Science.gov

Sample records for aeropyrum pernix kvap

  1. Perchlorate and chlorate reduction by the Crenarchaeon Aeropyrum pernix and two thermophilic Firmicutes.

    PubMed

    Liebensteiner, Martin G; Pinkse, Martijn W H; Nijsse, Bart; Verhaert, Peter D E M; Tsesmetzis, Nicolas; Stams, Alfons J M; Lomans, Bart P

    2015-12-01

    This study reports the ability of one hyperthermophilic and two thermophilic microorganisms to grow anaerobically by the reduction of chlorate and perchlorate. Physiological, genomic and proteome analyses suggest that the Crenarchaeon Aeropyrum pernix reduces perchlorate with a periplasmic enzyme related to nitrate reductases, but that it lacks a functional chlorite-disproportionating enzyme (Cld) to complete the pathway. Aeropyrum pernix, previously described as a strictly aerobic microorganism, seems to rely on the chemical reactivity of reduced sulfur compounds with chlorite, a mechanism previously reported for perchlorate-reducing Archaeoglobus fulgidus. The chemical oxidation of thiosulfate (in excessive amounts present in the medium) and the reduction of chlorite result in the release of sulfate and chloride, which are the products of a biotic-abiotic perchlorate reduction pathway in Ae. pernix. The apparent absence of Cld in two other perchlorate-reducing microorganisms, Carboxydothermus hydrogenoformans and Moorella glycerini strain NMP, and their dependence on sulfide for perchlorate reduction is consistent with the observations made on Ar. fulgidus. Our findings suggest that microbial perchlorate reduction at high temperature differs notably from the physiology of perchlorate- and chlorate-reducing mesophiles and that it is characterized by the lack of a chlorite dismutase and is enabled by a combination of biotic and abiotic reactions. PMID:26332065

  2. Substrate specificity of undecaprenyl diphosphate synthase from the hyperthermophilic archaeon Aeropyrum pernix.

    PubMed

    Mori, Takeshi; Ogawa, Takuya; Yoshimura, Tohru; Hemmi, Hisashi

    2013-06-28

    Cis-prenyltransferase from a hyperthermophilic archaeon Aeropyrum pernix was expressed in Escherichia coli and purified for characterization. Properties such as substrate specificity, product chain-length, thermal stability and cofactor requirement were investigated using the recombinant enzyme. In particular, the substrate specificity of the enzyme attracts interest because only dimethylallyl diphosphate and geranylfarnesyl diphosphate, both of which are unusual substrates for known cis-prenyltransferases, are likely available as an allylic primer substrate in A. pernix. From the enzymatic study, the archaeal enzyme was shown to be undecaprenyl diphosphate synthase that has anomalous substrate specificity, which results in a preference for geranylfarnesyl diphosphate. This means that the product of the enzyme, which is probably used as the precursor of the glycosyl carrier lipid, would have an undiscovered structure. PMID:23726912

  3. Molecular recognition of proline tRNA by prolyl-tRNA synthetase from hyperthermophilic archaeon, Aeropyrum pernix K1.

    PubMed

    Yokozawa, Junji; Okamoto, Koji; Kawarabayasi, Yutaka; Kuno, Atsushi; Hasegawa, Tsunemi

    2003-01-01

    To investigate the recognition mechanism of tRNA(Pro) by prolyl-tRNA synthetase from hyperthermophilic archaeon, Aeropyrum pernix K1, various tRNA(Pro) transcripts were prepared by in vitro transcription system. These transcripts were aminoacylated with proline by overexpressed A. pernix prolyl-tRNA synthetase. From prolylation experiments, recognition elements of A. pernix tRNA(Pro) were determined to be G35 and G36 of anticodon, discriminator base A73, and G1-C72 base pair at acceptor stem end. PMID:14510473

  4. Bending Elasticity Modulus of Giant Vesicles Composed of Aeropyrum Pernix K1 Archaeal Lipid

    PubMed Central

    Genova, Julia; Poklar Ulrih, Nataša; Kralj-Iglič, Veronika; Iglič, Aleš; Bivas, Isak

    2015-01-01

    Thermally induced shape fluctuations were used to study elastic properties of giant vesicles composed of archaeal lipids C25,25-archetidyl (glucosyl) inositol and C25,25-archetidylinositol isolated from lyophilised Aeropyrum pernix K1 cells. Giant vesicles were created by electroformation in pure water environment. Stroboscopic illumination using a xenon flash lamp was implemented to remove the blur effect due to the finite integration time of the camera and to obtain an instant picture of the fluctuating vesicle shape. The mean weighted value of the bending elasticity modulus kc of the archaeal membrane determined from the measurements meeting the entire set of qualification criteria was (1.89 ± 0.18) × 10−19 J, which is similar to the values obtained for a membrane composed of the eukaryotic phospholipids SOPC (1.88 ± 0.17) × 10−19 J and POPC (2.00 ± 0.21) × 10−19 J. We conclude that membranes composed of archaeal lipids isolated from Aeropyrum pernix K1 cells have similar elastic properties as membranes composed of eukaryotic lipids. This fact, together with the importance of the elastic properties for the normal circulation through blood system, provides further evidence in favor of expectations that archaeal lipids could be appropriate for the design of drug delivery systems. PMID:25821933

  5. Bending elasticity modulus of giant vesicles composed of aeropyrum pernix k1 archaeal lipid.

    PubMed

    Genova, Julia; Ulrih, Nataša Poklar; Kralj-Iglič, Veronika; Iglič, Aleš; Bivas, Isak

    2015-01-01

    Thermally induced shape fluctuations were used to study elastic properties of giant vesicles composed of archaeal lipids C25,25-archetidyl (glucosyl) inositol and C25,25-archetidylinositol isolated from lyophilised Aeropyrum pernix K1 cells. Giant vesicles were created by electroformation in pure water environment. Stroboscopic illumination using a xenon flash lamp was implemented to remove the blur effect due to the finite integration time of the camera and to obtain an instant picture of the fluctuating vesicle shape. The mean weighted value of the bending elasticity modulus kc of the archaeal membrane determined from the measurements meeting the entire set of qualification criteria was (1.89 ± 0.18) × 10-19 J, which is similar to the values obtained for a membrane composed of the eukaryotic phospholipids SOPC (1.88 ± 0.17) × 10-19 J and POPC (2.00 ± 0.21) ´ 10-19 J. We conclude that membranes composed of archaeal lipids isolated from Aeropyrum pernix K1 cells have similar elastic properties as membranes composed of eukaryotic lipids. This fact, together with the importance of the elastic properties for the normal circulation through blood system, provides further evidence in favor of expectations that archaeal lipids could be appropriate for the design of drug delivery systems. PMID:25821933

  6. Role of F225 in O-phosphoserine sulfhydrylase from Aeropyrum pernix K1.

    PubMed

    Takeda, Emi; Kunimoto, Kohei; Kawai, Yoshito; Kataoka, Misumi; Ishikawa, Kazuhiko; Nakamura, Takashi

    2016-09-01

    O-Phosphoserine sulfhydrylase (OPSS) synthesizes cysteine from O-phospho-L-serine (OPS) and sulfide. We have determined the three-dimensional structures of OPSS from hyperthermophilic archaeon Aeropyrum pernix K1 (ApOPSS) in complex with aminoacrylate intermediate (AA) formed from pyridoxal 5'-phosphate with OPS or in complex with cysteine and compared them with that of ApOPSS. We found an orientational change of F225 at the active-site entrance and constructed an F225A mutant to examine its activities and AA stability and clarify the role of F225 in ApOPSS. The OPS and O-acetyl-L-serine (OAS) sulfhydrylase activities of the F225A mutant decreased by 4.2- and 15-fold compared to those of the wild-type (wt) ApOPSS, respectively. The ability of OPS and OAS to form AA also decreased by 12- and 27-fold, respectively. AA was less stable in the F225A mutant than in the wt ApOPSS. Simulated docking showed that leaving groups, such as phosphate and acetate, were oriented to the inside of the active site in the F225A mutant, whereas they were oriented to the entrance in the wt ApOPSS. These results suggest that F225 in ApOPSS plays important roles in maintaining the hydrophobic environment of AA from solvent water and in controlling the orientation of leaving groups. PMID:27377295

  7. The acylaminoacyl peptidase from Aeropyrum pernix K1 thought to be an exopeptidase displays endopeptidase activity.

    PubMed

    Kiss, András L; Hornung, Balázs; Rádi, Krisztina; Gengeliczki, Zsolt; Sztáray, Bálint; Juhász, Tünde; Szeltner, Zoltán; Harmat, Veronika; Polgár, László

    2007-04-27

    Mammalian acylaminoacyl peptidase, a member of the prolyl oligopeptidase family of serine peptidases, is an exopeptidase, which removes acylated amino acid residues from the N terminus of oligopeptides. We have investigated the kinetics and inhibitor binding of the orthologous acylaminoacyl peptidase from the thermophile Aeropyrum pernix K1 (ApAAP). Complex pH-rate profiles were found with charged substrates, indicating a strong electrostatic effect in the surroundings of the active site. Unexpectedly, we have found that oligopeptides can be hydrolysed beyond the N-terminal peptide bond, demonstrating that ApAAP exhibits endopeptidase activity. It was thought that the enzyme is specific for hydrophobic amino acids, in particular phenylalanine, in accord with the non-polar S1 subsite of ApAAP. However, cleavage after an Ala residue contradicted this notion and demonstrated that P1 residues of different nature may bind to the S1 subsite depending on the remaining peptide residues. The crystal structures of the complexes formed between the enzyme and product-like inhibitors identified the oxyanion-binding site unambiguously and demonstrated that the phenylalanine ring of the P1 peptide residue assumes a position different from that established in a previous study, using 4-nitrophenylphosphate. We have found that the substrate-binding site extends beyond the S2 subsite, being capable of binding peptides with a longer N terminus. The S2 subsite displays a non-polar character, which is unique among the enzymes of this family. The S3 site was identified as a hydrophobic region that does not form hydrogen bonds with the inhibitor P3 residue. The enzyme-inhibitor complexes revealed that, upon ligand-binding, the S1 subsite undergoes significant conformational changes, demonstrating the plasticity of the specificity site. PMID:17350041

  8. Catalytic properties and crystal structure of thermostable NAD(P)H-dependent carbonyl reductase from the hyperthermophilic archaeon Aeropyrum pernix K1.

    PubMed

    Fukuda, Yudai; Sakuraba, Haruhiko; Araki, Tomohiro; Ohshima, Toshihisa; Yoneda, Kazunari

    2016-09-01

    A gene encoding NAD(P)H-dependent carbonyl reductase (CR) from the hyperthermophilic archaeon Aeropyrum pernix K1 was overexpressed in Escherichia coli. Its product was effectively purified and characterized. The expressed enzyme was the most thermostable CR found to date; the activity remained at approximately 75% of its activity after incubation for 10min up to 90°C. In addition, A. pernix CR exhibited high stability at a wider range of pH values and longer periods of storage compared with CRs previously identified from other sources. A. pernix CR catalyzed the reduction of various carbonyl compounds including ethyl 4-chloro-3-oxobutanoate and 9,10-phenanthrenequinone, similar to the CR from thyroidectomized (Tx) chicken fatty liver. However, A. pernix CR exhibited significantly higher Km values against several substrates than Tx chicken fatty liver CR. The three-dimensional structure of A. pernix CR was determined using the molecular replacement method at a resolution of 2.09Å, in the presence of NADPH. The overall fold of A. pernix CR showed moderate similarity to that of Tx chicken fatty liver CR; however, A. pernix CR had no active-site lid unlike Tx chicken fatty liver CR. Consequently, the active-site cavity in the A. pernix CR was much more solvent-accessible than that in Tx chicken fatty liver CR. This structural feature may be responsible for the enzyme's lower affinity for several substrates and NADPH. The factors contributing to the much higher thermostability of A. pernix CR were analyzed by comparing its structure with that of Tx chicken fatty liver CR. This comparison showed that extensive formation of the intrasubunit ion pair networks, and the presence of the strong intersubunit interaction, is likely responsible for A. pernix CR thermostability. Site-directed mutagenesis showed that Glu99 plays a major role in the intersubunit interaction. This is the first report regarding the characteristics and three-dimensional structure of

  9. Purification and characterization of an intracellular heat-stable proteinase (pernilase) from the marine hyperthermophilic archaeon Aeropyrum pernix K1.

    PubMed

    Chavez Croocker, P; Sako, Y; Uchida, A

    1999-01-01

    A novel intracellular serine proteinase from the marine aerobic hyperthermophilic archaeon Aeropyrum pernix K1 (JCM 9820) that we designated pernilase was purified by ammonium sulfate precipitation, anionic-exchange chromatography, affinity chromatography, and gel filtration chromatography. The purified enzyme was composed of a single polypeptide chain with a molecular mass of 50 kDa as determined by SDS-PAGE. The proteinase had a broad pH profile (pH 5-10) with an optimum pH of 9.0 for peptide hydrolysis. The optimum temperature for enzyme activity was 90 degrees C. The enzyme was strongly inhibited by diisopropyl fluorophosphate (DFP) and phenylmethyl sulfonylfluoride (PMSF), suggesting that it corresponds to a serine proteinase. The enzyme was highly resistant to the reducing agents dithiothreitol and 2-mercaptoethanol but sensitive to the denaturing reagents guanidine-HCl and urea and also to the detergent sodium dodecyl sulfate (SDS). Pernilase showed high substrate specificity for Boc-Leu-Gly-Arg-MCA peptide. Thermostability of this enzyme showed half-lives of 85min at 100 degrees C and 12 min at 110 degrees C. PMID:10086839

  10. Functional characterization of the α- and β-subunits of a group II chaperonin from Aeropyrum pernix K1.

    PubMed

    Lee, Jin-Woo; Kim, Se Won; Kim, Jeong-Hwan; Jeon, Sung-Jong; Kwon, Hyun-Ju; Kim, Byung-Woo; Nam, Soo-Wan

    2013-06-28

    We isolated and functionally characterized the α- and β- subunits (ApCpnA and ApCpnB) of a chaperonin from Aeropyrum pernix K1. The constructed vectors pET3d- ApCpnA and pET21a-ApCpnB were transformed into E. coli Rosetta (DE3), BL21 (DE3), or CodonPlus (DE3) cells. The expression of ApCpnA (60.7 kDa) and ApCpnB (61.2 kDa) was confirmed by SDS-PAGE analysis. Recombinant ApCpnA and ApCpnB were purified by heat-shock treatment and anion-exchange chromatography. ApCpnA and ApCpnB were able to hydrolyze not only ATP, but also CTP, GTP, and UTP, albeit with different efficacies. Purified ApCpnA and ApCpnB showed the highest ATPase, CTPase, UTPase, and GTPase activities at 80°C. Furthermore, the addition of ApCpnA and ApCpnB effectively protected citrate synthase (CS) and alcohol dehydrogenase (ADH) from thermal aggregation and inactivation at 43°C and 50°C, respectively. In particular, the addition of ATP or CTP to ApCpnA and ApCpnB resulted in the most effective prevention of thermal aggregation and inactivation of CS and ADH. The ATPase activity of the two chaperonin subunits was dependent on the salt concentration. Among the ions we examined, potassium ions were the most effective at enhancing the ATP hydrolysis activity of ApCpnA and ApCpnB. PMID:23676910

  11. A single amino acid substitution in the DNA-binding domain of Aeropyrum pernix DNA ligase impairs its interaction with proliferating cell nuclear antigen.

    PubMed

    Kiyonari, Shinichi; Kamigochi, Toru; Ishino, Yoshizumi

    2007-09-01

    Proliferating cell nuclear antigen (PCNA) is known as a DNA sliding clamp that acts as a platform for the assembly of enzymes involved in DNA replication and repair. Previously, it was reported that a crenarchaeal PCNA formed a heterotrimeric structure, and that each PCNA subunit has distinct binding specificity to PCNA-binding proteins. Here we describe the PCNA-binding properties of a DNA ligase from the hyperthermophilic crenarchaeon Aeropyrum pernix K1. Based on our findings on the Pyrococcus furiosus DNA ligase-PCNA interaction, we predicted that the aromatic residue, Phe132, in the DNA-binding domain of A. pernix DNA ligase (ApeLig) would play a critical role in binding to A. pernix PCNA (ApePCNA). Surface plasmon resonance analyses revealed that the ApeLig F132A mutant does not interact with an immobilized subunit of ApePCNA. Furthermore, we could not detect any stimulation of the ligation activity of the ApeLig F132A protein by ApePCNA in vitro. These results indicated that the phenylalanine, which is located in our predicted PCNA-binding region in ApeLig, has a critical role for the physical and functional interaction with ApePCNA. PMID:17487442

  12. Characterization of Family IV UDG from Aeropyrum pernix and Its Application in Hot-Start PCR by Family B DNA Polymerase

    PubMed Central

    Liu, Xi-Peng; Liu, Jian-Hua

    2011-01-01

    Recombinant uracil-DNA glycosylase (UDG) from Aeropyrum pernix (A. pernix) was expressed in E. coli. The biochemical characteristics of A. pernix UDG (ApeUDG) were studied using oligonucleotides carrying a deoxyuracil (dU) base. The optimal temperature range and pH value for dU removal by ApeUDG were 55–65°C and pH 9.0, respectively. The removal of dU was inhibited by the divalent ions of Zn, Cu, Co, Ni, and Mn, as well as a high concentration of NaCl. The opposite base in the complementary strand affected the dU removal by ApeUDG as follows: U/C≈U/G>U/T≈U/AP≈U/->U/U≈U/I>U/A. The phosphorothioate around dU strongly inhibited dU removal by ApeUDG. Based on the above biochemical characteristics and the conservation of amino acid residues, ApeUDG was determined to belong to the IV UDG family. ApeUDG increased the yield of PCR by Pfu DNA polymerase via the removal of dU in amplified DNA. Using the dU-carrying oligonucleotide as an inhibitor and ApeUDG as an activator of Pfu DNA polymerase, the yield of undesired DNA fragments, such as primer-dimer, was significantly decreased, and the yield of the PCR target fragment was increased. This strategy, which aims to amplify the target gene with high specificity and yield, can be applied to all family B DNA polymerases. PMID:22087273

  13. Crystal structure of translation initiation factor 5B from the crenarchaeon Aeropyrum pernix.

    PubMed

    Murakami, Ryo; Miyoshi, Tomohiro; Uchiumi, Toshio; Ito, Kosuke

    2016-05-01

    Initiation factor 5B (IF5B) is a universally conserved translational GTPase that catalyzes ribosomal subunit joining. In eukaryotes, IF5B directly interacts via a groove in its domain IV with initiation factor 1A (IF1A), another universally conserved initiation factor, to accomplish efficient subunit joining. Here, we have determined the first structure of a crenarchaeal IF5B, which revealed that the archaea-specific region of IF5B (helix α15) binds and occludes the groove of domain IV. Therefore, archaeal IF5B cannot access IF1A in the same manner as eukaryotic IF5B. This fact suggests that different relationships between IF5B and IF1A exist in archaea and eukaryotes. Proteins 2016; 84:712-717. © 2016 Wiley Periodicals, Inc. PMID:26868175

  14. The complete mitochondria genome of Ravinia pernix (Diptera: Sarcophagidae).

    PubMed

    Guo, Juanjuan; Xie, Kai; Che, Kexin; Hu, Zhenyu; Guo, Yadong

    2016-05-01

    Ravinia pernix is considered to be a forensically important fly species of the family Sarcophagidae. In this study, we present the complete mitochondrial genome of Ravinia pernix for the first time. There is one encoding region including 37 genes and one non-coding AT-rich region observed in the 15,778 bp circular genome, containing 13 protein-encoding genes, 22 transfer RNA genes and 2 ribosomal RNA genes. The arrangement of the genes is the same as that found in the ancestral arthropod. The base compositions of A, T, G and C are 39.57%, 37.60%, 9.36% and 13.47%, respectively. The mitochondrial genome of Ravinia pernix presented will be valuable and useful for enriching the dipteran mitochondrial genomes, resolving phylogenetic relationships within the family Sarcophagidae and the order Diptera, and providing a molecular tool for species identifications for forensic purposes. PMID:25418624

  15. Modulation of KvAP Unitary Conductance and Gating by 1-Alkanols and Other Surface Active Agents

    PubMed Central

    Finol-Urdaneta, Rocio K.; McArthur, Jeffrey R.; Juranka, Peter F.; French, Robert J.; Morris, Catherine E.

    2010-01-01

    Abstract The actions of alcohols and anesthetics on ion channels are poorly understood. Controversy continues about whether bilayer restructuring is relevant to the modulatory effects of these surface active agents (SAAs). Some voltage-gated K channels (Kv), but not KvAP, have putative low affinity alcohol-binding sites, and because KvAP structures have been determined in bilayers, KvAP could offer insights into the contribution of bilayer mechanics to SAA actions. We monitored KvAP unitary conductance and macroscopic activation and inactivation kinetics in PE:PG/decane bilayers with and without exposure to classic SAAs (short-chain 1-alkanols, cholesterol, and selected anesthetics: halothane, isoflurane, chloroform). At levels that did not measurably alter membrane specific capacitance, alkanols caused functional changes in KvAP behavior including lowered unitary conductance, modified kinetics, and shifted voltage dependence for activation. A simple explanation is that the site of SAA action on KvAP is its entire lateral interface with the PE:PG/decane bilayer, with SAA-induced changes in surface tension and bilayer packing order combining to modulate the shape and stability of various conformations. The KvAP structural adjustment to diverse bilayer pressure profiles has implications for understanding desirable and undesirable actions of SAA-like drugs and, broadly, predicts that channel gating, conductance and pharmacology may differ when membrane packing order differs, as in raft versus nonraft domains. PMID:20197029

  16. Structure of the KvAP voltage-dependent K+ channel and its dependence on the lipid membrane

    SciTech Connect

    Lee,S.; Lee, A.; Chen, J.; MacKinnon, R.; Chin, W.

    2005-01-01

    Voltage-dependent ion channels gate open in response to changes in cell membrane voltage. This form of gating permits the propagation of action potentials. We present two structures of the voltage-dependent K{sup +} channel KvAP, in complex with monoclonal Fv fragments (3.9 Angstroms) and without antibody fragments (8 Angstroms). We also studied KvAP with disulfide cross-bridges in lipid membranes. Analyzing these data in the context of the crystal structure of Kv1.2 and EPR data on KvAP we reach the following conclusions: (i) KvAP is similar in structure to Kv1.2 with a very modest difference in the orientation of its voltage sensor; (ii) mAb fragments are not the source of non-native conformations of KvAP in crystal structures; (iii) because KvAP contains separate loosely adherent domains, a lipid membrane is required to maintain their correct relative orientations, and (iv) the model of KvAP is consistent with the proposal of voltage sensing through the movement of an arginine-containing helix-turn-helix element at the protein-lipid interface.

  17. Structure of the KvAP voltage-dependent K+ channel and its dependence on the lipid membrane

    PubMed Central

    Lee, Seok-Yong; Lee, Alice; Chen, Jiayun; MacKinnon, Roderick

    2005-01-01

    Voltage-dependent ion channels gate open in response to changes in cell membrane voltage. This form of gating permits the propagation of action potentials. We present two structures of the voltage-dependent K+ channel KvAP, in complex with monoclonal Fv fragments (3.9 Å) and without antibody fragments (8 Å). We also studied KvAP with disulfide cross-bridges in lipid membranes. Analyzing these data in the context of the crystal structure of Kv1.2 and EPR data on KvAP we reach the following conclusions: (i) KvAP is similar in structure to Kv1.2 with a very modest difference in the orientation of its voltage sensor; (ii) mAb fragments are not the source of non-native conformations of KvAP in crystal structures; (iii) because KvAP contains separate loosely adherent domains, a lipid membrane is required to maintain their correct relative orientations, and (iv) the model of KvAP is consistent with the proposal of voltage sensing through the movement of an arginine-containing helix-turn-helix element at the protein-lipid interface. PMID:16223877

  18. Solution structure and phospholipid interactions of the isolated voltage-sensor domain from KvAP

    PubMed Central

    Butterwick, Joel A.; MacKinnon, Roderick

    2010-01-01

    Voltage-sensor domains (VSDs) are specialized transmembrane segments that confer voltage sensitivity to many proteins such as ion channels and enzymes. The activities of these domains are highly dependent on both the chemical and physical properties of the surrounding membrane environment. To learn about VSD-lipid interactions, we used nuclear magnetic resonance (NMR) spectroscopy to determine the structure and phospholipid interface of the VSD from the voltage-dependent K+ channel KvAP. The solution structure of the KvAP VSD solubilized within phospholipid micelles is similar to a previously determined crystal structure solubilized by a non-ionic detergent and complexed with an antibody fragment. Two differences observed include a previously unidentified short amphipathic α-helix that precedes the first transmembrane helix and a subtle rigid body repositioning of the S3-S4 voltage-sensor paddle. Using 15N relaxation experiments, we show that most of the VSD, including the pronounced kink in S3 and the S3-S4 paddle, is relatively rigid on the ps–ns time scale. In contrast, the kink in S3 is mobile on the μs–ms time scale and may act as a hinge in the movement of the paddle during channel gating. We characterized the VSD-phospholipid micelle interactions using nuclear Overhauser effect spectroscopy and show that the micelle uniformly coats the KvAP VSD and approximates the chemical environment of a phospholipid bilayer. Using paramagnetically labeled phospholipids, we show that bilayer-forming lipids interact with the S3 and S4 helices more strongly than with S1 and S2. PMID:20851706

  19. A Gating Model for the Archeal Voltage-Dependent K+ Channel KvAP in DPhPC and POPE:POPG decane lipid bilayers

    PubMed Central

    Schmidt, Daniel; Cross, Sam R.; MacKinnon, Roderick

    2009-01-01

    Voltage-dependent K+ (Kv) channels form the basis of the excitability of nerves and muscles. KvAP is a well-characterized archeal Kv channel that has been widely used to investigate many aspects of Kv channel biochemistry, biophysics and structure. In this study a minimal kinetic gating model for KvAP function in two different phospholipid decane bilayers is developed. In most aspects KvAP gating is similar to the well-studied eukaryotic Shaker Kv channel: conformational changes occur within four voltage sensors followed by pore opening. Unlike Shaker, KvAP possesses an inactivated state that is accessible from the pre-open state of the channel. Changing the lipid composition of the membrane influences multiple gating transitions in the model, but most dramatically the rate of recovery from inactivation. Inhibition by the voltage sensor toxin VSTx1 is most easily explained if VSTx1 binds only to the depolarized conformation of the voltage sensor. By delaying the voltage sensor’s return to the hyperpolarized conformation VSTx1 favors the inactivated state of KvAP. PMID:19481093

  20. Do Lipids Show State-dependent Affinity to the Voltage-gated Potassium Channel KvAP?*

    PubMed Central

    Faure, Élise; Thompson, Christine; Blunck, Rikard

    2014-01-01

    As all integral membrane proteins, voltage-gated ion channels are embedded in a lipid matrix that regulates their channel behavior either by physicochemical properties or by direct binding. Because manipulation of the lipid composition in cells is difficult, we investigated the influence of different lipids on purified KvAP channels reconstituted in planar lipid bilayers of known composition. Lipids developed two distinct and independent effects on the KvAP channels; lipids interacting with the pore lowered the energy barriers for the final transitions, whereas voltage sensor-bound lipids shifted the midpoint of activation dependent on their electrostatic charge. Above all, the midpoint of activation was determined only by those lipids the channels came in contact with first after purification and can seemingly only be exchanged if the channel resides in the open state. The high affinity of the bound lipids to the binding site has implications not only on our understanding of the gating mechanism but also on the general experimental design of any lipid dependence study. PMID:24742679

  1. Open channel current noise analysis of S6 peptides from KvAP channel on bilayer lipid membrane shows bimodal power law scaling

    NASA Astrophysics Data System (ADS)

    Shrivastava, Rajan; Malik, Chetan; Ghosh, Subhendu

    2016-06-01

    Open channel current noise in synthetic peptide S6 of KvAP channel was investigated in a voltage clamp experiment on bilayer lipid membrane (BLM). It was observed that the power spectral density (PSD) of the component frequencies follows power law with different slopes in different frequency ranges. In order to know the origin of the slopes PSD analysis was done with signal filtering. It was found that the first slope in the noise profile follows 1 / f pattern which exists at lower frequencies and has high amplitude current noise, while the second slope corresponds to 1 /f 2 - 3 pattern which exists at higher frequencies with low amplitude current noise. In addition, white noise was observed at very large frequencies. It was concluded that the plausible reason for the multiple power-law scaling is the existence of different modes of non-equilibrium ion transport through the S6 channel.

  2. Voltage sensor ring in a native structure of a membrane-embedded potassium channel

    PubMed Central

    Shi, Liang; Zheng, Hongjin; Zheng, Hui; Borkowski, Brian A.; Shi, Dan; Gonen, Tamir; Jiang, Qiu-Xing

    2013-01-01

    Voltage-gated ion channels support electrochemical activity in cells and are largely responsible for information flow throughout the nervous systems. The voltage sensor domains in these channels sense changes in transmembrane potential and control ion flux across membranes. The X-ray structures of a few voltage-gated ion channels in detergents have been determined and have revealed clear structural variations among their respective voltage sensor domains. More recent studies demonstrated that lipids around a voltage-gated channel could directly alter its conformational state in membrane. Because of these disparities, the structural basis for voltage sensing in native membranes remains elusive. Here, through electron-crystallographic analysis of membrane-embedded proteins, we present the detailed view of a voltage-gated potassium channel in its inactivated state. Contrary to all known structures of voltage-gated ion channels in detergents, our data revealed a unique conformation in which the four voltage sensor domains of a voltage-gated potassium channel from Aeropyrum pernix (KvAP) form a ring structure that completely surrounds the pore domain of the channel. Such a structure is named the voltage sensor ring. Our biochemical and electrophysiological studies support that the voltage sensor ring represents a physiological conformation. These data together suggest that lipids exert strong effects on the channel structure and that these effects may be changed upon membrane disruption. Our results have wide implications for lipid–protein interactions in general and for the mechanism of voltage sensing in particular. PMID:23401554

  3. Temperature dependent mistranslation in a hyperthermophile adapts proteins to lower temperatures

    PubMed Central

    Schwartz, Michael H.; Pan, Tao

    2016-01-01

    All organisms universally encode, synthesize and utilize proteins that function optimally within a subset of growth conditions. While healthy cells are thought to maintain high translational fidelity within their natural habitats, natural environments can easily fluctuate outside the optimal functional range of genetically encoded proteins. The hyperthermophilic archaeon Aeropyrum pernix (A. pernix) can grow throughout temperature variations ranging from 70 to 100°C, although the specific factors facilitating such adaptability are unknown. Here, we show that A. pernix undergoes constitutive leucine to methionine mistranslation at low growth temperatures. Low-temperature mistranslation is facilitated by the misacylation of tRNALeu with methionine by the methionyl-tRNA synthetase (MetRS). At low growth temperatures, the A. pernix MetRS undergoes a temperature dependent shift in tRNA charging fidelity, allowing the enzyme to conditionally charge tRNALeu with methionine. We demonstrate enhanced low-temperature activity for A. pernix citrate synthase that is synthesized during leucine to methionine mistranslation at low-temperature growth compared to its high-fidelity counterpart synthesized at high-temperature. Our results show that conditional leucine to methionine mistranslation can make protein adjustments capable of improving the low-temperature activity of hyperthermophilic proteins, likely by facilitating the increasing flexibility required for greater protein function at lower physiological temperatures. PMID:26657639

  4. Nonlinearity of a Voltage-Gated Potassium Channel Revealed by the Mechanical Susceptibility

    NASA Astrophysics Data System (ADS)

    Ariyaratne, Amila; Zocchi, Giovanni

    2013-01-01

    The voltage-gated potassium channel from Aeropyrum pernix operates by coupling the voltage-driven motion of a charged group of amino acids to the opening and closing of the pore. In this experiment, we drive this charged group with an ac field and observe the effect on the gating. The measurements for different frequencies and amplitudes of the forcing reveal an essential nonlinearity in the mechanical behavior of the molecule. Within a continuum-mechanics description, we extract the effective dissipation parameter γ for this conformational motion and find γ≈0.2g/s, similar to recent nanorheology measurements on the conformational motion of an enzyme.

  5. Heme A synthase in bacteria depends on one pair of cysteinyls for activity.

    PubMed

    Lewin, Anna; Hederstedt, Lars

    2016-02-01

    Heme A is a prosthetic group unique for cytochrome a-type respiratory oxidases in mammals, plants and many microorganisms. The poorly understood integral membrane protein heme A synthase catalyzes the synthesis of heme A from heme O. In bacteria, but not in mitochondria, this enzyme contains one or two pairs of cysteine residues that are present in predicted hydrophilic polypeptide loops on the extracytoplasmic side of the membrane. We used heme A synthase from the eubacterium Bacillus subtilis and the hyperthermophilic archeon Aeropyrum pernix to investigate the functional role of these cysteine residues. Results with B. subtilis amino acid substituted proteins indicated the pair of cysteine residues in the loop connecting transmembrane segments I and II as being essential for catalysis but not required for binding of the enzyme substrate, heme O. Experiments with isolated A. pernix and B. subtilis heme A synthase demonstrated that a disulfide bond can form between the cysteine residues in the same loop and also between loops showing close proximity of the two loops in the folded enzyme protein. Based on the findings, we propose a classification scheme for the four discrete types of heme A synthase found so far in different organisms and propose that essential cysteinyls mediate transfer of reducing equivalents required for the oxygen-dependent catalysis of heme A synthesis from heme O. PMID:26592143

  6. Structural properties of archaeal lipid bilayers: small-angle X-ray scattering and molecular dynamics simulation study.

    PubMed

    Polak, Andraž; Tarek, Mounir; Tomšič, Matija; Valant, Janez; Ulrih, Nataša Poklar; Jamnik, Andrej; Kramar, Peter; Miklavčič, Damijan

    2014-07-22

    Aeropyrum pernix is an aerobic hyperthermophilic archaeon that grows in harsh environmental conditions and as such possesses unique structural and metabolic features. Its membrane interfaces with the extreme environment and is the first line of defense from external factors. Therefore, lipids composing this membrane have special moieties that increase its stability. The membrane of A. pernix is composed predominantly of two polar lipids 2,3-di-O-sesterterpanyl-sn-glicerol-1-phospho-1'(2'-O-α-D-glucosyl)-myo-inositol (AGI) and 2,3-di-O-sesterterpanyl-sn-glicerol-1-phospho-myo-inositol (AI). Both have methyl branches in their lipid tails and ether linkages and carbohydrates in their headgroup. These moieties significantly affect the structure and dynamics of the bilayer. To provide a molecular level insight into these characteristics, we used here Molecular Dynamics (MD) simulations of lipid bilayers of composition similar to those of the archaeal membranes. First, we show that the electron density profiles along the normal to the bilayers derived from the simulations are in good agreement with the profiles obtained by the small-angle X-ray scattering (SAXS) technique, which provides confidence in the force fields used. Analyses of the simulation data show that the archaeal lipid bilayers are less hydrated than conventional phosphatidylcholine (PC) lipids and that their structure is not affected by the salt present in the surrounding solution. Furthermore, the lateral pressure in their hydrophobic core, due to the presence of the branched tails, is much higher than that at PC-based lipid bilayers. Both the methyl branched tails and the special headgroup moieties contribute to slow drastically the lateral diffusion of the lipids. Furthermore, we found that the lipid head groups associate via hydrogen bonding, which affects their reorientational dynamics. All together, our data provide links between the microscopic properties of these membranes and their overall

  7. Structure and catalysis of acylaminoacyl peptidase: closed and open subunits of a dimer oligopeptidase.

    PubMed

    Harmat, Veronika; Domokos, Klarissza; Menyhárd, Dóra K; Palló, Anna; Szeltner, Zoltán; Szamosi, Ilona; Beke-Somfai, Tamás; Náray-Szabó, Gábor; Polgár, László

    2011-01-21

    Acylaminoacyl peptidase from Aeropyrum pernix is a homodimer that belongs to the prolyl oligopeptidase family. The monomer subunit is composed of one hydrolase and one propeller domain. Previous crystal structure determinations revealed that the propeller domain obstructed the access of substrate to the active site of both subunits. Here we investigated the structure and the kinetics of two mutant enzymes in which the aspartic acid of the catalytic triad was changed to alanine or asparagine. Using different substrates, we have determined the pH dependence of specificity rate constants, the rate-limiting step of catalysis, and the binding of substrates and inhibitors. The catalysis considerably depended both on the kind of mutation and on the nature of the substrate. The results were interpreted in terms of alterations in the position of the catalytic histidine side chain as demonstrated with crystal structure determination of the native and two mutant structures (D524N and D524A). Unexpectedly, in the homodimeric structures, only one subunit displayed the closed form of the enzyme. The other subunit exhibited an open gate to the catalytic site, thus revealing the structural basis that controls the oligopeptidase activity. The open form of the native enzyme displayed the catalytic triad in a distorted, inactive state. The mutations affected the closed, active form of the enzyme, disrupting its catalytic triad. We concluded that the two forms are at equilibrium and the substrates bind by the conformational selection mechanism. PMID:21084296

  8. Structural and kinetic contributions of the oxyanion binding site to the catalytic activity of acylaminoacyl peptidase.

    PubMed

    Kiss, András L; Palló, Anna; Náray-Szabó, Gábor; Harmat, Veronika; Polgár, László

    2008-05-01

    It is widely accepted that the catalytic activity of serine proteases depends primarily on the Asp-His-Ser catalytic triad and other residues within the vicinity of this motif. Some of these residues form the oxyanion binding site that stabilizes the tetrahedral intermediate by hydrogen bonding to the negatively charged oxyanion. In acylaminoacyl peptidase from the thermophile Aeropyrum pernix, the main chain NH group of Gly369 is one of the hydrogen bond donors forming the oxyanion binding site. The side chain of His367, a conserved residue in acylaminoacyl peptidases across all species, fastens the loop holding Gly369. Determination of the crystal structure of the H367A mutant revealed that this loop, including Gly369, moves away considerably, accounting for the observed three orders of magnitude decrease in the specificity rate constant. For the wild-type enzyme ln(k(cat)/K(m)) vs. 1/T deviates from linearity indicating greater rate enhancement with increasing temperature for the dissociation of the enzyme-substrate complex compared with its decomposition to product. In contrast, the H367A variant provided a linear Arrhenius plot, and its reaction was associated with unfavourable entropy of activation. These results show that a residue relatively distant from the active site can significantly affect the catalytic activity of acylaminoacyl peptidase without changing the overall structure of the enzyme. PMID:18325786

  9. Structure and Catalysis of Acylaminoacyl Peptidase

    PubMed Central

    Harmat, Veronika; Domokos, Klarissza; Menyhárd, Dóra K.; Palló, Anna; Szeltner, Zoltán; Szamosi, Ilona; Beke-Somfai, Tamás; Náray-Szabó, Gábor; Polgár, László

    2011-01-01

    Acylaminoacyl peptidase from Aeropyrum pernix is a homodimer that belongs to the prolyl oligopeptidase family. The monomer subunit is composed of one hydrolase and one propeller domain. Previous crystal structure determinations revealed that the propeller domain obstructed the access of substrate to the active site of both subunits. Here we investigated the structure and the kinetics of two mutant enzymes in which the aspartic acid of the catalytic triad was changed to alanine or asparagine. Using different substrates, we have determined the pH dependence of specificity rate constants, the rate-limiting step of catalysis, and the binding of substrates and inhibitors. The catalysis considerably depended both on the kind of mutation and on the nature of the substrate. The results were interpreted in terms of alterations in the position of the catalytic histidine side chain as demonstrated with crystal structure determination of the native and two mutant structures (D524N and D524A). Unexpectedly, in the homodimeric structures, only one subunit displayed the closed form of the enzyme. The other subunit exhibited an open gate to the catalytic site, thus revealing the structural basis that controls the oligopeptidase activity. The open form of the native enzyme displayed the catalytic triad in a distorted, inactive state. The mutations affected the closed, active form of the enzyme, disrupting its catalytic triad. We concluded that the two forms are at equilibrium and the substrates bind by the conformational selection mechanism. PMID:21084296

  10. Catalytically distinct states captured in a crystal lattice: the substrate-bound and scavenger states of acylaminoacyl peptidase and their implications for functionality.

    PubMed

    Menyhárd, Dóra Karancsiné; Orgován, Zoltán; Szeltner, Zoltán; Szamosi, Ilona; Harmat, Veronika

    2015-03-01

    Acylaminoacyl peptidase (AAP) is an oligopeptidase that only cleaves short peptides or protein segments. In the case of AAP from Aeropyrum pernix (ApAAP), previous studies have led to a model in which the clamshell-like opening and closing of the enzyme provides the means of substrate-size selection. The closed form of the enzyme is catalytically active, while opening deactivates the catalytic triad. The crystallographic results presented here show that the open form of ApAAP is indeed functionally disabled. The obtained crystal structures also reveal that the closed form is penetrable to small ligands: inhibitor added to the pre-formed crystal was able to reach the active site of the rigidified protein, which is only possible through the narrow channel of the propeller domain. Molecular-dynamics simulations investigating the structure of the complexes formed with longer peptide substrates showed that their binding within the large crevice of the closed form of ApAAP leaves the enzyme structure unperturbed; however, their accessing the binding site seems more probable when assisted by opening of the enzyme. Thus, the open form of ApAAP corresponds to a scavenger of possible substrates, the actual cleavage of which only takes place if the enzyme is able to re-close. PMID:25760596

  11. Structural Dynamics of an Isolated-Voltage Sensor Domain in Lipid Bilayer

    PubMed Central

    Chakrapani, Sudha; Cuello, Luis G.; Cortes, Marien D.; Perozo, Eduardo

    2009-01-01

    Summary A strong interplay between the voltage-sensor domain (VSD) and the pore domain (PD) underlies voltage-gated channel functions. In a few voltage-sensitive proteins, the VSD has been shown to function without a canonical PD, although its structure and oligomeric state remain unknown. Here using EPR spectroscopy we show that the isolated-VSD of KvAP can remain monomeric in reconstituted bilayer and retain a transmembrane conformation. We find that water-filled crevices extend deep into the membrane around S3, a scaffold conducive to transport of proton/cations is intrinsic to the VSD. Differences in solvent accessibility in comparison to the full-length KvAP, allowed us to define an interacting footprint of the PD on the VSD. This interaction is centered around S1 and S2 and shows a rotation of 70–100° relative to Kv1.2-Kv2.1 chimera. Sequence-conservation patterns in Kv channels, Hv channels and voltage-sensitive phosphatases reveal several near-universal features suggesting a common molecular architecture for all VSDs. PMID:18334215

  12. The structure of the lipid-embedded potassium channel voltage sensor determined by double-electron–electron resonance spectroscopy

    PubMed Central

    Vamvouka, Magdalini; Cieslak, John; Van Eps, Ned; Hubbell, Wayne; Gross, Adrian

    2008-01-01

    A four-pulse electron paramagnetic resonance experiment was used to measure long-range inter-subunit distances in reconstituted KvAP, a voltage-dependent potassium (Kv) channel. The measurements have allowed us to reach the following five conclusions about the native structure of the voltage sensor of KvAP. First, the S1 helix of the voltage sensor engages in a helix packing interaction with the pore domain. Second, the crystallographically observed antiparallel helix-turn-helix motif of the voltage-sensing paddle is retained in the membrane-embedded voltage sensor. Third, the paddle is oriented in such a way as to expose one face to the pore domain and the opposite face to the membrane. Fourth, the paddle and the pore domain appear to be separated by a gap that is sufficiently wide for lipids to penetrate between the two domains. Fifth, the critical voltage-sensing arginine residues on the paddle appear to be lipid exposed. These results demonstrate the importance of the membrane for the native structure of Kv channels, suggest that lipids are an integral part of their native structure, and place the voltage-sensing machinery into a complex lipid environment near the pore domain. PMID:18287283

  13. Structural basis for the inhibition of voltage-dependent K+ channel by gating modifier toxin

    PubMed Central

    Ozawa, Shin-ichiro; Kimura, Tomomi; Nozaki, Tomohiro; Harada, Hitomi; Shimada, Ichio; Osawa, Masanori

    2015-01-01

    Voltage-dependent K+ (Kv) channels play crucial roles in nerve and muscle action potentials. Voltage-sensing domains (VSDs) of Kv channels sense changes in the transmembrane potential, regulating the K+-permeability across the membrane. Gating modifier toxins, which have been used for the functional analyses of Kv channels, inhibit Kv channels by binding to VSD. However, the structural basis for the inhibition remains elusive. Here, fluorescence and NMR analyses of the interaction between VSD derived from KvAP channel and its gating modifier toxin, VSTx1, indicate that VSTx1 recognizes VSD under depolarized condition. We identified the VSD-binding residues of VSTx1 and their proximal residues of VSD by the cross-saturation (CS) and amino acid selective CS experiments, which enabled to build a docking model of the complex. These results provide structural basis for the specific binding and inhibition of Kv channels by gating modifier toxins. PMID:26382304

  14. Artificial phosphorylation sites modulate the activity of a voltage-gated potassium channel

    NASA Astrophysics Data System (ADS)

    Ariyaratne, Amila; Zocchi, Giovanni

    2015-03-01

    The KvAP potassium channel is representative of a family of voltage-gated ion channels where the membrane potential is sensed by a transmembrane helix containing several positively charged arginines. Previous work by Wang and Zocchi [A. Wang and G. Zocchi, PLoS ONE 6, e18598 (2011), 10.1371/journal.pone.0018598] showed how a negatively charged polyelectrolyte attached in proximity to the voltage sensing element can bias the opening probability of the channel. Here we introduce three phosphorylation sites at the same location and show that the response curve of the channel shifts by about 20 mV upon phosphorylation, while other characteristics such as the single-channel conductance are unaffected. In summary, we construct an artificial phosphorylation site which confers allosteric regulation to the channel.

  15. Transmembrane Helix Assembly by Max-Min Ant System Algorithm.

    PubMed

    Sujaree, Kanon; Kitjaruwankul, Sunan; Boonamnaj, Panisak; Supunyabut, Chirayut; Sompornpisut, Pornthep

    2015-12-01

    Because of the rapid progress in biochemical and structural studies of membrane proteins, considerable attention has been given on developing efficient computational methods for solving low-to-medium resolution structures using sparse structural data. In this study, we demonstrate a novel algorithm, max-min ant system (MMAS), designed to find an assembly of α-helical transmembrane proteins using a rigid helix arrangement guided by distance constraints. The new algorithm generates a large variety with finite number of orientations of transmembrane helix bundle and finds the solution that is matched with the provided distance constraints based on the behavior of ants to search for the shortest possible path between their nest and the food source. To demonstrate the efficiency of the novel search algorithm, MMAS is applied to determine the transmembrane packing of KcsA and MscL ion channels from a limited distance information extracted from the crystal structures, and the packing of KvAP voltage sensor domain using a set of 10 experimentally determined constraints, and the results are compared with those of two popular used stochastic methods, simulated annealing Monte Carlo method and genetic algorithm. PMID:26058409

  16. Lipid-dependent gating of a voltage-gated potassium channel

    PubMed Central

    Zheng, Hui; Liu, Weiran; Anderson, Lingyan Y.; Jiang, Qiu-Xing

    2011-01-01

    Recent studies hypothesized that phospholipids stabilize two voltage-sensing arginine residues of certain voltage-gated potassium channels in activated conformations. It remains unclear how lipids directly affect these channels. Here, by examining the conformations of the KvAP in different lipids, we showed that without voltage change, the voltage-sensor domains switched from the activated to the resting state when their surrounding lipids were changed from phospholipids to nonphospholipids. Such lipid-determined conformational change was coupled to the ion-conducting pore, suggesting that parallel to voltage gating, the channel is gated by its annular lipids. Our measurements recognized that the energetic cost of lipid-dependent gating approaches that of voltage gating, but kinetically it appears much slower. Our data support that a channel and its surrounding lipids together constitute a functional unit, and natural nonphospholipids such as cholesterol should exert strong effects on voltage-gated channels. Our first observation of lipid-dependent gating may have general implications to other membrane proteins. PMID:21427721

  17. Inferred motions of the S3a helix during voltage-dependent K+ channel gating

    PubMed Central

    Banerjee, Anirban; MacKinnon, Roderick

    2010-01-01

    The gating of voltage-dependent potassium channels is controlled by conformational changes in voltage sensor domains. Previous studies have shown that the S1 and the S2 helices of the voltage sensor are static with respect to motion across the membrane, while the voltage sensor paddle consisting of the C-terminal half of S3 (S3b) and the charge-bearing S4, is mobile. The mobile component is attached to S1 and S2 via the S2-S3 turn and the N-terminal half of S3 (S3a). In this study we analyze KvAP, an archaebacterial voltage-dependent potassium channel, to study the mobility with respect to translation across the membrane of S3a. We utilize an assay based on attachment of tethered biotin and its site-specific accessibility to avidin. Our results reveal that the S3a helix does not move appreciably across the membrane in association with gating. The static behavior of S3a constrains the conformations available to the voltage sensor when it closes and suggests that a set of negative counter charges within the membrane's inner leaflet remains intact in the closed conformation. PMID:18632115

  18. The pore structure and gating mechanism of K2P channels

    PubMed Central

    Piechotta, Paula L; Rapedius, Markus; Stansfeld, Phillip J; Bollepalli, Murali K; Erhlich, Gunter; Andres-Enguix, Isabelle; Fritzenschaft, Hariolf; Decher, Niels; Sansom, Mark S P; Tucker, Stephen J; Baukrowitz, Thomas

    2011-01-01

    Two-pore domain (K2P) potassium channels are important regulators of cellular electrical excitability. However, the structure of these channels and their gating mechanism, in particular the role of the bundle-crossing gate, are not well understood. Here, we report that quaternary ammonium (QA) ions bind with high-affinity deep within the pore of TREK-1 and have free access to their binding site before channel activation by intracellular pH or pressure. This demonstrates that, unlike most other K+ channels, the bundle-crossing gate in this K2P channel is constitutively open. Furthermore, we used QA ions to probe the pore structure of TREK-1 by systematic scanning mutagenesis and comparison of these results with different possible structural models. This revealed that the TREK-1 pore most closely resembles the open-state structure of KvAP. We also found that mutations close to the selectivity filter and the nature of the permeant ion profoundly influence TREK-1 channel gating. These results demonstrate that the primary activation mechanisms in TREK-1 reside close to, or within the selectivity filter and do not involve gating at the cytoplasmic bundle crossing. PMID:21822218

  19. Microbial community structure of hydrothermal deposits from geochemically different vent fields along the Mid-Atlantic Ridge

    USGS Publications Warehouse

    Flores, Gilberto E.; Campbell, James H.; Kirshtein, Julie D.; Meneghin, Jennifer; Podar, Mircea; Steinberg, Joshua I.; Seewald, Jeffrey S.; Tivey, Margaret Kingston; Voytek, Mary A.; Yang, Zamin K.; Reysenbach, Anna-Louise

    2011-01-01

    To evaluate the effects of local fluid geochemistry on microbial communities associated with active hydrothermal vent deposits, we examined the archaeal and bacterial communities of 12 samples collected from two very different vent fields: the basalt-hosted Lucky Strike (37°17'N, 32°16.3'W, depth 1600-1750m) and the ultramafic-hosted Rainbow (36°13'N, 33°54.1'W, depth 2270-2330m) vent fields along the Mid-Atlantic Ridge (MAR). Using multiplexed barcoded pyrosequencing of the variable region 4 (V4) of the 16S rRNA genes, we show statistically significant differences between the archaeal and bacterial communities associated with the different vent fields. Quantitative polymerase chain reaction (qPCR) assays of the functional gene diagnostic for methanogenesis (mcrA), as well as geochemical modelling to predict pore fluid chemistries within the deposits, support the pyrosequencing observations. Collectively, these results show that the less reduced, hydrogen-poor fluids at Lucky Strike limit colonization by strict anaerobes such as methanogens, and allow for hyperthermophilic microaerophiles, like Aeropyrum. In contrast, the hydrogen-rich reducing vent fluids at the ultramafic-influenced Rainbow vent field support the prevalence of methanogens and other hydrogen-oxidizing thermophiles at this site. These results demonstrate that biogeographical patterns of hydrothermal vent microorganisms are shaped in part by large scale geological and geochemical processes.

  20. Microbial community structure of hydrothermal deposits from geochemically different vent fields along the Mid-Atlantic Ridge

    SciTech Connect

    Flores, Gilberto E; Campbell, James H; Kirshtein, Julie D; Meneghin, Jennifer; Podar, Mircea; Steinberg, Joshua; Seewald, Jeffrey S; Tivey, Margaret Kingston; Voytek, Mary A; Reysenbach, Anna-Louise; Yang, Zamin Koo

    2011-01-01

    To evaluate the effects of local fluid geochemistry on microbial communities associated with active hydrothermal vent deposits, we examined the archaeal and bacterial communities of 12 samples collected from two very different vent fields: the basalt-hosted Lucky Strike (37 17'N, 32 16.3'W, depth 1600-1750 m) and the ultramafic-hosted Rainbow (36 13'N, 33 54.1'W, depth 2270-2330 m) vent fields along the Mid-Atlantic Ridge (MAR). Using multiplexed barcoded pyrosequencing of the variable region 4 (V4) of the 16S rRNA genes, we show statistically significant differences between the archaeal and bacterial communities associated with the different vent fields. Quantitative polymerase chain reaction (qPCR) assays of the functional gene diagnostic for methanogenesis (mcrA), as well as geochemical modelling to predict pore fluid chemistries within the deposits, support the pyrosequencing observations. Collectively, these results show that the less reduced, hydrogen-poor fluids at Lucky Strike limit colonization by strict anaerobes such as methanogens, and allow for hyperthermophilic microaerophiles, like Aeropyrum. In contrast, the hydrogen-rich reducing vent fluids at the ultramafic-influenced Rainbow vent field support the prevalence of methanogens and other hydrogen-oxidizing thermophiles at this site. These results demonstrate that biogeographical patterns of hydrothermal vent microorganisms are shaped in part by large scale geological and geochemical processes.

  1. Mobility in geometrically confined membranes.

    PubMed

    Domanov, Yegor A; Aimon, Sophie; Toombes, Gilman E S; Renner, Marianne; Quemeneur, François; Triller, Antoine; Turner, Matthew S; Bassereau, Patricia

    2011-08-01

    Lipid and protein lateral mobility is essential for biological function. Our theoretical understanding of this mobility can be traced to the seminal work of Saffman and Delbrück, who predicted a logarithmic dependence of the protein diffusion coefficient (i) on the inverse of the size of the protein and (ii) on the "membrane size" for membranes of finite size [Saffman P, Delbrück M (1975) Proc Natl Acad Sci USA 72:3111-3113]. Although the experimental proof of the first prediction is a matter of debate, the second has not previously been thought to be experimentally accessible. Here, we construct just such a geometrically confined membrane by forming lipid bilayer nanotubes of controlled radii connected to giant liposomes. We followed the diffusion of individual molecules in the tubular membrane using single particle tracking of quantum dots coupled to lipids or voltage-gated potassium channels KvAP, while changing the membrane tube radius from approximately 250 to 10 nm. We found that both lipid and protein diffusion was slower in tubular membranes with smaller radii. The protein diffusion coefficient decreased as much as 5-fold compared to diffusion on the effectively flat membrane of the giant liposomes. Both lipid and protein diffusion data are consistent with the predictions of a hydrodynamic theory that extends the work of Saffman and Delbrück to cylindrical geometries. This study therefore provides strong experimental support for the ubiquitous Saffman-Delbrück theory and elucidates the role of membrane geometry and size in regulating lateral diffusion. PMID:21768336

  2. Detecting Rearrangements of Shaker and NaChBac in Real-Time with Fluorescence Spectroscopy in Patch-Clamped Mammalian Cells

    PubMed Central

    Blunck, Rikard; Starace, Dorine M.; Correa, Ana M.; Bezanilla, Francisco

    2004-01-01

    Time-resolved fluorescence detection of site-directed probes is a major tool in the investigation of structure-function relationships of voltage-dependent ion channels. However, the technique has been limited so far to the Xenopus-oocyte system making it difficult to study proteins, like, e.g., the prokaryotic sodium channel NaChBac, whose expression in oocytes is insufficient or whose physiological functions are distorted in oocytes. To expand the application of site-directed fluorescence detection to these proteins, we used two techniques—semiconfocal epifluorescence and total internal reflection fluorescence—to detect time-resolved fluorescence changes from site-directed labeled proteins expressed in mammalian cells under patch-clamp conditions, and investigated the characteristics and limitations of the techniques. The voltage-sensitive dye, di-8-ANEPPS, was used to monitor control of the membrane voltage in epifluorescence and total internal reflection fluorescence. Fluorescence changes in patch-clamped cells were recorded from a Shaker channel mutant (M356C) labeled in the S3–S4 linker using semiconfocal epifluorescence. The gating kinetics and fluorescence changes were in accordance with previous studies using fluorescence spectroscopy in Xenopus-oocyte systems. We applied our technique to the prokaryotic sodium channel NaChBac. Voltage-dependent protein-rearrangements of S4 could be detected that are independent of inactivation. Comparison of the S3–S4 linker regions revealed structural differences to the KvAP voltage sensor. The results from the NaChBac channel point to structural requirements for the S3–S4 loop to generate a fluorescence signal. PMID:15189893

  3. Structural Refinement of the hERG1 Pore and Voltage-Sensing Domains with ROSETTA-Membrane and Molecular Dynamics Simulations

    PubMed Central

    Subbotina, Julia; Yarov-Yarovoy, Vladimir; Lees-Miller, James; Durdagi, Serdar; Guo, Jiqing; Duff, Henry J.; Noskov, Sergei Yu.

    2010-01-01

    The hERG1 gene (Kv11.1) encodes a voltage-gated potassium channel. Mutations in this gene, lead to one form of the Long QT Syndrome in humans (LQTS). Promiscuous binding of drugs to hERG1 is known to alter the structure/function of the channel leading to an acquired form of the LQTS. Expectably, creation and validation of reliable 3D model of the channel has been a key target in molecular cardiology and pharmacology for the last decade. While many models were built, they all were limited to pore domain. In this work, a full model of the hERG1 channel is developed which includes all trans-membrane segments. We tested a template-driven de-novo design with ROSETTA-membrane modeling using side-chain placements optimized by subsequent molecular dynamics (MD) simulations. While backbone templates for the homology modeled parts of the pore and voltage sensors were based on the available structures of KvAP, Kv1.2 and Kv1.2–Kv2.1 chimera channels, the missing parts are modeled de-novo. The impact of several alignments on the structure of the S4 helix in the voltage-sensing domain was also tested. Herein, final models are evaluated for consistency to the reported structural elements discovered mainly on the basis of mutagenesis and electrophysiology. These structural elements include: salt bridges and close contacts in the voltage-sensor domain; and the topology of the extracellular S5-pore linker compared to that established by toxin foot-printing and NMR studies. Implications of the refined hERG1 model to binding of blockers and channels activators (potent new ligands for channel activations) are discussed. PMID:20740484

  4. Interactions of H562 in the S5 Helix with T618 and S621 in the Pore Helix Are Important Determinants of hERG1 Potassium Channel Structure and Function

    PubMed Central

    Lees-Miller, James P.; Subbotina, Julia O.; Guo, Jiqing; Yarov-Yarovoy, Vladimir; Noskov, Sergei Y.; Duff, Henry J.

    2009-01-01

    hERG1 is a member of the cyclic nucleotide binding domain family of K+ channels. Alignment of cyclic nucleotide binding domain channels revealed an evolutionary conserved sequence HwX(A/G)C in the S5 domain. We reasoned that histidine 562 in hERG1 could play an important structure-function role. To explore this role, we created in silica models of the hERG1 pore domain based on the KvAP crystal structure with Rosetta-membrane modeling and molecular-dynamics simulations. Simulations indicate that the H562 residue in the S5 helix spans the gap between the S5 helix and the pore helix, stabilizing the pore domain, and that mutation at the H562 residue leads to a disruption of the hydrogen bonding to T618 and S621, resulting in distortion of the selectivity filter. Analysis of the simulated point mutations at positions 562/618/621 showed that the reciprocal double mutations H562W/T618I would partially restore the orientation of the 562 residue. Matching hydrophobic interactions between mutated W562 residue and I618 partially compensate for the disrupted hydrogen bonding. Complementary in vitro electrophysiological studies confirmed the results of the molecular-dynamics simulations on single mutations at positions 562, 618, and 621. Experimentally, mutations of the H562 to tryptophan produced a functional channel, but with slowed deactivation and shifted V1/2 of activation. Furthermore, the double mutation T618I/H562W rescued the defects seen in activation, deactivation, and potassium selectivity seen with the H562W mutation. In conclusion, interactions between H562 in the S5 helix and amino acids in the pore helix are important determinants of hERG1 potassium channel function, as confirmed by theory and experiment. PMID:19413965

  5. Combined effect of carbon dioxide and sulfur on vapor-liquid partitioning of metals in hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Kokh, Maria A.; Lopez, Mathieu; Gisquet, Pascal; Lanzanova, Aurélie; Candaudap, Frédéric; Besson, Philippe; Pokrovski, Gleb S.

    2016-08-01

    Although CO2 is a ubiquitous volatile in geological fluids typically ranging from a few to more than 50 wt%, its effect on metal vapor-liquid fractionation during fluid boiling and immiscibility phenomena in the Earth's crust remains virtually unknown. Here we conducted first experiments to quantify the influence of CO2 on the partition of different metals in model water + salt + sulfur + CO2 systems at 350 °C and CO2 pressures up to 100 bar, which are typical conditions of formation of many hydrothermal ore deposits. In addition, we performed in situ Raman spectroscopy measurements on these two-phase systems, to determine sulfur and carbon speciation in the liquid and vapor phases. Results show that, in S-free systems and across a CO2 concentration range of 0-50 wt% in the vapor phase, the absolute vapor-liquid partitioning coefficients of metals (Kvap/liq = Cvap/Cliq, where C is the mass concentration of the metal in the corresponding vapor and liquid phase) are in the range 10-6-10-5 for Mo; 10-4-10-3 for Na, K, Cu, Fe, Zn, Au; 10-3-10-2 for Si; and 10-4-10-1 for Pt. With increasing CO2 from 0 to 50 wt%, Kvap/liq values decrease for Fe, Cu and Si by less than one order of magnitude, remain constant within errors (±0.2 log unit) for Na, K and Zn, and increase by 0.5 and 2 orders of magnitude, respectively for Au and Pt. The negative effect of CO2 on the partitioning of some metals is due to weakening of hydration of chloride complexes of some metals (Cu, Fe) in the vapor phase and/or salting-in effects in the liquid phase (Si), whereas both phenomena are negligible for complexes of other metals (Na, K, Zn, Mo). The only exception is Pt (and in a lesser extent Au), which partitions significantly more to the vapor of S-free systems in the presence of CO2, likely due to formation of volatile carbonyl (CO) complexes. In the S-bearing system, with H2S content of 0.1-1.0 wt% in the vapor, Kvap/liq values of Cu, Fe, Mo, and Au are in the range 0.01-0.1, those of Pt 0

  6. Sediment microbial communities in Great Boiling Spring are controlled by temperature and distinct from water communities

    PubMed Central

    Cole, Jessica K; Peacock, Joseph P; Dodsworth, Jeremy A; Williams, Amanda J; Thompson, Daniel B; Dong, Hailiang; Wu, Geng; Hedlund, Brian P

    2013-01-01

    Great Boiling Spring is a large, circumneutral, geothermal spring in the US Great Basin. Twelve samples were collected from water and four different sediment sites on four different dates. Microbial community composition and diversity were assessed by PCR amplification of a portion of the small subunit rRNA gene using a universal primer set followed by pyrosequencing of the V8 region. Analysis of 164 178 quality-filtered pyrotags clearly distinguished sediment and water microbial communities. Water communities were extremely uneven and dominated by the bacterium Thermocrinis. Sediment microbial communities grouped according to temperature and sampling location, with a strong, negative, linear relationship between temperature and richness at all taxonomic levels. Two sediment locations, Site A (87–80 °C) and Site B (79 °C), were predominantly composed of single phylotypes of the bacterial lineage GAL35 (p̂=36.1%), Aeropyrum (p̂=16.6%), the archaeal lineage pSL4 (p̂=15.9%), the archaeal lineage NAG1 (p̂=10.6%) and Thermocrinis (p̂=7.6%). The ammonia-oxidizing archaeon ‘Candidatus Nitrosocaldus' was relatively abundant in all sediment samples <82 °C (p̂=9.51%), delineating the upper temperature limit for chemolithotrophic ammonia oxidation in this spring. This study underscores the distinctness of water and sediment communities in GBS and the importance of temperature in driving microbial diversity, composition and, ultimately, the functioning of biogeochemical cycles. PMID:23235293

  7. Ranolazine inhibition of hERG potassium channels: Drug–pore interactions and reduced potency against inactivation mutants

    PubMed Central

    Du, Chunyun; Zhang, Yihong; El Harchi, Aziza; Dempsey, Christopher E.; Hancox, Jules C.

    2014-01-01

    The antianginal drug ranolazine, which combines inhibitory actions on rapid and sustained sodium currents with inhibition of the hERG/IKr potassium channel, shows promise as an antiarrhythmic agent. This study investigated the structural basis of hERG block by ranolazine, with lidocaine used as a low potency, structurally similar comparator. Recordings of hERG current (IhERG) were made from cell lines expressing wild-type (WT) or mutant hERG channels. Docking simulations were performed using homology models built on MthK and KvAP templates. In conventional voltage clamp, ranolazine inhibited IhERG with an IC50 of 8.03 μM; peak IhERG during ventricular action potential clamp was inhibited ~ 62% at 10 μM. The IC50 values for ranolazine inhibition of the S620T inactivation deficient and N588K attenuated inactivation mutants were respectively ~ 73-fold and ~ 15-fold that for WT IhERG. Mutations near the bottom of the selectivity filter (V625A, S624A, T623A) exhibited IC50s between ~ 8 and 19-fold that for WT IhERG, whilst the Y652A and F656A S6 mutations had IC50s ~ 22-fold and 53-fold WT controls. Low potency lidocaine was comparatively insensitive to both pore helix and S6 mutations, but was sensitive to direction of K+ flux and particularly to loss of inactivation, with an IC50 for S620T-hERG ~ 49-fold that for WT IhERG. Docking simulations indicated that the larger size of ranolazine gives it potential for a greater range of interactions with hERG pore side chains compared to lidocaine, in particular enabling interaction of its two aromatic groups with side chains of both Y652 and F656. The N588K mutation is responsible for the SQT1 variant of short QT syndrome and our data suggest that ranolazine is unlikely to be effective against IKr/hERG in SQT1 patients. PMID:24877995

  8. bSUM: A bead-supported unilamellar membrane system facilitating unidirectional insertion of membrane proteins into giant vesicles

    PubMed Central

    Zheng, Hui; Lee, Sungsoo; Llaguno, Marc C.

    2016-01-01

    Fused or giant vesicles, planar lipid bilayers, a droplet membrane system, and planar-supported membranes have been developed to incorporate membrane proteins for the electrical and biophysical analysis of such proteins or the bilayer properties. However, it remains difficult to incorporate membrane proteins, including ion channels, into reconstituted membrane systems that allow easy control of operational dimensions, incorporation orientation of the membrane proteins, and lipid composition of membranes. Here, using a newly developed chemical engineering procedure, we report on a bead-supported unilamellar membrane (bSUM) system that allows good control over membrane dimension, protein orientation, and lipid composition. Our new system uses specific ligands to facilitate the unidirectional incorporation of membrane proteins into lipid bilayers. Cryo–electron microscopic imaging demonstrates the unilamellar nature of the bSUMs. Electrical recordings from voltage-gated ion channels in bSUMs of varying diameters demonstrate the versatility of the new system. Using KvAP as a model system, we show that compared with other in vitro membrane systems, the bSUMs have the following advantages: (a) a major fraction of channels are orientated in a controlled way; (b) the channels mediate the formation of the lipid bilayer; (c) there is one and only one bilayer membrane on each bead; (d) the lipid composition can be controlled and the bSUM size is also under experimental control over a range of 0.2–20 µm; (e) the channel activity can be recorded by patch clamp using a planar electrode; and (f) the voltage-clamp speed (0.2–0.5 ms) of the bSUM on a planar electrode is fast, making it suitable to study ion channels with fast gating kinetics. Our observations suggest that the chemically engineered bSUMs afford a novel platform for studying lipid–protein interactions in membranes of varying lipid composition and may be useful for other applications, such as targeted

  9. Rheology of biological macromolecules

    NASA Astrophysics Data System (ADS)

    Ariyaratne, Amila Dinesh

    Proteins have interesting mechanical properties in addition to the remarkable functionality. For example, Guanylate kinase is an enzyme that catalyzes Guano- sine monophosphate (GMP) to Guanosine diphosphate (GDP) conversion and this enzyme is approximately 5 nm in size. A gold nano particle of similar size shows linear elasticity for strains up to ˜ 0.1% and shows plastic deformation beyond that, whereas the enzyme Guanylate kinase can have strains up to 1 % with reversible deformation. Our experiments show many different regimes of the mechanical response before the plastic deformation of these proteins. In this dissertation, I study the materials properties of two classes of proteins, an ion channel protein and a transferase, which is a globular protein. The experimental techniques to study the materials properties of these proteins were uniquely developed at the Zocchi lab. Therefore, we were able to observe previously unknown characteristics of these folded proteins. The mechanical properties of the voltage gated potassium channel KvAP was studied by applying AC depolarizing voltages. This technique gave new information about the system that was not seen in the previous studies. These previous experiments were based on applying DC depolarizing voltage steps across the membrane to study the ionic current. By monitoring the ionic current at different depolarizing voltage steps, the DC gating process of the channel could be under- stood. We probed the channel using AC depolarizing signals instead of DC pulses and the ionic current revealed new behaviors, which cannot be predicted with the DC response. We found that the conformational motion of the voltage sensing domain of the ion channel shows internal dissipation. Further, a new non linearity in the dissipation parameter was found in which the dissipation parameter increased with the shear rate of the applied force. Previous studies at the Zocchi lab used a nano rheology experiment on the protein Guanylate

  10. A systematic revision of Baconia Lewis (Coleoptera, Histeridae, Exosternini)

    PubMed Central

    Caterino, Michael S.; Tishechkin, Alexey K.

    2013-01-01

    Abstract Here we present a complete revision of the species of Baconia. Up until now there have been 27 species assigned to the genus (Mazur, 2011), in two subgenera (Binhister Cooman and Baconia s. str.), with species in the Neotropical, Nearctic, Palaearctic, and Oriental regions. We recognize all these species as valid and correctly assigned to the genus, and redescribe all of them. We synonymize Binhister, previously used for a polyphyletic assemblage of species with varied relationships in the genus. We move four species into Baconia from other genera, and describe 85 species as new, bringing the total for the genus to 116 species. We divide these into 12 informal species groups, leaving 13 species unplaced to group. We present keys and diagnoses for all species, as well as habitus photos and illustrations of male genitalia for nearly all. The genus now contains the following species and species groups: Baconia loricata group [Baconia loricata Lewis, 1885, B. patula Lewis, 1885, Baconia gounellei (Marseul, 1887a), Baconia jubaris (Lewis, 1901), Baconia festiva (Lewis, 1891), Baconia foliosoma sp. n., Baconia sapphirina sp. n., Baconia furtiva sp. n., Baconia pernix sp. n., Baconia applanatis sp. n., Baconia disciformis sp. n., Baconia nebulosa sp. n., Baconia brunnea sp. n.], Baconia godmani group [Baconia godmani (Lewis, 1888), Baconia venusta (J. E. LeConte, 1845), Baconia riehli (Marseul, 1862), comb. n., Baconia scintillans sp. n., Baconia isthmia sp. n., Baconia rossi sp. n., Baconia navarretei sp. n., Baconia maculata sp. n., Baconia deliberata sp. n., Baconia excelsa sp. n., Baconia violacea (Marseul, 1853), Baconia varicolor (Marseul, 1887b), Baconia dives (Marseul, 1862), Baconia eximia (Lewis, 1888), Baconia splendida sp. n., Baconia jacinta sp. n., Baconia prasina sp. n., Baconia opulenta sp. n., Baconia illustris (Lewis, 1900), Baconia choaspites (Lewis, 1901), Baconia lewisi Mazur, 1984], Baconia salobrus group [Baconia salobrus (Marseul, 1887b

  11. A systematic revision of Baconia Lewis (Coleoptera, Histeridae, Exosternini).

    PubMed

    Caterino, Michael S; Tishechkin, Alexey K

    2013-01-01

    Here we present a complete revision of the species of Baconia. Up until now there have been 27 species assigned to the genus (Mazur, 2011), in two subgenera (Binhister Cooman and Baconia s. str.), with species in the Neotropical, Nearctic, Palaearctic, and Oriental regions. We recognize all these species as valid and correctly assigned to the genus, and redescribe all of them. We synonymize Binhister, previously used for a polyphyletic assemblage of species with varied relationships in the genus. We move four species into Baconia from other genera, and describe 85 species as new, bringing the total for the genus to 116 species. We divide these into 12 informal species groups, leaving 13 species unplaced to group. We present keys and diagnoses for all species, as well as habitus photos and illustrations of male genitalia for nearly all. The genus now contains the following species and species groups: Baconia loricata group [Baconia loricata Lewis, 1885, B. patula Lewis, 1885, Baconia gounellei (Marseul, 1887a), Baconia jubaris (Lewis, 1901), Baconia festiva (Lewis, 1891), Baconia foliosoma sp. n., Baconia sapphirina sp. n., Baconia furtiva sp. n., Baconia pernix sp. n., Baconia applanatis sp. n., Baconia disciformis sp. n., Baconia nebulosa sp. n., Baconia brunnea sp. n.], Baconia godmani group [Baconia godmani (Lewis, 1888), Baconia venusta (J. E. LeConte, 1845), Baconia riehli (Marseul, 1862), comb. n., Baconia scintillans sp. n., Baconia isthmia sp. n., Baconia rossi sp. n., Baconia navarretei sp. n., Baconia maculata sp. n., Baconia deliberata sp. n., Baconia excelsa sp. n., Baconia violacea (Marseul, 1853), Baconia varicolor (Marseul, 1887b), Baconia dives (Marseul, 1862), Baconia eximia (Lewis, 1888), Baconia splendida sp. n., Baconia jacinta sp. n., Baconia prasina sp. n., Baconia opulenta sp. n., Baconia illustris (Lewis, 1900), Baconia choaspites (Lewis, 1901), Baconia lewisi Mazur, 1984], Baconia salobrus group [Baconia salobrus (Marseul, 1887b), Baconia