    2008-07-01

    This paper presents results from the first detailed intercomparison of stratosphere-lower mesosphere water vapour analyses; it builds on earlier results from the "Assimilation of ENVISAT Data" (ASSET) project. With the availability of high resolution, good quality Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) water vapour profiles, the ability of four different atmospheric models to assimilate these data is tested. MIPAS data have been assimilated over September 2003 into the models of the European Centre for Medium Range Weather Forecasts (ECMWF), the Belgian Institute for Space and Aeronomy (BIRA-IASB), the French Service d'Aéronomie (SA-IPSL) and the UK Met Office. The resultant middle atmosphere humidity analyses are compared against independent satellite data from the Halogen Occultation Experiment (HALOE), the Polar Ozone and Aerosol Measurement (POAM III) and the Stratospheric Aerosol and Gas Experiment (SAGE II). The MIPAS water vapour profiles are generally well assimilated in the ECMWF, BIRA-IASB and SA systems, producing stratosphere-mesosphere water vapour fields where the main features compare favourably with the independent observations. However, the models are less capable of assimilating the MIPAS data where water vapour values are locally extreme or in regions of strong humidity gradients, such as the Southern Hemisphere lower stratosphere polar vortex. Differences in the analyses can be attributed to the choice of humidity control variable, how the background error covariance matrix is generated, the model resolution and its complexity, the degree of quality control of the observations and the use of observations near the model boundaries. Due to the poor performance of the Met Office analyses the results are not included in the intercomparison, but are discussed separately. The Met Office results highlight the pitfalls in humidity assimilation, and provide lessons that should be learnt by developers of stratospheric humidity assimilation systems. In particular, they underline the importance of the background error covariances in generating a realistic troposphere to mesosphere water vapour analysis.

  17. Proceedings of the XIIIth IAGA Workshop on Geomagnetic Observatory Instruments, Data Acquisition, and Processing

    USGS Publications Warehouse

    Love, Jeffrey J.

    2009-01-01

    The thirteenth biennial International Association of Geomagnetism and Aeronomy (IAGA) Workshop on Geomagnetic Observatory Instruments, Data Acquisition and Processing was held in the United States for the first time on June 9-18, 2008. Hosted by the U.S. Geological Survey's (USGS) Geomagnetism Program, the workshop's measurement session was held at the Boulder Observatory and the scientific session was held on the campus of the Colorado School of Mines in Golden, Colorado. More than 100 participants came from 36 countries and 6 continents. Preparation for the workshop began when the USGS Geomagnetism Program agreed, at the close of the twelfth workshop in Belsk Poland in 2006, to host the next workshop. Working under the leadership of Alan Berarducci, who served as the chairman of the local organizing committee, and Tim White, who served as co-chairman, preparations began in 2007. The Boulder Observatory was extensively renovated and additional observation piers were installed. Meeting space on the Colorado School of Mines campus was arranged, and considerable planning was devoted to managing the many large and small issues that accompany an international meeting. Without the devoted efforts of both Alan and Tim, other Geomagnetism Program staff, and our partners at the Colorado School of Mines, the workshop simply would not have occurred. We express our thanks to Jill McCarthy, the USGS Central Region Geologic Hazards Team Chief Scientist; Carol A. Finn, the Group Leader of the USGS Geomagnetism Program; the USGS International Office; and Melody Francisco of the Office of Special Programs and Continuing Education of the Colorado School of Mines. We also thank the student employees that the Geomagnetism Program has had over the years and leading up to the time of the workshop. For preparation of the proceedings, thanks go to Eddie and Tim. And, finally, we thank our sponsors, the USGS, IAGA, and the Colorado School of Mines.

  18. The response of Antarctica MLT region for the recent Sudden Stratospheric Warming (SSW) over Southern Hemisphere (SH): An overview

    NASA Astrophysics Data System (ADS)

    Eswaraiah, S.; Kim, Y.; Lee, J.; Kim, J. H.; Venkat Ratnam, M.; Riggin, D. M.; Vijaya Bhaskara Rao, S.

    2017-12-01

    A minor Sudden Stratospheric Warming (SSW) was noticed in the southern hemisphere (SH) during the September (day 259) 2010 along with two episodic warmings in early August (day 212) and late October (day 300) 2010. The signature of the mesosphere and lower thermosphere (MLT) response was detected using the ground based and space borne observations along with the model predictions. The changes in the mesosphere wind field were studied from the observations of both meteor radar and MF radar located at King Sejong Station (62.22°S, 58.78°W) and Rothera (68oS, 68oW), Antarctica, respectively. The zonal winds in the mesosphere reversed approximately a week before the September SSW occurrence. We have also analyzed the MLT tides using both the radars and noticed strong enhancement of semi-diurnal tide (SDT) a few days later the cessation of 2010 SSW. We note the similar enhancement during the 2002 major SSW. Specifically, the SDT amplitude enhancement is greater for the 2010 SSW than 2002 SSW. We found that strong 14-16 day PWs prevailed prior to the 2010 minor SSW and disappeared suddenly after the SSW in the mesosphere by generating the quasi-secondary waves of periodicity 3-9 days. The mesosphere wind reversal is also noticed in "Specified Dynamics" version of Whole Atmosphere Community Climate Model (SD-WACCM) and Ground-to-topside model of Atmosphere and Ionosphere for Aeronomy (GAIA) simulations. The similar zonal wind weakening/reversal in the lower thermosphere between 100 and 140 km are simulated by GAIA. Further, we observed the mesospheric cooling in consistency with SSWs using Microwave Limb Sounder (MLS) data. However, the GAIA simulations showed warming between 130 and 140 km after few days of SSW. Thus, the observation and model simulation indicate for the first time that the 2010 minor SSW also affects dynamics of the MLT region over SH in a manner similar to the 2002 major SSW.

  19. Affine Kac-Moody symmetric spaces related with A{sub 1}{sup (1)}, A{sub 2}{sup (1)}, A{sub 2}{sup (2)}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nayak, Saudamini, E-mail: anumama.nayak07@gmail.com; Pati, K. C., E-mail: kcpati@nitrkl.ac.in

    Symmetric spaces associated with Lie algebras and Lie groups which are Riemannian manifolds have recently got a lot of attention in various branches of Physics for their role in classical/quantum integrable systems, transport phenomena, etc. Their infinite dimensional counter parts have recently been discovered which are affine Kac-Moody symmetric spaces. In this paper we have (algebraically) explicitly computed the affine Kac-Moody symmetric spaces associated with affine Kac-Moody algebras A{sub 1}{sup (1)},A{sub 2}{sup (1)},A{sub 2}{sup (2)}. We hope these types of spaces will play similar roles as that of symmetric spaces in many physical systems.

  20. Gravitons as Embroidery on the Weave

    NASA Astrophysics Data System (ADS)

    Iwasaki, Junichi; Rovelli, Carlo

    We investigate the physical interpretation of the loop states that appear in the loop representation of quantum gravity. By utilizing the “weave” state, which has been recently introduced as a quantum description of the microstructure of flat space, we analyze the relation between loop states and graviton states. This relation determines a linear map M from the state-space of the nonperturbative theory (loop space) into the state-space of the linearized theory (Fock space). We present an explicit form of this map, and a preliminary investigation of its properties. The existence of such a map indicates that the full nonperturbative quantum theory includes a sector that describes the same physics as (the low energy regimes of) the linearized theory, namely gravitons on flat space.

  1. The Evolution of Universe as Splitting of the ``Non Existing'' and Space-Time Expansion

    NASA Astrophysics Data System (ADS)

    Nassikas, A. A.

    2010-09-01

    The purpose of this paper is to show that the creation of Universe can be regarded as a splitting process of the ``non existing'', ``where'' there is no space-time and that the expansion of Universe is due to the compatibility between the stochastic-quantum space-time created and the surrounding ``non existing''. In this way it is not required that space time should pre-exist in contrast, as it can be shown, to the Universe creation from vacuum theory. The present point of view can be derived on the basis of a Minimum Contradictions Physics according to which stochastic-quantum space-time is matter itself; there are (g)-mass and (em)-charge space-time which interact-communicate through photons [(g) or (em) particles with zero rest mass]. This point of view is compatible to the present knowledge of CERN and Fermi Lab experiments as well as to the neutron synthesis according to Rutherford, experimentally verified and theoretically explained through Hadronic Mechanics by R. M. Santilli. On the basis of the Minimum Contradictions Physics a quantum gravity formula is derived which implies either positive or negative gravitational acceleration; thus, bodies can be attracted while Universe can be expanded. Minimum Contradictions Physics, under certain simplifications, is compatible to Newton Mechanics, Relativity Theory and QM. This physics is compatible to language through which it is stated. On this basis the physical laws are the principles of language i.e.: the Classical Logic, the Sufficient Reason Principle the Communication Anterior-Posterior Axiom and the Claim for Minimum Contradictions; according to a theorem contradictions cannot be vanished.

  2. The Universality of Time Dilation and Space Contraction.

    ERIC Educational Resources Information Center

    Daly, Lisa N.; Horton, George K.

    1994-01-01

    Describes the extended general physics course taught at Rutgers University. The course presents to students at the high school algebra level the topic of analyzing a particular thought experiment that yields the time dilation formula and subsequently space contraction, velocity addition, and other 20th-century physics concepts. (MVL)

  3. Aligning Pedagogy with Physical Learning Spaces

    ERIC Educational Resources Information Center

    van Merriënboer, Jeroen J. G.; McKenney, Susan; Cullinan, Dominic; Heuer, Jos

    2017-01-01

    The quality of education suffers when pedagogies are not aligned with physical learning spaces. For example, the architecture of the triple-decker Victorian schools across England fits the information transmission model that was dominant in the industrial age, but makes it more difficult to implement student-centred pedagogies that better fit a…

  4. Curricular Space Allocated for Dance Content in Physical Education Teacher Education Programs: A Literature Review

    ERIC Educational Resources Information Center

    Marquis, Jenée Marie; Metzler, Mike

    2017-01-01

    This literature review examines curricular space allocated to activity based/movement content courses in Physical Education Teacher Education (PETE) pre-service programs, specifically focusing on how dance content knowledge and pedagogical content knowledge are addressed within those programs. This review includes original empirical research…

  5. Science and Technology Research Directions for the International Space Station

    DTIC Science & Technology

    1999-07-09

    investigations into solar studies, cosmic rays, the physical and chemical composition of the space environment, as well as the presence of dark matter in the...the mass distribution of the various cosmic rays? Where is the dark matter in the universe? (AMS: see Fundamental Physics section) Science and

  6. Challenges in Physical Characterization of Dim Space Objects: What Can We Learn from NEOs

    NASA Astrophysics Data System (ADS)

    Reddy, V.; Sanchez, J.; Thirouin, A.; Rivera-Valentin, E.; Ryan, W.; Ryan, E.; Mokovitz, N.; Tegler, S.

    2016-09-01

    Physical characterization of dim space objects in cis-lunar space can be a challenging task. Of particular interest to both natural and artificial space object behavior scientists are the properties beyond orbital parameters that can uniquely identify them. These properties include rotational state, size, shape, density and composition. A wide range of observational and non-observational factors affect our ability to characterize dim objects in cis-lunar space. For example, phase angle (angle between Sun-Target-Observer), temperature, rotational variations, temperature, and particle size (for natural dim objects). Over the last two decades, space object behavior scientists studying natural dim objects have attempted to quantify and correct for a majority of these factors to enhance our situational awareness. These efforts have been primarily focused on developing laboratory spectral calibrations in a space-like environment. Calibrations developed correcting spectral observations of natural dim objects could be applied to characterizing artificial objects, as the underlying physics is the same. The paper will summarize our current understanding of these observational and non-observational factors and present a case study showcasing the state of the art in characterization of natural dim objects.

  7. On the background independence of two-dimensional topological gravity

    NASA Astrophysics Data System (ADS)

    Imbimbo, Camillo

    1995-04-01

    We formulate two-dimensional topological gravity in a background covariant Lagrangian framework. We derive the Ward identities which characterize the dependence of physical correlators on the background world-sheet metric defining the gauge-slice. We point out the existence of an "anomaly" in Ward identitites involving correlators of observables with higher ghost number. This "anomaly" represents an obstruction for physical correlators to be globally defined forms on moduli space which could be integrated in a background independent way. Starting from the anomalous Ward identities, we derive "descent" equations whose solutions are cocycles of the Lie algebra of the diffeomorphism group with values in the space of local forms on the moduli space. We solve the descent equations and provide explicit formulas for the cocycles, which allow for the definition of background independent integrals of physical correlators on the moduli space.

  8. Space plasma physics at the Applied Physics Laboratory over the past half-century

    NASA Technical Reports Server (NTRS)

    Potemra, Thomas A.

    1992-01-01

    An overview is given of space-plasma experiments conducted at the Applied Physics Laboratory (APL) at Johns Hopkins University including observational campaigns and the instrumentation developed. Specific space-plasma experiments discussed include the study of the radiation environment in the Van Allen radiation belt with solid-state proton detectors. Also described are the 5E-1 satellites which acquired particle and magnetic-field data from earth orbit. The Triad satellite and its magnetometer system were developed for high-resolution studies of the earth's magnetic field, and APL contributions to NASA's Interplanetary Monitoring Platforms are listed. The review mentions the International Ultraviolet Explorer, the Atmosphere Explorer mission, and the Active Magnetic Particle Tracer Explorers mission. Other recent programs reviewed include a high-latitude satellite, contributions to the Voyager mission, and radar studies of space plasmas.

  9. [Contribution of natural spaces to human health and wellbeing].

    PubMed

    Claßen, Thomas; Bunz, Maxie

    2018-05-16

    Natural spaces and especially urban green and blue spaces have been recognised for a long time as spaces with great potential for protecting and promoting human health and well-being. They may affect human physical, mental and social health and well-being in various ways. On one hand, this comes to pass through reduction and moderation of potential environmental health risks (e. g. noise, particulate matter, heat), psycho-physiological effects of nature experience, as well as physical effects of exposure to natural compounds and elements. On the other hand, natural spaces can affect health and well-being indirectly e. g. through motivation of health promoting behaviour (e. g. more physical activity) and through use as outdoor meeting spaces, by decreasing aggression, and through the resulting positive effects on social well-being. Yet, some potential adverse health effects of nature and landscapes have been reported, too (e. g. insecurity or fear in confusing or unmaintained natural spaces, potential rivalry in usage, allergies or skin irritations due to natural elements, risk of communicable diseases from vectors). Against the background of positive effects of natural spaces, creating, restoring and enhancing urban green and blue spaces are often claimed in terms of sustainable and integrated urban development. But which associations and impacts exist between natural spaces and health? What are the resulting demands when integrating natural spaces for a health-promoting implementation practice? This overview article provides some answers to these questions.

  10. Model of Four-Dimensional Sub-Proton Euclidean Space with Real Time for Valence Quarks. Lagrangian Mechanics

    NASA Astrophysics Data System (ADS)

    Kreymer, E. L.

    2018-06-01

    The model of Euclidean space with imaginary time used in sub-hadron physics uses only part of it since this part is isomorphic to Minkowski space and has the velocity limit 0 ≤ ||v Ei|| ≤ 1. The model of four-dimensional Euclidean space with real time (E space), in which 0 ≤ ||v E|| ≤ ∞ is investigated. The vectors of this space have E-invariants, equal or analogous to the invariants of Minkowski space. All relations between physical quantities in E-space, after they are mapped into Minkowski space, satisfy the principles of SRT and are Lorentz-invariant, and the velocity of light corresponds to infinite velocity. Results obtained in the model are different from the physical laws in Minkowski space. Thus, from the model of the Lagrangian mechanics of quarks in a centrally symmetric attractive potential it follows that the energy-mass of a quark decreases with increase of the velocity and is equal to zero for v = ∞. This made it possible to establish the conditions of emission and absorption of gluons by quarks. The effect of emission of gluons by high-energy quarks was discovered experimentally significantly earlier. The model describes for the first time the dynamic coupling of the masses of constituent and current quarks and reveals new possibilities in the study of intrahardon space. The classical trajectory of the oscillation of quarks in protons is described.

  11. Fundamental Principles of Classical Mechanics: a Geometrical Perspectives

    NASA Astrophysics Data System (ADS)

    Lam, Kai S.

    2014-07-01

    Classical mechanics is the quantitative study of the laws of motion for oscopic physical systems with mass. The fundamental laws of this subject, known as Newton's Laws of Motion, are expressed in terms of second-order differential equations governing the time evolution of vectors in a so-called configuration space of a system (see Chapter 12). In an elementary setting, these are usually vectors in 3-dimensional Euclidean space, such as position vectors of point particles; but typically they can be vectors in higher dimensional and more abstract spaces. A general knowledge of the mathematical properties of vectors, not only in their most intuitive incarnations as directed arrows in physical space but as elements of abstract linear vector spaces, and those of linear operators (transformations) on vector spaces as well, is then indispensable in laying the groundwork for both the physical and the more advanced mathematical - more precisely topological and geometrical - concepts that will prove to be vital in our subject. In this beginning chapter we will review these properties, and introduce the all-important related notions of dual spaces and tensor products of vector spaces. The notational convention for vectorial and tensorial indices used for the rest of this book (except when otherwise specified) will also be established...

  12. How the built environment affects change in older people's physical activity: A mixed- methods approach using longitudinal health survey data in urban China.

    PubMed

    Zhou, Peiling; Grady, Sue C; Chen, Guo

    2017-11-01

    Although the general population in China is physically active, only 45% of older adults meet the World Health Organization's recommendation for weekly moderate-to-vigorous exercise, to achieve health benefits. This percentage is even lower (9.8%) in urban China. It is, therefore, important to understand the pathways by which physical activity behaviors are impacted by the built environment. This study utilized a mixed methods approach-interviews (n = 42) and longitudinal (2010-2015) health survey data (n = 3094) for older people residing in three neighborhoods in Huainan, a mid-sized city in Anhui Province, central eastern China. First, a content analysis of interview data was used to identify individual and built environment factors (motivators and barriers) that impacted physical activity within older people's activity spaces. Second, a multilevel path analysis was conducted using the health survey data to demonstrate the pathways by which these motivators and barriers contributed to the initiation, regulation, and maintenance of physical activity. This study found (a) that the liveliness of an apartment building and its proximity to functional spaces (fast-food stores, farmer's markets, supermarkets, pharmacies, schools, hospitals, PA facilities and natural and man-made water bodies) were important factors in attracting sedentary older people to initiate physical activity; (b) the social networks of apartment neighbors helped to initiate, regulate, and maintain physical activity; and housing closeness to functional spaces was important in maintaining physical activity, particularly for those older people with chronic diseases. To increase older people's overall physical activity, future interventions should focus on residential form and access to functional spaces, prior to investing in large-scale urban design interventions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. NASA breakthrough propulsion physics program

    NASA Astrophysics Data System (ADS)

    Millis, Marc G.

    1999-05-01

    In 1996, NASA established the Breakthrough Propulsion Physics program to seek the ultimate breakthroughs in space transportation: propulsion that requires no propellant mass, propulsion that attains the maximum transit speeds physically possible, and breakthrough methods of energy production to power such devices. Topics of interest include experiments and theories regarding the coupling of gravity and electromagnetism, vacuum fluctuation energy, warp drives and wormholes, and superluminal quantum effects. Because these propulsion goals are presumably far from fruition, a special emphasis is to identify affordable, near-term, and credible research that could make measurable progress toward these propulsion goals. The methods of the program and the results of the 1997 workshop are presented. This Breakthrough Propulsion Physics program, managed by Lewis Research Center, is one part of a comprehensive, long range Advanced Space Transportation Plan managed by Marshall Space Flight Center.

  14. NASA Breakthrough Propulsion Physics Program

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.

    1998-01-01

    In 1996, NASA established the Breakthrough Propulsion Physics program to seek the ultimate breakthroughs in space transportation: propulsion that requires no propellant mass, propulsion that attains the maximum transit speeds physically possible, and breakthrough methods of energy production to power such devices. Topics of interest include experiments and theories regarding the coupling of gravity and electromagnetism, vacuum fluctuation energy, warp drives and worm-holes, and superluminal quantum effects. Because these propulsion goals are presumably far from fruition, a special emphasis is to identify affordable, near-term, and credible research that could make measurable progress toward these propulsion goals. The methods of the program and the results of the 1997 workshop are presented. This Breakthrough Propulsion Physics program, managed by Lewis Research Center, is one part of a comprehensive, long range Advanced Space Transportation Plan managed by Marshall Space Flight Center.

  15. A unified framework for mesh refinement in random and physical space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jing; Stinis, Panos

    In recent work we have shown how an accurate reduced model can be utilized to perform mesh renement in random space. That work relied on the explicit knowledge of an accurate reduced model which is used to monitor the transfer of activity from the large to the small scales of the solution. Since this is not always available, we present in the current work a framework which shares the merits and basic idea of the previous approach but does not require an explicit knowledge of a reduced model. Moreover, the current framework can be applied for renement in both randommore » and physical space. In this manuscript we focus on the application to random space mesh renement. We study examples of increasing difficulty (from ordinary to partial differential equations) which demonstrate the effciency and versatility of our approach. We also provide some results from the application of the new framework to physical space mesh refinement.« less

  16. Quantum correlations and dynamics from classical random fields valued in complex Hilbert spaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khrennikov, Andrei

    2010-08-15

    One of the crucial differences between mathematical models of classical and quantum mechanics (QM) is the use of the tensor product of the state spaces of subsystems as the state space of the corresponding composite system. (To describe an ensemble of classical composite systems, one uses random variables taking values in the Cartesian product of the state spaces of subsystems.) We show that, nevertheless, it is possible to establish a natural correspondence between the classical and the quantum probabilistic descriptions of composite systems. Quantum averages for composite systems (including entangled) can be represented as averages with respect to classical randommore » fields. It is essentially what Albert Einstein dreamed of. QM is represented as classical statistical mechanics with infinite-dimensional phase space. While the mathematical construction is completely rigorous, its physical interpretation is a complicated problem. We present the basic physical interpretation of prequantum classical statistical field theory in Sec. II. However, this is only the first step toward real physical theory.« less

  17. Consortium for materials development in space

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The status of the Consortium for Materials Development in Space (CMDS) is reviewed. Individual CMDS materials projects and flight opportunities on suborbital and orbital carriers are outlined. Projects include: surface coatings and catalyst production; non-linear optical organic materials; physical properties of immiscible polymers; nuclear track detectors; powdered metal sintering; iron-carbon solidification; high-temperature superconductors; physical vapor transport crystal growth; materials preparation and longevity in hyperthermal oxygen; foam formation; measurement of the microgravity environment; and commercial management of space fluids.

  18. INSPIRE - Premission. [Interactive NASA Space Physics Ionosphere Radio Experiment

    NASA Technical Reports Server (NTRS)

    Taylor, William W. L.; Mideke, Michael; Pine, William E.; Ericson, James D.

    1992-01-01

    The Interactive NASA Space Physics Ionosphere Radio Experiment (INSPIRE) designed to assist in a Space Experiments with Particle Accelerators (SEPAC) project is discussed. INSPIRE is aimed at recording data from a large number of receivers on the ground to determine the exact propagation paths and absorption of radio waves at frequencies between 50 Hz and 7 kHz. It is indicated how to participate in the experiment that will involve high school classes, colleges, and amateur radio operators.

  19. Space astrophysics with large structures - CASES and P/OF. [Controls, Astrophysics, and Structures Experiment in Space and Pinhole/Occulter Facility

    NASA Technical Reports Server (NTRS)

    Hudson, Hugh S.; Davis, J. M.

    1990-01-01

    Space instruments for remote sensing, of the types used for astrophysics and solar-terrestrial physics among many disciplines, will grow to larger physical sizes in the future. The zero-g space environment does not inherently restrict such growth, because relatively lightweight structures can be used. Active servo control of the structures can greatly increase their size for a given mass. The Pinhole/Occulter Facility, a candidate Space Station attached payload, offers an example: it will achieve 0.2 arc s resolution by use of a 50-m baseline for coded-aperture telescopes for hard X-ray and gamma-ray imagers.

  20. Nex-Gen Space Observatory

    NASA Image and Video Library

    2011-10-26

    NASA, space science industry and government officials are seen in front of a full-size model of NASA's James Webb Space Telescope at the Maryland Science Center in Baltimore, Wednesday, Oct. 26, 2011. From left, back row are: Dr. John Grunsfeld, former astronaut and Deputy Director, Space Telescope Science Institute (STScI), Baltimore; Jeffrey Grant, VP and General Manager of the Space Systems Division, Northrop Grumman; Van Reiner, President and CEO of the Maryland Science Center, Baltimore and Adam Reiss, recipient of the 2011 Nobel Prize in Physics and professor of astronomy and physics at Johns Hopkins University. In the front row are NASA Deputy Administrator Lori Garver, left, and U.S. Senator Barbara Mikulski (D-Md.). Photo Credit: (NASA/Carla Cioffi)

  1. Black holes: theory and observations (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 23 December 2015)

    NASA Astrophysics Data System (ADS)

    2016-07-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS), "Black holes: theory and observations," was held in the conference hall of the Lebedev Physical Institute, RAS, on 23 December 2015. The papers collected in this issue were written based on talks given at the session: (1) I D Novikov (Lebedev Physical Institute, Russian Academy of Sciences, Astro Space Center, Moscow; The Niels Bohr International Academy, The Niels Bohr Institute, Copenhagen; National Research Center 'Kurchatov Institute', Moscow) "Black holes, wormholes, and time machines"; (2) A M Cherepashchuk (Lomonosov Moscow State University, Sternberg Astronomical Institute, Moscow) "Observing stellar-mass and supermassive black holes"; (3) N S Kardashev (Lebedev Physical Institute, Russian Academy of Sciences, Astro Space Center, Moscow) "Millimetron space project: a tool for researching black holes and wormholes." Papers written on the basis of oral presentations 1, 2 are published below. • Observing stellar mass and supermassive black holes, A M Cherepashchuk Physics-Uspekhi, 2016, Volume 59, Number 7, Pages 702-712 • Black holes, wormholes, and time machines, I D Novikov Physics-Uspekhi, 2016, Volume 59, Number 7, Pages 713-715

  2. The space shuttle payload planning working groups. Volume 8: Earth and ocean physics

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The findings and recommendations of the Earth and Ocean Physics working group of the space shuttle payload planning activity are presented. The requirements for the space shuttle mission are defined as: (1) precision measurement for earth and ocean physics experiments, (2) development and demonstration of new and improved sensors and analytical techniques, (3) acquisition of surface truth data for evaluation of new measurement techniques, (4) conduct of critical experiments to validate geophysical phenomena and instrumental results, and (5) development and validation of analytical/experimental models for global ocean dynamics and solid earth dynamics/earthquake prediction. Tables of data are presented to show the flight schedule estimated costs, and the mission model.

  3. Exploring theory space with Monte Carlo reweighting

    DOE PAGES

    Gainer, James S.; Lykken, Joseph; Matchev, Konstantin T.; ...

    2014-10-13

    Theories of new physics often involve a large number of unknown parameters which need to be scanned. Additionally, a putative signal in a particular channel may be due to a variety of distinct models of new physics. This makes experimental attempts to constrain the parameter space of motivated new physics models with a high degree of generality quite challenging. We describe how the reweighting of events may allow this challenge to be met, as fully simulated Monte Carlo samples generated for arbitrary benchmark models can be effectively re-used. Specifically, we suggest procedures that allow more efficient collaboration between theorists andmore » experimentalists in exploring large theory parameter spaces in a rigorous way at the LHC.« less

  4. Establishment of the New Ecuadorian Solar Physics Phenomena Division

    NASA Astrophysics Data System (ADS)

    Lopez, E. D.

    2014-02-01

    Crucial physical phenomena occur in the equatorial atmosphere and ionosphere, which are currently understudied and poorly understood. Thus, scientific campaigns for monitoring the equatorial region are required in order to provide the necessary data for the physical models. Ecuador is located in strategic geographical position where these studies can be performed, providing quality data for the scientific community working in understanding the nature of these physical systems. The Quito Astronomical Observatory of National Polytechnic School is moving in this direction by promoting research in space sciences for the study of the equatorial zone. With the participation and the valuable collaboration of international initiatives such us AWESOME, MAGDAS, SAVNET and CALLISTO, the Quito Observatory is establishing a new space physics division on the basis of the International Space Weather Initiative. In this contribution, the above initiative is presented by inviting leaders of other scientific projects to deploy its instruments and to work with us providing the necessary support to the creation of this new strategic research center

  5. The NASA Microgravity Fluid Physics Program: Research Plans for the ISS

    NASA Technical Reports Server (NTRS)

    Kohl, Fred J.; Singh, Bhim S.; Shaw, Nancy J.; Chiaramonte, Francis P.

    2003-01-01

    Building on over four decades of research and technology development related to the behavior of fluids in low gravity environments, the current NASA Microgravity Fluid Physics Program continues the quest for knowledge to further understand and design better fluids systems for use on earth and in space. NASA's Biological and Physical Research Enterprise seeks to exploit the space environment to conduct research supporting human exploration of space (strategic research), research of intrinsic scientific importance and impact (fundamental research), and commercial research. The strategic research thrust will build the vital knowledge base needed to enable NASA's mission to explore the Universe and search for life. There are currently five major research areas in the Microgravity Fluid Physics Program: complex fluids, niultiphase flows and phase change, interfacial phenomena, biofluid mechanics, and dynamics and instabilities. Numerous investigations into these areas are being conducted in both ground-based laboratories and facilities and in the flight experiments program. Most of the future NASA- sponsored flight experiments in microgravity fluid physics and transport phenomena will be carried out on the International Space Station (ISS) in the Fluids Integrated Rack (FIR), in the Microgravity Science Glovebox (MSG), in EXPRESS racks, and in other facilities provided by international partners. This paper presents an overview of the near- and long-term visions for NASA's Microgravity Fluid Physics Research Program and brief descriptions of hardware systems planned to enable this research.

  6. The future of simulations for space applications

    NASA Astrophysics Data System (ADS)

    Matsumoto, H.

    Space development has been rapidly increasing and there will be huge investment by business markets for space development and applications such as space factory and Solar Power Station (SPS). In such a situation, we would like to send a warning message regarding the future space simulations. It is widely recognized that space simulation have been contributing to the quantitative understanding of various plasma phenomena occurring in the solarterrestrial environment. In the current century, however, in addition to the conventional contribution to the solar-terrestrial physics, we also have to pay our attention to the application of space simulation for human activities in space. We believe that space simulations can be a a powerful and helpful tool for the understanding the spacecraft-environment interactions occurring in space development and applications. The global influence by exhausted heavy ions from electric propulsion on the plasmasphere can be also analyzed by the combination of MHD and particle simulations. The results obtained in the simulations can provide us very significant and beneficial information so that we can minimize the undesirable effects in space development and applications. 1 Brief history of ISSS and contribution to the space plasma physics Numerical simulation has been largely recognized as a powerful tool in the advance of space plasma physics. The International School for Space Simulation (ISSS) series was set up in order to emphasize such a recognition in the early eighties, on the common initiative of M. Ashour-Abdalla, R. Gendrin, T. Sato and myself. The preceding five ISSS's (in Japan, USA, France, Japan, and Japan again) have greatly contributed to the promotion of and advance of computer simulations as well as the education of students trying to start the simulation study for their own research objectives.

  7. Quantifying Astronaut Tasks: Robotic Technology and Future Space Suit Design

    NASA Technical Reports Server (NTRS)

    Newman, Dava

    2003-01-01

    The primary aim of this research effort was to advance the current understanding of astronauts' capabilities and limitations in space-suited EVA by developing models of the constitutive and compatibility relations of a space suit, based on experimental data gained from human test subjects as well as a 12 degree-of-freedom human-sized robot, and utilizing these fundamental relations to estimate a human factors performance metric for space suited EVA work. The three specific objectives are to: 1) Compile a detailed database of torques required to bend the joints of a space suit, using realistic, multi- joint human motions. 2) Develop a mathematical model of the constitutive relations between space suit joint torques and joint angular positions, based on experimental data and compare other investigators' physics-based models to experimental data. 3) Estimate the work envelope of a space suited astronaut, using the constitutive and compatibility relations of the space suit. The body of work that makes up this report includes experimentation, empirical and physics-based modeling, and model applications. A detailed space suit joint torque-angle database was compiled with a novel experimental approach that used space-suited human test subjects to generate realistic, multi-joint motions and an instrumented robot to measure the torques required to accomplish these motions in a space suit. Based on the experimental data, a mathematical model is developed to predict joint torque from the joint angle history. Two physics-based models of pressurized fabric cylinder bending are compared to experimental data, yielding design insights. The mathematical model is applied to EVA operations in an inverse kinematic analysis coupled to the space suit model to calculate the volume in which space-suited astronauts can work with their hands, demonstrating that operational human factors metrics can be predicted from fundamental space suit information.

  8. Association of environment and policy characteristics on children's moderate-to-vigorous physical activity and time spent sedentary in afterschool programs.

    PubMed

    Ajja, Rahma; Clennin, Morgan N; Weaver, R Glenn; Moore, Justin B; Huberty, Jennifer L; Ward, Dianne S; Pate, Russell R; Beets, Michael W

    2014-12-01

    Afterschool programs are an important setting in which to promote children's physical activity. This study examines the association of environmental and policy characteristics on the moderate-to-vigorous physical activity and sedentary behavior of children attending afterschool programs. A total of 1302 children attending 20 afterschool programs across South Carolina wore accelerometers (ActiGraph GT3X+) for up to 4non-consecutive days. Policy-level characteristics were evaluated using the Healthy Afterschool Program Index-Physical Activity scale. Physical activity space was measured using a measuring wheel (indoor, ft(2)) and Geographical Information Systems software (outdoor, acres). The structure (free-play or organized) of activity opportunities was evaluated via direct observation. Time spent in moderate-to-vigorous physical activity and sedentary, both indoors and outdoors, was estimated using accelerometry. For every 5000 ft(2) of utilized indoor activity space an additional 2.4 and 3.3 min/day of sedentary behavior was observed among boys and girls, respectively. A higher ratio of free-play to organized play was associated with higher indoor sedentary behavior among boys and girls (3.9 min/day and 10.0 min/day, respectively). For every 1 acre of outdoor activity space used, an additional 2.7 min/day of moderate-to-vigorous physical activity was observed for boys. A higher free-play to organized play ratio was associated with higher outdoor moderate-to-vigorous physical activity for boys and girls (4.4 and 3.4 min/day increase, respectively). Policy characteristics were unrelated to moderate-to-vigorous physical activity levels and time spent sedentary. Findings indicate that policies and size of activity space had limited influence on moderate-to-vigorous physical activity and sedentary behavior, suggesting that a programmatic structure may be a more effective option to improve moderate-to-vigorous physical activity levels of children attending afterschool programs. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. A spectral line survey of Orion KL in the bands 486-492 and 541-577 GHz with the Odin satellite. I. The observational data

    NASA Astrophysics Data System (ADS)

    Olofsson, A. O. H.; Persson, C. M.; Koning, N.; Bergman, P.; Bernath, P. F.; Black, J. H.; Frisk, U.; Geppert, W.; Hasegawa, T. I.; Hjalmarson, Å.; Kwok, S.; Larsson, B.; Lecacheux, A.; Nummelin, A.; Olberg, M.; Sandqvist, Aa.; Wirström, E. S.

    2007-12-01

    Aims:Spectral line surveys are useful since they allow identification of new molecules and new lines in uniformly calibrated data sets. The subsequent multi-transition analysis will provide improved knowledge of molecular abundances, cloud temperatures and densities, and may also reveal previously unsuspected blends of molecular lines, which otherwise may lead to erroneous conclusions. Nonetheless, large portions of the sub-millimetre spectral regime remain unexplored due to severe absorptions by H{2}O and O{2} in the terrestrial atmosphere. The purpose of the measurements presented here is to cover wavelength regions at and around 0.55 mm - regions largely unobservable from the ground. Methods: Using the Odin astronomy/aeronomy satellite, we performed the first spectral survey of the Orion KL molecular cloud core in the bands 486-492 and 541-576 GHz with rather uniform sensitivity (22-25 mK baseline noise). Odin's 1.1 m size telescope, equipped with four cryo-cooled tuneable mixers connected to broad band spectrometers, was used in a satellite position-switching mode. Two mixers simultaneously observed different 1.1 GHz bands using frequency steps of 0.5 GHz (25 h each). An on-source integration time of 20 h was achieved for most bands. The entire campaign consumed 1100 orbits, each containing one hour of serviceable astro-observation. Results: We identified 280 spectral lines from 38 known interstellar molecules (including isotopologues) having intensities in the range 80 to 0.05 K. An additional 64 weak lines remain unidentified. Apart from the ground state rotational 1{1,0}-1{0,1} transitions of ortho-H{2}O, H{2}18O and H{2}17O, the high energy 6{2,4}-7{1,7} line of para-H{2}O (Eu=867 K) and the HDO(2{0,2}-1{1,1}) line have been observed, as well as the 1{0}-0{1} lines from NH{3} and its rare isotopologue 15NH{3}. We suggest assignments for some unidentified features, notably the new interstellar molecules ND and SH-. Severe blends have been detected in the line wings of the H{2}18O, H{2}17O and 13CO lines changing the true linewidths of the outflow emission. Odin is a Swedish-led satellite project funded jointly by the Swedish National Space Board (SNSB), the Canadian Space Agency (CSA), the National Technology Agency of Finland (Tekes), and the Centre National d'Études Spatiales (CNES, France). The Swedish Space Corporation (SSC) was the industrial prime contractor and is also responsible for the satellite operation. Appendix B is only available at electronic form at http://www.aanda.org

  10. Visualization of Discontinuous Galerkin Based High-Order Methods

    DTIC Science & Technology

    2015-08-19

    function and the reference- to physical- space mapping functions. This formulation can be used to measure the quality of a high-order element and also for...to physical- space mapping functions. This formulation can be used to measure the quality of a high-order element and also for AMR. We find that the

  11. Space physics missions handbook

    NASA Technical Reports Server (NTRS)

    Cooper, Robert A. (Compiler); Burks, David H. (Compiler); Hayne, Julie A. (Editor)

    1991-01-01

    The purpose of this handbook is to provide background data on current, approved, and planned missions, including a summary of the recommended candidate future missions. Topics include the space physics mission plan, operational spacecraft, and details of such approved missions as the Tethered Satellite System, the Solar and Heliospheric Observatory, and the Atmospheric Laboratory for Applications and Science.

  12. Physical, anthropometrical, and body composition characteristics of workers at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Lasley, M. L.

    1985-01-01

    At the Kennedy Space Center, workers are often exposed to cardiovascular and muscular stress in job-related activities which may require a high level of physical fitness in order to safely complete the work task. Similar tasks will be performed at other launch and landing facilities and in space for the Space Station. One such category includes workers who handle toxic propellants and must wear Self-Contained Atmospheric Protective Ensembles (SCAPE) that can weigh 56 lbs. with the air pack. These suits provide a significant physical challenge to many of the workers in terms of carrying this load while moving about and performing work. Furthermore, under some conditions, there is a significant thermal stress. The physical characteristics of these workers are, therefore, of consequence. The purpose of this study was to analyze the anthropometry, body composition, strength, power, endurance, flexibility, aerobic fitness, and blood variables of a representative sample of male KSC SCAPE workers and to compare them with characteristics of other male workers at KSC (total population N=110). Three separate comparisons were made.

  13. Is the local linearity of space-time inherited from the linearity of probabilities?

    NASA Astrophysics Data System (ADS)

    Müller, Markus P.; Carrozza, Sylvain; Höhn, Philipp A.

    2017-02-01

    The appearance of linear spaces, describing physical quantities by vectors and tensors, is ubiquitous in all of physics, from classical mechanics to the modern notion of local Lorentz invariance. However, as natural as this seems to the physicist, most computer scientists would argue that something like a ‘local linear tangent space’ is not very typical and in fact a quite surprising property of any conceivable world or algorithm. In this paper, we take the perspective of the computer scientist seriously, and ask whether there could be any inherently information-theoretic reason to expect this notion of linearity to appear in physics. We give a series of simple arguments, spanning quantum information theory, group representation theory, and renormalization in quantum gravity, that supports a surprising thesis: namely, that the local linearity of space-time might ultimately be a consequence of the linearity of probabilities. While our arguments involve a fair amount of speculation, they have the virtue of being independent of any detailed assumptions on quantum gravity, and they are in harmony with several independent recent ideas on emergent space-time in high-energy physics.

  14. 14 CFR 63.19 - Operations during physical deficiency.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Operations during physical deficiency. 63... physical deficiency. No person may serve as a flight engineer or flight navigator during a period of known physical deficiency, or increase in physical deficiency, that would make him unable to meet the physical...

  15. 14 CFR 63.19 - Operations during physical deficiency.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Operations during physical deficiency. 63... physical deficiency. No person may serve as a flight engineer or flight navigator during a period of known physical deficiency, or increase in physical deficiency, that would make him unable to meet the physical...

  16. 14 CFR 63.19 - Operations during physical deficiency.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Operations during physical deficiency. 63... physical deficiency. No person may serve as a flight engineer or flight navigator during a period of known physical deficiency, or increase in physical deficiency, that would make him unable to meet the physical...

  17. 14 CFR 63.19 - Operations during physical deficiency.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Operations during physical deficiency. 63... physical deficiency. No person may serve as a flight engineer or flight navigator during a period of known physical deficiency, or increase in physical deficiency, that would make him unable to meet the physical...

  18. 14 CFR 63.19 - Operations during physical deficiency.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Operations during physical deficiency. 63... physical deficiency. No person may serve as a flight engineer or flight navigator during a period of known physical deficiency, or increase in physical deficiency, that would make him unable to meet the physical...

  19. The Hundred Year Hunt for the Red Sprite

    NASA Astrophysics Data System (ADS)

    Lyons, W. A.; Schmidt, M.

    2003-12-01

    This presentation reviews an NSF Informal Science Education project directed by the PO of an ongoing NSF Physical Meteorology/Aeronomy-sponsored research program on red sprites. For over 100 years, anecdotal reports and citations in the literature have persisted of strange luminous apparitions occurring high above thunderstorms. They were long discounted by the scientific community - until 1989, when by pure chance, a video revealed two giant pillars of light extending tens of kilometers above a thunderstorm. Since then, thousands of events, now called sprites, have been imaged, many by the PI. Mesospheric sprites, at 40 to 90 km altitude, are induced by lightning discharges having highly unusual characteristics. Science is now gradually unraveling the nature of the giant lightning discharges which spawn sprites. In the process we have found even more unusual electrical discharges above thunderstorms, suggesting that many new discoveries await to be made. We produced and are distributing a planetarium DVD/video program (42 minutes length) entitled, "The Hundred Year Hunt for the Red Sprite." It documents the application of the scientific method to unraveling this century old mystery surrounding strange lights in the night sky. We also contrasted this story of discovery to the pseudo-science prevalent today in topics such as UFOs. With distribution to numerous planetaria and science centers, we believe over 200,000 persons will eventually view this program (which has won three major video production awards). Our long term goal is to inspire planetarium visitors to undertake their own self-directed learning programs. A companion educational web site (www.Sky-Fire.TV) allows students and adults sufficiently motivated by the planetarium experience to further investigate sprites and related basic science topics. The highly interactive web site challenges visitors to test their knowledge of sprites and lightning by participating in an on-line 20 question quiz game, which provides instant feed back and scoring. Visitors, encouraged to actively search the sky for these fleeting phenomena, have already reported a number of highly unusual events of potential scientific value.

  20. Joining the yellow hub: Uses of the Simple Application Messaging Protocol in Space Physics analysis tools

    NASA Astrophysics Data System (ADS)

    Génot, V.; André, N.; Cecconi, B.; Bouchemit, M.; Budnik, E.; Bourrel, N.; Gangloff, M.; Dufourg, N.; Hess, S.; Modolo, R.; Renard, B.; Lormant, N.; Beigbeder, L.; Popescu, D.; Toniutti, J.-P.

    2014-11-01

    The interest for data communication between analysis tools in planetary sciences and space physics is illustrated in this paper via several examples of the uses of SAMP. The Simple Application Messaging Protocol is developed in the frame of the IVOA from an earlier protocol called PLASTIC. SAMP enables easy communication and interoperability between astronomy software, stand-alone and web-based; it is now increasingly adopted by the planetary sciences and space physics community. Its attractiveness is based, on one hand, on the use of common file formats for exchange and, on the other hand, on established messaging models. Examples of uses at the CDPP and elsewhere are presented. The CDPP (Centre de Données de la Physique des Plasmas, http://cdpp.eu/), the French data center for plasma physics, is engaged for more than a decade in the archiving and dissemination of data products from space missions and ground observatories. Besides these activities, the CDPP developed services like AMDA (Automated Multi Dataset Analysis, http://amda.cdpp.eu/) which enables in depth analysis of large amount of data through dedicated functionalities such as: visualization, conditional search and cataloging. Besides AMDA, the 3DView (http://3dview.cdpp.eu/) tool provides immersive visualizations and is further developed to include simulation and observational data. These tools and their interactions with each other, notably via SAMP, are presented via science cases of interest to planetary sciences and space physics communities.

Top