Science.gov

Sample records for aerosol absorption coefficient

  1. Aerosol Angstrom Absorption Coefficient Comparisons during MILAGRO.

    NASA Astrophysics Data System (ADS)

    Marley, N. A.; Marchany-Rivera, A.; Kelley, K. L.; Mangu, A.; Gaffney, J. S.

    2007-12-01

    aerosol Angstrom absorption exponents by linear regression over the entire UV-visible spectral range. These results are compared to results obtained from the absorbance measurements obtained in the field. The differences in calculated Angstrom absorption exponents between the field and laboratory measurements are attributed partly to the differences in time resolution of the sample collection resulting in heavier particle pileup on the filter surface of the 12-hour samples. Some differences in calculated results can also be attributed to the presence of narrow band absorbers below 400 nm that do not fall in the wavelengths covered by the 7 wavelengths of the aethalometer. 1. Marley, N.A., J.S. Gaffney, J.C. Baird, C.A. Blazer, P.J. Drayton, and J.E. Frederick, "The determination of scattering and absorption coefficients of size-fractionated aerosols for radiative transfer calculations." Aerosol Sci. Technol., 34, 535-549, (2001). This work was conducted as part of the Department of Energy's Atmospheric Science Program as part of the Megacity Aerosol Experiment - Mexico City during MILAGRO. This research was supported by the Office of Science (BER), U.S. Department of Energy Grant No. DE-FG02-07ER64329. We also wish to thank Mexican Scientists and students for their assistance from the Instituto Mexicano de Petroleo (IMP) and CENICA.

  2. Measurements of the absorption coefficient of stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Ogren, J. A.; Ahlquist, N. C.; Clarke, A. D.; Charlson, R. J.

    1981-01-01

    The absorption coefficients of stratospheric aerosols are measured using a variation on the integrating plate method. The technique is based on the decrease in the transparency of a substrate when an absorbing aerosol is deposited on it. A Lambert scatterer is placed behind the substrate to integrate forward scattered light and minimize the effect of scattering on the measurement. The low pressure in the stratosphere is used for the direct impaction of particles onto a narrow strip of opal glass. The eight samples collected had a median value of 4 x 10 to the -9th m with an uncertainty of + or - 5 x 10 to the -9th m. If this absorption is due to graphitic carbon, then its concentration is estimated at about 0.4 ng/cu m, or about 0.25% of the total aerosol mass concentration. Estimates of the aerosol scattering coefficients based on satellite extinction inversions result in an aerosol single-scattering albedo in the range of 0.96-1.0.

  3. Multi-wavelength measurements of aerosol optical absorption coefficients using a photoacoustic spectrometer

    NASA Astrophysics Data System (ADS)

    Liu, Qiang; Huang, Hong-Hua; Wang, Yao; Wang, Gui-Shi; Cao, Zhen-Song; Liu, Kun; Chen, Wei-Dong; Gao, Xiao-Ming

    2014-06-01

    The atmospheric aerosol absorption capacity is a critical parameter determining its direct and indirect effects on climate. Accurate measurement is highly desired for the study of the radiative budget of the Earth. A multi-wavelength (405 nm, 532 nm, 780 nm) aerosol absorption meter based on photoacoustic spectroscopy (PAS) invovling a single cylindrical acoustic resonator is developed for measuring the aerosol optical absorption coefficients (OACs). A sensitivity of 1.3 Mm-1 (at 532 nm) is demonstrated. The aerosol absorption meter is successfully tested through measuring the OACs of atmospheric nigrosin and ambient aerosols in the suburbs of Hefei city. The absorption cross section and absorption Ångström exponent (AAE) for ambient aerosol are determined for characterizing the component of the ambient aerosol.

  4. [Development of a photoacoustic spectroscopy system for the measurement of absorption coefficient of atmospheric aerosols].

    PubMed

    Liu, Qiang; Niu, Ming-Sheng; Wang, Gui-Shi; Cao, Zhen-Song; Liu, Kun; Chen, Wei-Dong; Gao, Xiao-Ming

    2013-07-01

    In the present paper, the authors focus on the effect of the resonance frequency shift due to the changes in temperature and humidity on the PA signal, present several methods to control the noise derived form gas flow and vibration from the sampling pump. Based on the efforts mentioned above, a detection limit of 1.4 x 10(-8) W x cm(-1) x Hz(-1/2) was achieved for the measurement of atmospheric aerosols absorption coefficient. During the experiments, the PA cell was calibrated with the absorption of standard NO2 gas at 532 nm and the atmospheric aerosols were measured continuously. The measurement results show that the PAS is suitable for the real-time measurement of the absorption coefficient of atmospheric aerosols in their natural suspended state. PMID:24059163

  5. Statistical Estimation of the Atmospheric Aerosol Absorption Coefficient Based on the Data of Optical Measurements

    SciTech Connect

    Uzhegov, V.N.; Kozlov, V.S.; Panchenko, M.V.; Pkhalagov, Yu.A.; Pol'kin, V.V.; Terpugova, S.A.; Shmargunov, V.P.; Yausheva, E.P.

    2005-03-18

    The problem of the choice of the aerosol optical constants and, in particular, imaginary part of the refractive index of particles in visible and infrared (IR) wavelength ranges is very important for calculation of the global albedo of the atmosphere in climatic models. The available models of the aerosol optical constants obtained for the prescribed chemical composition of particles (see, for example, Ivlev et al. 1973; Ivlev 1982; Volz 1972), often are far from real aerosol. It is shown in (Krekov et al. 1982) that model estimates of the optical characteristics of the atmosphere depending on the correctness of real and imaginary parts of the aerosol complex refractive index can differ by some hundreds percent. It is known that the aerosol extinction coefficient {alpha}({lambda}) obtained from measurements on a long horizontal path can be represented as {alpha}({lambda})={sigma}({lambda})+{beta}({lambda}), where {sigma} is the directed light scattering coefficient, and {beta} is the aerosol absorption coefficient. The coefficient {sigma}({lambda}) is measured by means of a nephelometer. Seemingly, if measure the values {alpha}({lambda}) and {sigma}({lambda}), it is easy to determine the value {beta}({lambda}). However, in practice it is almost impossible for a number of reasons. Firstly, the real values {alpha}({lambda}) and {sigma}({lambda}) are very close to each other, and the estimate of the parameter {beta}({lambda}) is concealed by the errors of measurements. Secondly, the aerosol optical characteristics on the long path and in the local volume of nephelometer can be different, that also leads to the errors in estimating {beta}({lambda}). Besides, there are serious difficulties in performing spectral measurements of {sigma}({lambda}) in infrared wavelength range. Taking into account these circumstances, in this paper we consider the statistical technique, which makes it possible to estimate the absorption coefficient of real aerosol on the basis of analysis

  6. AN INTERCOMPARISON CF THE INTEGRATING PLATE AND THE LASER TRANSMISSION METHODS FOR DETERMINATION OF AEROSOL ABSORPTION COEFFICIENTS

    SciTech Connect

    Sadler, M.; Charlson, R.J.; Rosen, H.; Novakov, T.

    1980-07-01

    The absorption coefficients determined by the integrating plate method and the laser transmission method are found to be comparable and highly correlated. Furthermore, a high correlation is found between these absorption coefficients and the carbon content of the aerosol in urbanized regions.

  7. Absorption coefficient of urban aerosol in Nanjing, west Yangtze River Delta, China

    NASA Astrophysics Data System (ADS)

    Zhuang, B. L.; Wang, T. J.; Liu, J.; Ma, Y.; Yin, C. Q.; Li, S.; Xie, M.; Han, Y.; Zhu, J. L.; Yang, X. Q.; Fu, C. B.

    2015-12-01

    Absorbing aerosols can significantly modulate short-wave solar radiation in the atmosphere, affecting regional and global climate. The aerosol absorption coefficient (AAC) is an indicator that assesses the impact of absorbing aerosols on radiative forcing. In this study, the near-surface AAC and absorption Ångström exponent (AAE) in the urban area of Nanjing, China, are characterized on the basis of measurements in 2012 and 2013 using the seven-channel Aethalometer (model AE-31, Magee Scientific, USA). The AAC is estimated with direct and indirect corrections, which result in consistent temporal variations and magnitudes of AAC at 532 nm. The mean AAC at 532 nm is about 43.23 ± 28.13 M m-1 in the urban area of Nanjing, which is much lower than that in Pearl River Delta and the same as in rural areas (Lin'an) in Yangtze River Delta. The AAC in the urban area of Nanjing shows strong seasonality (diurnal variations); it is high in cold seasons (at rush hour) and low in summer (in the afternoon). It also shows synoptic and quasi-2-week cycles in response to weather systems. Its frequency distribution follows a typical log-normal pattern. The 532 nm AAC ranging from 15 to 65 M m-1 dominates, accounting for more than 72 % of the total data samples in the entire study period. Frequent high pollution episodes, such as those observed in June 2012 and in winter 2013, greatly enhanced AAC and altered its temporal variations and frequency distributions. These episodes are mostly due to local emissions and regional pollution. Air masses flowing from northern China to Nanjing can sometimes be highly polluted and lead to high AAC at the site. AAE at 660/470 nm from the Schmid correction (Schmid et al., 2006) is about 1.56, which might be more reasonable than from the Weingartner correction (Weingartner et al., 2003). Low AAEs mainly occur in summer, likely due to high relative humidity (RH) in the season. AAC increases with increasing AAE at a fixed aerosol loading. The RH

  8. Absorption coefficient of urban aerosol in Nanjing, west Yangtze River Delta of China

    NASA Astrophysics Data System (ADS)

    Zhuang, B. L.; Wang, T. J.; Liu, J.; Ma, Y.; Yin, C. Q.; Li, S.; Xie, M.; Han, Y.; Zhu, J. L.; Yang, X. Q.; Fu, C. B.

    2015-06-01

    Absorbing aerosols can significantly modulate shortwave solar radiation in the atmosphere, affecting regional and global climate. Aerosol absorption coefficient (AAC) is an indicator to assess the impact of absorbing aerosols on radiative forcing. In this study, the near-surface AAC and absorption angstrom exponent (AAE) in urban Nanjing, China, are characterized on the basis of measurements in 2012 and 2013 using the 7-channel Aethalometer (model AE-31, Magee Scientific, USA). The AAC is estimated with direct and indirect corrections, which show consistent temporal variations and magnitudes of AAC at 532 nm. The mean AAC at 532 nm is about 43.23 ± 28.13 M m-1 in urban Nanjing, which is much lower than that in Pearl River Delta and as the same as that in rural areas (Lin'an) in Yangtze River Delta. The AAC in urban Nanjing shows strong seasonality (diurnal variations), high in cold seasons (at rush hours) and low in summer (in afternoon). It also show synoptic and quasi-two-week cycles in response to weather systems. Its frequency distribution follows a typical lognormal pattern. The 532 nm-AAC ranging from 15 to 65 M m-1 dominates, accounting for more than 72% of the total data samples in the entire study period. Frequent high pollution episodes, such as those observed in June 2012 and in winter 2013, greatly enhanced AAC and altered its temporal variations and frequency distributions. These episodes are mostly due to local emissions and regional pollutions. Air masses from northern China to Nanjing can sometimes be highly polluted and lead to high AAC at the site. AAE at 660/470 nm from the Schmid correction (Schmid et al., 2006) is about 1.56, which might be more reasonable compared to that from the Weingartner correction (Weingartner et al., 2003). Low AAEs mainly appear in summer in response to the relative humidity (RH). AAC increases with increasing AAE at a fixed aerosol loading. The RH-AAC relationship is more complex. Overall, AAC peaks around RH values

  9. Field calibration of multi-scattering correction factor for aethalometer aerosol absorption coefficient during CAPMEX Campaign, 2008

    NASA Astrophysics Data System (ADS)

    Kim, J. H.; Kim, S. W.; Yoon, S. C.; Park, R.; Ogren, J. A.

    2014-12-01

    Filter-based instrument, such as aethalometer, is being widely used to measure equivalent black carbon(EBC) mass concentration and aerosol absorption coefficient(AAC). However, many other previous studies have poited that AAC and its aerosol absorption angstrom exponent(AAE) are strongly affected by the multi-scattering correction factor(C) when we retrieve AAC from aethalometer EBC mass concentration measurement(Weingartner et al., 2003; Arnott et al., 2005; Schmid et al., 2006; Coen et al., 2010). We determined the C value using the method given in Weingartner et al. (2003) by comparing 7-wavelngth aethalometer (AE-31, Magee sci.) to 3-wavelength Photo-Acoustic Soot Spectrometer (PASS-3, DMT) at Gosan climate observatory, Korea(GCO) during Cheju ABC plume-asian monsoon experiment(CAPMEX) campaign(August and September, 2008). In this study, C was estimated to be 4.04 ± 1.68 at 532 nm and AAC retrieved with this value was decreased as approximately 100% as than that retrieved with soot case value from Weingartner et al (2003). We compared the AAC determined from aethalomter measurements to that from collocated Continuous Light Absorption Photometer (CLAP) measurements from January 2012 to December 2013 at GCO and found good agreement in both AAC and AAE. This result suggests the determination of site-specific C is crucially needed when we calculate AAC from aethalometer measurements.

  10. Radiometer gives true absorption and emission coefficients

    NASA Technical Reports Server (NTRS)

    Fymat, A. L.

    1977-01-01

    Novel radiometer, unaffected by scattering and polarization, measures true absorption and emmission coefficients for arbitrary mixture of gases and polluting particles. It has potential astronomical, meteorological, and environmental applications, such as determination of radiative heat budget, aerosol relative concentration, and morphology of cloud, haze, and fog formations. Data and temperature can be coupled directly to small computer for online calculation of radiation coefficients.

  11. Aerosol Absorption Measurements in MILAGRO.

    NASA Astrophysics Data System (ADS)

    Gaffney, J. S.; Marley, N. A.; Arnott, W. P.; Paredes-Miranda, L.; Barnard, J. C.

    2007-12-01

    to carbonyl- and nitro- functional groups on conjugated and aromatic organic structures (e.g. PAH, and terpene derived products). Using 12-hour fine (0.1-1.0 micron) aerosol samples collected in the field on quartz filters, uv/vis and infrared spectra were obtained in the laboratory using integrating spheres and diffuse reflectance spectroscopy, respectively. An inter-comparison of the "real-time" measurements made by the photo-acoustic, aethalometer and MAAP techniques have been described. In addition, the in situ aethalometer (seven-channel) results are compared with continuous integrating sphere uv-visible spectra to examine the angstrom absorption coefficient variance. These results will be briefly overviewed and the specific posters detailing these results will be highlighted highlighted. This work was performed as part of the Department of Energy's Megacity Aerosol Experiment - Mexico City under the support of the Atmospheric Science Program. "This researchwas supported by the Office of Science (BER), U. S. Department of Energy, Grant No. DE-FG02-07ER64329.

  12. Aerosol optical absorption measurements with photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Kun; Wang, Lei; Liu, Qiang; Wang, Guishi; Tan, Tu; Zhang, Weijun; Chen, Weidong; Gao, Xiaoming

    2015-04-01

    Many parameters related to radiative forcing in climate research are known only with large uncertainties. And one of the largest uncertainties in global radiative forcing is the contribution from aerosols. Aerosols can scatter or absorb the electromagnetic radiation, thus may have negative or positive effects on the radiative forcing of the atmosphere, respectively [1]. And the magnitude of the effect is directly related to the quantity of light absorbed by aerosols [2,3]. Thus, sensitivity and precision measurement of aerosol optical absorption is crucial for climate research. Photoacoustic spectroscopy (PAS) is commonly recognized as one of the best candidates to measure the light absorption of aerosols [4]. A PAS based sensor for aerosol optical absorption measurement was developed. A 532 nm semiconductor laser with an effective power of 160 mW was used as a light source of the PAS sensor. The PAS sensor was calibrated by using known concentration NO2. The minimum detectable optical absorption coefficient (OAC) of aerosol was determined to be 1 Mm-1. 24 hours continues measurement of OAC of aerosol in the ambient air was carried out. And a novel three wavelength PAS aerosol OAC sensor is in development for analysis of aerosol wavelength-dependent absorption Angstrom coefficient. Reference [1] U. Lohmann and J. Feichter, Global indirect aerosol effects: a review, Atmos. Chem. Phys. 5, 715-737 (2005) [2] M. Z. Jacobson, Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols, Nature 409, 695-697 (2001) [3] V. Ramanathan and G. Carmichae, Global and regional climate changes due to black carbon, nature geoscience 1, 221-227 (2008) [4] W.P Arnott, H. Moosmuller, C. F. Rogers, T. Jin, and R. Bruch, Photoacoustic spectrometer for measuring light absorption by aerosol: instrument description. Atmos. Environ. 33, 2845-2852 (1999).

  13. Aerosol absorption coefficient and Equivalent Black Carbon by parallel operation of AE31 and AE33 aethalometers at the Zeppelin station, Ny Ålesund, Svalbard

    NASA Astrophysics Data System (ADS)

    Eleftheriadis, Konstantinos; Kalogridis, Athina-Cerise; Vratolis, Sterios; Fiebig, Markus

    2016-04-01

    Light absorbing carbon in atmospheric aerosol plays a critical role in radiative forcing and climate change. Despite the long term measurements across the Arctic, comparing data obtained by a variety of methods across stations requires caution. A method for extracting the aerosol absorption coefficient from data obtained over the decades by filter based instrument is still under development. An IASOA Aerosol working group has been initiated to address this and other cross-site aerosol comparison opportunities. Continuous ambient measurements of EBC/light attenuation by means of a Magee Sci. AE-31 aethalometer operating at the Zeppelinfjellet station (474 m asl; 78°54'N, 11°53'E), Ny Ålesund, Svalbard, have been available since 2001 (Eleftheriadis et al, 2009), while a new aethalometer model (AE33, Drinovec et al, 2014) has been installed to operate in parallel from the same inlet since June 2015. Measurements are recorded by a Labview routine collecting all available parameters reported by the two instrument via RS232 protocol. Data are reported at 1 and 10 minute intervals as averages for EBC (μg m-3) and aerosol absorption coefficients (Mm-1) by means of routine designed to report Near Real Time NRT data at the EBAS WDCA database (ebas.nilu.no) Results for the first 6 month period are reported here in an attempt to evaluate comparative performance of the two instruments in terms of their response with respect to the variable aerosol load of light absorbing carbon during the warm and cold seasons found in the high arctic. The application of available conversion schemes for obtaining the absorption coefficient by the two instruments is found to demonstrate a marked difference in their output. During clean periods of low aerosol load (EBC < 30 ng m-3), the two instruments display a better agreement with regression slope for the 880 nm signal between the two at ~ 0.9 compared to a slope at ~ 0.6 during the period of higher absorbing carbon loads (400< EBC<30 ng m

  14. Comparison of the light absorption coefficient and carbon measures for remote aerosols: An independent analysis of data from the IMPROVE network—I

    NASA Astrophysics Data System (ADS)

    Huffman, H. Dale

    Using the IMPROVE network aerosol data from rural or remote sites across the United States, the ratio of the optically measured light absorption coefficient ( σa) to the elemental carbon measured by Thermal/Optical Reflectance (TOR) analysis consistently indicates an absorption efficiency that is twice the accepted value of 10m 2g -1. Correlations between σa and the TOR carbon strongly suggest that the discrepancy is due to an underevaluation of light-absorbing carbon rather than to an overestimation of σa or a real, higher value of the absorption efficiency. In particular, past doubts about the accuracy and precision of the IMPROVE σa measurement are here shown to be unsupported by the IMPROVE data. The large empirical correction that is applied to this σa measurement, for multiple scattering effects due to filter mass loading, is given a new explanation as the effect of an increasing forward scattering fraction as sample thickness increases. The old explanation of shadowing by overlying particles in the sample is rejected as having just the opposite effect to that needed to explain the correction. The use of a diffuse source rather than a laser beam is indicated as a way to avoid the large empirical correction of σa. Modelling of the light absorption by TOR carbon measurements, at twelve remote sites over a wide portion of the western United States, suggests the following errors in the current interpretation of TOR analysis for these sites: (1) The pyrolysis correction, based upon optical reflectance monitoring, appears to be largely wrong; and (2) The carbon evolving between 450 and 550°C in a pure helium atmosphere, currently interpreted as organic and therefore non-light-absorbing, appears to be as strongly light-absorbing as elemental carbon. However, the present analysis indicates that for a large majority (˜90%) of samples the light-absorbing carbons, as reinterpreted herein, are not only measured accurately by TOR, they are also reasonably well

  15. Aerosol Absorption and Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Stier, Philip; Seinfeld, J. H.; Kinne, Stefan; Boucher, Olivier

    2007-01-01

    We present a comprehensive examination of aerosol absorption with a focus on evaluating the sensitivity of the global distribution of aerosol absorption to key uncertainties in the process representation. For this purpose we extended the comprehensive aerosol-climate model ECHAM5-HAM by effective medium approximations for the calculation of aerosol effective refractive indices, updated black carbon refractive indices, new cloud radiative properties considering the effect of aerosol inclusions, as well as by modules for the calculation of long-wave aerosol radiative properties and instantaneous aerosol forcing. The evaluation of the simulated aerosol absorption optical depth with the AERONET sun-photometer network shows a good agreement in the large scale global patterns. On a regional basis it becomes evident that the update of the BC refractive indices to Bond and Bergstrom (2006) significantly improves the previous underestimation of the aerosol absorption optical depth. In the global annual-mean, absorption acts to reduce the shortwave anthropogenic aerosol top-of-atmosphere (TOA) radiative forcing clear-sky from -0.79 to -0.53 W m(sup -2) (33%) and all-sky from -0.47 to -0.13W m(sup -2 (72%). Our results confirm that basic assumptions about the BC refractive index play a key role for aerosol absorption and radiative forcing. The effect of the usage of more accurate effective medium approximations is comparably small. We demonstrate that the diversity in the AeroCom land-surface albedo fields contributes to the uncertainty in the simulated anthropogenic aerosol radiative forcings: the usage of an upper versus lower bound of the AeroCom land albedos introduces a global annual-mean TOA forcing range of 0.19W m(sup -2) (36%) clear-sky and of 0.12W m(sup -2) (92%) all-sky. The consideration of black carbon inclusions on cloud radiative properties results in a small global annual-mean all-sky absorption of 0.05W m(sup -2) and a positive TOA forcing perturbation of 0

  16. An aerosol absorption remote sensing algorithm

    NASA Astrophysics Data System (ADS)

    Zhai, P.; Winker, D. M.; Hu, Y.; Trepte, C. R.; Lucker, P. L.

    2013-12-01

    Aerosol absorption plays an important role in the climate by modulating atmospheric radiative forcing processes. Unfortunately aerosol absorption is very difficult to obtain via satellite remote sensing techniques. In this work we have built an algorithm to obtain aerosol absorption optical depth using both measurements from a passive O2 A-band spectrometer and an active lidar. The instrument protocols for these two satellite instruments are the O2 A-band spectrometer onboard the Orbiting Carbon Observatory (OCO-2) and the CALIOP onboard CALIPSO. The aerosol height and typing information is obtained from the CALIOP measurement. The aerosol extinction and absorption optical depths are then retrieved by fitting the forward model simulations to the O2 A-band spectrometer measurements. The forward model simulates the scattering and absorption of solar light at high spectral resolution in the O2 A-band region. The O2 and other gas absorption coefficients near 0.76 micron are calculated by either the line-by-line code (for instance, the Atmospheric Radiative Transfer Simulator) or the OCO2 ABSCO Look-Up-Table. The line parameters used are from the HITRAN 2008 database (http://www.cfa.harvard.edu/hitran/). The multiple light scattering by molecules, aerosols, and clouds is handled by the radiative transfer model based on the successive order of scattering method (Zhai et al, JQSRT, Vol. 111, pp. 1025-1040, 2010). The code is parallelized with Message Passing Interface (MPI) for better efficiency. The aerosol model is based on Shettle and Fenn (AFGL-TR 790214, 1979) with variant relative humidity. The vertical distribution of the aerosols and clouds will be read in from the CALIPSO product (http://www-calipso.larc.nasa.gov). The surface albedo is estimated by the continuum of the three bands of OCO2 payloads. Sensitivity study shows that the Gaussian quadrature (stream) number should be at least 12 to ensure the reflectance error is within 0.5% at the top of the atmosphere

  17. Wavelength dependence of aerosol extinction coefficient for stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Yue, Glenn K.

    1986-01-01

    A simple empirical formula for the wavelength dependence of the aerosol extinction coefficient is proposed. The relationship between the constants in the formula and the variable parameter in the aerosol size distribution is explicitly expressed. Good agreement is found between the extinction coefficients calculated from the proposed formula and that calculated from Mie theory. The proposed expression is shown to be better than the Angstroem formula commonly used by atmospheric scientists.

  18. Radiative properties of the background aerosol: absorption component of extinction.

    PubMed

    Clarke, A D; Charlson, R J

    1985-07-19

    The light-scattering and light-absorption coefficients of the global background aerosol define its single-scatter albedo. Continuous, simultaneous measurements of these optical coefficients were made on a daily basis for the remote marine mid-troposphere; such measurements are essential for assessment of the effects of aerosol on atmospheric radiative transfer. Measurements of light-absorption coefficients made at the Mauna Loa Observatory in Hawaii were higher than expected, and the single-scatter albedo was lower than the value often used in radiative transfer models. Soot appears to be the most likely primary absorber, and hemispheric dispersal of this combustion-derived material is suggested. PMID:17759145

  19. Ultraviolet Absorption by Secondary Organic Aerosols

    NASA Astrophysics Data System (ADS)

    Madronich, S.; Lee-Taylor, J. M.; Hodzic, A.; Aumont, B.

    2014-12-01

    Secondary organic aerosols (SOA) are typically formed in the atmosphere by the condensation of a myriad of intermediates from the photo-oxidation of volatile organic compounds (VOCs). Many of these partly oxidized molecules have functional groups (chromophores) that absorb at the ultraviolet (UV) wavelengths available in the troposphere (λ ≳ 290 nm). We used the explicit chemical model GECKO-A (Generator of Explicit Chemistry and Kinetics for Organics in the Atmosphere) to estimate UV absorption cross sections for the gaseous and particulate components of SOA from different precursors (biogenic and anthropogenic) and formed in different environments (low and high NOx, day and night). Model predictions are evaluated with laboratory and field measurements of SOA UV optical properties (esp. mass absorption coefficients and single scattering albedo), and implications are presented for surface UV radiation trends, urban actinic flux modification, and SOA lifetimes.

  20. Contributions of dust and smoke to aerosol extinction coefficient

    NASA Astrophysics Data System (ADS)

    Kavouras, I. G.; Xu, J.; Etyemezian, V.; Dubois, D.; Green, M.; Pitchford, M.

    2006-12-01

    Estimating scattering and absorption of light by atmospheric particles is critical for evaluating effects on regional and global climate. The magnitude of the interaction between aerosol and light is strongly related to the aerosol chemical composition among other factors. Dust and smoke are major sources of atmospheric aerosol, especially in the western United States. The importance of those sources has increased in recent decades due to the extensive man-made disturbance of natural ecosystems and land management practices. The objectives of this study were to specifically estimate the impact of dust and smoke on aerosol extinction coefficient measured in the Class I areas of the western states and identify the major causes of dust and types of smoke by using: (i) positive matrix factorization (PMF) to apportion ambient aerosols by source type; (ii) air mass backward trajectory analyses; (iii) land use/soil properties and; (iv) wildlife/prescribed fire data. The study included sites from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network located in western United States. For days with the worst reconstructed light extinction when dust was the major component, contributions from transcontinental transport from Asia, windblown dust from local sources and regional transport from upwind sources were identified. Based on the analysis for days with smoke being the major component of aerosol visibility extinction, the contributions of the following types of fires were determined: (a) wildfires near the site ("hot" emissions); (b) wildfires upwind of the site (aged smoke); (c) agricultural burn emissions; (d) rangeland fires.

  1. Spectral dependence of aerosol light absorption over the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Rizzo, L. V.; Correia, A. L.; Artaxo, P.; Procópio, A. S.; Andreae, M. O.

    2011-09-01

    In this study, we examine the spectral dependence of aerosol absorption at different sites and seasons in the Amazon Basin. The analysis is based on measurements performed during three intensive field experiments at a pasture site (Fazenda Nossa Senhora, Rondônia) and at a primary forest site (Cuieiras Reserve, Amazonas), from 1999 to 2004. Aerosol absorption spectra were measured using two Aethalometers: a 7-wavelength Aethalometer (AE30) that covers the visible (VIS) to near-infrared (NIR) spectral range, and a 2-wavelength Aethalometer (AE20) that measures absorption in the UV and in the NIR. As a consequence of biomass burning emissions, about 10 times greater absorption values were observed in the dry season in comparison to the wet season. Power law expressions were fitted to the measurements in order to derive the absorption Ångström exponent, defined as the negative slope of absorption versus wavelength in a log-log plot. At the pasture site, about 70 % of the absorption Ångström exponents fell between 1.5 and 2.5 during the dry season, indicating that biomass burning aerosols have a stronger spectral dependence than soot carbon particles. Ångström exponents decreased from the dry to the wet season, in agreement with the shift from biomass burning aerosols, predominant in the fine mode, to biogenic and dust aerosols, predominant in the coarse mode. The lowest absorption Ångström exponents (90 % of data below 1.5) were observed at the forest site during the dry season. Also, results indicate that low absorption coefficients were associated with low Ångström exponents. This finding suggests that biogenic aerosols from Amazonia have a weaker spectral dependence for absorption than biomass burning aerosols, contradicting our expectations of biogenic particles behaving as brown carbon. In a first order assessment, results indicate a small (<1 %) effect of variations in absorption Ångström exponents on 24-h aerosol forcings, at least in the spectral

  2. Spectra Aerosol Light Scattering and Absorption for Laboratory and Urban Aerosol

    NASA Astrophysics Data System (ADS)

    Gyawali, Madhu S.

    Atmospheric aerosols considerably influence the climate, reduce visibility, and cause problems in human health. Aerosol light absorption and scattering are the important factors in the radiation transfer models. However, these properties are associated with large uncertainties in climate modeling. In addition, atmospheric aerosols widely vary in composition and size; their optical properties are highly wavelength dependent. This work presents the spectral dependence of aerosol light absorption and scattering throughout the ultraviolet to near-infrared regions. Data were collected in Reno, NV from 2008 to 2010. Also presented in this study are the aerosol optical and physical properties during carbonaceous aerosols and radiative effects study (CARES) conducted in Sacramento area during 2010. Measurements were made using photoacoustic instruments (PA), including a novel UV 355 nm PA of our design and manufacture. Comparative analyses are presented for three main categories: (1) aerosols produced by wildfires and traffic emissions, (2) laboratory-generated and wintertime ambient urban aerosols, and (3) urban plume and biogenic emissions. In these categories, key questions regarding the light absorption by secondary organic aerosols (SOA), so-called brown carbon (BrC), and black carbon (BC) will be discussed. An effort is made to model the emission and aging of urban and biomass burning aerosol by applying shell-core calculations. Multispectral PA measurements of aerosols light absorption and scattering coefficients were used to calculate the Angstrom exponent of absorption (AEA) and single scattering albedo (SSA). The AEA and SSA values were analyzed to differentiate the aerosol sources. The California wildfire aerosols exhibited strong wavelength dependence of aerosol light absorption with AEA as lambda -1 for 405 and 870 nm, in contrast to the relatively weak wavelength dependence of traffic emissions aerosols for which AEA varied approximately as lambda-1. By using

  3. Determination of absorption coefficients of thin films

    SciTech Connect

    Lodenquai, J.F. )

    1994-08-01

    The equations that are usually presented as those used to determine the absorption coefficients of materials in film form based on measurements of transmission and reflection coefficients are fundamentally incorrect. These equations omit a multiplicative factor arising from the complex nature of the refractive indices of the materials. This factor enters explicitly into the relationship between the transmission and reflection coefficients for such materials and is not necessarily close to unity, although in practice this factor can be approximated by unity at least in the infrared through the optical range of wavelengths.

  4. An analysis of the characteristics of aerosol light scattering coefficients at Seoul and Baengnyeongdo

    NASA Astrophysics Data System (ADS)

    Kim, B.; Eun, S.; Seo, W.; Park, J.; Ahn, J.; Moon, K.

    2013-12-01

    Aerosols in the atmosphere can scatter and absorb solar radiation and their spatial/temporal distributions are highly inhomogeneous due to short lifetimes (about a few weeks or less). Through scattering and absorption of solar radiation, aerosols directly affect visibility and climate through the modification of the Earth's energy budget (Charlson et al., 1992; Yan, 2007; Wang, 2012). This study investigates long-term trends and characteristics of aerosol light scattering coefficient at Seoul and Baengnyeongdo, 100 km upstream of Seoul, in Korea. Aerosol scattering coefficients were measured continuously with nephelometers. The analysis period is limited to one year of 2011. For the relationship analysis of extinction coefficients (σext) to visibility and aerosol optical depth, σsp observed at 3 p.m. have been used with help of aerosol absorption coefficients (σap) in order to remove its dependence upon relative humidity (RH), and also those of rainy period have been excluded. As expected, σext estimated are inversely proportional to visibility observation by eye. Aerosol extinction coefficients have been vertically integrated with an assumption of nearly well-mixed within an e-folding height to determine aerosol optical depth (τa), and compared with those retrieved from sunphotometer. The results show a reasonable agreement in spite of an inherent difference of each definition. We expect these findings would help to eventually understand aerosol radiative forcing and its effect on the regional climate change around Korea.

  5. Absorption-coefficient-determination method for particulate materials.

    PubMed

    Lindberg, J D; Douglass, R E; Garvey, D M

    1994-07-01

    A method is presented for determining the optical absorption coefficient, or the imaginary refractive index, of particulate material that has been collected from aerosols or hydrosols by means of filtration. The method, based on the Kubelka-Munk theory of diffuse reflectance, is nondestructive and requires no other knowledge of the sample than the amount present, the specific gravity, and an estimate of the real index of refraction. The theoretical development of the method is discussed along with an analysis of photometric and gravimetric errors. We test the method by comparing results obtained for powdered didymium glass with measurements made before the glass was crushed. An example of the method's application to the determination of the absorption coefficient of atmospheric dust at UV, visible, and near-IR wavelengths is also presented. PMID:20935789

  6. Inversion of instantaneous equivalent absorption coefficient and its application

    SciTech Connect

    Weihua, W. )

    1992-01-01

    Absorption coefficient is an important parameter for reservoir description. The major troubles in extracting absorption coefficient from seismic data are amplitude and waveform distortions; they greatly restrict the inversion which is based on reflection amplitude variation or reflection frequency variation. This paper presents a new method which avoids amplitude and uses waveform variation gradient in wave propagation to make the inversion of absorption coefficient. Apparent absorption coefficient and pseudo absorption coefficient are adopted so as to remove the influence which the waveform distortion due to thin bed tuning brings to absorption coefficient extraction. The final instantaneous equivalent absorption coefficient, a true absorption coefficient which reflects real absorptive character of a seismic medium, can be obtained by subtracting the pseudo absorption coefficient (inversely calculated using maximum entropy) from the apparent absorption coefficient the authors have calculated.

  7. Spectral dependence of aerosol light absorption over the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Rizzo, L. V.; Correia, A. L.; Artaxo, P.; Procópio, A. S.; Andreae, M. O.

    2011-04-01

    In this study, we examine the spectral dependence of aerosol absorption at different sites and seasons in the Amazon Basin. The analysis is based on measurements performed during three intensive field experiments at a pasture site (Fazenda Nossa Senhora, Rondônia) and at a primary forest site (Cuieiras Reserve, Amazonas), from 1999 to 2004. Aerosol absorption spectra were measured using two Aethalometers: a 7-wavelength Aethalometer (AE30) that covers the visible (VIS) to near-infrared (NIR) spectral range, and a 2-wavelength Aethalometer (AE20) that measures absorption in the UV and in the visible. As a consequence of biomass burning emissions, about 10 times greater absorption values were observed in the dry season in comparison to the wet season. Power law expressions were fitted to the measurements in order to derive the Ångström exponent for absorption, defined as the negative slope of absorption vs. wavelength in a log-log plot. At the pasture site, about 70% of the Ångström exponents fell between 1.5 and 2.5 during the dry season, indicating that biomass burning aerosols have a stronger spectral dependence than soot carbon particles. Ångström exponents decreased from the dry to the wet season, in agreement with the shift from biomass burning aerosols, predominant in the fine mode, to biogenic and dust aerosols, predominant in the coarse mode. The lowest Ångström exponents (90% of data below 1.5) were observed at the forest site during the dry season. Also, results indicate that low absorption coefficients were associated with Ångström exponents below 1.0. This finding suggests that biogenic aerosols from Amazonia may have a weak spectral dependence for absorption, contradicting our expectations of biogenic particles behaving as brown carbon. Nevertheless, additional measurements should be taken in the future, to provide a complete picture of biogenic aerosol absorption spectral characteristics from different seasons and geographic locations. The

  8. Spectral Absorption Properties of Atmospheric Aerosols

    NASA Technical Reports Server (NTRS)

    Bergstrom, R. W.; Pilewskie, P.; Russell, P. B.; Redemann, J.; Bond, T. C.; Quinn, P. K.; Sierau, B.

    2007-01-01

    We have determined the solar spectral absorption optical depth of atmospheric aerosols for specific case studies during several field programs (three cases have been reported previously; two are new results). We combined airborne measurements of the solar net radiant flux density and the aerosol optical depth with a detailed radiative transfer model for all but one of the cases. The field programs (SAFARI 2000, ACE Asia, PRIDE, TARFOX, INTEX-A) contained aerosols representing the major absorbing aerosol types: pollution, biomass burning, desert dust and mixtures. In all cases the spectral absorption optical depth decreases with wavelength and can be approximated with a power-law wavelength dependence (Absorption Angstrom Exponent or AAE). We compare our results with other recent spectral absorption measurements and attempt to briefly summarize the state of knowledge of aerosol absorption spectra in the atmosphere. We discuss the limitations in using the AAE for calculating the solar absorption. We also discuss the resulting spectral single scattering albedo for these cases.

  9. Spectral absorption coefficients and imaginary parts of refractive indices of Saharan dust during SAMUM-1

    NASA Astrophysics Data System (ADS)

    Müller, T.; Schladitz, A.; Massling, A.; Kaaden, N.; Kandler, K.; Wiedensohler, A.

    2009-02-01

    ABSTRACT During the SAMUM-1 experiment, absorption coefficients and imaginary parts of refractive indices of mineral dust particles were investigated in southern Morocco. Main absorbing constituents of airborne samples were identified to be iron oxide and soot. Spectral absorption coefficients were measured using a spectral optical absorption photometer (SOAP) in the wavelength range from 300 to 800 nm with a resolution of 50 nm. A new method that accounts for a loading-dependent correction of fibre filter based absorption photometers, was developed. The imaginary part of the refractive index was determined using Mie calculations from 350 to 800 nm. The spectral absorption coefficient allowed a separation between dust and soot absorption. A correlation analysis showed that the dust absorption coefficient is correlated (R2 up to 0.55) with the particle number concentration for particle diameters larger than 0.5 μm, whereas the coefficient of determination R2 for smaller particles is below 0.1. Refractive indices were derived for both the total aerosol and a dust aerosol that was corrected for soot absorption. Average imaginary parts of refractive indices of the entire aerosol are 7.4 × 10-3, 3.4 × 10-3 and 2.0 × 10-3 at wavelengths of 450, 550 and 650 nm. After a correction for the soot absorption, imaginary parts of refractive indices are 5.1 × 10-3, 1.6 × 10-3 and 4.5 × 10-4.

  10. Using the OMI Aerosol Index and Absorption Aerosol Optical Depth to Evaluate the NASA MERRA Aerosol Reanalysis.

    NASA Astrophysics Data System (ADS)

    Buchard, V.; da Silva, A. M., Jr.; Colarco, P. R.; Darmenov, A.; Govindaraju, R.

    2014-12-01

    A radiative transfer interface has been developed to simulate the UV Aerosol Index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). In this presentation we show comparisons of model produced AI with the corresponding OMI measurements during several months of 2007 characterized by a good sampling of dust and biomass burning events. In parallel, model produced Absorption Aerosol Optical Depth (AAOD) were compared to OMI AAOD for the same period, identifying regions where the model representation of absorbing aerosols were deficient. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors, aerosol retrievals from the Aerosol Robotic Network (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain misplacement of plume height by the model.

  11. Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis

    NASA Astrophysics Data System (ADS)

    Buchard, V.; da Silva, A. M.; Colarco, P. R.; Darmenov, A.; Randles, C. A.; Govindaraju, R.; Torres, O.; Campbell, J.; Spurr, R.

    2015-05-01

    A radiative transfer interface has been developed to simulate the UV aerosol index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and aerosol absorption optical depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the AErosol RObotic NETwork (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model-produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the southern African and South American biomass burning regions indicates that revising the spectrally dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons

  12. Particle scattering, backscattering, and absorption coefficients: An in situ closure and sensitivity study

    NASA Astrophysics Data System (ADS)

    Wex, Heike; Neusüß, Christian; Wendisch, Manfred; Stratmann, Frank; Koziar, Christian; Keil, Andreas; Wiedensohler, Alfred; Ebert, Martin

    2002-11-01

    Comparisons between measured and calculated aerosol scattering, backscattering, and absorption coefficients were made based on in situ, ground-based measurements during the Melpitz INTensive (MINT) and Lindenberg Aerosol Characterization Experiment 1998 (LACE 98) field studies. Furthermore, airborne measurements made with the same type of instruments are reviewed and compared with the ground-based measurements. Agreement between measured and calculated values is on the order of ±20% for scattering and backscattering coefficients. A sensitivity analysis showed a large influence on the calculated particle scattering and backscattering coefficients resulting from sizing uncertainties in the measured number size distributions. Measured absorption coefficients were significantly smaller than the corresponding calculated values. The largest uncertainty for the calculated absorption coefficients resulted from the size-dependent fraction of elemental carbon (EC) of the aerosol. A correction for the measured fractions of EC could significantly improve the agreement between measured and calculated absorption coefficients. The overall uncertainty of the calculated values was investigated with a Monte Carlo method by simultaneously and randomly varying the input parameters of the calculations, where the variation of each parameter was bounded by its uncertainty. The measurements were mostly found to be within the range of uncertainties of the calculations, with uncertainties for the calculated scattering and backscattering coefficients of about ±20% and for the absorption coefficients of about ±30%. Thus, to increase the accuracy of calculated scattering, backscattering, and absorption coefficients, it is crucial to further reduce the error in particle number size distribution measurement techniques. In addition, further improvement of the techniques for measuring absorption coefficients and further investigation of the measurement of the fraction of EC of the aerosol is

  13. Observations of aerosol light scattering, absorption, and particle morphology changes as a function of relative humidity

    NASA Astrophysics Data System (ADS)

    Arnott, W. P.; Lewis, K.; Paredes-Miranda, G.; Winter, S.; Day, D.; Chakrabarty, R.; Moosmuller, H.; Jimenez, J. L.; Ulbrich, I.; Huffman, A.; Onasch, T.; Trimborn, A.; Kreidenweis, S.; Carrico, C.; Wold, C.; Lincoln, E.; Freeborn, P.; Hao, W.; McMeeking, G.

    2006-12-01

    A very interesting case of smoke aerosol with very low single scattering albedo, yet very large hygroscopic growth for scattering is presented. Several samples of chamise (Adenostoma fasciculatum), a common and often dominant species in California chaparral, were recently burned at the USFS Fire Science Laboratory in Missoula Montana, and aerosol optics and chemistry were observed, along with humidity-dependent light scattering, absorption, and particle morphology. Photoacoustic measurements of light absorption by two instruments at 870 nm, one on the dry channel, one on the humidified channel, showed strong reduction of aerosol light absorption with RH above 65 percent, and yet a strong increase in light scattering was observed both at 870 nm and 550 nm with nephelometers. Multispectral measurements of aerosol light absorption indicated an Angstrom coefficient for absorption near unity for the aerosols from chamise combustion. It is argued that the hygroscopic growth of scattering is due to uptake of water by the sulfur bearing aerosol. Furthermore, the reduction of aerosol light absorption is argued to be due to the collapse of chain aggregate aerosol as the RH increases wherein the interior of aerosol does no longer contribute to absorption. Implications for biomass burning in general are that humidity processing of aerosols from this source and others like it tends to substantially increase its single scattering albedo, probably in a non-reversible manner. The chemical pathway to hygroscopicity will be addressed.

  14. Direct Measurement of Aerosol Absorption Using Photothermal Interferometry

    NASA Astrophysics Data System (ADS)

    Sedlacek, A. J.; Lee, J. A.

    2007-12-01

    -reducing vibrations enabling this technique to be used in field campaigns. A series of calibration and intercomparison experiments have recently been carried out in our laboratory to evaluate the performance of the PTI technique towards aerosol absorption measurement and monitoring. Since PTI is a calorimetric technique, calibration can be performed using an absorbing gas of known concentration and known absorption cross-section. Following this calibration, a series of intercomparison experiments using laboratory-generated nigrosin aerosols and a 3-? Particle Soot Absorption Photometer (PSAP) were carried out where correlation between the PTI and PSAP was measured to be 0.96±0.02. (Sedlacek and Lee, 2007) Extension of this intercomparison to the measurement of ambient aerosols reveals continued agreement between the two instruments except for periods of high relative humidity whereupon the PSAP reported a larger absorption coefficient. (Sedlacek and Lee, 2007) A discussion of the PTI technique, along with the results of this intercomparison and some preliminary results examining absorption enhancement brought about by coating black-dyed PSL particles with dibutyl phthalate will be presented. References: Sedlacek, A. J., and Lee, J., (2007) Photothermal interferometric aerosol absorption spectroscopy, Aerosol Sci. Tech. (in press). Sedlacek, A. J. (2006). Real-time detection of ambient aerosols using photothermal interferometry: Folded Jamin interferometer, Rev. Sci. Instrum. 77:064903.

  15. Linear and nonlinear optical absorption coefficients of spherical dome shells

    NASA Astrophysics Data System (ADS)

    Guo, Kangxian; Liu, Guanghui; Huang, Lu; Zheng, Xianyi

    2015-08-01

    Linear and nonlinear optical absorption coefficients of spherical dome shells are theoretically investigated within analytical wave functions and numerical quantized energy levels. Our results show that the inner radius, the outer radius and the cut-off angle of spherical dome shells have great influences on linear and nonlinear optical absorption coefficients as well as the total optical absorption coefficients. It is found that with the increase of the inner radius and the outer radius, linear and nonlinear optical absorption coefficients exhibit a blueshift and a redshift, respectively. However, with the increase of the cut-off angle, linear and nonlinear optical absorption coefficients do not shift. Besides, the resonant peaks of linear and nonlinear optical absorption coefficients climb up and then decrease with increasing the cut-off angle. The influences of the incident optical intensity on the total optical absorption coefficients are studied. It is found that the bleaching effect occurs at higher incident optical intensity.

  16. Mass specific optical absorption coefficients of mineral dust components measured by a multi wavelength photoacoustic spectrometer

    NASA Astrophysics Data System (ADS)

    Utry, N.; Ajtai, T.; Pintér, M.; Tombácz, E.; Illés, E.; Bozóki, Z.; Szabó, G.

    2014-09-01

    Mass specific optical absorption coefficients of various mineral dust components including silicate clays (illite, kaolin and bentonite), oxides (quartz, hematite and rutile), and carbonate (limestone) were determined at wavelengths of 1064, 532, 355 and 266 nm. These values were calculated from aerosol optical absorption coefficients measured by a multi-wavelength photoacoustic (PA) instrument, the mass concentration and the number size distribution of the generated aerosol samples as well as the size transfer functions of the measuring instruments. These results are expected to have considerable importance in global radiative forcing calculations. They can also serve as reference for validating calculated wavelength dependent imaginary parts (κ) of complex refractive indices which up to now have been typically deduced from bulk phase measurements by using indirect measurement methods. Accordingly, the presented comparison of the measured and calculated aerosol optical absorption spectra revealed the strong need for standardized sample preparation and measurement methodology in case of bulk phase measurements.

  17. Direct and Semi-direct Radiative Responses to Observation-Constrained Aerosol Absorption over S Asia

    NASA Astrophysics Data System (ADS)

    Feng, Y.; Kotamarthi, V. R.; Manoharan, V.

    2013-12-01

    addition, much higher ceilometer lowest cloud base height (>5 km) is observed coincident with high aerosol absorption coefficient (>50 Mm-1 at 528nm), which may be indicative of the semi-direct 'burning off' effect due to absorbing aerosols, as the prevailing lowest cloud base height observed is below 3km from the ground. In comparison, the model-simulated aerosol absorption is significantly lower around 15 Mm-1 during these time periods and the model calculated OC/BC ratios are about 2~4 also smaller than observations. This may likely suggest an underestimate of absorbing organics from the biomass burning or biogenic sources. In the presentation, we will present the model sensitivity studies of aerosol absorption constrained by the observed absorption AOD and spectral dependence, and discuss the subsequent changes in the simulated atmospheric heating rates and cloud distributions over this region.

  18. Comparison of vertical aerosol extinction coefficients from in-situ and LIDAR measurements

    NASA Astrophysics Data System (ADS)

    Rosati, B.; Herrmann, E.; Bucci, S.; Fierli, F.; Cairo, F.; Gysel, M.; Tillmann, R.; Größ, J.; Gobbi, G. P.; Di Liberto, L.; Di Donfrancesco, G.; Wiedensohler, A.; Weingartner, E.; Virtanen, A.; Mentel, T. F.; Baltensperger, U.

    2015-07-01

    Vertical profiles of aerosol optical properties were explored in a case study near the San Pietro Capofiume (SPC) ground station during the PEGASOS Po Valley campaign in the summer of 2012. A Zeppelin NT airship was employed to investigate the effect of the dynamics of the planetary boundary layer at altitudes between ~ 50-800 m above ground. Determined properties included the aerosol size distribution, the hygroscopic growth factor, the effective index of refraction and the light absorption coefficient. The first three parameters were used to retrieve the light scattering coefficient. Simultaneously, direct measurements of both the scattering and absorption coefficient were carried out at the SPC ground station. Additionally, a LIDAR system provided aerosol extinction coefficients for a vertically resolved comparison between in-situ and remote sensing results. First, the airborne results at low altitudes were validated with the ground measurements. Agreement within approximately ±25 and ±20% was found for the dry scattering and absorption coefficient, respectively. The single scattering albedo, ranged between 0.83 to 0.95, indicating the importance of the absorbing particles in the Po Valley region. A clear layering of the atmosphere was observed during the beginning of the flight (until ~ 10 local time) before the mixed layer (ML) was fully developed. Highest extinction coefficients were found at low altitudes, in the new ML, while values in the residual layer, which could be probed at the beginning of the flight at elevated altitudes, were lower. At the end of the flight (after ~ 12 local time) the ML was fully developed, resulting in constant extinction coefficients at all altitudes measured on the Zeppelin NT. LIDAR results captured these dynamic features well and good agreement was found for the extinction coefficients compared to the in-situ results, using fixed LIDAR ratios (LR) between 30 and 70 sr for the altitudes probed with the Zeppelin. These LR are

  19. Light scattering and absorption properties of aerosol particles in the urban environment of Granada, Spain

    NASA Astrophysics Data System (ADS)

    Lyamani, H.; Olmo, F. J.; Alados-Arboledas, L.

    Surface measurements of optical and physical aerosol properties were made at an urban site, Granada (Spain) (37.18°N, 3.58°W, 680 m a.s.l), during winter 2005-2006. Measurements included the aerosol scattering, σsca, and backscattering coefficients, σbsca, at three wavelengths (450, 550 and 700 nm) measured at low relative humidity (RH<50%) by an integrating nephelometer, the absorption coefficient at 670 nm, σabs, measured with a multi-angle absorption photometer, and aerosol size distribution in the 0.5-20 μm aerodynamic diameter range registered by an aerodynamic aerosol sizer (APS-3321, TSI). The hourly average of σsca (550 nm) ranged from 2 to 424 M m -1 with an average value of 84±62 M m -1 (±S.D.). The Angstrom exponent presented an average value of 1.8±0.3, suggesting a large fraction of fine particles at the site, an observation confirmed by aerosol size distribution measurements. The hourly average of σabs (670 nm) ranged from 1.7 to 120.5 M m -1 with an average value of 28±20 M m -1. The results indicate that the aerosol absorption coefficient in Granada was relatively large. The largest σsca value was associated with air masses that passed over heavily polluted European areas and local stagnation conditions. High absorbing aerosol level was obtained during dust transport from North Africa probably due to the presence of hematite. Based on the measured scattering and absorption coefficients, a very low average value of the single scattering albedo of 0.66±0.11 at 670 nm was calculated, suggesting that urban aerosols in this region contain a large fraction of absorbing material. A clear diurnal pattern was observed in scattering and absorption coefficients and particle concentrations with two local maxima occurring in early morning and late evening. This behavior can be explained in terms of local conditions that control the particle sources associated with traffic and upward mixing of the aerosol during the daytime development of a

  20. Encapsulation effects on carbonaceous aerosol light absorption

    SciTech Connect

    Sedlacek, A.J.; Onasch, T.; Davidovits, P.; Cross, E.; Mazzoleni, C.

    2010-03-15

    The contribution of aerosol absorption on direct radiative forcing is still an active area of research, in part, because aerosol extinction is dominated by light scattering and, in part, because the primary absorbing aerosol of interest, soot, exhibits complex aging behavior that alters its optical properties. The consequences of this can be evidenced by the work of Ramanathan and Carmichael (2008) who suggest that incorporating the atmospheric heating due to brown clouds (plumes containing soot byproducts from automobiles, biomass burning, wood-burning kitchen stoves, and coal-fired power plants) will increase black carbon (BC) radiative forcing from the Intergovernmental Panel on Climate Change best estimate of 0.34 Wm-2 (±0.25 Wm-2) (IPCC 2007) to 0.9 Wm-2. This noteworthy degree of uncertainty is due largely to the interdependence of BC optical properties on particle mixing state and aggregate morphology, each of which changes as the particle ages in the atmosphere and becomes encapsulated within a coating of inorganic and/or organic substances. In July 2008, a laboratory-based measurement campaign, led by Boston College and Aerodyne, was initiated to begin addressing this interdependence. To achieve insights into the interdependence of BC optical properties on particle mixing state and aggregate morphology, measurements of both the optical and physical properties of flame-generated soot under nascent, coated, and denuded conditions were conducted. This poster presents data on black carbon (BC) light absorption measured by Photothermal Interferometry (Sedlacek and Lee 2007). In addition to examining nascent BC—to provide a baseline measurement—encapsulation with varying thicknesses of either dioctyl sebacate (DOS) or sulfuric acid was conducted to glean insights into the interplay between particle mixing state and optical properties. Additionally, some experiments were carried out where BC was coated and then denuded. In the case of DOS-coated soot, a

  1. Organic Aerosols from SÃO Paulo and its Relationship with Aerosol Absorption and Scattering Properties

    NASA Astrophysics Data System (ADS)

    Artaxo, P.; Brito, J. F.; Rizzo, L. V.

    2012-12-01

    The megacity of São Paulo with its 19 million people and 7 million cars is a challenge from the point of view of air pollution. High levels of organic aerosols, PM10, black carbon and ozone and the peculiar situation of the large scale use of ethanol fuel makes it a special case. Little is known about the impact of ethanol on air quality and human health and the increase of ethanol as vehicle fuel is rising worldwide An experiment was designed to physico-chemical properties of aerosols in São Paulo, as well as their optical properties. Aerosol size distribution in the size range of 1nm to 10 micrometers is being measured with a Helsinki University SMPS (Scanning Mobility Particle Sizer), an NAIS (Neutral ion Spectrometer) and a GRIMM OPC (Optical Particle Counter). Optical properties are being measured with a TSI Nephelometer and a Thermo MAAP (Multi Angle Absorption Photometer). A CIMEL sunphotometer from the AERONET network measure the aerosol optical depth. Furthermore, a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS) and an Aerosol Chemical Speciation Monitor (ACSM) are used to real-time VOC analysis and aerosol composition, respectively. The ACSM was operated for 3 months continuosly during teh wintertime of 2012. The measured total particle concentration typically varies between 10,000 and 30,000 cm-3 being the lowest late in the night and highest around noon and frequently exceeding 50,000 cm-3. Clear diurnal patterns in aerosol optical properties were observed. Scattering and absorption coefficients typically range between 20 and 100 Mm-1 at 450 nm, and between 10 to 40 Mm-1 at 637 nm, respectively, both of them peaking at 7:00 local time, the morning rush hour. The corresponding single scattering albedo varies between 0.50 and 0.85, indicating a significant contribution of primary absorbing particles to the aerosol population. During the first month a total of seven new particle formation events were observed with growth rates ranging from 9 to 25

  2. Inference of the aerosol Angstrom coefficient from SAGE short-wavelength data. [Stratospheric Aerosol and Gas Experiment

    NASA Technical Reports Server (NTRS)

    Lenoble, J.; Pruvost, P.

    1983-01-01

    SAGE four-channel transmission profiles are inverted to retrieve the extinction profiles from which the aerosol Angstrom coefficient alpha is obtained. The procedure allows one to check the influence of the NO2 absorption profile, which is small below 25 km. The results compare well with those obtained by a completely different procedure at NASA Langley Research Center, and the main features of the alpha profiles seem to be significant, even considering the rather large error bars. The relation between the retrieved Angstrom coefficient, the particle effective radius and the asymmetry factor is considered.

  3. Light-absorption properties of aerosols observed in East and South Asia

    NASA Astrophysics Data System (ADS)

    Kim, S.; Yoon, S.; Lee, H.

    2011-12-01

    We compared light-absorption properties of aerosols observed in East and South Asia from black carbon (BC) mass concentration, aerosol scattering and absorption coefficients measurements at four sites: Korea Climate Observatory-Gosan (KCO-G), Korea Climate Observatory-Anmyeon (KCO-A), Maldives Climate Observatory-Hanimaadhoo (MCO-H) and Nepal Climate Observatory-Pyramid (NCO-P). No significant seasonal variations of BC mass concentration, aerosol scattering and absorption coefficients, except for summer due to wet scavenging by rainfall, were observed in East Asia, whereas dramatic changes of light-absorbing aerosol properties were observed in South Asia between dry and wet monsoon periods. Although BC mass concentration in East Asia is generally higher than that observed in South Asia, BC mass concentration at MCO-H during winter dry monsoon is similar to that of East Asia. The observed solar absorption efficiency (absorption coefficient/extinction coefficient) at 550 nm at KCO-G and KCO-A is higher than that in MCO-H due to large portions of BC emission from fossil fuel combustion. Interestingly, solar absorption efficiency at NCO-P is 0.14, which is two times great than that in MCO-H and is about 40% higher than that in East Asia, though BC mass concentration at NCO-P is the lowest among four sites. Consistently, the highest elemental carbon to sulfate ratio is found at NCO-P.

  4. Absorption characteristics of aerosols over the northwestern region of India: Distinct seasonal signatures of biomass burning aerosols and mineral dust

    NASA Astrophysics Data System (ADS)

    Gogoi, Mukunda M.; Suresh Babu, S.; Krishna Moorthy, K.; Manoj, M. R.; Chaubey, Jai Prakash

    2013-07-01

    Continuous measurements of aerosol black carbon (BC) mass concentrations made over a period of 3 years from a semi-arid, near-coastal, remote and sparsely inhabited location along with satellite-based data of aerosol absorption index, optical depth and extinction profiles in western India are used to characterize the distinct nature of aerosols near the surface and in the free troposphere and their seasonality. Despite being far remote and sparsely inhabited, significant levels of BC are observed in the ambient during winter (1.45 ± 0.71 μg m-3) attributed to biomass burning aerosols, advected to the site from the north and west; while during summer the concentrations are far reduced (0.23 ± 0.11 μg m-3) and represent the apparent background concentrations. The spectral absorption coefficients suggest the BC during summer be mostly of fossil fuel combustions. The strong convective boundary layer dynamics produces significant diurnal variation during winter and modulates to a lesser extent the seasonal variation. Examination of aerosol (absorption) index from OMI data for the study period showed a seasonal pattern that is almost opposite to that seen at the surface; with high aerosol index in summer, showing a significant difference between the surface and columnar aerosol types in summer. MISR and MODIS-derived columnar AOD follow the OMI pattern. Analysis of the vertical profiles of aerosol extinction and volume depolarization ratio (VDR), derived from CALIPSO data indicates the presence of strong dust layers with VDR ˜ 0.3 in the altitude region 4-6 km, contributing to the high aerosol index in the OMI data, while the surface measurements show absorptive properties representing fossil fuel BC aerosols.

  5. Effect of applied mechanical stress on absorption coefficient of compounds

    SciTech Connect

    Gupta, Manoj Kumar; Singh, Gurinderjeet; Dhaliwal, A. S.; Kahlon, K. S.

    2015-08-28

    The absorption coefficient of given materials is the parameter required for the basic information. The measurement of absorption coefficient of compounds Al{sub 2}O{sub 3}, CaCO{sub 3}, ZnO{sub 2}, SmO{sub 2} and PbO has been taken at different incident photon energies 26, 59.54, 112, 1173, 1332keV. The studies involve the measurements of absorption coefficient of the self supporting samples prepared under different mechanical stress. This mechanical stress is render in terms of pressure up to 0-6 ton by using hydraulic press. Measurements shows that absorption coefficient of a material is directly proportional to applied mechanical stress on it up to some extent then become independent. Experimentally measured results are in fairly good agreement with in theoretical values obtained from WinXCOM.

  6. Effect of applied mechanical stress on absorption coefficient of compounds

    NASA Astrophysics Data System (ADS)

    Gupta, Manoj Kumar; Singh, Gurinderjeet; Dhaliwal, A. S.; Kahlon, K. S.

    2015-08-01

    The absorption coefficient of given materials is the parameter required for the basic information. The measurement of absorption coefficient of compounds Al2O3, CaCO3, ZnO2, SmO2 and PbO has been taken at different incident photon energies 26, 59.54, 112, 1173, 1332keV. The studies involve the measurements of absorption coefficient of the self supporting samples prepared under different mechanical stress. This mechanical stress is render in terms of pressure up to 0-6 ton by using hydraulic press. Measurements shows that absorption coefficient of a material is directly proportional to applied mechanical stress on it up to some extent then become independent. Experimentally measured results are in fairly good agreement with in theoretical values obtained from WinXCOM.

  7. Continuum Absorption Coefficient of Atoms and Ions

    NASA Technical Reports Server (NTRS)

    Armaly, B. F.

    1979-01-01

    The rate of heat transfer to the heat shield of a Jupiter probe has been estimated to be one order of magnitude higher than any previously experienced in an outer space exploration program. More than one-third of this heat load is due to an emission of continuum radiation from atoms and ions. The existing computer code for calculating the continuum contribution to the total load utilizes a modified version of Biberman's approximate method. The continuum radiation absorption cross sections of a C - H - O - N ablation system were examined in detail. The present computer code was evaluated and updated by being compared with available exact and approximate calculations and correlations of experimental data. A detailed calculation procedure, which can be applied to other atomic species, is presented. The approximate correlations can be made to agree with the available exact and experimental data.

  8. Impacts of nonrefractory material on light absorption by aerosols emitted from biomass burning

    NASA Astrophysics Data System (ADS)

    McMeeking, G. R.; Fortner, E.; Onasch, T. B.; Taylor, J. W.; Flynn, M.; Coe, H.; Kreidenweis, S. M.

    2014-11-01

    We present laboratory measurements of biomass-burning aerosol light-scattering and light absorption coefficients at 405, 532, and 781 nm and investigate their relationship with aerosol composition and fuel type. Aerosol composition measurements included nonrefractory components measured by a high-resolution aerosol mass spectrometer (AMS), composition of refractory black carbon-containing particles by a soot particle aerosol mass spectrometer (SP-AMS), and refractory black carbon measured by a single-particle soot photometer (SP2). All measurements were performed downstream of a thermal denuder system to probe the effects of nonrefractory material on observed optical properties. The fires studied emitted aerosol with a wide range of optical properties with some producing more strongly light-absorbing particles (single-scattering albedo or SSA at 781 nm = 0.4) with a weak wavelength dependence of absorption (absorption Ångström exponent or AAE = 1-2) and others producing weakly light-absorbing particles (SSA at 781 nm ~1) with strong wavelength dependence of absorption (AAE ~7). Removal of nonrefractory material from the particles by the thermal denuder system led to substantial (20-80%) decreases in light absorption coefficients, particularly at shorter wavelengths, reflecting the removal of light-absorbing material that had enhanced black carbon absorption in internally mixed untreated samples. Observed enhancements of absorption by all mechanisms were at least factors of 1.2-1.5 at 532 nm and 781 nm as determined from the heated samples. A mass absorption cross-section-based approach indicated larger enhancements, particularly at shorter wavelengths.

  9. Aerosol Absorption Effects in the TOMS UV Algorithm

    NASA Technical Reports Server (NTRS)

    Torres, O.; Krotkov, N.; Bhartia, P. K.

    2004-01-01

    The availability of global long-term estimates of surface UV radiation is very important, not only for preventive medicine considerations, but also as an important tool to monitor the effects of the stratospheric ozone recovery expected to occur in the next few decades as a result of the decline of the stratospheric chlorine levels. In addition to the modulating effects of ozone and clouds, aerosols also affect the levels of UV-A and W-B radiation reaching the surface. Oscillations in surface W associated with the effects of aerosol absorption may be comparable in magnitude to variations associated with the stratospheric ozone recovery. Thus, the accurate calculation of surface W radiation requires that both the scattering and absorption effects of tropospheric aerosols be taken into account. Although absorption effects of dust and elevated carbonaceous aerosols are already accounted for using Aerosol Index technique, this approach does not work for urban/industrial aerosols in the planetary boundary layer. The use of the new TOMS long-term global data record on UV aerosol absorption optical depth, can improve the accuracy of TOMS spectral UV products, by properly including the spectral attenuation effects of carbonaceous, urban/industrial and mineral aerosols. The TOMS data set on aerosol properties will be discussed, and results of its use in the TOMS surface W algorithm will be presented.

  10. Multi-wavelength aerosol light absorption measurements in the Amazon rainforest

    NASA Astrophysics Data System (ADS)

    Saturno, Jorge; Chi, Xuguang; Pöhlker, Christopher; Morán, Daniel; Ditas, Florian; Massabò, Dario; Prati, Paolo; Rizzo, Luciana; Artaxo, Paulo; Andreae, Meinrat

    2015-04-01

    The most important light-absorbing aerosol is black carbon (BC), which is emitted by incomplete combustion of fossil fuels and biomass. BC is considered the second anthropogenic contributor to global warming. Beyond BC, other aerosols like some organics, dust, and primary biological aerosol particles are able to absorb radiation. In contrast to BC, the light absorption coefficient of these aerosols is wavelength dependent. Therefore, multi-wavelength measurements become important in environments where BC is not the predominant light-absorbing aerosol like in the Amazon. The Amazon Tall Tower Observatory (ATTO) site is located in the remote Amazon rainforest, one of the most pristine continental sites in the world during the wet season. In the dry season, winds coming from the southern hemisphere are loaded with biomass burning aerosol particles originated by farming-related deforestation. BC and aerosol number concentration data from the last two years indicate this is the most polluted period. Two different techniques have been implemented to measure the light absorption at different wavelengths; one of them is the 7-wavelengths Aethalometer, model AE30, an instrument that measures the light attenuation on a filter substrate and requires multiple scattering and filter-loading corrections to retrieve the light absorption coefficient. The other method is an offline technique, the Multi-Wavelength Absorbance Analysis (MWAA), which is able to measure reflectance and absorbance by aerosols collected on a filter and, by means of a radiative model, can retrieve the light absorption coefficient. Filters collected during May-September 2014, comprehending wet-to-dry transition and most of the dry season, were analyzed. The results indicate that the Absorption Ångström Exponent (AAE), a parameter that is directly proportional to the wavelength dependence of the aerosol light absorption, is close to 1.0 during the transition period and slightly decreases in the beginning of

  11. Light Absorption of Stratospheric Aerosols: Long-Term Trend and Contribution by Aircraft

    NASA Technical Reports Server (NTRS)

    Pueschel , R. F.; Gore, Waren J. Y. (Technical Monitor)

    1997-01-01

    Measurements of aerosol light-absorption coefficients are useful for studies of radiative transfer and heating rates. Ogren appears to have published the first light- absorption coefficients in the stratosphere in 1981, followed by Clarke in 1983 and Pueschel in 1992. Because most stratospheric soot appears to be due to aircraft operations, application of an aircraft soot aerosol emission index to projected fuel consumption suggests a threefold increase of soot loading and light absorption by 2025. Together, those four data sets indicate an increase in mid-visible light extinction at a rate of 6 % per year. This trend is similar to the increase per year of sulfuric acid aerosol and of commercial fleet size. The proportionality between stepped-up aircraft operations above the tropopause and increases in stratospheric soot and sulfuric acid aerosol implicate aircraft as a source of stratospheric pollution. Because the strongly light-absorbing soot and the predominantly light-scattering sulfuric acid aerosol increase at similar rates, however, the mid-visible stratospheric aerosol single scatter albedo is expected to remain constant and not approach a critical value of 0.98 at which stratospheric cooling could change to warming.

  12. Studying the vertical aerosol extinction coefficient by comparing in situ airborne data and elastic backscatter lidar

    NASA Astrophysics Data System (ADS)

    Rosati, Bernadette; Herrmann, Erik; Bucci, Silvia; Fierli, Federico; Cairo, Francesco; Gysel, Martin; Tillmann, Ralf; Größ, Johannes; Gobbi, Gian Paolo; Di Liberto, Luca; Di Donfrancesco, Guido; Wiedensohler, Alfred; Weingartner, Ernest; Virtanen, Annele; Mentel, Thomas F.; Baltensperger, Urs

    2016-04-01

    Vertical profiles of aerosol particle optical properties were explored in a case study near the San Pietro Capofiume (SPC) ground station during the PEGASOS Po Valley campaign in the summer of 2012. A Zeppelin NT airship was employed to investigate the effect of the dynamics of the planetary boundary layer at altitudes between ˜ 50 and 800 m above ground. Determined properties included the aerosol particle size distribution, the hygroscopic growth factor, the effective index of refraction and the light absorption coefficient. The first three parameters were used to retrieve the light scattering coefficient. Simultaneously, direct measurements of both the scattering and absorption coefficient were carried out at the SPC ground station. Additionally, a single wavelength polarization diversity elastic lidar system provided estimates of aerosol extinction coefficients using the Klett method to accomplish the inversion of the signal, for a vertically resolved comparison between in situ and remote-sensing results. Note, however, that the comparison was for the most part done in the altitude range where the overlap function is incomplete and accordingly uncertainties are larger. First, the airborne results at low altitudes were validated with the ground measurements. Agreement within approximately ±25 and ±20 % was found for the dry scattering and absorption coefficient, respectively. The single scattering albedo, ranged between 0.83 and 0.95, indicating the importance of the absorbing particles in the Po Valley region. A clear layering of the atmosphere was observed during the beginning of the flight (until ˜ 10:00 LT - local time) before the mixing layer (ML) was fully developed. Highest extinction coefficients were found at low altitudes, in the new ML, while values in the residual layer, which could be probed at the beginning of the flight at elevated altitudes, were lower. At the end of the flight (after ˜ 12:00 LT) the ML was fully developed, resulting in

  13. Identifying Aerosol Type/Mixture from Aerosol Absorption Properties Using AERONET

    NASA Technical Reports Server (NTRS)

    Giles, D. M.; Holben, B. N.; Eck, T. F.; Sinyuk, A.; Dickerson, R. R.; Thompson, A. M.; Slutsker, I.; Li, Z.; Tripathi, S. N.; Singh, R. P.; Zibordi, G.

    2010-01-01

    Aerosols are generated in the atmosphere through anthropogenic and natural mechanisms. These sources have signatures in the aerosol optical and microphysical properties that can be used to identify the aerosol type/mixture. Spectral aerosol absorption information (absorption Angstrom exponent; AAE) used in conjunction with the particle size parameterization (extinction Angstrom exponent; EAE) can only identify the dominant absorbing aerosol type in the sample volume (e.g., black carbon vs. iron oxides in dust). This AAE/EAE relationship can be expanded to also identify non-absorbing aerosol types/mixtures by applying an absorption weighting. This new relationship provides improved aerosol type distinction when the magnitude of absorption is not equal (e.g, black carbon vs. sulfates). The Aerosol Robotic Network (AERONET) data provide spectral aerosol optical depth and single scattering albedo - key parameters used to determine EAE and AAE. The proposed aerosol type/mixture relationship is demonstrated using the long-term data archive acquired at AERONET sites within various source regions. The preliminary analysis has found that dust, sulfate, organic carbon, and black carbon aerosol types/mixtures can be determined from this AAE/EAE relationship when applying the absorption weighting for each available wavelength (Le., 440, 675, 870nm). Large, non-spherical dust particles absorb in the shorter wavelengths and the application of 440nm wavelength absorption weighting produced the best particle type definition. Sulfate particles scatter light efficiently and organic carbon particles are small near the source and aggregate over time to form larger less absorbing particles. Both sulfates and organic carbon showed generally better definition using the 870nm wavelength absorption weighting. Black carbon generation results from varying combustion rates from a number of sources including industrial processes and biomass burning. Cases with primarily black carbon showed

  14. Characterization of Spectral Absorption Properties of Aerosols Using Satellite Observations

    NASA Technical Reports Server (NTRS)

    Torres, O.; Jethva, H.; Bhartia, P. K.; Ahn, C.

    2012-01-01

    The wavelength-dependence of aerosol absorption optical depth (AAOD) is generally represented in terms of the Angstrom Absorption Exponent (AAE), a parameter that describes the dependence of AAOD with wavelength. The AAE parameter is closely related to aerosol composition. Black carbon (BC) containing aerosols yield AAE values near unity whereas Organic carbon (OC) aerosol particles are associated with values larger than 2. Even larger AAE values have been reported for desert dust aerosol particles. Knowledge of spectral AAOD is necessary for the calculation of direct radiative forcing effect of aerosols and for inferring aerosol composition. We have developed a satellitebased method of determining the spectral AAOD of absorbing aerosols. The technique uses high spectral resolution measurements of upwelling radiation from scenes where absorbing aerosols lie above clouds as indicated by the UV Aerosol Index. For those conditions, the satellite measured reflectance (rho lambda) is approximately given by Beer's law rho lambda = rho (sub 0 lambda) e (exp -mtau (sub abs lambda)) where rho(sub 0 lambda) is the cloud reflectance, m is the geometric slant path and tau (sub abs lambda) is the spectral AAOD. The rho (sub 0 lambda) term is determined by means of radiative transfer calculations using as input the cloud optical depth derived as described in Torres et al. [JAS, 2012] that accounts for the effects of aerosol absorption. In the second step, corrections for molecular and aerosol scattering effects are applied to the cloud reflectance term, and the spectral AAOD is then derived by inverting the equation above. The proposed technique will be discussed in detail and application results will be presented. The technique can be easily applied to hyper-spectral satellite measurements that include UV such as OMI, GOME and SCIAMACHY, or to multi-spectral visible measurements by other sensors provided that the aerosol-above-cloud events are easily identified.

  15. Identification of key aerosol populations through their size and composition resolved spectral scattering and absorption

    NASA Astrophysics Data System (ADS)

    Costabile, F.; Barnaba, F.; Angelini, F.; Gobbi, G. P.

    2013-03-01

    Characterizing chemical and physical aerosol properties is important to understand their sources, effects, and feedback mechanisms in the atmosphere. This study proposes a scheme to classify aerosol populations based on their spectral optical properties (absorption and scattering). The scheme is obtained thanks to the outstanding set of information on particle size and composition these properties contain. The spectral variability of the aerosol single scattering albedo (dSSA), and the extinction, scattering and absorption Angstrom exponents (EAE, SAE and AAE, respectively) were observed on the basis of two-year measurements of aerosol optical properties (scattering and absorption coefficients at blue, green and red wavelengths) performed in the suburbs of Rome (Italy). Optical measurements of various aerosol types were coupled to measurements of particle number size distributions and relevant optical properties simulations (Mie theory). These latter allowed the investigation of the role of the particle size and composition in the bulk aerosol properties observed. The combination of simulations and measurements suggested a general "paradigm" built on dSSA, SAE and AAE to optically classify aerosols. The paradigm proved suitable to identify the presence of key aerosol populations, including soot, biomass burning, organics, dust and marine particles. The work highlights that (i) aerosol populations show distinctive combinations of SAE and dSSA times AAE, these variables being linked by a linear inverse relation varying with varying SSA; (ii) fine particles show EAE > 1.5, whilst EAE < 2 is found for both coarse particles and ultrafine soot-rich aerosols; (iii) fine and coarse particles both show SSA > 0.8, whilst ultrafine urban Aitken mode and soot particles show SSA < 0.8. The proposed paradigm agrees with aerosol observations performed during past major field campaigns, this indicating that relations concerning the paradigm have a general validity.

  16. Radiative absorption enhancement from coatings on black carbon aerosols.

    PubMed

    Cui, Xinjuan; Wang, Xinfeng; Yang, Lingxiao; Chen, Bing; Chen, Jianmin; Andersson, August; Gustafsson, Örjan

    2016-05-01

    The radiative absorption enhancement of ambient black carbon (BC), by light-refractive coatings of atmospheric aerosols, constitutes a large uncertainty in estimates of climate forcing. The direct measurements of radiative absorption enhancement require the experimentally-removing the coating materials in ambient BC-containing aerosols, which remains a challenge. Here, the absorption enhancement of the BC core by non-absorbing aerosol coatings was quantified using a two-step removal of both inorganic and organic matter coatings of ambient aerosols. The mass absorption cross-section (MAC) of decoated/pure atmospheric BC aerosols of 4.4±0.8m(2)g(-1) was enhanced to 9.6±1.8m(2)g(-1) at 678-nm wavelength for ambiently-coated BC aerosols at a rural Northern China site. The enhancement of MAC (EMAC) rises from 1.4±0.3 in fresh combustion emissions to ~3 for aged ambient China aerosols. The three-week high-intensity campaign observed an average EMAC of 2.25±0.55, and sulfates were primary drivers of the enhanced BC absorption. PMID:26874760

  17. Multiwavelength In-situ Aerosol Absorption, Scattering, and Hygroscopic Properties During the TEXAQS 2006 Field Campaign: Aerosol Classification and Variability

    NASA Astrophysics Data System (ADS)

    Sierau, B.; Covert, D. S.; Coffman, D. J.; Quinn, P. K.; Bates, T. S.

    2006-12-01

    In-situ, three wavelength-measurements of aerosol scattering and absorption of the regional aerosol near the coast of Texas, i.e. Houston and the Houston ship channel, as well as the Gulf of Mexico were carried out onboard the NOAA research vessel Ronald H. Brown during the 2006 TEXAQS/GoMACCS field campaign in July through September 2006. Aerosol scattering, hemispheric backscattering and absorption-coefficients were measured for particles with diameters dp<10μm and dp<1μm using multiwavelength integrating nephelometers and filter-based absorption photometers (PSAPs) at 60% RH (nephelometers). Light scattering was measured as a function of RH at two additional humidities, (ca. 25%, and 85% RH). Together with the 60% RH data, this enabled determination of the hygroscopic growth curve of scattering. The extensive and intensive optical properties were used to characterize the aerosol in the Houston, TX area and the Coastal Gulf of Mexico region and to provide information critical to understanding the climatic and air quality impacts of those aerosols. Analysis focuses on how these properties change during the chemical processing of sources within the project area and how they are affected by changes in atmospheric relative humidity that accompany transport, diurnal cycles and vertical mixing. The results are relevant to radiation transfer, visibility, air quality, and interpretation of remote sensing data from lidar and satellite. The results will be presented based on a regional classification of the sampled air masses to identify distinct aerosol populations and sources and to show the temporal and spatial variability of the measured parameters. Special emphasize will be given to the physico-chemical properties of aerosols measured during extensive Saharan dust periods encountered during the cruise and several air pollution episodes and industrial plumes. Scattering hygroscopic growth will be analyzed along with the chemical composition of the aerosol and its

  18. Aerosol absorption measurement at SWIR with water vapor interference using a differential photoacoustic spectrometer.

    PubMed

    Zhu, Wenyue; Liu, Qiang; Wu, Yi

    2015-09-01

    Atmospheric aerosol plays an important role in atmospheric radiation balance through absorbing and scattering the solar radiation, which changes local weather and global climate. Accurate measurement is highly requested to estimate the radiative effects and climate effects of atmospheric aerosol. Photoacoustic spectroscopy (PAS) technique, which observes the aerosols on their natural suspended state and is insensitive to light scattering, is commonly recognized as one of the best candidates to measure the optical absorption coefficient (OAC) of aerosols. In the present work, a method of measuring aerosol OAC at the wavelength where could also be absorbed by water vapor was proposed and corresponding measurements of the absorption properties of the atmospheric aerosol at the short wave infrared (SWIR, 1342 nm) wavelength were carried out. The spectrometer was made up of two high performance homemade photoacoustic cells. To improve the sensitivity, several methods were presented to control the noise derived from gas flow and vibration from the sampling pump. Calibration of the OAC and properties of the system were also studied in detail. Using the established PAS instrument, measurement of the optical absorption properties of the atmospheric aerosol were carried out in laboratory and field environment. PMID:26368414

  19. [Influencing factors in measuring absorption coefficient of suspended particulate matters].

    PubMed

    Yu, Xiao-long; Shen, Fang; Zhang, Jin-fang

    2013-05-01

    Absorption coefficient of suspended particulate matters in natural water is one of the key parameters in ocean color remote sensing. In order to study the influencing factors that affect the measurement, a series of experiments were designed to measure samples using transmittance method (T method), transmittance-reflectance method (T-R method) and absorptance method (A method). The results shows that absorption coefficient measured by the A method has a much lower error compared to the T method and T-R method due to influencing factors,such as filter-to-filter variations, water content of the filter, and homogeneity of filter load and so on. Another factor influence absorption coefficient is path-length amplification induced by multiple scattering inside the filter. To determine the path-length amplification, the true absorption was measured by AC-s (WetLabs). The linear fitting result shows that the mean path-length amplification is much higher for the A method than that of the T-R method and the T method (4.01 versus 2.20 and 2.32), and the corresponding correlation coefficient are 0.90, 0.87 and 0.80. For the A method and the T-R method, higher correlation coefficients are calculated when using polynomial fitting, and the value are 0.95 and 0.94. Analysis of the mean relative error caused by different influencing factors indicates that path-length amplification is the largest error source in measuring the absorption coefficient. PMID:23914523

  20. Absorption coefficients of a hydrogen plasma for laser radiation

    NASA Technical Reports Server (NTRS)

    Stallcop, J. R.

    1974-01-01

    The formalism for the calculation of the absorption of radiation by a hydrogen plasma at common laboratory conditions is summarized. The hydrogen plasma absorption coefficient for laser radiation has been computed for a wide range of electron densities and temperatures (10,000-40,000 K). The results of this computation are presented in a graphical form that permits a determination of the absorption coefficient for the following laser wavelengths: 0.176, 0.325, 0.337, 0.442, 0.488, 0.515, 0.633, 0.694, 1.06, 1.15, 2.36, 3.39, 5.40 and 10.6 microns. The application of these results and laser radiation absorption measurements to plasma diagnostics is discussed briefly.

  1. Retrieval of Aerosol Absorption Properties from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Torres, Omar; Bhartia, Pawan K.; Jethva, H.; Ahn, Chang-Woo

    2012-01-01

    The Angstrom Absorption Exponent (AAE) is a parameter commonly used to characterize the wavelength-dependence of aerosol absorption optical depth (AAOD). It is closely related to aerosol composition. Black carbon (BC) containing aerosols yield AAE values near unity whereas Organic carbon (OC) aerosol particles are associated with values larger than 2. Even larger AAE values have been reported for desert dust aerosol particles. Knowledge of spectral AAOD is necessary for the calculation of direct radiative forcing effect of aerosols and for inferring aerosol composition. We have developed a satellitebased method of determining the spectral AAOD of absorbing aerosols. The technique uses multi-spectral measurements of upwelling radiation from scenes where absorbing aerosols lie above clouds as indicated by the UV Aerosol Index. For those conditions, the satellite measurement can be explained, using an approximations of Beer's Law (BL), as the upwelling reflectance at the cloud top attenuated by the absorption effects of the overlying aerosol layer. The upwelling reflectance at the cloud-top in an aerosol-free atmospheric column is mainly a function of cloud optical depth (COD). In the proposed method of AAE derivation, the first step is determining COD which is retrieved using a previously developed color-ratio based approach. In the second step, corrections for molecular scattering effects are applied to both the observed ad the calculated cloud reflectance terms, and the spectral AAOD is then derived by an inversion of the BL approximation. The proposed technique will be discussed in detail and application results making use of OMI multi-spectral measurements in the UV-Vis. will be presented.

  2. Influence of Brown Carbon Aerosols on Absorption Enhancement and Radiative Forcing

    NASA Astrophysics Data System (ADS)

    Shamjad, Puthukkadan; Nand Tripathi, Sachchida; Kant Pathak, Ravi; Hallquist, Mattias

    2015-04-01

    This study presents aerosol mass and optical properties measured during winter-spring months (February-March) of two consecutive years (2013-2014) from Kanpur, India located inside Gangetic Plain. Spectral absorption and scattering coefficients (405, 532 and 781 nm) of both atmospheric and denuded (at 300° C) is measured using a 3 wavelength Photo Acoustic Soot Spectrometer (PASS 3). Ratio between the atmospheric and denuded absorption is reported as enhancement in absorption (Eabs). Eabs values shows presence of large quantities of Brown Carbon (BrC) aerosols in the location. Diurnal trend of Eabs shows similar patterns at 405 and 532 nm. But at 781 nm Eabs values increased during day time (10:00 to 18:00) while that 405 and 532 nm decreased. Positive Matrix Analysis (PMF) of organic aerosols measured using HR-ToF-AMS shows factors with different trends with total absorption. Semi-volatile factor (SV-OOA) show no correlation with absorption but other factors such as Low-volatile (LV-OOA), Hydrocarbon (HOA) and Biomass burning (BBOA) organic aerosols shows a positive trend. All factors shows good correlation with scattering coefficient. Also a strong dependence of absorption is observed at 405 and 532 nm and a weak dependence at 781 nm is observed during regression analysis with factors and mass loading. We also present direct radiative forcing (DRF) calculated from measured optical properties due to total aerosol loading and only due to BrC. Total and BrC aerosol DRF shows cooling trends at top of atmosphere (TOA) and surface and warming trend in atmosphere. Days with biomass burning events shows increase in magnitude of DRF at atmosphere and surface up to 30 % corresponding to clear days. TOA forcing during biomass burning days shows increase in magnitude indicating change from negative to less negative.

  3. Cloud Cover Increase with Increasing Aerosol Absorptivity: A Counterexample to the Conventional Semidirect Aerosol Effect

    NASA Technical Reports Server (NTRS)

    Perlwitz, Jan; Miller, Ron L.

    2010-01-01

    We reexamine the aerosol semidirect effect using a general circulation model and four cases of the single-scattering albedo of dust aerosols. Contrary to the expected decrease in low cloud cover due to heating by tropospheric aerosols, we find a significant increase with increasing absorptivity of soil dust particles in regions with high dust load, except during Northern Hemisphere winter. The strongest sensitivity of cloud cover to dust absorption is found over land during Northern Hemisphere summer. Here even medium and high cloud cover increase where the dust load is highest. The cloud cover change is directly linked to the change in relative humidity in the troposphere as a result of contrasting changes in specific humidity and temperature. More absorption by aerosols leads to larger diabatic heating and increased warming of the column, decreasing relative humidity. However, a corresponding increase in the specific humidity exceeds the temperature effect on relative humidity. The net effect is more low cloud cover with increasing aerosol absorption. The higher specific humidity where cloud cover strongly increases is attributed to an enhanced convergence of moisture driven by dust radiative heating. Although in some areas our model exhibits a reduction of low cloud cover due to aerosol heating consistent with the conventional description of the semidirect effect, we conclude that the link between aerosols and clouds is more varied, depending also on changes in the atmospheric circulation and the specific humidity induced by the aerosols. Other absorbing aerosols such as black carbon are expected to have a similar effect.

  4. Scattering and absorption coefficients of silica-doped alumina aerogels.

    PubMed

    Fu, Tairan; Tang, Jiaqi; Chen, Kai; Zhang, Fan

    2016-02-01

    Alumina-based aerogels are especially useful in many applications due to their excellent stability at high temperatures. This study experimentally analyzed the radiative properties of silica-doped alumina aerogels through spectral directional-hemispherical measurements for wavelengths of 0.38-25 μm. The silica-doped alumina aerogel samples were prepared with a 1.4∶1 molar ratio of silica to alumina. A two-flux model was used to describe the radiation propagation in a 1D scattering absorbing sample to derive expressions for the normal-hemispherical transmittances and reflectances based on the transport approximation. The normal-hemispherical transmittances and reflectances were measured at various spectral wavelengths and sample thicknesses using the integrating sphere method. The spectral absorption and transport scattering coefficients of silica-doped alumina aerogels were then determined from the measured normal-hemispherical data. The absorption and transport scattering coefficients of silica-doped alumina aerogels are (0.1  cm-1, 36  cm-1) and (0.1  cm-1, 112  cm-1) for wavelengths of 0.38-8.0 μm. The spectral transport scattering coefficient varies in the opposite direction from the spectral absorption coefficient for various wavelengths. The radiative properties for silica and alumina aerogels were quite different for the absorption coefficient for wavelengths of 2.5-8.0 μm and for the transport scattering coefficient for wavelengths of 0.38-2.5 and 3.5-6.0 μm. The measured radiative properties were used to predict the spectral normal-hemispherical reflectance and transmittance of the silica-doped alumina aerogels for various sample thicknesses and wavelengths. The predicted values do not change for the sample thicknesses greater than a critical value. The analysis provides valuable reference data for alumina aerogels for high-temperature applications. PMID:26836071

  5. Multiwavelength In-situ Aerosol Absorption, Scattering, and Hygroscopic Properties During the TEXAQS 2006 Field Campaign: Aerosol Classification and Variability

    NASA Astrophysics Data System (ADS)

    Sierau, B.; Covert, D. S.; Coffman, D. J.; Quinn, P. K.; Bates, T. S.

    2007-12-01

    In-situ, three wavelength-measurements of optical properties of the aerosol near the coast of Texas, i.e. in the region of Houston and the Houston ship channel, as well as in the Gulf of Mexico were carried out onboard the NOAA research vessel Ronald H. Brown during the 2006 TEXAQS/GoMACCS field campaign in July through September 2006. Aerosol scattering, hemispheric backscattering and absorption-coefficients were measured for particles with diameters dp<10μm and dp<1μm using integrating nephelometers and filter-based absorption photometers (PSAPs) at 60% RH (nephelometers). Submicrometric light scattering coefficient was measured at two additional humidities, ca. 25%, and 85% RH. Together with the 60% RH data, this enabled determination of the effect of aerosol hygroscopic growth on light scattering and an empirical light scattering growth factor. The results are relevant to radiation transfer, visibility, air quality, and interpretation of remote sensing data from lidar and satellite. The extensive and intensive optical properties along with meteorological analysis are used to characterize the aerosol in the Houston, TX region and the Coastal Gulf of Mexico and to provide information critical to understanding the climatic and air quality impacts of those aerosols. Further analysis focuses on the changes that these properties undergo during chemical processing of emissions within the project area and how they are affected by changes in atmospheric relative humidity that accompany transport, diurnal cycles and vertical mixing. The results are classified by source region and flow regime of the sampled air masses to identify distinct aerosol populations. Special emphasis is given to the physico-chemical properties of aerosols measured during two periods when Saharan dust was encountered during the cruise as well as to several air pollution episodes and plumes from industrial complexes. The combination of hygroscopic growth, light scattering and absorption

  6. The Global Ozone and Aerosol Profiles and Aerosol Hygroscopic Effect and Absorption Optical Depth (GOA2HEAD) Network Initiative

    NASA Astrophysics Data System (ADS)

    Gao, R. S.; Elkins, J. W.; Frost, G. J.; McComiskey, A. C.; Murphy, D. M.; Ogren, J. A.; Petropavlovskikh, I. V.; Rosenlof, K. H.

    2014-12-01

    Inverse modeling using measurements of ozone (O3) and aerosol is a powerful tool for deriving pollutant emissions. Because they have relatively long lifetimes, O3 and aerosol are transported over large distances. Frequent and globally spaced vertical profiles rather than ground-based measurements alone are therefore highly desired. Three requirements necessary for a successful global monitoring program are: Low equipment cost, low operation cost, and reliable measurements of known uncertainty. Conventional profiling using aircraft provides excellent data, but is cost prohibitive on a large scale. Here we describe a new platform and instruments meeting all three global monitoring requirements. The platform consists of a small balloon and an auto-homing glider. The glider is released from the balloon at about 5 km altitude, returning the light instrument package to the launch location, and allowing for consistent recovery of the payload. Atmospheric profiling can be performed either during ascent or descent (or both) depending on measurement requirements. We will present the specifications for two instrument packages currently under development. The first measures O3, RH, p, T, dry aerosol particle number and size distribution, and aerosol optical depth. The second measures dry aerosol particle number and size distribution, and aerosol absorption coefficient. Other potential instrument packages and the desired spatial/temporal resolution for the GOA2HEAD monitoring initiative will also be discussed.

  7. An Analysis of AERONET Aerosol Absorption Properties and Classifications Representative of Aerosol Source Regions

    NASA Technical Reports Server (NTRS)

    Giles, David M.; Holben, Brent N.; Eck, Thomas F.; Sinyuk, Aliaksandr; Smirnov, Alexander; Slutsker, Ilya; Dickerson, R. R.; Thompson, A. M.; Schafer, J. S.

    2012-01-01

    Partitioning of mineral dust, pollution, smoke, and mixtures using remote sensing techniques can help improve accuracy of satellite retrievals and assessments of the aerosol radiative impact on climate. Spectral aerosol optical depth (tau) and single scattering albedo (omega (sub 0) ) from Aerosol Robotic Network (AERONET) measurements are used to form absorption [i.e., omega (sub 0) and absorption Angstrom exponent (alpha(sub abs))] and size [i.e., extinction Angstrom exponent (alpha(sub ext)) and fine mode fraction of tau] relationships to infer dominant aerosol types. Using the long-term AERONET data set (1999-2010), 19 sites are grouped by aerosol type based on known source regions to: (1) determine the average omega (sub 0) and alpha(sub abs) at each site (expanding upon previous work); (2) perform a sensitivity study on alpha(sub abs) by varying the spectral omega (sub 0); and (3) test the ability of each absorption and size relationship to distinguish aerosol types. The spectral omega (sub 0) averages indicate slightly more aerosol absorption (i.e., a 0.0 < delta omega (sub 0) <= 0.02 decrease) than in previous work and optical mixtures of pollution and smoke with dust show stronger absorption than dust alone. Frequency distributions of alpha(sub abs) show significant overlap among aerosol type categories and at least 10% of the alpha(sub abs) retrievals in each category are below 1.0. Perturbing the spectral omega (sub 0) by +/- 0.03 induces significant alpha(sub abs) changes from the unperturbed value by at least approx. +/- 0.6 for Dust, approx. +/-0.2 for Mixed, and approx. +/-0.1 for Urban/Industrial and Biomass Burning. The omega (sub 0)440nm and alpha(sub ext) 440-870nm relationship shows the best separation among aerosol type clusters, providing a simple technique for determining aerosol type from surface- and future space-based instrumentation.

  8. Impact of inhomogeneous optical scattering coefficient distribution on recovery of optical absorption coefficient maps using tomographic photoacoustic data

    NASA Astrophysics Data System (ADS)

    Li, Xiaoqi; Jiang, Huabei

    2013-02-01

    We present a study through extensive simulation that considers the impact of inhomogeneous optical scattering coefficient distribution on recovery of optical absorption coefficient maps using tomographic photoacoustic data collected from media mimicking breast tissue. We found that while the impact of scattering heterogeneities/targets is modest on photoacoustic recovery of optical absorption coefficients, the impact of scattering contrast caused by adipose tissue, a layer of normal tissue along the boundary of the breast, is dramatic on reconstruction of optical absorption coefficients using photoacoustic data—up to 25.8% relative error in recovering the absorption coefficient is estimated in such cases. To overcome this problem, we propose a new method to enhance photoacoustic recovery of the optical absorption coefficient in heterogeneous media by considering inhomogeneous scattering coefficient distribution provided by diffuse optical tomography (DOT). Results from extensive simulations show that photoacoustic recovery of absorption coefficient maps can be improved considerably with a priori scattering information from DOT.

  9. A high absorption coefficient DL-MPP imitating owl skin

    NASA Astrophysics Data System (ADS)

    Guo, Lijun; Zhao, Zhan; Kong, Deyi; Wu, Shaohua; Du, Lidong; Fang, Zhen

    2012-11-01

    This paper proposes a high absorption coefficient micro-perforated panel (MPP) imitating owl skin structure for acoustic noise reduction. Compared to the traditional micro-perforated panel, this device has two unique characteristics-simulating the owl skin structure, its radius of perforated apertures even can be as small as 55μ, and its material is silicon and fabricated by micro-electrical mechanical system (MEMS) technology; So that its absorption coefficients of acoustic noise for normal incidence sound wave whose frequencies arrange from 1.5 kHz to 6.0 kHz are all above 0.8 which is the owl's hunts sensitivity frequency band. Double leaf MPP fabricated by MEMS technology is an absolutely bionic success in functional-imitation.

  10. Is There a Common Correction for Biases in Historic Filter-Based Aerosol Absorption Measurements?

    NASA Astrophysics Data System (ADS)

    McComiskey, A. C.; Jefferson, A.; Dubey, M. K.; Aiken, A. C.; Fast, J. D.; Flynn, C. J.; Kassianov, E.

    2014-12-01

    Improved characterization of aerosol absorption is a pressing need for improving estimates of climate forcing by aerosols. Measurements of aerosol absorption are difficult to make with the accuracy and precision demanded by climate science. While several different approaches have been employed and new techniques have emerged, none can yet be considered a true 'gold standard'. Instruments that use filter-based methods have been the most widely used and are the basis of historic records. However, several studies using direct photoacoustic techniques have shown that filter-based measurements can be biased relative to these direct measurements. It has been demonstrated that this bias depends strongly on aerosol chemical composition, specifically concentration of organic mass. The wealth of information in the extensive set of historical filter-based data demands that this bias be diagnosed and corrected. A correction is critical for proper evaluation and development of chemical transport models, improved retrievals from remote sensing measurements, and integrating aerosol absorption surface and sub-orbital in situ measurements with knowledge gained from these other approaches. We have performed an intercomparison of absorption coefficients from a photoacoustic and two filter-based instruments with co-located organic mass concentrations from continuous, half-hourly averaged measurements over six months at a remote, continental site in the US (ARM SGP). The results show a bias in the filter-based measurements with organic concentration that is consistent with previous studies. Previous results come from controlled lab studies or field campaigns where absorption coefficients and organic concentrations are high and may represent aerosol close to the source. The current study is important in that these quantities are much lower and the aerosol likely more aged, representing a larger portion of the global conditions, yet shows a similar bias. This site provides other measures

  11. Using OMI Observations to Measure Aerosol Absorption of Biomass Burning Aerosols Above Clouds

    NASA Technical Reports Server (NTRS)

    Torres, Omar; Bhartia, P. K.; Jethva, Hiren

    2011-01-01

    The presence of absorbing aerosol layers above clouds is unambiguously detected by the TOMS/OMI UV Aerosol Index (AI) that uses satellite observations at two near-UV channels. A sensitivity study using radiative transfer calculations shows that the AI signal of resulting from the presence of aerosols above clouds is mainly driven by the aerosol absorption optical depth and the optical depth of the underlying cloud. Based on these results, an inversion algorithm has been developed to retrieve the aerosol optical depth (AOD) of aerosol layers above clouds. In this presentation we will discuss the sensitivity analysis, describe the retrieval approach, and present results of applications of the retrieval method to OMI observations over the South Atlantic Ocean. Preliminary error analyses, to be discussed, indicate that the AOD can be underestimated (up to -30%) or overestimated (up to 60%) depending on algorithmic assumptions.

  12. Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients.

    PubMed

    Esselborn, Michael; Wirth, Martin; Fix, Andreas; Tesche, Matthias; Ehret, Gerhard

    2008-01-20

    An airborne high spectral resolution lidar (HSRL) based on an iodine absorption filter and a high-power frequency-doubled Nd:YAG laser has been developed to measure backscatter and extinction coefficients of aerosols and clouds. The instrument was operated aboard the Falcon 20 research aircraft of the German Aerospace Center (DLR) during the Saharan Mineral Dust Experiment in May-June 2006 to measure optical properties of Saharan dust. A detailed description of the lidar system, the analysis of its data products, and measurements of backscatter and extinction coefficients of Saharan dust are presented. The system errors are discussed and airborne HSRL results are compared to ground-based Raman lidar and sunphotometer measurements. PMID:18204721

  13. A wide spectral range photoacoustic aerosol absorption spectrometer.

    PubMed

    Haisch, C; Menzenbach, P; Bladt, H; Niessner, R

    2012-11-01

    A photoacoustic spectrometer for the measurement of aerosol absorption spectra, based on the excitation of a pulsed nanosecond optical parametrical oscillator (OPO), will be introduced. This spectrometer is working at ambient pressure and can be used to detect and characterize different classes of aerosols. The spectrometer features a spectral range of 410 to 2500 nm and a sensitivity of 2.5 × 10(-7) m(-1) at 550 nm. A full characterization of the system in the visible spectral range is demonstrated, and the potential of the system for near IR measurement is discussed. In the example of different kinds of soot particles, the performance of the spectrometer was assessed. As we demonstrate, it is possible to determine a specific optical absorption per particle by a combination of the new spectrometer with an aerosol particle counter. PMID:23035870

  14. Estimation of aerosol optical properties considering hygroscopicity and light absorption

    NASA Astrophysics Data System (ADS)

    Jung, Chang Hoon; Lee, Ji Yi; Kim, Yong Pyo

    2015-03-01

    In this study, the influences of water solubility and light absorption on the optical properties of organic aerosols were investigated. A size-resolved model for calculating optical properties was developed by combining thermodynamic hygroscopic growth and aerosol dynamics models. The internal mixtures based on the homogeneous and core-shell mixing were compared. The results showed that the radiative forcing (RF) of Water Soluble Organic Carbon (WSOC) aerosol can be estimated to range from -0.07 to -0.49 W/m2 for core-shell mixing and from -0.09 to -0.47 W/m2 for homogeneous mixing under the simulation conditions (RH = 60%). The light absorption properties of WSOC showed the mass absorption efficiency (MAE) of WSOC can be estimated 0.43-0.5 m2/g, which accounts for 5-10% of the MAE of elemental carbon (EC). The effect on MAE of increasing the imaginary refractive index of WSOC was also calculated, and it was found that increasing the imaginary refractive index by 0.001i enhanced WSOC aerosol absorption by approximately 0.02 m2/g. Finally, the sensitivity test results revealed that changes in the fine mode fraction (FMF) and in the geometric mean diameter of the accumulation mode play important roles in estimating RF during hygroscopic growth.

  15. Optimization of the acoustic absorption coefficients of certain functional absorbents

    NASA Technical Reports Server (NTRS)

    Pocsa, V.; Biborosch, L.; Veres, A.; Halpert, E.; Lorian, R.; Botos, T.

    1974-01-01

    The sound absorption coefficients of some functional absorbents (mineral wool plates) are determined by the reverberation chamber method. The influence of the angle of inclination of the sound absorbing material with respect to the surface to be treated is analyzed as well as the influence of the covering index, defined as the ratio of the designed area of a plate and the area of the treated surface belonging to another plate. As compared with the conventional method of applying sound-absorbing plates, the analyzed structures have a higher technological and economical efficiency. The optimum structure corresponds to an angle of inclination of 15 deg and a covering index of 0.8.

  16. A method for monitoring nuclear absorption coefficients of aviation fuels

    NASA Technical Reports Server (NTRS)

    Sprinkle, Danny R.; Shen, Chih-Ping

    1989-01-01

    A technique for monitoring variability in the nuclear absorption characteristics of aviation fuels has been developed. It is based on a highly collimated low energy gamma radiation source and a sodium iodide counter. The source and the counter assembly are separated by a geometrically well-defined test fuel cell. A computer program for determining the mass attenuation coefficient of the test fuel sample, based on the data acquired for a preset counting period, has been developed and tested on several types of aviation fuel.

  17. Development Of A Supercontinuum Based Photoacoustic Aerosol Light Absorption And Albedo Spectrometer (PALAAS)

    NASA Astrophysics Data System (ADS)

    Arnold, Ian J.

    Aerosols are a major contributor to the global radiation budget because they modify the planetary albedo with their optical properties. These optical properties need to be measured and understood, ideally at multiple wavelengths. This thesis describes the ongoing development of a supercontinuum based multi-wavelength photoacoustic instrument to measure the light absorption and scattering coefficients of aerosols. Collimation techniques for supercontinuum sources using lens-based and off-axis parabolic mirror-based collimators were evaluated and it was determined that the off-axis mirror had superior collimation abilities for multi-spectral beams. A proof of concept supercontinuum-based photoacoustic instrument was developed using sequential measurements at multiple wavelengths. The instrument data were in good agreement with those from a commercial 3-wavelength photoacoustic instrument and the novel instrument had minimum detectable absorption and scattering coefficients of better than 4 Mm-1 and 21 Mm-1, respectively. The instrument however suffered from poor temporal resolution due to the sequential measurement and required the development of an aerosol delivery system to deliver a slowly varying aerosol concentration. In response, a spectral modulator has been developed to frequency encode different wavelength bands for simultaneous measurement with a photoacoustic instrumen.

  18. Toward a Combined SAGE II-HALOE Aerosol Climatology: An Evaluation of HALOE Version 19 Stratospheric Aerosol Extinction Coefficient Observations

    NASA Technical Reports Server (NTRS)

    Thomason, L. W.

    2012-01-01

    Herein, the Halogen Occultation Experiment (HALOE) aerosol extinction coefficient data is evaluated in the low aerosol loading period after 1996 as the first necessary step in a process that will eventually allow the production of a combined HALOE/SAGE II (Stratospheric Aerosol and Gas Experiment) aerosol climatology of derived aerosol products including surface area density. Based on these analyses, it is demonstrated that HALOE's 3.46 microns is of good quality above 19 km and suitable for scientific applications above that altitude. However, it is increasingly suspect at lower altitudes and should not be used below 17 km under any circumstances after 1996. The 3.40 microns is biased by about 10% throughout the lower stratosphere due to the failure to clear NO2 but otherwise appears to be a high quality product down to 15 km. The 2.45 and 5.26 micron aerosol extinction coefficient measurements are clearly biased and should not be used for scientific applications after the most intense parts of the Pinatubo period. Many of the issues in the aerosol data appear to be related to either the failure to clear some interfering gas species or doing so poorly. For instance, it is clear that the 3.40micronaerosol extinction coefficient measurements can be improved through the inclusion of an NO2 correction and could, in fact, end up as the highest quality overall HALOE aerosol extinction coefficient measurement. It also appears that the 2.45 and 5.26 micron channels may be improved by updating the Upper Atmosphere Pilot Database which is used as a resource for the removal of gas species otherwise not available from direct HALOE measurements. Finally, a simple model to demonstrate the promise of mixed visible/infrared aerosol extinction coefficient ensembles for the retrieval of bulk aerosol properties demonstrates that a combined HALOE/SAGE II aerosol climatology is feasible and may represent a substantial improvement over independently derived data sets.

  19. Influence of Humidity on the Aerosol Scattering Coefficient and Its Effect on the Upwelling Radiance During ACE-2

    NASA Technical Reports Server (NTRS)

    Gasso, B. S.; Hegg, D. A.; Covert, D. S.; Collins, D.; Noone, K.; Oestroem, E.; Schmid, B.; Russell, P. B.; Livingston, J. M.; Durkee, P. A.; Jonsson, H.

    2000-01-01

    Aerosol scattering coefficients (sigma(sub sp)) have been measured over the ocean at different relative humidities (RH) as a function of attitude in the region surrounding the Canary Islands during the Second Aerosol Characterization Experiment (ACE-2) in June and July 1997. The data were collected by the University of Washington passive humidigraph (UWPH) mounted on the Pelican research aircraft. Concurrently, particle size distributions absorption coefficients and aerosol optical depth were measured throughout 17 flights. A parameterization of sigma(sub sp) as a function of RH was utilized to assess the impact of aerosol hydration on the upwelling radiance (normalized to the solar constant and cosine of zenith angle). The top of the atmosphere radiance signal was simulated at wavelengths corresponding to visible and near-infrared bands or the EOS-AM ("Terra") detectors, MODIS and MISR. The UWPH measured (sigma(sub sp)) at 2 RHs, one below and the other above ambient conditions. Ambient (sigma(sub sp)) was obtained by interpolation of these 2 measurements. The data were stratified in terms of 3 types of aerosols: Saharan dust, clean marine (marine boundary layer background) and polluted marine aerosols (i.e., 2- or 1-day old polluted aerosols advected from Europe). An empirical relation for the dependence of (sigma(sub sp)) on RH, defined by (sigma(sub sp))(RH) = k. ((1 - RH/100)(exp -gamma), was used with the hygroscopic exponent gamma derived from the data. The following gamma values were obtained for the 3 aerosol types: gamma(dust) = 0.23 +/- 0.05, gamma(clean marine) = 0.69 +/- 0.06 and gamma(polluted marine) = 0.57 + 0.06. Based on the measured (gamma)(s), the above equation was utilized to derive aerosol models with different hygroscopicities. The satellite simulation signal code 6S was used to compute the upwelling radiance corresponding to each of those aerosol models at several ambient humidities. For the pre-launch estimated precision of the sensors and

  20. Influence of Humidity On the Aerosol Scattering Coefficient and Its Effect on the Upwelling Radiance During ACE-2

    NASA Technical Reports Server (NTRS)

    Gasso, S.; Hegg, D. A.; Covert, D. S.; Collins, D.; Noone, K. J.; Oestroem, E.; Schmid, B.; Russell, P. B.; Livingston, J. M.; Durkee, P. A.

    2000-01-01

    Aerosol scattering coefficients (sigma(sub sp)) have been measured over the ocean at different relative humidities (RH) as a function of altitude in the region surrounding the Canary Islands during the Second Aerosol Characterization Experiment (ACE-2) in June and July 1997. The data were collected by the University of Washington passive humidigraph (UWPH) mounted on the Pelican research aircraft. Concurrently, particle size distributions, absorption coefficients and aerosol optical depth were measured throughout 17 flights. A parameterization of sigma(sub sp) as a function of RH was utilized to assess the impact of aerosol hydration on the upwelling radiance (normalized to the solar constant and cosine of zenith angle). The top of the atmosphere radiance signal was simulated at wavelengths corresponding to visible and near-infrared bands of the EOS (Earth Observing System) AM-1 (Terra) detectors, MODIS (Moderate Resolution Imaging Spectroradiometer) and MISR (Multi-angle Imaging Spectroradiometer). The UWPH measured sigma(sub sp) at two RHs, one below and the other above ambient conditions. Ambient sigma(sub sp) was obtained by interpolation of these two measurements. The data were stratified in terms of three types of aerosols: Saharan dust, clean marine (marine boundary layer background) and polluted marine aerosols (i.e., two- or one-day old polluted aerosols advected from Europe). An empirical relation for the dependence of sigma(sub sp) on RH, defined by sigma(sub sp)(RH) = k.(1 - RH/100)(sup gamma), was used with the hygroscopic exponent gamma derived from the data. The following gamma values were obtained for the 3 aerosol types: gamma(dust) = 0.23 +/- 0.05, gamma(clean marine) = 0.69 +/- 0.06 and gamma(polluted marine) = 0.57 +/- 0.06. Based on the measured gammas, the above equation was utilized to derive aerosol models with different hygroscopicities. The satellite simulation signal code 6S was used to compute the upwelling radiance corresponding to each

  1. Retrieval of Aerosol Profiles using Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS)

    NASA Astrophysics Data System (ADS)

    Yilmaz, Selami; Frieß, Udo; Apituley, Arnoud; Henzing, Bas; Baars, Holger; Heese, Birgit; Althausen, Dietrich; Adam, Mariana; Putaud, Jean-Philippe; Zieger, Paul; Platt, Ulrich

    2010-05-01

    Multi Axis Differential Absorption Spectroscopy (MAX-DOAS) is a well established measurement technique to derive atmospheric trace gas profiles. Using MAX-DOAS measurements of trace gases with a known vertical profile, like the oxygen-dimer O4, it is possible to retrieve information on atmospheric aerosols. Based on the optimal estimation method, we have developed an algorithm which fits simultaneously measured O4 optical densities and relative intensities at several wavelengths and elevation angles to values simulated by a radiative transfer model. Retrieval parameters are aerosol extinction profile and optical properties such as single scattering albedo, phase function and Angström exponent. In 2008 and 2009 several intercomparison campaigns with established aerosol measurement techniques took place in Cabauw/Netherlands, Melpitz/Germany, Ispra/Italy and Leipzig/Germany, where simultaneous DOAS, lidar, Sun photometer and Nephelometer measurements were performed. Here we present results of the intercomparisons for cloud free conditions. The correlation of the aerosol optical thickness retrieved by the DOAS technique and the Sun photometer shows coefficients of determination from 0.96 to 0.98 and slopes from 0.94 to 1.07. The vertical structure of the DOAS retrieved aerosol extinction profiles compare favourably with the structures seen by the backscatter lidar. However, the vertical spatial development of the boundary layer is reproduced with a lower resolution by the DOAS technique. Strategies for the near real-time retrieval of trace gas profiles, aerosol profiles and optical properties will be discussed as well.

  2. Correction of water vapor absorption for aerosol remote sensing with ceilometers

    NASA Astrophysics Data System (ADS)

    Wiegner, M.; Gasteiger, J.

    2015-09-01

    In recent years attention was increasingly paid to backscatter profiles of ceilometers as a new source of aerosol information. Several case studies have shown that - although originally intended for cloud detection only - ceilometers can provide the planetary boundary layer height and even quantitative information such as the aerosol backscatter coefficient βp, provided that the signals have been calibrated. It is expected that the retrieval of aerosol parameters will become widespread as the number of ceilometers is steadily increasing, and continuous and unattended operation is provided. In this context however one should be aware of the fact that the majority of ceilometers provides signals that are influenced by atmospheric water vapor. As a consequence, profiles of aerosol parameters can only be retrieved if water vapor absorption is taken into account. In this paper we describe the influence of water vapor absorption on ceilometer signals at wavelengths around λ = 910 nm. Spectrally high-resolved absorption coefficients are calculated from HITRAN on the basis of realistic emission spectra of ceilometers. These results are used as a reference to develop a methodology ("WAPL") for routine and near-real time corrections of the water vapor influence. Comparison of WAPL with the reference demonstrates its very high accuracy. Extensive studies with simulations based on measurements reveal that the error when water vapor absorption is ignored in the βp-retrieval can be in the order of 20 % for mid-latitudes and more than 50 % for the tropics. It is concluded that the emission spectrum of the laser source should be provided by the manufacturer to increase the accuracy of WAPL, and that 910 nm is better suited than 905 nm. With WAPL systematic errors can be avoided, that would exceed the inherent errors of the Klett solutions by far.

  3. Correction of water vapor absorption for aerosol remote sensing with ceilometers

    NASA Astrophysics Data System (ADS)

    Wiegner, M.; Gasteiger, J.

    2015-06-01

    In recent years attention was increasingly paid to backscatter profiles of ceilometers as a new source of aerosol information. Several case studies have shown that - although originally intended for cloud detection only - ceilometers can provide the planetary boundary layer height and even quantitative information such as the aerosol backscatter coefficient βp, provided that the signals have been calibrated. It is expected that the retrieval of aerosol parameters will become widespread as the number of ceilometers is steadily increasing, and continuous and unattended operation is provided. In this context however one should be aware of the fact that the majority of ceilometers emit wavelengths that are influenced by atmospheric water vapor. As a consequence, profiles of aerosol parameters can only be retrieved if water vapor absorption is taken into account. In this paper we describe the influence of water vapor absorption on ceilometer signals at wavelengths in the range around λ = 910 nm. Spectrally high resolved absorption coefficients are calculated from HITRAN on the basis of realistic emission spectra of ceilometers. These results are used as reference to develop a methodology ("WAPL") for routine and near real time corrections of the water vapor influence. Comparison of WAPL with the reference demonstrates its very high accuracy. Extensive studies with simulations based on measurements reveal that the error when water vapor absorption is ignored in the βp retrieval can be in the order of 20 % for mid-latitudes and more than 50 % for the tropics. It is concluded that the emission spectrum of the laser source should be provided by the manufacturer to increase the accuracy of WAPL, and that 910 nm is better suited than 905 nm. With WAPL systematic errors can be avoided, that would exceed the inherent random errors of the Klett solutions by far.

  4. Evolution of wavelength-dependent mass absorption cross sections of carbonaceous aerosols during the 2010 DOE CARES campaign

    NASA Astrophysics Data System (ADS)

    Flowers, B. A.; Dubey, M. K.; Subramanian, R.; Sedlacek, A. J.; Kelley, P.; Luke, W. T.; Jobson, B. T.; Zaveri, R. A.

    2011-12-01

    Predictions of aerosol radiative forcing require process level optical property models that are built on precise and accurate field observations. Evolution of aerosol optical properties for urban influenced carbonaceous aerosol undergoing transport and mixing with rural air masses was a focal point of the DOE Carbonaceous Aerosol and Radiative Effects (CARES) campaign near Sacramento, CA in summer 2010. Urban aerosol was transported from Sacramento, CA (T0) to the foothills of the Sierra Nevada Mountains to a rural site located near Cool, CA (T1). Aerosol absorption and scattering coefficients were measured at the T0 and T1 sites using integrated photoacoustic acoustic/nephelometer instruments (PASS-3 and PASS-UV) at 781, 532, 405, and 375 nm. Single particle soot photometry (SP2) instrumentation was used to monitor black carbon (BC) mass at both sites. Combining data from these sensors allows estimate of the wavelength-dependent mass absorption coefficient (MAC(λ)) and partitioning of MAC(λ) into contributions from the BC core and from enhancements from coating of BC cores. MAC(λ) measured in this way is free of artifacts associated with filter-based aerosol absorption measurements and takes advantage of the single particle sensitivity of the SP2 instrument, allowing observation of MAC(λ) on 10 minute and faster time scales. Coating was observed to enhance MAC(λ) by 20 - 30 % and different wavelength dependence for MAC(λ) was observed for urban and biomass burning aerosol. Further, T0 - T1 evolution of MAC(λ) was correlated with separately measured NO/NOy ratios and CO/CO2 ratios to understand the effects of aging & transport on MAC(λ) and the implications of aerosol processing that links air quality to radiative forcing on a regional scale. Aircraft observations made from the Gulfstream-1 during CARES are also analyzed to enhance process level understanding of the optical properties of fresh and aged carbonaceous aerosol in the urban-rural interface.

  5. Infrared Absorption by Atmospheric Aerosols in Mexico City during MILAGRO.

    NASA Astrophysics Data System (ADS)

    Kelley, K. L.; Mangu, A.; Gaffney, J. S.; Marley, N. A.

    2007-12-01

    Past research in our group using cylindrical internal reflectance spectroscopy has indicated that aqueous aerosols could contribute to the radiative warming as greenhouse species (1,2). Although aerosol radiative effects have been known for sometime and are considered one of the major uncertainties in climate change modeling, most of the studies have focused on the forcing due to scattering and absorption of radiation in the uv- visible region (3). Infrared spectral information also allows the confirmation of key functional groups that are responsible for enhanced absorption observations from secondary organics in the uv-visible region. This work extends our efforts to evaluate the infrared absorption by aerosols, particularly organics, that are now found to be a major fraction of urban and regional aerosols in the 0.1 to 1.0 micron size range and to help identify key types of organics that can contribute to aerosol absorption. During the MILAGRO campaign, quartz filter samples were taken at 12-hour intervals from 5 am to 5 pm (day) and from 5 pm to 5 am (night) during the month of March 2006. These samples were taken at the two super-sites, T-0 (Instituto Mexicano de Petroleo in Mexico City) and T-1 (Universidad Technologica de Tecamac, State of Mexico). The samples have been characterized for total carbon content (stable isotope mass spectroscopy) and natural radionuclide tracers, as well as for their UV-visible spectroscopic properties by using integrating sphere diffuse reflectance spectroscopy (Beckman DU with a Labsphere accessory). These same samples have been characterized in the mid and near infrared spectral ranges using diffuse reflection spectroscopy (Nicolet 6700 FTIR with a Smart Collector accessory). Aerosol samples were removed from the surfaces of the aerosol filters by using Si-Carb sampler. The samples clearly indicate the presence of carbonyl organic constituents and the spectra are quite similar to those observed for humic and fulvic acids

  6. Retrieval of Aerosol Absorption over Ocean using AATSR/MERIS

    NASA Astrophysics Data System (ADS)

    Filipitsch, Florian; Preusker, Rene; Fischer, Juergen

    2013-04-01

    Aerosols have a significant influence on the earth climate but are still one of the least understood variables in the earth radiation budget. On average aerosol particles scatter solar radiation back to space which leads to an offset in the global warming process to due greenhouse gases. Some types of atmospheric aerosols like black carbon or dessert dust absorb solar radiation and lead to local atmospheric warming. Even if this warming effect is overwhelmed by the cooling effect is it necessary to improve our knowledge on the global distribution of absorbing aerosols if we want to understand and predict local climate variations. Within the ESA CCI-Aerosol project we developed an innovative retrieval method to quantify aerosol absorption quantified by the Single Scattering Albedo (SSA) over the ocean in the sun glint contaminated region of a wind roughed sea surface. From satellite measurement commonly retrieved Aerosol Optical Depth (AOD), which is the vertical integrated aerosol volume extinction, gives no information on the absorbing or scattering quantities of the observed aerosol. To distinct absorption from scattering independent measurements at different viewing geometries are needed. Furthermore the reflection properties of the underlying surface has to be known and therewith distinct absorption from scattering. The dual view sensor Advanced Along-Track Scanning Radiometer (AATSR) provides such information in regions where either of the two views is sun glint effected the other is not. Hence, the sun glint is used as a lower boundary condition in the presented method an accurate determination of the ocean surface is needed. Therefore we use the 3 thermal channels from to estimate the amount of reflected sunlight to due glint in measured signal at 3.7 micrometer. The determined sun glint at the 3.7 micrometer channel is further used to derive an effective wind speed based on full radiative transfer calculations where optical properties for a wind roughed sea

  7. Synergic use of TOMS and Aeronet Observations for Characterization of Aerosol Absorption

    NASA Technical Reports Server (NTRS)

    Torres, O.; Bhartia, P. K.; Dubovik, O.; Holben, B.; Siniuk, A.

    2003-01-01

    The role of aerosol absorption on the radiative transfer balance of the earth-atmosphere system is one of the largest sources of uncertainty in the analysis of global climate change. Global measurements of aerosol single scattering albedo are, therefore, necessary to properly assess the radiative forcing effect of aerosols. Remote sensing of aerosol absorption is currently carried out using both ground (Aerosol Robotic Network) and space (Total Ozone Mapping Spectrometer) based observations. The satellite technique uses measurements of backscattered near ultraviolet radiation. Carbonaceous aerosols, resulting from the combustion of biomass, are one of the most predominant absorbing aerosol types in the atmosphere. In this presentation, TOMS and AERONET retrievals of single scattering albedo of carbonaceous aerosols, are compared for different environmental conditions: agriculture related biomass burning in South America and Africa and peat fires in Eastern Europe. The AERONET and TOMS derived aerosol absorption information are in good quantitative agreement. The most absorbing smoke is detected over the African Savanna. Aerosol absorption over the Brazilian rain forest is less absorbing. Absorption by aerosol particles resulting from peat fires in Eastern Europe is weaker than the absorption measured in Africa and South America. This analysis shows that the near UV satellite method of aerosol absorption characterization has the sensitivity to distinguish different levels of aerosol absorption. The analysis of the combined AERONET-TOMS observations shows a high degree of synergy between satellite and ground based observations.

  8. Broadband Measurement of Black Carbon Absorption and Scattering Coefficients using a Supercontinuum Integrated Photoacoustic and Nephelometer Instrument

    NASA Astrophysics Data System (ADS)

    sharma, N.; Arnold, I. J.; Moosmuller, H.; Arnott, P.; Mazzoleni, C.

    2012-12-01

    the Desert Research Institute, measuring absorption and scattering coefficients of kerosene soot and sodium chloride aerosols. As a reference system we used a commercial three-wavelength photoacoustic-nephelometer instrument (DMT Inc.). Here, we present the results of this laboratory intercomparison.

  9. Photosensitizer absorption coefficient modeling and necrosis prediction during Photodynamic Therapy.

    PubMed

    Salas-García, Irene; Fanjul-Vélez, Félix; Arce-Diego, José Luis

    2012-09-01

    The development of accurate predictive models for Photodynamic Therapy (PDT) has emerged as a valuable tool to adjust the current therapy dosimetry to get an optimal treatment response, and definitely to establish new personal protocols. Several attempts have been made in this way, although the influence of the photosensitizer depletion on the optical parameters has not been taken into account so far. We present a first approach to predict the spatio-temporal variation of the photosensitizer absorption coefficient during PDT applied to dermatological diseases, taking into account the photobleaching of a topical photosensitizer. This permits us to obtain the photons density absorbed by the photosensitizer molecules as the treatment progresses and to determine necrosis maps to estimate the short term therapeutic effects in the target tissue. The model presented also takes into account an inhomogeneous initial photosensitizer distribution, light propagation in biological media and the evolution of the molecular concentrations of different components involved in the photochemical reactions. The obtained results allow to investigate how the photosensitizer depletion during the photochemical reactions affects light absorption by the photosensitizer molecules as the optical radiation propagates through the target tissue, and estimate the necrotic tumor area progression under different treatment conditions. PMID:22704663

  10. Aerosol Light Absorption and Scattering Assessments and the Impact of City Size on Air Pollution

    NASA Astrophysics Data System (ADS)

    Paredes-Miranda, Guadalupe

    The general problem of urban pollution and its relation to the city population is examined in this dissertation. A simple model suggests that pollutant concentrations should scale approximately with the square root of city population. This model and its experimental evaluation presented here serve as important guidelines for urban planning and attainment of air quality standards including the limits that air pollution places on city population. The model was evaluated using measurements of air pollution. Optical properties of aerosol pollutants such as light absorption and scattering plus chemical species mass concentrations were measured with a photoacoustic spectrometer, a reciprocal nephelometer, and an aerosol mass spectrometer in Mexico City in the context of the multinational project "Megacity Initiative: Local And Global Research Observations (MILAGRO)" in March 2006. Aerosol light absorption and scattering measurements were also obtained for Reno and Las Vegas, NV USA in December 2008-March 2009 and January-February 2003, respectively. In all three cities, the morning scattering peak occurs a few hours later than the absorption peak due to the formation of secondary photochemically produced aerosols. In particular, for Mexico City we determined the fraction of photochemically generated secondary aerosols to be about 75% of total aerosol mass concentration at its peak near midday. The simple 2-d box model suggests that commonly emitted primary air pollutant (e.g., black carbon) mass concentrations scale approximately as the square root of the urban population. This argument extends to the absorption coefficient, as it is approximately proportional to the black carbon mass concentration. Since urban secondary pollutants form through photochemical reactions involving primary precursors, in linear approximation their mass concentration also should scale with the square root of population. Therefore, the scattering coefficient, a proxy for particulate matter

  11. [Obtaining aerosol backscattering coefficient using pure rotational Raman-Mie scattering spectrum].

    PubMed

    Rong, Wei; Chen, Si-Ying; Zhang, Yin-Chao; Chen, He; Guo, Pan

    2012-11-01

    Both the traditional Klett and Fernald methods used to obtain atmospheric aerosol backscattering coefficient require the hypothesis of relationship between the extinction coefficient and backscattering coefficient, and this will bring error. According to the theory that the pure rotational Raman backscattering coefficient is only related to atmospheric temperature and pressure, a new method is presented for inverting aerosol backscattering coefficient, which needed the intensity of elastic scattering and rotational Raman combined with atmospheric temperature and pressure obtained with the sounding balloons in this article. This method can not only eliminate the errors of the traditional Klett and Fernald methods caused by the hypothesis, but also avoid the error caused by the correction of the overlap. Finally, the aerosol backscattering coefficient was acquired by using this method and the data obtained via the Raman-Mie scattering Lidar of our lab. And the result was compared with that of Klett and Fernald. PMID:23387171

  12. Light absorption by airborne aerosols: comparison of integrating plate and spectrophone techniques.

    PubMed

    Szkarlat, A C; Japar, S M

    1981-04-01

    An excellent correlation between the integrating plate (IP) and the photoacoustic methods for measuring aerosol light absorption has been found for airborne graphitic carbon in diesel vehicle exhaust. However, the regression coefficient depends on the orientation of the Teflon membrane filter during the IP analysis. With the collected particulates between the filter and the integrating plate, the IP response is 1.85 times that for the filter reversed. In either case the response ratio of the IP method to the photoacoustic method is >1.0, i.e., 2.43 vs 1.30. The IP calibration is also probably dependent on the nature of the filter medium. PMID:20309278

  13. Light absorption coefficient measurement of SOA using a UV-Visible spectrometer connected with an integrating sphere

    NASA Astrophysics Data System (ADS)

    Zhong, Min; Jang, Myoseon

    2011-08-01

    A method for measuring an aerosol light absorption coefficient ( B a) has been developed using a conventional UV-visible spectrometer equipped with an integrating sphere covering a wide range of wavelengths (280-800 nm). The feasibility of the proposed method was evaluated in both the transmittance mode (TUV-IS) and the reflective mode (RUV-IS) using the reference aerosol known for the cross-sectional area. The aerosol was collected on a conventional filter and measured for B a values. The resulting RUV-IS method was applied to measure light absorption of secondary organic aerosol (SOA). SOA was produced through photooxidation of different precursor hydrocarbons such as toluene, d-limonene and α-pinene in the presence of NO x (60-70 ppb) and inorganic seed aerosol using a 2-m 3 indoor Teflon film chamber. Of the three precursor hydrocarbons, the B a value of toluene SOA (0.574 m 2 g -1 at 350 nm) was the highest compared with B a values for α-pinene SOA (0.029 m 2 g -1) and d-limonene SOA (0.038 m 2 g -1). When d-limonene SOA or toluene SOA was internally mixed with neutral [(NH 4) 2SO 4] or acidic inorganic seed (NH 4HSO 4:H 2SO 4 = 1:1 by mole), the SOA showed 2-3 times greater B a values at 350 nm than the SOA with no seed. Aerosol aging with a light source for this study reduced B a values of SOA (e.g., on average 10% for toluene SOA and 30% for d-limonene SOA within 4 h). Overall, weak absorption appeared for chamber-generated SOA over wavelengths ranging from 280 to 550 nm, which fall into the sunlight spectrum.

  14. Determination of aerosol extinction coefficient profiles from LIDAR data using the optical depth solution method

    NASA Astrophysics Data System (ADS)

    Aparna, John; Satheesh, S. K.; Mahadevan Pillai, V. P.

    2006-12-01

    The LIDAR equation contains four unknown variables in a two-component atmosphere where the effects caused by both molecules and aerosols have to be considered. The inversion of LIDAR returns to retrieve aerosol extinction profiles, thus, calls for some functional relationship to be assumed between these two. The Klett's method, assumes a functional relationship between the extinction and backscatter. In this paper, we apply a different technique, called the optical depth solution, where we made use of the total optical depth or transmittance of the atmosphere along the LIDAR-measurement range. This method provides a stable solution to the LIDAR equation. In this study, we apply this technique to the data obtained using a micro pulse LIDAR (MPL, model 1000, Science and Engineering Services Inc) to retrieve the vertical distribution of aerosol extinction coefficient. The LIDAR is equipped with Nd-YLF laser at an operating wavelength of 523.5 nm and the data were collected over Bangalore. The LIDAR data are analyzed to get to weighted extinction coefficient profiles or the weighted sum of aerosol and molecular extinction coefficient profiles. Simultaneous measurements of aerosol column optical depth (at 500 nm) using a Microtops sun photometer were used in the retrievals. The molecular extinction coefficient is determined assuming standard atmospheric conditions. The aerosol extinction coefficient profiles are determined by subtracting the molecular part from the weighted extinction coefficient profiles. The details of the method and the results obtained are presented.

  15. Photoacoustic determination of optical absorption to extinction ratio in aerosols.

    PubMed

    Roessler, D M; Faxvog, F R

    1980-02-15

    The photoacoustic technique has been used in conjunction with an optical transmission measurement to determine the fraction of light absorbed in cigarette and acetylene smoke aerosols. At 0.5145-microm wavelength,the absorption-to-extinction fraction is 0.01 +/- 0.003 for cigarette smoke and is in excellent agreement with predictions from Mie theory for smoke particles having a refractive index of 1.45-0.00133i and a median diameter in the 0.15-0.65-microm range. For acetylene smoke the absorbed fraction was 0.85 +/- 0.05. PMID:20216896

  16. Method and apparatus for aerosol particle absorption spectroscopy

    DOEpatents

    Campillo, Anthony J.; Lin, Horn-Bond

    1983-11-15

    A method and apparatus for determining the absorption spectra, and other properties, of aerosol particles. A heating beam source provides a beam of electromagnetic energy which is scanned through the region of the spectrum which is of interest. Particles exposed to the heating beam which have absorption bands within the band width of the heating beam absorb energy from the beam. The particles are also illuminated by light of a wave length such that the light is scattered by the particles. The absorption spectra of the particles can thus be determined from an analysis of the scattered light since the absorption of energy by the particles will affect the way the light is scattered. Preferably the heating beam is modulated to simplify the analysis of the scattered light. In one embodiment the heating beam is intensity modulated so that the scattered light will also be intensity modulated when the particles absorb energy. In another embodiment the heating beam passes through an interferometer and the scattered light reflects the Fourier Transform of the absorption spectra.

  17. Wavelength dependence of aerosol light absorption in urban and biomass burning impacted conditions: An integrative perspective

    NASA Astrophysics Data System (ADS)

    Arnott, W. P.; Gyawali, M.; Lewis, K.; Moosmuller, H.

    2009-12-01

    Aerosol light absorption depends on aerosol size, morphology, mixing state, and composition. The wavelength dependence is often characterized with use of the Angstrom coefficient for absorption (AAE) determined from measurements at two or more wavelengths. Low fractal dimension black carbon (BC) particles are often expected to have an AAE near unity. Values of AAE significantly larger than unity are often attributed to the presence of an organic coating that absorbs strongly at lower wavelengths, though we have found that even non absorbing coatings on small, biomass burning related BC cores can have large AAE. Values of AAE significantly less than unity are often ascribed to experimental errors or large particle sizes, however, we find that they are most commonly associated with modest absorbing or non absorbing organic coatings that collapse the fractal soot BC core in urban aerosol to a dimension near that of a sphere. Photoacoustic measurements at 405 nm, 532 nm, 870 nm, and 1047 nm in urban Reno and Las Vegas NV, and for biomass burning experiments are used presented to illustrate the range of AAE possible, and coated sphere modeling results are presented to interpret the measurements.

  18. THE MASS ACCOMMODATION COEFFICIENT OF AMMONIUM NITRATE AEROSOL. (R823514)

    EPA Science Inventory

    The mass transfer rate of pure ammonium nitrate between the aerosol and gas phases was
    quantified experimentally by the use of the tandem differential mobility analyzer/scanning mobility
    particle sizer (TDMA/SMPS) technique. Ammonium nitrate particles 80-220 nm in diameter<...

  19. Aerosol extinction and absorption in Evora, Portugal, during the European 2003 summer heat wave

    NASA Astrophysics Data System (ADS)

    Elias, Thierry G.; Silva, Ana M.; Figueira, Maria J.; Belo, Nuno; Pereira, Sergio; Formenti, Paola; Helas, Gunter

    2004-11-01

    Aerosol optical properties are retrieved from measurements acquired during the 2003 summer at the new AERONET station of Evora, Portugal, with a sun/sky photometer, a fluxmeter and a nephelometer. Aerosol optical thickness (aot) derived at several wavelengths shows that an exceptionally long turbid event occurred in July-August. Desert dust particles transported from North Africa increased aot at 873 nm (aot873) to the value of 0.27 with an Ångstrom exponent αC=0.5. Emissions from forest fires in The Iberic peninsula affected Evora since the end of the dust episode, with aot441 reaching 0.81 and aC=1.8. The aerosol scattering coefficient measured at surface level shows that desert dust does not reach the surface level at Evora while the forest fire emissions were uniformly distributed over the atmospheric column. Sky-radiance and flux measurements agree in retrieval of the aerosol single scattering albedo (assa) at several wavelengths. A large absorption rate is found with a high spectral dependence for desert dust particles (assa441=0.86 and ass873=0.93) and with a flat spectral dependence during the forest fires emission episode (assa441=0.88 and assa873=0.87). All measurements as well as back-trajectory calculations indicate mixture of particles during the desert dust.

  20. Wavelength Dependence of the Absorption of Black Carbon Particles: Predictions and Results from the TARFOX Experiment and Implications for the Aerosol Single Scattering Albedo

    NASA Technical Reports Server (NTRS)

    Bergstrom, Robert W.; Russell, Philip B.; Hignett, Phillip

    2002-01-01

    Measurements are presented of the wavelength dependence of the aerosol absorption coefficient taken during the Tropical Aerosol Radiative Forcing Observational Experiment (TARFOX) over the northern Atlantic. The data show an approximate lamda(exp -1) variation between 0.40 and 1.0 micrometers. The theoretical basis of the wavelength variation of the absorption of solar radiation by elemental carbon [or black carbon (BC)] is explored. For a wavelength independent refractive index the small particle absorption limit simplifies to a lambda(exp -1) variation in relatively good agreement with the data. This result implies that the refractive indices of BC were relatively constant in this wavelength region, in agreement with much of the data on refractive indices of BC. However, the result does not indicate the magnitude of the refractive indices. The implications of the wavelength dependence of BC absorption for the spectral behavior of the aerosol single scattering albedo are discussed. It is shown that the single scattering albedo for a mixture of BC and nonabsorbing material decreases with wavelength in the solar spectrum (i.e., the percentage amount of absorption increases). This decease in the single scattering albedo with wavelength for black carbon mixtures is different from the increase in single scattering allied for most mineral aerosols (dusts). This indicates that, if generally true, the spectral variation of the single- scattering albedo can be used to distinguish aerosol types. It also highlights the importance of measurements of the spectral variation of the aerosol absorption coefficient and single scattering albedo.

  1. Aerosol Light Absorption and Scattering in Mexico City: Comparison With Las Vegas, NV, and Los Angeles, CA.

    NASA Astrophysics Data System (ADS)

    Paredes-Miranda, G.; Arnott, W. P.; Gaffney, J. S.; Marley, N. A.; Campbell, D.; Fujita, E.

    2007-12-01

    Aerosol light scattering and absorption measurements were deployed in and near Mexico City in March 2006 as part of the Megacity Impacts on Regional and Global Environments (MIRAGE). The primary site in Mexico City was an urban site at Instituto Mexicano del Petroleo (Mexican Oil Institute, denoted by IMP). Similar campaigns were held in Las Vegas, NV in January-February, 2003; and Los Angeles, CA at numerous sites during all seasons from 2003 through 2007. The IMP site gave in-situ characterization of the Mexico City plume under favorable wind conditions. The photoacoustic instrument (PAS) used at IMP operates at 532 nm, and conveniently allowed for characterization of gaseous absorption at this wavelength as well. Light scattering measurements are accomplished within the PAS by the reciprocal nephelometery method. In Mexico City the aerosol absorption coefficient typically varies between 20 and 180 Mm-1 during the course of the day and significant diurnal variation of the aerosol single scattering albedo was observed probably as a consequence of secondary aerosol formation. We will present the diurnal variation of the scattering and absorption as well as the single scattering albedo and fraction of absorption due to gases at the IMP site and compare with Las Vegas diurnal variation. Mexico City 'breaths' more during the course of the day than Las Vegas, Nevada in part because the latitude of Mexico City resulted in more direct solar radiation. Further insight on the meteorological connections and population dynamics will be discussed.

  2. Wavelength-Dependent Optical Absorption Properties of Artificial and Atmospheric Aerosol Measured by a Multi-Wavelength Photoacoustic Spectrometer

    NASA Astrophysics Data System (ADS)

    Utry, N.; Ajtai, T.; Pintér, M.; Bozóki, Z.; Szabó, G.

    2014-12-01

    Various aspects of the photoacoustic (PA) detection method are discussed from the point of view of developing it into a routine tool for measuring the wavelength-dependent optical absorption coefficient of artificial and atmospheric aerosol. The discussion includes the issues of calibration, cross-sensitivity to gaseous molecules, background PA signal subtraction, and size-dependent particle losses within the PA system. The results in this paper are based on a recently developed four-wavelength PA system, which has operational wavelengths in the near-infrared, in the visible, and in the ultraviolet. The measured spectra of artificial and atmospheric aerosol prove the outstanding applicability of the presented PA system.

  3. Airborne Measurements of Scattering and Absorption Coefficients in the Planetary Boundary Layer above the Po Valley, Italy, during the PEGASOS Campaigns

    NASA Astrophysics Data System (ADS)

    Rosati, B.; Weingartner, E.; Gysel, M.; Tillmann, R.; Mentel, T. F.; Decesari, S.; Marinoni, A.; Gobbi, G. P.; Fierli, F.; Cairo, F.; Bucci, S.; Zanatta, M.; Größ, J.; Baltensperger, U.

    2014-12-01

    Aerosol particles influence the Earth's radiation budget by interacting with the incoming sunlight. The chemical composition and size of aerosol particles determine their potential to scatter and absorb radiation as well as their capability to take up water (Zieger et al., 2011). If particles are hygroscopic their optical properties will be altered at enhanced relative humidities (RH) due to the increase in size and change in index of refraction. It is known that RH but also the chemical composition of aerosols change with altitude (Morgan et al., 2010) which makes it very important to investigate optical properties at different heights. Within the Pan-European Gas-Aerosols-climate interaction Study (PEGASOS) a set of instruments was installed on a Zeppelin to investigate changes of light scattering and absorption in the planetary boundary layer. In order to obtain the scattering properties, Mie calculations were performed for size distributions recorded with SMPS (scanning mobility particle sizer) and WELAS (optical size spectrometer). The index of refraction and the hygroscopicity of the aerosol particles were measured with the white-light humidified optical particle spectrometer (WHOPS). These measurements further allowed studying the RH-dependence of the optical properties. Moreover, a seven wavelength portable aethalometer was employed to determine the light absorption properties of the aerosol. In this work we will present vertical profiles of scattering and absorption coefficients measured during Zeppelin flights of the PEGASOS campaigns in Italy in 2012. Additionally comparisons with ground based measurements from nephelometers and aethalometers, as well as remote sensing results will be shown. W.T. Morgan et al., Enhancement of the aerosol direct radiative effect by semi-volatile aerosol components: Airborne measurements in North-Western Europe, Atmospheric Chemistry and Physics 10(2010), pp. 8151-8171.P. Zieger et al., Comparison of ambient aerosol

  4. Verification and application of the extended spectral deconvolution algorithm (SDA+) methodology to estimate aerosol fine and coarse mode extinction coefficients in the marine boundary layer

    NASA Astrophysics Data System (ADS)

    Kaku, K. C.; Reid, J. S.; O'Neill, N. T.; Quinn, P. K.; Coffman, D. J.; Eck, T. F.

    2014-10-01

    The spectral deconvolution algorithm (SDA) and SDA+ (extended SDA) methodologies can be employed to separate the fine and coarse mode extinction coefficients from measured total aerosol extinction coefficients, but their common use is currently limited to AERONET (AErosol RObotic NETwork) aerosol optical depth (AOD). Here we provide the verification of the SDA+ methodology on a non-AERONET aerosol product, by applying it to fine and coarse mode nephelometer and particle soot absorption photometer (PSAP) data sets collected in the marine boundary layer. Using data sets collected on research vessels by NOAA-PMEL(National Oceanic and Atmospheric Administration - Pacific Marine Environmental Laboratory), we demonstrate that with accurate input, SDA+ is able to predict the fine and coarse mode scattering and extinction coefficient partition in global data sets representing a range of aerosol regimes. However, in low-extinction regimes commonly found in the clean marine boundary layer, SDA+ output accuracy is sensitive to instrumental calibration errors. This work was extended to the calculation of coarse and fine mode scattering coefficients with similar success. This effort not only verifies the application of the SDA+ method to in situ data, but by inference verifies the method as a whole for a host of applications, including AERONET. Study results open the door to much more extensive use of nephelometers and PSAPs, with the ability to calculate fine and coarse mode scattering and extinction coefficients in field campaigns that do not have the resources to explicitly measure these values.

  5. Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition

    NASA Astrophysics Data System (ADS)

    Russell, P. B.; Bergstrom, R. W.; Shinozuka, Y.; Clarke, A. D.; Decarlo, P. F.; Jimenez, J. L.; Livingston, J. M.; Redemann, J.; Dubovik, O.; Strawa, A.

    2010-02-01

    Recent results from diverse air, ground, and laboratory studies using both radiometric and in situ techniques show that the fractions of black carbon, organic matter, and mineral dust in atmospheric aerosols determine the wavelength dependence of absorption (often expressed as Absorption Angstrom Exponent, or AAE). Taken together, these results hold promise of improving information on aerosol composition from remote measurements. The main purpose of this paper is to show that AAE values for an Aerosol Robotic Network (AERONET) set of retrievals from Sun-sky measurements describing full aerosol vertical columns are also strongly correlated with aerosol composition or type. In particular, we find AAE values near 1 (the theoretical value for black carbon) for AERONET-measured aerosol columns dominated by urban-industrial aerosol, larger AAE values for biomass burning aerosols, and the largest AAE values for Sahara dust aerosols. These AERONET results are consistent with results from other, very different, techniques, including solar flux-aerosol optical depth (AOD) analyses and airborne in situ analyses examined in this paper, as well as many other previous results. Ambiguities in aerosol composition or mixtures thereof, resulting from intermediate AAE values, can be reduced via cluster analyses that supplement AAE with other variables, for example Extinction Angstrom Exponent (EAE), which is an indicator of particle size. Together with previous results, these results strengthen prospects for determining aerosol composition from space, for example using the Glory Aerosol Polarimetry Sensor (APS), which seeks to provide retrievals of multiwavelength single-scattering albedo (SSA) and aerosol optical depth (and therefore aerosol absorption optical depth (AAOD) and AAE), as well as shape and other aerosol properties. Multidimensional cluster analyses promise additional information content, for example by using the Ozone Monitoring Instrument (OMI) to add AAOD in the near

  6. Multiwavelength In-Situ Aerosol Scattering and Absorption During the NEAQS-ITCT 2004 Field Campaign: Aerosol Classification, Case Studies, and Data Interpretation

    NASA Astrophysics Data System (ADS)

    Sierau, B.; Covert, D.; Coffman, D.; Quinn, P.; Bates, T.

    2005-12-01

    In-situ, three wavelength measurements of aerosol scattering and absorption of the New York and Boston urban pollution outflow were carried out aboard the NOAA research vessel Ronald H. Brown during the NEAQS-ITCT 2004 (New England Air Quality Study-Intercontinental Transport and Chemical Transformation Study) field campaign during July 2004 in the Gulf of Maine. Aerosol scattering, backscattering and absorption-coefficients were measured using integrating nephelometers and multiwavelength, filter-based absorption photometers (PSAPs) at ~55-60% RH (nephelometers). Two data sets were collected, one for particles with diameters dp<10μm and one for particles <1μm. The purpose of the latter was to focus on the largely pollution related accumulation mode and to minimize the uncertainty due to highly variable near-surface sea salt aerosol. Combining the aerosol scattering and absorption coefficients σsp and σap yields the derived, intensive parameters, single-scattering albedo, ω=σsp/(σsp+σap), Ångström exponents, å, for σsp, and σap, the hemispheric backscattering ratio, and the fine mode fraction of the aerosol, FMF =σsp(dp<1μm)/σsp(dp<10μm). These are key parameters in estimating aerosol direct radiative forcing and they provide constraints on model building and closure studies with physical and chemical aerosol properties. They are important for relating in-situ optical properties to those sensed remotely, e.g., optical depth from ground- or aircraft-based sun photometry or optical depth from satellite, and to the FMF retrieved from satellite data. The measured and derived data will be classified based on a trajectory analysis of the sampled air masses to identify distinct aerosol populations and sources. Case studies describing the aging of pollution plumes are calculated and analyzed in context of other measurements and the prevailing meteorology and the upwind sources. The obtained relationship between in-situ Ångström and FMF will be compared

  7. Absorption coefficient at 10.6 microm in CdTe modulator crystals.

    PubMed

    Tucker, A W; Birnbaum, M; Montes, H; Fincher, C L

    1982-08-15

    The bulk and surface absorption coefficients of CdTe modulator crystals at 10.6 microm were compared with those of single-crystal KC1 and NaCl which served to calibrate the laser calorimeter. High-resistivity (>10(7) ohm/cm) CdTe crystals exhibited a bulk absorption coefficient of 0.0014 cm(-1). PMID:20396150

  8. FTIR-spectrometer-determined absorption coefficients of seven hydrazine fuel gases - Implications for laser remote sensing

    NASA Technical Reports Server (NTRS)

    Molina, L. T.; Grant, W. B.

    1984-01-01

    The absorption spectra of three hydrazines and four of their air-oxidation products were measured in the 9-12-micron spectral region with a Fourier transform infrared (FTIR) spectrometer with a 0.05-kayser resolution to determine absorption coefficients at CO2 and tunable diode laser wavelengths. The measurements agreed well with published CO2 laser determinations for many of the absorption coefficients, except where the published values are thought to be in error. The coefficients were then used to estimate the sensitivity for remote detection of these gases using CO2 and tunable diode lasers in long-path differential absorption measurements.

  9. Measurement of the absorption coefficient of acoustical materials using the sound intensity method

    NASA Technical Reports Server (NTRS)

    Atwal, Mahabir S.; Crocker, Malcolm J.

    1987-01-01

    In this study the possibility of using the two-microphone sound intensity technique to measure the normal incidence and the random incidence sound absorption coefficient was investigated. The normal incidence absorption coefficient was determined by measuring the intensity incidence on the sample and the intensity reflected by the sample placed in an anechoic chamber. The random incidence absorption coefficient was determined by measuring the intensity incident on the sample and the intensity reflected by the sample placed in a reverberation chamber. Absorption coefficient results obtained by the sound intensity technique were compared with standard techniques, namely the reverberation chamber and the standing wave tube. The major advantages of using the sound intensity technique are that it permits 'in situ' measurements and the absorption coefficient for a large range of frequencies can be obtained from a single measurement.

  10. A contribution of brown carbon aerosol to the aerosol light absorption and its radiative forcing in East Asia

    NASA Astrophysics Data System (ADS)

    Park, Rokjin J.; Kim, Minjoong J.; Jeong, Jaein I.; Youn, Daeok; Kim, Sangwoo

    2010-04-01

    Brown carbon aerosols were recently found to be ubiquitous and effectively absorb solar radiation. We use a 3-D global chemical transport model (GEOS-Chem) together with aircraft and ground based observations from the TRACE-P and the ACE-Asia campaigns to examine the contribution of brown carbon aerosol to the aerosol light absorption and its climatic implication over East Asia in spring 2001. We estimated brown carbon aerosol concentrations in the model using the mass ratio of brown carbon to black carbon (BC) aerosols based on measurements in China and Europe. The comparison of simulated versus observed aerosol light absorption showed that the model accounting for brown carbon aerosol resulted in a better agreement with the observations in East Asian-Pacific outflow. We then used the model results to compute the radiative forcing of brown carbon, which amounts up to -2.4 W m -2 and 0.24 W m -2 at the surface and at the top of the atmosphere (TOA), respectively, over East Asia. Mean radiative forcing of brown carbon aerosol is -0.43 W m -2 and 0.05 W m -2 at the surface and at the TOA, accounting for about 15% of total radiative forcing (-2.2 W m -2 and 0.33 W m -2) by absorbing aerosols (BC + brown carbon aerosol), having a significant climatic implication in East Asia.

  11. Dynamic absorption coefficients of CAR and non-CAR resists at EUV

    NASA Astrophysics Data System (ADS)

    Fallica, Roberto; Stowers, Jason K.; Grenville, Andrew; Frommhold, Andreas; Robinson, Alex P. G.; Ekinci, Yasin

    2016-03-01

    The dynamic absorption coefficients of several CAR and non-CAR EUV photoresists are measured experimentally using a specifically developed setup in transmission mode at the XIL beamline of the Swiss Light Source. The absorption coefficient α and the Dill parameters ABC were measured with unprecedented accuracy. In general the α of resists match very closely with the theoretical value calculated from elemental densities and absorption coefficients, whereas exceptions are observed. In addition, through the direct measurements of the absorption coefficients and dose-to-clear values, we introduce a new figure of merit called Chemical Sensitivity to account for all the post-absorption chemical reaction ongoing in the resist, which is also predicts a quantitative clearing volume, and respectively clearing radius, due to the photon absorption in the resist. These parameters may help in deeper insight into the underlying mechanisms of EUV concept of clearing volume and clearing radius are then defined and quantitatively calculated.

  12. Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition

    NASA Astrophysics Data System (ADS)

    Russell, P. B.; Bergstrom, R. W.; Shinozuka, Y.; Clarke, A. D.; Decarlo, P. F.; Jimenez, J. L.; Livingston, J. M.; Redemann, J.; Holben, B.; Dubovik, O.; Strawa, A.

    2009-10-01

    Recent results from diverse air, ground, and laboratory studies using both radiometric and in situ techniques show that the fractions of black carbon, organic matter, and mineral dust in atmospheric aerosols determine the wavelength dependence of absorption (expressed as Absorption Angstrom Exponent, or AAE). Taken together, these results hold promise of improving information on aerosol composition from remote measurements. The purpose of this paper is to show that AAE values for Aerosol Robotic Network (AERONET) retrievals from Sun-sky measurements describing the full aerosol vertical column are also strongly correlated with aerosol composition or type. In particular, we find AAE values near 1 (the theoretical value for black carbon) for AERONET-measured aerosol columns dominated by urban-industrial aerosol, larger AAE values for biomass burning aerosols, and the largest AAE values for Sahara dust aerosols. Ambiguities in aerosol composition or mixtures thereof, resulting from intermediate AAE values, can be reduced via cluster analyses that supplement AAE with other variables, for example Extinction Angstrom Exponent (EAE), which is an indicator of particle size. Together with previous results, these results strengthen prospects for determining aerosol composition from space, for example using the Glory Aerosol Polarimetry Sensor (APS), which promises retrievals of multiwavelength single-scattering albedo (SSA) and aerosol optical depth (and therefore aerosol absorption optical depth (AAOD) and AAE), as well as shape and other aerosol properties. Cluster analyses promise additional information content, for example by using the Ozone Monitoring Instrument (OMI) to add AAOD in the near ultraviolet and CALIPSO aerosol layer heights to reduce height-absorption ambiguity.

  13. Measurements of the HO2 uptake coefficients onto single component organic aerosols.

    PubMed

    Lakey, P S J; George, I J; Whalley, L K; Baeza-Romero, M T; Heard, D E

    2015-04-21

    Measurements of HO2 uptake coefficients (γ) were made onto a variety of organic aerosols derived from glutaric acid, glyoxal, malonic acid, stearic acid, oleic acid, squalene, monoethanol amine sulfate, monomethyl amine sulfate, and two sources of humic acid, for an initial HO2 concentration of 1 × 10(9) molecules cm(-3), room temperature and at atmospheric pressure. Values in the range of γ < 0.004 to γ = 0.008 ± 0.004 were measured for all of the aerosols apart from the aerosols from the two sources of humic acid. For humic acid aerosols, uptake coefficients in the range of γ = 0.007 ± 0.002 to γ = 0.09 ± 0.03 were measured. Elevated concentrations of copper (16 ± 1 and 380 ± 20 ppb) and iron (600 ± 30 and 51 000 ± 3000 ppb) ions were measured in the humic acid atomizer solutions compared to the other organics that can explain the higher uptake values measured. A strong dependence upon relative humidity was also observed for uptake onto humic acid, with larger uptake coefficients seen at higher humidities. Possible hypotheses for the humidity dependence include the changing liquid water content of the aerosol, a change in the mass accommodation coefficient or in the Henry's law constant. PMID:25811311

  14. Light absorption by secondary organic aerosol from α-pinene: Effects of oxidants, seed aerosol acidity, and relative humidity

    SciTech Connect

    Song, Chen; Gyawali, Madhu; Zaveri, Rahul A.; Shilling, John E.; Arnott, W. Patrick

    2013-10-25

    It is well known that light absorption from dust and black carbon aerosols has a warming effect on climate while light scattering from sulfate, nitrate, and sea salt aerosols has a cooling effect. However, there are large uncertainties associated with light absorption and scattering by different types of organic aerosols, especially in the near-UV and UV spectral regions. In this paper, we present the results from a systematic laboratory study focused on measuring light absorption by secondary organic aerosols (SOAs) generated from dark α-pinene + O3 and α-pinene + NOx + O3 systems in the presence of neutral and acidic sulfate seed aerosols. Light absorption was monitored using photoacoustic spectrometers at four different wavelengths: 355, 405, 532, and 870 nm. Significant light absorption at 355 and 405 nm was observed for the SOA formed from α-pinene + O3 + NO3 system only in the presence of highly acidic sulfate seed aerosols under dry conditions. In contrast, no absorption was observed when the relative humidity was elevated to greater than 27% or in the presence of neutral sulfate seed aerosols. Organic nitrates in the SOA formed in the presence of neutral sulfate seed aerosols were found to be nonabsorbing, while the light-absorbing compounds are speculated to be aldol condensation oligomers with nitroxy organosulfate groups that are formed in highly acidic sulfate aerosols. Finally and overall, these results suggest that dark α-pinene + O3 and α-pinene + NOx + O3 systems do not form light-absorbing SOA under typical atmospheric conditions.

  15. Light absorption by secondary organic aerosol from α-pinene: Effects of oxidants, seed aerosol acidity, and relative humidity

    NASA Astrophysics Data System (ADS)

    Song, Chen; Gyawali, Madhu; Zaveri, Rahul A.; Shilling, John E.; Arnott, W. Patrick

    2013-10-01

    is well known that light absorption from dust and black carbon aerosols has a warming effect on climate while light scattering from sulfate, nitrate, and sea salt aerosols has a cooling effect. However, there are large uncertainties associated with light absorption and scattering by different types of organic aerosols, especially in the near-UV and UV spectral regions. In this paper, we present the results from a systematic laboratory study focused on measuring light absorption by secondary organic aerosols (SOAs) generated from dark α-pinene + O3 and α-pinene + NOx + O3 systems in the presence of neutral and acidic sulfate seed aerosols. Light absorption was monitored using photoacoustic spectrometers at four different wavelengths: 355, 405, 532, and 870 nm. Significant light absorption at 355 and 405 nm was observed for the SOA formed from α-pinene + O3 + NO3 system only in the presence of highly acidic sulfate seed aerosols under dry conditions. In contrast, no absorption was observed when the relative humidity was elevated to greater than 27% or in the presence of neutral sulfate seed aerosols. Organic nitrates in the SOA formed in the presence of neutral sulfate seed aerosols were found to be nonabsorbing, while the light-absorbing compounds are speculated to be aldol condensation oligomers with nitroxy organosulfate groups that are formed in highly acidic sulfate aerosols. Overall, these results suggest that dark α-pinene + O3 and α-pinene + NOx + O3 systems do not form light-absorbing SOA under typical atmospheric conditions.

  16. Characterization of a Photoacoustic Aerosol Absorption Spectrometer for Aircraft-based Measurements

    NASA Astrophysics Data System (ADS)

    Mason, B. J.; Wagner, N. L.; Richardson, M.; Brock, C. A.; Murphy, D. M.; Adler, G.

    2015-12-01

    Atmospheric aerosol directly impacts the Earth's climate through extinction of incoming and outgoing radiation. The optical extinction is due to both scattering and absorption. In situ measurements of aerosol extinction and scattering are well established and have uncertainties less than 5%. However measurements of aerosol absorption typically have uncertainties of 20-30%. Development and characterization of more accurate and precise instrumentation for measurement of aerosol absorption will enable a deeper understand of significance and spatial distribution of black and brown carbon aerosol, the effect of atmospheric processes on aerosol optical properties, and influence of aerosol optical properties on direct radiative forcing. Here, we present a detailed characterization of a photoacoustic aerosol absorption spectrometer designed for deployment aboard research aircraft. The spectrometer operates at three colors across the visible spectrum and is calibrated in the field using ozone. The field calibration is validated in the laboratory using synthetic aerosol and simultaneous measurements of extinction and scattering. In addition, the sensitivity of the instrument is characterized under conditions typically encountered during aircraft sampling e.g. as a function of changing pressure. We will apply this instrument characterization to ambient aerosol absorption data collected during the SENEX and SEAC4RS aircraft based field campaigns.

  17. Correlations between absorption Angström exponent (AAE) of wintertime ambient urban aerosol and its physical and chemical properties

    NASA Astrophysics Data System (ADS)

    Utry, N.; Ajtai, T.; Filep, Á.; Pintér, M.; Török, Zs.; Bozóki, Z.; Szabó, G.

    2014-07-01

    Based on a two-week measurement campaign in an environment heavily polluted both by transit traffic and household heating in the inner city of Szeged (Hungary), correlations between the absorption Angström exponent (AAE) fitted to the optical absorption coefficients measured with a four wavelength (1064, 532, 355 and 266 nm) photoacoustic aerosol measuring system (4λ-PAS) and various aerosol parameters were identified. AAE was found to depend linearly on OCwb/EC and on NGM100/NGMD20, i.e. on the ratio of mass concentrations of elemental carbon (EC) to the fraction of organic carbon associated with wood burning (OCwb), and on the ratio of aerosol number concentrations in the 20 nm (NGMD20) to 100 nm (NGMD100) modes, with a regression coefficient of R = 0.95 and R = 0.86, respectively. In the daily fluctuation of AAE two minima were identified, which coincide with the morning and afternoon rush hours, during which NGMD20 exhibits maximum values. During the campaign the shape of the aerosol volume size distribution (dV/dlogD) was found to be largely invariant, supporting the assumption that the primary driver for the AAE variation was aerosol chemical composition rather than particle size. Furthermore, when wavelength segregated AAE values were calculated, AAE for the shorter wavelengths (AAE355-266) was also found to depend linearly on the above mentioned ratios with similar regression coefficients but with a much steeper correlation line, while the AAE for the longer wavelengths (AAE1064-532) exhibits only a considerably weaker correlation. These results prove the unique advantages of real time multi-wavelength photoacoustic measurement of optical absorption in case the wavelength range includes the ultra-violet too.

  18. Measurement of the absorption coefficient using the sound-intensity technique

    NASA Technical Reports Server (NTRS)

    Atwal, M.; Bernhard, R.

    1984-01-01

    The possibility of using the sound intensity technique to measure the absorption coefficient of a material is investigated. This technique measures the absorption coefficient by measuring the intensity incident on the sample and the net intensity reflected by the sample. Results obtained by this technique are compared with the standard techniques of measuring the change in the reverberation time and the standing wave ratio in a tube, thereby, calculating the random incident and the normal incident adsorption coefficient.

  19. Chemical and size effects of hygroscopic aerosols on light scattering coefficients

    NASA Astrophysics Data System (ADS)

    Tang, Ignatius N.

    1996-08-01

    The extensive thermodynamic and optical properties recently reported [Tang and Munkelwitz, 1994a] for sulfate and nitrate solution droplets are incorporated into a visibility model for computing light scattering by hygroscopic aerosols. The following aerosol systems are considered: NH4HSO4, (NH4)2SO4, (NH4)3H(SO4), NaHSO4, Na2SO4, NH4NO3, and NaNO3. In addition, H2SO4 and NaCl are included to represent freshly formed sulfate and background sea-salt aerosols, respectively. Scattering coefficients, based on 1 μg dry salt per cubic meter of air, are calculated as a function of relative humidity for aerosols of various chemical compositions and lognormal size distributions. For a given size distribution the light scattered by aerosol particles per unit dry-salt mass concentration is only weakly dependent on chemical constituents of the hygroscopic sulfate and nitrate aerosols. Sulfuric acid and sodium chloride aerosols, however, are exceptions and scatter light more efficiently than all other inorganic salt aerosols considered in this study. Both internal and external mixtures exhibit similar light-scattering properties. Thus for common sulfate and nitrate aerosols, since the chemical effect is outweighed by the size effect, it follows that observed light scattering by the ambient aerosol can be approximated, within practical measurement uncertainties, by assuming the aerosol being an external mixture. This has a definite advantage for either visibility degradation or climatic impact modeling calculations, because relevant data are now available for external mixtures but only very scarce for internal mixtures.

  20. The long-term global record on Aerosol Absorption Optical Depth from TOMS and OMI observations

    NASA Astrophysics Data System (ADS)

    Torres, O.; Bhartia, P.; Ahn, C.; Veefkind, P.

    2006-12-01

    Carbonaceous aerosols from biomass burning and boreal forest fires, and desert dust lofted by the winds from the world major arid and semi-arid areas are among the most long-lived aerosol types in the Earth's atmosphere, since they often reach the free troposphere and are sometimes transported thousands of kilometers from their original sources. A lot has been learned about the global distribution of aerosol sources, and the transport patterns of these aerosol types since the development of the near-UV methods of aerosol detection and characterization using data from the TOMS series of instruments. Because both smoke and desert dust aerosols absorb UV-radiation, the TOMS aerosol sensing technique is specially suited for tracking these aerosol types over variety of surfaces including clouds and snow. TOMS aerosol observations, for instance, have been fundamental in discovering that carbonaceous aerosols associated with wild fires at mid and high latitudes often reach the lower stratosphere, and travel as far as the remote polar regions. We have recently completed the development of an improved algorithm to derive quantitative information about aerosol absorption optical depth using near-UV data. We will discuss the multi- decadal global record on aerosol absorption optical depth produced using TOMS and OMI sensors, and review the multiple contributions of the TOMS-OMI record to the current understanding of the factors that govern the observed temporal and spatial distribution of smoke and desert dust aerosols.

  1. Light-absorbing aldol condensation products in acidic aerosols: Spectra, kinetics, and contribution to the absorption index

    NASA Astrophysics Data System (ADS)

    Nozière, Barbara; Esteve, William

    The radiative properties of aerosols that are transparent to light in the near-UV and visible, such as sulfate aerosols, can be dramatically modified when mixed with absorbing material such as soot. In a previous work we had shown that the aldol condensation of carbonyl compounds produces light-absorbing compounds in sulfuric acid solutions. In this work we report the spectroscopic and kinetic parameters necessary to estimate the effects of these reactions on the absorption index of sulfuric acid aerosols in the atmosphere. The absorption spectra obtained from the reactions of six different carbonyl compounds (acetaldehyde, acetone, propanal, butanal, 2-butanone, and trifluoroacetone) and their mixtures were compared over 190-1100 nm. The results indicated that most carbonyl compounds should be able to undergo aldol condensation. The products are oligomers absorbing light in the 300-500 nm region where few other compounds absorb, making them important for the radiative properties of aerosols. Kinetic experiments in 96-75 wt% H 2SO 4 solutions and between 273 and 314 K gave an activation energy for the rate constant of formation of the aldol products of acetaldehyde of -(70±15) kJ mol -1 in 96 wt% solution and showed that the effect of acid concentration was exponential. A complete expression for this rate constant is proposed where the absolute value in 96 wt% H 2SO 4 and at 298 K is scaled to the Henry's law coefficient for acetaldehyde and the absorption cross-section for the aldol products assumed in this work. The absorption index of stratospheric sulfuric acid aerosols after a 2-year residence time was estimated to 2×10 -4, optically equivalent to a content of 0.5% of soot and potentially significant for the radiative forcing of these aerosols and for satellite observations in channels where the aldol products absorb.

  2. Strong Wavelength Dependence of Aerosol Light Absorption from Peat Combustion

    NASA Astrophysics Data System (ADS)

    Gyawali, M. S.; Chakrabarty, R. K.; Yatavelli, R. L. N.; Chen, L. W. A. A.; Knue, J.; Samburova, V.; Watts, A.; Moosmüller, H.; Arnott, W. P.; Wang, X.; Zielinska, B.; Chow, J. C.; Watson, J. G.; Tsibart, A.

    2014-12-01

    Globally, organic soils and peats may store as much as 600 Gt of terrestrial carbon, representing 20 - 30% of the planet's terrestrial organic carbon mass. This is approximately the same carbon mass as that contained in Earth's atmosphere, despite peatlands occupying only 3% of its surface. Effects of fires in these ecosystems are of global concern due to their potential for enormous carbon release into the atmosphere. The implications for contributions of peat fires to the global carbon cycle and radiative forcing scenarios are significant. Combustion of peat mostly takes place in the low temperature, smoldering phase of a fire. It consumes carbon that may have accumulated over a period of hundreds to thousands of years. In comparison, combustion of aboveground biomass fuels releases carbon that has accumulated much more recently, generally over a period of years or decades. Here, we report our findings on characterization of emissions from laboratory combustion of peat soils from three locations representing the biomes in which these soils occur. Peat samples from Alaska and Florida (USA) and Siberia (Russia) were burned at two different fuel moisture levels. Burns were conducted in an 8-m3 volume combustion chamber located at the Desert Research Institute, Reno, NV, USA. We report significant brown carbon production from combustion of all three peat soils. We used a multispectral (405, 532, 781 nm) photoacoustic instrument equipped with integrating nephelometer to measure the wavelength-dependent aerosol light absorption and scattering. Absorption Ångström exponents (between 405 and 532 nm) as high as ten were observed, revealing strongly enhanced aerosol light absorption in the violet and blue wavelengths. Single scattering albedos (SSA) of 0.94 and 0.99 were observed at 405 and 532 nm, respectively, for the same sample. Variability of these optical parameters will be discussed as a function of fuel and combustion conditions. Other real-time measurements

  3. Impact of Tropospheric Aerosol Absorption on Ozone Retrieval from buv Measurements

    NASA Technical Reports Server (NTRS)

    Torres, O.; Bhartia, P. K.

    1998-01-01

    The impact of tropospheric aerosols on the retrieval of column ozone amounts using spaceborne measurements of backscattered ultraviolet radiation is examined. Using radiative transfer calculations, we show that uv-absorbing desert dust may introduce errors as large as 10% in ozone column amount, depending on the aerosol layer height and optical depth. Smaller errors are produced by carbonaceous aerosols that result from biomass burning. Though the error is produced by complex interactions between ozone absorption (both stratospheric and tropospheric), aerosol scattering, and aerosol absorption, a surprisingly simple correction procedure reduces the error to about 1%, for a variety of aerosols and for a wide range of aerosol loading. Comparison of the corrected TOMS data with operational data indicates that though the zonal mean total ozone derived from TOMS are not significantly affected by these errors, localized affects in the tropics can be large enough to seriously affect the studies of tropospheric ozone that are currently undergoing using the TOMS data.

  4. Absorption of laser radiation in a H-He plasma. I - Theoretical calculation of the absorption coefficient

    NASA Technical Reports Server (NTRS)

    Stallcop, J. R.

    1974-01-01

    The theory for calculating the absorption of laser radiation by hydrogen is outlined for the temperatures and pressures of common laboratory plasmas. Nonhydrogenic corrections for determining the absorption by helium are also included. The coefficients for the absorption of He-Ne laser radiation at the wavelengths of 0.633, 1.15, and 3.39 microns in a H plasma is presented for temperatures in the range from 10,000 to 40,000 K and electron number densities in the range from 10 to the 15th power to 10 to the 18th power per cu cm. The total absorption of a H-He plasma calculated from this theory is compared with the measured absorption. The theoretical composition of the H-He absorption is analyzed with respect to the significant absorption processes, inverse bremsstrahlung, photoionization, resonance excitation, and photodetachment.

  5. Simulations of the Aerosol Index and the Absorption Aerosol Optical Depth and Comparisons with OMI Retrievals During ARCTAS-2008 Campaign

    NASA Technical Reports Server (NTRS)

    2010-01-01

    We have computed the Aerosol Index (AI) at 354 nm, useful for observing the presence of absorbing aerosols in the atmosphere, from aerosol simulations conducted with the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) module running online the GEOS-5 Atmospheric GCM. The model simulates five aerosol types: dust, sea salt, black carbon, organic carbon and sulfate aerosol and can be run in replay or data assimilation modes. In the assimilation mode, information's provided by the space-based MODIS and MISR sensors constrains the model aerosol state. Aerosol optical properties are then derived from the simulated mass concentration and the Al is determined at the OMI footprint using the radiative transfer code VLIDORT. In parallel, model derived Absorption Aerosol Optical Depth (AAOD) is compared with OMI retrievals. We have focused our study during ARCTAS (June - July 2008), a period with a good sampling of dust and biomass burning events. Our ultimate goal is to use OMI measurements as independent validation for our MODIS/MISR assimilation. Towards this goal we document the limitation of OMI aerosol absorption measurements on a global scale, in particular sensitivity to aerosol vertical profile and cloud contamination effects, deriving the appropriate averaging kernels. More specifically, model simulated (full) column integrated AAOD is compared with model derived Al, this way identifying those regions and conditions under which OMI cannot detect absorbing aerosols. Making use of ATrain cloud measurements from MODIS, C1oudSat and CALIPSO we also investigate the global impact on clouds on OMI derived Al, and the extent to which GEOS-5 clouds can offer a first order representation of these effects.

  6. Ångström coefficient as a tracer of the continental aerosols

    NASA Astrophysics Data System (ADS)

    Kusmierczyk-Michulec, Jolanta; Van Eijk, Alexander M. J.

    2007-09-01

    The variation of the extinction coefficient with wavelength can be presented as a power law function with a constant (related to the power factor) known as the Ångström coefficient. When the particle size distribution is dominated by small particles, usually associated with pollution, the Ångström coefficients are high; in clear conditions they are usually low. Long residence time of air masses over land and in particular the passage over large urban areas cause high concentrations of fine particles and thus high values of the Ångström coefficients. The opposite effect can be observed over water. The longer the time that the air masses spent over water the more evident is a change in the aerosol size distribution caused by the deposition of continental aerosols. As a result of this process the measured Ångström coefficient values become much smaller. Therefore this parameter is a good tracer for the concentration of aerosols originated over land. The relation between the Ångström coefficient and TOS (time over sea) is demonstrated on three data sets. The first data set includes measurements collected at the Irish Atlantic coast in 1994 and 1995, the second one, data collected within the Rough Evaporation Duct (RED) experiment that took place off Oahu, Hawaii in 2001. The third one represents data collected at the Baltic Sea during cruises in 1997and 1998.

  7. Absorption Coefficient Imaging by Near-Field Scanning Optical Microscopy in Bacteria

    NASA Astrophysics Data System (ADS)

    de Paula, Ana M.; Chaves, Claudilene R.; Silva, Haroldo B.; Weber, Gerald

    2003-06-01

    We present a method for obtaining a position-dependent absorption coefficient from near-field scanning optical transmission microscopy. We show that the optical transmission intensity can be combined with the topography, resulting into an absorption coefficient that simplifies the analysis of different materials within a sample. The method is tested with the dye rhodamine 6G, and we show some analysis in biological samples such as bacteria Klebsiella pneumoniae and Pseudomonas aeruginosa . The calculated absorption coefficient images show important details of the bacteria, in particular for P. aeruginosa , in which membrane vesicles are clearly seen.

  8. Binary TLBO algorithm assisted for designing plasmonic nano bi-pyramids-based absorption coefficient

    NASA Astrophysics Data System (ADS)

    Akhlaghi, Majid; Emami, Farzin; Nozhat, Najmeh

    2014-07-01

    A new efficient binary optimization method based on Teaching-Learning-Based Optimization (TLBO) algorithm is proposed to design an array of plasmonic nano bi-pyramids in order to achieve maximum absorption coefficient spectrum. In binary TLBO, a group of learners consisting of a matrix with binary entries controls the presence ('1') or the absence ('0') of nanoparticles in the array. Simulation results show that absorption coefficient strongly depends on the localized position of plasmonic nanoparticles. Non-periodic structures have more appropriate response in term of absorption coefficient. This approach is useful in optical applications such as solar cells and plasmonic nano antenna.

  9. Inter-Comparison of ILAS-II Version 1.4 Aerosol Extinction Coefficient at 780 nm with SAGE II, SAGE III, and POAM III Aerosol Data

    NASA Technical Reports Server (NTRS)

    Saitoh, Naoko; Hayashida, S.; Sugita, T.; Nakajima, H.; Yokota, T.; Hayashi, M.; Shiraishi, K.; Kanzawa, H.; Ejiri, M. K.; Irie, H.; Tanaka, T.; Terao, Y.; Kobayashi, H.; Sasano, Y.; Bevilacqua, R.; Randall, C.; Thomason, L.; Taha, G.

    2006-01-01

    The Improved Limb Atmospheric Spectrometer (ILAS) II on board the Advanced Earth Observing Satellite (ADEOS) II observed stratospheric aerosol in visible/near-infrared/infrared spectra over high latitudes in the Northern and Southern Hemispheres. Observations were taken intermittently from January to March, and continuously from April through October, 2003. We assessed the data quality of ILAS-II version 1.4 aerosol extinction coefficients at 780 nm from comparisons with the Stratospheric Aerosol and Gas Experiment (SAGE) II, SAGE III, and the Polar Ozone and Aerosol Measurement (POAM) III aerosol data. At heights below 20 km in the Northern Hemisphere, aerosol extinction coefficients from ILAS-II agreed with those from SAGE II and SAGE III within 10%, and with those from POAM III within 15%. From 20 to 26 km, ILAS-II aerosol extinction coefficients were smaller than extinction coefficients from the other sensors; differences between ILAS-II and SAGE II ranged from 10% at 20 km to 34% at 26 km. ILAS-II aerosol extinction coefficients from 20 to 25 km in February over the Southern Hemisphere had a negative bias (12-66%) relative to SAGE II aerosol data. The bias increased with increasing altitude. Comparisons between ILAS-II and POAM III aerosol extinction coefficients from January to May in the Southern Hemisphere (defined as the non-Polar Stratospheric Cloud (PSC) season ) yielded qualitatively similar results. From June to October (defined as the PSC season ), aerosol extinction coefficients from ILAS-II were smaller than those from POAM III above 17 km, as in the case of the non-PSC season; however, ILAS-II and POAM III aerosol data were within 15% of each other from 12 to 17 km.

  10. Absorption coefficients for water vapor at 193 nm from 300 to 1073 K

    NASA Technical Reports Server (NTRS)

    Kessler, W. J.; Carleton, K. L.; Marinelli, W. J.

    1993-01-01

    Measurements of the water absorption coefficient at 193 nm from 300 to 1073 K are reported. The measurements were made using broadband VUV radiation and a monochromator-based detection system. The water vapor was generated by a saturator and metered into a flowing, 99 cm absorption cell via a water vapor mass flow meter. The 193 nm absorption coefficient measurements are compared to room temperature and high temperature shock tube measurements with good agreement. The absorption can be parameterized by a nu3 vibrational mode reaction coordinate and the thermal population of the nu3 mode.

  11. Aerosol Sources, Absorption, and Intercontinental Transport: Synergies Among Models, Remote Sensing, and Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Chu, Allen; Levy, Robert; Remer, Lorraine; Kaufman, Yoram; Dubovik, Oleg; Holben, Brent; Eck, Tom; Anderson, Tad; Quinn, Patricia

    2004-01-01

    Aerosol climate forcing is one of the largest uncertainties in assessing the anthropogenic impact on the global climate system. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, our limited knowledge of aerosol mixing state and optical properties, and the consequences of intercontinental transport of aerosols and their precursors. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt, from anthropogenic, .biomass burning, and natural sources. We compare the model calculated aerosol extinction and absorption with those quantities from the ground-based sun photometer measurements from AERON" at several different wavelengths and the field observations from ACE-Asia, and model calculated total aerosol optical depth and fine mode fractions with the MODIS satellite retrieval. We will also estimate the intercontinental transport of pollution and dust aerosols from their source regions to other areas in different seasons.

  12. Aerosol Sources, Absorption, and Intercontinental Transport: Synergies among Models, Remote Sensing, and Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Ginoux, Paul; Dubovik, Oleg; Holben, Brent; Kaufman, Yoram; chu, Allen; Anderson, Tad; Quinn, Patricia

    2003-01-01

    Aerosol climate forcing is one of the largest uncertainties in assessing the anthropogenic impact on the global climate system. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, our limited knowledge of aerosol mixing state and optical properties, and the consequences of intercontinental transport of aerosols and their precursors. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt, from anthropogenic, biomass burning, and natural sources. We compare the model calculated aerosol extinction and absorption with those quantities from the ground-based sun photometer measurements from AERONET at several different wavelengths and the field observations from ACE-Asia, and model calculated total aerosol optical depth and fine mode fractions with the MODIS satellite retrieval. We will also estimate the intercontinental transport of pollution and dust aerosols from their source regions to other areas in different seasons.

  13. Light Absorption Properties of Brown Carbon from Fresh and Aged Biomass Burning Aerosols Characterized in a Smog Chamber

    NASA Astrophysics Data System (ADS)

    Saleh, R.; Chuang, W.; Hennigan, C.; McMeeking, G. R.; Coe, H.; Donahue, N. M.; Robinson, A. L.

    2011-12-01

    Black carbon is an important particulate phase light absorber in the atmosphere. Recent studies have shown that some organic matter also absorb visible light, especially at short wavelengths. These organic compounds are referred to as "brown carbon". Biomass burning is a major contributor to brown carbon in atmospheric particulate matter; however, its optical properties are poorly characterized. We have conducted smog chamber experiments to investigate light absorption properties of brown carbon in primary and aged biomass burning emissions, namely the imaginary refractive index. The aging was performed in a smog chamber, where dilute emissions were exposed to UV lights to initiate photo-oxidation, which often produced substantial secondary organic aerosol. The experiments took place at Carnegie Mellon University (CMU) and at the US Fire Science Laboratory in Missoula, MT as part of the Fire Lab at Missoula field campaign (FLAME 2009). The CMU experiments simulated household wood burning (oak), and the FLAME experiments simulated wildland fires with fuels including gallberry, lodgepole pine, black spruce and ponderosa pine. Absorption coefficients were measured using an Aethalometer (Magee Scientific) at 7 different wavelengths ranging between 370 nm and 950 nm. The black carbon size distributions were measured using a Single Particle Soot Photometer (SP2, DMT), and total aerosol size distributions were measured using a Scanning Mobility Particle Sizer (SMPS, TSI). The absorption coefficients of both the fresh and aged aerosol were significantly larger, and had stronger wavelength dependence than what would be expected for black carbon alone, and for a black carbon core with a non-absorbing shell. This indicates that biomass burning organic aerosol should be classified as brown carbon. A (black carbon) core - (brown carbon) shell absorption model based on Mie theory was optimized to determine the shell imaginary refractive index which produces model outputs that

  14. Experimental measurements of the spectral absorption coefficient of pure fused silica optical fibers.

    PubMed

    Moore, Travis J; Jones, Matthew R

    2015-02-20

    Knowledge of the spectral absorption coefficient of fused silica optical fibers is important in modeling heat transfer in the processes and applications in which these fibers are used. An experimental method used to measure the spectral absorption coefficient of optical fibers is presented. Radiative energy from a blackbody radiator set at different temperatures is directed through the optical fibers and into an FTIR spectrometer. Spectral instrument response functions are calculated for different fiber lengths. The ratios of the slopes of the instrument response functions for the different lengths of fibers are used to solve for the spectral absorption coefficient of the fibers. The spectral absorption coefficient of low OH pure fused silica optical fibers is measured between the wavelengths 1.5 and 2.5 μm. PMID:25968202

  15. A method for determination mass absorption coefficient of gamma rays by Compton scattering.

    PubMed

    El Abd, A

    2014-12-01

    A method was proposed for determination mass absorption coefficient of gamma rays for compounds, alloys and mixtures. It is based on simulating interaction processes of gamma rays with target elements having atomic numbers from Z=1 to Z=92 using the MCSHAPE software. Intensities of Compton scattered gamma rays at saturation thicknesses and at a scattering angle of 90° were calculated for incident gamma rays of different energies. The obtained results showed that the intensity of Compton scattered gamma rays at saturations and mass absorption coefficients can be described by mathematical formulas. These were used to determine mass absorption coefficients for compound, alloys and mixtures with the knowledge of their Compton scattered intensities. The method was tested by calculating mass absorption coefficients for some compounds, alloys and mixtures. There is a good agreement between obtained results and calculated ones using WinXom software. The advantages and limitations of the method were discussed. PMID:25241360

  16. Evaluating model parameterizations of submicron aerosol scattering and absorption with in situ data from ARCTAS 2008

    NASA Astrophysics Data System (ADS)

    Alvarado, Matthew J.; Lonsdale, Chantelle R.; Macintyre, Helen L.; Bian, Huisheng; Chin, Mian; Ridley, David A.; Heald, Colette L.; Thornhill, Kenneth L.; Anderson, Bruce E.; Cubison, Michael J.; Jimenez, Jose L.; Kondo, Yutaka; Sahu, Lokesh K.; Dibb, Jack E.; Wang, Chien

    2016-07-01

    Accurate modeling of the scattering and absorption of ultraviolet and visible radiation by aerosols is essential for accurate simulations of atmospheric chemistry and climate. Closure studies using in situ measurements of aerosol scattering and absorption can be used to evaluate and improve models of aerosol optical properties without interference from model errors in aerosol emissions, transport, chemistry, or deposition rates. Here we evaluate the ability of four externally mixed, fixed size distribution parameterizations used in global models to simulate submicron aerosol scattering and absorption at three wavelengths using in situ data gathered during the 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) campaign. The four models are the NASA Global Modeling Initiative (GMI) Combo model, GEOS-Chem v9-02, the baseline configuration of a version of GEOS-Chem with online radiative transfer calculations (called GC-RT), and the Optical Properties of Aerosol and Clouds (OPAC v3.1) package. We also use the ARCTAS data to perform the first evaluation of the ability of the Aerosol Simulation Program (ASP v2.1) to simulate submicron aerosol scattering and absorption when in situ data on the aerosol size distribution are used, and examine the impact of different mixing rules for black carbon (BC) on the results. We find that the GMI model tends to overestimate submicron scattering and absorption at shorter wavelengths by 10-23 %, and that GMI has smaller absolute mean biases for submicron absorption than OPAC v3.1, GEOS-Chem v9-02, or GC-RT. However, the changes to the density and refractive index of BC in GC-RT improve the simulation of submicron aerosol absorption at all wavelengths relative to GEOS-Chem v9-02. Adding a variable size distribution, as in ASP v2.1, improves model performance for scattering but not for absorption, likely due to the assumption in ASP v2.1 that BC is present at a constant mass fraction

  17. Absorption of laser radiation in a H-He plasma. II - Experimental measurement of the absorption coefficient

    NASA Technical Reports Server (NTRS)

    Billman, K. W.; Rowley, P. D.; Stallcop, J. R.; Presley, L.

    1974-01-01

    The absorption coefficients of 0.633-, 1.15-, and 3.39-micron laser radiation for a homogeneous H-He plasma have been measured in the temperature range from 12.2 to 21.7 (x 1000 K) and in the electron number density range 0.45 to 6.5 (x 10 to the 17th power per cu cm). Good agreement is found between the experimentally determined total absorption for each of the wavelengths and that calculated from theory. Furthermore, because the 3.39-micron absorption is dominated by inverse bremsstrahlung, while the 0.633-micron absorption is dominated by photoionization and resonance absorption, the experiment indicates a correct assessment by the theory of these individual absorption mechanisms.

  18. Satellite retrieval of the absorption coefficient of phytoplankton phycoerythrin pigment: theory and feasibility status.

    PubMed

    Hoge, F E; Wright, C W; Lyon, P E; Swift, R N; Yungel, J K

    1999-12-20

    Oceanic radiance model inversion methods are used to develop a comprehensive algorithm for retrieval of the absorption coefficients of phycourobilin (PUB) pigment, type I phycoerythrobilin (PEB) pigment rich in PUB, and type II PEB deficient in PUB pigment (together with the usual "big three" inherent optical properties: the total backscattering coefficient and the absorption coefficients of chromophoric dissolved organic matter (CDOM)-detritus and phytoplankton). This fully modeled inversion algorithm is then simplified to yield a hybrid modeled-unmodeled inversion algorithm in which the phycoerythrin (PE) absorption coefficient is retrieved as unmodeled 488-nm absorption (which exceeds the modeled phytoplankton and the CDOM-detritus absorption coefficients). Each algorithm was applied to water-leaving radiances, but only hybrid modeled-unmodeled inversions yielded viable retrievals of the PE absorption coefficient. Validation of the PE absorption coefficient retrieval was achieved by relative comparison with airborne laser-induced PEB fluorescence. The modeled-unmodeled retrieval of four inherent optical properties by direct matrix inversion is rapid and well conditioned, but the accuracy is strongly limited by the accuracy of the three principal inherent optical property models across all four spectral bands. Several research areas are identified to enhance the radiance-model-based retrievals: (a) improved PEB and PUB absorption coefficient models, (b) PE spectral shifts induced by PUB chromophore substitution at chromophore binding sites, (c) specific absorption-sensitive phytoplankton absorption modeling, (d) total constituent backscattering modeling, (e) unmodeled carotinoid and phycocyanin absorption that are not now accounted for in the chlorophyll-dominated phytoplankton absorption coefficient model, and (f) iterative inversion techniques to solve for six constituents with only five radiances. Although considerable progress has been made toward the

  19. Satellite Retrieval of the Absorption Coefficient of Phytoplankton Phycoerythrin Pigment: Theory and Feasibility Status

    NASA Astrophysics Data System (ADS)

    Hoge, Frank E.; Wright, C. Wayne; Lyon, Paul E.; Swift, Robert N.; Yungel, James K.

    1999-12-01

    Oceanic radiance model inversion methods are used to develop a comprehensive algorithm for retrieval of the absorption coefficients of phycourobilin (PUB) pigment, type I phycoerythrobilin (PEB) pigment rich in PUB, and type II PEB deficient in PUB pigment (together with the usual big three inherent optical properties: the total backscattering coefficient and the absorption coefficients of chromophoric dissolved organic matter (CDOM) detritus and phytoplankton). This fully modeled inversion algorithm is then simplified to yield a hybrid modeled unmodeled inversion algorithm in which the phycoerythrin (PE) absorption coefficient is retrieved as unmodeled 488-nm absorption (which exceeds the modeled phytoplankton and the CDOM detritus absorption coefficients). Each algorithm was applied to water-leaving radiances, but only hybrid modeled unmodeled inversions yielded viable retrievals of the PE absorption coefficient. Validation of the PE absorption coefficient retrieval was achieved by relative comparison with airborne laser-induced PEB fluorescence. The modeled unmodeled retrieval of four inherent optical properties by direct matrix inversion is rapid and well conditioned, but the accuracy is strongly limited by the accuracy of the three principal inherent optical property models across all four spectral bands. Several research areas are identified to enhance the radiance-model-based retrievals: (a) improved PEB and PUB absorption coefficient models, (b) PE spectral shifts induced by PUB chromophore substitution at chromophore binding sites, (c) specific absorption-sensitive phytoplankton absorption modeling, (d) total constituent backscattering modeling, (e) unmodeled carotinoid and phycocyanin absorption that are not now accounted for in the chlorophyll-dominated phytoplankton absorption coefficient model, and (f) iterative inversion techniques to solve for six constituents with only five radiances. Although considerable progress has been made toward the satellite

  20. Absorption and scattering properties of organic carbon vs. sulfate dominant aerosols at Gosan climate observatory in Northeast Asia

    NASA Astrophysics Data System (ADS)

    Lim, S.; Lee, M.; Kim, S.-W.; Yoon, S.-C.; Lee, G.; Lee, Y.

    2013-12-01

    Carbonaceous and soluble ionic species of PM1.0 and PM10 were measured along with the absorption and scattering properties and aerosol number size distributions at Gosan climate observatory (GCO) from January to September 2008. The daily averaged equivalent black carbon (EBC) measured as aerosol absorption exhibited two types of spectral dependence with a distinct maximum (peak) at either 370 nm or 880 nm, by which two subsets were extracted and classified into the respective groups (370 nm and 880 nm). The 370 nm group was distinguished by high organic carbon (OC) concentrations relative to elemental carbon (EC) and sulfate, but sulfate was predominant for the 880 nm group. The PM1.0 OC of the 370 nm group was mainly composed of refractory and pyrolized components that correlated well with PM1.0 EC1, referred to as char EC, which suggests biofuel and biomass combustion as the source of these OC fractions, particularly during winter. The scanning electron microscope (SEM) images and the number size distributions implied that aerosols of the 370 nm group were externally mixed upon transport in fast-moving air masses that passed through the Beijing area in about one day. In contrast, the aerosols of the 880 nm group were characterized by high sulfate concentrations, and seemed to be internally mixed during slow transport over the Yellow Sea region over approximately two to four days. The absorption and scattering coefficients of the 880 nm group were noticeably higher compared to those of the 370 nm group. The average absorption ångström exponent (AAE) was estimated to be 1.29 and 1.0 for the 370 nm and 880 nm groups, respectively, in the range 370-950 nm. These results demonstrated that the optical properties of aerosols were intimately linked to chemical composition and mixing state, characteristics determined both by source and atmospheric aging processes. In OC dominant aerosols, absorption was enhanced in the UV region, which was possibly due to refractory and

  1. Absorption and scattering properties of organic carbon versus sulfate dominant aerosols at Gosan climate observatory in Northeast Asia

    NASA Astrophysics Data System (ADS)

    Lim, S.; Lee, M.; Kim, S.-W.; Yoon, S.-C.; Lee, G.; Lee, Y. J.

    2014-08-01

    Carbonaceous and soluble ionic species of PM1.0 and PM10 were measured along with the absorption and scattering properties and aerosol number size distributions at Gosan Climate Observatory (GCO) from January to September 2008. The daily averaged equivalent black carbon (EBC) measured as aerosol absorption exhibited two types of spectral dependence with a distinct maximum (peak) at either 370 nm or 880 nm, by which two subsets were extracted and classified into the respective groups (370 and 880 nm). The 370 nm group was distinguished by high organic carbon (OC) concentrations relative to elemental carbon (EC) and sulfate, but sulfate was predominant for the 880 nm group. The PM1.0 OC of the 370 nm group was mainly composed of refractory and pyrolized components that correlated well with PM1.0 EC1, referred to as char EC, which suggests biofuel and biomass combustion as the source of these OC fractions, particularly during winter. The scanning electron microscope (SEM) images and the number size distributions implied that aerosols of the 370 nm group were externally mixed upon transport in fast-moving air masses that passed through the Beijing area in about one day. In contrast, the aerosols of the 880 nm group were characterized by high sulfate concentrations, and seemed to be internally mixed during slow transport over the Yellow Sea region over approximately 2 to 4 days. The absorption and scattering coefficients of the 880 nm group were noticeably higher compared to those of the 370 nm group. The average absorption ångström exponent (AAE) was estimated to be 1.29 and 1.0 for the 370 and 880 nm groups, respectively, in the range 370-950 nm. These results demonstrated that the optical properties of aerosols were intimately linked to chemical composition and mixing state, characteristics determined both by source and atmospheric aging processes. In OC dominant aerosols, absorption was enhanced in the UV region, which was possibly due to refractory and pyrolized

  2. A method for segregating the optical absorption properties and the mass concentration of winter time urban aerosol

    NASA Astrophysics Data System (ADS)

    Ajtai, T.; Utry, N.; Pintér, M.; Major, B.; Bozóki, Z.; Szabó, G.

    2015-12-01

    A novel in-situ, real time method for the determination of inherent absorption properties of light absorbing carbonaceous particulate matter and its possible application for source apportionment are introduced here. The method is deduced from a two-week campaign under wintry urban conditions during which strong correlation was found between aerosol number size distribution and wavelength dependent optical absorption coefficient (AOC(λ)), measured by a Single Mobility Particle Sizer (SMPS) and a multi-wavelength photoacoustic absorption spectrometer, respectively, while wood burning and traffic (i.e. fossil fuel burning) activity were identified to be the dominant sources of carbonaceous particulate. Indeed, during the whole campaign, regardless of the actual emission strength of the aerosol sources, the measured number size distributions were always dominated by two unimodal modes with Count Mean Diameter (CMD) of 20 and 100 nm, which could be correlated to traffic and wood burning activities, respectively. AAEff, AAEwb (i.e. the Aerosol Angström Exponent of traffic and wood burning aerosol, respectively), σff(266 nm), σff(1064 nm), σwb(266 nm) and σff(1064 nm) (i.e. the segregated mass specific optical absorption coefficients at two of the measurement wavelengths) were found to be 1.17 ± 0.18, 2.6 ± 0.14, 7.3 ± 0.3 m2g-1, 1.7 ± 0.1 m2g-1 3.4 ± 0.3 m2g-1 and 0.31 ± 0.08 m2g-1, respectively. Furthermore the introduced methodology can also disentangle and quantify the temporal variation of both the segregated optical absorptions and the segregated mass concentrations of traffic and wood burning aerosol. Accordingly, the contribution of wood burning to optical absorption of PM was found to be negligible at 1064 nm but increased gradually towards the shorter wavelengths and became commensurable with the optical absorption of traffic at 266 nm during the whole measurement period. Furthermore, the contribution of wood burning mass to CM (mass of carbonaceous

  3. Modeling Secondary Organic Aerosols over Europe: Impact of Activity Coefficients and Viscosity

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Sartelet, K.; Couvidat, F.

    2014-12-01

    Semi-volatile organic species (SVOC) can condense on suspended particulate materials (PM) in the atmosphere. The modeling of condensation/evaporation of SVOC often assumes that gas-phase and particle-phase concentrations are at equilibrium. However, recent studies show that secondary organic aerosols (SOA) may not be accurately represented by an equilibrium approach between the gas and particle phases, because organic aerosols in the particle phase may be very viscous. The condensation in the viscous liquid phase is limited by the diffusion from the surface of PM to its core. Using a surrogate approach to represent SVOC, depending on the user's choice, the secondary organic aerosol processor (SOAP) may assume equilibrium or model dynamically the condensation/evaporation between the gas and particle phases to take into account the viscosity of organic aerosols. The model is implemented in the three-dimensional chemistry-transport model of POLYPHEMUS. In SOAP, activity coefficients for organic mixtures can be computed using UNIFAC for short-range interactions between molecules and AIOMFAC to also take into account the effect of inorganic species on activity coefficients. Simulations over Europe are performed and POLYPHEMUS/SOAP is compared to POLYPHEMUS/H2O, which was previously used to model SOA using the equilibrium approach with activity coefficients from UNIFAC. Impacts of the dynamic approach on modeling SOA over Europe are evaluated. The concentrations of SOA using the dynamic approach are compared with those using the equilibrium approach. The increase of computational cost is also evaluated.

  4. Sensitivity of Scattering and Backscattering Coefficients to Microphysical and Chemical Properties: Weakly Absorbing Aerosol

    NASA Astrophysics Data System (ADS)

    Kassianov, E.; Barnard, J.; Pekour, M. S.; Berg, L. K.; Shilling, J.; Flynn, C. J.; Mei, F.; Jefferson, A.

    2014-12-01

    Scattering and backscattering coefficients of atmospheric aerosol are crucial parameters for numerous climate-relevant applications, including studies related to the Earth's radiation budget. Due to their strong connection to aerosol chemical and microphysical characteristics, in situ measurements have been commonly used for evaluating optical properties routines in global and regional scale models. However, these in situ measurements, including size distribution and chemical composition data, can be subject to uncertainties. Techniques for obtaining these data depend on particle size (submicron versus supermicron) and relative humidity range (dry versus wet conditions). In this study, we examine how the data uncertainties can impact the level of agreement between the calculated and measured optical properties (commonly known as optical closure). Moreover, we put forth a novel technique for inferring in parallel the effective density and real refractive index of weakly absorbing aerosols from simultaneously measured size distributions (with mobility and aerodynamic sizes), and two optical properties, namely the scattering coefficient and hemispheric backscatter fraction, measured by integrating nephelometer. We demonstrate the performance of our technique, which permits discrimination between the retrieved aerosol characteristics of sub-micron and sub-10-micron particles, using both a sensitivity study with synthetically generated inputs with random noise and a six-week case study with real measurements. These measurements cover a wide range of coastal summertime conditions observed during the recent Two-Column Aerosol Project (TCAP, http://campaign.arm.gov/tcap/) and include periods with a wide range of aerosol loading and relative humidity. Finally, we discuss how in situ data and retrievals of aerosol characteristics can be applied for model evaluation.

  5. Continuous wavelet-transform analysis of photoacoustic signal waveform to determine optical absorption coefficient

    NASA Astrophysics Data System (ADS)

    Hirasawa, T.; Ishihara, M.; Tsujita, K.; Hirota, K.; Irisawa, K.; Kitagaki, M.; Fujita, M.; Kikuchi, M.

    2012-02-01

    In photo-acoustic (PA) imaging, valuable medical applications based on optical absorption spectrum such as contrast agent imaging and blood oxygen saturation measurement have been investigated. In these applications, there is an essential requirement to determine optical absorption coefficients accurately. In present, PA signal intensities have been commonly used to determine optical absorption coefficients. This method achieves practical accuracy by combining with radiative transfer analysis. However, time consumption of radiative transfer analysis and effects of signal generation efficiencies were problems of this method. In this research, we propose a new method to determine optical absorption coefficients using continuous wavelet transform (CWT). We used CWT to estimate instantaneous frequencies of PA signals which reflects optical absorption distribution. We validated the effectiveness of CWT in determination of optical absorption coefficients through an experiment. In the experiment, planar shaped samples were illuminated to generate PA signal. The PA signal was measured by our fabricated PA probe in which an optical fiber and a ring shaped P(VDFTrFE) ultrasound sensor were coaxially aligned. Optical properties of samples were adjusted by changing the concentration of dye solution. Tunable Ti:Sapphire laser (690 - 1000 nm) was used as illumination source. As a result, we confirmed strong correlation between optical absorption coefficients of samples and the instantaneous frequency of PA signal obtained by CWT. Advantages of this method were less interference of light transfer and signal generation efficiency.

  6. Intercomparison of Remote and Flight Level Measured Aerosol Backscatter Coefficient During GLOBE 2 Pacific Survey Mission

    NASA Technical Reports Server (NTRS)

    Cutten, D. R.; Spinhime, J. D.; Menzies, R. T.; Bowdle, D. A.; Srivastava, V.; Pueschel, R. F.; Clarke, A. D.; Rothermel, J.

    1998-01-01

    Aerosol backscatter coefficient data are examined from two local flights undertaken during NASA's GLObal Backscatter Experiment (GLOBE) in May - June, 1990. During each of these two flights the aircraft traversed different altitudes within a region of the atmosphere defined by the same set of latitude and longitude coordinates. This provides an ideal opportunity to allow flight level measured or modeled aerosol backscafter to be compared with pulsed lidar aerosol backscafter data that were obtained at these same altitudes either earlier or later than the flight level measurements. Aerosol backscafter comparisons were made at 1.06-, 9.11- and 9.25-mm wavelengths, using data from three lidar systems and two aerosol optical counters. The best agreement between all sensor's was found in the altitude region below 7 km where backscafter values were moderately high at all three wavelengths. Above this altitude the pulsed lidar backscafter data at 1.06- and 9.25-mm wavelengths were higher than the flight level data obtained from the CW lidar or derived from the optical counters. Possible reasons are offered to explain this discrepancy. During the Japan local flight, microphysics analysis revealed: (1) evidence of a strong advected seasalt aerosol plume from the marine boundary layer, and (2) where backscatter was low, the large lidar sampling volume included many large particles which were of different chemical composition to the small particle category sampled by the particle counters.

  7. Effective absorption cross sections and photolysis rates of anthropogenic and biogenic secondary organic aerosols

    NASA Astrophysics Data System (ADS)

    Romonosky, Dian E.; Ali, Nujhat N.; Saiduddin, Mariyah N.; Wu, Michael; Lee, Hyun Ji (Julie); Aiona, Paige K.; Nizkorodov, Sergey A.

    2016-04-01

    Mass absorption coefficient (MAC) values were measured for secondary organic aerosol (SOA) samples produced by flow tube ozonolysis and smog chamber photooxidation of a wide range of volatile organic compounds (VOC), specifically: α-pinene, β-pinene, β-myrcene, d-limonene, farnesene, guaiacol, imidazole, isoprene, linalool, ocimene, p-xylene, 1-methylpyrrole, and 2-methylpyrrole. Both low-NOx and high-NOx conditions were employed during the chamber photooxidation experiments. MAC values were converted into effective molecular absorption cross sections assuming an average molecular weight of 300 g/mol for SOA compounds. The upper limits for the effective photolysis rates of SOA compounds were calculated by assuming unity photolysis quantum yields and convoluting the absorption cross sections with a time-dependent solar spectral flux. A more realistic estimate for the photolysis rates relying on the quantum yield of acetone was also obtained. The results show that condensed-phase photolysis of SOA compounds can potentially occur with effective lifetimes ranging from minutes to days, suggesting that photolysis is an efficient and largely overlooked mechanism of SOA aging.

  8. Experiment to Determine the Absorption Coefficient of Gamma Rays as a Function of Energy.

    ERIC Educational Resources Information Center

    Ouseph, P. J.; And Others

    1982-01-01

    Simpler than x-ray diffractometer experiments, the experiment described illustrates certain concepts regarding the interaction of electromagnetic rays with matter such as the exponential decrease in the intensity with absorber thickness, variation of the coefficient of absorption with energy, and the effect of the K-absorption edge on the…

  9. Absorption and Scattering Coefficients: A Biophysical-Chemistry Experiment Using Reflectance Spectroscopy

    ERIC Educational Resources Information Center

    Cordon, Gabriela B.; Lagorio, M. Gabriela

    2007-01-01

    A biophysical-chemistry experiment, based on the reflectance spectroscopy for calculating the absorption and scattering coefficients of leaves is described. The results show that different plants species exhibit different values for both the coefficients because of their different pigment composition.

  10. Aerosol particle absorption spectroscopy by photothermal modulation of Mie scattered light

    SciTech Connect

    Campillo, A.J.; Dodge, C.J.; Lin, H.B.

    1981-09-15

    Absorption spectroscopy of suspended submicron-sized aqueous ammonium-sulfate aerosol droplets has been performed by employing a CO/sub 2/ laser to photothermally modulate visible Mie scattered light. (AIP)

  11. Tunable diode laser measurements of HO2NO2 absorption coefficients near 12.5 microns

    NASA Technical Reports Server (NTRS)

    May, R. D.; Molina, L. T.; Webster, C. R.

    1988-01-01

    A tunable diode laser spectrometer has been used to measure absorption coefficients of peroxynitric acid (HO2NO2) near the 803/cm Q branch. HO2NO2 concentrations in a low-pressure flowing gas mixture were determined from chemical titration procedures and UV absorption spectroscopy. The diode laser measured absorption coefficients, at a spectral resolution of better than 0.001/cm, are about 10 percent larger than previous Fourier transform infrared measurements made at a spectral resolution of 0.06/cm.

  12. Correlation analysis of optical absorption cross section and rate coefficient measurements in reacting systems

    SciTech Connect

    Hessler, J.P.; Ogren, P.J.

    1992-08-31

    A technique was developed for determining relative importance and correlation between reactions making up a complex kinetic system. This technique was used to investigate measurements of optical absorption cross sections and the correlation between cross sections and measured rate coefficients. It is concluded that (1) species, initial conditions, and temporal regions may be identified where cross sections may be measured without interference from the kinetic behavior of the observed species and (2) experiments designed to measure rate coefficients will always be correlated with the absorption cross section of the observed species. This correlation may reduce the accuracy of rate coefficient measurements.

  13. Influence of the vertical absorption profile of mixed Asian dust plumes on aerosol direct radiative forcing over East Asia

    NASA Astrophysics Data System (ADS)

    Noh, Young Min; Lee, Kwonho; Kim, Kwanchul; Shin, Sung-Kyun; Müller, Detlef; Shin, Dong Ho

    2016-08-01

    We estimate the aerosol direct radiative forcing (ADRF) and heating rate profiles of mixed East Asian dust plumes in the solar wavelength region ranging from 0.25 to 4.0 μm using the Santa Barbara Discrete Ordinate Atmospheric Radiative Transfer (SBDART) code. Vertical profiles of aerosol extinction coefficients and single-scattering albedos (SSA) were derived from measurements with a multi-wavelength Raman lidar system. The data are used as input parameters for our radiative transfer calculations. We considered four cases of radiative forcing in SBDART: 1. dust, 2. pollution, 3. mixed dust plume and the use of vertical profiles of SSA, and 4. mixed dust plumes and the use of column-averaged values of SSA. In our sensitivity study we examined the influence of SSA and aerosol layer height on our results. The ADRF at the surface and in the atmosphere shows a small dependence on the specific shape of the aerosol extinction vertical profile and its light-absorption property for all four cases. In contrast, at the top of the atmosphere (TOA), the ADRF is largely affected by the vertical distribution of the aerosols extinction. This effect increases if the light-absorption capacity (decrease of SSA) of the aerosols increases. We find different radiative effects in situations in which two layers of aerosols had different light-absorption properties. The largest difference was observed at the TOA for an absorbing aerosol layer at high altitude in which we considered in one case the vertical profile of SSA and in another case the column-averaged SSA only. The ADRF at the TOA increases when the light-absorbing aerosol layer is located above 3 km altitude. The differences between height-resolved SSA, which can be obtained from lidar data, and total layer-mean SSA indicates that the use of a layer-mean SSA can be rather misleading as it can induce a large error in the calculation of the ADRF at the TOA, which in turn may cause errors in the vertical profiles of heating rates.

  14. A reverberation room round robin on the determination of absorption coefficients

    NASA Astrophysics Data System (ADS)

    Kath, U.

    In ten reverberation rooms with very different volumes and different room shapes, the absorption coefficients for mineral fiber mat were measured. The particular feature of this round robin was that the absorption material was much thicker than in other similar experiments and that it was measured not only with an area of 12 sq m on the floor, but also as a complete surface covering of a small wall in order to avoid the edge effect. The decay curves were evaluated in at least two institutions and the absorption coefficients were calculated using the Eyring equation. The absorption coefficients were quite dispersed from one room to another and also from one-third octave band to the adjacent ones. Errors due to change are small, thus one is dealing with systematic errors.

  15. The impact of biogenic carbon emissions on aerosol absorption inMexico City

    SciTech Connect

    Marley, N; Gaffney, J; Tackett, M J; Sturchio, N; Hearty, L; Martinez, N; Hardy, K D; Machany-Rivera, A; Guilderson, T P; MacMillan, A; Steelman, K

    2009-02-24

    In order to determine the wavelength dependence of atmospheric aerosol absorption in the Mexico City area, the absorption angstrom exponents (AAEs) were calculated from aerosol absorption measurements at seven wavelengths obtained with a seven-channel aethalometer during two field campaigns, the Mexico City Metropolitan Area study in April 2003 (MCMA 2003) and the Megacity Initiative: Local and Global Research Observations in March 2006 (MILAGRO). The AAEs varied from 0.76 to 1.56 in 2003 and from 0.54 to 1.52 in 2006. The AAE values determined in the afternoon were consistently higher than the corresponding morning values, suggesting the photochemical formation of absorbing secondary organic aerosols (SOA) in the afternoon. The AAE values were compared to stable and radiocarbon isotopic measurements of aerosol samples collected at the same time to determine the sources of the aerosol carbon. The fraction of modern carbon (fM) in the aerosol samples, as determined from {sup 14}C analysis, showed that 70% of the carbonaceous aerosols in Mexico City were from modern sources, indicating a significant impact from biomass burning during both field campaigns. The {sup 13}C/{sup 12}C ratios of the aerosol samples illustrate the significant impact of Yucatan forest fires (C-3 plants) in 2003 and local grass fires (C-4 plants) at site T1 in 2006. A direct comparison of the fM values, stable carbon isotope ratios, and calculated aerosol AAEs suggested that the wavelength dependence of the aerosol absorption was controlled by the biogenically derived aerosol components.

  16. Measurements of Soot Mass Absorption Coefficients from 300 to 660 nm

    NASA Astrophysics Data System (ADS)

    Renbaum-Wolff, Lindsay; Fisher, Al; Helgestad, Taylor; Lambe, Andrew; Sedlacek, Arthur; Smith, Geoffrey; Cappa, Christopher; Davidovits, Paul; Onasch, Timothy; Freedman, Andrew

    2016-04-01

    Soot, a product of incomplete combustion, plays an important role in the earth's climate system through the absorption and scattering of solar radiation. In particular, the assumed mass absorption coefficient (MAC) of soot and its variation with wavelength presents a significant uncertainty in the calculation of radiative forcing in global climate change models. As part of the fourth Boston College/Aerodyne soot properties measurement campaign, we have measured the mass absorption coefficient of soot produced by an inverted methane diffusion flame over a spectral range of 300-660 nm using a variety of optical absorption techniques. Extinction and absorption were measured using a dual cavity ringdown photoacoustic spectrometer (CRD-PAS, UC Davis) at 405 nm and 532 nm. Scattering and extinction were measured using a CAPS PMssa single scattering albedo monitor (Aerodyne) at 630 nm; the absorption coefficient was determined by subtraction. In addition, the absorption coefficients in 8 wavelength bands from 300 to 660 nm were measured using a new broadband photoacoustic absorption monitor (UGA). Soot particle mass was quantified using a centrifugal particle mass analyzer (CPMA, Cambustion), mobility size with a scanning mobility particle sizer (SMPS, TSI) and soot concentration with a CPC (Brechtel). The contribution of doubly charged particles to the sample mass was determined using a Single Particle Soot Photometer (DMT). Over a mass range of 1-8 fg, corresponding to differential mobility diameters of ~150 nm to 550 nm, the value of the soot MAC proved to be independent of mass for all wavelengths. The wavelength dependence of the MAC was best fit to a power law with an Absorption Ångstrom Coefficient slightly greater than 1.

  17. Multiyear in-situ measurements of atmospheric aerosol absorption properties at an urban coastal site in western Mediterranean

    NASA Astrophysics Data System (ADS)

    Segura, S.; Estellés, V.; Esteve, A. R.; Marcos, C. R.; Utrillas, M. P.; Martínez-Lozano, J. A.

    2016-03-01

    In-situ aerosol absorption properties measured in Valencia (Spain) for four years, from February 2011 to February 2015, have been analysed. Spectral absorption properties have been obtained using a seven-wavelength Aethalometer AE-31 which covers the range from UV (370 nm) to IR (950 nm). In order to obtain the absorption coefficients, compensation parameters have been calculated for the Aethalometer considering seasonal and spectral differences. For this multiyear measurement period, seasonal site-specific calibration parameters have been obtained. Furthermore, estimations of the absorption Ångström Exponent (αabs) have been calculated using the seven Aethalometer wavelengths. The averaged absorption coefficients (plus/minus the standard deviation) obtained for the seven channels range between 9 ± 4 Mm-1 at 950 nm and 33 ± 18 Mm-1 at 370 nm. These results are typical of a moderate polluted environment. The obtained absorption Ångström Exponent (plus/minus the standard deviation) is 1.42 ± 0.08, which suggests the presence of brown carbon or black carbon coated by non-absorbing particles in our site. Seasonal and daily variations, together with the effect of both the boundary layer height and traffic, have been also studied. Strong seasonal differences in the absorption coefficient are found, mainly due to seasonal variation of the mixing layer height. On the opposite, the study of the diurnal variations of the absorption Ångström Exponent proves that this parameter is more affected by traffic emissions than by the evolution of the mixing layer height.

  18. Nonlinear absorption coefficient of pulsed laser deposited MgZnO thin film

    SciTech Connect

    Agrawal, Arpana Dar, Tanveer A.; Solanki, Ravi; Sen, Pratima; Phase, D. M.

    2015-06-24

    We report the imaginary part of 3{sup rd} order nonlinear susceptibility and the nonlinear absorption coefficient of Mg doped ZnO thin film using standard Z-scan technique. The origin of nonlinear absorption is attributed to the two photon absorption followed by the free carrier absorption because of the presence of oxygen vacancy defects. We have also confirmed the experimental results with the theoretical results obtained by considering the steady state response of a two level atom with the monochromatic field models.

  19. View From a Megacity: Aerosol Light Absorption and Scattering at Four Sites in and Near Mexico City.

    NASA Astrophysics Data System (ADS)

    Paredes-Miranda, G.; Arnott, W. P.; Gaffney, J. S.; Marley, N. A.

    2006-12-01

    As part of the Megacity Impacts on Regional and Global Environments, MIRAGE-Mex deployment to Mexico City in the period of 30 days, March 2006, a suite of photoacoustic spectrometers (PAS) were installed to measure at ground level the light absorption and scattering by aerosols at four sites: an urban site at Instituto Mexicano del Petroleo (Mexican Oil Institute, denoted by IMP), a suburban site at the Technological University of Tecamac, a rural site at "La Biznaga" ranch, and a site at the Paseo de Cortes (altitude 3,810 meters ASL) in the rural area above Amecameca in the State of Mexico, on the saddle between the volcanoes Popocatepetl and Iztaccihuatl. The IMP site gave in-situ characterization of the Mexico City plume under favorable wind conditions while the other sites provided characterization of the plume, mixed in with any local sources. The second and third sites are north of Mexico City, and the fourth site is south. The PAS used at IMP operates at 532 nm, and conveniently allowed for characterization of gaseous absorption at this wavelength as well. Instruments at the second and third sites operate at 870 nm, and the one at the fourth site at 780 nm. Light scattering measurements are accomplished within the PAS by the reciprocal nephelometery method. In the urban site the aerosol absorption coefficient typically varies between 40 and 250 Mm-1 during the course of the day and significant diurnal variation of the aerosol single scattering albedo was observed. Comparisons with TSI nephelometer scattering and Aetholemeter absorption measurements at the T0 site will be presented. We will present a broad overview of the diurnal variation of the scattering and absorption as well as the single scattering albedo and fraction of absorption due to gases at the IMP site. Insight on the dynamical connections will be discussed.

  20. Measurements and Modeling of Aerosol Absorption and Single Scattering Albedo at Ambient Relative Hum

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Russell, P. B.; Hamill, P.

    2000-01-01

    Uncertainties in the aerosol single scattering albedo have been identified to be an important source of errors in current large-scale model estimates of the direct aerosol radiative forcing of climate. A number of investigators have obtained estimates of the single scattering albedo from a variety of remote sensing and in situ measurements during aerosol field experiments. During the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX, 1996) for example, estimates of the aerosol single scattering albedo were obtained (1) as a best-fit parameter in comparing radiative flux changes measured by airborne pyranometer to those computed from independently measured aerosol properties; (2) from estimates of the aerosol complex index of refraction derived using a combination of airborne sunphotometer, lidar backscatter and in situ size distribution measurements; and (3) from airborne measurements of aerosol scattering and absorption using nephelometers and absorption photometers. In this paper, we briefly compare the results of the latter two methods for two TARFOX case studies, since those techniques provide height-resolved information about the aerosol single scattering albedo. Estimates of the aerosol single scattering albedo from nephelometer and absorption photometer measurements require knowledge of the scattering and absorption humidification (i.e., the increase in these properties in response to an increase in ambient relative humidity), since both measurements are usually carried out at a relative humidity different from the ambient atmosphere. In principle, the scattering humidification factor can be measured, but there is currently no technique widely available to measure the absorption of an aerosol sample as a function of relative humidity. Frequently, for lack of better knowledge, the absorption humidification is assumed to be unity (meaning that there is no change in aerosol absorption due to an increase in ambient relative humidity). This

  1. In situ measurements of the oblique incidence sound absorption coefficient for finite sized absorbers.

    PubMed

    Ottink, Marco; Brunskog, Jonas; Jeong, Cheol-Ho; Fernandez-Grande, Efren; Trojgaard, Per; Tiana-Roig, Elisabet

    2016-01-01

    Absorption coefficients are mostly measured in reverberation rooms or with impedance tubes. Since these methods are only suitable for measuring the random incidence and the normal incidence absorption coefficient, there exists an increasing need for absorption coefficient measurement of finite absorbers at oblique incidence in situ. Due to the edge diffraction effect, oblique incidence methods considering an infinite sample fail to measure the absorption coefficient at large incidence angles of finite samples. This paper aims for the development of a measurement method that accounts for the finiteness of the absorber. A sound field model, which accounts for scattering from the finite absorber edges, assuming plane wave incidence is derived. A significant influence of the finiteness on the radiation impedance and the corresponding absorption coefficient is found. A finite surface method, which combines microphone array measurements over a finite sample with the sound field model in an inverse manner, is proposed. Besides, a temporal subtraction method, a microphone array method, impedance tube measurements, and an equivalent fluid model are used for validation. The finite surface method gives promising agreement with theory, especially at near grazing incidence. Thus, the finite surface method is proposed for further measurements at large incidence angles. PMID:26827003

  2. Solar Absorption by Aerosol-Bound Nitrophenols Compared to Aqueous and Gaseous Nitrophenols.

    PubMed

    Hinrichs, Ryan Z; Buczek, Pawel; Trivedi, Jal J

    2016-06-01

    Nitrophenols are well-known absorbers of near-UV/blue radiation and are considered to be a component of solar-absorbing organic aerosol material commonly labeled brown carbon. Nitrophenols have been identified in a variety of phases in earth's atmosphere, including the gaseous, aqueous, and aerosol bound, and these different environments alter their UV-vis absorption spectra, most dramatically when deprotonated forming nitrophenolates. We quantify the impact of these different absorption profiles by calculating the solar power absorbed per molecule for several nitrophenols. For instance, aqueous 2,4-dinitrophenol absorption varies dramatically over the pH range of cloud droplets with pH = 5.5 solutions absorbing three times the solar power compared to pH = 3.5 solutions. We also measured the UV-vis spectra of 2-nitrophenol adsorbed on several aerosol substrates representative of mineral dust, inorganic salts, and organic aerosol and compare these spectra to gaseous and aqueous 2-nitrophenol. 2-Nitrophenol adsorbed on mineral and chloride aerosol substrates exhibits a red-shifted absorption band (∼450-650 nm) consistent with 2-nitrophenolate and absorbs twice the solar power per molecule compared to gaseous, aqueous, and organic aerosol-bound 2-nitrophenol. We also discuss how different nitrophenol absorption profiles alter important atmospheric photolysis rate constants [e.g., J(NO2) and J(O3)] by attenuating solar flux. PMID:27176618

  3. Remote Sensing of Non-Aerosol (anomalous) Absorption in Cloud Free Atmosphere

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Dubovik, Oleg; Smirnov, Alexander; Holben, Brent N.; Lau, William K. M. (Technical Monitor)

    2001-01-01

    The interaction of sunlight with atmospheric gases, aerosols and clouds is fundamental to the understanding of climate and its variation. Several studies questioned our understanding of atmospheric absorption of sunlight in cloudy or in cloud free atmospheres. Uncertainty in instruments' accuracy and in the analysis methods makes this problem difficult to resolve. Here we use several years of measurements of sky and sun spectral brightness by selected instruments of the Aerosol Robotic Network (AERONET), that have known and high measurement accuracy. The measurements taken in several locations around the world show that in the atmospheric windows 0.44, 0.06, 0.86 and 1.02 microns the only significant absorbers in cloud free atmosphere is aerosol and ozone. This conclusions is reached using a method developed to distinguish between absorption associated with the presence of aerosol and absorption that is not related to the presence of aerosol. Non-aerosol absorption, defined as spectrally independent or smoothly variable, was found to have an optical thickness smaller than 0.002 corresponding to absorption of sunlight less than 1W/sq m, or essentially zero.

  4. Contribution of Dust to Aerosol Light Absorption and Sand and Dust Storm (SDS) Operational Forecasting in China

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Gong, S.; Zhou, C.; Liu, H.; Wang, Y.; Niu, T.; Yang, Y.; Hou, Q.

    2008-12-01

    The occurrence of airborne mineral dust and its associated sand and dust storms in Asia varies from year to year, the strength and frequency seem not to lessen in the near future, especially under the influence of global climate changes. As a major natural aerosol source in mid-latitude of Northern Hemisphere, source strength of Asian SDS estimated to be ~800 Mt/year (Zhang et al., 1997) with very high spatial and temporal variability. Recently there has been an increasing concern over the sources, transport, and its contribution to light optical absorption. Because dust and BC aerosols can absorb substantial amounts of solar energy, thereby increasing solar heating, particularly when aerosol layers are located above cloud layers. To improve our understanding of the interactions between aerosols and climate system, we require more accurate measurements of dust; other light-absorbing components such as BC, and the relative contributions of dust and BC to aerosol light absorption. A number of new results on the analysis of 24-h aerosol data measured during 2006 at 14 monitoring sites in China are presented here (Zhang et al., 2008). Measurements included seven-wavelength Aethalometers; thermal/optical reflectance analyses of filter samples; and determination of dust aerosols. Black (elemental) carbon (BC, EC) is found to be the principal light-absorbing aerosol over many parts of China: however, the fraction of apparent light absorption attributed to dust varied from 14 percent in winter, 11 percent in spring, 5 percent in summer to 9 percent in autumn. The mass absorption coefficient for aerosol BC based on Aethalometer data is estimated to be 11.7 m2 g-1 at 880 nm wavelength with inverse wavelength scaling, while the mass absorption coefficient for dust (σ dust ) is 1.3 m2 g-1 on average without significant wavelength dependence. Here we will also report some new developments of the CUACE/Dust (Chinese Unified Atmospheric Chemistry Environment for Dust) modeling

  5. Mass-specific optical absorption coefficients and imaginary part of the complex refractive indices of mineral dust components measured by a multi-wavelength photoacoustic spectrometer

    NASA Astrophysics Data System (ADS)

    Utry, N.; Ajtai, T.; Pintér, M.; Tombácz, E.; Illés, E.; Bozóki, Z.; Szabó, G.

    2015-01-01

    Mass-specific optical absorption coefficients (MACs) and the imaginary part (κ) of the refractive indices of various mineral dust components including silicate clays (illite, kaolin and bentonite), oxides (quartz, hematite and rutile), and carbonate (limestone) were determined at the wavelengths of 1064, 532, 355 and 266 nm. The MAC values were calculated from aerosol optical absorption coefficients measured by a multi-wavelength photoacoustic (PA) instrument, the mass concentration and the number size distribution of the generated aerosol samples as well as the size transfer functions of the measuring instruments. Values of κ were calculated from the measured and particle-loss-corrected data by using a Mie-theory-based retrieval algorithm. The determined values could be used for comparisons with calculated wavelength-dependent κ values typically deduced from bulk-phase measurements by using indirect measurement methods. Accordingly, the presented comparison of the measured and calculated aerosol optical absorption spectra revealed the strong need for standardized sample preparation and measurement methodology in case of bulk-phase measurements.

  6. Impact of Nonabsorbing Anthropogenic Aerosols on Clear-Sky Atmospheric Absorption

    NASA Technical Reports Server (NTRS)

    Stier, Philip; Seinfeld, John H.; Kinne, Stefan; Feichter,Johann; Boucher, Olivier

    2006-01-01

    Absorption of solar radiation by atmospheric aerosol has become recognized as important in regional and global climate. Nonabsorbing, hydrophilic aerosols, such as sulfate, potentially affect atmospheric absorption in opposing ways: first, decreasing absorption through aging initially hydrophobic black carbon (BC) to a hydrophilic state, enhancing its removal by wet scavenging, and consequently decreasing BC lifetime and abundance, and second, increasing absorption through enhancement of the BC absorption efficiency by internal mixing as well as through increasing the amount of diffuse solar radiation in the atmosphere. On the basis of General Circulation Model studies with an embedded microphysical aerosol module we systematically demonstrate the significance of these mechanisms both on the global and regional scales. In remote transport regions, the first mechanism prevails, reducing atmospheric absorption, whereas in the vicinity of source regions, despite enhanced wet scavenging, absorption is enhanced owing to the prevalence of the second mechanisms. Our findings imply that the sulfur to BC emission ratio plays a key role in aerosol absorption.

  7. Minority carrier diffusion lengths and absorption coefficients in silicon sheet material

    NASA Technical Reports Server (NTRS)

    Dumas, K. A.; Swimm, R. T.

    1980-01-01

    Most of the methods which have been developed for the measurement of the minority carrier diffusion length of silicon wafers require that the material have either a Schottky or an ohmic contact. The surface photovoltage (SPV) technique is an exception. The SPV technique could, therefore, become a valuable diagnostic tool in connection with current efforts to develop low-cost processes for the production of solar cells. The technique depends on a knowledge of the optical absorption coefficient. The considered investigation is concerned with a reevaluation of the absorption coefficient as a function of silicon processing. A comparison of absorption coefficient values showed these values to be relatively consistent from sample to sample, and independent of the sample growth method.

  8. A New Method for Multicomponent Activity Coefficients of Electrolytes in Aqueous Atmospheric Aerosols

    SciTech Connect

    Zaveri, Rahul A.; Easter, Richard C.; Wexler, Anthony S.

    2005-01-21

    Three-dimensional models of atmospheric inorganic aerosols need an accurate yet computationally efficient parameterization of activity coefficients of various electrolytes in multicomponent aqueous solutions. This paper describes the development and application of a new mixing rule for calculating activity coefficients of electrolytes typically found in atmospheric aerosol systems containing H+, NH4+, Na+, Ca2+ SO42-, HSO4-, NO3-, and Cl- ions. The new mixing rule, called MTEM (Multicomponent Taylor Expansion Model), estimates the mean activity coefficient of an electrolyte in a multicomponent solution based on its values in binary solutions of all the electrolytes present in the mixture at the solution water activity aw, assuming aw is equal to the ambient relative humidity. The aerosol water content is calculated using the Zdanovskii-Stokes-Robinson method. For self-consistency, most of the MTEM and Zdanovskii-Stokes-Robinson parameters are derived using the comprehensive Pitzer-Simonson-Clegg model at 298.15 K. MTEM is evaluated for several multicomponent systems representing various continental and marine aerosols, and is contrasted against the mixing rule of Kusik and Meissner and the newer approach of Metzger et al. [2002]. Predictions of MTEM are found to be generally within a factor of 0.8 to 1.25 of the comprehensive Pitzer-Simonson-Clegg model, and are shown to be significantly more accurate than predictions of the other two methods. MTEM also yields a non-iterative solution of the bisulfate ion dissociation in sulfate-rich systems – a major computational advantage over other iterative methods. CPU time requirements of MTEM relative to other methods for sulfate-poor and sulfate-rich systems are also discussed.

  9. Methane Absorption Coefficients in the 750-940 nm region derived from Intracavity Laser Absorption Spectral Measurements

    NASA Astrophysics Data System (ADS)

    O'Brien, J. J.

    2002-09-01

    The absorption spectrum of methane has been recorded in the visible to near-IR region using the intracavity laser spectroscopy technique. Spectra are recorded at high spectral resolution for narrow overlapping intervals in the region for room and 77 K temperature methane samples. After spectra are deconvolved for the instrument function, absorption coefficients are derived. These will be presented (750-940 nm for room temperature methane; 850-920 nm for 77 K methane) and compared with results reported by other workers. Future work in this area also will be indicated. Support from NASA's Planetary Atmospheres Program (NAG5-6091 and a Major Equipment Grant) is gratefully acknowledged.

  10. Measurement of nanofluids absorption coefficient by Moiré deflectometry technique

    NASA Astrophysics Data System (ADS)

    Madanipour, Khosro; Koohian, Ataollah; Shahrabi Farahani, Shahrzad

    2015-05-01

    Nanoparticles exhibit many unique and interesting optical properties which make them very useful in biomedical applications. In order to employ NPs for disease treatment, comprehensive knowledge of their important properties is crucial. One of these parameters is absorption coefficient. In this work, absorption coefficient of a nanofluid (Au nanoparticles in water) is measured by using Moiré deflectometry technique. Two laser beams are used: a comparatively high intensity laser beam as interacting beam and a low intensity as a probe beam. This method is fast, easy and nonscanning, also insensitive to vibrations.

  11. In vivo light fluence correction for determination of tissue absorption coefficient using Multispectral Optoacoustic Tomography

    NASA Astrophysics Data System (ADS)

    Brochu, Frederic M.; Joseph, James; Tomaszewski, Michal R.; Bohndiek, Sarah E.

    2016-03-01

    Optoacoustic Tomography is a fast developing imaging modality, combining the high resolution and penetration depth of ultrasound detection with the high contrast available from optical absorption in tissue. The spectral profile of near infrared excitation light used in optoacoustic tomography instruments is modified by absorption and scattering as it propagates deep into biological tissue. The resulting images therefore provide only qualitative insight into the distribution of tissue chromophores. Knowledge of the spectral profile of excitation light across the mouse is needed for accurate determination of the absorption coefficient in vivo. Under the conditions of constant Grueneisen parameter and accurate knowledge of the light fluence, a linear relationship should exist between the initial optoacoustic pressure amplitude and the tissue absorption coefficient. Using data from a commercial optoacoustic tomography system, we implemented an iterative optimization based on the σ-Eddington approximation to the Radiative Transfer Equation to derive a light fluence map within a given object. We segmented the images based on the positions of phantom inclusions, or mouse organs, and used known scattering coefficients for initialization. Performing the fluence correction in simple phantoms allowed the expected linear relationship between recorded and independently measured absorption coefficients to be retrieved and spectral coloring to be compensated. For in vivo data, the correction resulted in an enhancement of signal intensities in deep tissues. This improved our ability to visualize organs at depth (> 5mm). Future work will aim to perform the optimization without data normalization and explore the need for methodology that enables routine implementation for in vivo imaging.

  12. Statistical Characteristics of Aerosol Extinction Coefficient Profile in East Asia from CALIPSO

    NASA Astrophysics Data System (ADS)

    Sun, Xuejin; Zhou, Junhao; Zhou, Yongbo

    2016-06-01

    Aerosol extinction coefficient profile (ECP) is important in radiative transfer modeling, however, knowledge of ECP in some area has not been clearly recognized. To get a full understanding of statistical characteristics of ECP in three Asian regions: the Mongolian Plateau, the North China Plain and the Yellow Sea, CALIPSO aerosol product in 2012 is processed by conventional statistical methods. Orbit averaged ECP turns out to be mainly exponential and Gaussian patterns. Curve fitting shows that the two ECP patterns account for more than 50 percent of all the samples, especially in the Yellow Sea where the frequency of occurrence even reaches over 80 percent. Parameters determining fitting curves are provided consequently. To be specific, Gaussian pattern is the main ECP distribution in the Mongolian Plateau and the Yellow Sea, and exponential pattern predominates in the North China Plain. Besides, aerosol scale height reaches its maximum in summer and in the Mongolian Plateau. Meanwhile, the uplifting and deposition of dust during transportation are potentially explanations to the occurrence of Gaussian ECP. The results have certain representativeness, and contribute to reducing uncertainties of aerosol model in relevant researches.

  13. Reduction in biomass burning aerosol light absorption upon humidification: Roles of inorganically-induced hygroscopicity, particle collapse, and photoacoustic heat and mass transfer

    SciTech Connect

    lewis, Kristen A.; Arnott, W. P.; Moosmuller, H.; Chakrabarti, Raj; Carrico, Christian M.; Kreidenweis, Sonia M.; Day, Derek E.; Malm, William C.; Laskin, Alexander; Jimenez, Jose L.; Ulbrich, Ingrid M.; Huffman, John A.; Onasch, Timothy B.; Trimborn, Achim; Liu, Li; Mishchenko, M.

    2009-11-27

    Smoke particle emissions from the combustion of biomass fuels typical for the western and southeastern United States were studied and compared under high humidity and ambient conditions in the laboratory. The fuels used are Montana ponderosa pine (Pinus ponderosa), southern California chamise (Adenostoma fasciculatum), and Florida saw palmetto (Serenoa repens). Information on the non-refractory chemical composition of biomass burning aerosol from each fuel was obtained with an aerosol mass spectrometer and through estimation of the black carbon concentration from light absorption measurements at 870 nm. Changes in the optical and physical particle properties under high humidity conditions were observed for hygroscopic smoke particles containing substantial inorganic mass fractions that were emitted from combustion of chamise and palmetto fuels. Light scattering cross sections increased under high humidity for these particles, consistent with the hygroscopic growth measured for 100 nm particles in HTDMA measurements. Photoacoustic measurements of aerosol light absorption coefficients reveal a 20% reduction with increasing relative humidity, contrary to the expectation of light absorption enhancement by the liquid coating taken up by hygroscopic particles. This reduction is hypothesized to arise from two mechanisms: 1. Shielding of inner monomers after particle consolidation or collapse with water uptake; 2. The contribution of mass transfer through evaporation and condensation at high relative humidity to the usual heat transfer pathway for energy release by laser heated particles in the photoacoustic measurement of aerosol light absorption. The mass transfer contribution is used to evaluate the fraction of aerosol surface covered with liquid water solution as a function of RH.

  14. Contribution of Brown Carbon to Total Aerosol Absorption in Indo-Gangetic Plain

    NASA Astrophysics Data System (ADS)

    Tripathi, S. N.; Moosakutty, S. P.; Bergin, M.; Vreeland, H. P.

    2015-12-01

    Carbonaceous aerosols play an important role in earth's radiative balance by absorbing and scattering light. We report physical and optical properties of carbonaceous aerosols from Indo-Gangetic Plain (IGP) for 60 days during 2014-15 winter season. Mass concentration and size distribution of black carbon (BC) and organic carbon (OC) were measured in real time using Single Particle Soot Photometer (SP2) and High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) respectively. Optical properties of aerosols at atmospheric and denuded (heated at 300 ˚C) conditions were also measured using 3 wavelength Photo Acoustic Soot Spectrometer (PASS 3). Analysis shows large scale carbonaceous aerosol loading during winter season in IGP. Multiple biomass burning events combined with trash burning contributed to this high loading along with very low boundary layer height. An inter-comparison shows that Aethalometer over estimates BC by a factor of 3 when compared with that of SP 2 measurement. Enhancement in absorption (Eabs) defined as the ratio of atmospheric absorption to denuded absorption shows presence of absorbing organics known as brown carbon (BrC). Optical closure performed between denuded aerosol absorption measured by PASS 3 and Mie theory derived absorption using SP 2 BC size distribution showed a difference of only 30 % at 781 nm. This difference might be due to the non-spherical shape and presence of residual coating on BC. Refractive index of BrC at 405 and 532 nm were derived using optical closure method for the entire sampling period. Overall results indicates that the impact of BrC on optical absorption is significant in areas dominated by biomass burning such as IGP and such effects needs to be considered in global aerosol modelling studies.

  15. Spectral Absorption of Solar Radiation by Aerosols during ACE-Asia

    NASA Technical Reports Server (NTRS)

    Bergstrom, R. W.; Pilewskie, P.; Pommier, J.; Rabbette, M.; Russell, P. B.; Schmid, B.; Redermann, J.; Higurashi, A.; Nakajima, T.; Quinn, P. K.

    2004-01-01

    As part of the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia), the upward and downward spectral solar radiant fluxes were measured with the Spectral Solar Flux Radiometer (SSFR), and the aerosol optical depth was measured with the Ames Airborne Tracking Sunphotometer (AATS-14) aboard the Center for INterdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft. IN this paper, we examine the data obtained for two cases: a moderately thick aerosol layer, 12 April, and a relatively thin aerosol case, 16 April 2001. ON both days, the Twin Otter flew vertical profiles in the Korean Strait southeast of Gosan Island. For both days we determine the aerosol spectral absorption of the layer and estimate the spectral aerosol absorption optical depth and single-scattering albedo. The results for 12 April show that the single-scattering albedo increases with wavelength from 0.8 at 400 nm to 0.95 at 900 nm and remains essentially constant from 950 to 1700 nm. On 16 April the amount of aerosol absorption was very low; however, the aerosol single-scattering albedo appears to decrease slightly with wavelength in the visible region. We interpret these results in light of the two absorbing aerosol species observed during the ACE-asia study: mineral dust and black carbon. The results for 12 April are indicative of a mineral dust-black carbon mixture. The 16 April results are possibly caused by black carbon mixed with nonabsorbing pollution aerosols. For the 12 April case we attempt to estimate the relative contributions of the black carbon particles and the mineral dust particles. We compare our results with other estimates of the aerosol properties from a Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) satellite analysis and aerosol measurements made aboard the Twin Otter, aboard the National Oceanic and Atmospheric Administration Ronald H Brown ship, and at ground sites in Gosan and Japan. The results indicate a relatively complicated aerosol

  16. Light Absorption of Brown Carbon Aerosol in the Pearl River Delta Region of China

    NASA Astrophysics Data System (ADS)

    Huang, X.

    2015-12-01

    X.F. Huang, J.F. Yuan, L.M. Cao, J. Cui, C.N. Huang, Z.J. Lan and L.Y. He Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, ChinaCorresponding author. Tel.: +86 755 26032532; fax: +86 755 26035332. E-mail address: huangxf@pku.edu.cn (X. F. Huang). Abstract: The strong spectral dependence of light absorption of brown carbon (BrC) aerosol has been recognized in recent decades. The Absorption Angstrom Exponent (AAE) of ambient aerosol was widely used in previous studies to attribute light absorption of brown carbon at shorter wavelengths, with a theoretical assumption that the AAE of black carbon (BC) aerosol equals to unit. In this study, the AAE method was improved by statistical extrapolation based on ambient measurements in the polluted seasons in typical urban and rural areas in the Pearl River Delta (PRD) region of China. A three-wavelength photoacoustic soot spectrometer (PASS-3) and an aerosol mass spectrometer (AMS) were used to explore the relationship between the ambient measured AAE and the ratio of organic aerosol to BC aerosol, in order to extract the more realistic AAE by pure BC aerosol, which were found to be 0.86, 0.82 and 1.02 at 405nm and 0.70, 0.71, and 0.86 at 532nm in the campaigns of urban-winter, urban-fall, and rural-fall, respectively. Roadway tunnel experiment results further supported the effectiveness of the obtained AAE for pure BC aerosol. In addition, biomass burning experiments proved higher spectral dependence of more-BrC environment and further verified the reliability of the instruments' response. Then, the average light absorption contribution of BrC aerosol was calculated to be 11.7, 6.3 and 12.1% (with total relative uncertainty of 7.5, 6.9 and 10.0%) at 405nm and 10.0, 4.1 and 5.5% (with total relative uncertainty of 6.5, 8.6 and 15.4%) at 532nm of the three campaigns, respectively. These results indicate that the

  17. Light absorption and morphological properties of soot-containing aerosols observed at an East Asian outflow site, Noto Peninsula, Japan

    NASA Astrophysics Data System (ADS)

    Ueda, S.; Nakayama, T.; Taketani, F.; Adachi, K.; Matsuki, A.; Iwamoto, Y.; Sadanaga, Y.; Matsumi, Y.

    2015-09-01

    The coating of black carbon (BC) with inorganic salts and organic compounds can enhance the magnitude of light absorption by BC. To elucidate the enhancement of light absorption of aged BC particles and its relation to the mixing state and morphology of individual particles, we conducted observations of particles at an Asian outflow site in Noto Peninsula, Japan, in the spring of 2013. Absorption and scattering coefficients at 405, 532, and 781 nm and mass concentrations/mixing states of refractory-BC in PM2.5 were measured using a three-wavelength photoacoustic soot spectrometer and a single-particle soot photometer (SP2), respectively, after passage through a heater maintained at 300 or 400 °C or a bypass line maintained at room temperature (25 °C). The average enhancement of BC light absorption due to coating was estimated by comparing absorption coefficients at 781 nm for particles that with and without passing through the heater and was found to be 22-23 %. The largest enhancements (> 30 %) were observed under high absorption coefficient conditions when the air mass was long-range transported from urban areas in China. Aerosol samples were also analyzed using a transmission electron microscope (TEM) equipped with an energy dispersive X-ray analyzer. The morphological features and mixing states of soot-containing particles of four samples collected during the high absorption coefficient events were analyzed by comparing microphotographs before and after the evaporation of beam-sensitive materials by irradiation with a high density electron beam. The majority of the soot in all samples was found as mixed particles with spherical sulfate or as clusters of sulfate spherules. For samples showing high enhancement (> 30 %) of BC light absorption, TEM showed that the internally mixed soot-containing particles tended to have a more spherical shape and to be embedded into the sulfate. The SP2 measurements also suggested that the proportion of thickly-coated soot was

  18. Studies on mass energy-absorption coefficients and effective atomic energy-absorption cross sections for carbohydrates

    NASA Astrophysics Data System (ADS)

    Ladhaf, Bibifatima M.; Pawar, Pravina P.

    2015-04-01

    We measured here the mass attenuation coefficients (μ/ρ) of carbohydrates, Esculine (C15H16O9), Sucrose (C12H22O11), Sorbitol (C6H14O6), D-Galactose (C6H12O6), Inositol (C6H12O6), D-Xylose (C5H10O5) covering the energy range from 122 keV up to 1330 keV photon energies by using gamma ray transmission method in a narrow beam good geometry set-up. The gamma-rays were detected using NaI(Tl) scintillation detection system with a resolution of 8.2% at 662 keV. The attenuation coefficient data were then used to obtain the total attenuation cross-section (σtot), molar extinction coefficients (ε), mass-energy absorption coefficients (μen/ρ) and effective (average) atomic energy-absorption cross section (σa,en) of the compounds. These values are found to be in good agreement with the theoretical values calculated based on XCOM data.

  19. Photoacoustic measurements of black carbon light absorption coefficients in Irbid city, Jordan.

    PubMed

    Hamasha, Khadeejeh M; Arnott, W Patrick

    2010-07-01

    There is a need to recognize air pollution levels by particles, especially in developing countries such as Jordan where data are scarce due to the absence of routine monitoring of ambient air quality. This study aims at studying the air quality in different locations at Irbid, Jordan through the measurement and analysis of the time series of black carbon light absorption coefficients (B (abs)). Black carbon light absorption coefficients were measured with a photoacoustic instrument at a wavelength of 870 nm. The measurements were conducted during July 2007 at six sites in Irbid city, Jordan. Comparisons of black carbon concentrations at various locations were conducted to understand where values tend to be largest. The average value of B (abs) of all sites was 40.4 Mm(-1). The largest value of B (abs) was 61.2 Mm(-1) at Palestine Street which is located at a very crowded street in a highly populated region in the city center. The lowest value was 14.1 Mm(-1) at Thirtieth Street which is located at a main street in an open plain region in the east of the city. The black carbon light absorption coefficients fluctuate above a background level (transported black carbon from the neighboring states), which are almost identical at all sampling sites. The light absorption coefficients will be used as a benchmark in later years as combustion efficiencies and population patterns change. PMID:19479334

  20. The average ion model. Computation of the absorption and emission coefficients in hot plasmas

    NASA Astrophysics Data System (ADS)

    Gauthier, Jean-Claude; Geindre, Jean-Paul

    1988-06-01

    A program was developed to evaluate the emission and absorption plasma coefficient variations as a function of the density, temperature and the atomic number of the specimen. The treatment is simplified because of the reduced number of characteristic frequencies which are necessary for the hydrodynamic code. The approach is less efficient when applied to high Z atoms.

  1. A thermodynamic model of mixed organic-inorganic aerosols to predict activity coefficients

    NASA Astrophysics Data System (ADS)

    Zuend, A.; Marcolli, C.; Luo, B. P.; Peter, T.

    2008-08-01

    Tropospheric aerosols contain mixtures of inorganic salts, acids, water, and a large variety of organic compounds. Interactions between these substances in liquid mixtures lead to discrepancies from ideal thermodynamic behaviour. By means of activity coefficients, non-ideal behaviour can be taken into account. We present here a thermodynamic model named AIOMFAC (Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients) that is able to calculate activity coefficients covering inorganic, organic, and organic-inorganic interactions in aqueous solutions over a wide concentration range. This model is based on the activity coefficient model LIFAC by Yan et al. (1999) that we modified and reparametrised to better describe atmospherically relevant conditions and mixture compositions. Focusing on atmospheric applications we considered H+, Li+, Na+, K+, NH+4, Mg2+, Ca2+, Cl-, Br-, NO-3, HSO-4, and SO2-4 as cations and anions and a wide range of alcohols/polyols composed of the functional groups CHn and OH as organic compounds. With AIOMFAC, the activities of the components within an aqueous electrolyte solution are well represented up to high ionic strength. Most notably, a semi-empirical middle-range parametrisation of direct organic-inorganic interactions in alcohol+water+salt solutions strongly improves the agreement between experimental and modelled activity coefficients. At room temperature, this novel thermodynamic model offers the possibility to compute equilibrium relative humidities, gas/particle partitioning and liquid-liquid phase separations with high accuracy. In further studies, other organic functional groups will be introduced. The model framework is not restricted to specific ions or organic compounds and is therefore also applicable for other research topics.

  2. A thermodynamic model of mixed organic-inorganic aerosols to predict activity coefficients

    NASA Astrophysics Data System (ADS)

    Zuend, A.; Marcolli, C.; Luo, B. P.; Peter, Th.

    2008-03-01

    Tropospheric aerosols contain mixtures of inorganic salts, acids, water, and a large variety of organic compounds. Interactions between these substances in liquid mixtures lead to discrepancies from ideal thermodynamic behaviour. By means of activity coefficients, non-ideal behaviour can be taken into account. We present here a thermodynamic model named AIOMFAC (Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients) that is able to calculate activity coefficients covering inorganic, organic, and organic-inorganic interactions in aqueous solutions over a wide concentration range. This model is based on the activity coefficient model LIFAC by Yan et al. (1999) that we modified and reparametrised to better describe atmospherically relevant conditions and mixture compositions. Focusing on atmospheric applications we considered H+, Li+, Na+, K+, NH4+, Mg2+, Ca2+, Cl-, Br-, NO3-, HSO4-, and SO42- as cations and anions and a wide range of alcohols/polyols composed of the functional groups CHn and OH as organic compounds. With AIOMFAC, the activities of the components within an aqueous electrolyte solution are well represented up to high ionic strength. Most notably, a semi-empirical middle-range parametrisation of direct organic-inorganic interactions in alcohol + water + salt solutions strongly improves the agreement between experimental and modelled activity coefficients. At room temperature, this novel thermodynamic model offers the possibility to compute equilibrium relative humidities, gas/particle partitioning and liquid-liquid phase separations with high accuracy. In further studies, other organic functional groups will be introduced. The model framework is not restricted to specific ions or organic compounds and is therefore also applicable for other research topics.

  3. Vertical distribution of near-ground aerosol backscattering coefficient measured by a CCD side-scattering lidar

    NASA Astrophysics Data System (ADS)

    Tao, Zongming; Liu, Dong; Ma, Xiaomin; Shi, Bo; Shan, Huihui; Zhao, Ming; Xie, Chenbo; Wang, Yingjian

    2015-09-01

    The near-ground aerosols have the most impact on the human beings. Its fine spatial and temporal distribution, with which the environmental and meteorological departments concern themselves most, has not been elaborated very well due to the unavailable measurement tools. We present the continuous observations of the vertical profile of near-ground aerosol backscattering coefficients by employing our self-developed side-scattering lidar system based on charge-coupled device camera. During the experimental period from April 2013 to August 2014, four catalogs of aerosol backscattering coefficient profiles are found in the near ground. The continuous measurement is revealed by the contour plots measured during the whole night. These experimental results indicate that the aerosol backscattering coefficients in near ground are inhomogeneous and vary with altitude and time, which are very useful for the model researchers to study the regional air pollution and its climate impact.

  4. Light absorption of brown carbon aerosol in the PRD region of China

    NASA Astrophysics Data System (ADS)

    Yuan, J.-F.; Huang, X.-F.; Cao, L.-M.; Cui, J.; Zhu, Q.; Huang, C.-N.; Lan, Z.-J.; He, L.-Y.

    2015-10-01

    The strong spectral dependence of light absorption of brown carbon (BrC) aerosol is regarded to influence aerosol's radiative forcing significantly. The Absorption Angstrom Exponent (AAE) method was widely used in previous studies to attribute light absorption of BrC at shorter wavelengths for ambient aerosol, with a theoretical assumption that the AAE of "pure" black carbon (BC) aerosol equals to 1.0. In this study, the previous AAE method was improved by statistical analysis and applied in both urban and rural environments in the Pearl River Delta (PRD) region of China. A three-wavelength photo-acoustic soot spectrometer (PASS-3) and aerosol mass spectrometers (AMS) were used to explore the relationship between the measured AAE and the relative abundance of organic aerosol to BC. The regression and extrapolation analysis revealed that the more realistic AAE values for "pure" BC aerosol were 0.86, 0.82, and 1.02 at 405 nm, and 0.70, 0.71, and 0.86 at 532 nm, in the campaigns of urban_winter, urban_fall, and rural_fall, respectively. Roadway tunnel experiments were also conducted, and the results further supported the representativeness of the obtained AAE values for "pure" BC aerosol in the urban environments. Finally, the average aerosol light absorption contribution of BrC was quantified to be 11.7, 6.3, and 12.1 % (with relative uncertainties of 4, 4, and 7 %) at 405 nm, and 10.0, 4.1, and 5.5 % (with relative uncertainties of 2, 2, and 5 %) at 532 nm, in the campaigns of urban_winter, urban_fall, and rural_fall, respectively. The relatively higher BrC absorption contribution at 405 nm in the rural_fall campaign was likely a result of the biomass burning events nearby, which was supported by the biomass burning simulation experiments performed in this study. The results of this paper indicate that the brown carbon contribution to aerosol light absorption at shorter wavelengths is not negligible in the highly urbanized and industrialized PRD region.

  5. Aerosol Absorption by Black Carbon and Dust: Implications of Climate Change and Air Quality in Asia

    NASA Technical Reports Server (NTRS)

    Chin, Mian

    2010-01-01

    Atmospheric aerosol distributions from 2000 to 2007 are simulated with the global model GOCART to attribute light absorption by aerosol to its composition and sources. We show the seasonal and interannual variations of absorbing aerosols in the atmosphere over Asia, mainly black carbon and dust. and their linkage to the changes of anthropogenic and dust emissions in the region. We compare our results with observations from satellite and ground-based networks, and estimate the importance of black carbon and dust on regional climate forcing and air quality.

  6. Temperature effect on the far infrared absorption features of aromatic-based Titan aerosol analogs

    NASA Astrophysics Data System (ADS)

    Gautier, T.; Trainer, M. G.; Loeffler, M. J.; Sebree, J.; Anderson, C. M.

    2014-12-01

    The detection of benzene at ppm levels in Titan's atmosphere[1] by Cassini's Ion and Neutral Mass Spectrometer (INMS) has enforced the idea that aromatic and heteroaromatic reaction pathways may play an important role in Titan's atmospheric chemistry, especially in the formation of aerosols. Indeed, Trainer et al.[2] showed that aromatic molecules are easily dissociated by ultraviolet radiation and can therefore contribute significantly to aerosol formation. Sebree et al. [3] used such a mixture of low concentration aromatic and/or heteroaromatic molecules (benzene, naphthalene, pyridine, quinoline and isoquinoline) to produce aerosol analogs and then analyzed their far infrared absorption spectra. Their study shows that such aerosols can reproduce some spectral features observed by Cassini's Composite InfraRed Spectrometer (CIRS) in the far infrared below 500cm-1 [4]. Aerosols absorption at such a low wavenumbers most likely results from lattice resonances within their structure[4,5], and this might be influenced by the temperature of the sample. In this work we investigated the influence of temperature on the absorption spectra of the aerosol samples studied in Sebree et al.[4]. We recorded spectra at 100K and 300K and this revealed variations in the total absorption with temperature, but no new absorption features were observed. Through this investigation we have also found an unexpected strong absorption band of cooled Silicon in the far infrared, which has never been reported in the literature. [1] Waite et al. Science 316 (5826) : 870-875 [2] Trainer et al. ApJL 766: L4, 2013 [3] Sebree et al. Icarus 236: 146-152, 2014 [4] Anderson et al. Icarus 212: 762-778, 2011 [5] Gautier et al. Icarus 221: 320-327, 2012

  7. A photophonic instrument concept to measure atmospheric aerosol absorption. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Engle, C. D.

    1982-01-01

    A laboratory model of an instrument to measure the absorption of atmospheric aerosols was designed, built, and tested. The design was based on the photophonic phenomenon discovered by Bell and an acoustic resonator developed by Helmholtz. Experiments were done to show ways the signal amplitude could be improved and the noise reduced and to confirm the instrument was sensitive enough to be practical. The research was undertaken to develop concepts which show promise of being improvements on the instruments that are presently used to measure the absorption of the Sun's radiation by the Earth's atmospheric aerosols.

  8. Wavelength-resolved optical extinction measurements of aerosols using broad-band cavity-enhanced absorption spectroscopy over the spectral range of 445-480 nm.

    PubMed

    Zhao, Weixiong; Dong, Meili; Chen, Weidong; Gu, Xuejun; Hu, Changjin; Gao, Xiaoming; Huang, Wei; Zhang, Weijun

    2013-02-19

    Despite the significant progress in the measurements of aerosol extinction and absorption using spectroscopy approaches such as cavity ring-down spectroscopy (CRDS) and photoacoustic spectroscopy (PAS), the widely used single-wavelength instruments may suffer from the interferences of gases absorption present in the real environment. A second instrument for simultaneous measurement of absorbing gases is required to characterize the effect of light extinction resulted from gases absorption. We present in this paper the development of a blue light-emitting diode (LED)-based incoherent broad-band cavity-enhanced spectroscopy (IBBCEAS) approach for broad-band measurements of wavelength-resolved aerosol extinction over the spectral range of 445-480 nm. This method also allows for simultaneous measurement of trace gases absorption present in the air sample using the same instrument. On the basis of the measured wavelength-dependent aerosol extinction cross section, the real part of the refractive index (RI) can be directly retrieved in a case where the RI does not vary strongly with the wavelength over the relevant spectral region. Laboratory-generated monodispersed aerosols, polystyrene latex spheres (PSL) and ammonium sulfate (AS), were employed for validation of the RI determination by IBBCEAS measurements. On the basis of a Mie scattering model, the real parts of the aerosol RI were retrieved from the measured wavelength-resolved extinction cross sections for both aerosol samples, which are in good agreement with the reported values. The developed IBBCEAS instrument was deployed for simultaneous measurements of aerosol extinction coefficient and NO(2) concentration in ambient air in a suburban site during two representative days. PMID:23320530

  9. Temperature- and pressure-dependent absorption coefficients for CO2 and O2 at 193 nm

    NASA Astrophysics Data System (ADS)

    Hartinger, K. T.; Nord, S.; Monkhouse, P. B.

    Absorption of laser radiation at 193 nm by CO2 and O2 was studied at a series of different temperatures up to 1273 K and pressures up to 1 bar. The spectrum for CO2 was found to be broadband, so that absorption could be fitted to a Beer-Lambert law. On the other hand, the corresponding O2 spectrum is strongly structured and parameterisation requires a more complex relation, depending on both temperature and the product (pressure × absorption path length). In this context, the influence of spectral structure on the resulting spectrally integrated absorption coefficients is discussed. Using the fitting parameters obtained, effective transmissions at 193 nm can be calculated for a wide range of experimental conditions. As an illustration of the practical application of these data, the calculation of effective transmission for a typical industrial flue gas is described.

  10. Light absorption and morphological properties of soot-containing aerosols observed at an East Asian outflow site, Noto Peninsula, Japan

    NASA Astrophysics Data System (ADS)

    Ueda, Sayako; Nakayama, Tomoki; Taketani, Fumikazu; Adachi, Kouji; Matsuki, Atsushi; Iwamoto, Yoko; Sadanaga, Yasuhiro; Matsumi, Yutaka

    2016-03-01

    The coating of black carbon (BC) with inorganic salts and organic compounds can enhance the magnitude of light absorption by BC. To elucidate the enhancement of light absorption of aged BC particles and its relation to the mixing state and morphology of individual particles, we conducted observations of particles at an Asian outflow site in Noto Peninsula, Japan, in the spring of 2013. Absorption and scattering coefficients at 405, 532, and 781 nm and mass concentrations/mixing states of refractory BC in PM2.5 were measured using a three-wavelength photoacoustic soot spectrometer and a single-particle soot photometer (SP2), respectively, after passage through a thermodenuder (TD) maintained at 300 or 400 °C or a bypass line maintained at room temperature (25 °C). The average enhancement factor of BC light absorption due to coating was estimated by comparing absorption coefficients at 781 nm for particles that with and without passing through the TD at 300 °C and was found to be 1.22. The largest enhancements (> 1.30) were observed under high absorption coefficient periods when the air mass was long-range transported from urban areas in China. Aerosol samples were also analyzed using a transmission electron microscope (TEM) equipped with an energy dispersive X-ray analyzer. The morphological features and mixing states of soot-containing particles of four samples collected during the high absorption events were analyzed by comparing microphotographs before and after the evaporation of beam-sensitive materials by irradiation with a high-density electron beam. The majority of the soot in all samples was found as mixed particles with sulfate-containing spherules or as clusters of such spherules. For samples showing high enhancement (> 1.30) of BC light absorption, the TEM showed that the internally mixed soot-containing particles tended to have a more spherical shape and to be thickly coated. The SP2 measurements also suggested that the proportion of thickly coated

  11. Scattering and Absorption of E&M radiation by small particles-applications to study impact of biomass aerosols on climate

    NASA Astrophysics Data System (ADS)

    Bililign, Solomon; Singh, Sujeeta; Fiddler, Marc; Smith, Damon

    2015-03-01

    The phenomena of scattering, absorption, and emission of light and other electromagnetic radiation by small particles are central to many science and engineering disciplines. Absorption of solar radiation by black carbon aerosols has a significant impact on the atmospheric energy distribution and hydrologic processes. By intercepting incoming solar radiation before it reaches the surface, aerosols heat the atmosphere and, in turn, cool the surface. The magnitude of the atmospheric forcing induced by anthropogenic absorbing aerosols, mainly black carbon (BC) emitted from biomass burning and combustion processes has been suggested to be comparable to the atmospheric forcing by all greenhouse gases (GHGs). Despite the global abundance of biomass burning for cooking, forests clearing for agriculture and wild fires, the optical properties of these aerosols have not been characterized at wide range of wavelengths. Our laboratory uses a combination of Cavity ring down spectroscopy and integrating nephelometry to measure optical properties of (extinction, absorption and scattering coefficients) of biomass aerosols. Preliminary results will be presented. Supported by the Department of Defense under Grant #W911NF-11-1-0188.

  12. Biomass Burning Aerosol Absorption Measurements with MODIS Using the Critical Reflectance Method

    NASA Technical Reports Server (NTRS)

    Zhu, Li; Martins, Vanderlei J.; Remer, Lorraine A.

    2010-01-01

    This research uses the critical reflectance technique, a space-based remote sensing method, to measure the spatial distribution of aerosol absorption properties over land. Choosing two regions dominated by biomass burning aerosols, a series of sensitivity studies were undertaken to analyze the potential limitations of this method for the type of aerosol to be encountered in the selected study areas, and to show that the retrieved results are relatively insensitive to uncertainties in the assumptions used in the retrieval of smoke aerosol. The critical reflectance technique is then applied to Moderate Resolution Imaging Spectrometer (MODIS) data to retrieve the spectral aerosol single scattering albedo (SSA) in South African and South American 35 biomass burning events. The retrieved results were validated with collocated Aerosol Robotic Network (AERONET) retrievals. One standard deviation of mean MODIS retrievals match AERONET products to within 0.03, the magnitude of the AERONET uncertainty. The overlap of the two retrievals increases to 88%, allowing for measurement variance in the MODIS retrievals as well. The ensemble average of MODIS-derived SSA for the Amazon forest station is 0.92 at 670 nm, and 0.84-0.89 for the southern African savanna stations. The critical reflectance technique allows evaluation of the spatial variability of SSA, and shows that SSA in South America exhibits higher spatial variation than in South Africa. The accuracy of the retrieved aerosol SSA from MODIS data indicates that this product can help to better understand 44 how aerosols affect the regional and global climate.

  13. Light fluence correction for quantitative determination of tissue absorption coefficient using multi-spectral optoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Brochu, Frederic M.; Joseph, James; Tomaszewski, Michal; Bohndiek, Sarah E.

    2015-07-01

    MultiSpectral Optoacoustic Tomography (MSOT) is a fast developing imaging modality, combining the high resolution and penetration depth of ultrasound with the excellent contrast from optical imaging of tissue. Absorption and scattering of the near infrared excitation light modulates the spectral profile of light as it propagates deep into biological tissue, meaning the images obtained provide only qualitative insight into the distribution of tissue chromophores. The goal of this work is to accurately recover the spectral profile of excitation light by modelling light fluence in the data reconstruction, to enable quantitative imaging. We worked with a commercial small animal MSOT scanner and developed our light fluence correction for its' cylindrical geometry. Optoacoustic image reconstruction pinpoints the sources of acoustic waves detected by the transducers and returns the initial pressure amplitude at these points. This pressure is the product of the dimensionless Grüneisen parameter, the absorption coefficient and the light fluence. Under the condition of constant Grüneisen parameter and well modelled light fluence, there is a linear relationship between the initial pressure amplitude measured in the optoacoustic image and the absorption coefficient. We were able to reproduce this linear relationship in different physical regions of an agarose gel phantom containing targets of known optical absorption coefficient, demonstrating that our light fluence model was working. We also demonstrate promising results of light fluence correction effects on in vivo data.

  14. Absorption Coefficients of Particulate Matter off the Southwest Coast of Europe: A Contribution to Validation of the MERIS Sensor

    NASA Astrophysics Data System (ADS)

    Goela, P.; Icely, J.; Cristina, S.; Newton, A.

    2010-12-01

    Variability of particulate absorption coefficients was studied off the south-west coast of Portugal, as part of a validation exercise for the Medium Resolution Image Spectrometer Sensor. Regular sampling campaigns occurred at three stations on a transect from inshore to offshore to compare fluctuations in these coefficients at the local scale. Transmittance-reflectance method with sodium hypochlorite bleaching was used to determine absorption coefficients for phytoplankton and non-algal particles. Photosynthetic pigment concentrations were determined by High Performance Liquid Chromatography. Results show that the absorption of light by particulate matter is almost totally dependent on the phytoplankton, with no significant contribution from non-algal particles, both in coastal and oceanic waters. Specific phytoplankton coefficients show significant fluctuations between seasons and stations, ranging from 0.012 to 0.038 at 678 nm. Particulate absorption is dominant over dissolved absorption. The variations in the coefficients of absorption are analysed as a function of species assemblages.

  15. Traffic-related differences in indoor and personal absorption coefficient measurements in Amsterdam, the Netherlands

    NASA Astrophysics Data System (ADS)

    Wichmann, Janine; Janssen, Nicole A. H.; van der Zee, Saskia; Brunekreef, Bert

    Population studies indicate that study participants living near major roads are more prone to chronic respiratory symptoms, lung function decrements and hospital admissions for asthma. The majority of the studies used proxy measures, such as distance to major roads or traffic intensity in the surroundings of the home. Few studies have communicated findings of concurrently performed measurements of outdoor, indoor and personal air pollution in urban streets with high- and low-traffic density. Measuring light absorption or reflectance of particulate matter (PM) collected on filters is an alternative method to determine elemental carbon, a marker for particles produced by incomplete combustion, compared to expensive and destructive analytical methods. This study sets out to test the null hypothesis that there is no difference in personal and indoor filter absorption coefficients for participants living along busy and quiet roads in Amsterdam. In one study we measured personal and indoor absorption coefficients in a sample of adults (50-70 years) and, in another study, the indoor levels in a population of adults (50-70 years) and school children (10-12 years). In the first study, the ratios of personal and indoor absorption coefficients in homes along busy roads compared with homes on quiet streets were significantly higher by 29% for personal measurements ( n=16 days, p<0.001), and by 19% for indoor measurements ( n=20, p<0.001), while in the second study, the ratio for the indoor measurements was higher by 26% ( n=25 days, p<0.05). Exposure differences between homes along busy compared to homes along quiet streets remained and significant after adjustment for potential indoor sources (such as cooking and use of unvented heating appliances). This study therefore provides tentative support for the use of the type of road as proxy measure for indoor and personal absorption coefficient measurements in epidemiological studies due to the limitations of the study.

  16. Numerical simulation of infrared radiation absorption for diagnostics of gas-aerosol medium by remote sensing data

    NASA Astrophysics Data System (ADS)

    Voitsekhovskaya, O. K.; Egorov, O. V.; Kashirskii, D. E.; Shefer, O. V.

    2015-11-01

    Calculated absorption spectra of the mixture of gases (H2O, CO, CO2, NO, NO2, and SO2) and aerosol (soot and Al2O3), contained in the exhausts of aircraft and rocket engines are demonstrated. Based on the model of gas-aerosol medium, a numerical study of the spectral dependence of the absorptance for different ratios of gas and aerosol components was carried out. The influence of microphysical and optical properties of the components of the mixture on the spectral features of absorption of gas-aerosol medium was established.

  17. Derivation of absorption coefficient and reduced scattering coefficient with edge-loss method and comparison with video reflectometry method

    NASA Astrophysics Data System (ADS)

    Yoshida, Kenichiro

    2016-08-01

    We derived the absorption coefficient ( μ a) and the reduced scattering coefficient ( μ s') using the edge-loss method (ELM) and the video reflectometry method (VRM), and compared the results. In a previous study, we developed the ELM to easily evaluate the lateral spread in the skin; the VRM is a conventional method. The ELM measures the translucency index, which is correlated with μ a and μ s'. To obtain a precise estimation of these parameters, we improved the treatment of a white standard and the surface reflection. For both skin phantoms and actual skin, the values for μ a and μ s' that we obtained using the ELM were similar to those obtained using the VRM, when μ a/ μ s' was less than or equal to 0.05 and the diffusion approximation was applicable. Under this condition, the spectral reflectivity is greater than 0.4. In this study, we considered wavelengths longer than 600 nm for Types III and IV of the Fitzpatrick scale. For skin, the repeatability errors of the parameters obtained with the ELM were smaller than those obtained with the VRM; this can be an advantage in field tests.

  18. Derivation of absorption coefficient and reduced scattering coefficient with edge-loss method and comparison with video reflectometry method

    NASA Astrophysics Data System (ADS)

    Yoshida, Kenichiro

    2016-07-01

    We derived the absorption coefficient (μ a) and the reduced scattering coefficient (μ s') using the edge-loss method (ELM) and the video reflectometry method (VRM), and compared the results. In a previous study, we developed the ELM to easily evaluate the lateral spread in the skin; the VRM is a conventional method. The ELM measures the translucency index, which is correlated with μ a and μ s'. To obtain a precise estimation of these parameters, we improved the treatment of a white standard and the surface reflection. For both skin phantoms and actual skin, the values for μ a and μ s' that we obtained using the ELM were similar to those obtained using the VRM, when μ a/μ s' was less than or equal to 0.05 and the diffusion approximation was applicable. Under this condition, the spectral reflectivity is greater than 0.4. In this study, we considered wavelengths longer than 600 nm for Types III and IV of the Fitzpatrick scale. For skin, the repeatability errors of the parameters obtained with the ELM were smaller than those obtained with the VRM; this can be an advantage in field tests.

  19. A new photoacoustic method based on the modulation of the light induced absorption coefficient

    NASA Astrophysics Data System (ADS)

    Engel, S.; Wenisch, C.; Müller, F. A.; Gräf, S.

    2016-04-01

    The present study reports on a new photoacoustic (PA) measurement method that is suitable for the investigation of light induced absorption effects including e.g. excited state absorption. Contrary to the modulation of the radiation intensity used in conventional PA-methods, the key principle of this novel setup is based on the modulation of the induced absorption coefficient by light. For this purpose, a pump-probe setup with a pulsed pump laser beam and a continuous probe laser beam is utilized. In this regime, the potential influence of heat on the PA-signal is much smaller when compared to arrangements with pulsed probe beam and continuous pump beam. Beyond that, the negative effect of thermal lenses can be neglected. Thus, the measurement technique is well-suited for materials exhibiting a strong absorption at the pump wavelength. The quantitative analysis of the induced absorption coefficient was achieved by the calibration of the additional PA-signal caused by the continuous probe laser to the PA-signal resulting from the pulsed pump laser using thallium bromoiodide (KRS-5) as sample material.

  20. Measurements of the optical absorption coefficient of Ar8+ ion implanted silicon layers using the photothermal radiometry and the modulated free carrier absorption methods

    NASA Astrophysics Data System (ADS)

    Chrobak, Ł.; Maliński, M.; Pawlak, M.

    2014-11-01

    This paper presents a method of the measurement of the optical absorption coefficient of the Ar8+ ions implanted layers in the p-type silicon substrate. The absorption coefficient is calculated using a value of the attenuation of amplitudes of a photothermal radiometry (PTR) and/or a modulation free carrier absorption (MFCA) signals and the implanted layer thickness calculated by means of the TRIM program. The proposed method can be used to indicate the amorphization of the ions implanted layers.

  1. Absorption coefficients of GeSn extracted from PIN photodetector response

    NASA Astrophysics Data System (ADS)

    Ye, Kaiheng; Zhang, Wogong; Oehme, Michael; Schmid, Marc; Gollhofer, Martin; Kostecki, Konrad; Widmann, Daniel; Körner, Roman; Kasper, Erich; Schulze, Jörg

    2015-08-01

    In this paper the optical absorption of the GeSn PIN photodetector was investigated. The vertical GeSn PIN photodetectors were fabricated by molecular beam epitaxy (MBE) and dry etching. By means of current density-voltage (J-V) and capacity-voltage (C-V) measurements the photodetector device was characterized. The absorption coefficients of GeSn material were finally extracted from the optical response of PIN structure. With further direct bandgap analysis the influences of device structure was proved negligible.

  2. Scattering and absorption characteristics of atmospheric aerosols over a semi-urban coastal environment

    NASA Astrophysics Data System (ADS)

    Aruna, K.; Lakshmi Kumar, T. V.; Rao, D. Narayana; Krishna Murthy, B. V.; Babu, S. Suresh; Krishnamoorthy, K.

    2014-11-01

    The scattering and absorption components of Aerosol Optical Depth (AOD) over a semi-urban coastal location (12.81°N, 80.03°E) near the mega city Chennai in peninsular India are separated using the collocated measurements of Black Carbon concentration and Atmospheric Boundary Layer Height (ABLH) from ERA Interim Reanalysis data assuming that most of the BC is contained and homogeneously mixed in the ABL. It is found that the absorption component to scattering component ratio has a strong seasonal variation with a pronounced maximum in the South West (SW) monsoon season. This is indicative of more effective wet removal of scattering aerosols than absorbing (BC) aerosols. There could also be an effect due to preferential removal of large particles which would have a lower content of BC. The Angstrom wavelength exponent shows a minimum in the SW monsoon season, the minimum being more pronounced for the scattering aerosols implying relative dominance of coarse mode particles. Investigation of the effect of Relative Humidity on scattering and absorption components of AOD revealed that the BC (absorbing) aerosols are non-hydrophilic/not coated with hydrophilic substance.

  3. Heat/Mass Transfer Coefficients of an Absorber in Absorption Refrigeration System

    NASA Astrophysics Data System (ADS)

    Fujita, Isamu; Hihara, Eiji

    This paper presents a new method to calculate heat and mass transfer coefficients applicable to the vertical tube or plate type absorber of absorption refrigeration system. Conventional method for calculating the coefficients using logarithmic mean temperature/ concentration differences is criticized for its lacking in the theoretical rationality and usually giving untrue values except some limited situations such that temperature of the solution can be assumed to change linearly along the heat transfer surface. The newly introduced method, which is intended to overcome this difficulty, is verified by numerical simulation and is accompanied by an example applied to the experimental results.

  4. Aerosol Light Absorption and Scattering at Four Sites in and Near Mexico City: Comparison with Las Vegas, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Arnott, W. P.; Miranda, G. P.; Gaffney, J. S.; Marley, N. A.

    2007-05-01

    Four photoacoustic spectrometers (PAS) for aerosol light scattering and absorption measurements were deployed in and near Mexico City in March 2006 as part of the Megacity Impacts on Regional and Global Environments (MIRAGE). The four sites included: an urban site at Instituto Mexicano del Petroleo (Mexican Oil Institute, denoted by IMP); a suburban site at the Technological University of Tecamac; a rural site at "La Biznaga" ranch; and a site at the Paseo de Cortes (altitude 3,810 meters ASL) in the rural area above Amecameca in the State of Mexico, on the saddle between the volcanoes Popocatepetl and Iztaccihuatl. A similar campaign was held in Las Vegas, Nevada, USA in January-February, 2003. The IMP site gave in-situ characterization of the Mexico City plume under favorable wind conditions while the other sites provided characterization of the plume, mixed in with any local sources. The second and third sites are north of Mexico City, and the fourth site is south. The PAS used at IMP operates at 532 nm, and conveniently allowed for characterization of gaseous absorption at this wavelength as well. Instruments at the second and third sites operate at 870 nm, and the one at the fourth site at 780 nm. Light scattering measurements are accomplished within the PAS by the reciprocal nephelometery method. In the urban site the aerosol absorption coefficient typically varies between 20 and 180 Mm-1 during the course of the day and significant diurnal variation of the aerosol single scattering albedo was observed probably as a consequence of secondary aerosol formation. Comparisons with TSI nephelometer scattering at the T0 site will be presented. We will present the diurnal variation of the scattering and absorption as well as the single scattering albedo and fraction of absorption due to gases at the IMP site and compare with Las Vegas diurnal variation. Mexico City 'breaths' more during the course of the day than Las Vegas, Nevada in part because the latitude of

  5. Critical Reflectance Derived from MODIS: Application for the Retrieval of Aerosol Absorption over Desert Regions

    NASA Technical Reports Server (NTRS)

    Wells, Kelley C.; Martins, J. Vanderlei; Remer, Lorraine A.; Kreidenweis, Sonia M.; Stephens, Graeme L.

    2012-01-01

    Aerosols are tiny suspended particles in the atmosphere that scatter and absorb sunlight. Smoke particles are aerosols, as are sea salt, particulate pollution and airborne dust. When you look down at the earth from space sometimes you can see vast palls of whitish smoke or brownish dust being transported by winds. The reason that you can see these aerosols is because they are reflecting incoming sunlight back to the view in space. The reason for the difference in color between the different types of aerosol is that the particles arc also absorbing sunlight at different wavelengths. Dust appears brownish or reddish because it absorbs light in the blue wavelengths and scatters more reddish light to space, Knowing how much light is scattered versus how much is absorbed, and knowin that as a function of wavelength is essential to being able to quantify the role aerosols play in the energy balance of the earth and in climate change. It is not easy measuring the absorption properties of aerosols when they are suspended in the atmosphere. People have been doing this one substance at a time in the laboratory, but substances mix when they are in the atmosphere and the net absorption effect of all the particles in a column of air is a goal of remote sensing that has not yet been completely successful. In this paper we use a technique based on observing the point at which aerosols change from brightening the surface beneath to darkening it. If aerosols brighten a surface. they must scatter more light to space. If they darken the surface. they must be absorbing more. That cross over point is called the critical reflectance and in this paper we show that critical reflectance is a monotonic function of the intrinsic absorption properties of the particles. This parameter we call the single scattering albedo. We apply the technique to MODIS imagery over the Sahara and Sahel regions to retrieve the single scattering albedo in seven wavelengths, compare these retrievals to ground

  6. Light absorption of brown carbon aerosol in the PRD region of China

    NASA Astrophysics Data System (ADS)

    Yuan, J.-F.; Huang, X.-F.; Cao, L.-M.; Cui, J.; Zhu, Q.; Huang, C.-N.; Lan, Z.-J.; He, L.-Y.

    2016-02-01

    The strong spectral dependence of light absorption of brown carbon (BrC) aerosol is regarded to influence aerosol's radiative forcing significantly. The Absorption Angstrom Exponent (AAE) method has been widely used in previous studies to attribute light absorption of BrC at shorter wavelengths for ambient aerosols, with a theoretical assumption that the AAE of "pure" black carbon (BC) aerosol equals to 1.0. In this study, the AAE method was applied to both urban and rural environments in the Pearl River Delta (PRD) region of China, with an improvement of constraining the realistic AAE of "pure" BC through statistical analysis of on-line measurement data. A three-wavelength photo-acoustic soot spectrometer (PASS-3) and aerosol mass spectrometers (AMS) were used to explore the relationship between the measured AAE and the relative abundance of organic aerosol to BC. The regression and extrapolation analysis revealed that more realistic AAE values for "pure" BC aerosol (AAEBC) were 0.86, 0.82, and 1.02 between 405 and 781 nm, and 0.70, 0.71, and 0.86 between 532 and 781 nm, in the campaigns of urbanwinter, urbanfall, and ruralfall, respectively. Roadway tunnel experiments were conducted and the results further confirmed the representativeness of the obtained AAEBC values for the urban environment. Finally, the average light absorption contributions of BrC (± relative uncertainties) at 405 nm were quantified to be 11.7 % (±5 %), 6.3 % (±4 %), and 12.1 % (±7 %) in the campaigns of urbanwinter, urbanfall, and ruralfall, respectively, and those at 532 nm were 10.0 % (±2 %), 4.1 % (±3 %), and 5.5 % (±5 %), respectively. The relatively higher BrC absorption contribution at 405 nm in the ruralfall campaign could be reasonably attributed to the biomass burning events nearby, which was then directly supported by the biomass burning simulation experiments performed in this study. This paper indicates that the BrC contribution to total aerosol light absorption at shorter

  7. Organic reactions increasing the absorption index of atmospheric sulfuric acid aerosols

    NASA Astrophysics Data System (ADS)

    Nozière, B.; Esteve, W.

    2005-02-01

    Unlike most environments present at Earth's surface atmospheric aerosols can be favorable to organic reactions. Among them, the acid-catalyzed aldol condensation of aldehydes and ketones produces light-absorbing compounds. In this work the increase of the absorption index of sulfuric acid solutions 50-96 wt. % resulting from the uptake of gas-phase acetaldehyde, acetone, and 2-butanone (methyl ethyl ketone), has been measured in the near UV and visible range. Our results indicate that the absorption index between 200 and 500 nm for stratospheric sulfuric aerosols exposed to 100 pptV of acetaldehyde (1 pptV = 10-12 v/v) would increase by four orders of magnitude over a two-year lifetime. Rough estimates based on previous radiative calculations suggest that this reaction could result in an increase of the radiative forcing of sulfate aerosols of the order of 0.01 W m-2, and that these processes are worth further investigation.

  8. Index of Refraction and Absorption Coefficient Spectra of Paratellurite in the Terahertz Region

    NASA Astrophysics Data System (ADS)

    Unferdorben, Márta; Buzády, Andrea; Hebling, János; Kiss, Krisztián; Hajdara, Ivett; Kovács, László; Péter, Ágnes; Pálfalvi, László

    2016-07-01

    Index of refraction and absorption coefficient spectra of pure paratellurite (α-TeO2) crystal as a potential material for terahertz (THz) applications were determined in the 0.25-2 THz frequency range at room temperature by THz time domain spectroscopy (THz-TDS). The investigation was performed with beam polarization both parallel (extraordinary polarization) and perpendicular (ordinary polarization) to the optical axis [001] of the crystal. Similarly to the visible spectral range, positive birefringence was observed in the THz range as well. It was shown that the values of the refractive index for extraordinary polarization are higher and show significantly larger dispersion than for the ordinary one. The absorption coefficient values are also larger for extraordinary polarization. The measured values were fitted by theoretical curves derived from the complex dielectric function containing independent terms of Lorentz oscillators due to phonon-polariton resonances. The results are compared with earlier publications, and the observed significant discrepancies are discussed.

  9. Simultaneous retrieval of temperature-dependent absorption coefficient and conductivity of participating media

    PubMed Central

    Ren, Yatao; Qi, Hong; Zhao, Fangzhou; Ruan, Liming; Tan, Heping

    2016-01-01

    A secondary optimization technique was proposed to estimate the temperature-dependent thermal conductivity and absorption coefficient. In the proposed method, the stochastic particle swarm optimization was applied to solve the inverse problem. The coupled radiation and conduction problem was solved in a 1D absorbing, emitting, but non-scattering slab exposed to a pulse laser. It is found that in the coupled radiation and conduction problem, the temperature response is highly sensitive to conductivity but slightly sensitive to the optical properties. On the contrary, the radiative intensity is highly sensitive to optical properties but slightly sensitive to thermal conductivity. Therefore, the optical and thermal signals should both be considered in the inverse problem to estimate the temperature-dependent properties of the transparent media. On this basis, the temperature-dependent thermal conductivity and absorption coefficient were both estimated accurately by measuring the time-dependent temperature, and radiative response at the boundary of the slab. PMID:26912418

  10. Effective infrared absorption coefficient for photothermal radiometric measurements in biological tissues.

    PubMed

    Majaron, Boris; Milanic, Matija

    2008-01-01

    Although photothermal radiometric (PTR) measurements commonly employ broad-band signal acquisition to increase the signal-to-noise ratio, all reported studies apply a fixed infrared (IR) absorption coefficient to simplify the involved signal analysis. In samples with large spectral variation of micro(lambda) in mid-IR, which includes most biological tissues, the selection of the effective IR absorption coefficient value (micro(eff)) can strongly affect the accuracy of the result. We present a novel analytical approach for the determination of optimal micro(eff) from spectral properties of the sample and radiation detector. In extensive numerical simulations of pulsed PTR temperature profiling in human skin using three common IR radiation detectors and several acquisition spectral bands, we demonstrate that our approach produces viable values micro(eff). Two previously used analytical estimations perform much worse in the same comparison. PMID:18182701

  11. Determination of RW3-to-water mass-energy absorption coefficient ratio for absolute dosimetry.

    PubMed

    Seet, Katrina Y T; Hanlon, Peta M; Charles, Paul H

    2011-12-01

    The measurement of absorbed dose to water in a solid-phantom may require a conversion factor because it may not be radiologically equivalent to water. One phantom developed for the use of dosimetry is a solid water, RW3 white-polystyrene material by IBA. This has a lower mass-energy absorption coefficient than water due to high bremsstrahlung yield, which affects the accuracy of absolute dosimetry measurements. In this paper, we demonstrate the calculation of mass-energy absorption coefficient ratios, relative to water, from measurements in plastic water and RW3 with an Elekta Synergy linear accelerator (6 and 10 MV photon beams) as well as Monte Carlo modeling in BEAMnrc and DOSXYZnrc. From this, the solid-phantom-to-water correction factor was determined for plastic water and RW3. PMID:21960410

  12. Simultaneous retrieval of temperature-dependent absorption coefficient and conductivity of participating media

    NASA Astrophysics Data System (ADS)

    Ren, Yatao; Qi, Hong; Zhao, Fangzhou; Ruan, Liming; Tan, Heping

    2016-02-01

    A secondary optimization technique was proposed to estimate the temperature-dependent thermal conductivity and absorption coefficient. In the proposed method, the stochastic particle swarm optimization was applied to solve the inverse problem. The coupled radiation and conduction problem was solved in a 1D absorbing, emitting, but non-scattering slab exposed to a pulse laser. It is found that in the coupled radiation and conduction problem, the temperature response is highly sensitive to conductivity but slightly sensitive to the optical properties. On the contrary, the radiative intensity is highly sensitive to optical properties but slightly sensitive to thermal conductivity. Therefore, the optical and thermal signals should both be considered in the inverse problem to estimate the temperature-dependent properties of the transparent media. On this basis, the temperature-dependent thermal conductivity and absorption coefficient were both estimated accurately by measuring the time-dependent temperature, and radiative response at the boundary of the slab.

  13. Simultaneous retrieval of temperature-dependent absorption coefficient and conductivity of participating media.

    PubMed

    Ren, Yatao; Qi, Hong; Zhao, Fangzhou; Ruan, Liming; Tan, Heping

    2016-01-01

    A secondary optimization technique was proposed to estimate the temperature-dependent thermal conductivity and absorption coefficient. In the proposed method, the stochastic particle swarm optimization was applied to solve the inverse problem. The coupled radiation and conduction problem was solved in a 1D absorbing, emitting, but non-scattering slab exposed to a pulse laser. It is found that in the coupled radiation and conduction problem, the temperature response is highly sensitive to conductivity but slightly sensitive to the optical properties. On the contrary, the radiative intensity is highly sensitive to optical properties but slightly sensitive to thermal conductivity. Therefore, the optical and thermal signals should both be considered in the inverse problem to estimate the temperature-dependent properties of the transparent media. On this basis, the temperature-dependent thermal conductivity and absorption coefficient were both estimated accurately by measuring the time-dependent temperature, and radiative response at the boundary of the slab. PMID:26912418

  14. Simultaneous measurement of thermal diffusivity and optical absorption coefficient using photothermal radiometry. II Multilayered solids

    NASA Astrophysics Data System (ADS)

    Salazar, Agustín; Fuente, Raquel; Apiñaniz, Estibaliz; Mendioroz, Arantza; Celorrio, R.

    2011-08-01

    The aim of this work is to analyze the ability of modulated photothermal radiometry to retrieve the thermal diffusivity and the optical absorption coefficient of layered materials simultaneously. First, we extend the thermal quadrupole method to calculate the surface temperature of semitransparent multilayered materials. Then, this matrix method is used to evaluate the influence of heat losses by convection and radiation, the influence of the use of thin paint layers on the accuracy of thermal diffusivity measurements, and the effect of lateral heat diffusion due to the use of Gaussian laser beams. Finally, we apply the quadrupole method to retrieve (a) the thermal contact resistance in glass stacks and (b) the thermal diffusivity and optical absorption coefficient depth profiles in heterogeneous materials with continuously varying physical properties, as is the case of functionally graded materials and partially cured dental resins.

  15. Measurement and calculation of the sound absorption coefficient of pine wood charcoal

    NASA Astrophysics Data System (ADS)

    Suh, Jae Gap; Baik, Kyung min; Kim, Yong Tae; Jung, Sung Soo

    2013-10-01

    Although charcoal has been widely utilized for physical therapy and as a deodorant, water purifier, etc. due to its porous features, research on its role as a sound-absorbing material is rarely found. Thus, the sound absorption coefficients of pine wood charcoal were measured using an impedance tube and were compared with the theoretical predictions in the frequency range of 500˜ 5000 Hz. The theory developed in the current study only considers the lowest possible mode propagating along the air channels of the charcoal and shows good agreements with the measurements. As the frequency is increased, the sound absorption coefficients of pine wood charcoals also increase, but are lower than those of other commonly-used sound-absorbing materials.

  16. Light Absorption Properties and Radiative Effects of Primary Organic Aerosol Emissions

    EPA Science Inventory

    Organic aerosols (OA) in the atmosphere affect Earth’s energy budget by not only scattering but also absorbing solar radiation due to the presence of the so-called “brown carbon” (BrC) component. However, the absorptivities of OA are not or poorly represented in current climate m...

  17. Ultra-fast absorption of amorphous pure drug aerosols via deep lung inhalation.

    PubMed

    Rabinowitz, Joshua D; Lloyd, Peter M; Munzar, Patrik; Myers, Daniel J; Cross, Steve; Damani, Ramesh; Quintana, Reynaldo; Spyker, Daniel A; Soni, Pravin; Cassella, James V

    2006-11-01

    A deficiency of most current drug products for treatment of acute conditions is slow onset of action. A promising means of accelerating drug action is through rapid systemic drug administration via deep lung inhalation. The speed of pulmonary drug absorption depends on the site of aerosol deposition within the lung and the dissolution rate and drug content of the deposited particles. Alveolar delivery of fast-dissolving, pure drug particles should in theory enable very rapid absorption. We have previously shown that heating of thin drug films generates vapor-phase drug that subsequently cools and condenses into pure drug particles of optimal size for alveolar delivery. Here we present a hand held, disposable, breath-actuated device incorporating this thermal aerosol technology, and its application to the delivery of alprazolam, an anti-panic agent, and prochlorperazine, an anti-emetic with recently discovered anti-migraine properties. Thermal aerosol particles of these drugs exist in an amorphous state, which results in remarkably rapid drug absorption from the lung into the systemic circulation, with peak left ventricular concentrations achieved within 20 s, even quicker than following rapid (5 s) intravenous infusion. Absorption of the thermal aerosol is nearly complete, with >80% absolute bioavailability found in both dogs and human normal volunteers. PMID:16886198

  18. Infrared absorption-coefficient data on SF6 applicable to atmospheric remote sensing

    NASA Technical Reports Server (NTRS)

    Varanasi, P.; Gopalan, A.; Brannon, J. F., Jr.

    1992-01-01

    Spectral absorption coefficients, k(nu)/cm per atm, of SF6 have been measured in the central Q-branches of the nu(3)-fundamental at 947/cm at various temperature-pressure combinations representing tangent heights in solar-occultation experiments or layers in the atmosphere. The data obtained with the Doppler-limited spectral resolution (about 0.0001/cm) of a tunable-diode laser spectrometer are useful in the atmospheric remote sensing of this trace gas.

  19. Water vapor absorption coefficients in the 8-13-micron spectral region - A critical review

    NASA Technical Reports Server (NTRS)

    Grant, William B.

    1990-01-01

    Measurements of water vapor absorption coefficients in the thermal IR atmospheric window (8-13 microns) during the past 20 years obtained by a variety of techniques are reviewed for consistency and compared with computed values based on the AFGL spectral data tapes. The methods of data collection considered were atmospheric long path absorption with a CO2 laser or a broadband source and filters, a White cell and a CO2 laser or a broadband source and a spectrometer, and a spectrophone with a CO2 laser. Advantages and disadvantages of each measurement approach are given as a guide to further research. Continuum absorption has apparently been measured accurately to about the 5-10 percent level in five of the measurements reported.

  20. Absorption of visible radiation by aerosols in the volcanic plume of mount st. Helens.

    PubMed

    Ogren, J A; Charlson, R J; Radke, L F; Domonkos, S K

    1981-02-20

    Samples of particles from Mount St. Helens were collected in both the stratosphere and troposphere for measurement of the light absorption coefficient. Results indicate that the stratospheric dust had a small but finite absorption coefficient ranging up to 2 x 10(-7) per meter at a wavelength of 0.55 micrometer, which is estimated to yield an albedo for single scatter of 0.98 or greater. Tropospheric results showed similar high values of an albedo for single scatter. PMID:17740397

  1. Absorption of visible radiation by aerosols in the volcanic plume of Mount St. Helens

    NASA Technical Reports Server (NTRS)

    Ogren, J. A.; Charlson, R. J.; Radke, L. F.; Domonkos, S. K.

    1981-01-01

    Samples of particles from Mount St. Helens were collected in both the stratosphere and troposphere for measurement of the light absorption coefficient. Results indicate that the stratospheric dust had a small but finite absorption coefficient ranging up to 2 x 10 to the minus 7 per meter at a wavelength of 0.55 micron, which is estimated to yield an albedo for single scatter of 0.98 or greater. Tropospheric results showed similar high values of an albedo for single scatter

  2. Absorption of visible radiation by aerosols in the volcanic plume of Mount St. Helens

    SciTech Connect

    Ogren, J.A.; Charlson, R.J.; Radke, L.F.; Domonkos, S.K.

    1981-01-01

    Samples of particles from Mount St. Helens were collected in both the stratosphere and troposhere for measurement of the light absorption coefficient. Results indicate that the stratospheric dust had a small but finite absorption coefficient ranging up to 2 x 10-7 per meter at a wavelength of 0.55 micrometer, which is estimated to yield an albedo for single scatter of 0.98 or greater. Tropospheric results showed similar high values of an albedo for single scatter.

  3. Use of radial symmetry for the calculation of cylindrical absorption coefficients and optimal capillary loadings

    SciTech Connect

    Khalifah, Peter

    2015-02-01

    The problem of numerically evaluating absorption correction factors for cylindrical samples has been revisited using a treatment that fully takes advantage of the sample symmetry. It is shown that the path lengths for all points within the sample at all possible diffraction angles can be trivially determined once the angle-dependent distance distribution for a single line of points is calculated. This provides advantages in both computational efficiency and in gaining an intuitive understanding of the effects of absorption on diffraction data. A matrix of absorption coefficients calculated for µR products between 0 and 20 for diffraction angles θD of 0° to 90° were used to examine the influence of (1) capillary diameter and of (2) sample density on the overall scattered intensity as a function of diffraction angle, where µ is the linear absorption coefficient for the sample and R is the capillary radius. Based on this analysis, the optimal sample loading for a capillary experiment to maximize diffraction at angles of 0 – 50° is in general expected to be achieved when the maximum radius capillary compatible with the beam is used, and when the sample density is adjusted to be 3/(4µR) of its original density.

  4. Use of radial symmetry for the calculation of cylindrical absorption coefficients and optimal capillary loadings

    DOE PAGESBeta

    Khalifah, Peter

    2015-02-01

    The problem of numerically evaluating absorption correction factors for cylindrical samples has been revisited using a treatment that fully takes advantage of the sample symmetry. It is shown that the path lengths for all points within the sample at all possible diffraction angles can be trivially determined once the angle-dependent distance distribution for a single line of points is calculated. This provides advantages in both computational efficiency and in gaining an intuitive understanding of the effects of absorption on diffraction data. A matrix of absorption coefficients calculated for µR products between 0 and 20 for diffraction angles θD of 0°more » to 90° were used to examine the influence of (1) capillary diameter and of (2) sample density on the overall scattered intensity as a function of diffraction angle, where µ is the linear absorption coefficient for the sample and R is the capillary radius. Based on this analysis, the optimal sample loading for a capillary experiment to maximize diffraction at angles of 0 – 50° is in general expected to be achieved when the maximum radius capillary compatible with the beam is used, and when the sample density is adjusted to be 3/(4µR) of its original density.« less

  5. Two-photon interband absorption coefficients in tungstate and molybdate crystals

    NASA Astrophysics Data System (ADS)

    Lukanin, V. I.; Karasik, A. Ya.

    2015-02-01

    Two-photon absorption (TPA) coefficients were measured in tungstate and molybdate crystals - BaWO4, KGW, CaMoO4, BaMoO4, CaWO4, PbWO4 and ZnWO4 upon different orientations of excitation polarization with respect to the crystallographic axes. Trains of 25 ps pulses with variable radiation intensities of third (349 nm) harmonics of passively mode-locked 1047 nm Nd:YLF laser were used for interband two-photon excitation of the crystals. It was suggested that in the case, when 349 nm radiation pumping energy exceeds the bandgap width (hν>Eg), the nonlinear excitation process can be considered as two-step absorption. The interband two-photon absorption in all the studied crystals induces the following one-photon absorption from the exited states, which affects the nonlinear process dynamics and leads to a hysteresis in the dependence of the transmission on the excitation intensity. This fact was taken into account under analysis of the experimental dependences of the reciprocal transmission on the excitation intensity. Laser excitation in the transparency region of the crystals caused stimulated Raman scattering (SRS) not for all the crystals studied. The measured nonlinear coefficients allowed us to explain the suppression of SRS in crystals as a result of competition between the SRS and TPA.

  6. Satellite-Based Evidence of Wavelength-Dependent Aerosol Absorption in Biomass Burning Smoke Inferred from Ozone Monitoring Instrument

    NASA Technical Reports Server (NTRS)

    Jethva, H.; Torres, O.

    2012-01-01

    We provide satellite-based evidence of the spectral dependence of absorption in biomass burning aerosols over South America using near-UV measurements made by the Ozone Monitoring Instrument (OMI) during 2005-2007. In the current near-UV OMI aerosol algorithm (OMAERUV), it is implicitly assumed that the only absorbing component in carbonaceous aerosols is black carbon whose imaginary component of the refractive index is wavelength independent. With this assumption, OMI-derived aerosol optical depth (AOD) is found to be significantly over-estimated compared to that of AERONET at several sites during intense biomass burning events (August-September). Other well-known sources of error affecting the near-UV method of aerosol retrieval do not explain the large observed AOD discrepancies between the satellite and the ground-based observations. A number of studies have revealed strong spectral dependence in carbonaceous aerosol absorption in the near-UV region suggesting the presence of organic carbon in biomass burning generated aerosols. A sensitivity analysis examining the importance of accounting for the presence of wavelength-dependent aerosol absorption in carbonaceous particles in satellite-based remote sensing was carried out in this work. The results convincingly show that the inclusion of spectrally-dependent aerosol absorption in the radiative transfer calculations leads to a more accurate characterization of the atmospheric load of carbonaceous aerosols.

  7. Aerosols in GEOS-5: simulations of the UV Aerosol Index and the Aerosol Absorption Optical Depth and comparisons with OMI retrievals.

    NASA Astrophysics Data System (ADS)

    Buchard-Marchant, Virginie; da Silva, Arlindo; Colarco, Peter; Darmenov, Anton; Govindaraju, Ravi

    2013-04-01

    GEOS-5 is the latest version of the NASA Global Modeling and Assimilation Office (GMAO) earth system model. GEOS-5 contains components for atmospheric circulation and composition (including data assimilation), ocean circulation and biogeochemistry, and land surface processes. In addition to traditional meteorological parameters, GEOS-5 includes modules representing the atmospheric composition, most notably aerosols and tropospheric/stratospheric chemical constituents, taking explicit account of the impact of these constituents on the radiative processes of the atmosphere. The assimilation of Aerosol Optical Depth (AOD) in GEOS-5 involves very careful cloud screening and homogenization of the observing system by means of a Neural Net scheme that translates MODIS radiances into AERONET calibrated AOD. These measurements are further quality controlled using an adaptive buddy check scheme, and assimilated using the Local Displacement Ensemble (LDE) methodology. For this analysis, GEOS-5 runs at a nominal 50km horizontal resolution with 72 vertical layers (top at ~85km). GEOS-5 is driven by daily biomass burning emissions derived from MODIS fire radiative power retrievals. We present a summary of our efforts to simulate the UV Aerosol Index (AI) at 354 nm from aerosol simulations by performing a radiative transfer calculation. We have compared model produced AI with the corresponding OMI measurements, identifying regions where the model representation of absorbing aerosols were deficient. Separately, model derived Absorption Aerosol Optical Depth (AAOD) is compared with OMI retrievals. Making use of CALIPSO measurements we have also investigated the impact of the altitude of the aerosol layer on OMI derived AI trying to ascertain misplacement of plume height by the model.

  8. Aerosol Absorption Above Clouds from Combined OMI and MODIS Hyperspectral Measurements

    NASA Astrophysics Data System (ADS)

    de Graaf, M.; Tilstra, L. G.; Stammes, P.

    2015-06-01

    The aerosol direct effect (DRE) over clouds from combined OMI and MODIS hyperspectral measurements is presented. The radiative effect of UV-absorbing aerosols can be retrieved with high accuracy, using hyperspectral measurements and simulated clean cloud spectra. Since SCIAMACHY was lost in 2012, we use new measurements from OMI and MODIS to continue the observation of aerosol absorption over clouds from space. Each instrument by itself does not provide enough information on both aerosols and clouds, but OMI gives detailed information of UV aerosol absorption, while MODIS’ broadband channels provide cloud information from the SWIR range of the spectrum. OMI and MODIS are flying in formation in the A-Train constellation, providing observations about 8-15 minutes after one another. This creates uncertainties in the observed scene, especially in scenes where convection is strong and cloud parameters change rapidly. However, OMI and MODIS overlap at MODIS’ smallest wavelength band, 469 nm, which can be used to test the matching of the spectra. Furthermore, MODIS provides cloud products at 1 Å~ 1 km resolution, and better, which can be used to test and improve the cloud retrieval algorithmthat was developed for the much larger SCIAMACHY and OMI pixels. Application of this unique method to OMI andMODIS is used to prepare for TROPOMI, which will provide information on both the UV and the SWIR with an unprecedented accuracy and unprecedented spatial resolution.

  9. Measurement of human lung absorption of metaproterenol given via an aerosol using a stable isotope approach

    SciTech Connect

    MacGregor, T.R.

    1985-01-01

    The extent and rate of lung absorption of metaproterenol given via a metered dose aerosol was studied in normal, asthmatic, and chronic bronchitic volunteers. Aerosols of metaproterenol-d/sub 0/ and metaproterenol-/sup 13/C/sub 3/, 650 mcg doses each, were utilized followed in 3 hours by a 980 mcg intravenous infusion of metaproterenol-d/sub 7/. Pharmacokinetics of all three stable isotope formulations were studied in a 24 hour period in conjunction with pharmacologic effect measurements. A gas chromatographic/mass spectrometric assay for metaproterenol capable of reliably measuring plasma concentrations as low as 50 pg/mL was developed. Extent of lung absorption of metaproterenol following aerosol administration averaged 3% in normal and asthmatic volunteers (N = 6 each) and 1.8% in chronic bronchitic volunteers (N = 5). The extent absorbed on the second dose was comparable to the extent from the first dose. The rates of lung absorption, calculated by the Loo-Riegelman method, were bi-phasic in all volunteers with an initial, rapid first order phase followed by a slower, zero order phase. A working hypothesis, based on the solid suspension properties of the aerosol, was presented.

  10. Airborne DOAS measurements in Arctic: vertical distributions of aerosol extinction coefficient and NO2 concentration

    NASA Astrophysics Data System (ADS)

    Merlaud, A.; van Roozendael, M.; Theys, N.; Fayt, C.; Hermans, C.; Quennehen, B.; Schwarzenboeck, A.; Ancellet, G.; Pommier, M.; Pelon, J.; Burkhart, J.; Stohl, A.; de Mazière, M.

    2011-05-01

    We report airborne differential optical absorption spectroscopy (DOAS) measurements of aerosol extinction and NO2 tropospheric profiles performed off the North coast of Norway in April 2008. The DOAS instrument was installed on the Safire ATR-42 aircraft during the POLARCAT-France spring campaign and recorded scattered light spectra in near-limb geometry using a scanning telescope. We use O4 slant column measurements to derive the aerosol extinction at 360 nm. Regularization is based on the maximum a posteriori solution, for which we compare a linear and a logarithmic approach. The latter inherently constrains the solution to positive values and yields aerosol extinction profiles more consistent with independently measured size distributions. Two soundings are presented, performed on 8 April 2008 above 71° N, 22° E and on 9 April 2008 above 70° N, 17.8° E. The first profile shows aerosol extinction and NO2 in the marine boundary layer with respective values of 0.04±0.005 km-1 and 1.9±0.3 × 109 molec cm-3. A second extinction layer of 0.01±0.003 km-1 is found at 4 km altitude. During the second sounding, clouds prevented us to retrieve profile parts under 3 km altitude but a layer with enhanced extinction (0.025±0.005 km-1) and NO2 (1.95±0.2 × 109 molec cm-3) is clearly detected at 4 km altitude. From CO and ozone in-situ measurements complemented by back-trajectories, we interpret the measurements in the free troposphere as, for the first sounding, a mix between stratospheric and polluted air from Northern Europe and for the second sounding, polluted air from Central Europe containing NO2. Considering the boundary layer measurements of the first flight, modeled source regions indicate closer sources, especially the Kola Peninsula smelters, which can explain the NO2 enhancement not correlated with a CO increase at the same altitude.

  11. Airborne DOAS measurements in Arctic: vertical distributions of aerosol extinction coefficient and NO2 concentration

    NASA Astrophysics Data System (ADS)

    Merlaud, A.; van Roozendael, M.; Theys, N.; Fayt, C.; Hermans, C.; Quennehen, B.; Schwarzenboeck, A.; Ancellet, G.; Pommier, M.; Pelon, J.; Burkhart, J.; Stohl, A.; de Mazière, M.

    2011-09-01

    We report on airborne Differential Optical Absorption Spectroscopy (DOAS) measurements of aerosol extinction and NO2 tropospheric profiles performed off the North coast of Norway in April 2008. The DOAS instrument was installed on the Safire ATR-42 aircraft during the POLARCAT-France spring campaign and recorded scattered light spectra in near-limb geometry using a scanning telescope. We use O4 slant column measurements to derive the aerosol extinction at 360 nm. Regularization is based on the maximum a posteriori solution, for which we compare a linear and a logarithmic approach. The latter inherently constrains the solution to positive values and yields aerosol extinction profiles more consistent with independently measured size distributions. We present results from two soundings performed on 8 April 2008 above 71° N, 22° E and on 9 April 2008 above 70° N, 17.8° E. The first profile shows aerosol extinction and NO2 in the marine boundary layer with respective values of 0.04 ± 0.005 km-1 and 1.9 ± 0.3 × 109 molec cm-3. A second extinction layer of 0.01 ± 0.003 km-1 is found at 4 km altitude where the NO2 concentration is 0.32 ± 0.2 × 109 molec cm-3. During the second sounding, clouds prevent retrieval of profile parts under 3 km altitude but a layer with enhanced extinction (0.025 ± 0.005 km-1) and NO2 (1.95 ± 0.2 × 109 molec cm-3) is clearly detected at 4 km altitude. From CO and ozone in-situ measurements complemented by back-trajectories, we interpret the measurements in the free troposphere as, for the first sounding, a mix between stratospheric and polluted air from Northern Europe and for the second sounding, polluted air from Central Europe containing NO2. Considering the boundary layer measurements of the first flight, modeled source regions indicate closer sources, especially the Kola Peninsula smelters, which can explain the NO2 enhancement not correlated with a CO increase at the same altitude.

  12. Diffusion Coefficients of Water and Leachables in Methacrylate-based Crosslinked Polymers using Absorption Experiments

    PubMed Central

    Parthasarathy, Ranganathan; Misra, Anil; Park, Jonggu; Ye, Qiang; Spencer, Paulette

    2012-01-01

    The diffusion of water into dentin adhesive polymers and leaching of unpolymerized monomer from the adhesive are linked to their mechanical softening and hydrolytic degradation. Therefore, diffusion coefficient data are critical for the mechanical design of these polymeric adhesives. In this study, diffusion coefficients of water and leachables were obtained for sixteen methacrylate-based crosslinked polymers using absorption experiments. The experimental mass change data was interpreted using numerical solution of the two-dimensional diffusion equations. The calculated diffusion coefficients varied from 1.05 × 10−8 cm2/sec (co-monomer TMTMA) to 3.15 × 10−8 cm2/sec (co-monomer T4EGDMA). Correlation of the diffusion coefficients with crosslink density and hydrophilicity showed an inverse trend (R2 = 0.41). The correlation of diffusion coefficient with crosslink density and hydrophilicity are closer for molecules differing by simple repeat units (R2 = 0.95). These differences in the trends reveal mechanisms of interaction of the diffusing water with the polymer structure. PMID:22430592

  13. Microwave Resonator Measurements of Atmospheric Absorption Coefficients: A Preliminary Design Study

    NASA Technical Reports Server (NTRS)

    Walter, Steven J.; Spilker, Thomas R.

    1995-01-01

    A preliminary design study examined the feasibility of using microwave resonator measurements to improve the accuracy of atmospheric absorption coefficients and refractivity between 18 and 35 GHz. Increased accuracies would improve the capability of water vapor radiometers to correct for radio signal delays caused by Earth's atmosphere. Calibration of delays incurred by radio signals traversing the atmosphere has applications to both deep space tracking and planetary radio science experiments. Currently, the Cassini gravity wave search requires 0.8-1.0% absorption coefficient accuracy. This study examined current atmospheric absorption models and estimated that current model accuracy ranges from 5% to 7%. The refractivity of water vapor is known to 1% accuracy, while the refractivity of many dry gases (oxygen, nitrogen, etc.) are known to better than 0.1%. Improvements to the current generation of models will require that both the functional form and absolute absorption of the water vapor spectrum be calibrated and validated. Several laboratory techniques for measuring atmospheric absorption and refractivity were investigated, including absorption cells, single and multimode rectangular cavity resonators, and Fabry-Perot resonators. Semi-confocal Fabry-Perot resonators were shown to provide the most cost-effective and accurate method of measuring atmospheric gas refractivity. The need for accurate environmental measurement and control was also addressed. A preliminary design for the environmental control and measurement system was developed to aid in identifying significant design issues. The analysis indicated that overall measurement accuracy will be limited by measurement errors and imprecise control of the gas sample's thermodynamic state, thermal expansion and vibration- induced deformation of the resonator structure, and electronic measurement error. The central problem is to identify systematic errors because random errors can be reduced by averaging

  14. Comparison of three methods for measuring light absorption by collected aerosols.

    PubMed

    Ramsey-Bell, D C; Couture, G

    1985-08-01

    Three instruments for measuring absorption of visible light by atmospheric aerosols are compared: the visual comparator; plate diffuser; and photoacoustic spectrometer. Two versions of the photoacoustic spectrometer are tested, one built of acrylic plastic and the other of aluminum. One version of the visual comparator uses Millipore filters for a crucial reflective surface, another a mirror. Several materials collected on Nuclepore filters are used in the comparison. Laboratory generated samples consist of carbon and carbon overlaid with ammonium sulfate. Atmospheric aerosols were collected in Tucson and on an Arizona mountain peak. All methods give reasonably consistent results, even when applied to the lightly absorbing nonurban atmospheric samples. PMID:18223896

  15. Spectroscopic method for determination of the absorption coefficient in brain tissue

    NASA Astrophysics Data System (ADS)

    Johansson, Johannes D.

    2010-09-01

    I use Monte Carlo simulations and phantom measurements to characterize a probe with adjacent optical fibres for diffuse reflectance spectroscopy during stereotactic surgery in the brain. Simulations and measurements have been fitted to a modified Beer-Lambert model for light transport in order to be able to quantify chromophore content based on clinically measured spectra in brain tissue. It was found that it is important to take the impact of the light absorption into account when calculating the apparent optical path length, lp, for the photons in order to get good estimates of the absorption coefficient, μa. The optical path length was found to be well fitted to the equation lp=a+b ln(Is)+c ln(μa)+d ln(Is)ln(μa), where Is is the reflected light intensity for scattering alone (i.e., zero absorption). Although coefficients a-d calculated in this study are specific to the probe used here, the general form of the equation should be applicable to similar probes.

  16. Sound absorption coefficient in situ: an alternative for estimating soil loss factors.

    PubMed

    Freire, Rosane; Meletti de Abreu, Marco Henrique; Okada, Rafael Yuri; Soares, Paulo Fernando; GranhenTavares, Célia Regina

    2015-01-01

    The relationship between the sound absorption coefficient and factors of the Universal Soil Loss Equation (USLE) was determined in a section of the Maringá Stream basin, Paraná State, by using erosion plots. In the field, four erosion plots were built on a reduced scale, with dimensions of 2.0×12.5m. With respect to plot coverage, one was kept with bare soil and the others contained forage grass (Brachiaria), corn and wheat crops, respectively. Planting was performed without any type of conservation practice in an area with a 9% slope. A sedimentation tank was placed at the end of each plot to collect the material transported. For the acoustic system, pink noise was used in the measurement of the proposed monitoring, for collecting information on incident and reflected sound pressure levels. In general, obtained values of soil loss confirmed that 94.3% of material exported to the basin water came from the bare soil plot, 2.8% from the corn plot, 1.8% from the wheat plot, and 1.1% from the forage grass plot. With respect to the acoustic monitoring, results indicated that at 16kHz erosion plot coverage type had a significant influence on the sound absorption coefficient. High correlation coefficients were found in estimations of the A and C factors of the USLE, confirming that the acoustic technique is feasible for the determination of soil loss directly in the field. PMID:24972796

  17. Effect of hygroscopic growth on the aerosol light-scattering coefficient: A review of measurements, techniques and error sources

    NASA Astrophysics Data System (ADS)

    Titos, G.; Cazorla, A.; Zieger, P.; Andrews, E.; Lyamani, H.; Granados-Muñoz, M. J.; Olmo, F. J.; Alados-Arboledas, L.

    2016-09-01

    Knowledge of the scattering enhancement factor, f(RH), is important for an accurate description of direct aerosol radiative forcing. This factor is defined as the ratio between the scattering coefficient at enhanced relative humidity, RH, to a reference (dry) scattering coefficient. Here, we review the different experimental designs used to measure the scattering coefficient at dry and humidified conditions as well as the procedures followed to analyze the measurements. Several empirical parameterizations for the relationship between f(RH) and RH have been proposed in the literature. These parameterizations have been reviewed and tested using experimental data representative of different hygroscopic growth behavior and a new parameterization is presented. The potential sources of error in f(RH) are discussed. A Monte Carlo method is used to investigate the overall measurement uncertainty, which is found to be around 20-40% for moderately hygroscopic aerosols. The main factors contributing to this uncertainty are the uncertainty in RH measurement, the dry reference state and the nephelometer uncertainty. A literature survey of nephelometry-based f(RH) measurements is presented as a function of aerosol type. In general, the highest f(RH) values were measured in clean marine environments, with pollution having a major influence on f(RH). Dust aerosol tended to have the lowest reported hygroscopicity of any of the aerosol types studied. Major open questions and suggestions for future research priorities are outlined.

  18. Enhanced UV Absorption in Carbonaceous Aerosols during MILAGRO and Identification of Potential Organic Contributors.

    NASA Astrophysics Data System (ADS)

    Mangu, A.; Kelley, K. L.; Marchany-Rivera, A.; Kilaparty, S.; Gunawan, G.; Gaffney, J. S.; Marley, N. A.

    2007-12-01

    Measurements of aerosol absorption were obtained as part of the MAX-Mex component of the MILAGRO field campaign at site T0 (Instituto Mexicano de Petroleo in Mexico City) during the month of March, 2006 by using a 7- channel aethalometer (Thermo-Anderson). These measurements, obtained at 370, 470, 520, 590, 660, 880, and 950 nm at a 5 minute time resolution, showed an enhanced absorption in the UV over that expected from carbon soot alone. Samples of fine atmospheric aerosols (less than 0.1micron) were also collected at site T0 and T1 (Universidad Technologica de Tecamac, State of Mexico) from 5 am to 5 pm (day) and from 5 pm to 5 am (night) during the month of March 2006. The samples were collected on quartz fiber filters with high volume impactor samplers. The samples have been characterized for total carbon content (stable isotope ratio mass spectroscopy) and natural radionuclide tracers (210Pb, 210Po, 210Bi, 7Be, 13C, 14C, 40K, 15N). Continuous absorption spectra of these aerosol samples have been obtained in the laboratory from 280 to 900nm with the use of an integrating sphere coupled to a UV-visible spectrometer (Beckman DU with a Labsphere accessory). The integrating sphere allows the detector to collect and spatially integrate the total radiant flux reflected from the sample and therefore allows for the measurement of absorption on highly reflective or diffusely scattering samples (1). The continuous spectra also show an enhanced UV absorption over that expected from carbon soot and the general profiles are quite similar to those observed for humic and fulvic acids found as colloidal materials in surface and groundwaters (2), indicating the presence of humic-like substances (HULIS) in the fine aerosols. The spectra also show evidence of narrow band absorbers below 400 nm typical of polycyclic aromatics (PAH) and nitrated aromatic compounds. Spectra were also obtained on NIST standard diesel soot (SRM 2975), NIST standard air particulate matter (SRM 8785

  19. Absorption of Visible and Long-wave Radiation by Primary and Secondary Biogenic Aerosols.

    NASA Astrophysics Data System (ADS)

    Gaffney, J. S.; Marley, N. A.

    2008-12-01

    Field results for the 14C content of carbonaceous aerosols are presented that indicate significant biogenic sources of both primary and secondary aerosols in urban and regional environments. Samples collected in Mexico City and downwind of the urban area during the MILAGRO field study are compared with results reported previously in the literature indicating a significant amount of biogenic aerosols from both biomass burning and secondary photochemical production (e.g. terpene oxidations) are contributing to the overall carbonaceous aerosols in the optically active region of 0.1 to 1.0 micron. Samples in this size range collected on quartz fiber filters were also examined using an integrating sphere and FTIR diffuse reflectance techniques to obtain absorption spectra from 280 to the mid-IR. These data clearly indicate that the biogenic derived primary aerosols from agricultural and trash-burning, as well as secondary organic aerosols from isoprene and terpene oxidations will produce both UV-Visible (short-wave) absorbing substances as well as IR (long-wave) absorbing compounds including humic-like-substances (HULIS). With the anticipated increases in growing seasons (i.e. earlier springs and longer summers) the likely hood of increased fires (forest and grassland) as well as the continuing growth in agricultural burning activities, these primary sources are expected to increase and may play a role in heating of the atmosphere. The compound effects of these primary and secondary biogenic sources of absorbing aerosols to the total aerosol loading and regional climate will be discussed. This work was supported by the Office of Science (BER), U.S. Department of Energy, Grant No. DE-FG02-07ER64328 as part of the Atmospheric Science Program.

  20. Identifying Aerosol Type from Space: Absorption Angstrom Exponent as a Foundation for Multidimensional Supervised Clustering and Mahalanobis Classification

    NASA Astrophysics Data System (ADS)

    Russell, P. B.; Hamill, P.; Livingston, J. M.; Shinozuka, Y.; Strawa, A. W.; Redemann, J.; Omar, A. H.; Clarke, A. D.; Bergstrom, R. W.; Holben, B.; Ferrare, R. A.; Burton, S. P.

    2010-12-01

    Determining either aerosol composition or multiwavelength absorption from space is difficult at best, but recent research on many fronts has improved prospects for success. Results from diverse air, ground, and laboratory studies using both radiometric and in situ techniques show that the fractions of black carbon, organic matter, and mineral dust in atmospheric aerosols determine the wavelength dependence of absorption (often expressed as Absorption Angstrom Exponent, or AAE). Recent results include analyses of the Dubovik et al. (2002) set of Aerosol Robotic Network (AERONET) retrievals from Sun-sky measurements describing full aerosol vertical columns. AAE values in this set are strongly correlated with aerosol composition or type. Specifically, AAE values are near 1 (the theoretical value for black carbon) for AERONET-measured aerosol columns dominated by urban-industrial aerosol, larger (though partially overlapping) for biomass burning aerosols, and largest for Sahara dust aerosols. These AERONET results are consistent with results from other, very different, techniques, including solar flux-aerosol optical depth (AOD) analyses and airborne in situ analyses examined in this presentation, as well as many other previous results. Although AAE is therefore a useful tool for helping to distinguish aerosol types, it cannot unambiguously distinguish urban-industrial from biomass burning aerosols, even when supplemented by measurements of Extinction Angstrom Exponent (EAE). Hence there is a need to add information from other remotely sensible properties to improve remote identification of aerosol type. Supervised clustering, combined with Mahalanobis classification, provides an objective way of using multiple dimensions of data for this purpose. We demonstrate the application of this technique (previously used with High Spectral Resolution Lidar data) to (1) the Dubovik (2002) AERONET data set, (2) an in situ data set, and (3) a larger Version 2 AERONET data set

  1. Pressure-induced absorption coefficients for radiative transfer calculations in Titan's atmosphere

    NASA Technical Reports Server (NTRS)

    Courtin, Regis

    1988-01-01

    The semiempirical theory of Birnbaum and Cohen (1976) is used to calculate the FIR pressure-induced absorption (PIA) spectra of N2, CH4, N2 + Ar, N2 + CH4, and N2 + H2 under conditions like those in the Titan troposphere. The results are presented graphically and compared with published data from laboratory measurements of PIA in the same gases and mixtures (Dagg et al., 1986; Dore et al., 1986). Good agreement is obtained, with only a slight underestimation of PIA at 300-400/cm in the case of CH4. The absorption coefficients are presented in tables, and it is suggested that the present findings are of value for evaluating the effects of tropospheric clouds on the Titan FIR spectrum and studying the greenhouse effect near the Titan surface.

  2. A comparison of methods for the measurement of the absorption coefficient in natural waters

    NASA Technical Reports Server (NTRS)

    Pegau, W. Scott; Cleveland, Joan S.; Doss, W.; Kennedy, C. Dan; Maffione, Robert A.; Mueller, James L.; Stone, R.; Trees, Charles C.; Weidemann, Alan D.; Wells, Willard H.

    1995-01-01

    In the spring of 1992 an optical closure experiment was conducted at Lake Pend Orielle, Idaho. A primary objective of the experiment was to compare techniques for the measurement of the spectral absorption coefficent and other inherent optical properties of natural waters. Daily averages of absorption coefficents measured using six methods are compared at wavelengths of 456, 488, and 532 nm. Overall agreement was within 40% at 456 nm and improved with increasing wavelength to 25% at 532 nm. These absorption measurements were distributed over the final 9 days of the experiement, when bio-optical conditions in Lake Pend Oreille (as indexed by the beam attenuation coefficent c(sub p)(660) and chlorophyll a fluorescence profiles) were representative of those observed throughout the experiment. However, profiles of stimulated chlorophyll a fluorescence and beam transmission showed that bio-optical properties in the lake varied strongly on all time and space scales. Therefore environmental variabilty contributed significantly to deviations between daily mean absorption coefficients measured using the different techniques.

  3. Mesure de coefficients d'absorption de plasmas créés par laser nanoseconde

    NASA Astrophysics Data System (ADS)

    Thais, F.; Chenais-Popovics, C.; Eidmann, K.; Bastiani, S.; Blenski, T.; Gilleron, F.

    2005-06-01

    La mesure des coefficients d'absorption dans les plasmas chauds est particulièrement utile dans le domaine de la fusion par confinement inertiel ainsi que dans divers contextes en astrophysique. Le développement des calculs de physique atomique qui y sont associés repose sur des hypothèses qu'il est nécessaire de vérifier dans la plus large gamme possible de conditions physiques. Nous présentons ici la méthode de mesure et d'analyse employée en nous appuyant sur l'exemple des cibles multicouches nickel/aluminium.

  4. Determination of Absorption Coefficient of a Solution by a Simple Experimental Setup

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, Deepak; Akhildev, C.; Sreenivasan, P. V.; Leelamma, K. K.; Joseph, Lyjo K.; Anila, E. I.

    2011-10-01

    The absorption coefficients of aqueous potassium permanganate (KMnO4) solution at 638.8 nm for various concentrations are determined using a simple experimental set up. The setup consists of He-Ne laser source (Red, 638.8 nm, 10 mW), a glass jar in which the KMnO4 sample is taken, a mirror strip inclined at 45° to direct the laser beam towards the bottom of the glass jar, a traveling microscope to adjust the position of light dependent resistor (LDR) and a digital multimeter to measure the resistance.

  5. Water in the Earth's Mantle: Mineral-specific IR Absorption Coefficients and Radiative Thermal Conductivities

    NASA Astrophysics Data System (ADS)

    Thomas, S. M.

    2015-12-01

    Minor and trace element chemistry, phase relations, rheology, thermal structure and the role of volatiles and their abundance in the deep Earth mantle are still far from fully explored, but fundamental to understanding the processes involved in Earth formation and evolution. Theory and high pressure experiments imply a significant water storage capacity of nominally anhydrous minerals, such as majoritic garnet, olivine, wadsleyite and ringwoodite, composing the Earth's upper mantle and transition zone to a depth of 660 km. Studying the effect of water incorporation on chemical and physical mineral properties is of importance, because the presence of trace amounts of water, incorporated as OH through charge-coupled chemical substitutions into such nominally anhydrous high-pressure silicates, notably influences phase relations, melting behavior, conductivity, elasticity, viscosity and rheology. Knowledge of absolute water contents in nominally anhydrous minerals is essential for modeling the Earth's interior water cycle. One of the most common and sensitive tools for water quantification is IR spectroscopy for which mineral-specific absorption coefficients are required. Such calibration constants can be derived from hydrogen concentrations determined by independent techniques, such as secondary ion mass spectrometry, Raman spectroscopy or proton-proton(pp)-scattering. Here, analytical advances and mineral-specific IR absorption coefficients for the quantification of H2O in major phases of the Earth's mantle will be discussed. Furthermore, new data from optical absorption measurements in resistively heated diamond-anvil cells at high pressures and temperatures up to 1000 K will be presented. Experiments were performed on synthetic single-crystals of olivine, ringwoodite, majoritic garnet, and Al-bearing phase D with varying iron, aluminum and OH contents to calculate radiative thermal conductivities and study their contribution to heat transfer in the Earth's interior

  6. Theoretical calculations of nonlinear refraction and absorption coefficients of doped graphene

    NASA Astrophysics Data System (ADS)

    Margulis, Vl A.; Muryumin, E. E.; Gaiduk, E. A.

    2014-12-01

    In this study, we present the first theoretical predictions concerning the nonlinear refractive and absorptive properties of the doped graphene in which the Fermi energy {{E}F} of charge carriers (noninteracting massless Dirac fermions) is controlled by an external gate voltage. We base our study on the original perturbation theory technique developed by Genkin and Mednis (1968 Sov. Phys. JETP 27 609) for calculating the nonlinear-optical (NLO) response coefficients of bulk crystalline semiconductors with partially filled bands. Using a simple tight-binding model for the π-electron energy bands of graphene, we obtain analytic expressions for the nonlinear refractive index {{n}2}(ω ) and the nonlinear absorption coefficient {{α }2}(ω ) of the doped graphene at photon energies above twice the value of the Fermi energy (\\hbar ω \\gt 2{{E}F}). We show that in this spectral region, both the nonlinear refraction ant the nonlinear absorption are determined predominantly by the combined processes which simultaneously involve intraband and interband motion of π-electrons. Our calculations indicate that extremely large negative values of n2 (of the order of -{{10}-6} cm2 W-1) can be achieved in the graphene at a relatively low doping level (of about 1012 cm-2) provided that the excitation frequency slightly exceeds the threshold frequency corresponding to the onset of interband transitions. With a further increase of the radiation frequency, the {{n}2}(ω ) becomes positive and begins to decrease in its absolute magnitude. The peculiar frequency dispersion of n2 and a negative sign of the {{α }2} (absorption bleaching), as predicted by our theory, suggest that the doped graphene is a prospective NLO material to be used in practical optical switching applications.

  7. Sunlight absorption by aerosols in Jupiter's upper atmosphere

    NASA Technical Reports Server (NTRS)

    West, R. A.

    1981-01-01

    The amount of sunlight deposited in the Jovian upper atmosphere is estimated from reflectivity measurements at 2400 A by the Voyager 2 Photopolarimeter experiment and at visible and near-IR wavelengths observed by Pioneer 10 and ground-based instruments. Zero to about one percent of the incident energy is absorbed at altitudes above the 100 mbar level in models with mean values for haze optical depth and single scattering albedo. Several percent of the incident energy could be absorbed, if limiting values are used, and if an additional absorbing layer is incorporated below the high altitude haze in Pioneer models. Maximum absorption occurs at the edge of the polar regions near + or - 65 deg latitude. Most of the absorbed energy is derived from visible and near-IR radiation rather than UV radiation.

  8. Application of AERONET Single Scattering Albedo and Absorption Angstrom Exponent to Classify Dominant Aerosol Types during DRAGON Campaigns

    NASA Astrophysics Data System (ADS)

    Giles, D. M.; Holben, B. N.; Eck, T. F.; Schafer, J.; Crawford, J. H.; Kim, J.; Sano, I.; Liew, S.; Salinas Cortijo, S. V.; Chew, B. N.; Lim, H.; Smirnov, A.; Sorokin, M.; Kenny, P.; Slutsker, I.

    2013-12-01

    Aerosols can have major implications on human health by inducing respiratory diseases due to inhalation of fine particles from biomass burning smoke or industrial pollution and on radiative forcing whereby the presence of absorbing aerosol particles (e.g., black carbon) increases atmospheric heating. Aerosol classification techniques have utilized aerosol loading and aerosol properties derived from multi-spectral and multi-angle observations by ground-based (e.g., AERONET) and satellite instrumentation (e.g., MISR). Aerosol Robotic Network (AERONET) data have been utilized to determine aerosol types by implementing various combinations of measured aerosol optical depth or retrieved size and absorption aerosol properties (e.g., Gobbi et al., 2007; Russell et al., 2010). Giles et al. [2012] showed single scattering albedo (SSA) relationship with extinction Angstrom exponent (EAE) can provide an estimate of the general classification of dominant aerosol types (i.e., desert dust, urban/industrial pollution, biomass burning smoke, and mixtures) based on data from ~20 AERONET sites located in known aerosol source regions. In addition, the absorption Angstrom exponent relationship with EAE can provide an indication of the dominant absorbing aerosol type such as dust, black carbon, brown carbon, or mixtures of them. These classification techniques are applied to the AERONET Level 2.0 quality assured data sets collected during Distributed Regional Aerosol Gridded Observational Network (DRAGON) campaigns in Maryland (USA), Japan, South Korea, Singapore, Penang (Malaysia), and California (USA). An analysis of aerosol type classification for DRAGON sites is performed as well as an assessment of the spatial variability of the aerosol types for selected DRAGON campaigns. Giles, D. M., B. N. Holben, T. F. Eck, A. Sinyuk, A. Smirnov, I. Slutsker, R. R. Dickerson, A. M. Thompson, and J. S. Schafer (2012), An analysis of AERONET aerosol absorption properties and classifications

  9. Evaluating Nighttime CALIOP 0.532 micron Aerosol Optical Depth and Extinction Coefficient Retrievals

    NASA Technical Reports Server (NTRS)

    Campbell, J. R.; Tackett, J. L.; Reid, J. S.; Zhang, J.; Curtis, C. A.; Hyer, E. J.; Sessions, W. R.; Westphal, D. L.; Prospero, J. M.; Welton, E. J.; Omar, A. H.; Vaughan, M. A.; Winker, D. M.

    2012-01-01

    NASA Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) Version 3.01 5-km nighttime 0.532 micron aerosol optical depth (AOD) datasets from 2007 are screened, averaged and evaluated at 1 deg X 1 deg resolution versus corresponding/co-incident 0.550 micron AOD derived using the US Navy Aerosol Analysis and Prediction System (NAAPS), featuring two-dimensional variational assimilation of quality-assured NASA Moderate Resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging Spectroradiometer (MISR) AOD. In the absence of sunlight, since passive radiometric AOD retrievals rely overwhelmingly on scattered radiances, the model represents one of the few practical global estimates available from which to attempt such a validation. Daytime comparisons, though, provide useful context. Regional-mean CALIOP vertical profiles of night/day 0.532 micron extinction coefficient are compared with 0.523/0.532 micron ground-based lidar measurements to investigate representativeness and diurnal variability. In this analysis, mean nighttime CALIOP AOD are mostly lower than daytime (0.121 vs. 0.126 for all aggregated data points, and 0.099 vs. 0.102 when averaged globally per normalised 1 deg. X 1 deg. bin), though the relationship is reversed over land and coastal regions when the data are averaged per normalised bin (0.134/0.108 vs. 0140/0.112, respectively). Offsets assessed within single bins alone approach +/- 20 %. CALIOP AOD, both day and night, are higher than NAAPS over land (0.137 vs. 0.124) and equal over water (0.082 vs. 0.083) when averaged globally per normalised bin. However, for all data points inclusive, NAAPS exceeds CALIOP over land, coast and ocean, both day and night. Again, differences assessed within single bins approach 50% in extreme cases. Correlation between CALIOP and NAAPS AOD is comparable during both day and night. Higher correlation is found nearest the equator, both as a function of sample size and relative signal magnitudes inherent at

  10. Enhanced light absorption and scattering by carbon soot aerosol internally mixed with sulfuric acid.

    PubMed

    Khalizov, Alexei F; Xue, Huaxin; Wang, Lin; Zheng, Jun; Zhang, Renyi

    2009-02-12

    Light absorption by carbon soot increases when the particles are internally mixed with nonabsorbing materials, leading to increased radiative forcing, but the magnitude of this enhancement is a subject of great uncertainty. We have performed laboratory experiments of the optical properties of fresh and internally mixed carbon soot aerosols with a known particle size, morphology, and the mixing state. Flame-generated soot aerosol is size-selected with a double-differential mobility analyzer (DMA) setup to eliminate multiply charged particle modes and then exposed to gaseous sulfuric acid (10(9)-10(10) molecule cm(-3)) and water vapor (5-80% relative humidity, RH). Light extinction and scattering by fresh and internally mixed soot aerosol are measured at 532 nm wavelength using a cavity ring-down spectrometer and an integrating nephelometer, respectively, and the absorption is derived as the difference between extinction and scattering. The optical properties of fresh soot are independent of RH, whereas soot internally mixed with sulfuric acid exhibits significant enhancement in light absorption and scattering, increasing with the mass fraction of sulfuric acid coating and relative humidity. For soot particles with an initial mobility diameter of 320 nm and a 40% H(2)SO(4) mass coating fraction, absorption and scattering are increased by 1.4- and 13-fold at 80% RH, respectively. Also, the single scattering albedo of soot aerosol increases from 0.1 to 0.5 after coating and humidification. Additional measurements with soot particles that are first coated with sulfuric acid and then heated to remove the coating show that both scattering and absorption are enhanced by irreversible restructuring of soot aggregates to more compact globules. Depending on the initial size and density of soot aggregates, restructuring acts to increase or decrease the absorption cross-section, but the combination of restructuring and encapsulation always results in an increased absorption for

  11. Optical constants of ammonium sulfate in the infrared. [stratospheric aerosol refractive and absorption indices

    NASA Technical Reports Server (NTRS)

    Downing, H. D.; Pinkley, L. W.; Sethna, P. P.; Williams, D.

    1977-01-01

    The infrared spectral reflectance at near normal incidence has been measured for 3.2 M, 2.4 M, and 1.6 M solutions of ammonium sulfate, an aerosol abundant in the stratosphere and also present in the troposphere. Kramers-Kronig analysis was used to determine values of the refractive and absorption indices from the measured spectral reflectance. A synthetic spectrum of crystalline ammonium sulfate was obtained by extrapolation of the absorption index obtained for the solution to the absorber number densities of the NH4 and SO4 ions characteristic of the crystal.

  12. Light absorption properties and radiative effects of primary organic aerosol emissions.

    PubMed

    Lu, Zifeng; Streets, David G; Winijkul, Ekbordin; Yan, Fang; Chen, Yanju; Bond, Tami C; Feng, Yan; Dubey, Manvendra K; Liu, Shang; Pinto, Joseph P; Carmichael, Gregory R

    2015-04-21

    Organic aerosols (OAs) in the atmosphere affect Earth's energy budget by not only scattering but also absorbing solar radiation due to the presence of the so-called "brown carbon" (BrC) component. However, the absorptivities of OAs are not represented or are poorly represented in current climate and chemical transport models. In this study, we provide a method to constrain the BrC absorptivity at the emission inventory level using recent laboratory and field observations. We review available measurements of the light-absorbing primary OA (POA), and quantify the wavelength-dependent imaginary refractive indices (kOA, the fundamental optical parameter determining the particle's absorptivity) and their uncertainties for the bulk POA emitted from biomass/biofuel, lignite, propane, and oil combustion sources. In particular, we parametrize the kOA of biomass/biofuel combustion sources as a function of the black carbon (BC)-to-OA ratio, indicating that the absorptive properties of POA depend strongly on burning conditions. The derived fuel-type-based kOA profiles are incorporated into a global carbonaceous aerosol emission inventory, and the integrated kOA values of sectoral and total POA emissions are presented. Results of a simple radiative transfer model show that the POA absorptivity warms the atmosphere significantly and leads to ∼27% reduction in the amount of the net global average POA cooling compared to results from the nonabsorbing assumption. PMID:25811601

  13. Temperature and pressure dependence of dichloro-difluoromethane (CF2C12) absorption coefficients for CO2 waveguide laser radiation

    NASA Technical Reports Server (NTRS)

    Harward, C. N.

    1977-01-01

    Measurements were performed to determine the pressure and temperature dependence of CFM-12 absorption coefficients for CO2 waveguide laser radiation. The absorption coefficients of CFM-12 for CO2 waveguide laser radiation were found to have no spectral structure within small spectral bandwidths around the CO2 waveguide laser lines in the CO2 spectral band for pressures above 20 torr. All of the absorption coefficients for the CO2 laser lines studied are independent of pressure above 100 torr, except for the P(36) laser CO2 spectral band. The absorption coefficients associated with the P(42) line in the same band showed the greatest change with temperature, and it also has the largest value of all the lines studied.

  14. The effect of metal nano particle on optical absorption coefficient of multi-layer spherical quantum dot

    NASA Astrophysics Data System (ADS)

    Zamani, N.; Keshavarz, A.; Nadgaran, H.

    2016-06-01

    In this paper, we investigate the optical absorption coefficient of hybrid structure consisting of metal nano particle (MNP) coupled to multi-layer spherical quantum dot (MSQD). Energy eigenvalues and eigenfunctions of Schrödinger equation in this structure are obtained by using numerical solution (by the fourth-order Runge-Kutta method). The effect of MNP in the vicinity of MSQD is calculated by considering local field theory. Then the variation of optical absorption coefficient hybrid structure is calculated. The results show that the presence of MNP near MSQD enhances the optical absorption coefficient. Also, by changing the distance between MNP and MSQD and radius of MNP, variation of optical absorption coefficient and refractive index changes are introduced.

  15. Spectral absorption coefficients of argon and silicon and spectral reflectivity of aluminum

    NASA Technical Reports Server (NTRS)

    Krascella, N. L.

    1972-01-01

    A theoretical investigation was conducted to estimate the spectral properties of argon as a function of pressure, temperature, and wave number. The spectral characteristics of the argon buffer gas exert a strong influence on radiative energy transfer in the in-reactor test configuration of the nuclear light bulb engine. An existing computer program was modified and used to calculate the spectral absorption coefficients of argon at total pressures of 50, 100, 250, 500, 750 and 1000 atm in the temperature interval between 1000 and 30,000 K. At each pressure and temperature, spectral properties were calculated for forty-seven wave numbers in the interval between 1000 and 1,000,000 cm/1. Estimates of the spectral absorption coefficients of silicon were made as part of an evaluation of silicon vapor as a possible buffer-gas seeding agent for the reference nuclear light bulb engine. Existing cross-section data were used to calculate the spectral characteristics of silicon at twenty-four temperatures in the interval between 2000 and 10,000 K.

  16. Spectral variation of the infrared absorption coefficient in pulsed photothermal profiling of biological samples.

    PubMed

    Majaron, Boris; Verkruysse, Wim; Tanenbaum, B Samuel; Milner, Thomas E; Nelson, J Stuart

    2002-06-01

    Pulsed photothermal radiometry can be used for non-invasive depth profiling of optically scattering samples, including biological tissues such as human skin. Computational reconstruction of the laser-induced temperature profile from recorded radiometric signals is sensitive to the value of the tissue absorption coefficient in the infrared detection band (muIR). While assumed constant in reported reconstruction algorithms, muIR of human skin varies by two orders of magnitude in the commonly used 3-5 microm detection band. We analyse the problem of selecting the effective absorption coefficient value to be used with such algorithms. In a numerical simulation of photothermal profiling we demonstrate that results can be markedly impaired, unless the reconstruction algorithm is augmented by accounting for spectral variation muIR(lambda). Alternatively, narrowing the detection band to 4.5-5 microm reduces the spectral variation muIR(lambda) to a level that permits the use of the simpler, unaugmented algorithm. Implementation of the latter approach for depth profiling of port wine stain birthmarks in vivo is presented and discussed. PMID:12108776

  17. Effect of the absorption coefficient of aluminium plates on their thermoelastic bending in photoacoustic experiments

    NASA Astrophysics Data System (ADS)

    Markushev, D. D.; Ordonez-Miranda, J.; Rabasović, M. D.; Galović, S.; Todorović, D. M.; Bialkowski, S. E.

    2015-06-01

    The open-cell photoacoustic signal measured in the transmission configuration for aluminum thin plates with thicknesses of 280 μm, 197 μm, and 112 μm is experimentally and theoretically analyzed, in the 20 Hz-7 kHz modulation frequency range. It is shown that the observed differences between the predictions of the standard thermoelastic model and the experiment data of both the amplitude and phase of the photoacoustic signal can be overcome by considering the aluminum samples coated with a thin layer of black paint as volume-absorber materials. This new approach provides a quite good agreement with the obtained experimental data, in the whole frequency range, and yields an effective absorption coefficient of (16 ± 2) mm-1, for a 280 μm-thick sample. The introduction of the finite absorption coefficient led to the correct ratio between the thermal diffusion and thermoelastic components of the photoacoustic signal. Furthermore, it is found that the "volume-absorber" approach accurately describes the behavior of the amplitude, but not that of the phase recorded for a 112 μm-thick sample, due to its relatively strong thermoelastic bending, which is not considered by this theory. Within the approximation of the small bending, the proposed "volume-absorber" model provides a reliable description of the photoacoustic signal for Al samples thicker than 112 μm, and extends the applicability of the classical "opaque" approach.

  18. Effect of hydrogenic impurity on linear and nonlinear optical absorption coefficients and refractive index changes in a quantum dot

    NASA Astrophysics Data System (ADS)

    Guo, Kangxian; Zhang, Zhongmin; Mou, Sen; Xiao, Bo

    2015-05-01

    The analytical expressions of linear and nonlinear optical absorption coefficients and refractive index changes in a quantum dot with a hydrogenic impurity are obtained by using the compact-density-matrix approach and iterative method. The wave functions and the energy levels are obtained by using the variational method. Numerical results show that the optical absorption coefficients and refractive index changes are strongly affected by the hydrogenic impurity.

  19. Dependence of Aerosol Light Absorption and Single-Scattering Albedo On Ambient Relative Humidity for Sulfate Aerosols with Black Carbon Cores

    NASA Technical Reports Server (NTRS)

    Redemann, Jens; Russell, Philip B.; Hamill, Patrick

    2001-01-01

    Atmospheric aerosols frequently contain hygroscopic sulfate species and black carbon (soot) inclusions. In this paper we report results of a modeling study to determine the change in aerosol absorption due to increases in ambient relative humidity (RH), for three common sulfate species, assuming that the soot mass fraction is present as a single concentric core within each particle. Because of the lack of detailed knowledge about various input parameters to models describing internally mixed aerosol particle optics, we focus on results that were aimed at determining the maximum effect that particle humidification may have on aerosol light absorption. In the wavelength range from 450 to 750 nm, maximum absorption humidification factors (ratio of wet to 'dry=30% RH' absorption) for single aerosol particles are found to be as large as 1.75 when the RH changes from 30 to 99.5%. Upon lesser humidification from 30 to 80% RH, absorption humidification for single particles is only as much as 1.2, even for the most favorable combination of initial ('dry') soot mass fraction and particle size. Integrated over monomodal lognormal particle size distributions, maximum absorption humidification factors range between 1.07 and 1.15 for humidification from 30 to 80% and between 1.1 and 1.35 for humidification from 30 to 95% RH for all species considered. The largest humidification factors at a wavelength of 450 nm are obtained for 'dry' particle size distributions that peak at a radius of 0.05 microns, while the absorption humidification factors at 700 nm are largest for 'dry' size distributions that are dominated by particles in the radius range of 0.06 to 0.08 microns. Single-scattering albedo estimates at ambient conditions are often based on absorption measurements at low RH (approx. 30%) and the assumption that aerosol absorption does not change upon humidification (i.e., absorption humidification equal to unity). Our modeling study suggests that this assumption alone can

  20. Absorption Spectra and Absorption Coefficients for Methane in the 750-940 nm region obtained by Intracavity Laser Spectroscopy

    NASA Astrophysics Data System (ADS)

    O'Brien, J. J.; Cao, H.

    2000-10-01

    Methane spectral features are prominent in the reflected sunlight spectra from the outer planets and some of their major satellites and can provide useful information on the atmospheres of those bodies. Methane bands occurring in the visible to near-IR region are particularly important because for many of these planetary bodies, methane bands occurring in the IR are saturated. Spectral observations of these bodies also are being made at increasingly higher resolution. In order to interpret the planetary spectra, laboratory data for methane obtained at appropriate sample conditions and spectral resolution are required. Since the visible to near-IR spectrum of methane is intrinsically weak, sensitive techniques are required to perform the laboratory measurements. We have employed the intracavity laser spectroscopy (ILS) technique to record methane spectrum in the visible to near-IR region. New results for room temperature methane in the 10,635 - 13,300 cm-1 region and for liquid nitrogen temperature (77 K) methane in the 10,860 - 11,605 cm-1 region will be presented. Spectra throughout the more strongly absorbing sections will be shown. These spectra are acquired at a resolution of 400,000 - 500,000 and are calibrated using iodine reference spectra acquired from an extra-cavity cell at nearly the same time as when the methane data are recorded. From the spectra, absorption coefficients are determined and these are presented as averages over 1 Å and 1 cm-1 intervals. In order to obtain the results, spectra are deconvolved for the instrument function using a Fourier transform technique. The validity of the approach is verified from studies of isolated oxygen lines in the A band occurring around 760 nm. Good agreement is observed between the intensity values determined from the FT deconvolution and integration method and those derived by fitting the observed line profiles to Voigt line-shapes convoluted with the instrument function. The methane results are compared

  1. Density, ultrasound velocity, acoustic impedance, reflection and absorption coefficient determination of liquids via multiple reflection method.

    PubMed

    Hoche, S; Hussein, M A; Becker, T

    2015-03-01

    The accuracy of density, reflection coefficient, and acoustic impedance determination via multiple reflection method was validated experimentally. The ternary system water-maltose-ethanol was used to execute a systematic, temperature dependent study over a wide range of densities and viscosities aiming an application as inline sensor in beverage industries. The validation results of the presented method and setup show root mean square errors of: 1.201E-3 g cm(-3) (±0.12%) density, 0.515E-3 (0.15%) reflection coefficient and 1.851E+3 kg s(-1) m(-2) (0.12%) specific acoustic impedance. The results of the diffraction corrected absorption showed an average standard deviation of only 0.12%. It was found that the absorption change shows a good correlation to concentration variations and may be useful for laboratory analysis of sufficiently pure liquids. The main part of the observed errors can be explained by the observed noise, temperature variation and the low signal resolution of 50 MHz. In particular, the poor signal-to-noise ratio of the second reflector echo was found to be a main accuracy limitation. Concerning the investigation of liquids the unstable properties of the reference material PMMA, due to hygroscopicity, were identified to be an additional, unpredictable source of uncertainty. While dimensional changes can be considered by adequate methodology, the impact of the time and temperature dependent water absorption on relevant reference properties like the buffer's sound velocity and density could not be considered and may explain part of the observed deviations. PMID:25465962

  2. Measuring absorption coefficient of scattering liquids using a tube inside an integrating sphere.

    PubMed

    Villanueva, Yolanda; Veenstra, Colin; Steenbergen, Wiendelt

    2016-04-10

    A method for measuring the absorption coefficient μa of absorbing and scattering liquid samples is presented. The sample is injected into a small transparent tube mounted through an integrating sphere. Two models for determining the absorption coefficient using the relative optical output signal are described and validated using aqueous ink absorbers of 0.5 vol.% (0.3  mm-1a<1.55  mm-1) and 1.0 vol.% (1.0  mm-1a<4.0  mm-1) concentrations with 1 vol.% (μs'≈1.4  mm-1) and 10 vol.% (μs'≈14  mm-1) Intralipid dilutions. The low concentrations give μa and μs values, which are comparable with those of biological tissues. One model assumes a uniform light distribution within the sample, which is valid for low absorption. Another model considers light attenuation that obeys Lambert-Beer's law, which may be used for relatively high absorption. Measurements with low and high scattering samples are done for the wavelength range of 400-900 nm. Measured spectra of purely absorbing samples are within 15% agreement with measurements using standard transmission spectrophotometry. For 0.5 vol.% ink absorbers and at wavelengths below 700 nm, measured μa values are higher for samples with low scattering and lower for those with high scattering. At wavelengths above 700 nm, measured μa values do not vary significantly with amount of scattering. For 1.0 vol.% ink absorbers, measured spectra do not change with low scattering. These results indicate that the method can be used for measuring absorption spectra of scattering liquid samples with optical properties similar to biological absorbers, particularly at wavelengths above 700 nm, which is difficult to accomplish with standard transmission spectrophotometry. PMID:27139871

  3. Determination of absorption coefficient based on laser beam thermal blooming in gas-filled tube.

    PubMed

    Hafizi, B; Peñano, J; Fischer, R; DiComo, G; Ting, A

    2014-08-01

    Thermal blooming of a laser beam propagating in a gas-filled tube is investigated both analytically and experimentally. A self-consistent formulation taking into account heating of the gas and the resultant laser beam spreading (including diffraction) is presented. The heat equation is used to determine the temperature variation while the paraxial wave equation is solved in the eikonal approximation to determine the temporal and spatial variation of the Gaussian laser spot radius, Gouy phase (longitudinal phase delay), and wavefront curvature. The analysis is benchmarked against a thermal blooming experiment in the literature using a CO₂ laser beam propagating in a tube filled with air and propane. New experimental results are presented in which a CW fiber laser (1 μm) propagates in a tube filled with nitrogen and water vapor. By matching laboratory and theoretical results, the absorption coefficient of water vapor is found to agree with calculations using MODTRAN (the MODerate-resolution atmospheric TRANsmission molecular absorption database) and HITRAN (the HIgh-resolution atmospheric TRANsmission molecular absorption database). PMID:25090334

  4. The Optical Absorption Coefficient of Bean Seeds Investigated Using Photoacoustic Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sanchez-Hernandez, G.; Hernandez-Aguilar, C.; Dominguez-Pacheco, A.; Cruz-Orea, A.; Perez-Reyes, M. C. J.; Martinez, E. Moreno

    2015-06-01

    A knowledge about seed optical parameters is of great relevance in seed technology practice. Such parameters provide information about its absorption and reflectance, which could be useful for biostimulation processes, by light sources, in early stages of seed germination. In the present research photoacoustic spectroscopy (PAS) and the Rosencwaig and Gersho model were used to determine the optical absorption coefficient () of five varieties of bean seeds ( Phaseolus vulgaris L.), of different productive cycles; the seeds were biostimulated by laser treatment to evaluate the effects of biostimulation pre-sowing. It was found that the bean varieties V1, V2, V4, and V5 were optically opaque in the visible spectrum; in the case of the V3 variety, this sample was optically transparent from 680 nm. The varieties of the studied bean seeds showed significant statistical differences in sizes and also in their optical absorption spectra. The biostimulation effects showed that the seed samples with a higher optical penetration length had a positive biostimulation, in the percentage of germination, obtaining an enhancement of 47 % compared to the control sample. The utility of PAS for the optical characterization of seeds has been demonstrated in this study of the laser biostimulation process of this kind of samples.

  5. The melanosome: threshold temperature for explosive vaporization and internal absorption coefficient during pulsed laser irradiation.

    PubMed

    Jacques, S L; McAuliffe, D J

    1991-06-01

    The explosive vaporization of melanosomes in situ in skin during pulsed laser irradiation (pulse duration less than 1 microsecond) is observed as a visible whitening of the superficial epidermal layer due to stratum corneum disruption. In this study, the ruby laser (694 nm) was used to determine the threshold radiant exposure, H0 (J/cm2), required to elicit whitening for in vitro black (Negroid) human skin samples which were pre-equilibrated at an initial temperature, Ti, of 0, 20, or 50 degrees C. A plot of H0 vs Ti yields a straight line whose x-intercept indicates the threshold temperature of explosive vaporization to be 112 +/- 7 degrees C (SD, N = 3). The slope, delta H0/delta Ti, specifies the internal absorption coefficient, mua, within the melanosome: mua = -rho C/(slope(1 + 7.1 Rd)), where rho C is the product of density and specific heat, and Rd is the total diffuse reflectance from the skin. A summary of the absorption spectrum (mua) for the melanosome interior (351-1064 nm) is presented based on H0 data from this study and the literature. The in vivo absorption spectrum (380-820 nm) for human epidermal melanin was measured by an optical fiber spectrophotometer and is compared with the melanosome spectrum. PMID:1886936

  6. Highly Dynamic Ligand Binding and Light Absorption Coefficient of Cesium Lead Bromide Perovskite Nanocrystals.

    PubMed

    De Roo, Jonathan; Ibáñez, Maria; Geiregat, Pieter; Nedelcu, Georgian; Walravens, Willem; Maes, Jorick; Martins, Jose C; Van Driessche, Isabel; Kovalenko, Maksym V; Hens, Zeger

    2016-02-23

    Lead halide perovskite materials have attracted significant attention in the context of photovoltaics and other optoelectronic applications, and recently, research efforts have been directed to nanostructured lead halide perovskites. Collodial nanocrystals (NCs) of cesium lead halides (CsPbX3, X = Cl, Br, I) exhibit bright photoluminescence, with emission tunable over the entire visible spectral region. However, previous studies on CsPbX3 NCs did not address key aspects of their chemistry and photophysics such as surface chemistry and quantitative light absorption. Here, we elaborate on the synthesis of CsPbBr3 NCs and their surface chemistry. In addition, the intrinsic absorption coefficient was determined experimentally by combining elemental analysis with accurate optical absorption measurements. (1)H solution nuclear magnetic resonance spectroscopy was used to characterize sample purity, elucidate the surface chemistry, and evaluate the influence of purification methods on the surface composition. We find that ligand binding to the NC surface is highly dynamic, and therefore, ligands are easily lost during the isolation and purification procedures. However, when a small amount of both oleic acid and oleylamine is added, the NCs can be purified, maintaining optical, colloidal, and material integrity. In addition, we find that a high amine content in the ligand shell increases the quantum yield due to the improved binding of the carboxylic acid. PMID:26786064

  7. Evaluation of Air Pollution Applications of AERONET and MODIS Aerosol Column Optical Depth by Comparison with In Situ Measurements of Aerosol Light Scattering and Absorption for Reno, NV, USA

    NASA Astrophysics Data System (ADS)

    Loria Salazar, S.; Arnott, W. P.; Moosmuller, H.; Colucci, D.

    2012-12-01

    Reno, Nevada, USA is subject to typical urban aerosol, wind-blown dust, and occasional biomass burning smoke from anthropogenic and natural fires. Reno has complex air flow at levels relevant for aerosol transport. At times recirculating mountain and urban flow arrives from the Sierra Nevada, San Francisco, CA and Sacramento, CA. The urban plumes are further modified by biogenic forest emissions and secondary aerosol formation during transport over the Sierra Nevada Mountains to Reno. This complicates the use of MODIS aerosol optical depth (AOD) for air quality measurements in Reno. Our laboratory at the University of Nevada Reno has collocated multispectral photoacoustic instruments and reciprocal nephelometers to measure light absorption and light scattering coefficients as well as an AERONET operated CIMEL CE-318 ground-based sunphotometer. Preliminary measurements from August 2011 indicate substantially larger Cimel AOD than could be accounted for by use of the in situ aerosol extinction measurements combined with mixing height estimate. This poster presents new results comparing AERONET AOD and single scattering albedo and MODIS AOD with in situ measurements for summer and fall 2012, along with extensive back trajectory analysis, to evaluate conditions when satellite measurement may be useful for air pollution applications in Reno.

  8. Absorption coefficients of selected explosives and related compounds in the range of 0.1-2.8 THz.

    PubMed

    Chen, Jian; Chen, Yunqing; Zhao, Hongwei; Bastiaans, Glenn J; Zhang, X-C

    2007-09-17

    We have investigated the absorption spectra of seventeen explosives and related compounds (ERCs) by using terahertz time-domain spectroscopy in the 0.1-2.8 THz region. Most of these substances show characteristic absorption features in this frequency range. The measured absorption coefficients of these ERCs form a database, which is of great importance for biochemical, defense and security related applications. PMID:19547570

  9. Determination of Scattering and Absorption Coefficients for Plasma-Sprayed Yttria-Stabilized Zirconia Thermal Barrier Coatings at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.; Spuckler, Charles M.; Markham, James R.

    2009-01-01

    The temperature dependence of the scattering and absorption coefficients for a set of freestanding plasma-sprayed 8 wt% yttria-stabilized zirconia (8YSZ) thermal barrier coatings (TBCs) was determined at temperatures up to 1360 C in a wavelength range from 1.2 micrometers up to the 8YSZ absorption edge. The scattering and absorption coefficients were determined by fitting the directional-hemispherical reflectance and transmittance values calculated by a four-flux Kubelka Munk method to the experimentally measured hemispherical-directional reflectance and transmittance values obtained for five 8YSZ thicknesses. The scattering coefficient exhibited a continuous decrease with increasing wavelength and showed no significant temperature dependence. The scattering is primarily attributed to the relatively temperature-insensitive refractive index mismatch between the 8YSZ and its internal voids. The absorption coefficient was very low (less than 1 per centimeter) at wavelengths between 2 micrometers and the absorption edge and showed a definite temperature dependence that consisted of a shift of the absorption edge to shorter wavelengths and an increase in the weak absorption below the absorption edge with increasing temperature. The shift in the absorption edge with temperature is attributed to strongly temperature-dependent multiphonon absorption. While TBC hemispherical transmittance beyond the absorption edge can be predicted by a simple exponential decrease with thickness, below the absorption edge, typical TBC thicknesses are well below the thickness range where a simple exponential decrease in hemispherical transmittance with TBC thickness is expected. [Correction added after online publication August 11, 2009: "edge to a shorter wavelengths" has been updated as edge to shorter wavelengths."

  10. Can we better use existing and emerging computing hardware to embed activity coefficient predictions in complex atmospheric aerosol models?

    NASA Astrophysics Data System (ADS)

    Topping, David; Alibay, Irfan; Ruske, Simon; Hindriksen, Vincent; Noisternig, Michael

    2016-04-01

    To predict the evolving concentration, chemical composition and ability of aerosol particles to act as cloud droplets, we rely on numerical modeling. Mechanistic models attempt to account for the movement of compounds between the gaseous and condensed phases at a molecular level. This 'bottom up' approach is designed to increase our fundamental understanding. However, such models rely on predicting the properties of molecules and subsequent mixtures. For partitioning between the gaseous and condensed phases this includes: saturation vapour pressures; Henrys law coefficients; activity coefficients; diffusion coefficients and reaction rates. Current gas phase chemical mechanisms predict the existence of potentially millions of individual species. Within a dynamic ensemble model, this can often be used as justification for neglecting computationally expensive process descriptions. Indeed, on whether we can quantify the true sensitivity to uncertainties in molecular properties, even at the single aerosol particle level it has been impossible to embed fully coupled representations of process level knowledge with all possible compounds, typically relying on heavily parameterised descriptions. Relying on emerging numerical frameworks, and designed for the changing landscape of high-performance computing (HPC), in this study we show that comprehensive microphysical models from single particle to larger scales can be developed to encompass a complete state-of-the-art knowledge of aerosol chemical and process diversity. We focus specifically on the ability to capture activity coefficients in liquid solutions using the UNIFAC method, profiling traditional coding strategies and those that exploit emerging hardware.

  11. In situ aerosol optics in Reno, NV, USA during and after the summer 2008 California wildfires and the influence of absorbing and non-absorbing organic coatings on spectral light absorption

    NASA Astrophysics Data System (ADS)

    Gyawali, M.; Arnott, W. P.; Lewis, K.; Moosmüller, H.

    2009-10-01

    Hundreds of wildfires in Northern California were sparked by lightning during the summer of 2008, resulting in downwind smoke for the months of June and July. Comparisons are reported for aerosol optics measurements in Reno, Nevada made during the very smoky month of July and the relatively clean month of August. Photoacoustic instruments equipped with integrating nephelometers were used to measure aerosol light scattering and absorption coefficients at wavelengths of 405 nm and 870 nm, revealing a strong variation of aerosol light absorption with wavelength. Insight on fuels burned is gleaned from comparison of Ångström exponents of absorption (AEA) versus single scattering albedo (SSA) of the ambient measurements with laboratory biomass smoke measurements for many fuels. Measurements during the month of August, which were largely unaffected by fire smoke, exhibit surprisingly low AEA for aerosol light absorption when the SSA is highest, again likely as a consequence of the underappreciated wavelength dependence of aerosol light absorption by particles coated with non-absorbing organic and inorganic matter. Coated sphere calculations were used to show that AEA as large as 1.6 are possible for wood smoke even with non-absorbing organic coatings on black carbon cores, suggesting care be exercised when diagnosing AEA.

  12. Experimental investigation of X-ray spectral absorption coefficients in heated Al and Ge on the Iskra-5 laser facility

    SciTech Connect

    Bondarenko, S V; Garanin, Sergey G; Zhidkov, N V; Pinegin, A V; Suslov, N A

    2012-01-31

    We set forth the data of experimental investigation of X-ray spectral absorption coefficients in the 1.1 - 1.6 keV photon energy range for Al and Ge specimens bulk heated by soft X-ray radiation. Two experimental techniques are described: with the use of one facility channel and the heating of specimens by the X-ray radiation from a plane burnthrough target, as well as with the use of four channels and the heating by the radiation from two cylindrical targets with internal input of laser radiation. The X-ray radiation absorption coefficients were studied by way of transmission absorption spectroscopy using backlighting X-ray radiation from a point source. The results of investigation of X-ray spectral absorption coefficients on the 1s - 2p transitions in Al atoms and the 2p - 3d transitions in Ge atoms are presented.

  13. Atmospheric aerosols: Their Optical Properties and Effects (supplement)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A digest of technical papers is presented. Topics include aerosol size distribution from spectral attenuation with scattering measurements; comparison of extinction and backscattering coefficients for measured and analytic stratospheric aerosol size distributions; using hybrid methods to solve problems in radiative transfer and in multiple scattering; blue moon phenomena; absorption refractive index of aerosols in the Denver pollution cloud; a two dimensional stratospheric model of the dispersion of aerosols from the Fuego volcanic eruption; the variation of the aerosol volume to light scattering coefficient; spectrophone in situ measurements of the absorption of visible light by aerosols; a reassessment of the Krakatoa volcanic turbidity, and multiple scattering in the sky radiance.

  14. Total ozone and aerosol optical depths inferred from radiometric measurements in the Chappuis absorption band

    SciTech Connect

    Flittner, D.E.; Herman, B.M.; Thome, K.J.; Simpson, J.M.; Reagan, J.A. )

    1993-04-15

    A second-derivative smoothing technique, commonly used in inversion work, is applied to the problem of inferring total columnar ozone amounts and aerosol optical depths. The application is unique in that the unknowns (i.e., total columnar ozone and aerosol optical depth) may be solved for directly without employing standard inversion methods. It is shown, however, that by employing inversion constraints, better solutions are normally obtained. The current method requires radiometric measurements of total optical depth through the Chappuis ozone band. It assumes no a priori shape for the aerosol optical depth versus wavelength profile and makes no assumptions about the ozone amount. Thus, the method is quite versatile and able to deal with varying total ozone and various aerosol size distributions. The technique is applied first in simulation, then to 119 days of measurements taken in Tucson, Arizona, that are compared to TOMS values for the same dates. The technique is also applied to two measurements taken at Mauna Loa, Hawaii, for which Dobson ozone values are available in addition to the TOMS values, and the results agree to within 15%. It is also shown through simulations that additional information can be obtained from measurements outside the Chappuis band. This approach reduces the bias and spread of the estimates total ozone and is unique in that it uses measurements from both the Chappuis and Huggins absorption bands. 12 refs., 6 figs., 2 tabs.

  15. Spectral absorption-coefficient data on HCFC-22 and SF6 for remote-sensing applications

    NASA Technical Reports Server (NTRS)

    Varanasi, P.; Li, Z.; Nemtchinov, V.; Cherukuri, A.

    1994-01-01

    Spectral absorption-coefficients (cross-sections) kappa(sub nu) (/cm/atm) have been measured in the 7.62, 8.97, and 12.3 micrometer bands of HCFC-22 (CHClF2) and the 10.6 micrometer bands of SF6 employing a high-resolution Fourier-transform spectrometer. Temperature and total pressure have been varied to simulate conditions corresponding to tropospheric and stratospheric layers in the atmosphere. The kappa(sub nu) are compared with values measured by us previously using a tunable diode laser spectrometer and with the appropriate entries in HITRAN and GEISA, two of the databases known to the atmospheric scientist. The measured absolute intensities of the bands are compared with previously published values.

  16. Magnetic resonance imaging of acoustic streaming: absorption coefficient and acoustic field shape estimation.

    PubMed

    Madelin, Guillaume; Grucker, Daniel; Franconi, Jean-Michel; Thiaudiere, Eric

    2006-07-01

    In this study, magnetic resonance imaging (MRI) is used to visualize acoustic streaming in liquids. A single-shot spin echo sequence (HASTE) with a saturation band perpendicular to the acoustic beam permits the acquisition of an instantaneous image of the flow due to the application of ultrasound. An average acoustic streaming velocity can be estimated from the MR images, from which the ultrasonic absorption coefficient and the bulk viscosity of different glycerol-water mixtures can be deduced. In the same way, this MRI method could be used to assess the acoustic field and time-average power of ultrasonic transducers in water (or other liquids with known physical properties), after calibration of a geometrical parameter that is dependent on the experimental setup. PMID:16650447

  17. OM/OC Ratio and Specific Attenuation Coefficient in Ambient Particulate Matter at a Rural Site in Southern Ontario: Implications for Aerosol Aging and Emission Sources

    NASA Astrophysics Data System (ADS)

    Chan, T. W.; Huang, L.; Leaitch, R.; Sharma, S.; Brook, J.; Slowik, J.; Abbatt, J.

    2008-05-01

    Carbonaceous species (organic carbon (OC) and elemental carbon (EC)) contribute a large portion of atmospheric fine particle mass and influence air quality, human health, and climate forcing. However, their emission sources and atmospheric aging processes are not well understood. The OM/OC ratio, defined as the organic mass per unit OC mass, is useful to understand the degree of oxidation of aerosol particles in atmospheric processes. We define the modified BC/EC (mod BC/EC) ratio as the ratio of the non-scattering corrected absorption coefficient per unit mass of EC. The mod BC/EC ratio has a similar meaning as the site specific attenuation coefficient, which is an important parameter used to convert light absorption measurements to black carbon mass. The mod BC/EC ratio can vary due to light scattering effect on absorption measurements, in which the oxygenated organics may play a role. The pyrolysis organic carbon (POC) is defined as the carbon mass fraction obtained at T= 870°C under a pure helium environment using the thermal separation method [Huang et al., 2006]. Since POC mass is generally proportional to the amount of oxygenated OC, studying the relationships among OC, EC, POC, as well as OM/OC and mod BC/EC ratios may help us understand the mechanisms of aerosol aging from different emission sources. Two 1-month field studies were conducted at a rural site in southern Ontario (NW of Toronto) during fall 2005 and spring 2007. Quartz filter samples were collected and analyzed for OC, POC, and EC concentrations using a thermal/optical method [Huang et al., 2006]. Together with the total organic matter measured by an Aerodyne Aerosol Mass Spectrometer (AMS) and the absorption coefficient obtained from a Particle Soot Absorption Photometer (PSAP), the OM/OC and mod BC/EC ratios for ambient aerosols were obtained. Our results show that when air mass was mainly from south, OC, POC, and EC were relatively high, with average ratios of OC/EC, OM/OC, and POC/EC as 1

  18. Measurement of Gas and Aerosol Phase Absorption Spectra across the Visible and Near-IR Using Supercontinuum Photoacoustic Spectroscopy.

    PubMed

    Radney, James G; Zangmeister, Christopher D

    2015-07-21

    We demonstrate a method to measure the absorption spectra of gas and aerosol species across the visible and near-IR (500 to 840 nm) using a photoacoustic (PA) spectrometer and a pulsed supercontinuum laser source. Measurements of gas phase absorption spectra were demonstrated using H2O(g) as a function of relative humidity (RH). The measured absorption intensities and peak shapes were able to be quantified and compared to spectra calculated using the 2012 High Resolution Transmission (HITRAN2012) database. Size and mass selected nigrosin aerosol was used to measure absorption spectra across the visible and near-IR. Spectra were measured as a function of aerosol size/mass and show good agreement to Mie theory calculations. Lastly, we measured the broadband absorption spectrum of flame generated soot aerosol at 5% and 70% RH. For the high RH case, we are able to quantifiably separate the soot and water absorption contributions. For soot, we observe an enhancement in the mass specific absorption cross section ranging from 1.5 at 500 nm (p < 0.01) to 1.2 at 840 nm (p < 0.2) and a concomitant increase in the absorption Ångström exponent from 1.2 ± 0.4 (5% RH) to 1.6 ± 0.3 (70% RH). PMID:26098142

  19. Study of the absorption coefficient of alpha particles to lower hybrid waves in tokamak

    SciTech Connect

    Wang, Jianbing Zhang, Xianmei Yu, Limin Zhao, Xiang

    2014-02-12

    Part of the energy of the Lower Hybrid (LH) waves may be absorbed by the α particles via the so-called perpendicular landau damping mechanism, which depends on various parameters of fusion reactors and the LH waves. In this article, we calculate the absorption coefficient γ{sub α} of LH waves due to α particles. Results show that, the γ{sub α} increases with the parallel refraction index n{sub ∥} while deceases with increasing the frequency of LH waves ω{sub LH} over a wide range. Higher background plasma temperature and toroidal magnetic field will increase the absorption, and there is a peak value of γ{sub α} when n{sub e}≈8×10{sup 19}m{sup −3} for ITER-like scenario. The thermal corrections to the cold plasma dispersion relation will change the damping rate to a certain extent under some specific conditions. We have also evaluated the fraction of LH power absorbed by the alpha particles, η ≈ 0.47% and 4.1% for an LH frequency of 5 GHz and 3.7 GHz respectively for ITER-like scenario. This work gives the effective reference for the choice of parameters of future fusion reactors.

  20. Total CMB analysis of streaker aerosol samples by PIXE, PIGE, beta- and optical-absorption analyses

    NASA Astrophysics Data System (ADS)

    Annegarn, H. J.; Przybylowicz, W. J.

    1993-04-01

    Multielemental analyses of aerosol samples are widely used in air pollution receptor modelling. Specifically, the chemical mass balance (CMB) model has become a powerful tool in urban air quality studies. Input data required for the CMB includes not only the traditional X-ray fluorescence (and hence PIXE) detected elements, but also total mass, organic and inorganic carbon, and other light elements including Mg, Na and F. The circular streaker sampler, in combination with PIXE analysis, has developed into a powerful tool for obtaining time-resolved, multielemental aerosol data. However, application in CMB modelling has been limited by the absence of total mass and complementary light element data. This study reports on progress in using techniques complementary to PIXE to obtain additional data from circular streaker samples, maintaining the nondestructive, instrumental approach inherent in PIXE: beta-gauging using a 147Pm source for total mass; optical absorption for inorganic carbon; and PIGE to measure the lighter elements.

  1. Organic aerosol molecular composition and gas-particle partitioning coefficients at a Mediterranean site (Corsica).

    PubMed

    Rossignol, Stéphanie; Couvidat, Florian; Rio, Caroline; Fable, Sébastien; Grignion, Guillaume; Savelli; Pailly, Olivier; Leoz-Garziandia, Eva; Doussin, Jean-Francois; Chiappini, Laura

    2016-02-01

    Molecular speciation of atmospheric organic matter was investigated during a short summer field campaign performed in a citrus fruit field in northern Corsica (June 2011). Aimed at assessing the performance on the field of newly developed analytical protocols, this work focuses on the molecular composition of both gas and particulate phases and provides an insight into partitioning behavior of the semi-volatile oxygenated fraction. Limonene ozonolysis tracers were specifically searched for, according to gas chromatography-mass spectrometry (GC-MS) data previously recorded for smog chamber experiments. A screening of other oxygenated species present in the field atmosphere was also performed. About sixty polar molecules were positively or tentatively identified in gas and/or particle phases. These molecules comprise a wide range of branched and linear, mono and di-carbonyls (C3-C7), mono and di-carboxylic acids (C3-C18), and compounds bearing up to three functionalities. Among these compounds, some can be specifically attributed to limonene oxidation and others can be related to α- or β-pinene oxidation. This provides an original snapshot of the organic matter composition at a Mediterranean site in summer. Furthermore, for compounds identified and quantified in both gaseous and particulate phases, an experimental gas/particle partitioning coefficient was determined. Several volatile products, which are not expected in the particulate phase assuming thermodynamic equilibrium, were nonetheless present in significant concentrations. Hypotheses are proposed to explain these observations, such as the possible aerosol viscosity that could hinder the theoretical equilibrium to be rapidly reached. PMID:26969549

  2. Impacts of Combustion Conditions and Photochemical Processing on the Light Absorption of Biomass Combustion Aerosol.

    PubMed

    Martinsson, J; Eriksson, A C; Nielsen, I Elbæk; Malmborg, V Berg; Ahlberg, E; Andersen, C; Lindgren, R; Nyström, R; Nordin, E Z; Brune, W H; Svenningsson, B; Swietlicki, E; Boman, C; Pagels, J H

    2015-12-15

    The aim was to identify relationships between combustion conditions, particle characteristics, and optical properties of fresh and photochemically processed emissions from biomass combustion. The combustion conditions included nominal and high burn rate operation and individual combustion phases from a conventional wood stove. Low temperature pyrolysis upon fuel addition resulted in "tar-ball" type particles dominated by organic aerosol with an absorption Ångström exponent (AAE) of 2.5-2.7 and estimated Brown Carbon contributions of 50-70% to absorption at the climate relevant aethalometer-wavelength (520 nm). High temperature combustion during the intermediate (flaming) phase was dominated by soot agglomerates with AAE 1.0-1.2 and 85-100% of absorption at 520 nm attributed to Black Carbon. Intense photochemical processing of high burn rate flaming combustion emissions in an oxidation flow reactor led to strong formation of Secondary Organic Aerosol, with no or weak absorption. PM1 mass emission factors (mg/kg) of fresh emissions were about an order of magnitude higher for low temperature pyrolysis compared to high temperature combustion. However, emission factors describing the absorption cross section emitted per kg of fuel consumed (m(2)/kg) were of similar magnitude at 520 nm for the diverse combustion conditions investigated in this study. These results provide a link between biomass combustion conditions, emitted particle types, and their optical properties in fresh and processed plumes which can be of value for source apportionment and balanced mitigation of biomass combustion emissions from a climate and health perspective. PMID:26561964

  3. A new method to retrieve spectral absorption coefficient of highly-scattering and weakly-absorbing materials

    NASA Astrophysics Data System (ADS)

    Dombrovsky, Leonid A.

    2016-03-01

    A significant uncertainty in the absorption coefficient of highly scattering dispersed materials is typical in the spectral ranges of very weak absorption. The traditional way to identify the main absorption and scattering characteristics of semi-transparent materials is based on spectral measurements of normal-hemispherical reflectance and transmittance for the material sample. Unfortunately this way cannot be used in the case of in vivo measurements of optical properties of biological tissues. A method suggested in the present paper is based on thermal response to the periodic radiative heating of the open surface of a semi-transparent material. It is shown that the period of a variation of the surface temperature is sensitive to the value of an average absorption coefficient in the surface layer. As a result, the monochromatic external irradiation combined with the surface temperature measurements can be used to retrieve the spectral values of absorption coefficient. Possible application of this method to porous semi-transparent ceramics is considered. An example problem is also solved to illustrate the applicability of this method to human skin. The approach suggested enables one to estimate an average absorption coefficient of human skin of a patient just before the thermal processing.

  4. Parameterization of single-scattering albedo (SSA) and absorption Ångström exponent (AAE) with EC / OC for aerosol emissions from biomass burning

    NASA Astrophysics Data System (ADS)

    Pokhrel, Rudra P.; Wagner, Nick L.; Langridge, Justin M.; Lack, Daniel A.; Jayarathne, Thilina; Stone, Elizabeth A.; Stockwell, Chelsea E.; Yokelson, Robert J.; Murphy, Shane M.

    2016-08-01

    Single-scattering albedo (SSA) and absorption Ångström exponent (AAE) are two critical parameters in determining the impact of absorbing aerosol on the Earth's radiative balance. Aerosol emitted by biomass burning represent a significant fraction of absorbing aerosol globally, but it remains difficult to accurately predict SSA and AAE for biomass burning aerosol. Black carbon (BC), brown carbon (BrC), and non-absorbing coatings all make substantial contributions to the absorption coefficient of biomass burning aerosol. SSA and AAE cannot be directly predicted based on fuel type because they depend strongly on burn conditions. It has been suggested that SSA can be effectively parameterized via the modified combustion efficiency (MCE) of a biomass burning event and that this would be useful because emission factors for CO and CO2, from which MCE can be calculated, are available for a large number of fuels. Here we demonstrate, with data from the FLAME-4 experiment, that for a wide variety of globally relevant biomass fuels, over a range of combustion conditions, parameterizations of SSA and AAE based on the elemental carbon (EC) to organic carbon (OC) mass ratio are quantitatively superior to parameterizations based on MCE. We show that the EC / OC ratio and the ratio of EC / (EC + OC) both have significantly better correlations with SSA than MCE. Furthermore, the relationship of EC / (EC + OC) with SSA is linear. These improved parameterizations are significant because, similar to MCE, emission factors for EC (or black carbon) and OC are available for a wide range of biomass fuels. Fitting SSA with MCE yields correlation coefficients (Pearson's r) of ˜ 0.65 at the visible wavelengths of 405, 532, and 660 nm while fitting SSA with EC / OC or EC / (EC + OC) yields a Pearson's r of 0.94-0.97 at these same wavelengths. The strong correlation coefficient at 405 nm (r = 0.97) suggests that parameterizations based on EC / OC or EC / (EC + OC) have good predictive

  5. Case study of absorption aerosol optical depth closure of black carbon over the East China Sea

    NASA Astrophysics Data System (ADS)

    Koike, M.; Moteki, N.; Khatri, P.; Takamura, T.; Takegawa, N.; Kondo, Y.; Hashioka, H.; Matsui, H.; Shimizu, A.; Sugimoto, N.

    2014-01-01

    aerosol optical depth (AAOD) measurements made by sun-sky photometers are currently the only constraint available for estimates of the global radiative forcing of black carbon (BC), but their validation studies are limited. In this paper, we report the first attempt to compare AAODs derived from single-particle soot photometer (SP2) and ground-based sun-sky photometer (sky radiometer, SKYNET) measurements. During the Aerosol Radiative Forcing in East Asia (A-FORCE) experiments, BC size distribution and mixing state vertical profiles were measured using an SP2 on board a research aircraft near the Fukue Observatory (32.8°N, 128.7°E) over the East China Sea in spring 2009 and late winter 2013. The aerosol extinction coefficients (bext) and single scattering albedo (SSA) at 500 nm were calculated based on aerosol size distribution and detailed BC mixing state information. The calculated aerosol optical depth (AOD) agreed well with the sky radiometer measurements (2 ± 6%) when dust loadings were low (lidar-derived nonspherical particle contribution to AOD less than 20%). However, under these low-dust conditions, the AAODs obtained from sky radiometer measurements were only half of the in situ estimates. When dust loadings were high, the sky radiometer measurements showed systematically higher AAODs even when all coarse particles were assumed to be dust for in situ measurements. These results indicate that there are considerable uncertainties in AAOD measurements. Uncertainties in the BC refractive index, optical calculations from in situ data, and sky radiometer retrieval analyses are discussed.

  6. Retrieval of phytoplankton and colored detrital matter absorption coefficients with remote sensing reflectance in an ultraviolet band.

    PubMed

    Wei, Jianwei; Lee, Zhongping

    2015-02-01

    The light absorption of phytoplankton and colored detrital matter (CDM), which includes contribution of gelbstoff and detrital matters, has distinctive yet overlapping features in the ultraviolet (UV) and visible domain. The CDM absorption (a(dg)) increases exponentially with decreasing wavelength while the absorption coefficient of phytoplankton (a(ph)) generally decreases toward the shorter bands for the range of 350-450 nm. It has long been envisioned that including ocean color measurements in the UV range may help the separation of these two components from the remotely sensed ocean color spectrum. An attempt is made in this study to provide an analytical assessment of this expectation. We started with the development of an absorption decomposition model [quasi-analytical algorithm (QAA)-UV], analogous to the QAA, that partitions the total absorption coefficient using information at bands 380 and 440 nm. Compared to the retrieval results relying on the absorption information at 410 and 440 nm of the original QAA, our analyses indicate that QAA-UV can improve the retrieval of a(ph) and a(dg), although the improvement in accuracy is not significant for values at 440 nm. The performance of the UV-based algorithm is further evaluated with in situ measurements. The limited improvement observed with the field measurements highlights that the separation of a(dg) and a(ph) is highly dependent on the accuracy of the ocean color measurements and the estimated total absorption coefficient. PMID:25967770

  7. Method and apparatus for aerosol-particle absorption spectroscopy. [DOE patent application

    SciTech Connect

    Campillo, A.J.; Lin, H.B.

    1981-06-25

    A method and apparatus are described for determining the absorption spectra, and other properties, of aerosol particles. A heating beam source provides a beam of electromagnetic energy which is scanned through the region of the spectrum which is of interest. Particles exposed to the heating beam which have absorption bands within the band width of the heating beam absorb energy from the beam. The particles are also illuminated by light of a wave length such that the light is scattered by the particles. The absorption spectra of the particles can thus be determined from an analysis of the scattered light since the absorption of energy by the particles will affect the way the light is scattered. Preferably the heating beam is modulated to simplify the analysis of the scattered light. In one embodiment the heating beam is intensity modulated so that the scattered light will also be intensity modulated when the particles absorb energy. In another embodiment the heating beam passes through an interferometer and the scattered light reflects the Fourier Transform of the absorption spectra.

  8. Variation of phytoplankton absorption coefficients in the northern South China Sea during spring and autumn

    NASA Astrophysics Data System (ADS)

    Wu, J.; Hong, H.; Shang, S.; Dai, M.; Lee, Z.

    2007-05-01

    We examined the temporal and spatial variabilities of phytoplankton absorption coefficients (αphλ)) and their relationships with physical processes in the northern South China Sea from two cruise surveys during spring (May 2001) and late autumn (November 2002). A large river plume induced by heavy precipitation in May stimulated a phytoplankton bloom on the inner shelf, causing significant changes in the surface water in αph values and B/R ratios (αph(440)/αph(675)). This was consistent with the observed one order of magnitude elevation of chlorophyll α and a shift from a pico/nano dominated phytoplankton community to one dominated by micro-algae. At the seasonal level, enhanced vertical mixing due to strengthened northeast monsoon in November has been observed to result in higher surface αph(675) (0.002-0.006 m-1 higher) and less pronounced subsurface maximum on the outer shelf/slope in November as compared that in May. Measurements of αph and B/R ratios from three transects in November revealed a highest surface αph(675) immediately outside the mouth of the Pearl River Estuary, whereas lower αph(675) and higher B/R ratios were featured in the outer shelf/slope waters, demonstrating the respective influence of the Pearl River plume and the oligotrophic nature of South China Sea water. The difference in spectral shapes of phytoplankton absorption (measured by B/R ratios and bathochromic shifts) on these three transects infers that picoprocaryotes are the major component of the phytoplankton community on the outer shelf/slope rather than on the inner shelf. In addition, a regional tuning of the phytoplankton absorption spectral model (Carder et al., 1999) demonstrated a greater spatial variation than seasonal variation in the lead parameter a0(λ). These results suggest that phytoplankton absorption properties in a coastal region such as the northern South China Sea are complex and region-based parameterization is mandatory in order for remote sensing

  9. Application of the Z-scan technique to determine the optical Kerr coefficient and two-photon absorption coefficient of magnetite nanoparticles colloidal suspension

    NASA Astrophysics Data System (ADS)

    Vivacqua, Marco; Espinosa, Daniel; Martins Figueiredo Neto, Antônio

    2012-06-01

    We investigate the occurrence of the optical Kerr effect and two-photon absorption when an oil-based magnetic Fe3O4 nanoparticles colloidal suspension is illuminated with high intensity femtosecond laser pulses. The frequency of the pulses is controlled and the Z-scan technique is employed in our measurements of the nonlinear optical Kerr coefficient (n2) and two-photon absorption coefficient (β). From these values it was possible to calculate the real and imaginary parts of the third-order susceptibility. We observed that increasing the pulse frequency, additional physical processes take place, increasing artificially the absolute values of n2 and β. The experimental conditions are discussed to assure the obtention of reliable values of these nonlinear optical parameters, which may be useful in all-optical switching and optical power limiting applications.

  10. Laboratory measurements of the ozone absorption coefficient in the wavelength region 339 to 362 nm at different temperatures

    NASA Astrophysics Data System (ADS)

    Cacciani, Marco; Disarra, Alcide; Fiocco, Giorgio

    1987-06-01

    Instrumentation for the absolute measurement of the ozone absorption coefficient in the Huggins bands at different temperatures was set up. Ozone is produced with an electrical discharge and stored cryogenically; differential absorption measurements are carried out in a slowly evolving mixture of ozone and molecular oxygen. Results in the region 339 to 362 nm at temperatures between minus 30 and plus 40 C are reported. Results support Katayama's (1979) model of the transitions giving rise to the Huggins absorption bands of ozone. For measurements of atmospheric ozone profiles by DIAL techniques, the results on the temperature dependence of the absorption coefficient at the wavelength corresponding to the third harmonic of an NdYAG laser are stressed.

  11. Mass-energy absorption coefficient and backscatter factor ratios for kilovoltage x-ray beams

    NASA Astrophysics Data System (ADS)

    Ma, C.-M.; Seuntjens, J. P.

    1999-01-01

    For low-energy (up to 150 kV) x-rays, the ratio of mass-energy absorption coefficients for water to air, , and the backscatter factor B are used in the conversion of air kerma, measured free-in-air, to water kerma on the surface of a water phantom. For clinical radiotherapy, similar conversion factors are needed for the determination of the absorbed dose to biological tissues on (or near) the surface of a human body. We have computed the ratios and B factor ratios for different biological tissues including muscle, soft tissue, lung, skin and bone relative to water. The ratios were obtained by integrating the respective mass-energy absorption coefficients over the in-air primary photon spectra. We have also calculated the ratios at different depths in a water phantom in order to convert the measured in-phantom water kerma to the absorbed dose to various biological tissues. The EGS4/DOSIMETER Monte Carlo code system has been used for the simulation of the energy fluence at different depths in a water phantom irradiated by a kilovoltage x-ray beam of variable beam quality (HVL: 0.1 mm Al-5 mm Cu), field size and source-surface distance (SSD). The same code was also used in the calculation of the B factor ratios, soft tissue to water and bone to water. The results show that the B factor for bone differs from the B factor for water by up to 20% for a 100 kV beam (HVL: 2.65 mm Al) with a 100 field. On the other hand, the difference in the B factor between water and soft tissue is insignificant (well within 1% generally). This means that the B factors for water may be directly used to

  12. Absorption coefficients for the 6190-A CH4 band between 290 and 100 K with application to Uranus' atmosphere

    NASA Technical Reports Server (NTRS)

    Smith, Wm. Hayden; Conner, Charles P.; Baines, Kevin H.

    1990-01-01

    A novel laser intracavity photoacoustic spectroscopy method allowing high sample control accuracy due to the small sample volume required has been used to obtain absorption coefficients for the CH4 6190 A band as a function of temperature, from 290 to 100 K. The peak absorption coefficient is found to increase from 0.6 to 1.0/cm, and to be accompanied by significant band shape changes. When used to further constrain the Baines and Bergstrahl (1986) standard model of the Uranus atmosphere, the low-temperature data yield an excellent fit to the bandshape near the 6190 A band's minimum.

  13. Absorption coefficients for the 6190-A CH sub 4 band between 290 and 100 K with application to Uranus' atmosphere

    SciTech Connect

    Smith, WM.H.; Conner, C.P.; Baines, K.H. JPL, Pasadena, CA )

    1990-05-01

    A novel laser intracavity photoacoustic spectroscopy method allowing high sample control accuracy due to the small sample volume required has been used to obtain absorption coefficients for the CH{sub 4} 6190 A band as a function of temperature, from 290 to 100 K. The peak absorption coefficient is found to increase from 0.6 to 1.0/cm, and to be accompanied by significant band shape changes. When used to further constrain the Baines and Bergstrahl (1986) standard model of the Uranus atmosphere, the low-temperature data yield an excellent fit to the bandshape near the 6190 A band's minimum. 18 refs.

  14. Measurement of diffusion coefficients important in modeling the absorption rate of carbon dioxide into aqueous N-methyldiethanolamine

    SciTech Connect

    Rowley, R.L.; Adams, M.E.; Marshall, T.L.; Oscarson, J.L.; Wilding, W.V.; Anderson, D.J.

    1997-03-01

    Natural gas processors use amine treating processes to remove the acid gases H{sub 2}S and CO{sub 2} from gas streams. Absorption rates of gaseous CO{sub 2} into aqueous N-methyldiethanolamine (MDEA) solutions were measured in a quiescent, inverted-tube diffusiometer by monitoring the rate of pressure drop. The absorption rate was found to be insensitive to the diffusion coefficient of CO{sub 2} in solution but very sensitive to the diffusion rate of bicarbonate and protonated MDEA ions. Evidence also suggested that chemical reaction equilibrium is rapid relative to diffusion. A numerical model was developed on the basis of these observations. The model was used to regress diffusion coefficients of bicarbonate and protonated amine, which must be equivalent by electroneutrality arguments, from measured absorption rates. Complete modeling of the absorption process also required data for the diffusion coefficient of MDEA in water. These were measured using a Taylor dispersion apparatus. CO{sub 2} absorption rates and diffusion coefficients of bicarbonate and protonated MDEA were obtained at 298.2 K and 318.2 K in solutions containing 20, 35, and 50 mass % MDEA in water.

  15. Reduction of Aerosol Absorption in Beijing Since 2007 from MODIS and AERONET

    NASA Technical Reports Server (NTRS)

    Lyapustin, A.; Smirnov, A.; Holben, B.; Chin, M.; Streets, D. G.; Lu, Z.; Kahn, R.; Slutsker, I.; Laszlo, I.; Kondragunta, S.; Tanre, D.; Dubovik, O.; Goloub, P.; Chen, H.-B.; Sinyuk, A.; Wang, Y.; Korkin, S.

    2011-01-01

    An analysis of the time series of MODIS-based and AERONET aerosol records over Beijing reveals two distinct periods, before and after 2007. The MODIS data from both the Terra and Aqua satellites were processed with the new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm. A comparison of MAIAC and AERONET AOT shows that whereas MAIAC consistently underestimated peak AOT values by 10-20% in the prior period, the bias mostly disappears after mid-2007. Independent analysis of the AERONET dataset reveals little or no change in the effective radii of the fine and coarse fractions and of the Angstrom exponent. At the same time, it shows an increasing trend in the single scattering albedo, by approx.0.02 in 9 years. As MAIAC was using the same aerosol model for the entire 2000-2010 period, the decrease in AOT bias after 2007 can be explained only by a corresponding decrease of aerosol absorption caused by a reduction in local black carbon emissions. The observed changes correlate in time with the Chinese government's broad measures to improve air quality in Beijing during preparations for the Summer Olympics of 2008.

  16. Reduction of Aerosol Absorption in Beijing Since 2007 from MODIS and AERONET

    NASA Technical Reports Server (NTRS)

    Lyapustin, A.; Smirnov, A.; Holben, B.; Chin, M.; Streets, D. G.; Lu, Z.; Kahn, R.; Slutsker, I.; Laszlo, I.; Kondragunta, S.; Tanre, D.; Dubovik, O.; Goloub, P.; Chen, H.-B.; Sinyuk, A.; Wang, Y.; Korkin, S.

    2011-01-01

    An analysis of the time series of MODIS-based and AERONET aerosol records over Beijing reveals two distinct periods, before and after 2007. The MODIS data from both the Terra and Aqua satellites were processed with the new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm. A comparison of MAIAC and AERONET AOT shows that whereas MAIAC consistently underestimated peak AOT values by 10-20% in the prior period, the bias mostly disappears after mid- 2007. Independent analysis of the AERONET dataset reveals little or no change in the effective radii of the fine and coarse fractions and of the Angstrom exponent. At the same time, it shows an increasing trend in the single scattering albedo, by 0.02 in 9 years. As MAIAC was using the same aerosol model for the entire 2000-2010 period, the decrease in AOT bias after 2007 can be explained only by a corresponding decrease of aerosol absorption caused by a reduction in local black carbon emissions. The observed changes correlate in time with the Chinese government's broad measures to improve air quality in Beijing during preparations for the Summer Olympics of 2008.

  17. Reduction of aerosol absorption in Beijing since 2007 from MODIS and AERONET

    NASA Astrophysics Data System (ADS)

    Lyapustin, A.; Smirnov, A.; Holben, B.; Chin, M.; Streets, D. G.; Lu, Z.; Kahn, R.; Slutsker, I.; Laszlo, I.; Kondragunta, S.; Tanré, D.; Dubovik, O.; Goloub, P.; Chen, H.-B.; Sinyuk, A.; Wang, Y.; Korkin, S.

    2011-05-01

    An analysis of the time series of MODIS-based and AERONET aerosol records over Beijing reveals two distinct periods, before and after 2007. The MODIS data from both the Terra and Aqua satellites were processed with the new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm. A comparison of MAIAC and AERONET AOT shows that whereas MAIAC consistently underestimated peak AOT values by 10-20% in the prior period, the bias mostly disappears after mid-2007. Independent analysis of the AERONET dataset reveals little or no change in the effective radii of the fine and coarse fractions and of the Ångström exponent. At the same time, it shows an increasing trend in the single scattering albedo, by ˜0.02 in 9 years. As MAIAC was using the same aerosol model for the entire 2000-2010 period, the decrease in AOT bias after 2007 can be explained only by a corresponding decrease of aerosol absorption caused by a reduction in local black carbon emissions. The observed changes correlate in time with the Chinese government's broad measures to improve air quality in Beijing during preparations for the Summer Olympics of 2008.

  18. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols.

    PubMed

    Higdon, N S; Browell, E V; Ponsardin, P; Grossmann, B E; Butler, C F; Chyba, T H; Mayo, M N; Allen, R J; Heuser, A W; Grant, W B; Ismail, S; Mayor, S D; Carter, A F

    1994-09-20

    An airborne differential absorption lidar (DIAL) system has been developed at the NASA Langley Research Center for remote measurements of atmospheric water vapor (H(2)O) and aerosols. A solid-state alexandrite laser with a 1-pm linewidth and > 99.85% spectral purity was used as the on-line transmitter. Solid-state avalanche photodiode detector technology has replaced photomultiplier tubes in the receiver system, providing an average increase by a factor of 1.5-2.5 in the signal-to-noise ratio of the H(2)O measurement. By incorporating advanced diagnostic and data-acquisition instrumentation into other subsystems, we achieved additional improvements in system operational reliability and measurement accuracy. Laboratory spectroscopic measurements of H(2)O absorption-line parameters were perfo med to reduce the uncertainties in our knowledge of the absorption cross sections. Line-center H(2)O absorption cross sections were determined, with errors of 3-6%, for more than 120 lines in the 720-nm region. Flight tests of the system were conducted during 1989-1991 on the NASA Wallops Flight Facility Electra aircraft, and extensive intercomparison measurements were performed with dew-point hygrometers and H(2)O radiosondes. The H(2)O distributions measured with the DIAL system differed by ≤ 10% from the profiles determined with the in situ probes in a variety of atmospheric conditions. PMID:20941181

  19. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols

    NASA Technical Reports Server (NTRS)

    Carter, Arlen F.; Allen, Robert J.; Mayo, M. Neale; Butler, Carolyn F.; Grossman, Benoist E.; Ismail, Syed; Grant, William B.; Browell, Edward V.; Higdon, Noah S.; Mayor, Shane D.; Ponsardin, Patrick; Hueser, Alene W.

    1994-01-01

    An airborne differential absorption lidar (DIAL) system has been developed at the NASA Langley Research Center for remote measurements of atmospheric water vapor (H2O) and aerosols. A solid-state alexandrite laser with a 1-pm linewidth and greater than 99.85% spectral purity was used as the on-line transmitter. Solid-state avalanche photodiode detector technology has replaced photomultiplier tubes in the receiver system, providing an average increase by a factor of 1.5-2.5 in the signal-to-noise ratio of the H2O measurement. By incorporating advanced diagnostic and data-acquisition instrumentation into other subsystems, we achieved additional improvements in system operational reliability and measurement accuracy. Laboratory spectroscopic measurements of H2O absorption-line parameters were performed to reduce the uncertainties in our knowledge of the absorption cross sections. Line-center H2O absorption cross sections were determined, with errors of 3-6%, for more than 120 lines in the 720-nm region. Flight tests of the system were conducted during 1989-1991 on the NASA Wallops Flight Facility Electra aircraft, and extensive intercomparison measurements were performed with dew-point hygrometers and H2O radiosondes. The H2O distributions measured with the DIAL system differed by less than 10% from the profiles determined with the in situ probes in a variety of atmospheric conditions.

  20. Re-evaluation of pulsed photothermal radiometric profiling in samples with spectrally varied infrared absorption coefficient.

    PubMed

    Majaron, Boris; Milanic, Matija

    2007-02-21

    Spectral variation of the sample absorption coefficient in mid-infrared (muIR) demands caution in photothermal radiometric measurements, because a constant muIR is regularly assumed in inverse analysis of the acquired signals. Adverse effects of such approximation were recently demonstrated in numerical simulations of pulsed photothermal radiometric (PPTR) temperature profiling in soft biological tissues, utilizing a general-purpose optimization code in the reconstruction process. We present here an original reconstruction code, which combines a conjugate gradient minimization algorithm with non-negativity constraint to the sought temperature vector. For the same test examples as in the former report (hyper-Gaussian temperature profiles, InSb detector with 3-5 microm acquisition band, signal-to-noise ratio SNR=300) we obtain markedly improved reconstruction results, both when using a constant value mueff and when the spectral variation muIR(lambda) is accounted for in the analysis. By comparing the results, we find that the former approach introduces observable artefacts, especially in the superficial part of the profile (z<100 microm). However, the artefacts are much less severe than previously reported and are almost absent in the case of a deeper, single-lobed test profile. We demonstrate that the observed artefacts do not result from sub-optimal selection of mueff, and that they vary with specific realizations of white noise added to the simulated signals. The same holds also for a two-lobed test profile. PMID:17264372

  1. Simultaneous measurement of thermal diffusivity and optical absorption coefficient using photothermal radiometry. I. Homogeneous solids

    NASA Astrophysics Data System (ADS)

    Fuente, Raquel; Apiñaniz, Estibaliz; Mendioroz, Arantza; Salazar, Agustín

    2011-08-01

    Modulated photothermal radiometry (PTR) has been widely used to measure the thermal diffusivity of bulk materials. The method is based on illuminating the sample with a plane light beam and measuring the infrared emission with an infrared detector. The amplitude and phase of the PTR voltage is recorded as a function of the modulation frequency and then fitted to the theoretical model. In this work, we test the ability of modulated PTR to retrieve simultaneously the thermal diffusivity and the optical absorption coefficient of homogeneous slabs. In order to eliminate the instrumental factor, self-normalization is used, i.e., the ratio of the PTR signal recorded at the rear and front surfaces. The influence of the multiple reflections of the light beam, the heat losses, and the transparency to infrared wavelengths are analyzed. Measurements performed on a wide variety of homogeneous materials, covering the whole range from transparent to opaque, confirm the validity of the method. In Part II of this work, the method is extended to multilayered materials.

  2. Noise-driven optical absorption coefficients of impurity doped quantum dots

    NASA Astrophysics Data System (ADS)

    Ganguly, Jayanta; Saha, Surajit; Pal, Suvajit; Ghosh, Manas

    2016-01-01

    We make an extensive investigation of linear, third-order nonlinear, and total optical absorption coefficients (ACs) of impurity doped quantum dots (QDs) in presence and absence of noise. The noise invoked in the present study is a Gaussian white noise. The quantum dot is doped with repulsive Gaussian impurity. Noise has been introduced to the system additively and multiplicatively. A perpendicular magnetic field acts as a source of confinement and a static external electric field has been applied. The AC profiles have been studied as a function of incident photon energy when several important parameters such as optical intensity, electric field strength, magnetic field strength, confinement energy, dopant location, relaxation time, Al concentration, dopant potential, and noise strength take on different values. In addition, the role of mode of application of noise (additive/multiplicative) on the AC profiles has also been analyzed meticulously. The AC profiles often consist of a number of interesting observations such as one photon resonance enhancement, shift of AC peak position, variation of AC peak intensity, and bleaching of AC peak. However, presence of noise alters the features of AC profiles and leads to some interesting manifestations. Multiplicative noise brings about more complexity in the AC profiles than its additive counterpart. The observations indeed illuminate several useful aspects in the study of linear and nonlinear optical properties of doped QD systems, specially in presence of noise. The findings are expected to be quite relevant from a technological perspective.

  3. An empirical determination of the dust mass absorption coefficient, κd, using the Herschel Reference Survey

    NASA Astrophysics Data System (ADS)

    Clark, Christopher J. R.; Schofield, Simon P.; Gomez, Haley L.; Davies, Jonathan I.

    2016-06-01

    We use the published photometry and spectroscopy of 22 galaxies in the Herschel Reference Survey to determine that the value of the dust mass absorption coefficient κd at a wavelength of 500 μm is kappa _{500} = 0.051^{+0.070}_{-0.026} m^{2 kg^{-1}}. We do so by taking advantage of the fact that the dust-to-metals ratio in the interstellar medium of galaxies appears to be constant. We argue that our value for κd supersedes that of James et al. - who pioneered this approach for determining κd - because we take advantage of superior data, and account for a number of significant systematic effects that they did not consider. We comprehensively incorporate all methodological and observational contributions to establish the uncertainty on our value, which represents a marked improvement on the oft-quoted `order-of-magnitude' uncertainty on κd. We find no evidence that the value of κd differs significantly between galaxies, or that it correlates with any other measured or derived galaxy properties. We note, however, that the availability of data limits our sample to relatively massive (109.7 < M⋆ < 1011.0 M⊙), high metallicity (8.61 < [ 12 + log_{10} fracOH ] < 8.86) galaxies; future work will allow us to investigate a wider range of systems.

  4. Accurate estimation of normal incidence absorption coefficients with confidence intervals using a scanning laser Doppler vibrometer

    NASA Astrophysics Data System (ADS)

    Vuye, Cedric; Vanlanduit, Steve; Guillaume, Patrick

    2009-06-01

    When using optical measurements of the sound fields inside a glass tube, near the material under test, to estimate the reflection and absorption coefficients, not only these acoustical parameters but also confidence intervals can be determined. The sound fields are visualized using a scanning laser Doppler vibrometer (SLDV). In this paper the influence of different test signals on the quality of the results, obtained with this technique, is examined. The amount of data gathered during one measurement scan makes a thorough statistical analysis possible leading to the knowledge of confidence intervals. The use of a multi-sine, constructed on the resonance frequencies of the test tube, shows to be a very good alternative for the traditional periodic chirp. This signal offers the ability to obtain data for multiple frequencies in one measurement, without the danger of a low signal-to-noise ratio. The variability analysis in this paper clearly shows the advantages of the proposed multi-sine compared to the periodic chirp. The measurement procedure and the statistical analysis are validated by measuring the reflection ratio at a closed end and comparing the results with the theoretical value. Results of the testing of two building materials (an acoustic ceiling tile and linoleum) are presented and compared to supplier data.

  5. Effects of nanosilver on sound absorption coefficients in solid wood species.

    PubMed

    Taghiyari, Hamid Reza; Esmailpour, Ayoub; Zolfaghari, Habib

    2016-06-01

    Sound absorption coefficients (ACs) were determined in five solid woods (poplar, beech, walnut, mulberry, and fir) in the longitudinal and tangential directions at four different frequencies of 800, 1000, 2000, and 4000 Hz. The length of the longitudinal and tangential specimens was 50-mm and 10-mm, respectively. Separate sets of specimens were impregnated with either nanosilver suspension or water. The size range of nanoparticles was 30-80 nm. Results showed that sound ACs were lower in longitudinal specimens because sound waves could penetrate the open ends of vessels more easily, being trapped and damped there. Impregnation with both nanosilver suspension and water resulted in a significant decrease in the sound ACs. The decrease in the ACs was due to the collapsing and accumulation of perforation plates and cell parts, blocking the way through which waves could pass through the vessels. This caused higher damping due to a phenomenon called vibration decay. Correlation between gas permeability versus sound AC is significantly dependant on the porous structure of individual specimens. PMID:27256895

  6. Determination of the diffusion length and the optical self absorption coefficient using EBIC model

    NASA Astrophysics Data System (ADS)

    Guermazi, S.; Guermazi, H.; Mlik, Y.; El Jani, B.; Grill, C.; Toureille, A.

    2001-10-01

    We have developed a model of calculation of the induced current due to an electron beam. The expression for the electron beam induced current (EBIC) with an extended generation profile is obtained via the resolution of a steady state continuity equation by the Green function method, satisfying appropriated boundary conditions to the physical model. The generation profile takes into account the lateral diffusion, the effect of defects, dislocations and recombination surfaces besides the number of absorbed electrons and that of diffuse electrons as a function of the depth. In the case of a Schottky diode Au/GaAs obtained by metalorganic vapour phase epitaxy (MOVPE) method, the theoretical induced current profile is compared to the experimental one and to theoretical profiles whose analytical expressions are given by van Roosbroeck and Bresse. The minority carriers diffusion length L_n = 2 μm and the optical self-absorption coefficient a=0.034 μm^{-1} can be deduced from the experimental current profile, measured by scanning electron microscopy. The theoretical curve, obtained from the proposed model is in a good agreement with the experimental one for surface recombination velocity 10^6 cm s^{-1} except for distances far from the depletion layer (x_0 > 2.3 μm) where the photocurrent produced by the multiple process of the reabsorbed recombination radiation is preponderant. Our results are in agreement with those obtained by other experimental techniques on the same samples.

  7. Effects of combined scattering and absorption coefficients on laser speckle contrast imaging values

    NASA Astrophysics Data System (ADS)

    Khaksari, Kosar; Kirkpatrick, Sean J.

    2015-03-01

    Laser Speckle contrast imaging (LSCI) is a non-invasive or minimally invasive method for visualizing blood flow and perfusion in biological tissues. In LSCI the motion of scattering particles results in a reduction in global and regional speckle contrast. A variety of parameters can affect the calculated contrast values in LSCI techniques, including the optical properties of the fluid and surrounding tissue. In typical LSCI where the motion of blood is of interests, optical properties are influenced by hematocrit levels. In this work we considered the combined effects of both the scattering and absorption coefficients on LSCI measurements on a flow phantom. Fluid phantoms consisting of various concentrations of neutrally buoyant ~10 micron microspheres and India ink mixed with DI water were formulated to mimic the optical properties of whole blood with various levels of hematocrit. In these flow studies, it was found that an increase in μa and/or μs led to a decrease in contrast values when all other experimental parameters were held constant. The observed reduction in contrast due to optical property changes could easily be confused with a contrast reduction due to increased flow velocity. These results suggest that optical properties need to be considered when using LSCI to make flow estimates.

  8. Contribution of Black Carbon, Brown Carbon and Lensing Effect to Total Aerosol Absorption in Indo-Gangetic Plain

    NASA Astrophysics Data System (ADS)

    Shamjad, Pm; Tripathi, Sachchida; Bergin, Mike; Vreeland, Heidi

    2016-04-01

    This study reports the optical and physical properties of atmospheric and denuded (heated at 300°C) aerosols from Indo-Gangetic Plain (IGP) during 20 December 2014 to 28 February 2015. A Single Particle Soot Photometer (SP2) and High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) were used to measure black carbon (BC) and organic carbon (OC) in real time respectively. During experiments large scale carbonaceous aerosol loading is observed in IGP. Multiple biomass burning events are observed with varying intensity and duration. Refractive index of brown carbon (BrC) is derived from filter extracts using Liquid Core Wave Capillary Cell (LWCC). Refractive index of BrC at 405 is 4 times higher in IGP when compared to studies conducted in USA. Through Mie modelling we identified the percentage contribution of black carbon, BrC and lensing effect to total aerosol absorption. On average 75% of absorption is from black carbon alone, while rest is contributed from volatile components. Within the volatile component contribution, at 405 nm BrC contributes around 20% and rest from lensing effect. But at 781 nm lensing contributed more than BrC. Overall results indicate the special characteristics on BrC aerosols in IGP and the importance of considering spectral absorption in global aerosol modelling studies.

  9. Thermal characteristics and mass absorption efficiency of carbonaceous aerosol measured during a post-harvest burning period

    NASA Astrophysics Data System (ADS)

    Batmunkh, T.; Kim, Y. J.; Cayetano, M. G.; Lee, K.; Kim, K.; Park, K.

    2012-12-01

    In order to better understand the characteristics of carbonaceous aerosol time-resolved OC, EC, and BC were measured by a Sunset OC/EC analyzer and an Aethalometer, respectively, during a post-harvest burning period from November 22 to December 20, 2011 at a sub-urban site in Gwangju, Korea. OC and EC were analyzed by the thermal-optical transmittance (TOT) method with NIOSH temperature protocol. The spectral light absorption coefficient (babs) was determined based on the Aethalometer data. Overall average OC and EC concentrations were found to be 5.0±2.4 ugC/ m3 and 1.5±0.9 ugC/ m3, respectively for the sampling period. On average, babs at seven Aethalometer wavelengths was found to be 38.4±27.8 Mm-1, 24.3±17.8 Mm-1, 20.8±15.4 Mm-1, 17.9±13.3 Mm-1, 14.9±11.1 Mm-1, 9.9±7.4 Mm-1, and 8.8±6.6 Mm-1 at 370 nm, 470 nm, 520 nm, 590 nm, 660 nm, 880 nm, and 950 nm, respectively. Clear diurnal variations with morning (7:00 AM~9:00 AM) and evening (7:00 PM~11:00 PM) peaks were observed for OC, EC, and babs mostly due to local burning activities. Based on the 4-day back-trajectory analyses conducted using the HYSPLIT model. Event cases were classified into four categories, based on the 4-day air mass back trajectories, as Clean(C), Stagnant(ST), Continental(CC), and Local Burning(LB) events. In order to better investigate the characteristics of atmospheric carbonaceous aerosol, thermal evolution patterns of carbonaceous aerosol measured by the Sunset analyzer were characterized as OC1, OC2, and EC, which were detected in temperature steps of 600 C, 840 C in an non-oxidizing atmosphere, and 870 C in an oxidizing atmosphere, respectively. High ratio of OC2/OC1; 1.39~1.41 was observed in the evening 9:00~11:00 PM due to local burning event. Concentration of OC2 was higher up to 1.4 times than that of OC1 for the LB cases, showing that higher molecular weight fraction of organic aerosol was dominant for the time. As expected, higher correlation was found between EC and

  10. Effect of absorption parameters on calculation of the dose coefficient: example of classification of industrial uranium compounds.

    PubMed

    Chazel, V; Houpert, P; Paquet, F; Ansoborlo, E

    2001-01-01

    In the Human Respiratory Tract Model (HRTM) described in ICRP Publication 66, time-dependent dissolution is described by three parameters: the fraction dissolved rapidly, fr, and the rapid and slow dissolution rates sr and ss. The effect of these parameters on the dose coefficient has been studied. A theoretical analysis was carried out to determine the sensitivity of the dose coefficient to variations in the values of these absorption parameters. Experimental values of the absorption parameters and the doses per unit intake (DPUI) were obtained from in vitro dissolution tests, or from in vivo experiments with rats, for five industrial uranium compounds UO2, U3O8, UO4, UF4 and a mixture of uranium oxides. These compounds were classified in terms of absorption types (F, M or S) according to ICRP. The overall result was that the factor which has the greatest influence on the dose coefficient was the slow dissolution rate ss. This was verified experimentally, with a variation of 20% to 55% for the DPUI according to the absorption type of the compound. In contrast, the rapid dissolution rate sr had little effect on the dose coefficient, excepted for Type F compounds. PMID:11487809

  11. ABSORBANCE, ABSORPTION COEFFICIENT, AND APPARENT QUANTUM YIELD: A COMMENT ON AMBIGUITY IN THE USE OF THESE OPTICAL CONCEPTS

    EPA Science Inventory

    Several important optical terms such as "absorbance" and "absorption coefficient" are frequently used ambiguously in the current peer-reviewed literature. Since they are important terms that are required to derive other quantities such as the "apparent quantum yield" of photoprod...

  12. Linear absorption coefficient of beryllium in the 50-300-A wavelength range. [bandpass filter materials for ultraviolet astronomy instrumentation

    NASA Technical Reports Server (NTRS)

    Barstow, M. A.; Lewis, M.; Petre, R.

    1983-01-01

    Transmittances of thin-film filters fabricated for an extreme-UV astronomy sounding-rocket experiment yield values for the linear absorption coefficient of beryllium in the 50-300-A wavelength range, in which previous measurements are sparse. The inferred values are consistent with the lowest data previously published and may have important consequences for extreme-UV astronomers.

  13. Investigation of linear optical absorption coefficients in core-shell quantum dot (QD) luminescent solar concentrators (LSCs)

    NASA Astrophysics Data System (ADS)

    Ebrahimipour, Bahareh Alsadat; Askari, Hassan Ranjbar; Ramezani, Ali Behjat

    2016-09-01

    The interlevel absorption coefficient of CdSe/ZnS and ZnS/CdSe core-shell Quantum Dot (QD) in luminescent solar concentrators (LSCs) is reported. By considering the quantum confinement effects, the wave functions and eigenenergies of electrons in the nonperturebative system consists of a core-shell QD have been numerically calculated under the frame work of effective-mass approximation by solving a three-dimensional Schrӧdinger equation. And then the absorption coefficient is obtained under density matrix approximation considering in the polymer sheets of the concentrator including the core-shell QDs. The effect of the hetero-structure geometry upon the energy spectrum and absorption coefficient associated to interlevel transitions was also considered. The results show that the core-shell QDs can absorb the photons with higher energy in solar spectrum as compared to the inverted core-shell. And with a small shell layer diameter, the core-shell QDs produce larger linear absorption coefficients and consequently higher efficiency values, however it is inversed for inverted core-shell QDs. The work described here gives a detailed insight into the promise of QD-based LSCs and the optoelectronic devices applications.

  14. Influence of plasma parameters on the absorption coefficient of alpha particles to lower hybrid waves in tokamaks

    SciTech Connect

    Wang, J.; Zhang, X. Yu, L.; Zhao, X.

    2014-12-15

    In tokamaks, fusion generated α particles may absorb lower hybrid (LH) wave energy, thus reducing the LH current drive efficiency. The absorption coefficient γ{sub α} of LH waves due to α particles changing with some typical parameters is calculated in this paper. Results show that γ{sub α} increases with the parallel refraction index n{sub ‖}, while decreases with the frequency of LH waves ω over a wide range. Higher background plasma temperature and toroidal magnetic field will increase the absorption. The absorption coefficient γ{sub α} increases with n{sub e} when n{sub e} ≤ 8 × 10{sup 19} m{sup −3}, while decreases with n{sub e} when n{sub e} becomes larger, and there is a peak value of γ{sub α} when n{sub e} ≈ 8 × 10{sup 19} m{sup −1} for the ITER-like scenario. The influence of spectral broadening in parametric decay instabilities on the absorption coefficient is evaluated. The value of γ{sub α} with n{sub ‖} being 2.5 is almost two times larger than that with n{sub ‖} being 2.0 and is even lager in the case of 2.9, which will obviously increase the absorption of the LH power by alpha particles.

  15. Anomalous atmospheric spectral features between 300 and 310 nm interpreted in light or new ozone absorption coefficient measurements

    NASA Technical Reports Server (NTRS)

    Mcpeters, R. D.; Bass, A. M.

    1982-01-01

    Real structure is revealed, by an analysis of continuous scan data from the solar backscattered UV instrument on Nimbus 7, in the backscattered atmospheric albedo region between 300 and 310 nm where spectral anomalies have been reported in ground-based observation. The spectral anomalies are explainable as structure at the 1-5% level in the ozone absorption coefficient, as measured by Bass and Paur (1981). The new absorption coefficient measurements are judged to approach the 1%-level of accuracy in atmospheric radiation calculation, which should resolve discrepancies between different Dobson wavelength pairs and between different instruments and permit the more accurate analysis of such second-order effects as NO emission, SO2 absorption in polluted atmospheres, and Raman scattering effects.

  16. Coefficients of an analytical aerosol forcing equation determined with a Monte-Carlo radiation model

    NASA Astrophysics Data System (ADS)

    Hassan, Taufiq; Moosmüller, H.; Chung, Chul E.

    2015-10-01

    Simple analytical equations for global-average direct aerosol radiative forcing are useful to quickly estimate aerosol forcing changes as function of key atmosphere, surface and aerosol parameters. The surface and atmosphere parameters in these analytical equations are the globally uniform atmospheric transmittance and surface albedo, and have so far been estimated from simplified observations under untested assumptions. In the present study, we take the state-of-the-art analytical equation and write the aerosol forcing as a linear function of the single scattering albedo (SSA) and replace the average upscatter fraction with the asymmetry parameter (ASY). Then we determine the surface and atmosphere parameter values of this equation using the output from the global MACR (Monte-Carlo Aerosol Cloud Radiation) model, as well as testing the validity of the equation. The MACR model incorporated spatio-temporally varying observations for surface albedo, cloud optical depth, water vapor, stratosphere column ozone, etc., instead of assuming as in the analytical equation that the atmosphere and surface parameters are globally uniform, and should thus be viewed as providing realistic radiation simulations. The modified analytical equation needs globally uniform aerosol parameters that consist of AOD (Aerosol Optical Depth), SSA, and ASY. The MACR model is run here with the same globally uniform aerosol parameters. The MACR model is also run without cloud to test the cloud effect. In both cloudy and cloud-free runs, the equation fits in the model output well whether SSA or ASY varies. This means the equation is an excellent approximation for the atmospheric radiation. On the other hand, the determined parameter values are somewhat realistic for the cloud-free runs but unrealistic for the cloudy runs. The global atmospheric transmittance, one of the determined parameters, is found to be around 0.74 in case of the cloud-free conditions and around 1.03 with cloud. The surface

  17. Inferring brown carbon content from UV aerosol absorption measurements during biomass burning season

    NASA Astrophysics Data System (ADS)

    Mok, J.; Krotkov, N. A.; Arola, A. T.; Torres, O.; Jethva, H. T.; Andrade, M.; Labow, G. J.; Eck, T. F.; Li, Z.; Dickerson, R. R.; Stenchikov, G. L.; Osipov, S.

    2015-12-01

    Measuring spectral dependence of light absorption by colored organic or "brown" carbon (BrC) is important, because of its effects on photolysis rates of ozone and surface ultraviolet (UV) radiation. Enhanced UV spectral absorption by BrC can in turn be exploited for simultaneous retrievals of BrC and black carbon (BC) column amounts in field campaigns. We present an innovative ground-based retrieval of BC and BrC volume fractions and their mass absorption efficiencies during the biomass burning season in Santa Cruz, Bolivia in September-October 2007. Our method combines retrieval of BC volume fraction using AERONET inversion in visible wavelengths with the inversion of total BC+BrC absorption (i.e., column effective imaginary refractive index, kmeas) using Diffuse/Direct irradiance measurements in UV wavelengths. First, we retrieve BrC volume fraction by fitting kmeas at 368nm using Maxwell-Garnett (MG) mixing rules assuming: (1) flat spectral dependence of kBC, (2) known value of kBrC at 368nm from laboratory absorption measurements or smoke chamber experiments, and (3) known BC volume fraction from AERONET inversion. Next, we derive kBrC in short UVB wavelengths by fitting kmeas at 305nm, 311nm, 317nm, 325nm, and 332nm using MG mixing rules and fixed volume fractions of BC and BrC. Our retrievals show larger than expected spectral dependence of kBrC in UVB wavelengths, implying reduced surface UVB irradiance and inhibited photolysis rates of surface ozone destruction. We use a one-dimensional chemical box model to show that the observed strong wavelength dependence of BrC absorption leads to inhibited photolysis of ozone to O(1D), a loss mechanism, while having little impact or even accelerating photolysis of NO2, an ozone production mechanism. Although BC only absorption in biomass burning aerosols is important for climate radiative forcing in the visible wavelengths, additional absorption by BrC is important because of its impact on surface UVB radiation

  18. Measurements of Black Carbon and aerosol absorption during global circumnavigation and Arctic campaigns

    NASA Astrophysics Data System (ADS)

    Močnik, Griša; Drinovec, Luka; Vidmar, Primož; Lenarčič, Matevž

    2015-04-01

    During two flight campaigns: around the world (2012) and over the Arctic (2013) we demonstrated the feasibility of scientific research and aerial measurements of aerosolized Black Carbon with ultra-light aircraft. Conducted measurements provided first ever information on Black Carbon concentrations and sources over such a large area at altitude. Ground-level measurements of atmospheric aerosols are routinely performed around the world, but there exists very little data on their vertical and geographical distribution in the global atmosphere. These data is a crucial requirement for our understanding of the dispersion of pollutant species of anthropogenic origin, and their possible effects on radiative forcing, cloud condensation, and other phenomena which can contribute to adverse outcomes. Light absorbing carbonaceous aerosols and black carbon (BC) in particular are a unique tracer for combustion emissions, and can be detected rapidly and with great sensitivity by filter-based optical methods. A single-seat ultra-light aircraft flew around the world and on a Arctic expedition. The flights covered all seven continents; crossed all major oceans; and operated at altitudes around 3000 m ASL and up to 8900 m ASL. The aircraft carried a specially-developed high-sensitivity miniaturized dual-wavelength Aethalometer, which recorded BC concentrations with very high temporal resolution and sensitivity [1, 2]. We present examples of data from flight tracks over remote oceans, uninhabited land masses, and densely populated areas. Measuring the dependence of the aerosol absorption on the wavelength, we show that aerosols produced during biomass combustion can be transported to high altitude in high concentrations and we estimate the underestimation of the direct forcing by models assuming a simple linear relationship between BC concentration and forcing in comparison to observations [3,4]. 1. , Carbon Sampling Takes Flight, Science 2012, 335, 1286. 2. G. Močnik, L. Drinovec, M

  19. Primary and secondary contributions to aerosol light scattering and absorption in Mexico City during the MILAGRO 2006 campaign

    NASA Astrophysics Data System (ADS)

    Paredes-Miranda, G.; Arnott, W. P.; Jimenez, J. L.; Aiken, A. C.; Gaffney, J. S.; Marley, N. A.

    2009-06-01

    A photoacoustic spectrometer, a nephelometer, an aethalometer, and an aerosol mass spectrometer were used to measure at ground level real-time aerosol light absorption, scattering, and chemistry at an urban site located in North East Mexico City (Instituto Mexicano del Petroleo, Mexican Petroleum Institute, denoted by IMP), as part of the Megacity Impact on Regional and Global Environments field experiment, MILAGRO, in March 2006. Photoacoustic and reciprocal nephelometer measurements at 532 nm accomplished with a single instrument compare favorably with conventional measurements made with an aethalometer and a TSI nephelometer. The diurnally averaged single scattering albedo at 532 nm was found to vary from 0.60 to 0.85 with the peak value at midday and the minimum value at 07:00 a.m. local time, indicating that the Mexico City plume is likely to have a net warming effect on local climate. The peak value is associated with strong photochemical generation of secondary aerosol. It is estimated that the photochemical production of secondary aerosol (inorganic and organic) is approximately 75% of the aerosol mass concentration and light scattering in association with the peak single scattering albedo. A strong correlation of aerosol scattering at 532 nm and total aerosol mass concentration was found, and an average mass scattering efficiency factor of 3.8 m2/g was determined. Comparisons of photoacoustic and aethalometer light absorption with oxygenated organic aerosol concentration (OOA) indicate a very small systematic bias of the filter based measurement associated with OOA and the peak aerosol single scattering albedo.

  20. Primary and secondary contributions to aerosol light scattering and absorption in Mexico City during the MILAGRO 2006 campaign

    NASA Astrophysics Data System (ADS)

    Paredes-Miranda, G.; Arnott, W. P.; Jimenez, J. L.; Aiken, A. C.; Gaffney, J. S.; Marley, N. A.

    2008-09-01

    A photoacoustic spectrometer, a nephelometer, an aetholemeter, and an aerosol mass spectrometer were used to measure at ground level real-time aerosol light absorption, scattering, and chemistry at an urban site located in north east Mexico City (Instituto Mexicano del Petroleo, Mexican Petroleum Institute, denoted by IMP), as part of the Megacity Impact on Regional and Global Environments field experiment, MILAGRO, in March 2006. Photoacoustic and reciprocal nephelometer measurements at 532 nm accomplished with a single instrument compare favorably with conventional measurements made with an aethelometer and a TSI nephelometer. The diurnally averaged single scattering albedo at 532 nm was found to vary from 0.60 to 0.85 with the peak value at midday and the minimum value at 7 a.m. local time, indicating that the Mexico City plume is likely to have a net warming effect on local climate. The peak value is associated with strong photochemical generation of secondary aerosol. It is estimated that the same-day photochemical production of secondary aerosol (inorganic and organic) is approximately 40 percent of the aerosol mass concentration and light scattering in association with the peak single scattering albedo. A strong correlation of aerosol scattering at 532 nm and total aerosol mass concentration was found, and an average mass scattering efficiency factor of 3.8 m2/g was determined. Comparisons of photoacoustic and aethalometer light absorption with oxygenated organic aerosol concentration (OOA) indicate a very small systematic bias of the filter based measurement associated with OOA and the peak aerosol single scattering albedo.

  1. How to measure and predict the molar absorption coefficient of a protein.

    PubMed Central

    Pace, C. N.; Vajdos, F.; Fee, L.; Grimsley, G.; Gray, T.

    1995-01-01

    The molar absorption coefficient, epsilon, of a protein is usually based on concentrations measured by dry weight, nitrogen, or amino acid analysis. The studies reported here suggest that the Edelhoch method is the best method for measuring epsilon for a protein. (This method is described by Gill and von Hippel [1989, Anal Biochem 182:319-326] and is based on data from Edelhoch [1967, Biochemistry 6:1948-1954]). The absorbance of a protein at 280 nm depends on the content of Trp, Tyr, and cystine (disulfide bonds). The average epsilon values for these chromophores in a sample of 18 well-characterized proteins have been estimated, and the epsilon values in water, propanol, 6 M guanidine hydrochloride (GdnHCl), and 8 M urea have been measured. For Trp, the average epsilon values for the proteins are less than the epsilon values measured in any of the solvents. For Tyr, the average epsilon values for the proteins are intermediate between those measured in 6 M GdnHCl and those measured in propanol. Based on a sample of 116 measured epsilon values for 80 proteins, the epsilon at 280 nm of a folded protein in water, epsilon (280), can best be predicted with this equation: epsilon (280) (M-1 cm-1) = (#Trp)(5,500) + (#Tyr)(1,490) + (#cystine)(125) These epsilon (280) values are quite reliable for proteins containing Trp residues, and less reliable for proteins that do not. However, the Edelhoch method is convenient and accurate, and the best approach is to measure rather than predict epsilon. PMID:8563639

  2. Absorption Properties of Mediterranean Aerosols Obtained from Multi-year Ground-based and Satellite Remote Sensing Observations

    NASA Technical Reports Server (NTRS)

    Mallet, M.; Dubovik, O.; Nabat, P.; Dulac, F.; Kahn, R.; Sciare, J.; Paronis, D.; Leon, J. F.

    2013-01-01

    Aerosol absorption properties are of high importance to assess aerosol impact on regional climate. This study presents an analysis of aerosol absorption products obtained over the Mediterranean Basin or land stations in the region from multi-year ground-based AERONET and satellite observations with a focus on the Absorbing Aerosol Optical Depth (AAOD), Single Scattering Albedo (SSA) and their spectral dependence. The AAOD and Absorption Angstrom Exponent (AAE) data set is composed of daily averaged AERONET level 2 data from a total of 22 Mediterranean stations having long time series, mainly under the influence of urban-industrial aerosols and/or soil dust. This data set covers the 17 yr period 1996-2012 with most data being from 2003-2011 (approximately 89 percent of level-2 AAOD data). Since AERONET level-2 absorption products require a high aerosol load (AOD at 440 nm greater than 0.4), which is most often related to the presence of desert dust, we also consider level-1.5 SSA data, despite their higher uncertainty, and filter out data with an Angstrom exponent less than 1.0 in order to study absorption by carbonaceous aerosols. The SSA data set includes both AERONET level-2 and satellite level-3 products. Satellite-derived SSA data considered are monthly level 3 products mapped at the regional scale for the spring and summer seasons that exhibit the largest aerosol loads. The satellite SSA dataset includes the following products: (i) Multi-angle Imaging SpectroRadiometer (MISR) over 2000-2011, (ii) Ozone Monitoring Instrument (OMI) near-UV algorithm over 2004-2010, and (iii) MODerate resolution Imaging Spectroradiometer (MODIS) Deep-Blue algorithm over 2005-2011, derived only over land in dusty conditions. Sun-photometer observations show that values of AAOD at 440 nm vary between 0.024 +/- 0.01 (resp. 0.040 +/- 0.01) and 0.050 +/- 0.01 (0.055 +/- 0.01) for urban (dusty) sites. Analysis shows that the Mediterranean urban-industrial aerosols appear "moderately

  3. Photoacoustic and filter-based ambient aerosol light absorption measurements: Instrument comparisons and the role of relative humidity

    NASA Astrophysics Data System (ADS)

    Arnott, W. P.; Moosmüller, H.; Sheridan, P. J.; Ogren, J. A.; Raspet, R.; Slaton, W. V.; Hand, J. L.; Kreidenweis, S. M.; Collett, J. L.

    2003-01-01

    Ambient measurements are reported of aerosol light absorption from photoacoustic and filter-based instruments (aethalometer and a particle soot absorption photometer (PSAP)) to provide insight on the measurement science. Measurements were obtained during the Big Bend Regional Aerosol and Visibility Observational Study at the Big Bend National Park in South Texas. The aethalometer measurements of black carbon concentration at this site correlate reasonably well with photoacoustic measurements of aerosol light absorption, with a slope of 8.1 m2/g and a small offset. Light absorption at this site never exceeded 2.1 Mm-1 during the month of collocated measurements. Measurements were also obtained, as a function of controlled relative humidity between 40% and 90%, during the Photoacoustic IOP in 2000 at the Department of Energy Southern Great Plains Cloud and Radiation Testbed site (SGP). PSAP measurements of aerosol light absorption correlated very well with photoacoustic measurements, but the slope of the correlation indicated the PSAP values were larger by a factor of 1.61. The photoacoustic measurements of light absorption exhibited a systematic decrease when the RH increased beyond 70%. This apparent decrease in light absorption with RH may be due to the contribution of mass transfer to the photoacoustic signal. Model results for the limiting case of full water saturation are used to evaluate this hypothesis. A second PSAP measured the light absorption for the same humidified samples, and indicated very erratic response as the RH changed, suggesting caution when interpreting PSAP data under conditions of rapid relative humidity change.

  4. Sources and light absorption of water-soluble organic carbon aerosols in the outflow from northern China

    NASA Astrophysics Data System (ADS)

    Kirillova, E. N.; Andersson, A.; Han, J.; Lee, M.; Gustafsson, Ö.

    2014-02-01

    High loadings of anthropogenic carbonaceous aerosols in Chinese air influence the air quality for over one billion people and impact the regional climate. A large fraction (17-80%) of this aerosol carbon is water-soluble, promoting cloud formation and thus climate cooling. Recent findings, however, suggest that water-soluble carbonaceous aerosols also absorb sunlight, bringing additional direct and indirect climate warming effects, yet the extent and nature of light absorption by this water-soluble "brown carbon" and its relation to sources is poorly understood. Here, we combine source estimates constrained by dual carbon isotopes with light-absorption measurements of water-soluble organic carbon (WSOC) for a March 2011 campaign at the Korea Climate Observatory at Gosan (KCOG), a receptor station in SE Yellow Sea for the outflow from northern China. The mass absorption cross section at 365 nm (MAC365) of WSOC for air masses from N. China were in general higher (0.8-1.1 m2 g-1), than from other source regions (0.3-0.8 m2 g-1). However, this effect corresponds to only 2-10% of the radiative forcing caused by light absorption by elemental carbon. Radiocarbon constraints show that the WSOC in Chinese outflow had significantly higher fraction fossil sources (30-50%) compared to previous findings in S. Asia, N. America and Europe. Stable carbon (δ13C) measurements were consistent with aging during long-range air mass transport for this large fraction of carbonaceous aerosols.

  5. Simulation of improved daytime capabilities to retrieve aerosol extinction coefficient using Rotational Raman lidars

    NASA Astrophysics Data System (ADS)

    Madonna, Fabio; Amodeo, Aldo

    2015-04-01

    So far, most of the multi-wavelength Raman lidar observations of aerosols are performed at night, because Raman signals are weak compared to daylight background. Different techniques have been developed to improve Raman lidar daytime capabilities in the past years. Indeed, the retrieval of aerosol extinction during daytime is feasible through the detection of backscattered radiation due to the pure Rotational Raman Spectrum (PRRS) of molecular nitrogen or oxygen, much brighter than the vibration-rotation spectrum. The existing techniques for the measure of PRRS are based on small-bandwidth emitter and receiver systems and on a small receiver field of view to suppress the daylight background. They have been successfully tested and implemented in a few systems which are already in operational use within EARLINET (European Aerosol research Lidar NETwork). In this work, several different configurations used as receiver for a lidar system detecting the PRRS in daytime conditions are compared by means of numerical simulations. The configurations are mainly differentiated by the design of the spectral selection unit implemented in the receiver of each lidar system, based on a narrow-bandwidth filters, broad-band filters, grating spectrometers, and hybrid solutions. The research of configurations able to be more easily implemented on a large number of lidar systems within ACTRIS are explored. To show the performances of the investigated lidar configurations, a blind test has been carried out to get the simulated performances in the retrieval of the aerosol extinction profile during night-time and daytime starting from a known scenario. The atmospheric scenario used as the reference profile is represented by one of the night-time measurements with MUSA (MUlti-wavelength system for Aerosol) lidar at CNR-IMAA Atmospheric Observatory - CIAO (15.72E, 40.60N , 760 m a.s.l., Potenza, Italy). Though all the configuration considered in the blind test proved to be solid to

  6. Light absorption, optical and microphysical properties of trajectory-clustered aerosols at two AERONET sites in West Africa

    NASA Astrophysics Data System (ADS)

    Fawole, O. G.; Cai, X.; MacKenzie, A. R.

    2015-12-01

    Aerosol remote sensing techniques and back-trajectory modeling can be combined to identify aerosol types. We have clustered 7 years of AERONET aerosol signals using trajectory analysis to identify dominant aerosol sources at two AERONET sites in West Africa: Ilorin (4.34 oE, 8.32 oN) and Djougou (1.60 oE, 9.76 oN). Of particular interest are air masses that have passed through the gas flaring region in the Niger Delta area, of Nigeria, en-route the AERONET sites. 7-day back trajectories were calculated using the UK UGAMP trajectory model driven by ECMWF wind analyses data. Dominant sources identified, using literature classifications, are desert dust (DD), Biomass burning (BB) and Urban-Industrial (UI). Below, we use a combination of synoptic trajectories and aerosol optical properties to distinguish a fourth source: that due to gas flaring. Gas flaring, (GF) the disposal of gas through stack in an open-air flame, is believed to be a prominent source of black carbon (BC) and greenhouse gases. For these different aerosol source signatures, single scattering albedo (SSA), refractive index , extinction Angstrom exponent (EEA) and absorption Angstrom exponent (AAE) were used to classify the light absorption characteristics of the aerosols for λ = 440, 675, 870 and1020 nm. A total of 1625 daily averages of aerosol data were collected for the two sites. Of which 245 make up the GF cluster for both sites. For GF cluster, the range of fine-mode fraction is 0.4 - 0.7. Average values SSA(λ), for the total and GF clusters are 0.90(440), 0.93(675), 0.95(870) and 0.96(1020), and 0.93(440), 0.92(675), 0.9(870) and 0.9(1020), respectively. Values of for the GF clusters for both sites are 0.62 - 1.11, compared to 1.28 - 1.66 for the remainder of the clusters, which strongly indicates the dominance of carbonaceous particles (BC), typical of a highly industrial area. An average value of 1.58 for the real part of the refractive index at low SSA for aerosol in the GF cluster is also

  7. [Characterization and reconstruction of aerosol light scattering coefficient at Chengdu during biomass burning and dust storm period in spring].

    PubMed

    Yue, Jian-Hua; Tao, Jun; Lin, Ze-Jian; Zhu, Li-Hua; Cao, Jun-Ji; Luo, Lei

    2012-07-01

    Aerosol samples for PM2.5 were collected from 19 April to 17 May in 2009 at Chengdu. The concentrations of organic carbon, element carbon, water-solubility ions, crustal elements and levoglucosan of all particle samples were determined by thermal/ optical carbon analyzer,ion chromatography, X-ray fluorescence spectrometer and high performance anion exchange chromatography, respectively. In-situ scattering coefficients (b(sp)) and meteorological parameters for this period were also conducted. Ambient scattering coefficients were reconstructed by IMPROVE formula and compared with measured scattering coefficients. The results showed that the average mass concentration of PM2.5 and measured b(sp) were 133.2 microg x m(-3) and 530 Mm(-1), respectively. Levoglucosan and crustal elements were good traces for biomass burning and dust storm events, respectively. The calculated b'sp was 504 Mm(-1) during campaigning period. The major contributors to scattering coefficients included: (NH4)2SO4 (26%), NH4NO3 (15%), OM (53%), FS (4%) and CM (2%), respectively. The calculated b'sp was 575 Mm(-1) and the dominant species were FS (17%) and CM (21%) during dust storm period (DS). The calculated b'sp was 635 Mm(-1) and OM contributed 62% during biomass burning (BB) period. PMID:23002585

  8. The absorption coefficient of the liquid N2 2.15-micron band and application to Triton

    NASA Technical Reports Server (NTRS)

    Grundy, William M.; Fink, Uwe

    1991-01-01

    The present measurements of the temperature dependence exhibited by the liquid N2 2.15-micron 2-0 collision-induced band's absorption coefficient and integrated absorption show the latter to be smaller than that of the N2 gas, and to decrease with decreasing temperature. Extrapolating this behavior to Triton's nominal surface temperature yields a new estimate of the N2-ice grain size on the Triton south polar cap; a mean N2 grain size of 0.7-3.0 cm is consistent with grain growth rate calculation results.

  9. On the uncertainties of photon mass energy-absorption coefficients and their ratios for radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Andreo, Pedro; Burns, David T.; Salvat, Francesc

    2012-04-01

    A systematic analysis of the available data has been carried out for mass energy-absorption coefficients and their ratios for air, graphite and water for photon energies between 1 keV and 2 MeV, using representative kilovoltage x-ray spectra for mammography and diagnostic radiology below 100 kV, and for 192Ir and 60Co gamma-ray spectra. The aim of this work was to establish ‘an envelope of uncertainty’ based on the spread of the available data. Type A uncertainties were determined from the results of Monte Carlo (MC) calculations with the PENELOPE and EGSnrc systems, yielding mean values for µen/ρ with a given statistical standard uncertainty. Type B estimates were based on two groupings. The first grouping consisted of MC calculations based on a similar implementation but using different data and/or approximations. The second grouping was formed by various datasets, obtained by different authors or methods using the same or different basic data, and with different implementations (analytical, MC-based, or a combination of the two); these datasets were the compilations of NIST, Hubbell, Johns-Cunningham, Attix and Higgins, plus MC calculations with PENELOPE and EGSnrc. The combined standard uncertainty, uc, for the µen/ρ values for the mammography x-ray spectra is 2.5%, decreasing gradually to 1.6% for kilovoltage x-ray spectra up to 100 kV. For 60Co and 192Ir, uc is approximately 0.1%. The Type B uncertainty analysis for the ratios of µen/ρ values includes four methods of analysis and concludes that for the present data the assumption that the data interval represents 95% confidence limits is a good compromise. For the mammography x-ray spectra, the combined standard uncertainties of (µen/ρ)graphite,air and (µen/ρ)graphite,water are 1.5%, and 0.5% for (µen/ρ)water,air, decreasing gradually down to uc = 0.1% for the three µen/ρ ratios for the gamma-ray spectra. The present estimates are shown to coincide well with those of Hubbell (1977 Rad. Res

  10. Systemic absorption of selenious acid and elemental selenium aerosols in rats

    SciTech Connect

    Medinsky, M.A.; Cuddihy, R.G.; McClellan, R.O.

    1981-11-01

    Absorption of Se from the nasal passages, lung, gastrointestinal tract, and skin was studied in Fischer-344 rats. Radiolabeled selenious acid and elemental Se particles were administered by inhalation, nasal instillation, and iv injection. Selenious acid was always absorbed into the general circulation more rapidly and to a greater extent than elemental Se. By 4 hr after inhalation of selenious acid and elemental Se aerosols, 94% of the selenious acid and 57% of the elemental Se deposited in lungs was absorbed into blood. Of the selenious acid instilled into nasal passages, 18% was absorbed into blood; 16% of the elemental Se was absorbed. Gastrointestinal absorption was 87% for selenious acid and 50% for elemental Se. Selenious acid solutions were also painted onto the pelts of rats. From 10 to 30% of the selenious acid was absorbed through the skin. Following inhalation or injection of either Se compound, most of the Se was excreted in the urine. Significantly more Se appeared in feces of animals receiving elemental Se by gavage than animals receiving selenious acid. Results indicate that if people were to absorb inhaled Se from the upper respiratory tract in a manner similar to that of rats, one-third more selenious acid would be absorbed into the general circulation than elemental Se. All Se deposited in the lungs would be absorbed into blood. However, selenious acid would be absorbed more rapidly than elemental Se.

  11. I-scan thermal lens experiment in the pulse regime for measuring two-photon absorption coefficient

    NASA Astrophysics Data System (ADS)

    Rodríguez, L.; Echevarria, L.; Fernandez, A.

    2007-09-01

    We present a new pump-probe mode-mismatched thermal lens method for pulse excitation aimed to the measurement of nonlinear absorption coefficient in optical materials. We develop a theoretical model based on the Fresnel diffraction approximation and their predictions are verified experimentally with samples of Rhodamine 6G and Rhodamine B in ethanol solution. The principal advantage of this technique is that it does not require any mechanical movement during measurement. Below we perform the new type of thermal lens experiment in the pulse regime for the measurement of nonlinear absorption coefficient in transparent samples and we demonstrate the validity of theoretical predictions using an alternative method to the classical thermal lens technique.

  12. Experimental and numerical investigation of the reflection coefficient and the distributions of Wigner's reaction matrix for irregular graphs with absorption.

    PubMed

    Lawniczak, Michał; Hul, Oleh; Bauch, Szymon; Seba, Petr; Sirko, Leszek

    2008-05-01

    We present the results of an experimental and numerical study of the distribution of the reflection coefficient P(R) and the distributions of the imaginary P(v) and the real P(u) parts of the Wigner reaction K matrix for irregular fully connected hexagon networks (graphs) in the presence of strong absorption. In the experiment we used microwave networks, which were built of coaxial cables and attenuators connected by joints. In the numerical calculations experimental networks were described by quantum fully connected hexagon graphs. The presence of absorption introduced by attenuators was modeled by optical potentials. The distribution of the reflection coefficient P(R) and the distributions of the reaction K matrix were obtained from measurements and numerical calculations of the scattering matrix S of the networks and graphs, respectively. We show that the experimental and numerical results are in good agreement with the exact analytic ones obtained within the framework of random matrix theory. PMID:18643145

  13. Absorption coefficients of CFC-11 and CFC-12 needed for atmospheric remote sensing and global warming studies

    NASA Technical Reports Server (NTRS)

    Varanasi, Prasad

    1992-01-01

    Spectral absorption coefficients k(v) in the atmospheric window are reported for CFC-11 and CFC-12. Data obtained with a grating spectrometer are compared with NCAR cross sections and measurements of k(v) made with a tunable diode laser spectrometer at various temperature-pressure combinations representing tangent heights or layers in the atmosphere are presented. The results are suitable for atmospheric remote sensing and global warming studies.

  14. Effects of temperature-dependent molecular absorption coefficients on the thermal infrared remote sensing of the earth surface

    NASA Technical Reports Server (NTRS)

    Wan, Zhengming; Dozier, Jeff

    1992-01-01

    The effect of temperature-dependent molecular absorption coefficients on thermal infrared spectral signatures measured from satellite sensors is investigated by comparing results from the atmospheric transmission and radiance codes LOWTRAN and MODTRAN and the accurate multiple scattering radiative transfer model ATRAD for different atmospheric profiles. The sensors considered include the operational NOAA AVHRR and two research instruments planned for NASA's Earth Observing System (EOS): MODIS-N (Moderate Resolution Imaging Spectrometer-Nadir-Mode) and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer). The difference in band transmittance is as large as 6 percent for some thermal bands within atmospheric windows and more than 30 percent near the edges of these atmospheric windows. The effect of temperature-dependent molecular absorption coefficients on satellite measurements of sea-surface temperature can exceed 0.6 K. Quantitative comparison and factor analysis indicate that more accurate measurements of molecular absorption coefficients and better radiative transfer simulation methods are needed to achieve SST accuracy of 0.3 K, as required for global numerical models of climate, and to develop land-surface temperature algorithms at the 1-K accuracy level.

  15. Temperature anomaly of the coefficient of ultrasonic absorption by electrons of hybridized states of cobalt impurities in mercury selenide

    NASA Astrophysics Data System (ADS)

    Zhevstovskikh, I. V.; Okulov, V. I.; Gudkov, V. V.; Mayakin, V. Yu.; Sarychev, M. N.; Andriichuk, M. D.; Paranchich, L. D.

    2015-05-01

    The effects of the interaction of ultrasound with donor d electrons of cobalt impurity atoms at low concentrations in mercury selenide crystals have been investigated. The temperature dependences of the electronic contribution to the absorption coefficient at a frequency of 53 MHz in crystals with cobalt concentrations from 1018 to 1020 cm-3 and in the undoped crystal have been observed experimentally. It has been found that crystals with impurities are characterized by an anomalous nonmonotonic temperature dependence of the absorption coefficient of the slow transverse wave in a narrow temperature range near 10 K. A smooth monotonic temperature dependence has been observed for longitudinal and fast transverse waves. Based on the developed theoretical interpretation, it has been established that the anomaly in the temperature dependence of the absorption coefficient of a slow transverse wave is associated with the hybridization of impurity d states in the conduction band of the crystal. A comparison of the theoretical and experimental dependences has made it possible to determine the parameters characterizing the hybridized electronic states.

  16. Measurements of the HO2 uptake coefficient onto aqueous salt and organic aerosols and interpretation using the kinetic multi-layer model of aerosol surface and bulk chemistry (KM-SUB)

    NASA Astrophysics Data System (ADS)

    Matthews, P. S. J.; Berkemeier, T.; George, I. J.; Whalley, L. K.; Moon, D. R.; Ammann, M.; Baeza-Romero, M. T.; Poeschl, U.; Shiraiwa, M.; Heard, D. E.

    2014-12-01

    HO2 is closely coupled with OH which is responsible for the majority of the oxidation in the troposphere. Therefore, it is important to be able to accurately predict OH and HO2 concentrations. However, many studies have reported a large discrepancy between HO2 radical concentrations measured during field campaigns and predicted by constrained box models using detailed chemical mechanisms (1,2). However, there have been very few laboratory studies (3,4) on HO2 uptake by aerosols and the rates and mechanism is still uncertain. The HO2 uptake coefficients were measured for deliquesced ammonium nitrate and sodium chloride aerosols and copper doped sucrose aerosols. The measurements were performed using an aerosol flow tube coupled to a Fluorescence Assay by Gas Expansion (FAGE) detector. By either placing the HO2 injector in set positions and varying the aerosol concentration or by moving it along the flow tube at given aerosol concentrations, uptake coefficients could be measured. The aerosols were generated using an atomiser and the total aerosol surface area was measured using a SMPS. Larger uptake coefficients were measured at shorter times and lower HO2 concentrations for aqueous salt aerosols. The time dependence was able to be modelled by the KM-SUB model (5) as the HO2 concentration decreases along the flow tube and the HO2 uptake mechanism is known to be a second order reaction. Measurements have shown that at higher HO2 concentrations there was also more H2O2 exiting the injector which could convert back to HO2 if trace amounts of metals are present within the aerosol via Fenton reactions. Preliminary results have shown that the inclusion of a Fenton-like reaction within the KM-SUB model has the potential to explain the apparent HO2 concentration dependence. Finally, the KM-SUB model has been used to demonstrate that the increase in uptake coefficient observed when increasing the relative humidity for copper doped sucrose aerosols could be explained by an

  17. The reconstruction of aerosol light absorption by particle measurements at remote sites: An independent analysis of data from the IMPROVE network — II

    NASA Astrophysics Data System (ADS)

    Huffman, H. Dale

    The author's mutual validation of the IMPROVE measures of light absorption — the light absorption coefficient σa and the TOR carbon measures — at remote sites in the western United States, has identified more light-absorbing carbon (LAC) than the current interpretation of TOR admits. Further comparison of σa with the new determination of LAC allows us to identify fine soil as the remaining significant contributor to light absorption at these remote sites, and thus to fully reconstruct σa there. This reconstruction also confirms the accuracy of the blank corrections to the carbon measurements. Using σa or the new reconstruction of it given herein as the appropriate measure of light absorption allows more correct reconstructions of aerosol light extinction σe and of organic mass; the latter provides evidence that the newly identified LAC is also essentially elemental carbon (EC). The new interpretation of the TOR carbons for the remote western sites also reveals apparently much less pyrolysis than previously though occurring during TOR analysis, for most of the aerosol samples collected at these sites. A very small minority population, comprising less than 5% of the samples and occurring mostly in the summer and autumn, is also identified, containing a larger proportion of supposed pyrolyzable organics. The differences in apparent makeup between the two populations strongly suggest that the majority population represents a widespread background of aerosol light absorption which averages 5 Mm -1 and is probably due primarily to diesel fuel emissions transported from urban areas and highways, while the minority population is probably due to wood fires. A number of possible explanations are offered for why the newly identified EC is not currently recognized in the TOR analysis. In particular, it is claimed that sample darkening during thermal analysis is not a reliable quantitative indication of pyrolyzable organics, particularly in the remote aerosols

  18. Shortwave Radiative Fluxes, Solar-Beam Transmissions, and Aerosol Properties: TARFOX and ACE-2 Find More Absorption from Flux Radiometry than from Other Measurements

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Redemann, J.; Schmid, B.; Livingston, J. M.; Bergstrom, R. W.; Ramirez, S. A.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    The Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) and the Second Aerosol Characterization Experiment (ACE-2) made simultaneous measurements of shortwave radiative fluxes, solar-beam transmissions, and the aerosols affecting those fluxes and transmissions. Besides the measured fluxes and transmissions, other obtained properties include aerosol scattering and absorption measured in situ at the surface and aloft; aerosol single scattering albedo retrieved from skylight radiances; and aerosol complex refractive index derived by combining profiles of backscatter, extinction, and size distribution. These measurements of North Atlantic boundary layer aerosols impacted by anthropogenic pollution revealed the following characteristic results: (1) Better agreement among different types of remote measurements of aerosols (e.g., optical depth, extinction, and backscattering from sunphotometers, satellites, and lidars) than between remote and in situ measurements; 2) More extinction derived from transmission measurements than from in situ measurements; (3) Larger aerosol absorption inferred from flux radiometry than from other measurements. When the measured relationships between downwelling flux and optical depth (or beam transmission) are used to derive best-fit single scattering albedos for the polluted boundary layer aerosol, both TARFOX and ACE-2 yield midvisible values of 0.90 +/- 0.04. The other techniques give larger single scattering albedos (i.e. less absorption) for the polluted boundary layer, with a typical result of 0.95 +/- 0.04. Although the flux-based results have the virtue of describing the column aerosol unperturbed by sampling, they are subject to questions about representativeness and other uncertainties (e.g., unknown gas absorption). Current uncertainties in aerosol single scattering albedo are large in terms of climate effects. They also have an important influence on aerosol optical depths retrieved from satellite radiances

  19. Mass Absorption Coefficient of Tungsten and Tantalum, 1450 eV to 2350 eV: Experiment, Theory, and Application

    PubMed Central

    Levine, Zachary H.; Grantham, Steven; Tarrio, Charles; Paterson, David J.; McNulty, Ian; Levin, T. M.; Ankudinov, Alexei L.; Rehr, John J.

    2003-01-01

    The mass absorption coefficients of tungsten and tantalum were measured with soft x-ray photons from 1450 eV to 2350 eV using an undulator source. This region includes the M3, M4, and M5 absorption edges. X-ray absorption fine structure was calculated within a real-space multiple scattering formalism; the predicted structure was observed for tungsten and to a lesser degree tantalum as well. Separately, the effects of dynamic screening were observed as shown by an atomic calculation within the relativistic time-dependent local-density approximation. Dynamic screening effects influence the spectra at the 25 % level and are observed for both tungsten and tantalum. We applied these results to characterize spatially-resolved spectra of a tungsten integrated circuit interconnect obtained using a scanning transmission x-ray microscope. The results indicate tungsten fiducial markers were deposited into silica trenches with a depths of 50 % and 60 % of the markers’ heights.

  20. Measuring Uptake Coefficients and Henry's Law Constants of Gas-Phase Species with Models for Secondary Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Fairhurst, M. C.; Waring-Kidd, C.; Ezell, M. J.; Finlayson-Pitts, B. J.

    2014-12-01

    Volatile organic compounds (VOC) are oxidized in the atmosphere and their products contribute to secondary organic aerosol (SOA) formation. These particles have been shown to have effects on visibility, climate, and human health. Current models typically under-predict SOA concentrations from field measurements. Underestimation of these concentrations could be a result of how models treat particle growth. It is often assumed that particles grow via instantaneous thermal equilibrium partitioning between liquid particles and gas-phase species. Recent work has shown that growth may be better represented by irreversible, kinetically limited uptake of gas-phase species onto more viscous, tar-like SOA. However, uptake coefficients for these processes are not known. The goal of this project is to measure uptake coefficients and solubilities for different gases onto models serving as proxies for SOA and determine how they vary based on the chemical composition of the gas and the condensed phase. Experiments were conducted using two approaches: attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy and a flow system coupled to a mass spectrometer. The ATR crystal was coated with the SOA proxy and the gas-phase species introduced via a custom flow system. Uptake of the gas-phase species was characterized by measuring the intensity of characteristic IR bands as a function of time, from which a Henry's law constant and initial estimate of uptake coefficients could be obtained. Uptake coefficients were also measured in a flow system where the walls of the flow tube were coated with the SOA proxy and gas-phase species introduced via a moveable inlet. Uptake coefficients were derived from the decay in gas-phase species measured by mass spectrometry. The results of this work will establish a structure-interaction relationship for uptake of gases into SOA that can be implemented into regional and global models.

  1. Constraining Black Carbon Aerosol over Asia using OMI Aerosol Absorption Optical Depth and the Adjoint of GEOS-Chem

    NASA Technical Reports Server (NTRS)

    Zhang, Li; Henze, David K.; Grell, Georg A.; Carmichael. Gregory R.; Bousserez, Nicolas; Zhang, Qiang; Torres, Omar; Ahn, Changwoo; Lu, Zifeng; Cao, Junji; Mao, Yuhao

    2015-01-01

    Accurate estimates of the emissions and distribution of black carbon (BC) in the region referred to here as Southeastern Asia (70degE-l50degE, 11degS-55degN) are critical to studies of the atmospheric environment and climate change. Analysis of modeled BC concentrations compared to in situ observations indicates levels are underestimated over most of Southeast Asia when using any of four different emission inventories. We thus attempt to reduce uncertainties in BC emissions and improve BC model simulations by developing top-down, spatially resolved, estimates of BC emissions through assimilation of OMI observations of aerosol absorption optical depth (AAOD) with the GEOS-Chem model and its adjoint for April and October of 2006. Overwhelming enhancements, up to 500%, in anthropogenic BC emissions are shown after optimization over broad areas of Southeast Asia in April. In October, the optimization of anthropogenic emissions yields a slight reduction (1-5%) over India and parts of southern China, while emissions increase by 10-50% over eastern China. Observational data from in situ measurements and AERONET observations are used to evaluate the BC inversions and assess the bias between OMI and AERONET AAOD. Low biases in BC concentrations are improved or corrected in most eastern and central sites over China after optimization, while the constrained model still underestimates concentrations in Indian sites in both April and October, possibly as a. consequence of low prior emissions. Model resolution errors may contribute up to a factor of 2.5 to the underestimate of surface BC concentrations over northern India. We also compare the optimized results using different anthropogenic emission inventories and discuss the sensitivity of top-down constraints on anthropogenic emissions with respect to biomass burning emissions. In addition, the impacts of brown carbon, the formulation of the observation operator, and different a priori constraints on the optimization are

  2. Analysis of functional groups in atmospheric aerosols by infrared spectroscopy: sparse methods for statistical selection of relevant absorption bands

    NASA Astrophysics Data System (ADS)

    Takahama, Satoshi; Ruggeri, Giulia; Dillner, Ann M.

    2016-07-01

    Various vibrational modes present in molecular mixtures of laboratory and atmospheric aerosols give rise to complex Fourier transform infrared (FT-IR) absorption spectra. Such spectra can be chemically informative, but they often require sophisticated algorithms for quantitative characterization of aerosol composition. Naïve statistical calibration models developed for quantification employ the full suite of wavenumbers available from a set of spectra, leading to loss of mechanistic interpretation between chemical composition and the resulting changes in absorption patterns that underpin their predictive capability. Using sparse representations of the same set of spectra, alternative calibration models can be built in which only a select group of absorption bands are used to make quantitative prediction of various aerosol properties. Such models are desirable as they allow us to relate predicted properties to their underlying molecular structure. In this work, we present an evaluation of four algorithms for achieving sparsity in FT-IR spectroscopy calibration models. Sparse calibration models exclude unnecessary wavenumbers from infrared spectra during the model building process, permitting identification and evaluation of the most relevant vibrational modes of molecules in complex aerosol mixtures required to make quantitative predictions of various measures of aerosol composition. We study two types of models: one which predicts alcohol COH, carboxylic COH, alkane CH, and carbonyl CO functional group (FG) abundances in ambient samples based on laboratory calibration standards and another which predicts thermal optical reflectance (TOR) organic carbon (OC) and elemental carbon (EC) mass in new ambient samples by direct calibration of infrared spectra to a set of ambient samples reserved for calibration. We describe the development and selection of each calibration model and evaluate the effect of sparsity on prediction performance. Finally, we ascribe

  3. Relating Aerosol Absorption due to Soot, Organic Carbon, and Dust to Emission Sources Determined from In-situ Chemical Measurements

    SciTech Connect

    Cazorla, Alberto; Bahadur, R.; Suski, Kaitlyn; Cahill, John F.; Chand, Duli; Schmid, Beat; Ramanathan, V.; Prather, Kimberly

    2013-09-17

    Estimating the aerosol contribution to the global or regional radiative forcing can take advantage of the relationship between the spectral aerosol optical properties and the size and chemical composition of aerosol. Long term global optical measurements from observational networks or satellites can be used in such studies, and using in-situ chemical mixing state measurements can help us to constrain the limitations of such an estimation. In this study, the Absorption Ångström Exponent (AAE) and the Scattering Ångström Exponent (SAE) are used to develop a new methodology for deducing chemical speciation based on wavelength dependence of the optical properties. In addition, in-situ optical properties and single particle chemical composition measured during three aircraft field campaigns are combined in order to validate the methodology for the estimation of aerosol composition using spectral optical properties. Results indicate a dominance of mixed types in the classification leading to an underestimation of the primary sources, however secondary sources are better classified. The distinction between carbonaceous aerosols from fossil fuel and biomass burning origins is not clear. On the other hand, the knowledge of the aerosol sources in California from chemical studies help to identify other misclassification such as the dust contribution.

  4. Estimation of the Mass Absorption Cross Section of the Organic Carbon Component of Aerosols in the Mexico City Metropolitan Area

    SciTech Connect

    Barnard, James C.; Volkamer, Rainer M.; Kassianov, Evgueni I.

    2008-11-19

    Data taken from the MCMA-2003 and the 2006 MILAGRO field campaigns are used to examine the absorption of solar radiation by the organic component of aerosols. Using irradiance data from an Multi-Filter Rotating Shadowband Radiometer (MFRSR) and an actinic flux spectroradiometer, we find aerosol single scattering albedo, ω-0,λ, as a function of wavelength, λ. We find that in near-UV spectral range (defined here as 250 nm to 400 nm) ω-0,λ is much lower compared to ω-0,λ at 500 nm suggesting enhanced absorption in the near-UV range. Absorption by elemental carbon, dust, or gas cannot account for this enhanced absorption leaving only the organic part of the aerosol to account for it. We use data from a surface deployed Aerodyne Aerosol Mass Spectrometer (AMS) along with the inferred ω-0,λ to estimate the Mass Absorption Cross-section (MAC) for the organic carbon. We find that the MAC is about 10.5 m2/g at 300 nm and falls close to zero at about 500 nm; values that are roughly consistent with other estimates of organic carbon MAC. These MAC values can be considered as “radiatively correct” because when used in radiative transfer calculations the calculated irradiances match the measured irradiances at the wavelengths considered here. The uncertainties of individual estimates are quite large, ±30% at 300 nm for the random error, and even larger for a worst-case estimate of the systematic error, ±80%. The error represents the unusual circumstance where no error cancellation is permitted, and is unlikely ever to be realized.

  5. Interpreting the Ultraviolet Aerosol Index Observed with the OMI Satellite Instrument to Understand Absorption by Organic Carbon Aerosols and Implications for Atmospheric Oxidation

    NASA Astrophysics Data System (ADS)

    Hammer, M. S.; Martin, R.; van Donkelaar, A.; Buchard, V.; Torres, O.; Ridley, D. A.; Spurr, R. J. D.

    2015-12-01

    Absorption of solar radiation by aerosols plays a major role in radiative forcing and atmospheric photochemistry. Many atmospheric chemistry models tend to overestimate tropospheric OH concentrations compared to observations. Accurately representing aerosol absorption in the UV could help rectify the discrepancies between simulated and observed OH concentrations. We develop a simulation of the Ultraviolet Aerosol Index (UVAI), using the 3-D chemical transport model GEOS-Chem coupled with the Vector Linearized Discrete Ordinate Radiative Transfer model (VLIDORT). The simulation is applied to interpret UVAI observations from the Ozone Monitoring Instrument (OMI). Simulated and observed values are highly consistent in regions where mineral dust dominates the UVAI, but a large negative bias (-0.4 to -1.0) exists between simulated and observed values in biomass burning regions. We implement optical properties for absorbing organic aerosol, known as brown carbon (BrC), into GEOS-Chem and evaluate the simulation with observed UVAI values over biomass burning regions. The spectral dependence of absorption after adding BrC to the model is broadly consistent with reported observations for biomass burning aerosol, with Absorbing Angstrom Exponent (AAE) values ranging from 2.7 in the UV to 1.3 across the UV-Near IR spectrum. The addition of absorbing BrC decreases the mean bias between simulated and OMI UVAI values from -0.60 to -0.08 over North Africa in January, from -0.40 to -0.003 over South Asia in April, from -1.0 to -0.24 over southern Africa in July, and from -0.50 to +0.34 over South America in September. We assess the effect of the additional UV absorption by BrC on atmospheric photochemistry by examining ozone photolysis frequencies (J(O(1D))) and tropospheric OH concentrations in GEOS-Chem. The inclusion of BrC decreases J(O(1D)) and OH by up to 35% over biomass burning regions, and reduces the global bias in OH.

  6. Backscattering and absorption coefficients for electrons: Solutions of invariant embedding transport equations using a method of convergence

    SciTech Connect

    Figueroa, C.; Brizuela, H.; Heluani, S. P.

    2014-05-21

    The backscattering coefficient is a magnitude whose measurement is fundamental for the characterization of materials with techniques that make use of particle beams and particularly when performing microanalysis. In this work, we report the results of an analytic method to calculate the backscattering and absorption coefficients of electrons in similar conditions to those of electron probe microanalysis. Starting on a five level states ladder model in 3D, we deduced a set of integro-differential coupled equations of the coefficients with a method know as invariant embedding. By means of a procedure proposed by authors, called method of convergence, two types of approximate solutions for the set of equations, namely complete and simple solutions, can be obtained. Although the simple solutions were initially proposed as auxiliary forms to solve higher rank equations, they turned out to be also useful for the estimation of the aforementioned coefficients. In previous reports, we have presented results obtained with the complete solutions. In this paper, we present results obtained with the simple solutions of the coefficients, which exhibit a good degree of fit with the experimental data. Both the model and the calculation method presented here can be generalized to other techniques that make use of different sorts of particle beams.

  7. Effect of electron collisions on transport coefficients induced by the inverse bremsstrahlung absorption in plasmas

    SciTech Connect

    Bendib, A.; Tahraoui, A.; Bendib, K.; Mohammed El Hadj, K.; Hueller, S.

    2005-03-01

    The transport coefficients of fully ionized plasmas under the influence of a high-frequency electric field are derived solving numerically the electron Fokker-Planck equation using a perturbation method, parametrized as a function of the electron mean-free-path {lambda}{sub ei} compared to the spatial scales L. The isotropic and anisotropic contributions of the inverse bremsstrahlung heating are considered. Electron-electron collision terms are kept in the analysis, which allows us to consider with sufficient accuracy to describe plasmas with arbitrary atomic number Z. Practical numerical fits of the transport coefficients are proposed as functions of Z and the collisionality parameter {lambda}{sub ei}/L.

  8. A novel cell compatible impingement system to study in vitro drug absorption from dry powder aerosol formulations.

    PubMed

    Bur, Michael; Rothen-Rutishauser, Barbara; Huwer, Hanno; Lehr, Claus-Michael

    2009-06-01

    A modified Astra type multistage liquid impinger (MSLI) with integrated bronchial cell monolayers was used to study deposition and subsequent drug absorption on in vitro models of the human airway epithelial barrier. Inverted cell culture of Calu-3 cells on the bottom side of cell culture filter inserts was integrated into a compendial MSLI. Upside down cultivation did not impair the barrier function, morphology and viability of Calu-3 cells. Size selective deposition with subsequent absorption was studied for three different commercially available dry powder formulations of salbutamol sulphate and budesonide. After deposition without size separation the absorption rates from the aerosol formulations differed but correlated with the size of the carrier lactose particles. However, after deposition in the MSLI, simulating relevant impaction and causing the separation of small drug crystals from the carrier lactose, the absorption rates of the three formulations were identical, confirming the bioequivalence of the three formulations. PMID:18771729

  9. A rapid method to derive horizontal distributions of trace gases and aerosols near the surface using multi-axis differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Li, A.; Xie, P. H.; Wagner, T.; Chen, H.; Liu, W. Q.; Liu, J. G.

    2014-06-01

    We apply a novel experimental procedure for the rapid measurement of the average volume mixing ratios (VMRs) and horizontal distributions of trace gases such as NO2, SO2, and HCHO in the boundary layer, which was recently suggested by Sinreich et al. (2013). The method is based on two-dimensional scanning multi-axis differential optical absorption spectroscopy (MAX-DOAS). It makes use of two facts (Sinreich et al., 2013): first, the light path for observations at 1° elevation angle traverses mainly air masses located close to the ground (typically < 200 m); second, the light path length can be calculated using the simultaneous measured absorption of the oxygen dimer O4. Thus, the average value of the trace gas VMR in the atmospheric layer between the surface and the particular altitude, for which this observation was sensitive, can be calculated. Compared to the originally proposed method, we introduce several important modifications and improvements: We apply the method only to measurements at 1° elevation angle (besides zenith view), for which the uncertainties of the retrieved values of the VMRs and surface extinctions are especially small. Using only 1° elevation angle for off-axis observation also allows an increased temporal resolution. We determine (and apply) correction factors (and their uncertainties) directly as function of the measured O4 absorption. Finally, the method is extended to trace gases analysed at other wavelengths and also to the retrieval of aerosol extinction. Depending on atmospheric visibility, the typical uncertainty of the results ranges from about 20% to 30%. We apply the rapid method to observations of a newly-developed ground-based multifunctional passive differential optical absorption spectroscopy (GM-DOAS) instrument in the north-west outskirts near Hefei in China. We report NO2, SO2, and HCHO VMRs and aerosol extinction for four azimuth angles and compare these results with those from simultaneous long-path DOAS observations

  10. Elevated aerosol layers modify the O2-O2 absorption measured by ground-based MAX-DOAS

    NASA Astrophysics Data System (ADS)

    Ortega, Ivan; Berg, Larry K.; Ferrare, Richard A.; Hair, Johnathan W.; Hostetler, Chris A.; Volkamer, Rainer

    2016-06-01

    The oxygen collisional complex (O2-O2, or O4) is a greenhouse gas, and a calibration trace gas used to infer aerosol and cloud properties by Differential Optical Absorption Spectroscopy (DOAS). Recent reports suggest the need for an O4 correction factor (CFO4) when comparing simulated and measured O4 differential slant column densities (dSCD) by passive DOAS. We investigate the sensitivity of O4 dSCD simulations at ultraviolet (360 nm) and visible (477 nm) wavelengths towards separately measured aerosol extinction profiles. Measurements were conducted by the University of Colorado 2D-MAX-DOAS instrument and NASA's multispectral High Spectral Resolution Lidar (HSRL-2) during the Two Column Aerosol Project (TCAP) at Cape Cod, MA in July 2012. During two case study days with (1) high aerosol load (17 July, AOD~0.35 at 477 nm), and (2) near molecular scattering conditions (22 July, AOD<0.10 at 477 nm) the measured and calculated O4 dSCDs agreed within 6.4±0.4% (360 nm) and 4.7±0.6% (477 nm) if the HSRL-2 profiles were used as input to the calculations. However, if in the calculations the aerosol is confined to the surface layer (while keeping AOD constant) we find 0.53aerosol layers, unless accounted for, can cause negative bias in the simulated O4 dSCDs that can explain CFO4. The air density and aerosol profile aloft needs to be taken into account when interpreting the O4 from ground-based MAX-DOAS. Opportunities to identify and better characterize these elevated layers are also discussed.

  11. Spatial variability of absorption coefficients over a biogeochemical gradient in a large and optically complex shallow lake

    NASA Astrophysics Data System (ADS)

    Riddick, Caitlin A. L.; Hunter, Peter D.; Tyler, Andrew N.; Martinez-Vicente, Victor; Horváth, Hajnalka; Kovács, Attila W.; Vörös, Lajos; Preston, Tom; Présing, Mátyás.

    2015-10-01

    In order to improve robustness of remote sensing algorithms for lakes, it is vital to understand the variability of inherent optical properties (IOPs) and their mass-specific representations (SIOPs). In this study, absorption coefficients for particulate and dissolved constituents were measured at 38 stations distributed over a biogeochemical gradient in Lake Balaton, Hungary. There was a large range of phytoplankton absorption (aph(λ)) over blue and red wavelengths (aph(440) = 0.11-4.39 m-1, aph(675) = 0.048-2.52 m-1), while there was less variability in chlorophyll-specific phytoplankton absorption (a*ph(λ)) in the lake (a*ph(440) = 0.022 ± 0.0046 m2 mg-1, a*ph(675) = 0.010 ± 0.0020 m2 mg-1) and adjoining wetland system, Kis-Balaton (a*ph(440) = 0.017 ± 0.0015 m2 mg-1, a*ph(675) = 0.0088 ± 0.0017 m2 mg-1). However, in the UV, a*ph(350) significantly increased with increasing distance from the main inflow (Zala River). This was likely due to variable production of photoprotective pigments (e.g., MAAs) in response to the decreasing gradient of colored dissolved organic matter (CDOM). The slope of CDOM absorption (SCDOM) also increased from west to east due to larger terrestrial CDOM input in the western basins. Absorption by nonalgal particles (aNAP(λ)) was highly influenced by inorganic particulates, as a result of the largely mineral sediments in Balaton. The relative contributions to the absorption budget varied more widely than oceans with a greater contribution from NAP (up to 30%), and wind speed affected the proportion attributed to NAP, phytoplankton, or CDOM. Ultimately, these data provide knowledge of the heterogeneity of (S)IOPs in Lake Balaton, suggesting the full range of variability must be considered for future improvement of analytical algorithms for constituent retrieval in inland waters.

  12. Measuring the acoustic absorption coefficient in biological tissue specimens using ultrasonic phase conjugation

    NASA Astrophysics Data System (ADS)

    Smagin, N. V.; Krutyansky, L. M.; Zelenova, Z. V.; Brysev, A. P.

    2014-03-01

    Acoustic absorption has been measured in a series of biological tissue specimens—porcine muscle, renal and fat tissues—by the standard insert-substitution method, as well as by ultrasonic phase conjugation. Comparison of the experimental results and revealed differences confirm the promise of using phase conjugate waves to measure acoustic losses in biological objects. It is demonstrated that in inhomogeneous tissues, the phase conjugation method makes it possible to obtain a more reliable estimate of dissipative losses.

  13. The Optical Absorption Coefficient of Barley Seeds Investigated by Photoacoustic Spectroscopy and Their Effects by Laser Biostimulation

    NASA Astrophysics Data System (ADS)

    Pérez Reyes, Ma. C.; Hernandez-Aguilar, C.; Dominguez-Pacheco, A.; Cruz-Orea, A.; Moreno Martínez, E.

    2015-09-01

    Laser light as a biostimulator has been applied in agriculture, and some scientific reports evidence its usefulness. A knowledge about seed optical parameters is of great relevance in the biostimulation process, because information can be provided about the light absorption of seeds. Thus, the objective of the present study was to determine the optical absorption coefficient (β ) of barley ( Hordeum vulgare L.) seeds by means of photoacoustic spectroscopy; these seeds were studied in two conditions: seeds in their natural color and seeds dyed with methylene blue. The seeds were biostimulated by a laser beam (650 nm wavelength) to evaluate the effects of pre-sowing biostimulation in natural mycobiota associated with different laser irradiation times (0 s, 60 s, 120 s, 240 s, and 480 s). The results of this research demonstrated changes in the optical parameters (absorption and penetration) that occur in the seeds by changing the natural condition to a dyed condition. The dyed seeds, by the methylene blue photosensitizer, become optically opaque, producing greater optical absorption at 650 nm which causes an increase in the effect of laser stimulation. The experimental results showed that the biggest mycobiota reduction (52 %) corresponded to dyed seeds irradiated with a laser for 120 s.

  14. Absorption coefficients and band strengths for the 703 nm and 727 bands of methane at 77 K

    SciTech Connect

    O`Brien, J.J.; Singh, K.

    1996-12-31

    The technique of intracavity laser spectroscopy has been used to obtain methane absorption spectra for the vibrational overtone bands that occur around 703 nm and 727 nm. Absorption coefficients for the 690-742 nm range have been obtained for a sample temperature of 77 K at a spectral resolution of <0.02 cm{sup -1}. A new method of data analysis is utilized in obtaining the results. It involves deconvolving the many ILS spectral profiles that comprise the absorption bands and summing the results. Values averaged over 1 cm{sup -1} and 1 {Angstrom} intervals are provided. Band strengths also are obtained. The total intensities of the 703 and 727 nm bands are in reasonable agreement with previous laboratory determinations which were obtained for relatively high pressures of methane at room temperature using lower spectral resolution. The methane bands appear in the reflected sunlight spectra from the outer planets. Results averaged over 1 nm intervals are compared with other laboratory studies and with those derived from observations of the outer planets. The band profiles differ considerably from other laboratory results but are in good accord with the planetary observations. Laboratory spectra of methane at appropriate conditions are required for the proper interpretation of the observational data. Absorption spectra can provide some of the most sensitive diagnostic data on the atmospheres of those bodies.

  15. Quasi-analytical determination of noise-induced error limits in lidar retrieval of aerosol backscatter coefficient by the elastic, two-component algorithm.

    PubMed

    Sicard, Michaël; Comerón, Adolfo; Rocadenbosch, Francisco; Rodríguez, Alejandro; Muñoz, Constantino

    2009-01-10

    The elastic, two-component algorithm is the most common inversion method for retrieving the aerosol backscatter coefficient from ground- or space-based backscatter lidar systems. A quasi-analytical formulation of the statistical error associated to the aerosol backscatter coefficient caused by the use of real, noise-corrupted lidar signals in the two-component algorithm is presented. The error expression depends on the signal-to-noise ratio along the inversion path and takes into account "instantaneous" effects, the effect of the signal-to-noise ratio at the range where the aerosol backscatter coefficient is being computed, as well as "memory" effects, namely, both the effect of the signal-to-noise ratio in the cell where the inversion is started and the cumulative effect of the noise between that cell and the actual cell where the aerosol backscatter coefficient is evaluated. An example is shown to illustrate how the "instantaneous" effect is reduced when averaging the noise-contaminated signal over a number of cells around the range where the inversion is started. PMID:19137026

  16. Whistler Emission and Absorption Coefficients from AN Anisotropic, Multi-Component Plasma Including Dielectric Response

    NASA Astrophysics Data System (ADS)

    Leid, Terrence Vincent

    The emission of electron cyclotron radiation parallel to the magnetic field direction near the fundamental frequency from a fully ionized, multi-component plasma, is investigated for finite (omega)(,p)/(omega)(,c) within the Klimontovich formalism. Each species may have T(,(PARLL)) different from T(,(PERP)) and may possess a loss cone. We use a bi- maxwellian with an analytic loss cone for each component. In addition, the source function for a multi-component plasma is calculated. We find that for a Maxwellian distribution function the emission coefficient is that of a system of shielded charges. It is shown that only in the case of a tenuous Maxwellian plasma is the source function the Rayleigh-Jeans blackbody intensity. For the case of the Maxwellian we present experimental evidence for finite density emission, (omega)('2)(,p)/(omega)('2) >> (beta). We have constructed a computer code that solves the radiative transfer equation. The resulting power spectra are used as an aid in extracting from experimental data the temperature and density of the various components of the TMX-Upgrade end cell plasma. The code compares both the Ellis-Tsakiris scheme for computing the emission coefficient for a multi-component plasma and the finite density multi -component emission coefficient. The Ellis- Tsakiris scheme estimates the emission coefficient by assuming. that each species radiates independently of each other.('1) Results are presented for the case of the TMX -Upgrade tandem mirror device. ('1)R. F. Ellis and G. D. Tsakiris, Nucl. Fusion 23, 1115 (1984).

  17. Effect of quantum dot size and size distribution on the intersublevel transitions and absorption coefficients of III-V semiconductor quantum dot

    SciTech Connect

    Kabi, Sanjib; Perera, A. G. Unil

    2015-03-28

    The intersublevel absorption peak energy and absorption coefficient of non-uniform quantum dot (QD) ensembles are calculated analytically. The effect of size variations and size distribution of QDs on their energy states is analyzed. The dots are considered as a quantum box with finite potential at the barriers and the size distribution described by a Gaussian function. The influence of the aspect ratio (base to height ratio) of the QDs on the optical transitions is studied. Our model predicts the dot size (height and base) accurately to determine the absorption peaks and corresponding absorption coefficient. We also compute the absorption coefficient of the QD with different size distributions to verify the results calculated using this model with the reported experimental and other theoretical results.

  18. Evaluating the Use of MODIS AOD for Air Quality Determination by Comparison with the Vertical Distribution of Aerosol Light Scattering Coefficient Obtained with a Balloon-Borne Nephelometer

    NASA Astrophysics Data System (ADS)

    Sumlin, B.; Arnott, W. P.; Moosmuller, H.

    2012-12-01

    The MODIS instruments aboard the Aqua and Terra satellites provide aerosol optical depth information for the entire Earth on a daily basis. Ideally, satellite measurements should correlate with ground-based measurements in order to be useful for air quality applications. Reno, Nevada, USA is a high desert city situated in the Great Basin. Its unique geography and proximity to urban and biomass burning aerosol sources make it an ideal candidate for aerosol research. In August 2011, the Reno Aerosol Characterization Experiment measured atmospheric aerosols with a ground-based Cimel CE-318 sun-photometer and in situ photoacoustic instrumentation to quantify aerosol concentrations at the surface and in the column. However, the results of these measurements indicated the existence of a more complex system of aerosol mixing above the atmospheric boundary layer than previously thought. In order to validate these measurements, an autonomous suite of instrumentation has been developed. This device is carried aloft by a weather balloon and utilizes a reciprocal nephelometer to obtain a high-resolution profile of the vertical distribution of aerosol light scattering coefficient, as well as instrumentation to record atmospheric variables such as temperature, pressure, relative humidity, and dew point. Position, course, speed, and altitude are logged with an onboard GPS module and correlated with atmospheric and aerosol measurements. Presented is the design and development of this new instrument, its comparison with proven laboratory instruments, data gathered from flights during August-November 2012, and its comparison to ground-based measurements and satellite data from the MODIS instruments.

  19. The impact of aerosol hygroscopic growth on the single-scattering albedo and its application on the NO2 photolysis rate coefficient

    NASA Astrophysics Data System (ADS)

    Tao, Jiangchuan; Zhao, Chunsheng

    2016-04-01

    Hygroscopic growth of aerosol particles can significantly affect their single-scattering albedo (ω), and consequently alters the aerosol effect on tropospheric photochemistry. In this study, the impact of aerosol hygroscopic growth on ω and its application to the NO2 photolysis rate coefficient (JNO2) are investigated for a typical aerosol particle population in the North China Plain (NCP). The variations of aerosol optical properties with relative humidity (RH) are calculated using a Mie theory aerosol optical model, on the basis of field measurements of number-size distribution and hygroscopic growth factor (at RH values above 90 %) from the 2009 HaChi (Haze in China) project. Results demonstrate that ambient ω has pronouncedly different diurnal patterns from ω measured at dry state, and is highly sensitive to the ambient RHs. Ambient ω in the NCP can be described by a dry state ω value of 0.863, increasing with the RH following a characteristic RH dependence curve. A Monte Carlo simulation shows that the uncertainty ofω from the propagation of uncertainties in the input parameters decreases from 0.03 (at dry state) to 0.015 (RHs > 90 %). The impact of hygroscopic growth on ω is further applied in the calculation of the radiative transfer process. Hygroscopic growth of the studied aerosol particle population generally inhibits the photolysis of NO2 at the ground level, whereas accelerates it above the moist planetary boundary layer. Compared with dry state, the calculated JNO2 at RH of 98 % at the height of 1 km increases by 30.4 %, because of the enhancement of ultraviolet radiation by the humidified scattering-dominant aerosol particles. The increase of JNO2 due to the aerosol hygroscopic growth above the upper boundary layer may affect the tropospheric photochemical processes and this needs to be taken into account in the atmospheric chemical models.

  20. Determination of scattering coefficient considering wavelength and absorption dependence of anisotropy factor measured by polarized beam for biological tissues

    NASA Astrophysics Data System (ADS)

    Fukutomi, D.; Ishii, K.; Awazu, K.

    2015-12-01

    Anisotropy factor g, one of the optical properties of biological tissues, is the most important parameter to accurately determine scattering coefficient μs in the inverse Monte Carlo (iMC) simulation. It has been reported that g has wavelength and absorption dependence, however, there are few attempts in order to calculate μs of biological tissue considering the wavelength and absorption dependence of g. In this study, the scattering angular distributions of biological tissue phantoms were measured in order to determine g by using goniometric measurements with three polarization conditions at strongly and weakly absorbing wavelengths of hemoglobin. Then, optical properties, especially, μs were measured by integrating sphere measurements and iMC simulation in order to confirm the influence of measured g on optical properties in comparison of with general value of g (0.9) for soft biological tissue. Consequently, it was found that μs was overestimated at strongly absorbing wavelength, however, μs was underestimated at weakly absorbing wavelength if the g was not considered its wavelength and absorption dependence.

  1. Inverse Bremsstrahlung in Astrophysical Plasmas: The Absorption Coefficients and Gaunt Factors

    NASA Astrophysics Data System (ADS)

    Mihajlov, A. A.; Srećković, V. A.; Sakan, N. M.

    2015-12-01

    The electron-ion inverse Bremsstrahlung is considered here as a factor of the influence on the opacity of the different stellar atmospheres and other astrophysical plasmas. It is shown that this process can be successfully described in the frames of cut-off Coulomb potential model within the regions of the electron densities and temperatures. The relevant quantum mechanical method of the calculation of the corresponding spectral coefficient processes is described and discussed. The results obtained for the plasmas with the electron densities from 1014 c m -3 to 2ṡ1019 c m -3 and temperatures from 5ṡ103 K to 3ṡ104 K in the wavelength region 100 nm< λ<3000 nm are presented. Also, these results can be of interest for different laboratory plasmas.

  2. Measurements of aerosol absorption and scattering in the Mexico City Metropolitan Area during the MILAGRO field campaign: a comparison of results from the T0 and T1 sites

    NASA Astrophysics Data System (ADS)

    Marley, N. A.; Gaffney, J. S.; Castro, T.; Salcido, A.; Frederick, J.

    2008-07-01

    Measurements of aerosol absorption and scattering were obtained in Mexico City during the MILAGRO (Megacity Initiative: Local and Global Research Observations) field campaign in March 2006. A comparison of aerosol absorption and scattering was obtained in Mexico City at site T0 located in the northern part of Mexico City at the Instituto Mexicano del Petróleo Laboratories and at site T1 located at the Universidad Tecnológica de Tecamac, 18 miles northwest of T0. Hourly averages of aerosol absorption were similar at both sites, ranging from 6 93 Mm-1 with an average of 31 Mm-1 at T0; and from 2 104 Mm-1 with an average of 19 Mm-1 at T1. Aerosol scattering at T0 ranged from 16 344 Mm-1 with an average of 105 Mm-1; while the scattering values at T1 were lower than T0 ranging from 2 136 with an average of 53 Mm-1. Aerosol single scattering albedos (SSAs) were determined at both sites using these data. SSAs at T1 ranged from 0.44 0.90 with an average 0.75 as compared to hose at T0, range 0.51 0.93 with an average of 0.77. Broadband UV-B intensity was found to be higher at site T0, with an average of 64 μW/cm2 at solar noon, than at site T1, which had an average of 54 μW/cm2 at solar noon. Comparisons of clear-sky modeled UV-B intensities with the simultaneous UV-B measurements obtained at site T0 and at site T1 for cloudless days indicate a larger diffuse radiation field at site T0 than at site T1. The determination of aerosol scattering Ångstrom coefficient at T0 suggests the larger diffuse radiation is due to the predominance of submicron aerosols at T0 with aerosol scattering of UV-B radiation peaked in the forward direction, leading to the enhancement observed at ground level.

  3. Absorption coefficients of the methane-nitrogen binary ice system: Implications for Pluto

    NASA Astrophysics Data System (ADS)

    Protopapa, S.; Grundy, W. M.; Tegler, S. C.; Bergonio, J. M.

    2015-06-01

    The methane-nitrogen phase diagram of Prokhvatilov and Yantsevich (1983. Sov. J. Low Temp. Phys. 9, 94-98) indicates that at temperatures relevant to the surfaces of icy dwarf planets like Pluto, two phases contribute to the methane absorptions: nitrogen saturated with methane N2 ‾ :CH4 and methane saturated with nitrogen CH4 ‾ :N2 . No optical constants are available so far for the latter component limiting construction of a proper model, in compliance with thermodynamic equilibrium considerations. New optical constants for solid solutions of methane diluted in nitrogen (N2 :CH4) and nitrogen diluted in methane (CH4 :N2) are presented at temperatures between 40 and 90 K, in the wavelength range 1.1-2.7 μm at different mixing ratios. These optical constants are derived from transmission measurements of crystals grown from the liquid phase in closed cells. A systematic study of the changes of methane and nitrogen solid mixtures spectral behavior with mixing ratio and temperature is presented.

  4. Aerosol Observing System (AOS) Handbook

    SciTech Connect

    Jefferson, A

    2011-01-17

    The Aerosol Observing System (AOS) is a suite of in situ surface measurements of aerosol optical and cloud-forming properties. The instruments measure aerosol properties that influence the earth’s radiative balance. The primary optical measurements are those of the aerosol scattering and absorption coefficients as a function of particle size and radiation wavelength and cloud condensation nuclei (CCN) measurements as a function of percent supersaturation. Additional measurements include those of the particle number concentration and scattering hygroscopic growth. Aerosol optical measurements are useful for calculating parameters used in radiative forcing calculations such as the aerosol single-scattering albedo, asymmetry parameter, mass scattering efficiency, and hygroscopic growth. CCN measurements are important in cloud microphysical models to predict droplet formation.

  5. Light Absorption by Secondary Organic Aerosol Produced from Aqueous Reaction of Phenols with an Organic Excited Triplet State and Hydroxyl Radical

    NASA Astrophysics Data System (ADS)

    Smith, J.; Yu, L.; George, K.; Ruthenburg, T. C.; Dillner, A. M.; Zhang, Q.; Anastasio, C.

    2012-12-01

    Although reactions in atmospheric condensed phases can form and transform secondary organic aerosol (SOA), these reactions are not well represented in many air quality models. Previous experiments have focused on hydroxyl radical-mediated oxidation of low molecular weight precursors such as gyloxal and methylglyoxal. In our work we are examining aqueous SOA formed from phenols, which are emitted from biomass burning and formed from the oxidation of anthropogenic aromatics such as benzene and toluene. In this work we examine aqueous SOA production from oxidation of three phenols (phenol, guaiacol, syringol) and three benzene-diols (catechol, resorcinol, 1,4-hydroquinone) by hydroxyl radical (OH) and the triplet excited state of 3,4-dimethoxybenzaldehyde (DMB). Our focus is on light absorption by the reaction products, which we characterized by measuring UV-Vis spectra and calculating mass absorption coefficients. To understand the elemental and molecular composition of the SOA, we also analyzed the samples with high resolution mass spectrometry and infrared spectroscopy. Our results indicate that aqueous oxidation of phenols and benzene-diols via OH and triplet excited states efficiently produce SOA that is highly absorbing in the UV-A wavelengths, consists of both small and large molecular weight products, and is highly oxidized.

  6. Titan aerosol analog absorption features produced from aromatics in the far infrared

    NASA Astrophysics Data System (ADS)

    Sebree, Joshua A.; Trainer, Melissa G.; Loeffler, Mark J.; Anderson, Carrie M.

    2014-07-01

    We present results on the formation of Titan aerosol analogs produced via far-UV irradiation of five aromatic precursors: benzene, naphthalene, pyridine, quinoline and isoquinoline. This is the first reported evidence of far-IR emission features observed below 200 cm-1 in laboratory-created Titan aerosols. These laboratory studies were motivated by recent analyses of Cassini Composite Infrared Spectrometer (CIRS) spectra that show a broad aerosol emission feature in the far-IR spectral region centered near 140 cm-1, which is unique to Titan’s photochemically-produced aerosol (Anderson, C.M., Samuelson, R.E. [2011]. Icarus 212, 762-778). We find that all three of the aerosol analogs formed from nitrogen-containing aromatics have similar broad emission features near that of the observed CIRS far-IR aerosol spectral feature. In addition, the inclusion of 1.5% methane to that of trace amounts of benzene also gives rise to an aerosol with a weak far-IR emission feature located below 200 cm-1.

  7. Systematic study of Ge1-xSnx absorption coefficient and refractive index for the device applications of Si-based optoelectronics

    NASA Astrophysics Data System (ADS)

    Tran, Huong; Du, Wei; Ghetmiri, Seyed A.; Mosleh, Aboozar; Sun, Greg; Soref, Richard A.; Margetis, Joe; Tolle, John; Li, Baohua; Naseem, Hameed A.; Yu, Shui-Qing

    2016-03-01

    The absorption coefficient and refractive index of Ge1-xSnx alloys (x from 0% to 10%) were characterized for the wavelength range from 1500 to 2500 nm via spectroscopic ellipsometry at room temperature. By applying physical models to fit the obtained data, two empirical formulae with extracted constants and coefficients were developed: (1) Absorption coefficient. The absorption regarding Urbach tail, indirect and direct bandgap transitions were comprehensively taken into account; (2) refractive index. The Sellmeier coefficients associated with dispersion relationship were extracted. In these formulae, the Sn composition and strain percentage were the input parameters, by inputting which the spectral absorption coefficient and spectral refractive index can be obtained. Since the absorption coefficient is key information to determine the performance of the photodetectors including operation wavelength range, responsivity, and specific detectivity, and the refractive index is very useful for the design of the anti-reflection coating for photodetectors and the layer structure for waveguides, the developed formulae could simplify the optoelectronic device design process due to their parameter-based expressions.

  8. Interpreting the ultraviolet aerosol index observed with the OMI satellite instrument to understand absorption by organic aerosols: implications for atmospheric oxidation and direct radiative effects

    NASA Astrophysics Data System (ADS)

    Hammer, Melanie S.; Martin, Randall V.; van Donkelaar, Aaron; Buchard, Virginie; Torres, Omar; Ridley, David A.; Spurr, Robert J. D.

    2016-03-01

    Satellite observations of the ultraviolet aerosol index (UVAI) are sensitive to absorption of solar radiation by aerosols; this absorption affects photolysis frequencies and radiative forcing. We develop a global simulation of the UVAI using the 3-D chemical transport model GEOS-Chem coupled with the Vector Linearized Discrete Ordinate Radiative Transfer model (VLIDORT). The simulation is applied to interpret UVAI observations from the Ozone Monitoring Instrument (OMI) for the year 2007. Simulated and observed values are highly consistent in regions where mineral dust dominates the UVAI, but a large negative bias (-0.32 to -0.97) exists between simulated and observed values in biomass burning regions. We determine effective optical properties for absorbing organic aerosol, known as brown carbon (BrC), and implement them into GEOS-Chem to better represent observed UVAI values over biomass burning regions. The inclusion of absorbing BrC decreases the mean bias between simulated and OMI UVAI values from -0.57 to -0.09 over West Africa in January, from -0.32 to +0.0002 over South Asia in April, from -0.97 to -0.22 over southern Africa in July, and from -0.50 to +0.33 over South America in September. The spectral dependence of absorption after including BrC in the model is broadly consistent with reported observations for biomass burning aerosol, with absorbing Ångström exponent (AAE) values ranging from 2.9 in the ultraviolet (UV) to 1.3 across the UV-Near IR spectrum. We assess the effect of the additional UV absorption by BrC on atmospheric photochemistry by examining tropospheric hydroxyl radical (OH) concentrations in GEOS-Chem. The inclusion of BrC decreases OH by up to 30 % over South America in September, up to 20 % over southern Africa in July, and up to 15 % over other biomass burning regions. Global annual mean OH concentrations in GEOS-Chem decrease due to the presence of absorbing BrC, increasing the methyl chloroform lifetime from 5.62 to 5.68 years

  9. Interpreting the Ultraviolet Aerosol Index observed with the OMI satellite instrument to understand absorption by organic aerosols: implications for atmospheric oxidation and direct radiative effects

    NASA Astrophysics Data System (ADS)

    Hammer, M. S.; Martin, R. V.; van Donkelaar, A.; Buchard, V.; Torres, O.; Ridley, D. A.; Spurr, R. J. D.

    2015-10-01

    Satellite observations of the Ultraviolet Aerosol Index (UVAI) are sensitive to absorption of solar radiation by aerosols; this absorption affects photolysis frequencies and radiative forcing. We develop a global simulation of the UVAI using the 3-D chemical transport model GEOS-Chem coupled with the Vector Linearized Discrete Ordinate Radiative Transfer model (VLIDORT). The simulation is applied to interpret UVAI observations from the Ozone Monitoring Instrument (OMI) for the year 2007. Simulated and observed values are highly consistent in regions where mineral dust dominates the UVAI, but a large negative bias (-0.32 to -0.97) exists between simulated and observed values in biomass burning regions. We determine effective optical properties for absorbing organic aerosol, known as brown carbon (BrC), and implement them into GEOS-Chem to better represent observed UVAI values over biomass burning regions. The addition of absorbing BrC decreases the mean bias between simulated and OMI UVAI values from -0.57 to -0.09 over West Africa in January, from -0.32 to +0.0002 over South Asia in April, from -0.97 to -0.22 over southern Africa in July, and from -0.50 to +0.33 over South America in September. The spectral dependence of absorption after adding BrC to the model is broadly consistent with reported observations for biomass burning aerosol, with Absorbing Angstrom Exponent (AAE) values ranging from 2.9 in the ultraviolet (UV) to 1.3 across the UV-Near IR spectrum. We assess the effect of the additional UV absorption by BrC on atmospheric photochemistry by examining tropospheric hydroxyl radical (OH) concentrations in GEOS-Chem. The inclusion of BrC decreases OH by up to 35 % over South America in September, up to 25 % over southern Africa in July, and up to 20 % over other biomass burning regions. Global annual mean OH concentrations in GEOS-Chem decrease due to the presence of absorbing BrC, increasing the methyl chloroform lifetime from 5.62 to 5.68 years, thus

  10. Interpreting the Ultraviolet Aerosol Index Observed with the OMI Satellite Instrument to Understand Absorption by Organic Aerosols: Implications for Atmospheric Oxidation and Direct Radiative Effects

    NASA Technical Reports Server (NTRS)

    Hammer, Melanie S.; Martin, Randall V.; Donkelaar, Aaron van; Buchard, Virginie; Torres, Omar; Ridley, David A.; Spurr, Robert J. D.

    2016-01-01

    Satellite observations of the ultraviolet aerosol index (UVAI) are sensitive to absorption of solar radiation by aerosols; this absorption affects photolysis frequencies and radiative forcing. We develop a global simulation of the UVAI using the 3-D chemical transport model GEOSChem coupled with the Vector Linearized Discrete Ordinate Radiative Transfer model (VLIDORT). The simulation is applied to interpret UVAI observations from the Ozone Monitoring Instrument (OMI) for the year 2007. Simulated and observed values are highly consistent in regions where mineral dust dominates the UVAI, but a large negative bias (-0.32 to -0.97) exists between simulated and observed values in biomass burning regions. We determine effective optical properties for absorbing organic aerosol, known as brown carbon (BrC), and implement them into GEOS-Chem to better represent observed UVAI values over biomass burning regions. The inclusion of absorbing BrC decreases the mean bias between simulated and OMI UVAI values from -0.57 to -0.09 over West Africa in January, from -0.32 to +0.0002 over South Asia in April, from -0.97 to -0.22 over southern Africa in July, and from -0.50 to +0.33 over South America in September. The spectral dependence of absorption after including BrC in the model is broadly consistent with reported observations for biomass burning aerosol, with absorbing Angstrom exponent (AAE) values ranging from 2.9 in the ultraviolet (UV) to 1.3 across the UV-Near IR spectrum. We assess the effect of the additional UV absorption by BrC on atmospheric photochemistry by examining tropospheric hydroxyl radical (OH) concentrations in GEOS-Chem. The inclusion of BrC decreases OH by up to 30% over South America in September, up to 20% over southern Africa in July, and up to 15% over other biomass burning regions. Global annual mean OH concentrations in GEOS-Chem decrease due to the presence of absorbing BrC, increasing the methyl chloroform lifetime from 5.62 to 5.68 years, thus

  11. Antimony orthophosphate glasses with large nonlinear refractive indices, low two-photon absorption coefficients, and ultrafast response

    SciTech Connect

    Falcao-Filho, E.L.; Araujo, Cid B. de; Bosco, C.A.C.; Maciel, G.S.; Acioli, L.H.; Nalin, M.; Messaddeq, Y.

    2005-01-01

    Antimony glasses based on the composition Sb{sub 2}O{sub 3}-SbPO{sub 4} were prepared and characterized. The samples present high refractive index, good transmission from 380 to 2000 nm, and high thermal stability. The nonlinear refractive index, n{sub 2}, of the samples was studied using the optical Kerr shutter technique at 800 nm. The third-order correlation signals between pump and probe pulses indicate ultrafast response (<100 fs) for all compositions. Enhancement of n{sub 2} was observed by adding lead oxide to the Sb{sub 2}O{sub 3}-SbPO{sub 4} composition. Large values of n{sub 2}{approx_equal}10{sup -14} cm{sup 2}/W and negligible two-photon absorption coefficients (smaller than 0.01 cm/GW) were determined for all samples. The glass compositions studied present appropriate figure-of-merit for all-optical switching applications.

  12. Characterization of iron oxides in mineral dust aerosols: Implications for light absorption

    NASA Astrophysics Data System (ADS)

    Lafon, Sandra; Sokolik, Irina N.; Rajot, Jean Louis; Caquineau, Sandrine; Gaudichet, Annie

    2006-11-01

    We report on measurements that were specifically designed to determine iron oxides in mineral dust aerosols needed for improved optical modeling. Atmospheric dust samples as well as samples generated in a wind tunnel from soils were analyzed by a number of analytical techniques for their total and free iron content (bulk and size resolved), hematite and goethite, mineralogy, and size distribution. These samples are representative of several important dust sources in East Asia and northern Africa. A novel data set generated from these measurements enables us to perform an in-depth modeling study of dust optical properties in the solar spectrum. We modeled the iron oxide-clay aggregates, which are the key light-absorbing species, as well as their mixtures with nonabsorbing minerals. A volume fraction of iron oxide in aggregates was determined from measurements. Significant differences in the single-scattering albedo, ω0, were found between hematite- and goethite-clay aggregates, although these calculations involved several important assumptions about the partition of hematite and goethite in size-resolved aggregates. Furthermore, we found that variability of the free iron content is large enough to cause important differences in ω0 of mineral dust originating from different sources. In contrast, this variability has little effect on the extinction coefficient and optical depth. We demonstrate that for the same size distribution, ω0 calculated from data obtained for Chinese and Tunisian samples show higher values and more distinct wavelength dependence than those of Niger dust. All the above ω0 differ from ones calculated using the refractive indices of Patterson et al. (1977) or the OPAC model (Hess et al., 1998), which are often used in radiative transfer studies. We conclude that information on a size-resolved content of free iron and a fraction of hematite and goethite in aggregates will need to be known on a regional basis to improve the prediction of the

  13. HCFC-133a (CF3CH2Cl): OH rate coefficient, UV and infrared absorption spectra, and atmospheric implications

    NASA Astrophysics Data System (ADS)

    McGillen, Max R.; Bernard, François; Fleming, Eric L.; Burkholder, James B.

    2015-07-01

    HCFC-133a (CF3CH2Cl), an ozone-depleting substance, is primarily removed from the atmosphere by gas-phase reaction with OH radicals and by UV photolysis. The rate coefficient, k, for the OH + HCFC-133a reaction was measured between 233 and 379 K and is given by k(T) = (9.32 ± 0.8) × 10-13 exp(-(1296 ± 28)/T), where k(296 K) was measured to be (1.10 ± 0.02) × 10-14 (cm3 molecule-1 s-1) (2σ precision uncertainty). The HCFC-133a UV absorption spectrum was measured between 184.95 and 240 nm at 213-323 K, and a spectrum parameterization is presented. The HCFC-133a atmospheric loss processes, lifetime, ozone depletion potential, and uncertainties were evaluated using a 2-D atmospheric model. The global annually averaged steady state lifetime and ozone depletion potential (ODP) were determined to be 4.45 (4.04-4.90) years and 0.017 (±0.001), respectively, where the ranges are based solely on the 2σ uncertainty in the kinetic and photochemical parameters. The infrared absorption spectrum of HCFC-133a was measured, and its global warming potential was determined to be 380 on the 100 year time horizon.

  14. Determination of the scattering coefficient of biological tissue considering the wavelength and absorption dependence of the anisotropy factor

    NASA Astrophysics Data System (ADS)

    Fukutomi, Daichi; Ishii, Katsunori; Awazu, Kunio

    2016-04-01

    The anisotropy factor g, one of the optical properties of biological tissues, has a strong influence on the calculation of the scattering coefficient μ s in inverse Monte Carlo (iMC) simulations. It has been reported that g has the wavelength and absorption dependence; however, few attempts have been made to calculate μ s using g values by taking the wavelength and absorption dependence into account. In this study, the angular distributions of scattered light for biological tissue phantoms containing hemoglobin as a light absorber were measured by a goniometric optical setup at strongly (405 nm) and weakly (664 nm) absorbing wavelengths to obtain g. Subsequently, the optical properties were calculated with the measured values of g by integrating sphere measurements and an iMC simulation, and compared with the results obtained with a conventional g value of 0.9. The μ s values with measured g were overestimated at the strongly absorbing wavelength, but underestimated at the weakly absorbing wavelength if 0.9 was used in the iMC simulation.

  15. Integrating sphere-based photoacoustic setup for simultaneous absorption coefficient and Grüneisen parameter measurements of biomedical liquids

    NASA Astrophysics Data System (ADS)

    Villanueva, Yolanda; Hondebrink, Erwin; Petersen, Wilma; Steenbergen, Wiendelt

    2015-03-01

    A method for simultaneously measuring the absorption coefficient μa and Grüneisen parameter Γ of biological absorbers in photoacoustics is designed and implemented using a coupled-integrating sphere system. A soft transparent tube with inner diameter of 0.58mm is used to mount the liquid absorbing sample horizontally through the cavity of two similar and adjacent integrating spheres. One sphere is used for measuring the sample's μa using a continuous halogen light source and a spectrometer fiber coupled to the input and output ports, respectively. The other sphere is used for simultaneous photoacoustic measurement of the sample's Γ using an incident pulsed light with wavelength of 750nm and a flat transducer with central frequency of 5MHz. Absolute optical energy and pressure measurements are not necessary. However, the derived equations for determining the sample's μa and Γ require calibration of the setup using aqueous ink dilutions. Initial measurements are done with biological samples relevant to biomedical imaging such as human whole blood, joint and cyst fluids. Absorption of joint and cyst fluids is enhanced using a contrast agent like aqueous indocyanine green dye solution. For blood sample, measured values of μa = 0.580 +/- 0.016 mm-1 and Γ = 0.166 +/- 0.006 are within the range of values reported in literature. Measurements with the absorbing joint and cyst fluid samples give Γ values close to 0.12, which is similar to that of water and plasma.

  16. Spectral slopes of the absorption coefficient of colored dissolved and detrital material inverted from UV-visible remote sensing reflectance

    NASA Astrophysics Data System (ADS)

    Wei, Jianwei; Lee, Zhongping; Ondrusek, Michael; Mannino, Antonio; Tzortziou, Maria; Armstrong, Roy

    2016-03-01

    The spectral slope of the absorption coefficient of colored dissolved and detrital material (CDM), Scdm (units: nm-1), is an important optical parameter for characterizing the absorption spectral shape of CDM. Although highly variable in natural waters, in most remote sensing algorithms, this slope is either kept as a constant or empirically modeled with multiband ocean color in the visible domain. In this study, we explore the potential of semianalytically retrieving Scdm with added ocean color information in the ultraviolet (UV) range between 360 and 400 nm. Unique features of hyperspectral remote sensing reflectance in the UV-visible wavelengths (360-500 nm) have been observed in various waters across a range of coastal and open ocean environments. Our data and analyses indicate that ocean color in the UV domain is particularly sensitive to the variation of the CDM spectral slope. Here, we used a synthesized dataset to show that adding UV wavelengths to the ocean color measurements will improve the retrieval of Scdm from remote sensing reflectance considerably, while the spectral band settings of past and current satellite ocean color sensors cannot fully account for the spectral variation of remote sensing reflectance. Results of this effort support the concept to include UV wavelengths in the next generation of satellite ocean color sensors.

  17. Mass absorption efficiency of light absorbing organic aerosols from source region of paddy-residue burning emissions in the Indo-Gangetic Plain

    NASA Astrophysics Data System (ADS)

    Srinivas, B.; Rastogi, N.; Sarin, M. M.; Singh, A.; Singh, D.

    2016-01-01

    The mass absorption efficiency (MAE) of light absorbing water-soluble organics, representing a significant fraction of brown carbon (BrC), has been studied in fine mode aerosols (PM2.5) from a source region (Patiala: 30.2 °N, 76.3 °E) of biomass burning emissions (BBEs) in the Indo-Gangetic Plain (IGP). The mass absorption coefficient of BrC at 365 nm (babs-365), assessed from absorption spectra of aqueous extracts, exhibits significant linear relationship with water-soluble organic carbon (WSOC) for day (R2 = 0.37) and night time (R2 = 0.77) samples; and slope of regression lines provides a measure of MAE of BrC (daytime: ˜0.75 m2 g-1 and night time: 1.13 m2 g-1). A close similarity in the temporal variability of babs-365 (for BrC) and K+ in all samples suggests their common source from BBEs. The babs-365 of BrC follows a power law (babs-λ ≈ λ-α; where α = angstrom exponent) and averages around 5.2 ± 2.0 M m-1 (where M = 10-6). A significant decrease in the MAE of BrC from the source region (this study) to the downwind oceanic region (over Bay of Bengal, Srinivas and Sarin, 2013) could be attributed to relative increase in the contribution of non-absorbing WSOC and/or photo-bleaching of BrC during long-range atmospheric transport. The atmospheric radiative forcing due to BrC over the study site accounts for ˜40% of that from elemental carbon (EC).

  18. In situ measurement of the infrared absorption and extinction of chemical and biologically derived aerosols using flow-through photoacoustics.

    PubMed

    Gurton, Kristan P; Dahmani, Rachid; Ligon, David; Bronk, Burt V

    2005-07-01

    In an effort to establish a more reliable set of optical cross sections for a variety of chemical and biological aerosol simulants, we have developed a flow-through photoacoustic system that is capable of measuring absolute, mass-normalized extinction and absorption cross sections. By employing a flow-through design we avoid issues associated with closed aerosol photoacoustic systems and improve sensitivity. Although the results shown here were obtained for the tunable CO2 laser waveband region, i.e., 9.20-10.80 microm, application to other wavelengths is easily achievable. The aerosols considered are categorized as biological, chemical, and inorganic in origin, i.e., Bacillus atrophaeus endospores, dimethicone silicone oil (SF-96 grade 50), and kaolin clay powder (alumina and silicate), respectively. Results compare well with spectral extinction measured previously by Fourier-transform infrared spectroscopy. Comparisons with Mie theory calculations based on previously published complex indices of refraction and measured size distributions are also presented. PMID:16004057

  19. Use of Lidar Derived Optical Extinction and Backscattering Coefficients Near Cloud Base to Explore Aerosol-Cloud Interactions

    NASA Astrophysics Data System (ADS)

    Han, Zaw; Wu, Yonhgua; Gross, Barry; Moshary, Fred

    2016-06-01

    Combination of microwave radiometer (MWR) and mutlifilter rotating shadowband radiometer (MFRSR) measurement data together with SBDART radiative transfer model to compute cloud optical depth (COD) and cloud droplet effective radius (Reff). Quantify the first aerosol indirect effect using calculated Reff and aerosol extinction from Raman lidar measurement in urban coastal region. Illustrate comparison between ground-based and satellite retrievals. Demonstrate relationship between surface aerosol (PM2.5) loading and Reff. We also explain the sensitivity of aerosol-cloud-index (ACI) depend on the aerosol layer from cloud base height. Potential used of less noisy elastic backscattering to calculate the ACI instead of using Raman extinction. We also present comparison of elastic backscattering and Raman extinction correlation to Reff.

  20. Photoacoustic insight for aerosol light absorption aloft from meteorological aircraft and comparison with particle soot absorption photometer measurements: DOE Southern Great Plains climate research facility and the coastal stratocumulus imposed perturbation experiments

    NASA Astrophysics Data System (ADS)

    Arnott, W. Patrick; Walker, John W.; Moosmüller, Hans; Elleman, Robert A.; Jonsson, Haflidi H.; Buzorius, Gintautas; Conant, William C.; Flagan, Richard C.; Seinfeld, John H.

    2006-03-01

    Aerosol light absorption can be intense close to local sources such as wildland and oil fires, with smoke that disperses into the boundary layer and, with enough lift, into the upper atmosphere where it may be transported around the globe. Filter-based methods such as the Particle Soot Absorption Photometer (PSAP) are most commonly used to quantify aerosol light absorption aloft. This paper reports first measurements of aerosol light absorption aloft with photoacoustic instrumentation (PA). Three examples of aerosol light absorption are presented. The first one illustrates a case of detached layers aloft arising from intercontinental, interoceanic transport of smoke from wildland fires in Siberia to the North American continent and the measurement campaign held at the Department of Energy Atmospheric Radiation Measurement Program Climate Research Facility in north central Oklahoma. Then, two examples of intense local fire smoke light absorption from the Coastal Stratocumulus Imposed Perturbation Experiment near Marina, California, USA, are presented. The first local fire was an oil fire burning in a storage tank near Moss Landing, California, USA, and smoke from this fire was very dark, indicating a low single scattering albedo. By contrast, the second local fire was predominantly burning wood, vegetation, and structures near Fort Ord in Marina, California, USA, and the smoke was very bright, indicating a high single scattering albedo. In all examples, PA measurements at 676 nm were compared with those from a PSAP modified to measure at three wavelengths, including 660 nm.

  1. Adhesion of Mineral and Soot Aerosols can Strongly Affect their Scattering and Absorption Properties

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Dlugach, Jana M.

    2012-01-01

    We use the numerically exact superposition T-matrix method to compute the optical cross sections and the Stokes scattering matrix for polydisperse mineral aerosols (modeled as homogeneous spheres) covered with a large number of much smaller soot particles. These results are compared with the Lorenz-Mie results for a uniform external mixture of mineral and soot aerosols. We show that the effect of soot particles adhering to large mineral particles can be to change the extinction and scattering cross sections and the asymmetry parameter quite substantially. The effect on the phase function and degree of linear polarization can be equally significant.

  2. Laboratory investigation on the role of tubular shaped micro resonators phononic crystal insertion on the absorption coefficient of profiled sound absorber

    NASA Astrophysics Data System (ADS)

    Yahya, I.; Kusuma, J. I.; Harjana; Kristiani, R.; Hanina, R.

    2016-02-01

    This paper emphasizes the influence of tubular shaped microresonators phononic crystal insertion on the sound absorption coefficient of profiled sound absorber. A simple cubic and two different bodies centered cubic phononic crystal lattice model were analyzed in a laboratory test procedure. The experiment was conducted by using transfer function based two microphone impedance tube method refer to ASTM E-1050-98. The results show that sound absorption coefficient increase significantly at the mid and high-frequency band (600 - 700 Hz) and (1 - 1.6 kHz) when tubular shaped microresonator phononic crystal inserted into the tested sound absorber element. The increment phenomena related to multi-resonance effect that occurs when sound waves propagate through the phononic crystal lattice model that produce multiple reflections and scattering in mid and high-frequency band which increases the sound absorption coefficient accordingly

  3. Aerosol measurements at the Southern Great Plains Site: Design and surface installation

    SciTech Connect

    Leifer, R.; Knuth, R.H.; Guggenheim, S.F.; Albert, B.

    1996-04-01

    To impropve the predictive capabilities of the Atmospheric Radiation Measurements (ARM) program radiation models, measurements of awserosol size distributions, condensation particle concentrations, aerosol scattering coefficients at a number of wavelenghts, and the aerosol absorption coefficients are needed at the Southern Great Plains (SGP) site. Alos, continuous measurements of ozone concnetrations are needed for model validation. The environmental Measuremenr Laboratory (EMK) has the responsibility to establish the surface aerosol measurements program at the SGP site. EML has designed a special sampling manifold.

  4. ON THE PROPORTIONALITY OF FINE MASS CONCENTRATION AND EXTINCTION COEFFICIENT FOR BIMODAL SIZE DISTRIBUTIONS

    EPA Science Inventory

    For a bimodal size distribution of ambient aerosol, an upper limit in particle size can be chosen for the fine aerosol fraction so that the extinction coefficient for light scattering and absorption is directly proportional to the fine mass concentration, with no dependence on th...

  5. A new Pharmaceutical Aerosol Deposition Device on Cell Cultures (PADDOCC) to evaluate pulmonary drug absorption for metered dose dry powder formulations.

    PubMed

    Hein, Stephanie; Bur, Michael; Schaefer, Ulrich F; Lehr, Claus-Michael

    2011-01-01

    Absorption studies with aerosol formulation delivered by metered dose inhalers across cell- and tissue-based in vitro models of the pulmonary epithelia are not trivial due to the complexity of the processes involved: (i) aerosol generation and deposition, (ii) drug release from the carrier, and (iii) absorption across the epithelial air-blood barrier. In contrast to the intestinal mucosa, pulmonary epithelia are only covered by a thin film of lining fluid. Submersed cell culture systems would not allow to studying the deposition of aerosol particles and their effects on this delicate epithelial tissue. We developed a new Pharmaceutical Aerosol Deposition Device on Cell Cultures (PADDOCC) to mimic the inhalation of a single metered aerosol dose and its subsequent deposition on filter-grown pulmonary epithelial cell monolayers exposed to an air-liquid interface. The reproducibility of deposition of these dry powder aerosols and subsequent drug transport across Calu-3 monolayers with commercially available dry powder inhalers containing salbutamol sulphate or budesonide could be demonstrated. In the context of developing new dry powder aerosol formulations, PADDOCC appears as a useful tool, allowing reducing animal testing and faster translation into clinical trials. PMID:20951200

  6. Influence of Diffraction Effects on the Result of Measuring the Absorption Coefficient of Ultrasound in Weakly Absorbing Liquids by the Pulse Method

    NASA Astrophysics Data System (ADS)

    Shatsky, A. V.

    2016-08-01

    We consider the problem of the influence of diffraction effects on the result of measuring the absorption coefficient of ultrasound in weakly absorbing liquids by the pulse method. Diffraction attenuation of an ultrasonic signal in a measuring cell using solid-state delay lines is calculated. It is shown that the use of delay lines of the ultrasonic signal leads to a considerable distortion of the measured absorption coefficient in the low-frequency range from the true value and can either overestimate or underestimate the results.

  7. Experimental determination of the partitioning coefficient and volatility of important BVOC oxidation products using the Aerosol Collection Module (ACM) coupled to a PTR-ToF-MS

    NASA Astrophysics Data System (ADS)

    Gkatzelis, G.; Hohaus, T.; Tillmann, R.; Schmitt, S. H.; Yu, Z.; Schlag, P.; Wegener, R.; Kaminski, M.; Kiendler-Scharr, A.

    2015-12-01

    Atmospheric aerosol can alter the Earth's radiative budget and global climate but can also affect human health. A dominant contributor to the submicrometer particulate matter (PM) is organic aerosol (OA). OA can be either directly emitted through e.g. combustion processes (primary OA) or formed through the oxidation of organic gases (secondary organic aerosol, SOA). A detailed understanding of SOA formation is of importance as it constitutes a major contribution to the total OA. The partitioning between the gas and particle phase as well as the volatility of individual components of SOA is yet poorly understood adding uncertainties and thus complicating climate modelling. In this work, a new experimental methodology was used for compound-specific analysis of organic aerosol. The Aerosol Collection Module (ACM) is a newly developed instrument that deploys an aerodynamic lens to separate the gas and particle phase of an aerosol. The particle phase is directed to a cooled sampling surface. After collection particles are thermally desorbed and transferred to a detector for further analysis. In the present work, the ACM was coupled to a Proton Transfer Reaction-Time of Flight-Mass Spectrometer (PTR-ToF-MS) to detect and quantify organic compounds partitioning between the gas and particle phase. This experimental approach was used in a set of experiments at the atmosphere simulation chamber SAPHIR to investigate SOA formation. Ozone oxidation with subsequent photochemical aging of β-pinene, limonene and real plant emissions from Pinus sylvestris (Scots pine) were studied. Simultaneous measurement of the gas and particle phase using the ACM-PTR-ToF-MS allows to report partitioning coefficients of important BVOC oxidation products. Additionally, volatility trends and changes of the SOA with photochemical aging are investigated and compared for all systems studied.

  8. Determination of concentration and size distribution of black carbon in submicron aerosol from data of nephelometric measurements of angular scattering coefficients

    NASA Astrophysics Data System (ADS)

    Kozlov, Valerii S.; Rakhimov, Rustam F.; Shmargunov, Vladimir P.

    2015-11-01

    The possibility of determining the Black Carbon (BC) concentration and its size distribution in submicron aerosol from data of polarization spectronephelometric measurements of angular aerosol scattering is demonstrated for the first time. The data of simultaneous nephelometric and aethalometric measurements of BC concentration in wood smoke are compared. The inverse problem is solved from measurements of 40 polarization components of spectral coefficients of angular scattering, and aerosol filling factors and the imaginary part of the complex refractive indexes are determined for subfractions of ultrafine- (radii of 30-100 nm), fine- (100-430 nm), and coarse-disperse (430-770 nm) particles. Then the total BC concentration, its size distribution, and BC fraction are estimated in the approximation of homogeneous volume internal mixture of BC and nonabsorbing matter. The analysis shows that at the long evolution of smoke aerosol, nephelometric and aethalometric estimates of the BC concentrations are in a good agreement. The discrepancy averages about 16% for concentrations varying in a range 30-1000 μg/m3.

  9. A method to determine the acoustic reflection and absorption coefficients of porous media by using modal dispersion in a waveguide.

    PubMed

    Prisutova, Jevgenija; Horoshenkov, Kirill; Groby, Jean-Philippe; Brouard, Bruno

    2014-12-01

    The measurement of acoustic material characteristics using a standard impedance tube method is generally limited to the plane wave regime below the tube cut-on frequency. This implies that the size of the tube and, consequently, the size of the material specimen must remain smaller than a half of the wavelength. This paper presents a method that enables the extension of the frequency range beyond the plane wave regime by at least a factor of 3, so that the size of the material specimen can be much larger than the wavelength. The proposed method is based on measuring of the sound pressure at different axial locations and applying the spatial Fourier transform. A normal mode decomposition approach is used together with an optimization algorithm to minimize the discrepancy between the measured and predicted sound pressure spectra. This allows the frequency and angle dependent reflection and absorption coefficients of the material specimen to be calculated in an extended frequency range. The method has been tested successfully on samples of melamine foam and wood fiber. The measured data are in close agreement with the predictions by the equivalent fluid model for the acoustical properties of porous media. PMID:25480044

  10. Influence of the light propagation models on a linearized photoacoustic image reconstruction of the light absorption coefficient

    NASA Astrophysics Data System (ADS)

    Okawa, Shinpei; Hirasawa, Takeshi; Kushibiki, Toshihiro; Ishihara, Miya

    2015-03-01

    Quantification of the optical properties of the tissues and blood by noninvasive photoacoustic (PA) imaging may provide useful information for screening and early diagnosis of diseases. Linearized 2D image reconstruction algorithm based on PA wave equation and the photon diffusion equation (PDE) can reconstruct the image with computational cost smaller than a method based on 3D radiative transfer equation. However, the reconstructed image is affected by the differences between the actual and assumed light propagations. A quantitative capability of a linearized 2D image reconstruction was investigated and discussed by the numerical simulations and the phantom experiment in this study. The numerical simulations with the 3D Monte Carlo (MC) simulation and the 2D finite element calculation of the PDE were carried out. The phantom experiment was also conducted. In the phantom experiment, the PA pressures were acquired by a probe which had an optical fiber for illumination and the ring shaped P(VDF-TrFE) ultrasound transducer. The measured object was made of Intralipid and Indocyanine green. In the numerical simulations, it was shown that the linearized image reconstruction method recovered the absorption coefficients with alleviating the dependency of the PA amplitude on the depth of the photon absorber. The linearized image reconstruction method worked effectively under the light propagation calculated by 3D MC simulation, although some errors occurred. The phantom experiments validated the result of the numerical simulations.

  11. Simultaneous Measurement of Thermal Diffusivity and Optical Absorption Coefficient of Solids Using PTR and PPE: A Comparison

    NASA Astrophysics Data System (ADS)

    Fuente, R.; Mendioroz, A.; Apiñaniz, E.; Salazar, A.

    2012-11-01

    Modulated photothermal radiometry (PTR) and a modulated photopyroelectric (PPE) technique have been widely used to measure the thermal diffusivity of bulk materials. The method is based on illuminating the sample with a plane light beam and measuring the infrared emission with an infrared detector (PTR) or the electric voltage produced by a pyroelectric sensor in contact with the sample (PPE). The amplitude and phase of both photothermal signals are recorded as a function of the modulation frequency and then fitted to the theoretical model. In this work, we compare the ability of modulated PTR and PPE to retrieve simultaneously the thermal diffusivity and the optical absorption coefficient of homogeneous slabs. In order to eliminate the instrumental factor, self-normalization is used, i.e., the ratio of the photothermal signal recorded at the rear and front surfaces. The influence of the multiple reflections of the light beam and the transparency to infrared wavelengths are analyzed. Measurements performed on a wide variety of homogeneous materials, transparent and opaque, good and bad thermal conductors, confirm the validity of the method. The advantages and disadvantages of both techniques are discussed.

  12. Direct radiative forcing and atmospheric absorption by boundary layer aerosols in the southeastern US: model estimates on the basis of new observations

    NASA Astrophysics Data System (ADS)

    Yu, Shaocai; Zender, Charles S.; Saxena, V. K.

    In an effort to reduce uncertainties in the quantification of aerosol direct radiative forcing (ADRF) in the southeastern United States (US), a field column experiment was conducted to measure aerosol radiative properties and effects at Mt. Mitchell, North Carolina, and at an adjacent valley site. The experimental period was from June 1995 to mid-December 1995. The aerosol optical properties (single scattering albedo and asymmetry factor) needed to compute ADRF were obtained on the basis of a procedure involving a Mie code and a radiative transfer code in conjunction with the retrieved aerosol size distribution, aerosol optical depth, and diffuse-to-direct solar irradiance ratio. The regional values of ADRF at the surface and top of atmosphere (TOA), and atmospheric aerosol absorption are derived using the obtained aerosol optical properties as inputs to the column radiation model (CRM) of the community climate model (CCM3). The cloud-free instantaneous TOA ADRFs for highly polluted (HP), marine (M) and continental (C) air masses range from 20.3 to -24.8, 1.3 to -10.4, and 1.9 to -13.4 W m -2, respectively. The mean cloud-free 24-h ADRFs at the TOA (at the surface) for HP, M, and C air masses are estimated to be -8±4 (-33±16), -7±4 (-13±8), and -0.14±0.05 (-8±3) W m -2, respectively. On the assumption that the fractional coverage of clouds is 0.61, the annual mean ADRFs at the TOA and the surface are -2±1, and -7±2 W m -2, respectively. This also implies that aerosols currently heat the atmosphere over the southeastern US by 5±3 W m -2 on annual timescales due to the aerosol absorption in the troposphere.

  13. THz Differential Radar for Detection of Weak Molecular Absorption Lines in Bio-Aerosol

    NASA Astrophysics Data System (ADS)

    Javadi, Hamid

    2006-03-01

    THz frequency range (300-3000 GHz) promises unique capabilities and advantages for detection of trace gases and biological aerosols immersed in the atmosphere. Techniques used for microwave atmospheric remote sensing can be used within the atmospheric transmission windows to carry out standoff detection of biological markers in real time. THz spectroscopy has been used as an important new tool in investigations of atmospheric molecular gases and a wide range of airborne biological materials. We have embarked upon development of field deployable THz differential radar. Bio-aerosols are the most difficult analytes to face due to their heterogeneity in size, toxicity, and bio/chemical composition. JPL has demonstrated monolithic solid-state THz sources with impressive output power. The sources are enabled by W-band power amplifiers and planar Schottky diode multipliers. These, together with room temperature detectors (based on the same technology), allow one to make a compact and robust transmitter/receiver with sufficient sensitivity and frequency agility to carry out detailed investigation of various molecular vapors and bio-aerosols at standard temperature and pressure. Current status of the THz differential radar technology development effort along with future trends will be presented.

  14. Differential absorption lidar (DIAL) via atmospheric aerosol (cloud) backscattering: recent results of coherent CO2 lidar measurements conducted at the Maui Space Surveillance Site

    NASA Astrophysics Data System (ADS)

    Willman, Benjamin C.; Kovacs, Mark A.

    2001-01-01

    Textron Systems, under the US Army Space and Missile Defense Command's Field Ladar Tactical Transition Demonstration program, has been evaluating coherently detected, atmospheric aerosol backscattering as a method to extend the utility of the DIAL technique. This paper present recently obtained long range, multi-wavelength DIAL measurements utilizing cloud formations and a laboratory positioned absorption test cell. Good agreement between cloud and continuous wave laboratory measurements of the absorption spectra of ammonia have been obtained.

  15. AEROSOL OPTICAL PROPERTIES AND BIOGENIC SOA: EFFECT ON HYGROSCOPIC PROPERTIES AND LIGHT ABSORPTION

    EPA Science Inventory

    This study will provide a comprehensive characterization of optical properties of biogenic SOA and their sensitivity to anthropogenic influence. Several parameters critical for climate modeling, such as absorption cross-section, single scattering albedo and sensitivity to R...

  16. Absolute absorption coefficient of C6H2 in the mid-UV range at low temperature; implications for the interpretation of Titan atmospheric spectra.

    PubMed

    Bénilan, Y; Bruston, P; Raulin, F; Courtin, R; Guillemin, J C

    1995-01-01

    The interpretation of mid-UV albedo spectra of planetary atmospheres, especially that of Titan, is the main goal of the SIPAT (Spectroscopie uv d'Interet Prebiologique dans l'Atmosphere de Titan) research program. This laboratory experiment has been developed in order to systematically determine the absorption coefficients of molecular compounds which are potential absorbers of scattered sunlight in planetary atmospheres, with high spectral resolution, and at various temperatures below room temperature. From photochemical modelling and experimental simulations, we may expect triacetylene (C6H2) to be present in the atmosphere of Titan, even though it has not yet been detected. We present here the first determination of the absolute absorption coefficient of that compound in the 200-300 nm range and at two temperatures (296 K and 233 K). The temperature dependence of the C6H2 absorption coefficient in that wavelength range is compared to that previously observed in the case of cyanoacetylene (HC3N). We then discuss the implications of the present results for the interpretation of Titan UV spectra, where it appears that large uncertainities can be introduced either by the presence of trace impurities in laboratory samples or by the variations of absorption coefficients with temperature. PMID:11538441

  17. Far-IR Absorption Features of Titan Aerosol Analogs Produced from Aromatic Precursors

    NASA Astrophysics Data System (ADS)

    Sebree, Joshua; Trainer, M. G.; Anderson, C. M.; Loeffler, M. J.

    2012-10-01

    The arrival of the Cassini spacecraft in orbit around Saturn has led to the discovery of benzene (C6H6) at ppm levels, as well as large positive ions in Titan’s atmosphere, tentatively identified as polycyclic aromatic hydrocarbons (PAHs).[1] The presence of aromatic molecules, which are photolytically active in the ultraviolet, may be an important part of the formation of aerosol particles in Titan’s haze layers, even at these low concentrations. To date, there have been no laboratory experiments in the literature exploring this area of study. The analysis of data from the Composite Infrared Spectrometer (CIRS) on-board Cassini has recently uncovered a broad emission feature centered at 140 cm-1 in the far-IR that is unique to the aerosol layers of Titan’s atmosphere.[2] Current optical constants from laboratory-generated aerosol analogs have been unable to reproduce this feature.[3,4] From the broadness of this feature, we speculate that the emission is a blended composite of low-energy vibrations of large molecules such as PAHs and their nitrogen containing counterparts, polycyclic aromatic nitrogen heterocycles (PANHs). We hypothesize that the inclusion of trace amounts of aromatic precursors will aid in the production of these large structures in the laboratory-generated aerosols. In this study, we perform UV irradiation of several aromatic precursors, both with and without nitrogen heteroatoms, to understand their influence on the observable characteristics of the aerosol. Measured optical and chemical properties will be compared to those formed from CH4/N2 mixtures [5,6] as well as to those from Cassini observations. [1] Waite, J. H., et al. (2007) Science 316 870-875. [2] Anderson, C.M, et al. (2011) Icarus 212 762-778. [3] Khare, B.N., et al. (1984) Icarus 60 127-137. [4] Imanaka, H., et al. (2012) Icarus 218 247-261. [5] Trainer, M.G., et al. (2006) PNAS 103 18035-18042. [6] Trainer, M.G., et al. (2012) Astrobiology 12 315-326.

  18. Indirect estimation of absorption properties for fine aerosol particles using AATSR observations: a case study of wildfires in Russia in 2010

    NASA Astrophysics Data System (ADS)

    Rodriguez, E.; Kolmonen, P.; Virtanen, T. H.; Sogacheva, L.; Sundstrom, A.-M.; de Leeuw, G.

    2015-08-01

    The Advanced Along-Track Scanning Radiometer (AATSR) on board the ENVISAT satellite is used to study aerosol properties. The retrieval of aerosol properties from satellite data is based on the optimized fit of simulated and measured reflectances at the top of the atmosphere (TOA). The simulations are made using a radiative transfer model with a variety of representative aerosol properties. The retrieval process utilizes a combination of four aerosol components, each of which is defined by their (lognormal) size distribution and a complex refractive index: a weakly and a strongly absorbing fine-mode component, coarse mode sea salt aerosol and coarse mode desert dust aerosol). These components are externally mixed to provide the aerosol model which in turn is used to calculate the aerosol optical depth (AOD). In the AATSR aerosol retrieval algorithm, the mixing of these components is decided by minimizing the error function given by the sum of the differences between measured and calculated path radiances at 3-4 wavelengths, where the path radiances are varied by varying the aerosol component mixing ratios. The continuous variation of the fine-mode components allows for the continuous variation of the fine-mode aerosol absorption. Assuming that the correct aerosol model (i.e. the correct mixing fractions of the four components) is selected during the retrieval process, also other aerosol properties could be computed such as the single scattering albedo (SSA). Implications of this assumption regarding the ratio of the weakly/strongly absorbing fine-mode fraction are investigated in this paper by evaluating the validity of the SSA thus obtained. The SSA is indirectly estimated for aerosol plumes with moderate-to-high AOD resulting from wildfires in Russia in the summer of 2010. Together with the AOD, the SSA provides the aerosol absorbing optical depth (AAOD). The results are compared with AERONET data, i.e. AOD level 2.0 and SSA and AAOD inversion products. The RMSE

  19. Intensities and N2 collision-broadening coefficients measured for selected H2O absorption lines between 715 and 732 nm

    NASA Technical Reports Server (NTRS)

    Wilkerson, T. D.; Schwemmer, G.; Gentry, B.; Giver, L. P.

    1979-01-01

    Intensities and N2 collision-broadening coefficients are measured for 62 water vapor absorption lines between 715 and 732 nm potentially applicable to laser remote sensing of atmospheric water vapor. Absolute line strengths and widths were determined from spectra corrected for instrument resolution, air-path absorption and Lorentz and Doppler broadening for pure water vapor and water vapor-nitrogen mixtures in a multipass absorption cell with a base path length of 25 m (White cell). Line strengths are observed to range from 4 x 10 to the -25th to 4 x 10 to the -23rd kayser/molecule per sq cm, and collision broadening coefficients are found to be approximately equal to 0.1 kayser/atm.

  20. Light absorption properties of water soluble organic aerosol from Residential Wood Burning in Fresno, CA: Results from 2013 NASA DISCOVER-AQ Campaign

    NASA Astrophysics Data System (ADS)

    Kim, H.; Zhang, Q.; Young, D. E.; Parworth, C.

    2015-12-01

    Light absorption properties of water soluble organic aerosol were investigated at Fresno, CA from 13 January to 11 February, 2013 as part of the NASA DISCOVER-AQ campaign. The light absorption spectra of water soluble organic aerosol in PM2.5 was measured using a UV/vis diode array detector (DAD) coupled with a particle into liquid sampler (PILS) that sampled downstream of a PM2.5 cyclone (URG). The PILS was also coupled with two ion chromatographs (IC) to measure inorganic and organic ionic species in PM2.5. In addition, an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed at the same site to measure size-resolved chemical composition of submicrometer aerosol (PM1) in real time during this study. Light absorption at 365 nm (Abs365), which is typically used as a proxy of water-soluble brown carbon (BrC), showed strong enhancement during night time and appeared to correlate well (r = 0.71) with biomass burning organic aerosol (BBOA) from residential wood burning for heating in the Fresno area. The tight correlations between Abs365 and biomass burning relevant tracers such as acetonitrile (r = 0.69), AMS-signature ions for phenolic compounds (r = 0.52-0.71), PAH (r = 0.74), and potassium (r = 0.67) further confirm that biomass burning contributed significantly to water soluble brown carbon during this study. The absorption angstrom exponent (Åa) values fitted between 300 and 700 nm wavelength were 3.3 ± 1.1, 2.0 ± 0.9 and 4.0 ± 0.8, respectively, in the morning, afternoon and nighttime, indicating that BrC is prevalent at night in Fresno during wintertime. However, there are also indications that small amount of BrC existed during the daytime as well, likely due to daytime wood burning and other sources such as the formation of light-absorbing secondary organic aerosol (SOA). Finally, light absorption at 300 nm, 330 nm, and 390 nm were found to correlate tightly with BBOA, which indicate that biomass burning also emits

  1. Light absorption of black carbon aerosol and its enhancement by mixing state in an urban atmosphere in South China

    NASA Astrophysics Data System (ADS)

    Lan, Zi-Juan; Huang, Xiao-Feng; Yu, Kuang-You; Sun, Tian-Le; Zeng, Li-Wu; Hu, Min

    2013-04-01

    The effects of black carbon (BC) aerosol on climate warming have been the study focus in the recent decade, and the reduction of BC is now expected to have significant near-term climate change mitigation. Large uncertainties of BC optical properties, however, still exist and seriously restrict the ability to quantify BC's climate effects. In this study, advanced instrumentation (a three-wavelength photoacoustic soot spectrometer (PASS-3) and a single particle soot photometer (SP2)) were used to measure black carbon aerosol and analyze its optical properties in a mega-city in South China, Shenzhen, during the summer of 2011. The results indicated that the average BC mass concentration was 4.0 ± 3.1 μg m-3 during the campaign, accounting for ˜11% of the total PM2.5 mass concentration. The PM2.5 light absorption at 405, 532 and 781 nm was 37.1 ± 28.1, 25.4 ± 19.0 and 17.6 ± 12.9 Mm-1, respectively. The average absorption Angstrom exponent of PM2.5 in visual spectrum (AAE405-781 nm) was 1.1 ± 0.1 during the campaign, indicating that the light absorbing carbon mainly came from vehicular emissions, with little contributions from biomass burning emissions. The mass absorption efficiency (MAE) of BC at 532 nm ranged from 5.0 to 8.5 m2 g-1 during the campaign, with an average of 6.5 ± 0.5 m2 g-1, and showed an obvious diurnal pattern with high values in the daytime. The average percentage of internally mixed BC was 24.3 ± 7.9% during the campaign, showing significant positive correlation relationship with the MAE of BC. More quantitative data analysis indicated that the internally mixed BC would amplify MAE by about 7% during the campaign, which stands in accordance with the new finding of a very recent Science magazine paper (Cappa et al., 2012) that the BC absorption enhancement due to internal mixing in the real atmosphere is relatively low, in apparent contrast to theoretical model predictions.

  2. Implications of the In-Situ Measured Mass Absorption Cross Section of Organic Aerosols in Mexico City on the Atmospheric Energy Balance, Satellite Retrievals, and Photochemistry

    SciTech Connect

    Dix, B.; Volkamer, R.; Barnard, J. C.

    2009-03-11

    The absorption of short wave incoming solar radiation by the organic component of aerosols has been examined by using data from the MCMA-2003 and the 2006 MILAGRO field campaigns. Both field efforts took place in and around Mexico City. Single Scattering Albedo (SSA) was derived as a function of wavelength (300-870 nm) by combining irradiance measurements from a Multi-Filter Rotating Shadowband Radiometer (MFRSR) and spectrally resolved actinic flux measurements by spectroradiometry with a radiative transfer model (TUV). In addition, organic aerosol mass measured by a surface deployed aerodyne aerosol mass spectrometer was used to estimate the Mass Absorption Cross-section (MAC) of Organic Carbon (OC). It was found that the MAC for OC is about 10.5 m{sup 2}/g at 300 nm and falls close to zero at about 500 nm; these values are roughly consistent with previous MAC estimates of OC, and present first in-situ observations of this quantity.

  3. Fractal morphology of black carbon aerosol enhances absorption in the thermal infrared wavelengths.

    PubMed

    Heinson, William R; Chakrabarty, Rajan K

    2016-02-15

    In this Letter, we numerically calculate the mass absorption cross sections (MACs) of black carbon fractal aggregates in the thermal infrared solar spectrum. Compared to equivalent-size spheres, the MAC values of aggregates show a percent enhancement of ≈150 and 400 at small and large length scales, respectively. The absorption properties of aggregates with size parameters >1 surprisingly continued to remain in the Rayleigh optics regime. We explain this phenomenon using the Maxwell-Garnett effective medium theory and the concept of phase shift parameter. PMID:26872194

  4. Multi axis differential optical absorption spectroscopy (MAX-DOAS) of gas and aerosol distributions.

    PubMed

    Sinreich, R; Friess, U; Wagner, T; Platt, U

    2005-01-01

    We present and demonstrate a relatively simple algorithm, which converts a set of slant column density measurements of oxygen dimers (O4) and NO2 at several different elevation angles to determine the atmospheric aerosol extinction and the absolute concentration and mixing ratio of NO2 within the atmospheric boundary layer. In addition the height of the atmospheric boundary layer can usually be derived, also the technique can be readily extended to determine the concentration of several other trace gases including SO2, CH2O, or glyoxal. The algorithm is based on precise radiation transport modelling determination, taking into account the actual aerosol scenario as determined from the O4 measurements. The required hardware is simple encompassing essentially a miniature spectrometer, a small telescope, a pointing mechanism, and a Personal Computer (PC). Effectively the technique combines the simplicity of a passive MAX-DOAS observation with the capability of a much more complex active DOAS instrument to determine path-averaged, absolutely calibrated mixing ratios of atmospheric trace gases at relatively high accuracy. PMID:16161782

  5. Optical inhomogeneity of dust-like aerosols and its effects on scattering and absorption

    NASA Astrophysics Data System (ADS)

    Mishchenko, M. I.; Dlugach, Z.; Liu, L.

    2015-12-01

    The use of the very concept of effective refractive index has been implicit in virtually all computations of electromagnetic scattering by dust-like aerosols since the nanometer-scale heterogeneity of such particles has been essentially ignored. Therefore, the failure of this concept in application to dust-like aerosols would create a highly problematic situation. It is thus imperative to perform a comprehensive analysis of the actual physical origin of the heuristic effective-medium approximations (EMAs) and the range and conditions of their practical applicability. In this talk, we will identify the true place of the EMAs in the framework of statistical electrodynamics. We will validate the outcome of this analysis by superposition T-matrix computer calculations and will perform a detailed quantitative assessment of the actual accuracy of the EMAs when they are applied to less-than-ideal types of heterogeneity encountered in nature. It is expected that the accuracy of an EMA will depend on many factors: on type of mixing; on refractive indices and size parameters of the host and the inclusions; on number, spatial distribution, and packing density of the inclusions; on whether one computes monodisperse or polydisperse optical characteristics; on whether one computes only integral radiometric characteristics or also the elements of the scattering matrix; etc. If so, the actual practical suitability of an EMA will vary widely depending on the specific type of application, e.g., lidar remote sensing, polarimetric remote sensing, radiometric remote sensing, or integral radiation-budget computations.

  6. Mass energy-absorption coefficients and average atomic energy-absorption cross-sections for amino acids in the energy range 0.122-1.330 MeV

    NASA Astrophysics Data System (ADS)

    More, Chaitali V.; Lokhande, Rajkumar M.; Pawar, Pravina. P.

    2016-05-01

    Mass attenuation coefficients of amino acids such as n-acetyl-l-tryptophan, n-acetyl-l-tyrosine and d-tryptophan were measured in the energy range 0.122-1.330 MeV. NaI (Tl) scintillation detection system was used to detect gamma rays with a resolution of 8.2% at 0.662 MeV. The measured attenuation coefficient values were then used to determine the mass energy-absorption coefficients (σa,en) and average atomic energy-absorption cross sections (μen/ρ) of the amino acids. Theoretical values were calculated based on XCOM data. Theoretical and experimental values are found to be in good agreement.

  7. In Situ Measurements of Aerosol Mass Concentration and Spectral Absorption at Three Location in and Around Mexico City

    NASA Astrophysics Data System (ADS)

    Chaudhry, Z.; Martins, V.; Li, Z.

    2006-12-01

    As a result of population growth and increasing industrialization, air pollution in heavily populated urban areas is one of the central environmental problems of the century. As a part of the MILAGRO (Megacity Initiative: Local and Global Research Observations) study, Nuclepore filters were collected in two size ranges (PM10 and PM2.5) at 12 hour intervals at three location in Mexico during March, 2006. Sampling stations were located at the Instituto Mexicano del Petroleo (T0), at the Rancho La Bisnago in the State of Hidalgo (T2) and along the Gulf Coast in Tampico (Tam). Each filter was analyzed for mass concentration, aerosol scattering and absorption efficiencies. Mass concentrations at T0 ranged from 47 to 179 μg/m3 for PM10 with an average concentration of 96 μg/m3, and from 20 to 93 μg/m3 for PM2.5 with an average concentration of 41 μg/m3. Mass concentrations at T2 ranged from 12 to 154 μg/m3 for PM10 with an average concentration of 51 μg/m3, and from 7 to 50 μg/m3 for PM2.5 with an average concentration of 25 μg/m3. Mass concentrations at Tam ranged from 34 to 80 μg/m3 for PM10 with an average concentration of 52 μg/m3, and from 8 to 23 μg/m3 for PM2.5 with an average concentration of 13 μg/m3. While some of the extreme values are likely linked to local emissions, regional air pollution episodes also played important roles. Each of the sampling stations experienced a unique atmospheric condition. The site at T0 was influenced by urban air pollution and dust storms, the site at T2 was significantly less affected by air pollution but more affected by regional dust storms and local dust devils while Tam was influenced by air pollution, dust storms and the natural marine environment. The spectral mass absorption efficiency was measured from 350 to 2500 nm and shows large differences between the absorption properties of soil dust, black carbon, and organic aerosols. The strong spectral differences observed can be related to differences in

  8. Aerosol Optical Properties Measured Onboard the Ronald H. Brown During ACE Asia as a Function of Aerosol Chemical Composition and Source Region

    NASA Technical Reports Server (NTRS)

    Quinn, P. K.; Coffman, D. J.; Bates, T. S.; Welton, E. J.; Covert, D. S.; Miller, T. L.; Johnson, J. E.; Maria, S.; Russell, L.; Arimoto, R.

    2004-01-01

    During the ACE Asia intensive field campaign conducted in the spring of 2001 aerosol properties were measured onboard the R/V Ronald H. Brown to study the effects of the Asian aerosol on atmospheric chemistry and climate in downwind regions. Aerosol properties measured in the marine boundary layer included chemical composition; number size distribution; and light scattering, hemispheric backscattering, and absorption coefficients. In addition, optical depth and vertical profiles of aerosol 180 deg backscatter were measured. Aerosol within the ACE Asia study region was found to be a complex mixture resulting from marine, pollution, volcanic, and dust sources. Presented here as a function of air mass source region are the mass fractions of the dominant aerosol chemical components, the fraction of the scattering measured at the surface due to each component, mass scattering efficiencies of the individual components, aerosol scattering and absorption coefficients, single scattering albedo, Angstrom exponents, optical depth, and vertical profiles of aerosol extinction. All results except aerosol optical depth and the vertical profiles of aerosol extinction are reported at a relative humidity of 55 +/- 5%. An over-determined data set was collected so that measured and calculated aerosol properties could be compared, internal consistency in the data set could be assessed, and sources of uncertainty could be identified. By taking into account non-sphericity of the dust aerosol, calculated and measured aerosol mass and scattering coefficients agreed within overall experimental uncertainties. Differences between measured and calculated aerosol absorption coefficients were not within reasonable uncertainty limits, however, and may indicate the inability of Mie theory and the assumption of internally mixed homogeneous spheres to predict absorption by the ACE Asia aerosol. Mass scattering efficiencies of non-sea salt sulfate aerosol, sea salt, submicron particulate organic

  9. Two-dimensional angular optical scattering patterns of aerosol particles in the mid-infrared: measurements designed to obtain particle absorption

    NASA Astrophysics Data System (ADS)

    Aptowicz, Kevin B.; Pan, Yong-Le; Pinnick, Ronald G.; Hill, Steven C.; Tober, Richard L.; Chang, Richard K.; Bronk, Burt V.

    2004-03-01

    Real-time and in-situ detection and discrimination of aerosol particles, especially bio-aerosols, continues to be an important challenge. The technique labeled TAOS (Two-dimensional Angular Optical Scattering) characterizes particles based upon the angular distribution of elastically scattered light. The detected angular distribution of light, labeled the TAOS pattern, depends upon the particle"s shape, size, surface features, and its complex refractive index. Thus, the absorptive properties of a particle affect the TAOS pattern. Furthermore, we expect to use this change in the TAOS pattern, which occurs when the particle absorption band includes the input wavelength, to characterize the strength of the absorption. Thus, by illuminating a particle in the mid-infrared wavelength range, high frequency vibrational modes that are unique to the aerosol can be reached and quantified. Spherical aerosol particles (in the diameter range of 50-60 micrometers) were generated via a droplet generator and illuminated by an Interband Cascade (IC) laser designed to emit in the 3-5 micrometers wavelength range. The TAOS pattern of the elastically scattered light was detected with an InSb-focal-plane-array infrared camera.

  10. Photoacoustic optical properties at UV, VIS, and near IR wavelengths for laboratory generated and winter time ambient urban aerosols

    NASA Astrophysics Data System (ADS)

    Gyawali, M.; Arnott, W. P.; Zaveri, R. A.; Song, C.; Moosmüller, H.; Liu, L.; Mishchenko, M. I.; Chen, L.-W. A.; Green, M. C.; Watson, J. G.; Chow, J. C.

    2012-03-01

    We present the laboratory and ambient photoacoustic (PA) measurement of aerosol light absorption coefficients at ultraviolet wavelength (i.e., 355 nm) and compare with measurements at 405, 532, 870, and 1047 nm. Simultaneous measurements of aerosol light scattering coefficients were achieved by the integrating reciprocal nephelometer within the PA's acoustic resonator. Absorption and scattering measurements were carried out for various laboratory-generated aerosols, including salt, incense, and kerosene soot to evaluate the instrument calibration and gain insight on the spectral dependence of aerosol light absorption and scattering. Ambient measurements were obtained in Reno, Nevada, between 18 December 2009 and 18 January 2010. The measurement period included days with and without strong ground level temperature inversions, corresponding to highly polluted (freshly emitted aerosols) and relatively clean (aged aerosols) conditions. Particulate matter (PM) concentrations were measured and analyzed with other tracers of traffic emissions. The temperature inversion episodes caused very high concentration of PM2.5 and PM10 (particulate matter with aerodynamic diameters less than 2.5 μm and 10 μm, respectively) and gaseous pollutants: carbon monoxide (CO), nitric oxide (NO), and nitrogen dioxide (NO2). The diurnal change of absorption and scattering coefficients during the polluted (inversion) days increased approximately by a factor of two for all wavelengths compared to the clean days. The spectral variation in aerosol absorption coefficients indicated a significant amount of absorbing aerosol from traffic emissions and residential wood burning. The analysis of single scattering albedo (SSA), Ångström exponent of absorption (AEA), and Ångström exponent of scattering (AES) for clean and polluted days provides evidences that the aerosol aging and coating process is suppressed by strong temperature inversion under cloudy conditions. In general, measured UV

  11. Photoacoustic optical properties at UV, VIS, and near IR wavelengths for laboratory generated and winter time ambient urban aerosols

    SciTech Connect

    Gyawali, Madhu S.; Arnott, W. Patrick; Zaveri, Rahul A.; Song, Chen; Moosmuller, H.; Liu, Li; Mishchenko, M.; Chen, L-W A.; Green, M.; Watson, J. G.; Chow, J. C.

    2012-03-08

    We present the laboratory and ambient photoacoustic (PA) measurement of aerosol light absorption coefficients at ultraviolet wavelength (i.e., 355 nm) and compare with measurements at 405, 532, 870, and 1047 nm. Simultaneous measurements of aerosol light scattering coefficients were achieved by the integrating reciprocal nephelometer within the PA's acoustic resonator. Absorption and scattering measurements were carried out for various laboratory generated aerosols, including salt, incense, and kerosene soot to evaluate the instrument calibration and gain insight on the spectral dependence of aerosol light absorption and scattering. Ambient measurements were obtained in Reno, Nevada, between 18 December 2009 and 18 January 2010. The measurement period included days with and without strong ground level temperature inversions, corresponding to highly polluted (freshly emitted aerosols) and relatively clean (aged aerosols) conditions. Particulate matter (PM) concentrations were measured and analyzed with other tracers of traffic emissions. The temperature inversion episodes caused very high concentration of PM{sub 2.5} and PM{sub 10} (particulate matter with aerodynamic diameters less than 2.5 {mu}m and 10 {mu}m, respectively) and gaseous pollutants: carbon monoxide (CO), nitric oxide (NO), and nitrogen dioxide (NO{sub 2}). The diurnal change of absorption and scattering coefficients during the polluted (inversion) days increased approximately by a factor of two for all wavelengths compared to the clean days. The spectral variation in aerosol absorption coefficients indicated a significant amount of absorbing aerosol from traffic emissions and residential wood burning. The analysis of single scattering albedo (SSA), Angstrom exponent of absorption (AEA), and Angstrom exponent of scattering (AES) for clean and polluted days provides evidences that the aerosol aging and coating process is suppressed by strong temperature inversion under cloudy conditions. In general

  12. Photoacoustic Optical Properties at UV, VIS, and near IR Wavelengths for Laboratory Generated and Winter Time Ambient Urban Aerosols

    NASA Technical Reports Server (NTRS)

    Gyawali, M.; Arnott, W. P.; Zaveri, R. A.; Song, C.; Moosmuller, H.; Liu, L.; Mishchenko, M. I.; Chen, L.-W.A.; Green, M. C.; Watson, J. G.; Chow, J. C.

    2012-01-01

    We present the laboratory and ambient photoacoustic (PA) measurement of aerosol light absorption coefficients at ultraviolet wavelength (i.e., 355 nm) and compare with measurements at 405, 532, 870, and 1047 nm. Simultaneous measurements of aerosol light scattering coefficients were achieved by the integrating reciprocal nephelometer within the PA's acoustic resonator. Absorption and scattering measurements were carried out for various laboratory generated aerosols, including salt, incense, and kerosene soot to evaluate the instrument calibration and gain insight on the spectral dependence of aerosol light absorption and scattering. Ambient measurements were obtained in Reno, Nevada, between 18 December 2009 and 18 January 2010. The measurement period included days with and without strong ground level temperature inversions, corresponding to highly polluted (freshly emitted aerosols) and relatively clean (aged aerosols) conditions. Particulate matter (PM) concentrations were measured and analyzed with other tracers of traffic emissions. The temperature inversion episodes caused very high concentration of PM (sub 2.5) and PM( sub 10) (particulate matter with aerodynamic diameters less than 2.5 micrometers and 10 micrometers, respectively) and gaseous pollutants: carbon monoxide (CO), nitric oxide (NO), and nitrogen dioxide (NO2). The diurnal change of absorption and scattering coefficients during the polluted (inversion) days increased approximately by a factor of two for all wavelengths compared to the clean days. The spectral variation in aerosol absorption coefficients indicated a significant amount of absorbing aerosol from traffic emissions and residential wood burning. The analysis of single scattering albedo (SSA), Angstrom exponent of absorption (AEA), and Angstrom exponent of scattering (AES) for clean and polluted days provides evidences that the aerosol aging and coating process is suppressed by strong temperature inversion under cloudy conditions. In

  13. Water absorption lines, 931-961 nm - Selected intensities, N2-collision-broadening coefficients, self-broadening coefficients, and pressure shifts in air

    NASA Technical Reports Server (NTRS)

    Giver, L. P.; Gentry, B.; Schwemmer, G.; Wilkerson, T. D.

    1982-01-01

    Intensities were measured for 97 lines of H2O vapor between 932 and 961 nm. The lines were selected for their potential usefulness for remote laser measurements of H2O vapor in the earth's atmosphere. The spectra were obtained with several different H2O vapor abundances and N2 broadening gas pressures; the spectral resolution was 0.046/cm FWHM. Measured H2O line intensities range from 7 x 10 to the -25th to 7 x 10 to the -22nd/cm per (molecules/sq cm). H2O self-broadening coefficients were measured for 13 of these strongest lines; the mean value was 0.5/cm per atm. N2-collision-broadening coefficients were measured for 73 lines, and the average was 0.11 cm per atm HWHM. Pressure shifts in air were determined for a sample of six lines between 948 and 950 nm; these lines shift to lower frequency by an amount comparable to 0.1 of the collision-broadened widths measured in air or N2. The measured intensities of many lines of 300-000 band are much larger than expected from prior computations, in some cases by over an order of magnitude. Coriolis interactions with the stronger 201-000 band appear to be the primary cause of the enhancement of these line intensities.

  14. Determination of the carrier concentration in CdSe crystals from the effective infrared absorption coefficient measured by means of the photothermal infrared radiometry

    NASA Astrophysics Data System (ADS)

    Pawlak, M.

    2015-01-01

    In this paper, a non-contact method that allows to determine the carrier concentration in CdSe crystals is presented. The method relies on the measurement of the effective infrared absorption coefficient by means of the photothermal infrared radiometry (PTR). In order to obtain the effective infrared absorption coefficient and thermal diffusivity, the frequency characteristics of the PTR signal were analyzed in the frame of a one-dimensional heat transport model for infrared semitransparent crystals. The carrier concentrations were estimated using a theory introduced by Ruda and a recently proposed normalization procedure for the PTR signal. The deduced carrier concentrations of the investigated CdSe crystals are in reasonable agreement with those obtained using Hall measurements and infrared spectroscopy. The method presented in this paper can also be applied to other semiconductors with the carrier concentration in the range of 1014-1017 cm-3.

  15. Phase function, backscatter, extinction, and absorption for standard radiation atmosphere and El Chichon aerosol models at visible and near-infrared wavelengths

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.; Suttles, J. T.; Lecroy, S. R.

    1985-01-01

    Tabular values of phase function, Legendre polynominal coefficients, 180 deg backscatter, and extinction cross section are given for eight wavelengths in the atmospheric windows between 0.4 and 2.2 microns. Also included are single scattering albedo, asymmetry factor, and refractive indices. These values are based on Mie theory calculations for the standard rediation atmospheres (continental, maritime, urban, unperturbed stratospheric, volcanic, upper atmospheric, soot, oceanic, dust, and water-soluble) assest measured volcanic aerosols at several time intervals following the El Chichon eruption. Comparisons of extinction to 180 deg backscatter for different aerosol models are presented and related to lidar data.

  16. Acceptor End-Capped Oligomeric Conjugated Molecules with Broadened Absorption and Enhanced Extinction Coefficients for High-Efficiency Organic Solar Cells.

    PubMed

    Yuan, Liu; Lu, Kun; Xia, Benzheng; Zhang, Jianqi; Wang, Zhen; Wang, Zaiyu; Deng, Dan; Fang, Jin; Zhu, Lingyun; Wei, Zhixiang

    2016-07-01

    Acceptor end-capping of oligomeric conjugated molecules is found to be an effective strategy for simultaneous spectral broadening, extinction coefficient enhancement, and energy level optimization, resulting in profoundly enhanced power conversion efficiencies (of 9.25% and 8.91%) compared to the original oligomers. This strategy is effective in overcoming the absorption disadvantage of oligomers and small molecules due to conjugation limitation. PMID:27172541

  17. Limitations arising from two-photon absorption of solvent in pulsed-laser thermal lens detection: determination of the two-photon absorption coefficient of ethanol at 266 nm.

    PubMed

    Abbas Ghaleb, Khalil; Georges, Joseph

    2006-01-01

    Two-photon absorption of the solvent under pulsed-laser excitation at 266 nm produces a high background thermal lens signal interfering with the analyte signal. Discrimination of both solvent and analyte signals along with calibration of the photothermal response has allowed the determination of the two-photon absorption coefficient of ethanol. The obtained value, 3.0x10(-10) cm W-1, is close to the literature values obtained from transmittance measurements using picosecond or femtosecond laser pulses. PMID:16454917

  18. Remote Sensing of the Absorption Coefficients and Chlorophyll a Concentration in the U.S. Southern Middle Atlantic Bight from SeaWiFS and MODIS-Aqua

    NASA Technical Reports Server (NTRS)

    Pan, Xiaoju; Mannino, Antonio; Russ, Mary E.; Hooker, Stanford B.

    2008-01-01

    At present, satellite remote sensing of coastal water quality and constituent concentration is subject to large errors as compared to the capability of satellite sensors in oceanic waters. In this study, field measurements collected on a series of cruises within U.S. southern Middle Atlantic Bight (SMAB) were applied to improve retrievals of satellite ocean color products in order to examine the factors that regulate the bio-optical properties within the continental shelf waters of the SMAB. The first objective was to develop improvements in satellite retrievals of absorption coefficients of phytoplankton (a(sub ph)), colored dissolved organic matter (CDOM) (a(sub g)), non-pigmented particles (a(sub d)), and non-pigmented particles plus CDOM (a(sub dg)), and chlorophyll a concentration ([Chl_a]). Several algorithms were compared to derive constituent absorption coefficients from remote sensing reflectance (R(sub rs)) ratios. The validation match-ups showed that the mean absolute percent differences (MAPD) were typically less than 35%, although higher errors were found for a(sub d) retrievals. Seasonal and spatial variability of satellite-derived absorption coefficients and [Chl_a] was apparent and consistent with field data. CDOM is a major contributor to the bio-optical properties of the SMAB, accounting for 35-70% of total light absorption by particles plus CDOM at 443 nm, as compared to 30-45% for phytoplankton and 0-20% for non-pigmented particles. The overestimation of [Chl_a] from the operational satellite algorithms may be attributed to the strong CDOM absorption in this region. River discharge is important in controlling the bio-optical environment, but cannot explain all of the regional and seasonal variability of biogeochemical constituents in the SMAB.

  19. Long-pathlength infrared absorption measurements in the 8- to 14-{mu}m atmospheric window: Self-broadening coefficient data

    SciTech Connect

    Kulp, T.J.; Shinn, J.

    1995-04-01

    The accurate characterization of the latent infrared (IR) absorption in the atmospheric window regions continues to be an area of research interest for the global climate modeling community. In the window between 8 and 14 {mu}m, this absorption can be attributed primarily to water vapor. It consists of (1) weak lines originating from the edge of the water vapor pure rotational band (at low wavenumbers) and the trailing P-branch of the v{sub 2} rovibrational band (at the high-wavenumber boundary of the window); and (2) the water vapor continuum absorption. The goal of our project has been to improve our quantitative and physical understanding of both of these absorption processes. Specifically, our immediate aims are to fill gaps in the experimental radiative transfer databases pertaining to the line parameters (i.e., line intensities and broadening coefficients) and to the self- and foreign-broadened water vapor continuum. To accomplish our goals, we have made long-pathlength absorption measurements using a Fourier transform infrared spectrometer (FTIR) (for the continuum and line measurements, at low resolution) and a tunable diode laser absorption spectrometer (TDLAS) (for the line measurements, at high resolution). These measurements were made on gas samples contained in a 400-m maximum pathlength Horn Pimentel multipass cell designed and constructed for this project.

  20. Exponential Sum Absorption Coefficients of Phosphine from 2750 to 3550/cm for Application to Radiative Transfer Analyses on Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    Temma, T.; Baines, K. H.; Butler, R. A. H.; Brown, L. R.; Sagui, L.; Kleiner, I.

    2006-01-01

    PH3 exponential sum k coefficients were computed between 2750 and 3550/cm (2.82-3.64 (microns), in view of future application to radiative transfer analyses of Jupiter and Saturn in a phosphine absorption band near 3 microns. The temperature and pressure of this data set cover the ranges from 80 to 350 K and from 10 (exp -3)to 10(exp 1) bars, respectively. Transmission uncertainty incurred by the use of the k coefficients is smaller than a few percent as long as the radiation is confined above an altitude of a few bars in the giant planets. In spectral regions of weak absorption at high pressures close to 10 bars, contributions from far wings of strong absorption lines must be carefully taken into account. Our data set helps map the three-dimensional distribution of PH3 on the giant planets, revealing their global atmospheric dynamics extending down to the deep interior. The complete k coefficient data set of this work is available at the Web site of the NASA Planetary Data System Atmospheres Node.

  1. Control of optical bandgap energy and optical absorption coefficient by geometric parameters in sub-10 nm silicon-nanodisc array structure

    NASA Astrophysics Data System (ADS)

    Fairuz Budiman, Mohd; Hu, Weiguo; Igarashi, Makoto; Tsukamoto, Rikako; Isoda, Taiga; Itoh, Kohei M.; Yamashita, Ichiro; Murayama, Akihiro; Okada, Yoshitaka; Samukawa, Seiji

    2012-02-01

    A sub-10 nm, high-density, periodic silicon-nanodisc (Si-ND) array has been fabricated using a new top-down process, which involves a 2D array bio-template etching mask made of Listeria-Dps with a 4.5 nm diameter iron oxide core and damage-free neutral-beam etching (Si-ND diameter: 6.4 nm). An Si-ND array with an SiO2 matrix demonstrated more controllable optical bandgap energy due to the fine tunability of the Si-ND thickness and diameter. Unlike the case of shrinking Si-ND thickness, the case of shrinking Si-ND diameter simultaneously increased the optical absorption coefficient and the optical bandgap energy. The optical absorption coefficient became higher due to the decrease in the center-to-center distance of NDs to enhance wavefunction coupling. This means that our 6 nm diameter Si-ND structure can satisfy the strict requirements of optical bandgap energy control and high absorption coefficient for achieving realistic Si quantum dot solar cells.

  2. Polycyclic aromatic hydrocarbons in biomass-burning emissions and their contribution to light absorption and aerosol toxicity.

    PubMed

    Samburova, Vera; Connolly, Jessica; Gyawali, Madhu; Yatavelli, Reddy L N; Watts, Adam C; Chakrabarty, Rajan K; Zielinska, Barbara; Moosmüller, Hans; Khlystov, Andrey

    2016-10-15

    In recent years, brown carbon (BrC) has been shown to be an important contributor to light absorption by biomass-burning atmospheric aerosols in the blue and near-ultraviolet (UV) part of the solar spectrum. Emission factors and optical properties of 113 polycyclic aromatic hydrocarbons (PAHs) were determined for combustion of five globally important fuels: Alaskan, Siberian, and Florida swamp peat, cheatgrass (Bromus tectorum), and ponderosa pine (Pinus ponderosa) needles. The emission factors of total analyzed PAHs were between 1.9±0.43.0±0.6 and 9.6±1.2-42.2±5.4mgPAHkg(-1)fuel for particle- and gas phase, respectively. Spectrophotometric analysis of the identified PAHs showed that perinaphthenone, methylpyrenes, and pyrene contributed the most to the total PAH light absorption with 17.2%, 3.3 to 10.5%, and 7.6% of the total particle-phase PAH absorptivity averaged over analyzed emissions from the fuels. In the gas phase, the top three PAH contributors to BrC were acenaphthylene (32.6%), anthracene (8.2%), and 2,4,5-trimethylnaphthalene (8.0%). Overall, the identified PAHs were responsible for 0.087-0.16% (0.13% on average) and 0.033-0.15% (0.11% on average) of the total light absorption by dichloromethane-acetone extracts of particle and gas emissions, respectively. Toxic equivalency factor (TEF) analysis of 16 PAHs prioritized by the United States Environmental Protection Agency (EPA) showed that benzo(a)pyrene contributed the most to the PAH carcinogenic potency of particle phase emissions (61.8-67.4% to the total carcinogenic potency of Σ16EPA PAHs), while naphthalene played the major role in carcinogenicity of the gas phase PAHs in the biomass-burning emission analyzed here (35.4-46.0% to the total carcinogenic potency of Σ16EPA PAHs). The 16 EPA-prioritized PAHs contributed only 22.1±6.2% to total particle and 23.4±11% to total gas phase PAH mass, thus toxic properties of biomass-burning PAH emissions are most likely underestimated. PMID:27304373

  3. Some new methods of determining and studying the absorptivity of a medium and the generalized angular coefficients of radiation

    NASA Technical Reports Server (NTRS)

    Surinov, Y. A.; Sosnovyy, N. V.

    1975-01-01

    Local and average radiation functions, which represent purely geometric characteristics of the radiating system, are used to determine the absorptivity in a system of bodies separated by an attenuating medium.

  4. Quasi-random narrow-band model fits to near-infrared low-temperature laboratory methane spectra and derived exponential-sum absorption coefficients

    NASA Technical Reports Server (NTRS)

    Baines, Kevin H.; West, Robert A.; Giver, Lawrence P.; Moreno, Fernando

    1993-01-01

    Near-infrared 10/cm resolution spectra of methane obtained at various temperatures, pressures, and abundances are fit to a quasi-random narrow-band model. Exponential-sum absorption coefficients for three temperatures (112, 188, and 295 K), and 20 pressures from 0.0001 to 5.6 bars, applicable to the cold environments of the major planets, are then derived from the band model for the 230 wavelengths measured from 1.6 to 2.5 microns. RMS deviations between the laboratory and the exponential-sum synthetic transmissions are reported for the best fitting 50 wavelengths. Deviations relevant to broadband, 1-percent spectral resolution observations are also presented. The validity of exponential-sum coefficients derived from broadband (10/cm) transmission data is demonstrated via direct comparison with line-by-line calculations. The complete atlas of coefficients is available from the Planetary Data System-Planetary Atmospheres Discipline Node.

  5. Measurements of mesospheric water vapour, aerosols and temperatures with the Spectral Absorption Line Imager (SALI-AT)

    NASA Astrophysics Data System (ADS)

    Shepherd, M. G.; Mullins, M.; Brown, S.; Sargoytchev, S. I.

    2001-08-01

    Water vapour concentration is one of the most important, yet one of the least known quantities of the mesosphere. Knowledge of water vapour concentration is the key to understanding many mesospheric processes, including the one that is primary focus of our investigation, mesospheric clouds (MC). The processes of formation and occurrence parameters of MC constitute an interesting problem in their own right, but recently evidence has been provided which suggests that they are a critical indicator of atmospheric change. The aim of the SALI-AT experiment is to make simultaneous (although not strictly collocated) measurements of water vapour, aerosols and temperature in the mesosphere and the mesopause region under twilight condition in the presence of mesospheric clouds. The water vapour will be measured in the regime of solar occultation utilizing a water vapour absorption band at 936 nm wavelength employing the SALI (Spectral Absorption Line Imager) instrument concept. A three-channel zenith photometer, AT-3, with wavelengths of 385 nm, 525 nm, and 1040 nm will measure Mie and Rayleigh scattering giving both mesospheric temperature profiles and the particle size distribution. Both instruments are small, low cost and low mass. It is envisioned that the SALI-AT experiment be flown on a small rocket - the Improved Orion/Hotel payload configuration, from the Andoya Rocket range, Norway. Alternatively the instrument can be flown as a "passenger" on larger rocket carrying other experiments. In either case flight costs are relatively low. Some performance simulations are presented showing that the instrument we have designed will be sufficiently sensitive to measure water vapor in concentrations that are expected at the summer mesopause, about 85 km height.

  6. Mineral Specific IR Molar Absorption Coefficients for Routine Water Determination in Olivine, SiO2 polymorphs and Garnet

    NASA Astrophysics Data System (ADS)

    Thomas, S.; Koch-Mueller, M.; Reichart, P.; Rhede, D.; Thomas, R.

    2007-12-01

    Conventionally applied Infrared (IR) calibrations [1, 2] for quantitative water analyses in solids are established on hydrous minerals and glasses with several wt% water. These calibrations are based on a negative correlation between the IR molar absorption coefficient (ɛ) for water and the mean wavenumber of the corresponding OH pattern. The correlation reflects the dependence of the OH band position on the appropriate O- H...O distances and thereby the magnitude of the dipole momentum which is proportional to the band intensity. However, it has been observed that these calibrations can not be adopted to nominally anhydrous minerals (NAMs) [3].To study the potential dependence of ɛ on structure and chemistry in NAMs we synthesized olivine and SiO2 polymorphs with specific isolated hydroxyl point defects, e.g. quartz, coesite and stishovite with B3++H+=Si4+ and/or Al3++H+=Si4+ substitutions. Experiments were performed with water in excess in piston cylinder and multi-anvil presses. Single crystal IR spectra demonstrate that we successfully managed to seperate generally complex OH patterns as e.g. observed in natural quartz and synthetic coesite. We quantified sample water contents of both natural samples and our run products by applying proton-proton-scattering [4], confocal microRaman spectroscopy [5] and Secondary Ion mass spectrometry. Resulting water concentrations were used to calculate new mineral specific ɛs. For olivine with the mean wavenumber of 3517 cm-1 we determined an ɛ value of 41,000±5,000 lmol-1H2Ocm-2. Quantification of olivine with the mean wavenumber of 3550 cm-1 in contrast resulted in an ɛ value of 47,000±1,000 lmol-1H2Ocm-2. Taking into account previous studies [6, 7] there is evidence to suggest a linear wavenumber dependent correlation for olivine, where ɛ increases with decreasing wavenumber. In case of the SiO2 system it turns out that the magnitude of ɛ within one structure type is independent of the liable OH point defect and

  7. Simultaneous measurement of atmospheric temperature, humidity, and aerosol extinction and backscatter coefficients by a combined vibrational pure-rotational Raman lidar

    NASA Astrophysics Data System (ADS)

    Balin, I.; Serikov, I.; Bobrovnikov, S.; Simeonov, V.; Calpini, B.; Arshinov, Y.; van den Bergh, H.

    2004-10-01

    Implementation of the pure-rotational Raman (PRR) lidar method for simultaneous measurement of atmospheric temperature, humidity, and aerosol extinction and backscatter coefficients is reported. The isolation of two wavelength domains of the PRR spectrum and the suppression of the elastically scattered light is carried out by a double-grating polychromator. Experiments involving elastic backscatter from dense clouds and a solid target confirm the high level of suppression of the elastic light in the corresponding acquisition channels of the two selected PRR domains. Calibration of the temperature channel was done both by comparison with an experimentally verified atmospheric temperature model profile and by inter-comparison with radiosondes. Night-time temperature profiles with high vertical resolution were obtained up to the lower stratosphere. The PRR temperature profile combined with the water vapor mixing ratio obtained from the ro-vibrational Raman channel is used to estimate the relative humidity.

  8. AeroCom INSITU Project: Comparing modeled and measured aerosol optical properties

    NASA Astrophysics Data System (ADS)

    Andrews, Elisabeth; Schmeisser, Lauren; Schulz, Michael; Fiebig, Markus; Ogren, John; Bian, Huisheng; Chin, Mian; Easter, Richard; Ghan, Steve; Kokkola, Harri; Laakso, Anton; Myhre, Gunnar; Randles, Cynthia; da Silva, Arlindo; Stier, Phillip; Skeie, Ragnehild; Takemura, Toshihiko; van Noije, Twan; Zhang, Kai

    2016-04-01

    AeroCom, an open international collaboration of scientists seeking to improve global aerosol models, recently initiated a project comparing model output to in-situ, surface-based measurements of aerosol optical properties. The model/measurement comparison project, called INSITU, aims to evaluate the performance of a suite of AeroCom aerosol models with site-specific observational data in order to inform iterative improvements to model aerosol modules. Surface in-situ data has the unique property of being traceable to physical standards, which is an asset in accomplishing the overall goal of bettering the accuracy of aerosols processes and the predicative capability of global climate models. Here we compare dry, in-situ aerosol scattering and absorption data from ~75 surface, in-situ sites from various global aerosol networks (including NOAA, EUSAAR/ACTRIS and GAW) with a simulated optical properties from a suite of models participating in the AeroCom project. We report how well models reproduce aerosol climatologies for a variety of time scales, aerosol characteristics and behaviors (e.g., aerosol persistence and the systematic relationships between aerosol optical properties), and aerosol trends. Though INSITU is a multi-year endeavor, preliminary phases of the analysis suggest substantial model biases in absorption and scattering coefficients compared to surface measurements, though the sign and magnitude of the bias varies with location. Spatial patterns in the biases highlight model weaknesses, e.g., the inability of models to properly simulate aerosol characteristics at sites with complex topography. Additionally, differences in modeled and measured systematic variability of aerosol optical properties suggest that some models are not accurately capturing specific aerosol behaviors, for example, the tendency of in-situ single scattering albedo to decrease with decreasing aerosol extinction coefficient. The endgoal of the INSITU project is to identify specific

  9. A closure study of aerosol optical properties at a regional background mountainous site in Eastern China.

    PubMed

    Yuan, Liang; Yin, Yan; Xiao, Hui; Yu, Xingna; Hao, Jian; Chen, Kui; Liu, Chao

    2016-04-15

    There is a large uncertainty in evaluating the radiative forcing from aerosol-radiation and aerosol-cloud interactions due to the limited knowledge on aerosol properties. In-situ measurements of aerosol physical and chemical properties were carried out in 2012 at Mt. Huang (the Yellow Mountain), a continental background mountainous site in eastern China. An aerosol optical closure study was performed to verify the model outputs by using the measured aerosol optical properties, in which a spherical Mie model with assumptions of external and core-shell mixtures on the basis of a two-component optical aerosol model and high size-segregated element carbon (EC) ratio was applied. Although the spherical Mie model would underestimate the real scattering with increasing particle diameters, excellent agreement between the calculated and measured values was achieved with correlation coefficients above 0.98. Sensitivity experiments showed that the EC ratio had a negligible effect on the calculated scattering coefficient, but largely influenced the calculated absorption coefficient. The high size-segregated EC ratio averaged over the study period in the closure was enough to reconstruct the aerosol absorption coefficient in the Mie model, indicating EC size resolution was more important than time resolution in retrieving the absorption coefficient in the model. The uncertainties of calculated scattering and absorption coefficients due to the uncertainties of measurements and model assumptions yielded by a Monte Carlo simulation were ±6% and ±14% for external mixture and ±9% and ±31% for core-shell mixture, respectively. This study provided an insight into the inherent relationship between aerosol optical properties and physicochemical characteristics in eastern China, which could supplement the database of aerosol optical properties for background sites in eastern China and provide a method for regions with similar climate. PMID:26851881

  10. The New MODIS-Terra, and the Proposed COBRA Mission: First Global Aerosol Distribution and Properties Over Land and Ocean, and Plans to Measure Global Black Carbon Absorption Over the Ocean Glint

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Tanre, Didier; Remer, Lorraine; Martins, Vanderlei; Schoeberl, Mark; Lau, William K. M. (Technical Monitor)

    2001-01-01

    The MODIS instrument was launched on the NASA Terra satellite in Dec. 1999. Since last Oct, the sensor and the aerosol algorithm reached maturity and provide global daily retrievals of aerosol optical thickness and properties. MODIS has 36 spectral channels in the visible to IR with resolution down to 250 m. This allows accurate cloud screening and multi-spectral aerosol retrievals. We derive the aerosol optical thickness over the ocean and most of the land areas, distinguishing between fine (mainly man-made aerosol) and coarse (mainly natural) aerosol particles. New methods to derive the aerosol absorption of sunlight are also being developed. These measurements are use to track different aerosol sources, transport and the radiative forcing at the top and bottom of the atmosphere. However MODIS or any present satellite sensor cannot measure absorption by Black Carbon over the oceans, a critical component in studying climate change and human health. For this purpose we propose the COBRA mission that observes the ocean at glint and off glint simultaneously measuring the spectral polarized light and deriving precisely the aerosol absorption.

  11. CO2 laser photoacoustic measurements of ethanol absorption coefficients within infrared region of 9.2-10.8 μm.

    PubMed

    Ivascu, I R; Matei, C E; Patachia, M; Bratu, A M; Dumitras, D C

    2016-06-15

    Absorption coefficients of the ethanol vapors at atmospheric pressure and room temperature were measured by photoacoustic technique using a cw, line-tunable, frequency-stabilized CO2 laser as radiation source. The spectrum of the employed CO2 laser includes 54 lines with wavelengths in the infrared region of 9.2-10.8μm and power levels up to 4.7W. Measurements revealed a predominant absorption for ethanol within 9.4μm band of the CO2 laser spectrum, where the highest values of the absorption coefficients were recorded: 3.68cm(-1)atm(-1) at 9R(20) line and 3.65cm(-1)atm(-1) at 9R(22) line. The estimated detection range covers six orders of magnitude, from a minimum of 30ppbV to a maximum of 4% concentration of ethanol in nitrogen, which proves the suitability of the photoacoustic technique for accurate measurements of the ethanol concentration in various applications. PMID:27045783

  12. CO2 laser photoacoustic measurements of ethanol absorption coefficients within infrared region of 9.2-10.8 μm

    NASA Astrophysics Data System (ADS)

    Ivascu, I. R.; Matei, C. E.; Patachia, M.; Bratu, A. M.; Dumitras, D. C.

    2016-06-01

    Absorption coefficients of the ethanol vapors at atmospheric pressure and room temperature were measured by photoacoustic technique using a cw, line-tunable, frequency-stabilized CO2 laser as radiation source. The spectrum of the employed CO2 laser includes 54 lines with wavelengths in the infrared region of 9.2-10.8 μm and power levels up to 4.7 W. Measurements revealed a predominant absorption for ethanol within 9.4 μm band of the CO2 laser spectrum, where the highest values of the absorption coefficients were recorded: 3.68 cm- 1 atm- 1 at 9R(20) line and 3.65 cm- 1 atm- 1 at 9R(22) line. The estimated detection range covers six orders of magnitude, from a minimum of 30 ppbV to a maximum of 4% concentration of ethanol in nitrogen, which proves the suitability of the photoacoustic technique for accurate measurements of the ethanol concentration in various applications.

  13. Characterization of penetration depth as a function of optical fiber separation at various absorption and scatter coefficients for a noninvasive metabolic sensor

    NASA Astrophysics Data System (ADS)

    DeMilo, Charles; Brukilacchio, Thomas; Soller, Babs R.; Soyemi, Olusola

    2004-06-01

    A visible-near IR (500-1,000nm) fiber optic sensor is under development that is intended to non-invasively assess muscle metabolism through the measurement of tissue pH and oxygen partial pressure. These parameters are calculated from the spectra of hemoglobin and myoglobin in muscle. The sensor consists of transmit (illumination) fibers and receive (detection) fibers that are coupled to a spectrometer. Light from the probe must penetrate below the surface of the skin and into a 5-10mm thick layer of muscle. A study was conducted to quantify the relationship between transmit and receive fiber separation and sensor penetration depth below the surface of the skin. A liquid phantom was created to replicate the absorption (μa) and reduced scatter coefficient (μs') profiles typically found in human blood and tissue. The phantom consisted of a solution of Intralipid and India ink in the appropriate concentrations to achieve desired reduced scatter coefficient and absorption profiles. The reduced scatter coefficient of the liquid phantom was achieved to an accuracy of +/-10% compared to previously published data. A fixed illumination fiber and translatable detector fiber were placed in the liquid phantom, and the fiber separation was varied from 3-40mm. Values of μa and μs' varied from 0.03-0.40 cm-1 and 5.0-15.0 cm-1 respectively. Results from the experiment demonstrate a strong correlation between penetration depth and fiber separation. Additionally, it was found that penetration depth was not substantially influenced by absorption and scatter concentration. As signal-to-noise is an important parameter in many non-invasive biomedical applications, the relative signal as a function of fiber separation was determined to follow an exponential relationship.

  14. A Multi-Band Analytical Algorithm for Deriving Absorption and Backscattering Coefficients from Remote-Sensing Reflectance of Optically Deep Waters

    NASA Technical Reports Server (NTRS)

    Lee, Zhong-Ping; Carder, Kendall L.

    2001-01-01

    A multi-band analytical (MBA) algorithm is developed to retrieve absorption and backscattering coefficients for optically deep waters, which can be applied to data from past and current satellite sensors, as well as data from hyperspectral sensors. This MBA algorithm applies a remote-sensing reflectance model derived from the Radiative Transfer Equation, and values of absorption and backscattering coefficients are analytically calculated from values of remote-sensing reflectance. There are only limited empirical relationships involved in the algorithm, which implies that this MBA algorithm could be applied to a wide dynamic range of waters. Applying the algorithm to a simulated non-"Case 1" data set, which has no relation to the development of the algorithm, the percentage error for the total absorption coefficient at 440 nm a (sub 440) is approximately 12% for a range of 0.012 - 2.1 per meter (approximately 6% for a (sub 440) less than approximately 0.3 per meter), while a traditional band-ratio approach returns a percentage error of approximately 30%. Applying it to a field data set ranging from 0.025 to 2.0 per meter, the result for a (sub 440) is very close to that using a full spectrum optimization technique (9.6% difference). Compared to the optimization approach, the MBA algorithm cuts the computation time dramatically with only a small sacrifice in accuracy, making it suitable for processing large data sets such as satellite images. Significant improvements over empirical algorithms have also been achieved in retrieving the optical properties of optically deep waters.

  15. The impact of absorption coefficient on polarimetric determination of Berry phase based depth resolved characterization of biomedical scattering samples: a polarized Monte Carlo investigation

    SciTech Connect

    Baba, Justin S; Koju, Vijay; John, Dwayne O

    2016-01-01

    The modulation of the state of polarization of photons due to scatter generates associated geometric phase that is being investigated as a means for decreasing the degree of uncertainty in back-projecting the paths traversed by photons detected in backscattered geometry. In our previous work, we established that polarimetrically detected Berry phase correlates with the mean photon penetration depth of the backscattered photons collected for image formation. In this work, we report on the impact of state-of-linear-polarization (SOLP) filtering on both the magnitude and population distributions of image forming detected photons as a function of the absorption coefficient of the scattering sample. The results, based on Berry phase tracking implemented Polarized Monte Carlo Code, indicate that sample absorption plays a significant role in the mean depth attained by the image forming backscattered detected photons.

  16. Determination of mass attenuation coefficient by numerical absorption calibration with Monte-Carlo simulations at 59.54 keV

    NASA Astrophysics Data System (ADS)

    Degrelle, D.; Mavon, C.; Groetz, J.-E.

    2016-04-01

    This study presents a numerical method in order to determine the mass attenuation coefficient of a sample with an unknown chemical composition at low energy. It is compared with two experimental methods: a graphic method and a transmission method. The method proposes to realise a numerical absorption calibration curve to process experimental results. Demineralised water with known mass attenuation coefficient (0.2066cm2g-1 at 59.54 keV) is chosen to confirm the method. 0.1964 ± 0.0350cm2g-1 is the average value determined by the numerical method, that is to say less than 5% relative deviation compared to more than 47% for the experimental methods.

  17. A wave based method to predict the absorption, reflection and transmission coefficient of two-dimensional rigid frame porous structures with periodic inclusions

    NASA Astrophysics Data System (ADS)

    Deckers, Elke; Claeys, Claus; Atak, Onur; Groby, Jean-Philippe; Dazel, Olivier; Desmet, Wim

    2016-05-01

    This paper presents an extension to the Wave Based Method to predict the absorption, reflection and transmission coefficients of a porous material with an embedded periodic set of inclusions. The porous unit cell is described using the Multi-Level methodology and by embedding Bloch-Floquet periodicity conditions in the weighted residual scheme. The dynamic pressure field in the semi-infinite acoustic domains is approximated using a novel wave function set that fulfils the Helmholtz equation, the Bloch-Floquet periodicity conditions and the Sommerfeld radiation condition. The method is meshless and computationally efficient, which makes it well suited for optimisation studies.

  18. Bias in Dobson total ozone measurements at high latitudes due to approximations in calculations of ozone absorption coefficients and air mass

    NASA Astrophysics Data System (ADS)

    Bernhard, G.; Evans, R. D.; Labow, G. J.; Oltmans, S. J.

    2005-05-01

    The Dobson spectrophotometer is the primary standard instrument for ground-based measurements of total column ozone. The accuracy of its data depends on the knowledge of ozone absorption coefficients used for data reduction. We document an error in the calculations that led to the set of absorption coefficients currently recommended by the World Meteorological Organisation (WMO). This error has little effect because an empirical adjustment was applied to the original calculations before the coefficients were adopted by WMO. We provide evidence that this adjustment was physically sound. The coefficients recommended by WMO are applied in the Dobson network without correction for the temperature dependence of the ozone absorption cross sections. On the basis of data measured by Dobson numbers 80 and 82, which were operated by the National Oceanic and Atmospheric Administration (NOAA) Climate Monitoring and Diagnostics Laboratory at the South Pole, we find that omission of temperature corrections may lead to systematic errors in Dobson ozone data of up to 4%. The standard Dobson ozone retrieval method further assumes that the ozone layer is located at a fixed height. This approximation leads to errors in air mass calculations, which are particularly relevant at high latitudes where ozone measurements are performed at large solar zenith angles (SZA). At the South Pole, systematic errors caused by this approximation may exceed 2% for SZAs larger than 80°. The bias is largest when the vertical ozone distribution is distorted by the "ozone hole" and may lead to underestimation of total ozone by 4% at SZA = 85° (air mass 9). Dobson measurements at the South Pole were compared with ozone data from a collocated SUV-100 UV spectroradiometer and Version 8 overpass data from NASA's Total Ozone Mapping Spectrometer (TOMS). Uncorrected Dobson ozone values tend to be lower than data from the two other instruments when total ozone is below 170 Dobson units or SZAs are larger than

  19. Normalized-constraint method for minimizing interparameter cross-talk in reconstructed images of spatially heterogeneous scattering and absorption coefficients

    NASA Astrophysics Data System (ADS)

    Pei, Yaling; Graber, Harry L.; Barbour, Randall L.

    2001-06-01

    In this report, we present a method to reduce the cross-talk problem in optical tomography. The method described is an extension of a previously reported perturbation formulation related to relative detector values, and employs a weight matrix scaling technique together with a constrained CGD method for imaging reconstruction. Results from numerical and experimental studies using DC measurement data demonstrate that the approach can effectively isolate absorption and scattering heterogeneities, even for complex combinations of perturbations in optical properties. The derive method is remarkably stable to errors originating from an insufficiently accurate estimate of properties of the reference medium.

  20. Donor impurity-related linear and nonlinear intraband optical absorption coefficients in quantum ring: effects of applied electric field and hydrostatic pressure

    PubMed Central

    2012-01-01

    The linear and nonlinear intraband optical absorption coefficients in GaAs three-dimensional single quantum rings are investigated. Taking into account the combined effects of hydrostatic pressure and electric field, applied along the growth direction of the heterostructure, the energies of the ground and first excited states of a donor impurity have been found using the effective mass approximation and a variational method. The energies of these states are examined as functions of the dimensions of the structure, electric field, and hydrostatic pressure. We have also investigated the dependencies of the linear, nonlinear, and total optical absorption coefficients as a function of incident photon energy for several configurations of the system. It is found that the variation of distinct sizes of the structure leads to either a redshift and/or a blueshift of the resonant peaks of the intraband optical spectrum. In addition, we have found that the application of an electric field leads to a redshift, whereas the influence of hydrostatic pressure leads to a blueshift (in the case of on-ring-center donor impurity position) of the resonant peaks of the intraband optical spectrum. PMID:23021497

  1. Absorption coefficient and relative refractive index change for a double δ-doped GaAs MIGFET-like structure: Electric and magnetic field effects

    NASA Astrophysics Data System (ADS)

    Martínez-Orozco, J. C.; Rodríguez-Magdaleno, K. A.; Suárez-López, J. R.; Duque, C. A.; Restrepo, R. L.

    2016-04-01

    In this work we present theoretical results for the electronic structure as well as for the absorption coefficient and relative refractive index change for an asymmetric double δ-doped like confining potential in the active region of a Multiple Independent Gate Field Effect Transistor (MIGFET) system. We model the potential profile as a double δ-doped like potential profile between two Schottky (parabolic) potential barriers that are just the main characteristics of the MIGFET configuration. We investigate the effect of external electromagnetic fields in this kind of quantum structures, in particular we applied a homogeneous constant electric field in the growth direction z as well as a homogeneous constant magnetic field in the x-direction. In general we conclude that by applying electromagnetic fields we can modulate the resonant peaks of the absorption coefficient as well as their energy position. Also with such probes it is possible to control the nodes and amplitude of the relative refractive index changes related to resonant intersubband optical transitions.

  2. Donor impurity-related linear and nonlinear intraband optical absorption coefficients in quantum ring: effects of applied electric field and hydrostatic pressure.

    PubMed

    Barseghyan, Manuk G; Restrepo, Ricardo L; Mora-Ramos, Miguel E; Kirakosyan, Albert A; Duque, Carlos A

    2012-01-01

    : The linear and nonlinear intraband optical absorption coefficients in GaAs three-dimensional single quantum rings are investigated. Taking into account the combined effects of hydrostatic pressure and electric field, applied along the growth direction of the heterostructure, the energies of the ground and first excited states of a donor impurity have been found using the effective mass approximation and a variational method. The energies of these states are examined as functions of the dimensions of the structure, electric field, and hydrostatic pressure. We have also investigated the dependencies of the linear, nonlinear, and total optical absorption coefficients as a function of incident photon energy for several configurations of the system. It is found that the variation of distinct sizes of the structure leads to either a redshift and/or a blueshift of the resonant peaks of the intraband optical spectrum. In addition, we have found that the application of an electric field leads to a redshift, whereas the influence of hydrostatic pressure leads to a blueshift (in the case of on-ring-center donor impurity position) of the resonant peaks of the intraband optical spectrum. PMID:23021497

  3. Effects of soot absorption coefficient-Planck function correlation on radiative heat transfer in oxygen-enriched propane turbulent diffusion flame

    NASA Astrophysics Data System (ADS)

    Consalvi, J. L.; Nmira, F.

    2016-03-01

    The main objective of this article is to quantify the influence of the soot absorption coefficient-Planck function correlation on radiative loss and flame structure in an oxygen-enhanced propane turbulent diffusion flame. Calculations were run with and without accounting for this correlation by using a standard k-ε model and the steady laminar flamelet model (SLF) coupled to a joint Probability Density Function (PDF) of mixture fraction, enthalpy defect, scalar dissipation rate, and soot quantities. The PDF transport equation is solved by using a Stochastic Eulerian Field (SEF) method. The modeling of soot production is carried out by using a flamelet-based semi-empirical acetylene/benzene soot model. Radiative heat transfer is modeled by using a wide band correlated-k model and turbulent radiation interactions (TRI) are accounted for by using the Optically-Thin Fluctuation Approximation (OTFA). Predicted soot volume fraction, radiant wall heat flux distribution and radiant fraction are in good agreement with the available experimental data. Model results show that soot absorption coefficient and Planck function are negatively correlated in the region of intense soot emission. Neglecting this correlation is found to increase significantly the radiative loss leading to a substantial impact on flame structure in terms of mean and rms values of temperature. In addition mean and rms values of soot volume fraction are found to be less sensitive to the correlation than temperature since soot formation occurs mainly in a region where its influence is low.

  4. Absorption and Attenuation Coefficients Using the WET Labs ac-s in the Mid-Atlantic Bight: Field Measurements and Data Analysis

    NASA Technical Reports Server (NTRS)

    Ohi, Nobuaki; Makinen, Carla P.; Mitchell, Richard; Moisan, Tiffany A.

    2008-01-01

    Ocean color algorithms are based on the parameterization of apparent optical properties as a function of inherent optical properties. WET Labs underwater absorption and attenuation meters (ac-9 and ac-s) measure both the spectral beam attenuation [c (lambda)] and absorption coefficient [a (lambda)]. The ac-s reports in a continuous range of 390-750 nm with a band pass of 4 nm, totaling approximately 83 distinct wavelengths, while the ac-9 reports at 9 wavelengths. We performed the ac-s field measurements at nine stations in the Mid-Atlantic Bight from water calibrations to data analysis. Onboard the ship, the ac-s was calibrated daily using Milli Q-water. Corrections for the in situ temperature and salinity effects on optical properties of water were applied. Corrections for incomplete recovery of the scattered light in the ac-s absorption tube were performed. The fine scale of spectral and vertical distributions of c (lambda) and a (lambda) were described from the ac-s. The significant relationships between a (674) and that of spectrophotometric analysis and chlorophyll a concentration of discrete water samples were observed.

  5. Characterization of thin poly(dimethylsiloxane)-based tissue-simulating phantoms with tunable reduced scattering and absorption coefficients at visible and near-infrared wavelengths.

    PubMed

    Greening, Gage J; Istfan, Raeef; Higgins, Laura M; Balachandran, Kartik; Roblyer, Darren; Pierce, Mark C; Muldoon, Timothy J

    2014-01-01

    Optical phantoms are used in the development of various imaging systems. For certain applications, the development of thin phantoms that simulate the physical size and optical properties of tissue is important. Here, we demonstrate a method for producing thin phantom layers with tunable optical properties using poly(dimethylsiloxane) (PDMS) as a substrate material. The thickness of each layer (between 115 and 880 μm) was controlled using a spin coater. The reduced scattering and absorption coefficients were controlled using titanium dioxide and alcohol-soluble nigrosin, respectively. These optical coefficients were quantified at six discrete wavelengths (591, 631, 659, 691, 731, and 851 nm) at varying concentrations of titanium dioxide and nigrosin using spatial frequency domain imaging. From the presented data, we provide lookup tables to determine the appropriate concentrations of scattering and absorbing agents to be used in the design of PDMS-based phantoms with specific optical coefficients. In addition, heterogeneous phantoms mimicking the layered features of certain tissue types may be fabricated from multiple stacked layers, each with custom optical properties. These thin, tunable PDMS optical phantoms can simulate many tissue types and have broad imaging calibration applications in endoscopy, diffuse optical spectroscopic imaging, and optical coherence tomography, etc. PMID:25387084

  6. The in vitro permeability coefficient and short-term absorption rates for vinyl toluene using human cadaver skin mounted in a static diffusion cell model.

    PubMed

    Fasano, William J; Baer, Kevin N

    2006-01-01

    Vinyl toluene is one of several methylstyrene monomers that provide improved performance in resins for specialty paints, hydrocarbon resins for adhesives, specialty polymers, and unsaturated polyester resins. The purpose of this study was to determine a permeability coefficient (Kp) and short-term absorption rate for vinyl toluene using human cadaver skin mounted in an in vitro static diffusion cell model with an exposure area of 0.64 cm2. For the Kp determination, vinyl toluene was applied at a rate of 100 microL/cm2 to 6 skin replicates representing 4 human subjects. Serial receptor fluid samples were collected at 1, 2, 4, 8, 12, 24, 36, and 48 h postapplication and analyzed for vinyl toluene by HPLC-UV. Based on the slope at steady-state (203.3 microg cm(-2) h(-1) +/- 120.0 microg cm(-2) h(-1)) and the concentration of the applied dose of vinyl toluene, taken as its density (894,600 microg/cm3), the Kp was calculated to be 2.27 x 10(-4) cm/h (+/-1.34 x 10(-4) cm/h). For the short-term absorption experiments, 12 skin replicates representing 3 human subjects were employed. Following 10- and 60-min exposures to a finite dose of vinyl toluene (10 microL/cm2), the respective short-term absorption rates were calculated to be 66.0 (+/-29.9) and 104.2 (+/-63.0) microg cm(-2) h(-1). These data provide industrial hygienists and safety personnel values to estimate the amount of vinyl toluene that may be absorbed via the dermal exposure route, given a variety of exposure scenarios, and the time it takes (skin absorption time) to reach a body burden equal to the Occupational Safety and Health Administrative permissible exposure level (OSHA PEL) or ACGIH TLV. PMID:16455589

  7. Seasonal variation of vertical distribution of aerosol single scattering albedo over Indian sub-continent: RAWEX aircraft observations

    NASA Astrophysics Data System (ADS)

    Suresh Babu, S.; Nair, Vijayakumar S.; Gogoi, Mukunda M.; Krishna Moorthy, K.

    2016-01-01

    To characterize the vertical distribution of aerosols and its seasonality (especially the single scattering albedo, SSA) extensive profiling of aerosol scattering and absorption coefficients have been carried out using an instrumented aircraft from seven base stations spread across the Indian mainland during winter 2012 and spring/pre-monsoon 2013 under the Regional Aerosol Warming Experiment (RAWEX). Spatial variation of the vertical profiles of the asymmetry parameter, the wavelength exponent of the absorption coefficient and the single scattering albedo, derived from the measurements, are used to infer the source characteristics of winter and pre-monsoon aerosols as well as the seasonality of free tropospheric aerosols. The relatively high value of the wavelength exponent of absorption coefficient over most of the regions indicates the contribution from biomass burning and dust aerosols up to lower free tropospheric altitudes. A clear enhancement in aerosol loading and its absorbing nature is seen at lower free troposphere levels (above the planetary boundary layer) over the entire mainland during spring/pre-m