Science.gov

Sample records for aerosol activation parameterization

  1. Incorporating an advanced aerosol activation parameterization into WRF-CAM5: Model evaluation and parameterization intercomparison

    SciTech Connect

    Zhang, Yang; Zhang, Xin; Wang, Kai; He, Jian; Leung, Lai-Yung R.; Fan, Jiwen; Nenes, Athanasios

    2015-07-22

    Aerosol activation into cloud droplets is an important process that governs aerosol indirect effects. The advanced treatment of aerosol activation by Fountoukis and Nenes (2005) and its recent updates, collectively called the FN series, have been incorporated into a newly developed regional coupled climate-air quality model based on the Weather Research and Forecasting model with the physics package of the Community Atmosphere Model version 5 (WRF-CAM5) to simulate aerosol-cloud interactions in both resolved and convective clouds. The model is applied to East Asia for two full years of 2005 and 2010. A comprehensive model evaluation is performed for model predictions of meteorological, radiative, and cloud variables, chemical concentrations, and column mass abundances against satellite data and surface observations from air quality monitoring sites across East Asia. The model performs overall well for major meteorological variables including near-surface temperature, specific humidity, wind speed, precipitation, cloud fraction, precipitable water, downward shortwave and longwave radiation, and column mass abundances of CO, SO2, NO2, HCHO, and O3 in terms of both magnitudes and spatial distributions. Larger biases exist in the predictions of surface concentrations of CO and NOx at all sites and SO2, O3, PM2.5, and PM10 concentrations at some sites, aerosol optical depth, cloud condensation nuclei over ocean, cloud droplet number concentration (CDNC), cloud liquid and ice water path, and cloud optical thickness. Compared with the default Abdul-Razzack Ghan (2000) parameterization, simulations with the FN series produce ~107–113% higher CDNC, with half of the difference attributable to the higher aerosol activation fraction by the FN series and the remaining half due to feedbacks in subsequent cloud microphysical processes. With the higher CDNC, the FN series are more skillful in simulating cloud water path, cloud optical thickness, downward shortwave radiation

  2. Incorporating an advanced aerosol activation parameterization into WRF-CAM5: Model evaluation and parameterization intercomparison

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Zhang, Xin; Wang, Kai; He, Jian; Leung, L. Ruby; Fan, Jiwen; Nenes, Athanasios

    2015-07-01

    Aerosol activation into cloud droplets is an important process that governs aerosol indirect effects. The advanced treatment of aerosol activation by Fountoukis and Nenes (2005) and its recent updates, collectively called the FN series, have been incorporated into a newly developed regional coupled climate-air quality model based on the Weather Research and Forecasting model with the physics package of the Community Atmosphere Model version 5 (WRF-CAM5) to simulate aerosol-cloud interactions in both resolved and convective clouds. The model is applied to East Asia for two full years of 2005 and 2010. A comprehensive model evaluation is performed for model predictions of meteorological, radiative, and cloud variables, chemical concentrations, and column mass abundances against satellite data and surface observations from air quality monitoring sites across East Asia. The model performs overall well for major meteorological variables including near-surface temperature, specific humidity, wind speed, precipitation, cloud fraction, precipitable water, downward shortwave and longwave radiation, and column mass abundances of CO, SO2, NO2, HCHO, and O3 in terms of both magnitudes and spatial distributions. Larger biases exist in the predictions of surface concentrations of CO and NOx at all sites and SO2, O3, PM2.5, and PM10 concentrations at some sites, aerosol optical depth, cloud condensation nuclei over ocean, cloud droplet number concentration (CDNC), cloud liquid and ice water path, and cloud optical thickness. Compared with the default Abdul-Razzack Ghan (2000) parameterization, simulations with the FN series produce ~107-113% higher CDNC, with half of the difference attributable to the higher aerosol activation fraction by the FN series and the remaining half due to feedbacks in subsequent cloud microphysical processes. With the higher CDNC, the FN series are more skillful in simulating cloud water path, cloud optical thickness, downward shortwave radiation

  3. Evaluating the Role of Aerosol Mixing State in Cloud Droplet Nucleation using a New Activation Parameterization

    NASA Astrophysics Data System (ADS)

    Rothenberg, D. A.; Wang, C.

    2013-12-01

    An important source contributing to uncertainty in simulations with global climate models arises from the influence of aerosols on cloud properties. These so-called aerosol indirect effects arise from a single coupling in the model, representing how aerosols activate and serve as cloud condensation nuclei and ultimately cloud droplets. While it is possible to build explicit numerical models which describe this process in detail, these class of tools are untenable for use in global climate models due to their complexity. Instead, physically- or empirically-based parameterizations of activation are used in their place to efficiently approximate cloud droplet nucleation as a function of a few meteorological and aerosol physical/chemical properties. As global climate models are outfitted with more complex, size- and mixing state-resolving aerosol models, activation parameterizations are increasingly called upon to handle aerosol populations against which their performance has not been explicitly benchmarked. Here, a simple scheme is proposed to evaluate the performance of activation parameterizations against a spectrum of mixing states, and two schemes commonly used in global models are studied using this framework. It is shown that each scheme exhibits systematic biases when a complex mixing state is present. To help resolve these issues, a new scheme is derived using Polynomial Chaos Expansion to build meta-models representing a full complexity parcel model. The meta-models are shown to accurately handle activation in both single-mode and mixture cases. In addition, a global sensitivity analysis is applied to benchmark the performance of the meta-models and the activation parameterizations against a detailed parcel model, and it is shown that the meta-models tend to more accurately attribute variability in activation dynamics to each input parameter and their interactions with others when compared to the physically-based parameterizations. A variety of experiments

  4. Regional Biases in Droplet Activation Parameterizations: Strong Influence on Aerosol Second Indirect Effect in the Community Atmosphere Model v5.

    NASA Astrophysics Data System (ADS)

    Morales, R.; Nenes, A.

    2014-12-01

    Aerosol-cloud interactions constitute one of the most uncertain aspects of anthropogenic climate change estimates. The magnitude of these interactions as represented in climate models strongly depends on the process of aerosol activation. This process is the most direct physical link between aerosols and cloud microphysical properties. Calculation of droplet number in GCMs requires the computation of new droplet formation (i.e., droplet activation), through physically based activation parameterizations. Considerable effort has been placed in ensuring that droplet activation parameterizations have a physically consistent response to changes in aerosol number concentration. However, recent analyses using an adjoint sensitivity approach showed that parameterizations can exhibit considerable biases in their response to other aerosol properties, such as aerosol modal diameter or to the aerosol chemical composition. This is a potentially important factor in estimating aerosol indirect effects since changes in aerosol properties from pre-industrial times to present day exhibit a very strong regional signature. In this work we use the Community Atmosphere Model (CAM5) to show that the regional imprint of the changes in aerosol properties during the last century interacts with the droplet activation parameterization in a way that these biases are amplified over climatically relevant regions. Two commonly used activation routines, the CAM5 default, Abdul-Razzak and Ghan parameterization, as well as the Fountoukis and Nenes parameterization are used in this study. We further explored the impacts of Nd parameterization biases in the first and second aerosol indirect effects separately, by performing simulations were droplet number was not allowed to intervene in the precipitation initiation process. The simulations performed show that an unphysical response to changes in the diameter of accumulation mode aerosol translates into extremely high Nd concentrations over South

  5. Parameterization of the Cloud Nucleating Activity of Fresh, Aged, and Internally-Mixed Organic Aerosols

    NASA Astrophysics Data System (ADS)

    Kreidenweis, S.; Petters, M.; Demott, P.; Prenni, A.; Ziemann, P.

    2006-12-01

    Carbonaceous particle types affect global climate, visibility, and human health, but their primary and secondary sources, sinks, and tropospheric lifetimes are highly uncertain. The size and hygroscopicity of particles, and in particular their activity as cloud condensation nuclei (CCN), plays a large role in determining their atmospheric impacts and lifetimes. However, hygroscopicity is difficult to parameterize for many organic species for which no thermodynamic data exist, and for complex, multicomponent aerosols of undefined composition. We propose a simple method to describe the relationship between dry particle diameter and CCN activity using a single hygroscopicity parameter, κ. We derive values of κ from fitting of experimental CCN-activity data from the literature and from recent experiments, including oxidation-aged organic particles and secondary organic aerosols. Values of κ are between 0.5 and 2 for highly-CCN- active salts such as sodium chloride, between 0.01 and 0.5 for slightly to very hygroscopic organic aerosols such as those produced in biomass burning and as secondary organic aerosols, and 0 for nonhygroscopic components. The hygroscopicity of internal mixtures can be calculated as a volume fraction weighted average of the hygroscopicity parameters of the individual species comprising the mixture. Aging of aerosol, understood as changes in hygroscopicity due to condensation of hydrophilic species, coagulation of aerosol populations, or heterogeneous chemical reactions, are described conveniently by changes in κ. Our studies show that oxidative aging that proceeds by addition of functional groups to the CHx carbon backbone leads to only small changes in κ, and thus the process alone is inefficient at rendering small, initially- hydrophobic primary organic particles capable of being scavenged by cloud-drop nucleation. Other processes, such as coagulation and condensation, control the rate of hydrophobic-to-hydrophilic conversion of primary

  6. Assessment of aerosol-cloud interactions during southern African biomass burning activity, employing cloud parameterizations

    NASA Astrophysics Data System (ADS)

    Wiston, Modise; McFiggans, Gordon; Schultz, David

    2015-04-01

    In this study, we perform a simulation of the spatial distributions of particle and gas concentrations from a significantly large source of pollution event during a dry season in southern Africa and their interactions with cloud processes. Specific focus is on the extent to which cloud-aerosol interactions are affected by various inputs (i.e. emissions) and parameterizations and feedback mechanisms in a coupled mesoscale chemistry-meteorology model -herein Weather Research and Forecasting model with chemistry (WRF-Chem). The southern African dry season (May-Sep) is characterised by biomass burning (BB) type of pollution. During this period, BB particles are frequently observed over the subcontinent, at the same time a persistent deck of stratocumulus covers the south West African coast, favouring long-range transport over the Atlantic Ocean of aerosols above clouds. While anthropogenic pollutants tend to spread more over the entire domain, biomass pollutants are concentrated around the burning areas, especially the savannah and tropical rainforest of the Congo Basin. BB is linked to agricultural practice at latitudes south of 10° N. During an intense burning event, there is a clear signal of strong interactions of aerosols and cloud microphysics. These species interfere with the radiative budget, and directly affect the amount of solar radiation reflected and scattered back to space and partly absorbed by the atmosphere. Aerosols also affect cloud microphysics by acting as cloud condensation nuclei (CCN), modifying precipitation pattern and the cloud albedo. Key area is to understand the role of pollution on convective cloud processes and its impacts on cloud dynamics. The hypothesis is that an environment of potentially high pollution enables the probability of interactions between co-located aerosols and cloud layers. To investigate this hypothesis, we outline an approach to integrate three elements: i) focusing on regime(s) where there are strong indications of

  7. Characterization and parameterization of aerosol cloud condensation nuclei activation under different pollution conditions.

    PubMed

    Che, H C; Zhang, X Y; Wang, Y Q; Zhang, L; Shen, X J; Zhang, Y M; Ma, Q L; Sun, J Y; Zhang, Y W; Wang, T T

    2016-01-01

    To better understand the cloud condensation nuclei (CCN) activation capacity of aerosol particles in different pollution conditions, a long-term field experiment was carried out at a regional GAW (Global Atmosphere Watch) station in the Yangtze River Delta area of China. The homogeneity of aerosol particles was the highest in clean weather, with the highest active fraction of all the weather types. For pollution with the same visibility, the residual aerosol particles in higher relative humidity weather conditions were more externally mixed and heterogeneous, with a lower hygroscopic capacity. The hygroscopic capacity (κ) of organic aerosols can be classified into 0.1 and 0.2 in different weather types. The particles at ~150 nm were easily activated in haze weather conditions. For CCN predictions, the bulk chemical composition method was closer to observations at low supersaturations (≤0.1%), whereas when the supersaturation was ≥0.2%, the size-resolved chemical composition method was more accurate. As for the mixing state of the aerosol particles, in haze, heavy haze, and severe haze weather conditions CCN predictions based on the internal mixing assumption were robust, whereas for other weather conditions, predictions based on the external mixing assumption were more accurate. PMID:27075947

  8. Characterization and parameterization of aerosol cloud condensation nuclei activation under different pollution conditions

    NASA Astrophysics Data System (ADS)

    Che, H. C.; Zhang, X. Y.; Wang, Y. Q.; Zhang, L.; Shen, X. J.; Zhang, Y. M.; Ma, Q. L.; Sun, J. Y.; Zhang, Y. W.; Wang, T. T.

    2016-04-01

    To better understand the cloud condensation nuclei (CCN) activation capacity of aerosol particles in different pollution conditions, a long-term field experiment was carried out at a regional GAW (Global Atmosphere Watch) station in the Yangtze River Delta area of China. The homogeneity of aerosol particles was the highest in clean weather, with the highest active fraction of all the weather types. For pollution with the same visibility, the residual aerosol particles in higher relative humidity weather conditions were more externally mixed and heterogeneous, with a lower hygroscopic capacity. The hygroscopic capacity (κ) of organic aerosols can be classified into 0.1 and 0.2 in different weather types. The particles at ~150 nm were easily activated in haze weather conditions. For CCN predictions, the bulk chemical composition method was closer to observations at low supersaturations (≤0.1%), whereas when the supersaturation was ≥0.2%, the size-resolved chemical composition method was more accurate. As for the mixing state of the aerosol particles, in haze, heavy haze, and severe haze weather conditions CCN predictions based on the internal mixing assumption were robust, whereas for other weather conditions, predictions based on the external mixing assumption were more accurate.

  9. Characterization and parameterization of aerosol cloud condensation nuclei activation under different pollution conditions

    PubMed Central

    Che, H. C.; Zhang, X. Y.; Wang, Y. Q.; Zhang, L.; Shen, X. J.; Zhang, Y. M.; Ma, Q. L.; Sun, J. Y.; Zhang, Y. W.; Wang, T. T.

    2016-01-01

    To better understand the cloud condensation nuclei (CCN) activation capacity of aerosol particles in different pollution conditions, a long-term field experiment was carried out at a regional GAW (Global Atmosphere Watch) station in the Yangtze River Delta area of China. The homogeneity of aerosol particles was the highest in clean weather, with the highest active fraction of all the weather types. For pollution with the same visibility, the residual aerosol particles in higher relative humidity weather conditions were more externally mixed and heterogeneous, with a lower hygroscopic capacity. The hygroscopic capacity (κ) of organic aerosols can be classified into 0.1 and 0.2 in different weather types. The particles at ~150 nm were easily activated in haze weather conditions. For CCN predictions, the bulk chemical composition method was closer to observations at low supersaturations (≤0.1%), whereas when the supersaturation was ≥0.2%, the size-resolved chemical composition method was more accurate. As for the mixing state of the aerosol particles, in haze, heavy haze, and severe haze weather conditions CCN predictions based on the internal mixing assumption were robust, whereas for other weather conditions, predictions based on the external mixing assumption were more accurate. PMID:27075947

  10. Aerosol water parameterization: a single parameter framework

    NASA Astrophysics Data System (ADS)

    Metzger, S.; Steil, B.; Abdelkader, M.; Klingmüller, K.; Xu, L.; Penner, J. E.; Fountoukis, C.; Nenes, A.; Lelieveld, J.

    2015-11-01

    We introduce a framework to efficiently parameterize the aerosol water uptake for mixtures of semi-volatile and non-volatile compounds, based on the coefficient, νi. This solute specific coefficient was introduced in Metzger et al. (2012) to accurately parameterize the single solution hygroscopic growth, considering the Kelvin effect - accounting for the water uptake of concentrated nanometer sized particles up to dilute solutions, i.e., from the compounds relative humidity of deliquescence (RHD) up to supersaturation (Köhler-theory). Here we extend the νi-parameterization from single to mixed solutions. We evaluate our framework at various levels of complexity, by considering the full gas-liquid-solid partitioning for a comprehensive comparison with reference calculations using the E-AIM, EQUISOLV II, ISORROPIA II models as well as textbook examples. We apply our parameterization in EQSAM4clim, the EQuilibrium Simplified Aerosol Model V4 for climate simulations, implemented in a box model and in the global chemistry-climate model EMAC. Our results show: (i) that the νi-approach enables to analytically solve the entire gas-liquid-solid partitioning and the mixed solution water uptake with sufficient accuracy, (ii) that, e.g., pure ammonium nitrate and mixed ammonium nitrate - ammonium sulfate mixtures can be solved with a simple method, and (iii) that the aerosol optical depth (AOD) simulations are in close agreement with remote sensing observations for the year 2005. Long-term evaluation of the EMAC results based on EQSAM4clim and ISORROPIA II will be presented separately.

  11. Parameterization of Aerosol Sinks in Chemical Transport Models

    NASA Technical Reports Server (NTRS)

    Colarco, Peter

    2012-01-01

    The modelers point of view is that the aerosol problem is one of sources, evolution, and sinks. Relative to evolution and sink processes, enormous attention is given to the problem of aerosols sources, whether inventory based (e.g., fossil fuel emissions) or dynamic (e.g., dust, sea salt, biomass burning). On the other hand, aerosol losses in models are a major factor in controlling the aerosol distribution and lifetime. Here we shine some light on how aerosol sinks are treated in modern chemical transport models. We discuss the mechanisms of dry and wet loss processes and the parameterizations for those processes in a single model (GEOS-5). We survey the literature of other modeling studies. We additionally compare the budgets of aerosol losses in several of the ICAP models.

  12. Research on aerosol profiles and parameterization scheme in Southeast China

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Deng, Tao; Tan, Haobo; Liu, Xiantong; Yang, Honglong

    2016-09-01

    The vertical distribution of the aerosol extinction coefficient serves as a basis for evaluating aerosol radiative forcing and air quality modeling. In this study, MODIS AOD data and ground-based lidar extinction coefficients were employed to verify 6 years (2009-2014) aerosol extinction data obtained via CALIOP for Southeast China. The objective was mainly to provide the parameterization scheme of annual and seasonal aerosol extinction profiles. The results showed that the horizontal and vertical distributions of CALIOP extinction data were highly accurate in Southeast China. The annual average AOD below 2 km accounted for 64% of the total layer, with larger proportions observed in winter (80%) and autumn (80%) and lower proportions observed in summer (70%) and spring (59%). The AOD was maximum in the spring (0.58), followed by the autumn and winter (0.44), and reached a minimum in the summer (0.40). The near-surface extinction coefficient increased from summer, spring, autumn and winter, in that order. The Elterman profile is obviously lower than the profiles observed by CALIOP in Southeast China. The annual average and seasonal aerosol profiles showed an exponential distribution, and could be divided into two sections. Two sections exponential fitting was used in the parameterization scheme. In the first section, the aerosol scale height reached 2200 m with a maximum (3,500 m) in summer and a minimum (1,230 m) in winter, which meant that the aerosol extinction decrease with height slower in summer, but more rapidly in winter. In second section, the aerosol scale height was maximum in spring, which meant that the higher aerosol diffused in spring.

  13. A simple parameterization of aerosol emissions in RAMS

    NASA Astrophysics Data System (ADS)

    Letcher, Theodore

    Throughout the past decade, a high degree of attention has been focused on determining the microphysical impact of anthropogenically enhanced concentrations of Cloud Condensation Nuclei (CCN) on orographic snowfall in the mountains of the western United States. This area has garnered a lot of attention due to the implications this effect may have on local water resource distribution within the Region. Recent advances in computing power and the development of highly advanced microphysical schemes within numerical models have provided an estimation of the sensitivity that orographic snowfall has to changes in atmospheric CCN concentrations. However, what is still lacking is a coupling between these advanced microphysical schemes and a real-world representation of CCN sources. Previously, an attempt to representation the heterogeneous evolution of aerosol was made by coupling three-dimensional aerosol output from the WRF Chemistry model to the Colorado State University (CSU) Regional Atmospheric Modeling System (RAMS) (Ward et al. 2011). The biggest problem associated with this scheme was the computational expense. In fact, the computational expense associated with this scheme was so high, that it was prohibitive for simulations with fine enough resolution to accurately represent microphysical processes. To improve upon this method, a new parameterization for aerosol emission was developed in such a way that it was fully contained within RAMS. Several assumptions went into generating a computationally efficient aerosol emissions parameterization in RAMS. The most notable assumption was the decision to neglect the chemical processes in formed in the formation of Secondary Aerosol (SA), and instead treat SA as primary aerosol via short-term WRF-CHEM simulations. While, SA makes up a substantial portion of the total aerosol burden (much of which is made up of organic material), the representation of this process is highly complex and highly expensive within a numerical

  14. Understanding the contributions of aerosol properties and parameterization discrepancies to droplet number variability in a global climate model

    NASA Astrophysics Data System (ADS)

    Morales Betancourt, R.; Nenes, A.

    2014-05-01

    Aerosol indirect effects in climate models strongly depend on the representation of the aerosol activation process. In this study, we assess the process-level differences across activation parameterizations that contribute to droplet number uncertainty by using the adjoints of the Abdul-Razzak and Ghan (2000) and Fountoukis and Nenes (2005) droplet activation parameterizations in the framework of the Community Atmospheric Model version 5.1 (CAM5.1). The adjoint sensitivities of Nd to relevant input parameters are used to (i) unravel the spatially resolved contribution of aerosol number, mass, and chemical composition to changes in Nd between present-day and pre-industrial simulations and (ii) identify the key variables responsible for the differences in Nd fields and aerosol indirect effect estimates when different activation schemes are used within the same modeling framework. The sensitivities are computed online at minimal computational cost. Changes in aerosol number and aerosol mass concentrations were found to contribute to Nd differences much more strongly than chemical composition effects. The main sources of discrepancy between the activation parameterizations considered were the treatment of the water uptake by coarse mode particles, and the sensitivity of the parameterized Nd accumulation mode aerosol geometric mean diameter. These two factors explain the different predictions of Nd over land and over oceans when these parameterizations are employed. Discrepancies in the sensitivity to aerosol size are responsible for an exaggerated response to aerosol volume changes over heavily polluted regions. Because these regions are collocated with areas of deep clouds, their impact on shortwave cloud forcing is amplified through liquid water path changes. The same framework is also utilized to efficiently explore droplet number uncertainty attributable to hygroscopicity parameter of organic aerosol (primary and secondary). Comparisons between the parameterization

  15. Improving Bulk Microphysics Parameterizations in Simulations of Aerosol Effects

    SciTech Connect

    Wang, Yuan; Fan, Jiwen; Zhang, Renyi; Leung, Lai-Yung R.; Franklin, Charmaine N.

    2013-06-05

    To improve the microphysical parameterizations for simulations of the aerosol indirect effect (AIE) in regional and global climate models, a double-moment bulk microphysical scheme presently implemented in the Weather Research and Forecasting (WRF) model is modified and the results are compared against atmospheric observations and simulations produced by a spectral bin microphysical scheme (SBM). Rather than using prescribed aerosols as in the original bulk scheme (Bulk-OR), a prognostic doublemoment aerosol representation is introduced to predict both the aerosol number concentration and mass mixing ratio (Bulk-2M). The impacts of the parameterizations of diffusional growth and autoconversion and the selection of the embryonic raindrop radius on the performance of the bulk microphysical scheme are also evaluated. Sensitivity modeling experiments are performed for two distinct cloud regimes, maritime warm stratocumulus clouds (SC) over southeast Pacific Ocean from the VOCALS project and continental deep convective clouds (DCC) in the southeast of China from the Department of Energy/ARM Mobile Facility (DOE/AMF) - China field campaign. The results from Bulk-2M exhibit a much better agreement in the cloud number concentration and effective droplet radius in both the SC and DCC cases with those from SBM and field measurements than those from Bulk-OR. In the SC case particularly, Bulk-2M reproduces the observed drizzle precipitation, which is largely inhibited in Bulk-OR. Bulk-2M predicts enhanced precipitation and invigorated convection with increased aerosol loading in the DCC case, consistent with the SBM simulation, while Bulk-OR predicts the opposite behaviors. Sensitivity experiments using four different types of autoconversion schemes reveal that the autoconversion parameterization is crucial in determining the raindrop number, mass concentration, and drizzle formation for warm 2 stratocumulus clouds. An embryonic raindrop size of 40 μm is determined as a more

  16. Parameterizations of Cloud Microphysics and Indirect Aerosol Effects

    SciTech Connect

    Tao, Wei-Kuo

    2014-05-19

    /hail. Each type is described by a special size distribution function containing 33 categories (bins). Atmospheric aerosols are also described using number density size-distribution functions (containing 33 bins). Droplet nucleation (activation) is derived from the analytical calculation of super-saturation, which is used to determine the sizes of aerosol particles to be activated and the corresponding sizes of nucleated droplets. Primary nucleation of each type of ice crystal takes place within certain temperature ranges. A detailed description of these explicitly parameterized processes can be found in Khain and Sednev (1996) and Khain et al. (1999, 2001). 2.3 Case Studies Three cases, a tropical oceanic squall system observed during TOGA COARE (Tropical Ocean and Global Atmosphere Coupled Ocean-Atmosphere Response Experiment, which occurred over the Pacific Ocean warm pool from November 1992 to February 1993), a midlatitude continental squall system observed during PRESTORM (Preliminary Regional Experiment for STORM-Central, which occurred in Kansas and Oklahoma during May-June 1985), and mid-afternoon convection observed during CRYSTAL-FACE (Cirrus Regional Study of Tropical Anvils and Cirrus Layers – Florida Area Cumulus Experiment, which occurred in Florida during July 2002), will be used to examine the impact of aerosols on deep, precipitating systems. 3. SUMMARY of RESULTS • For all three cases, higher CCN produces smaller cloud droplets and a narrower spectrum. Dirty conditions delay rain formation, increase latent heat release above the freezing level, and enhance vertical velocities at higher altitude for all cases. Stronger updrafts, deeper mixed-phase regions, and more ice particles are simulated with higher CCN in good agreement with observations. • In all cases, rain reaches the ground early with lower CCN. Rain suppression is also evident in all three cases with high CCN in good agreement with observations (Rosenfeld, 1999, 2000 and others). Rain

  17. Spectro-microscopy of Ambient Aerosol Particles: Observational Constraints on Mixing State Parameterization

    NASA Astrophysics Data System (ADS)

    OBrien, R. E.; Wang, B.; Laskin, A.; West, M.; Riemer, N. S.; Gilles, M. K.; Moffet, R.

    2014-12-01

    Individual aerosol particles are often mixtures of multiple components such as inorganic salts, soot or elemental carbon, and organic molecules. The amounts of the different components in each particle and the particle morphologies will impact the CCN activity and the radiative properties of the aerosol population. A recent parameterization of the mixing state developed by Nicole Riemer and Matthew West provides a clear transition between ambient measurements of aerosol components and particle mixing states employed in climate models. Single particle spectro-microscopy techniques including scanning transmission x-ray microscopy/near-edge x-ray absorption fine structure spectroscopy (STXM/NEXAFS) and computer controlled scanning electron microscopy/energy dispersive x-ray spectroscopy (CCSEM/EDX) are used to measure the composition of aerosol particles from the CARES campaign at both T0 and T1. Here, we present results from the application of the per particle composition to a parameterization of the mixing state and provide constraints on the mixing state of ambient aerosol particles. The two microscopy techniques yield complementary information on the mixing state of the aerosol populations; STXM/NEXAFS provides information on the mixing state of the organic fraction while CCSEM/EDX provides information on the inorganic fraction.

  18. Development and testing of an aerosol-stratus cloud parameterization scheme for middle and high latitudes

    SciTech Connect

    Olsson, P.Q.; Meyers, M.P.; Kreidenweis, S.; Cotton, W.R.

    1996-04-01

    The aim of this new project is to develop an aerosol/cloud microphysics parameterization of mixed-phase stratus and boundary layer clouds. Our approach is to create, test, and implement a bulk-microphysics/aerosol model using data from Atmospheric Radiation Measurement (ARM) Cloud and Radiation Testbed (CART) sites and large-eddy simulation (LES) explicit bin-resolving aerosol/microphysics models. The primary objectives of this work are twofold. First, we need the prediction of number concentrations of activated aerosol which are transferred to the droplet spectrum, so that the aerosol population directly affects the cloud formation and microphysics. Second, we plan to couple the aerosol model to the gas and aqueous-chemistry module that will drive the aerosol formation and growth. We begin by exploring the feasibility of performing cloud-resolving simulations of Arctic stratus clouds over the North Slope CART site. These simulations using Colorado State University`s regional atmospheric modeling system (RAMS) will be useful in designing the structure of the cloud-resolving model and in interpreting data acquired at the North Slope site.

  19. GCM Simulations of the Aerosol Indirect Effect: Sensitivity to Cloud Parameterization and Aerosol Burden

    NASA Technical Reports Server (NTRS)

    Menon, Surabi; DelGenio, Anthony D.; Koch, Dorothy; Tselioudis, George; Hansen, James E. (Technical Monitor)

    2001-01-01

    We describe the coupling of the Goddard Institute for Space Studies (GISS) general circulation model (GCM) to an online sulfur chemistry model and source models for organic matter and sea-salt that is used to estimate the aerosol indirect effect. The cloud droplet number concentration is diagnosed empirically from field experiment datasets over land and ocean that observe droplet number and all three aerosol types simultaneously; corrections are made for implied variations in cloud turbulence levels. The resulting cloud droplet number is used to calculate variations in droplet effective radius, which in turn allows us to predict aerosol effects on cloud optical thickness and microphysical process rates. We calculate the aerosol indirect effect by differencing the top-of-the-atmosphere net cloud radiative forcing for simulations with present-day vs. pre-industrial emissions. Both the first (radiative) and second (microphysical) indirect effects are explored. We test the sensitivity of our results to cloud parameterization assumptions that control the vertical distribution of cloud occurrence, the autoconversion rate, and the aerosol scavenging rate, each of which feeds back significantly on the model aerosol burden. The global mean aerosol indirect effect for all three aerosol types ranges from -1.55 to -4.36 W m(exp -2) in our simulations. The results are quite sensitive to the pre-industrial background aerosol burden, with low pre-industrial burdens giving strong indirect effects, and to a lesser extent to the anthropogenic aerosol burden, with large burdens giving somewhat larger indirect effects. Because of this dependence on the background aerosol, model diagnostics such as albedo-particle size correlations and column cloud susceptibility, for which satellite validation products are available, are not good predictors of the resulting indirect effect.

  20. GCM Simulations of the Aerosol Indirect Effect: Sensitivity to Cloud Parameterization and Aerosol Burden

    NASA Technical Reports Server (NTRS)

    Menon, Surabi; DelGenio, Anthony D.; Koch, Dorothy; Tselioudis, George; Hansen, James E. (Technical Monitor)

    2001-01-01

    We describe the coupling of the Goddard Institute for Space Studies (GISS) general circulation model (GCM) to an online sulfur chemistry model and source models for organic matter and sea-salt that is used to estimate the aerosol indirect effect. The cloud droplet number concentration is diagnosed empirically from field experiment datasets over land and ocean that observe droplet number and all three aerosol types simultaneously; corrections are made for implied variations in cloud turbulence levels. The resulting cloud droplet number is used to calculate variations in droplet effective radius, which in turn allows us to predict aerosol effects on cloud optical thickness and microphysical process rates. We calculate the aerosol indirect effect by differencing the top-of-the-atmosphere net cloud radiative forcing for simulations with present-day vs. pre-industrial emissions. Both the first (radiative) and second (microphysical) indirect effects are explored. We test the sensitivity of our results to cloud parameterization assumptions that control the vertical distribution of cloud occurrence, the autoconversion rate, and the aerosol scavenging rate, each of which feeds back significantly on the model aerosol burden. The global mean aerosol indirect effect for all three aerosol types ranges from -1.55 to -4.36 W/sq m in our simulations. The results are quite sensitive to the pre-industrial background aerosol burden, with low pre-industrial burdens giving strong indirect effects, and to a lesser extent to the anthropogenic aerosol burden, with large burdens giving somewhat larger indirect effects. Because of this dependence on the background aerosol, model diagnostics such as albedo-particle size correlations and column cloud susceptibility, for which satellite validation products are available, are not good predictors of the resulting indirect effect.

  1. Understanding the contributions of aerosol properties and parameterization discrepancies to droplet number variability in a Global Climate Model

    NASA Astrophysics Data System (ADS)

    Morales Betancourt, R.; Nenes, A.

    2013-12-01

    Aerosol indirect effects in climate models strongly depend on the representation of the aerosol activation process. In this study, we assess the process level differences across activation parameterizations that contribute to droplet number uncertainty by using the adjoints of the Abdul-Razzak and Ghan (2000) and Fountoukis and Nenes (2005) droplet activation parameterizations in the framework of the Community Atmospheric Model version 5.1 (CAM5.1). The adjoint sensitivities of Nd to relevant input parameters are used to: (i) unravel the spatially resolved contribution of aerosol number, mass, and chemical composition to changes in Nd between present day and pre-industrial simulations; (ii) identify the key variables responsible for the differences in Nd fields and aerosol indirect effect estimates when different activation schemes are used within the same modeling framework. The sensitivities are computed online at minimal computational cost. Changes in aerosol number and aerosol mass concentrations were found to contribute to Nd differences much more strongly than chemical composition effects. The main sources of discrepancy between the activation parameterization considered were the treatment of the water uptake by coarse mode particles, and the sensitivity of the parameterized Nd accumulation mode aerosol geometric mean diameter. These two factors explain the different predictions of Nd over land and over oceans when these parameterizations are employed. Discrepancies in the sensitivity to aerosol size are responsible for an exaggerated response to aerosol volume changes over heavily polluted regions. Because these regions are collocated with areas of deep clouds their impact on short wave cloud forcing is amplified through liquid water path changes. Application of the adjoint-sensitivities illustrated the importance of primary organic matter emissions in controlling the droplet number concentration changes in several areas. The same framework is also utilized

  2. A New WRF-Chem Treatment for Studying Regional Scale Impacts of Cloud-Aerosol Interactions in Parameterized Cumuli

    SciTech Connect

    Berg, Larry K.; Shrivastava, ManishKumar B.; Easter, Richard C.; Fast, Jerome D.; Chapman, Elaine G.; Liu, Ying

    2015-01-01

    A new treatment of cloud-aerosol interactions within parameterized shallow and deep convection has been implemented in WRF-Chem that can be used to better understand the aerosol lifecycle over regional to synoptic scales. The modifications to the model to represent cloud-aerosol interactions include treatment of the cloud dropletnumber mixing ratio; key cloud microphysical and macrophysical parameters (including the updraft fractional area, updraft and downdraft mass fluxes, and entrainment) averaged over the population of shallow clouds, or a single deep convective cloud; and vertical transport, activation/resuspension, aqueous chemistry, and wet removal of aerosol and trace gases in warm clouds. Thesechanges have been implemented in both the WRF-Chem chemistry packages as well as the Kain-Fritsch cumulus parameterization that has been modified to better represent shallow convective clouds. Preliminary testing of the modified WRF-Chem has been completed using observations from the Cumulus Humilis Aerosol Processing Study (CHAPS) as well as a high-resolution simulation that does not include parameterized convection. The simulation results are used to investigate the impact of cloud-aerosol interactions on the regional scale transport of black carbon (BC), organic aerosol (OA), and sulfate aerosol. Based on the simulations presented here, changes in the column integrated BC can be as large as -50% when cloud-aerosol interactions are considered (due largely to wet removal), or as large as +35% for sulfate in non-precipitating conditions due to the sulfate production in the parameterized clouds. The modifications to WRF-Chem version 3.2.1 are found to account for changes in the cloud drop number concentration (CDNC) and changes in the chemical composition of cloud-drop residuals in a way that is consistent with observations collected during CHAPS. Efforts are currently underway to port the changes described here to WRF-Chem version 3.5, and it is anticipated that they

  3. Organic Aerosol Volatility Parameterizations and Their Impact on Atmospheric Composition and Climate

    NASA Technical Reports Server (NTRS)

    Tsigaridis, Kostas; Bauer, Susanne E.

    2015-01-01

    Despite their importance and ubiquity in the atmosphere, organic aerosols are still very poorly parameterized in global models. This can be explained by two reasons: first, a very large number of unconstrained parameters are involved in accurate parameterizations, and second, a detailed description of semi-volatile organics is computationally very expensive. Even organic aerosol properties that are known to play a major role in the atmosphere, namely volatility and aging, are poorly resolved in global models, if at all. Studies with different models and different parameterizations have not been conclusive on whether the additional complexity improves model simulations, but the added diversity of the different host models used adds an unnecessary degree of variability in the evaluation of results that obscures solid conclusions. Aerosol microphysics do not significantly alter the mean OA vertical profile or comparison with surface measurements. This might not be the case for semi-volatile OA with microphysics.

  4. A general circulation model (GCM) parameterization of Pinatubo aerosols

    SciTech Connect

    Lacis, A.A.; Carlson, B.E.; Mishchenko, M.I.

    1996-04-01

    The June 1991 volcanic eruption of Mt. Pinatubo is the largest and best documented global climate forcing experiment in recorded history. The time development and geographical dispersion of the aerosol has been closely monitored and sampled. Based on preliminary estimates of the Pinatubo aerosol loading, general circulation model predictions of the impact on global climate have been made.

  5. Size-resolved parameterization of primary organic carbon in fresh marine aerosols

    SciTech Connect

    Long, Michael S; Keene, William C; Erickson III, David J

    2009-12-01

    Marine aerosols produced by the bursting of artificially generated bubbles in natural seawater are highly enriched (2 to 3 orders of magnitude based on bulk composition) in marine-derived organic carbon (OC). Production of size-resolved particulate OC was parameterized based on a Langmuir kinetics-type association of OC to bubble plumes in seawater and resulting aerosol as constrained by measurements of aerosol produced from highly productive and oligotrophic seawater. This novel approach is the first to account for the influence of adsorption on the size-resolved association between marine aerosols and OC. Production fluxes were simulated globally with an eight aerosol-size-bin version of the NCAR Community Atmosphere Model (CAM v3.5.07). Simulated number and inorganic sea-salt mass production fell within the range of published estimates based on observationally constrained parameterizations. Because the parameterization does not consider contributions from spume drops, the simulated global mass flux (1.5 x 10{sup 3} Tg y{sup -1}) is near the lower limit of published estimates. The simulated production of aerosol number (2.1 x 10{sup 6} cm{sup -2} s{sup -1}) and OC (49 Tg C y{sup -1}) fall near the upper limits of published estimates and suggest that primary marine aerosols may have greater influences on the physiochemical evolution of the troposphere, radiative transfer and climate, and associated feedbacks on the surface ocean than suggested by previous model studies.

  6. The role of aerosols in cloud drop parameterizations and its applications in global climate models

    SciTech Connect

    Chuang, C.C.; Penner, J.E.

    1996-04-01

    The characteristics of the cloud drop size distribution near cloud base are initially determined by aerosols that serve as cloud condensation nuclei and the updraft velocity. We have developed parameterizations relating cloud drop number concentration to aerosol number and sulfate mass concentrations and used them in a coupled global aerosol/general circulation model (GCM) to estimate the indirect aerosol forcing. The global aerosol model made use of our detailed emissions inventories for the amount of particulate matter from biomass burning sources and from fossil fuel sources as well as emissions inventories of the gas-phase anthropogenic SO{sub 2}. This work is aimed at validating the coupled model with the Atmospheric Radiation Measurement (ARM) Program measurements and assessing the possible magnitude of the aerosol-induced cloud effects on climate.

  7. Organic Aerosol Volatility Parameterizations and Their Impact on Atmospheric Composition and Climate

    NASA Technical Reports Server (NTRS)

    Tsigaridis, Konsta; Bauer, Susanne E.

    2015-01-01

    Despite their importance and ubiquity in the atmosphere, organic aerosols are still very poorly parameterized in global models. This can be explained by two reasons: first, a very large number of unconstrained parameters are involved in accurate parameterizations, and second, a detailed description of semi-volatile organics is computationally very expensive. Even organic aerosol properties that are known to play a major role in the atmosphere, namely volatility and aging, are poorly resolved in global models, if at all. Studies with different models and different parameterizations have not been conclusive on whether the additional complexity improves model simulations, but the added diversity of the different host models used adds an unnecessary degree of variability in the evaluation of results that obscures solid conclusions.

  8. Evaluating model parameterizations of submicron aerosol scattering and absorption with in situ data from ARCTAS 2008

    NASA Astrophysics Data System (ADS)

    Alvarado, Matthew J.; Lonsdale, Chantelle R.; Macintyre, Helen L.; Bian, Huisheng; Chin, Mian; Ridley, David A.; Heald, Colette L.; Thornhill, Kenneth L.; Anderson, Bruce E.; Cubison, Michael J.; Jimenez, Jose L.; Kondo, Yutaka; Sahu, Lokesh K.; Dibb, Jack E.; Wang, Chien

    2016-07-01

    Accurate modeling of the scattering and absorption of ultraviolet and visible radiation by aerosols is essential for accurate simulations of atmospheric chemistry and climate. Closure studies using in situ measurements of aerosol scattering and absorption can be used to evaluate and improve models of aerosol optical properties without interference from model errors in aerosol emissions, transport, chemistry, or deposition rates. Here we evaluate the ability of four externally mixed, fixed size distribution parameterizations used in global models to simulate submicron aerosol scattering and absorption at three wavelengths using in situ data gathered during the 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) campaign. The four models are the NASA Global Modeling Initiative (GMI) Combo model, GEOS-Chem v9-02, the baseline configuration of a version of GEOS-Chem with online radiative transfer calculations (called GC-RT), and the Optical Properties of Aerosol and Clouds (OPAC v3.1) package. We also use the ARCTAS data to perform the first evaluation of the ability of the Aerosol Simulation Program (ASP v2.1) to simulate submicron aerosol scattering and absorption when in situ data on the aerosol size distribution are used, and examine the impact of different mixing rules for black carbon (BC) on the results. We find that the GMI model tends to overestimate submicron scattering and absorption at shorter wavelengths by 10-23 %, and that GMI has smaller absolute mean biases for submicron absorption than OPAC v3.1, GEOS-Chem v9-02, or GC-RT. However, the changes to the density and refractive index of BC in GC-RT improve the simulation of submicron aerosol absorption at all wavelengths relative to GEOS-Chem v9-02. Adding a variable size distribution, as in ASP v2.1, improves model performance for scattering but not for absorption, likely due to the assumption in ASP v2.1 that BC is present at a constant mass fraction

  9. A new WRF-Chem treatment for studying regional-scale impacts of cloud processes on aerosol and trace gases in parameterized cumuli

    NASA Astrophysics Data System (ADS)

    Berg, L. K.; Shrivastava, M.; Easter, R. C.; Fast, J. D.; Chapman, E. G.; Liu, Y.; Ferrare, R. A.

    2015-02-01

    A new treatment of cloud effects on aerosol and trace gases within parameterized shallow and deep convection, and aerosol effects on cloud droplet number, has been implemented in the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) version 3.2.1 that can be used to better understand the aerosol life cycle over regional to synoptic scales. The modifications to the model include treatment of the cloud droplet number mixing ratio; key cloud microphysical and macrophysical parameters (including the updraft fractional area, updraft and downdraft mass fluxes, and entrainment) averaged over the population of shallow clouds, or a single deep convective cloud; and vertical transport, activation/resuspension, aqueous chemistry, and wet removal of aerosol and trace gases in warm clouds. These changes have been implemented in both the WRF-Chem chemistry packages as well as the Kain-Fritsch (KF) cumulus parameterization that has been modified to better represent shallow convective clouds. Testing of the modified WRF-Chem has been completed using observations from the Cumulus Humilis Aerosol Processing Study (CHAPS). The simulation results are used to investigate the impact of cloud-aerosol interactions on regional-scale transport of black carbon (BC), organic aerosol (OA), and sulfate aerosol. Based on the simulations presented here, changes in the column-integrated BC can be as large as -50% when cloud-aerosol interactions are considered (due largely to wet removal), or as large as +40% for sulfate under non-precipitating conditions due to sulfate production in the parameterized clouds. The modifications to WRF-Chem are found to account for changes in the cloud droplet number concentration (CDNC) and changes in the chemical composition of cloud droplet residuals in a way that is consistent with observations collected during CHAPS. Efforts are currently underway to port the changes described here to the latest version of WRF-Chem, and it is anticipated

  10. Modelling of primary aerosols in the chemical transport model MOCAGE: development and evaluation of aerosol physical parameterizations

    NASA Astrophysics Data System (ADS)

    Sič, B.; El Amraoui, L.; Marécal, V.; Josse, B.; Arteta, J.; Guth, J.; Joly, M.; Hamer, P.

    2014-04-01

    This paper deals with recent improvements to the chemical transport model of Météo-France MOCAGE that consists of updates to different aerosol parameterizations. MOCAGE only contains primary aerosol species. We introduced important changes to the aerosol parameterization concerning emissions, wet deposition and sedimentation. For the emissions, size distribution and wind calculations are modified for desert dust aerosols, and a surface sea temperature dependant source function is introduced for sea salt aerosols. Wet deposition is modified toward a more physically realistic representation by introducing re-evaporation of falling rain and snowfall scavenging, and by changing in-cloud scavenging scheme along with calculations of precipitation cloud cover and rain properties. The sedimentation scheme update includes changes regarding the stability and viscosity calculations. Independent data from satellites (MODIS, SEVIRI), the ground (AERONET), and a model inter-comparison project (AeroCom) is compared with MOCAGE simulations and showed that the introduced changes brought a significant improvement on aerosol representation, properties and global distribution. Emitted quantities of desert dust and sea salt, as well their lifetimes, moved closer towards values of AeroCom estimates and the multi-model average. When comparing the model simulations with MODIS aerosol optical depth (AOD) observations over the oceans, the updated model configuration shows a decrease in the bias (from 0.032 to 0.002) and a better correlation (from 0.062 to 0.322) in terms of the geographical distribution and the temporal variability. The updates corrected a strong positive bias in the sea salt representation at high latitudes (from 0.153 to 0.026), and a negative bias in the desert dust representation in the African dust outflow region (from -0.179 to -0.051). The updates in sedimentation produced a modest difference; the bias with MODIS data from 0.002 in the updated configuration went to

  11. Ground-based remote sensing of aerosol climatology in China: Aerosol optical properties, direct radiative effect and its parameterization

    NASA Astrophysics Data System (ADS)

    Xia, X.; Che, H.; Zhu, J.; Chen, H.; Cong, Z.; Deng, X.; Fan, X.; Fu, Y.; Goloub, P.; Jiang, H.; Liu, Q.; Mai, B.; Wang, P.; Wu, Y.; Zhang, J.; Zhang, R.; Zhang, X.

    2016-01-01

    Spatio-temporal variation of aerosol optical properties and aerosol direct radiative effects (ADRE) are studied based on high quality aerosol data at 21 sunphotometer stations with at least 4-months worth of measurements in China mainland and Hong Kong. A parameterization is proposed to describe the relationship of ADREs to aerosol optical depth at 550 nm (AOD) and single scattering albedo at 550 nm (SSA). In the middle-east and south China, the maximum AOD is always observed in the burning season, indicating a significant contribution of biomass burning to AOD. Dust aerosols contribute to AOD significantly in spring and their influence decreases from the source regions to the downwind regions. The occurrence frequencies of background level AOD (AOD < 0.10) in the middle-east, south and northwest China are very limited (0.4%, 1.3% and 2.8%, respectively). However, it is 15.7% in north China. Atmosphere is pristine in the Tibetan Plateau where 92.0% of AODs are <0.10. Regional mean SSAs at 550 nm are 0.89-0.90, although SSAs show substantial site and season dependence. ADREs at the top and bottom of the atmosphere for solar zenith angle of 60 ± 5° are -16--37 W m-2 and -66--111 W m-2, respectively. ADRE efficiency shows slight regional dependence. AOD and SSA together account for more than 94 and 87% of ADRE variability at the bottom and top of the atmosphere. The overall picture of ADRE in China is that aerosols cool the climate system, reduce surface solar radiation and heat the atmosphere.

  12. Quantifying the Relationship between Organic Aerosol Composition and Hygroscopicity/CCN Activity

    SciTech Connect

    Ziemann, Paul J.; Kreidenweis, Sonia M.; Petters, Markus D.

    2013-06-30

    The overall objective for this project was to provide the data and underlying process level understanding necessary to facilitate the dynamic treatment of organic aerosol CCN activity in future climate models. The specific objectives were as follows: (1) employ novel approaches to link organic aerosol composition and CCN activity, (2) evaluate the effects of temperature and relative humidity on organic aerosol CCN activity, and (3) develop parameterizations to link organic aerosol composition and CCN activity.

  13. Modelling of primary aerosols in the chemical transport model MOCAGE: development and evaluation of aerosol physical parameterizations

    NASA Astrophysics Data System (ADS)

    Sič, B.; El Amraoui, L.; Marécal, V.; Josse, B.; Arteta, J.; Guth, J.; Joly, M.; Hamer, P. D.

    2015-02-01

    This paper deals with recent improvements to the global chemical transport model of Météo-France MOCAGE (Modèle de Chimie Atmosphérique à Grande Echelle) that consists of updates to different aerosol parameterizations. MOCAGE only contains primary aerosol species: desert dust, sea salt, black carbon, organic carbon, and also volcanic ash in the case of large volcanic eruptions. We introduced important changes to the aerosol parameterization concerning emissions, wet deposition and sedimentation. For the emissions, size distribution and wind calculations are modified for desert dust aerosols, and a surface sea temperature dependant source function is introduced for sea salt aerosols. Wet deposition is modified toward a more physically realistic representation by introducing re-evaporation of falling rain and snowfall scavenging and by changing the in-cloud scavenging scheme along with calculations of precipitation cloud cover and rain properties. The sedimentation scheme update includes changes regarding the stability and viscosity calculations. Independent data from satellites (MODIS, SEVIRI), the ground (AERONET, EMEP), and a model inter-comparison project (AeroCom) are compared with MOCAGE simulations and show that the introduced changes brought a significant improvement on aerosol representation, properties and global distribution. Emitted quantities of desert dust and sea salt, as well their lifetimes, moved closer towards values of AeroCom estimates and the multi-model average. When comparing the model simulations with MODIS aerosol optical depth (AOD) observations over the oceans, the updated model configuration shows a decrease in the modified normalized mean bias (MNMB; from 0.42 to 0.10) and a better correlation (from 0.06 to 0.32) in terms of the geographical distribution and the temporal variability. The updates corrected a strong positive MNMB in the sea salt representation at high latitudes (from 0.65 to 0.16), and a negative MNMB in the desert

  14. A parameterization of cloud droplet nucleation

    SciTech Connect

    Ghan, S.J.; Chuang, C.C.; Penner, J.E.

    1994-01-01

    Droplet nucleation is a fundamental cloud process. The number of aerosols activated to form cloud droplets influences not only the number of aerosols scavenged by clouds but also the size of the cloud droplets. Cloud droplet size influences the cloud albedo and the conversion of cloud water to precipitation. Global aerosol models are presently being developed with the intention of coupling with global atmospheric circulation models to evaluate the influence of aerosols and aerosol-cloud interactions on climate. If these and other coupled models are to address issues of aerosol-interactions, the droplet nucleation process must be adequately represented. Ghan et al. have introduced a droplet nucleation parameterization for a single aerosol type that offers certain advantages over the popular Twomey parameterization. Here we describe the generalization of that parameterization to the case of multiple aerosol types, with estimation of aerosol mass as well as number activated.

  15. Development and applications of a stochastic convective parameterization for a smooth transition to cloud resolving scales that includes aerosol interactions

    NASA Astrophysics Data System (ADS)

    Grell, Georg; Freitas, Saulo

    2013-04-01

    With the increasing availability of computing power many numerical weather prediction models now run at computational grids with resolution of dx < 10km, "gray scales" for convective parameterizations, where convective clouds may be resolved as well as unresolved. In addition Air Quality Research and Forecast (AQRF) models have continuously increasing complexity and can treat the interactions of aerosol and cloud microphysics. In this paper we will describe a new convective parameterization that allows for both, a smooth transition to cloud resolving scales as well as a parameterized interaction of aerosols with cloud microphysics (aerosol indirect effect). The parameterization also includes options for the transport of chemical constituents, wet deposition, and some aqueous phase chemistry. The parameterization is a modification of the Grell and Dvenyi (2002) scheme, and is used in version of the Weather Research and Forecast model (WRF and WRF-Chem), the Brazilian Regional Atmospheric Modeling system (B-RAMS) and the global Flow following finite volume Icosahedral Model (FIM and FIM-Chem).

  16. Regional-scale simulations of fungal spore aerosols using an emission parameterization adapted to local measurements of fluorescent biological aerosol particles

    NASA Astrophysics Data System (ADS)

    Hummel, M.; Hoose, C.; Gallagher, M.; Healy, D. A.; Huffman, J. A.; O'Connor, D.; Pöschl, U.; Pöhlker, C.; Robinson, N. H.; Schnaiter, M.; Sodeau, J. R.; Toprak, E.; Vogel, H.

    2014-04-01

    Fungal spores as a prominent type of primary biological aerosol particles (PBAP) have been incorporated into the COSMO-ART regional atmospheric model, using and comparing three different emission parameterizations. Two literature-based emission rates derived from fungal spore colony counts and chemical tracer measurements were used as a parameterization baseline for this study. A third, new emission parameterization was adapted to field measurements of fluorescent biological aerosol particles (FBAP) from four locations across Northern Europe. FBAP concentrations can be regarded as a lower estimate of total PBAP concentrations. Size distributions of FBAP often show a distinct mode at approx. 3 μm, corresponding to a diameter range characteristic for many fungal spores. Previous studies have suggested the majority of FBAP in several locations are dominated by fungal spores. Thus, we suggest that simulated fungal spore concentrations obtained from the emission parameterizations can be compared to the sum of total FBAP concentrations. A comparison reveals that parameterized estimates of fungal spore concentrations based on literature numbers underestimate measured FBAP concentrations. In agreement with measurement data, the model results show a diurnal cycle in simulated fungal spore concentrations, which may develop partially as a consequence of a varying boundary layer height between day and night. Measured FBAP and simulated fungal spore concentrations also correlate similarly with simulated temperature and humidity. These meteorological variables, together with leaf area index, were chosen to drive the new emission parameterization discussed here. Using the new emission parameterization on a model domain covering Western Europe, fungal spores in the lowest model layer comprise a fraction of 15% of the total aerosol mass over land and reach average number concentrations of 26 L-1. The results confirm that fungal spores and biological particles may account for a

  17. Sensitivity of aerosol indirect forcing and autoconversion to cloud droplet parameterization: an assessment with the NASA Global Modeling Initiative.

    NASA Astrophysics Data System (ADS)

    Sotiropoulou, R. P.; Meshkhidze, N.; Nenes, A.

    2006-12-01

    The aerosol indirect forcing is one of the largest sources of uncertainty in assessments of anthropogenic climate change [IPCC, 2001]. Much of this uncertainty arises from the approach used for linking cloud droplet number concentration (CDNC) to precursor aerosol. Global Climate Models (GCM) use a wide range of cloud droplet activation mechanisms ranging from empirical [Boucher and Lohmann, 1995] to detailed physically- based formulations [e.g., Abdul-Razzak and Ghan, 2000; Fountoukis and Nenes, 2005]. The objective of this study is to assess the uncertainties in indirect forcing and autoconversion of cloud water to rain caused by the application of different cloud droplet parameterization mechanisms; this is an important step towards constraining the aerosol indirect effects (AIE). Here we estimate the uncertainty in indirect forcing and autoconversion rate using the NASA Global Model Initiative (GMI). The GMI allows easy interchange of meteorological fields, chemical mechanisms and the aerosol microphysical packages. Therefore, it is an ideal tool for assessing the effect of different parameters on aerosol indirect forcing. The aerosol module includes primary emissions, chemical production of sulfate in clear air and in-cloud aqueous phase, gravitational sedimentation, dry deposition, wet scavenging in and below clouds, and hygroscopic growth. Model inputs include SO2 (fossil fuel and natural), black carbon (BC), organic carbon (OC), mineral dust and sea salt. The meteorological data used in this work were taken from the NASA Data Assimilation Office (DAO) and two different GCMs: the NASA GEOS4 finite volume GCM (FVGCM) and the Goddard Institute for Space Studies version II' (GISS II') GCM. Simulations were carried out for "present day" and "preindustrial" emissions using different meteorological fields (i.e. DAO, FVGCM, GISS II'); cloud droplet number concentration is computed from the correlations of Boucher and Lohmann [1995], Abdul-Razzak and Ghan [2000

  18. A Comparison of Parameterizations of Secondary Organic Aerosol Production: Global Budget and Spatiotemporal Variability

    NASA Astrophysics Data System (ADS)

    Liu, J.; Chen, Z.; Horowitz, L. W.; Carlton, A. M. G.; Fan, S.; Cheng, Y.; Ervens, B.; Fu, T. M.; He, C.; Tao, S.

    2014-12-01

    Secondary organic aerosols (SOA) have a profound influence on air quality and climate, but large uncertainties exist in modeling SOA on the global scale. In this study, five SOA parameterization schemes, including a two-product model (TPM), volatility basis-set (VBS) and three cloud SOA schemes (Ervens et al. (2008, 2014), Fu et al. (2008) , and He et al. (2013)), are implemented into the global chemical transport model (MOZART-4). For each scheme, model simulations are conducted with identical boundary and initial conditions. The VBS scheme produces the highest global annual SOA production (close to 35 Tg·y-1), followed by three cloud schemes (26-30 Tg·y-1) and TPM (23 Tg·y-1). Though sharing a similar partitioning theory to the TPM scheme, the VBS approach simulates the chemical aging of multiple generations of VOCs oxidation products, resulting in a much larger SOA source, particularly from aromatic species, over Europe, the Middle East and Eastern America. The formation of SOA in VBS, which represents the net partitioning of semi-volatile organic compounds from vapor to condensed phase, is highly sensitivity to the aging and wet removal processes of vapor-phase organic compounds. The production of SOA from cloud processes (SOAcld) is constrained by the coincidence of liquid cloud water and water-soluble organic compounds. Therefore, all cloud schemes resolve a fairly similar spatial pattern over the tropical and the mid-latitude continents. The spatiotemporal diversity among SOA parameterizations is largely driven by differences in precursor inputs. Therefore, a deeper understanding of the evolution, wet removal, and phase partitioning of semi-volatile organic compounds, particularly above remote land and oceanic areas, is critical to better constrain the global-scale distribution and related climate forcing of secondary organic aerosols.

  19. A new WRF-Chem treatment for studying regional-scale impacts of cloud processes on aerosol and trace gases in parameterized cumuli

    DOE PAGES

    Berg, L. K.; Shrivastava, M.; Easter, R. C.; Fast, J. D.; Chapman, E. G.; Liu, Y.; Ferrare, R. A.

    2015-02-24

    A new treatment of cloud effects on aerosol and trace gases within parameterized shallow and deep convection, and aerosol effects on cloud droplet number, has been implemented in the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) version 3.2.1 that can be used to better understand the aerosol life cycle over regional to synoptic scales. The modifications to the model include treatment of the cloud droplet number mixing ratio; key cloud microphysical and macrophysical parameters (including the updraft fractional area, updraft and downdraft mass fluxes, and entrainment) averaged over the population of shallow clouds, or a single deep convectivemore » cloud; and vertical transport, activation/resuspension, aqueous chemistry, and wet removal of aerosol and trace gases in warm clouds. These changes have been implemented in both the WRF-Chem chemistry packages as well as the Kain–Fritsch (KF) cumulus parameterization that has been modified to better represent shallow convective clouds. Testing of the modified WRF-Chem has been completed using observations from the Cumulus Humilis Aerosol Processing Study (CHAPS). The simulation results are used to investigate the impact of cloud–aerosol interactions on regional-scale transport of black carbon (BC), organic aerosol (OA), and sulfate aerosol. Based on the simulations presented here, changes in the column-integrated BC can be as large as –50% when cloud–aerosol interactions are considered (due largely to wet removal), or as large as +40% for sulfate under non-precipitating conditions due to sulfate production in the parameterized clouds. The modifications to WRF-Chem are found to account for changes in the cloud droplet number concentration (CDNC) and changes in the chemical composition of cloud droplet residuals in a way that is consistent with observations collected during CHAPS. Efforts are currently underway to port the changes described here to the latest version of WRF-Chem, and it

  20. A new WRF-Chem treatment for studying regional-scale impacts of cloud processes on aerosol and trace gases in parameterized cumuli

    SciTech Connect

    Berg, L. K.; Shrivastava, M.; Easter, R. C.; Fast, J. D.; Chapman, E. G.; Liu, Y.; Ferrare, R. A.

    2015-02-24

    A new treatment of cloud effects on aerosol and trace gases within parameterized shallow and deep convection, and aerosol effects on cloud droplet number, has been implemented in the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) version 3.2.1 that can be used to better understand the aerosol life cycle over regional to synoptic scales. The modifications to the model include treatment of the cloud droplet number mixing ratio; key cloud microphysical and macrophysical parameters (including the updraft fractional area, updraft and downdraft mass fluxes, and entrainment) averaged over the population of shallow clouds, or a single deep convective cloud; and vertical transport, activation/resuspension, aqueous chemistry, and wet removal of aerosol and trace gases in warm clouds. These changes have been implemented in both the WRF-Chem chemistry packages as well as the Kain–Fritsch (KF) cumulus parameterization that has been modified to better represent shallow convective clouds. Testing of the modified WRF-Chem has been completed using observations from the Cumulus Humilis Aerosol Processing Study (CHAPS). The simulation results are used to investigate the impact of cloud–aerosol interactions on regional-scale transport of black carbon (BC), organic aerosol (OA), and sulfate aerosol. Based on the simulations presented here, changes in the column-integrated BC can be as large as –50% when cloud–aerosol interactions are considered (due largely to wet removal), or as large as +40% for sulfate under non-precipitating conditions due to sulfate production in the parameterized clouds. The modifications to WRF-Chem are found to account for changes in the cloud droplet number concentration (CDNC) and changes in the chemical composition of cloud droplet residuals in a way that is consistent with observations collected during CHAPS. Efforts are currently underway to port the changes described here to the latest version of WRF-Chem, and it is

  1. Chemical imaging of ambient aerosol particles: Observational constraints on mixing state parameterization

    NASA Astrophysics Data System (ADS)

    O'Brien, Rachel E.; Wang, Bingbing; Laskin, Alexander; Riemer, Nicole; West, Matthew; Zhang, Qi; Sun, Yele; Yu, Xiao-Ying; Alpert, Peter; Knopf, Daniel A.; Gilles, Mary K.; Moffet, Ryan C.

    2015-09-01

    A new parameterization for quantifying the mixing state of aerosol populations has been applied for the first time to samples of ambient particles analyzed using spectro-microscopy techniques. Scanning transmission X-ray microscopy/near edge X-ray absorption fine structure (STXM/NEXAFS) and computer-controlled scanning electron microscopy/energy dispersive X-ray spectroscopy (CCSEM/EDX) were used to probe the composition of the organic and inorganic fraction of individual particles collected on 27 and 28 June during the 2010 Carbonaceous Aerosols and Radiative Effects study in the Central Valley, California. The first field site, T0, was located in downtown Sacramento, while T1 was located near the Sierra Nevada Mountains. Mass estimates of the aerosol particle components were used to calculate mixing state metrics, such as the particle-specific diversity, bulk population diversity, and mixing state index, for each sample. The STXM data showed evidence of changes in the mixing state associated with a buildup of organic matter confirmed by collocated measurements, and the largest impact on the mixing state was due to an increase in soot dominant particles during this buildup. The mixing state from STXM was similar between T0 and T1, indicating that the increased organic fraction at T1 had a small effect on the mixing state of the population. The CCSEM/EDX analysis showed the presence of two types of particle populations: the first was dominated by aged sea-salt particles and had a higher mixing state index (indicating a more homogeneous population); the second was dominated by carbonaceous particles and had a lower mixing state index.

  2. Molecular corridors and parameterizations of volatility in the chemical evolution of organic aerosols

    NASA Astrophysics Data System (ADS)

    Li, Ying; Pöschl, Ulrich; Shiraiwa, Manabu

    2016-03-01

    The formation and aging of organic aerosols (OA) proceed through multiple steps of chemical reaction and mass transport in the gas and particle phases, which is challenging for the interpretation of field measurements and laboratory experiments as well as accurate representation of OA evolution in atmospheric aerosol models. Based on data from over 30 000 compounds, we show that organic compounds with a wide variety of functional groups fall into molecular corridors, characterized by a tight inverse correlation between molar mass and volatility. We developed parameterizations to predict the saturation mass concentration of organic compounds containing oxygen, nitrogen, and sulfur from the elemental composition that can be measured by soft-ionization high-resolution mass spectrometry. Field measurement data from new particle formation events, biomass burning, cloud/fog processing, and indoor environments were mapped into molecular corridors to characterize the chemical nature of the observed OA components. We found that less-oxidized indoor OA are constrained to a corridor of low molar mass and high volatility, whereas highly oxygenated compounds in atmospheric water extend to high molar mass and low volatility. Among the nitrogen- and sulfur-containing compounds identified in atmospheric aerosols, amines tend to exhibit low molar mass and high volatility, whereas organonitrates and organosulfates follow high O : C corridors extending to high molar mass and low volatility. We suggest that the consideration of molar mass and molecular corridors can help to constrain volatility and particle-phase state in the modeling of OA particularly for nitrogen- and sulfur-containing compounds.

  3. Chemical Imaging of Ambient Aerosol Particles: Observational Constraints on Mixing State Parameterization

    SciTech Connect

    O'Brien, Rachel; Wang, Bingbing; Laskin, Alexander; Riemer, Nicole; West, Matthew; Zhang, Qi; Sun, Yele; Yu, Xiao-Ying; Alpert, Peter A.; Knopf, Daniel A.; Gilles, Mary K.; Moffet, Ryan

    2015-09-28

    A new parameterization for quantifying the mixing state of aerosol populations has been applied for the first time to samples of ambient particles analyzed using spectro-microscopy techniques. Scanning transmission x-ray microscopy/near edge x-ray absorption fine structure (STXM/NEXAFS) and computer controlled scanning electron microscopy/energy dispersive x-ray spectroscopy (CCSEM/EDX) were used to probe the composition of the organic and inorganic fraction of individual particles collected on June 27th and 28th during the 2010 Carbonaceous Aerosols and Radiative Effects (CARES) study in the Central Valley, California. The first field site, T0, was located in downtown Sacramento, while T1 was located near the Sierra Nevada Mountains. Mass estimates of the aerosol particle components were used to calculate mixing state metrics, such as the particle-specific diversity, bulk population diversity, and mixing state index, for each sample. Both microscopy imaging techniques showed more changes over these two days in the mixing state at the T0 site than at the T1 site. The STXM data showed evidence of changes in the mixing state associated with a build-up of organic matter confirmed by collocated measurements and the largest impact on the mixing state was due to an increase in soot dominant particles during this build-up. The CCSEM/EDX analysis showed the presence of two types of particle populations; the first was dominated by aged sea salt particles and had a higher mixing state index (indicating a more homogeneous population), the second was dominated by carbonaceous particles and had a lower mixing state index.

  4. Evaluation of a New Cloud Droplet Activation Parameterization wtih in Situ Data from CRYSTAL-FACE and CSTRIPE

    NASA Technical Reports Server (NTRS)

    Meskhidze, Nicholas; Nenes, Athanasios; Conant, William C.; Seinfeld, John H.

    2005-01-01

    The accuracy of the 2003 prognostic, physically based aerosol activation parameterization of A. Nenes and J. H. Seinfeld (NS) with modification introduced by C. Fountoukis and A. Nenes in 2005 (modified NS) is evaluated against extensive microphysical data sets collected on board the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft for cumuliform and stratiform clouds of marine and continental origin. The cumuliform cloud data were collected during NASA's Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE, Key West, Florida, July 2002), while the stratiform cloud data were gathered during Coastal Stratocumulus Imposed Perturbation Experiment (CSTRIPE, Monterey, California, July 2003). In situ data sets of aerosol size distribution, chemical composition, and updraft velocities are used as input for the NS parameterization, and the evaluation is carried out by comparing predicted cloud droplet number concentrations (CDNC) with observations. This is the first known study in which a prognostic cloud droplet activation parameterization has been evaluated against a wide range of observations. On average, predicted droplet concentration in adiabatic regions is within -20% of observations at the base of cumuliform clouds and -30% of observations at different altitudes throughout the stratiform clouds, all within experimental uncertainty. Furthermore, CDNC is well parameterized using either a single mean updraft velocity w or by weighting droplet nucleation rates with a Gaussian probability density function of w. This study suggests that for nonprecipitating warm clouds of variable microphysics, aerosol composition, and size distribution the modified NS parameterization can accurately predict cloud droplet activation and can be successfully implemented for describing the aerosol activation process in global climate models.

  5. Parameterization of clear-sky surface irradiance and its implications for estimation of aerosol direct radiative effect and aerosol optical depth

    PubMed Central

    Xia, Xiangao

    2015-01-01

    Aerosols impact clear-sky surface irradiance () through the effects of scattering and absorption. Linear or nonlinear relationships between aerosol optical depth (τa) and have been established to describe the aerosol direct radiative effect on (ADRE). However, considerable uncertainties remain associated with ADRE due to the incorrect estimation of (τa in the absence of aerosols). Based on data from the Aerosol Robotic Network, the effects of τa, water vapor content (w) and the cosine of the solar zenith angle (μ) on are thoroughly considered, leading to an effective parameterization of as a nonlinear function of these three quantities. The parameterization is proven able to estimate with a mean bias error of 0.32 W m−2, which is one order of magnitude smaller than that derived using earlier linear or nonlinear functions. Applications of this new parameterization to estimate τa from , or vice versa, show that the root-mean-square errors were 0.08 and 10.0 Wm−2, respectively. Therefore, this study establishes a straightforward method to derive from τa or estimate τa from measurements if water vapor measurements are available. PMID:26395310

  6. Parameterization of clear-sky surface irradiance and its implications for estimation of aerosol direct radiative effect and aerosol optical depth

    NASA Astrophysics Data System (ADS)

    Xia, Xiangao

    2015-09-01

    Aerosols impact clear-sky surface irradiance () through the effects of scattering and absorption. Linear or nonlinear relationships between aerosol optical depth (τa) and have been established to describe the aerosol direct radiative effect on (ADRE). However, considerable uncertainties remain associated with ADRE due to the incorrect estimation of (τa in the absence of aerosols). Based on data from the Aerosol Robotic Network, the effects of τa, water vapor content (w) and the cosine of the solar zenith angle (μ) on are thoroughly considered, leading to an effective parameterization of as a nonlinear function of these three quantities. The parameterization is proven able to estimate with a mean bias error of 0.32 W m-2, which is one order of magnitude smaller than that derived using earlier linear or nonlinear functions. Applications of this new parameterization to estimate τa from , or vice versa, show that the root-mean-square errors were 0.08 and 10.0 Wm-2, respectively. Therefore, this study establishes a straightforward method to derive from τa or estimate τa from measurements if water vapor measurements are available.

  7. Regional-scale simulations of fungal spore aerosols using an emission parameterization adapted to local measurements of fluorescent biological aerosol particles

    NASA Astrophysics Data System (ADS)

    Hummel, M.; Hoose, C.; Gallagher, M.; Healy, D. A.; Huffman, J. A.; O'Connor, D.; Pöschl, U.; Pöhlker, C.; Robinson, N. H.; Schnaiter, M.; Sodeau, J. R.; Stengel, M.; Toprak, E.; Vogel, H.

    2015-06-01

    Fungal spores as a prominent type of primary biological aerosol particles (PBAP) have been incorporated into the COSMO-ART (Consortium for Small-scale Modelling-Aerosols and Reactive Trace gases) regional atmospheric model. Two literature-based emission rates for fungal spores derived from fungal spore colony counts and chemical tracer measurements were used as a parameterization baseline for this study. A third, new emission parameterization for fluorescent biological aerosol particles (FBAP) was adapted to field measurements from four locations across Europe. FBAP concentrations can be regarded as a lower estimate of total PBAP concentrations. Size distributions of FBAP often show a distinct mode at approx. 3 μm, corresponding to a diameter range characteristic for many fungal spores. Previous studies for several locations have suggested that FBAP are in many cases dominated by fungal spores. Thus, we suggest that simulated FBAP and fungal spore concentrations obtained from the three different emission parameterizations can be compared to FBAP measurements. The comparison reveals that simulated fungal spore concentrations based on literature emission parameterizations are lower than measured FBAP concentrations. In agreement with the measurements, the model results show a diurnal cycle in simulated fungal spore concentrations, which may develop partially as a consequence of a varying boundary layer height between day and night. Temperature and specific humidity, together with leaf area index (LAI), were chosen to drive the new emission parameterization which is fitted to the FBAP observations. The new parameterization results in similar root mean square errors (RMSEs) and correlation coefficients compared to the FBAP observations as the previously existing fungal spore emission parameterizations, with some improvements in the bias. Using the new emission parameterization on a model domain covering western Europe, FBAP in the lowest model layer comprise a

  8. The evolution of biomass-burning aerosol size distributions due to coagulation: dependence on fire and meteorological details and parameterization

    NASA Astrophysics Data System (ADS)

    Sakamoto, Kimiko M.; Laing, James R.; Stevens, Robin G.; Jaffe, Daniel A.; Pierce, Jeffrey R.

    2016-06-01

    Biomass-burning aerosols have a significant effect on global and regional aerosol climate forcings. To model the magnitude of these effects accurately requires knowledge of the size distribution of the emitted and evolving aerosol particles. Current biomass-burning inventories do not include size distributions, and global and regional models generally assume a fixed size distribution from all biomass-burning emissions. However, biomass-burning size distributions evolve in the plume due to coagulation and net organic aerosol (OA) evaporation or formation, and the plume processes occur on spacial scales smaller than global/regional-model grid boxes. The extent of this size-distribution evolution is dependent on a variety of factors relating to the emission source and atmospheric conditions. Therefore, accurately accounting for biomass-burning aerosol size in global models requires an effective aerosol size distribution that accounts for this sub-grid evolution and can be derived from available emission-inventory and meteorological parameters. In this paper, we perform a detailed investigation of the effects of coagulation on the aerosol size distribution in biomass-burning plumes. We compare the effect of coagulation to that of OA evaporation and formation. We develop coagulation-only parameterizations for effective biomass-burning size distributions using the SAM-TOMAS large-eddy simulation plume model. For the most-sophisticated parameterization, we use the Gaussian Emulation Machine for Sensitivity Analysis (GEM-SA) to build a parameterization of the aged size distribution based on the SAM-TOMAS output and seven inputs: emission median dry diameter, emission distribution modal width, mass emissions flux, fire area, mean boundary-layer wind speed, plume mixing depth, and time/distance since emission. This parameterization was tested against an independent set of SAM-TOMAS simulations and yields R2 values of 0.83 and 0.89 for Dpm and modal width, respectively. The

  9. Parameterization of aerosol and cirrus cloud effects on reflected sunlight spectra measured from space: application of the equivalence theorem.

    PubMed

    Bril, Andrey; Oshchepkov, Sergey; Yokota, Tatsuya; Inoue, Gen

    2007-05-01

    An original methodology to account for aerosol and cirrus cloud contributions to reflected sunlight is described. This method can be applied to the problem of retrieving greenhouse gases from satellite-observed data and is based on the equivalence theorem with further parameterization of the photon path-length probability density function (PPDF). Monte Carlo simulation was used to validate this parameterization for a vertically nonhomogeneous atmosphere including an aerosol layer and cirrus clouds. Initial approximation suggests that the PPDF depends on four parameters that can be interpreted as the effective cloud height, cloud relative reflectance, and two additional factors to account for photon path-length distribution under the cloud. We demonstrate that these parameters can be efficiently retrieved from the nadir radiance measured in the oxygen A-band and from the H(2)O-saturated area of the CO(2) 2.0 microm spectral band.

  10. Incorporation of advanced aerosol activation treatments into CESM/CAM5: model evaluation and impacts on aerosol indirect effects

    NASA Astrophysics Data System (ADS)

    Gantt, B.; He, J.; Zhang, X.; Zhang, Y.; Nenes, A.

    2014-07-01

    One of the greatest sources of uncertainty in the science of anthropogenic climate change is from aerosol-cloud interactions. The activation of aerosols into cloud droplets is a direct microphysical linkage between aerosols and clouds; parameterizations of this process link aerosol with cloud condensation nuclei (CCN) and the resulting indirect effects. Small differences between parameterizations can have a large impact on the spatiotemporal distributions of activated aerosols and the resulting cloud properties. In this work, we incorporate a series of aerosol activation schemes into the Community Atmosphere Model version 5.1.1 within the Community Earth System Model version 1.0.5 (CESM/CAM5) which include factors such as insoluble aerosol adsorption and giant cloud condensation nuclei (CCN) activation kinetics to understand their individual impacts on global-scale cloud droplet number concentration (CDNC). Compared to the existing activation scheme in CESM/CAM5, this series of activation schemes increase the computation time by ~10% but leads to predicted CDNC in better agreement with satellite-derived/in situ values in many regions with high CDNC but in worse agreement for some regions with low CDNC. Large percentage changes in predicted CDNC occur over desert and oceanic regions, owing to the enhanced activation of dust from insoluble aerosol adsorption and reduced activation of sea spray aerosol after accounting for giant CCN activation kinetics. Comparison of CESM/CAM5 predictions against satellite-derived cloud optical thickness and liquid water path shows that the updated activation schemes generally improve the low biases. Globally, the incorporation of all updated schemes leads to an average increase in column CDNC of 150% and an increase (more negative) in shortwave cloud forcing of 12%. With the improvement of model-predicted CDNCs and better agreement with most satellite-derived cloud properties in many regions, the inclusion of these aerosol activation

  11. Parameterizing cloud condensation nuclei concentrations during HOPE

    NASA Astrophysics Data System (ADS)

    Hande, Luke B.; Engler, Christa; Hoose, Corinna; Tegen, Ina

    2016-09-01

    An aerosol model was used to simulate the generation and transport of aerosols over Germany during the HD(CP)2 Observational Prototype Experiment (HOPE) field campaign of 2013. The aerosol number concentrations and size distributions were evaluated against observations, which shows satisfactory agreement in the magnitude and temporal variability of the main aerosol contributors to cloud condensation nuclei (CCN) concentrations. From the modelled aerosol number concentrations, number concentrations of CCN were calculated as a function of vertical velocity using a comprehensive aerosol activation scheme which takes into account the influence of aerosol chemical and physical properties on CCN formation. There is a large amount of spatial variability in aerosol concentrations; however the resulting CCN concentrations vary significantly less over the domain. Temporal variability is large in both aerosols and CCN. A parameterization of the CCN number concentrations is developed for use in models. The technique involves defining a number of best fit functions to capture the dependence of CCN on vertical velocity at different pressure levels. In this way, aerosol chemical and physical properties as well as thermodynamic conditions are taken into account in the new CCN parameterization. A comparison between the parameterization and the CCN estimates from the model data shows excellent agreement. This parameterization may be used in other regions and time periods with a similar aerosol load; furthermore, the technique demonstrated here may be employed in regions dominated by different aerosol species.

  12. The Explicit-Cloud Parameterized-Pollutant Hybrid Approach for Aerosol-Cloud Interactions in Multiscale Modelling Framework Models: Tracer Transport Results

    SciTech Connect

    Gustafson, William I.; Berg, Larry K.; Easter, Richard C.; Ghan, Steven J.

    2008-05-30

    All estimates of aerosol indirect effects on the global energy balance have either completely neglected the influence of aerosol on convective clouds or treated the influence in a highly parameterized manner. Embedding cloud-resolving models (CRMs) within each grid cell of a global model provides a multiscale modelling framework for treating both the influence of aerosols on convective as well as stratiform clouds and the influence of all clouds on the aerosol, but treating the interactions explicitly by simulating all aerosol processes in the CRM would be computationally prohibitive. An alternate approach is to use horizontal statistics (e.g., cloud mass flux, cloud fraction, and precipitation) from the CRM simulation to drive a single-column parameterization of cloud effects on the aerosol and then use the aerosol profile to simulate aerosol effects on clouds within the CRM. Here we test this concept for vertical transport by clouds, using a CRM with tracer transport simulated explicitly to serve as a benchmark. We show that this parameterization, driven by the CRM’s cloud mass fluxes, reproduces the tracer transport by the CRM significantly better than a single column model that uses a conventional convective cloud parameterization.

  13. Global modelling of secondary organic aerosol from α-pinene oxidation using a parameterization based on a detailed chemical mechanism

    NASA Astrophysics Data System (ADS)

    Ceulemans, Karl; Müller, Jean-Francois; Compernolle, Steven; Stavrakou, Jenny

    2010-05-01

    Monoterpenes are oxidized in the atmosphere by ozone and the hydroxyl and nitrate radicals. The condensable products resulting from these reactions contribute to Secondary Organic Aerosol (SOA). We have developed a detailed α-pinene chemical mechanism BOREAM (Capouet et al. 2008), in which the primary gas phase chemistry is based on quantum-chemical results, structure activity relationships and experimental data. The secondary chemistry of the most important products is treated explicitly, while further chemistry is reduced by the aid of generic species classes. The partitioning between gas phase and SOA is modeled using Pankow's partitioning approach (Pankow 1994), with vapor pressures (Capouet and Müller 2006) and activity coefficients (Compernolle et al. 2009) obtained from group contribution methods. We will discuss the performance of BOREAM through comparison of model predictions for SOA formation with experimental SOA yields for a large number (>150) of photo-oxidation and dark ozonolysis experiments (Ceulemans et al. 2009). Although the BOREAM SOA yields are significantly higher than in several previous box modeling studies, a reasonable agreement is found in comparison with most laboratory measurements. For use in a global model, the detailed BOREAM chemistry is replaced by a parameterized scheme based on the two-product approach (Odum et al. 1996) with parameters obtained through regressions of full model simulations. The reduced scheme accounts for the dependence of SOA yield on the oxidant (ozone, OH or NO3) and the NOx regime. For example, the reaction of alpha-pinene with OH generates a peroxy radical which, upon reaction with either NO or HO2 leads to the formation of two condensable products. The branching ratios and partitioning coefficients are temperature dependent. We inserted the obtained parameterized scheme in the global model IMAGES, where it is used to represent the SOA formation due to the monoterpenes. For aromatics, isoprene and

  14. Improved parameterization for the vertical flux of dust aerosols emitted by an eroding soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The representation of the dust cycle in atmospheric circulation models hinges on an accurate parameterization of the vertical dust flux at emission. However, existing parameterizations of the vertical dust flux vary substantially in their scaling with wind friction velocity, require input parameters...

  15. Importance of including ammonium sulfate ((NH4)2SO4) aerosols for ice cloud parameterization in GCMs

    SciTech Connect

    Bhattacharjee, P. S.; Sud, Yogesh C.; Liu, Xiaohong; Walker, Greg K.; Yang, R.; Wang, Jun

    2010-02-22

    A common deficiency of many cloud-physics parameterizations including the NASA’s microphysics of clouds with aerosol- cloud interactions (hereafter called McRAS-AC) is that they simulate less (larger) than the observed ice cloud particle number (size). A single column model (SCM) of McRAS-AC and Global Circulation Model (GCM) physics together with an adiabatic parcel model (APM) for ice-cloud nucleation (IN) of aerosols were used to systematically examine the influence of ammonium sulfate ((NH4)2SO4) aerosols, not included in the present formulations of McRAS-AC. Specifically, the influence of (NH4)2SO4 aerosols on the optical properties of both liquid and ice clouds were analyzed. First an (NH4)2SO4 parameterization was included in the APM to assess its effect vis-à-vis that of the other aerosols. Subsequently, several evaluation tests were conducted over the ARM-SGP and thirteen other locations (sorted into pristine and polluted conditions) distributed over marine and continental sites with the SCM. The statistics of the simulated cloud climatology were evaluated against the available ground and satellite data. The results showed that inclusion of (NH4)2SO4 in the SCM made a remarkable improvement in the simulated effective radius of ice clouds. However, the corresponding ice-cloud optical thickness increased more than is observed. This can be caused by lack of cloud advection and evaporation. We argue that this deficiency can be mitigated by adjusting the other tunable parameters of McRAS-AC such as precipitation efficiency. Inclusion of ice cloud particle splintering introduced through well- established empirical equations is found to further improve the results. Preliminary tests show that these changes make a substantial improvement in simulating the cloud optical properties in the GCM, particularly by simulating a far more realistic cloud distribution over the ITCZ.

  16. Final Technical Report for "Ice nuclei relation to aerosol properties: Data analysis and model parameterization for IN in mixed-phase clouds" (DOE/SC00002354)

    SciTech Connect

    Anthony Prenni; Kreidenweis, Sonia M.

    2012-09-28

    Clouds play an important role in weather and climate. In addition to their key role in the hydrologic cycle, clouds scatter incoming solar radiation and trap infrared radiation from the surface and lower atmosphere. Despite their importance, feedbacks involving clouds remain as one of the largest sources of uncertainty in climate models. To better simulate cloud processes requires better characterization of cloud microphysical processes, which can affect the spatial extent, optical depth and lifetime of clouds. To this end, we developed a new parameterization to be used in numerical models that describes the variation of ice nuclei (IN) number concentrations active to form ice crystals in mixed-phase (water droplets and ice crystals co-existing) cloud conditions as these depend on existing aerosol properties and temperature. The parameterization is based on data collected using the Colorado State University continuous flow diffusion chamber in aircraft and ground-based campaigns over a 14-year period, including data from the DOE-supported Mixed-Phase Arctic Cloud Experiment. The resulting relationship is shown to more accurately represent the variability of ice nuclei distributions in the atmosphere compared to currently used parameterizations based on temperature alone. When implemented in one global climate model, the new parameterization predicted more realistic annually averaged cloud water and ice distributions, and cloud radiative properties, especially for sensitive higher latitude mixed-phase cloud regions. As a test of the new global IN scheme, it was compared to independent data collected during the 2008 DOE-sponsored Indirect and Semi-Direct Aerosol Campaign (ISDAC). Good agreement with this new data set suggests the broad applicability of the new scheme for describing general (non-chemically specific) aerosol influences on IN number concentrations feeding mixed-phase Arctic stratus clouds. Finally, the parameterization was implemented into a regional

  17. Cloud/Aerosol Parameterizations: Application and Improvement of General Circulation Models

    SciTech Connect

    Penner, Joyce

    2012-06-30

    One of the biggest uncertainties associated with climate models and climate forcing is the treatment of aerosols and their effects on clouds. The effect of aerosols on clouds can be divided into two components: The first indirect effect is the forcing associated with increases in droplet concentrations; the second indirect effect is the forcing associated with changes in liquid water path, cloud morphology, and cloud lifetime. Both are highly uncertain. This project applied a cloud-resolving model to understand the response of clouds under a variety of conditions to changes in aerosols. These responses are categorized according to the large-scale meteorological conditions that lead to the response. Meteorological conditions were sampled from various fields, which, together with a global aerosol model determination of the change in aerosols from present day to pre-industrial conditions, was used to determine a first order estimate of the response of global cloud fields to changes in aerosols. The response of the clouds in the NCAR CAM3 GCM coupled to our global aerosol model were tested by examining whether the response is similar to that of the cloud resolving model and methods for improving the representation of clouds and cloud/aerosol interactions were examined.

  18. Uncertainties in aerosol direct and indirect effects attributed to uncertainties in convective transport parameterizations

    NASA Astrophysics Data System (ADS)

    Storelvmo, T.

    2012-11-01

    Deep convection is an important transport mechanism for aerosol particles, allowing them to be lifted to levels where they are subject to long-range transport from source regions to remote regions. The sensitivity of regional aerosol effects to the rate of entrainment in deep moist convection has been explored in a global modeling framework, and found to be crucial for the radiative balance both at the surface and at the top of the atmosphere. The fact that regions where deep convection is frequent often coincide with regions of particularly high black carbon emissions is found to be an important factor in understanding this sensitivity to entrainment. More entrainment leads to shallower convective plumes and less aerosol transport from the boundary layer to the upper troposphere in source regions. As a result, boundary layer aerosol concentrations are increased in source regions, while upper tropospheric aerosol concentrations are reduced globally. This generally leads to stronger aerosol effects in polluted regions and weaker aerosol effects in remote regions. Because black carbon particles have the ability to absorb solar radiation, reducing their concentration leads to more solar radiation reflected back to space, especially over bright surfaces. Conversely, at the surface more entrainment means more downwelling shortwave radiation everywhere but in source regions. Regions that experience increased aerosol concentrations in the boundary layer in response to increased entrainment observed a stronger aerosol indirect effect, while the opposite was true everywhere else. This study highlights that the relative strengths of the aerosol direct and indirect effects in clean versus polluted regions depend crucially on the rate of entrainment in deep convective clouds, a process that is presently not well understood and quantified.

  19. Comparing momentum and mass (aerosol source function) fluxes for the North Atlantic and the European Arctic using different parameterizations

    NASA Astrophysics Data System (ADS)

    Wróbel, Iwona; Piskozub, Jacek

    2016-04-01

    Wind speed has a disproportionate role in the forming of the climate as well it is important part in calculate of the air-sea interaction thanks which we can study climate change. It influences on mass, momentum and energy fluxes and the standard way of parametrizing those fluxes is use this variable. However, the very functions used to calculate fluxes from winds have evolved over time and still have large differences (especially in the case of aerosol sources function). As we have shown last year at the EGU conference (PICO presentation EGU2015-11206-1) and in recent public article (OSD 12,C1262-C1264,2015) there is a lot of uncertainties in the case of air-sea CO2 fluxes. In this study we calculated regional and global mass and momentum fluxes based on several wind speed climatologies. To do this we use wind speed from satellite data in FluxEngine software created within OceanFlux GHG Evolution project. Our main area of interest is European Arctic because of the interesting air-sea interaction physics (six-monthly cycle, strong wind and ice cover) but because of better data coverage we have chosen the North Atlantic as a study region to make it possible to compare the calculated fluxes to measured ones. An additional reason was the importance of the area for the North Hemisphere climate, and especially for Europe. The study is related to an ESA funded OceanFlux GHG Evolution project and is meant to be part of a PhD thesis (of I.W) funded by Centre of Polar Studies "POLAR-KNOW" (a project of the Polish Ministry of Science). We have used a modified version FluxEngine, a tool created within an earlier ESA funded project (OceanFlux Greenhouse Gases) for calculating trace gas fluxes to derive two purely wind driven (at least in the simplified form used in their parameterizations) fluxes. The modifications included removing gas transfer velocity formula from the toolset and replacing it with the respective formulas for momentum transfer and mass (aerosol production

  20. Scanning Backscatter Lidar Observations for Characterizing 4-D Cloud and Aerosol Fields to Improve Radiative Transfer Parameterizations

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.; Miller, David O.

    2005-01-01

    Clouds have a powerful influence on atmospheric radiative transfer and hence are crucial to understanding and interpreting the exchange of radiation between the Earth's surface, the atmosphere, and space. Because clouds are highly variable in space, time and physical makeup, it is important to be able to observe them in three dimensions (3-D) with sufficient resolution that the data can be used to generate and validate parameterizations of cloud fields at the resolution scale of global climate models (GCMs). Simulation of photon transport in three dimensionally inhomogeneous cloud fields show that spatial inhomogeneities tend to decrease cloud reflection and absorption and increase direct and diffuse transmission, Therefore it is an important task to characterize cloud spatial structures in three dimensions on the scale of GCM grid elements. In order to validate cloud parameterizations that represent the ensemble, or mean and variance of cloud properties within a GCM grid element, measurements of the parameters must be obtained on a much finer scale so that the statistics on those measurements are truly representative. High spatial sampling resolution is required, on the order of 1 km or less. Since the radiation fields respond almost instantaneously to changes in the cloud field, and clouds changes occur on scales of seconds and less when viewed on scales of approximately 100m, the temporal resolution of cloud properties should be measured and characterized on second time scales. GCM time steps are typically on the order of an hour, but in order to obtain sufficient statistical representations of cloud properties in the parameterizations that are used as model inputs, averaged values of cloud properties should be calculated on time scales on the order of 10-100 s. The Holographic Airborne Rotating Lidar Instrument Experiment (HARLIE) provides exceptional temporal (100 ms) and spatial (30 m) resolution measurements of aerosol and cloud backscatter in three

  1. Surface-active organics in atmospheric aerosols.

    PubMed

    McNeill, V Faye; Sareen, Neha; Schwier, Allison N

    2014-01-01

    Surface-active organic material is a key component of atmospheric aerosols. The presence of surfactants can influence aerosol heterogeneous chemistry, cloud formation, and ice nucleation. We review the current state of the science on the sources, properties, and impacts of surfactants in atmospheric aerosols. PMID:23408277

  2. Incorporation of advanced aerosol activation treatments into CESM/CAM5: model evaluation and impacts on aerosol indirect effects

    NASA Astrophysics Data System (ADS)

    Gantt, B.; He, J.; Zhang, X.; Zhang, Y.; Nenes, A.

    2013-12-01

    One of the greatest sources of uncertainty in the science of anthropogenic climate change is from aerosol-cloud interactions. The activation of aerosols into cloud droplets is a direct microphysical link between aerosols and clouds; parameterizations of this process realistically link aerosol with cloud condensation nuclei (CCN) and the resulting indirect effects. Small differences between parameterizations can have a large impact on the spatiotemporal distributions of activated aerosols and the resulting cloud properties. In this work, we incorporate a series of aerosol activation schemes into the Community Atmosphere Model version 5.1.1 within the Community Earth System Model version 1.0.5 (CESM/CAM5), which include factors such as insoluble aerosol adsorption, giant cloud condensation nuclei (CCN) activation kinetics, and entrainment to understand their individual impacts on global scale cloud droplet number concentrations (CDNCs). Compared to the existing simple activation scheme in CESM/CAM5, this series of schemes predict CDNCs that are typically in better agreement with satellite-derived and observed values. The largest changes in predicted CDNCs occur over desert and oceanic regions, owing to the enhanced activation of dust from insoluble aerosol adsorption and reductions in cloud supersaturation from the intense absorption of water vapor in regions of strong giant CCN emissions (e.g., sea-salt). Comparison of CESM/CAM5 against satellite-derived cloud optical thickness and liquid water path shows that the updated activation schemes improve the low biases in their predictions. Globally, the incorporation of all updated schemes leads to an average increase in column CDNCs of 155%, an increase in shortwave cloud forcing of 13%, and a decrease in surface shortwave radiation of 4%. In terms of meteorological impacts, these updated aerosol activation schemes result in a slight decrease in near-surface temperature of 0.9 °C and precipitation of 0.04 mm day-1

  3. Parameterization of an Active Thermal Erosion Site, Caribou Creek, Alaska

    NASA Astrophysics Data System (ADS)

    Busey, R.; Bolton, W. R.; Cherry, J. E.; Hinzman, L. D.

    2012-12-01

    Thermokarst features are thought to be an important mechanism for landscape change in permafrost-dominated cold regions, but few such features have been incorporated into full featured landscape models. The root of this shortcoming is that historic observations are not detailed enough to parameterize a model, and the models typically do not include the relevant processes for thermal erosion. A new, dynamic thermokarst feature has been identified at the Caribou-Poker Creek Research Watershed (CPCRW) in the boreal forest of Interior Alaska. Located adjacent to a traditional use trail, this feature terminates directly in Caribou Creek. Erosion within the feature is driven predominantly by fluvial interflow. CPCRW is a Long-Term Ecological Research site underlain by varying degrees of relatively warm, discontinuous permafrost. This poster will describe the suite of measurements that have been undertaken to parameterize the ERODE model for this site, including thorough surveys, time lapse- and aerial photography, and 3-D structure from motion algorithms.

  4. Parameterization of single-scattering albedo (SSA) and absorption Ångström exponent (AAE) with EC / OC for aerosol emissions from biomass burning

    NASA Astrophysics Data System (ADS)

    Pokhrel, Rudra P.; Wagner, Nick L.; Langridge, Justin M.; Lack, Daniel A.; Jayarathne, Thilina; Stone, Elizabeth A.; Stockwell, Chelsea E.; Yokelson, Robert J.; Murphy, Shane M.

    2016-08-01

    Single-scattering albedo (SSA) and absorption Ångström exponent (AAE) are two critical parameters in determining the impact of absorbing aerosol on the Earth's radiative balance. Aerosol emitted by biomass burning represent a significant fraction of absorbing aerosol globally, but it remains difficult to accurately predict SSA and AAE for biomass burning aerosol. Black carbon (BC), brown carbon (BrC), and non-absorbing coatings all make substantial contributions to the absorption coefficient of biomass burning aerosol. SSA and AAE cannot be directly predicted based on fuel type because they depend strongly on burn conditions. It has been suggested that SSA can be effectively parameterized via the modified combustion efficiency (MCE) of a biomass burning event and that this would be useful because emission factors for CO and CO2, from which MCE can be calculated, are available for a large number of fuels. Here we demonstrate, with data from the FLAME-4 experiment, that for a wide variety of globally relevant biomass fuels, over a range of combustion conditions, parameterizations of SSA and AAE based on the elemental carbon (EC) to organic carbon (OC) mass ratio are quantitatively superior to parameterizations based on MCE. We show that the EC / OC ratio and the ratio of EC / (EC + OC) both have significantly better correlations with SSA than MCE. Furthermore, the relationship of EC / (EC + OC) with SSA is linear. These improved parameterizations are significant because, similar to MCE, emission factors for EC (or black carbon) and OC are available for a wide range of biomass fuels. Fitting SSA with MCE yields correlation coefficients (Pearson's r) of ˜ 0.65 at the visible wavelengths of 405, 532, and 660 nm while fitting SSA with EC / OC or EC / (EC + OC) yields a Pearson's r of 0.94-0.97 at these same wavelengths. The strong correlation coefficient at 405 nm (r = 0.97) suggests that parameterizations based on EC / OC or EC / (EC + OC) have good predictive

  5. CCN activity of aliphatic amine secondary aerosol

    NASA Astrophysics Data System (ADS)

    Tang, X.; Price, D.; Praske, E.; Vu, D.; Purvis-Roberts, K.; Silva, P. J.; Cocker, D. R., III; Asa-Awuku, A.

    2014-01-01

    Aliphatic amines can form secondary aerosol via oxidation with atmospheric radicals (e.g. hydroxyl radical and nitrate radical). The particle composition can contain both secondary organic aerosol (SOA) and inorganic salts. The fraction of organic to inorganic materials in the particulate phase influences aerosol hygroscopicity and cloud condensation nuclei (CCN) activity. SOA formed from trimethylamine (TMA) and butylamine (BA) reactions with hydroxyl radical (OH) is composed of organic material of low hygroscopicity (single hygroscopicity parameter, κ ≤ 0.25). Secondary aerosol formed from the tertiary aliphatic amine (TMA) with N2O5 (source of nitrate radical, NO3), contains less volatile compounds than the primary aliphatic amine (BA) aerosol. TMA + N2O5 form semi-volatile organics in low RH conditions that have κ ~ 0.20, indicative of slightly soluble organic material. As RH increases, several inorganic amine salts are formed as a result of acid-base reactions. The CCN activity of the humid TMA-N2O5 aerosol obeys Zdanovskii, Stokes, and Robinson (ZSR) ideal mixing rules. Higher CCN activity (κ > 0.3) was also observed for humid BA+N2O5 aerosols compared with dry aerosol (κ ~ 0.2), as a result of the formation of inorganic salts such as NH4NO3 and butylamine nitrate (C4H11N · HNO3). Compared with TMA, BA+N2O5 reactions produce more volatile aerosols. The BA+N2O5 aerosol products under humid experiments were found to be very sensitive to the temperature within the stream-wise continuous flow thermal gradient CCN counter. The CCN counter, when set above a 21 °C temperature difference, evaporates BA+N2O5 aerosol formed at RH ≥ 30%; κ ranges from 0.4 to 0.7 and is dependent on the instrument supersaturation (ss) settings. The aerosol behaves non-ideally, hence simple ZSR rules cannot be applied to the CCN results from the primary aliphatic amine system. Overall, aliphatic amine aerosol systems κ ranges from 0.2 < κ < 0.7. This work indicates that

  6. Accuracy of fuzzy burned area mapping as a function of the aerosol parameterization of atmospheric correction

    NASA Astrophysics Data System (ADS)

    Azar, Ramin; Stroppiana, Daniela; Bresciani, Mariano; Giardino, Claudia; Boschetti, Mirco; Brivio, Pietro A.

    2013-10-01

    Mediterranean forests are every year affected by wildfires which have a significant effect on the ecosystem. Mapping burned areas is an important field of application for optical remote sensing techniques and several methodologies have been developed in order to improve mapping accuracy. We developed an automated procedure based on spectral indices and fuzzy theory for mapping burned areas from atmospherically corrected Landsat TM images. The algorithm proved to provide consistent accuracy over Mediterranean areas. We further tested algorithm's performance to assess the influence of the atmospheric correction on the accuracy of burned areas. In particular, we ran the Second Simulation of a Satellite Signal in the Solar Spectrum (6S) code with different Atmospheric Optical Thickness (AOT) levels and two aerosol models (continental and maritime) on one TM image acquired over Portugal (12/08/2003). Burned area maps derived from atmospherically corrected images and from the non corrected image (Top Of Atmosphere, TOA) have been analyzed. In the output burned areas maps the omission error varies in the range 4.6-6.5% and the commission error fluctuates between 11.9 and 22.2%; the highest omission (commission) errors occur with the continental (maritime) model. The accuracy of burned area maps derived from non corrected image is very low, with omission error greater than 90%. These results show that, although atmospheric correction is needed for the application of the algorithm, the AOT value does not significantly affect the performance.

  7. Lightning activity and aerosols over the Mediterranean

    NASA Astrophysics Data System (ADS)

    Proestakis, Emmanouil; Kazadzis, Stelios; Kotroni, Vassiliki; Lagouvardos, Kostas; Kazantzidis, Andreas

    2015-04-01

    Lightning activity has received extended scientific attention over the past decades. Several international studies on lightning activity and initiation mechanisms have related the increased aerosol concentrations to lightning enhancement. In the frame of TALOS project, we investigated the effect of aerosols on lightning activity over the Mediterranean Sea. Cloud to ground lightning activity data from ZEUS lightning detection network operated and maintained by the National Observatory of Athens, were used along with atmospheric optical depth (AOD) data retrieved by MODIS, on board Aqua satellite. The analysis covers a period of nine years, spanning from 2005 up to 2013. The results show the importance of aerosols in lightning initiation and enhancement. It is shown that the mean AOD of the days with lightning activity per season is larger than the mean seasonal AOD in 90% of the under study domain. Furthermore, lightning activity increase with increasing aerosol loading was found to be more pronounced during summertime and for atmospheric optical depth values up to 0.4. Additionally, during summertime, the spatial analysis showed that the percentage of days with lightning activity is increasing with increasing aerosol loading. Finally, time series for the period 2005-2013 of the days with lightning activity and AOD differences showed similar temporal behavior. Overall, both the spatial and temporal analysis showed that lightning activity is correlated to aerosol loading and that this characteristic is consistent for all seasons.

  8. Comment on "Reduced efficacy of marine cloud brightening geoengineering due to in-plume aerosol coagulation: parameterization and global implications" by Stuart et al. (2013)

    NASA Astrophysics Data System (ADS)

    Anand, S.; Mayya, Y. S.

    2015-01-01

    We examine the parameterized model of Stuart et al. (2013) vis-à-vis a diffusion-based model proposed by us earlier (Anand and Mayya, 2011) to estimate the fraction of aerosol particles surviving coagulation in a dispersing plume. While the Stuart et al. approach is based on the solutions to the coagulation problem in an expanding plume model, the diffusion-based approach solves the diffusion-coagulation equation for a steady-state standing plume to arrive at the survival fraction correlations. We discuss the differences in the functional forms of the survival fraction expressions obtained in the two approaches and compare the results for the case studies presented in Stuart et al. (2013) involving different particle emission rates and atmospheric stability categories. There appears to be a better agreement between the two models at higher survival fractions as compared to lower survival fractions; on the whole, the two models agree with each other within a difference of 10%. The diffusion-based expression involves a single exponent fit to a theoretically generated similarity variable combining the parameters of the problem with inbuilt exponents and hence avoids the multi-exponent parameterization exercise. It also possesses a wider range of applicability in respect of the source and atmospheric parameters as compared to that based on parameterization. However, in the diffusion model, the choice of a representative value for the coagulation coefficient is more prescriptive than rigorous, which has been addressed in a more satisfactory manner by the parameterization method. The present comparative exercise, although limited in scope, confirms the importance of aerosol microphysical processes envisaged by Stuart et al. for cloud brightening applications. In a larger context, it seems to suggest that either of the two forms of expressions might be suitable for incorporation into global-/regional-scale air pollution models for predicting the contribution of localized

  9. A Climate Process Team focused on better representation of aerosol indirect effects in climate models through improved cloud macrophysical parameterization

    NASA Astrophysics Data System (ADS)

    Wood, R.; Larson, V. E.; Donner, L.; Golaz, J.; Guo, H.; Gettelman, A.; Morrison, H.; Bogenschutz, P.; Feingold, G.; Yamaguchi, T.; Lee, S.; Stephens, G. L.; Lebsock, M. D.; Kubar, T. L.; Grosvenor, D. P.

    2011-12-01

    The representation of aerosol indirect effects (AIEs) in climate models is hampered in part by a poor representation of cloud macrophysical processes. Accurate representation of AIEs involves a complex interplay between cloud microphysics, turbulent dynamics, and radiation. This presentation describes the goals, progress, and future activities of a NSF/NOAA Climate Process Team focused on the improved representation of cloud macrophysical processes through the incorporation of a unified cloud and turbulence scheme into two of the leading US climate models (NCAR CAM, GFDL AM3). We describe how a combination of process modeling, field observations, and single column modeling can be used to improve model physics. We then describe progress in the implementation of the scheme in the full climate model. We describe observational metrics from satellites that the team is using to establish the fidelity of the model results and guide future model development.

  10. Development and testing of an aerosol/stratus cloud parameterization scheme for middle and high latitudes. Final technical progress report, November 1, 1994--October 31, 1998

    SciTech Connect

    Kreidenweis, S.M.; Cotton, W.R.

    1999-05-20

    At the present time, general circulation models (GCMs) poorly represent clouds, to the extent that they cannot be relied upon to simulate the climatic effects of increasing concentrations of greenhouse gases, or of anthropogenic perturbations to concentrations of cloud condensation nuclei (CCN) or ice nuclei (IN). The long-term objective of this research was the development of an aerosol/cloud microphysics parameterization of mixed-phase stratus and boundary-layer clouds which responds to variations in CCN and IN. The work plan was to perform simulations of these cloud systems to gain understanding of their dynamics and microphysics, especially how aerosols affect cloud development and properties, that cold then be used to guide parameterizations. Several versions of the CSU RAMS (Regional Atmospheric Modeling System), modified to treat Arctic clouds, have been used during the course of this work. The authors also developed a new modeling system, the Trajectory Ensemble Model, to perform detailed chemical and microphysical simulations off-line from the host LES model. The increased understanding of the cloud systems investigated in this research can be applied to a single-column cloud model, designed as an adaptive grid model which can interface into a GCM vertical grid through distinct layers of the troposphere where the presence of layer clouds is expected.

  11. Final Report for “Simulating the Arctic Winter Longwave Indirect Effects. A New Parameterization for Frost Flower Aerosol Salt Emissions” (DESC0006679) for 9/15/2011 through 9/14/2015

    SciTech Connect

    Russell, Lynn M.; Somerville, Richard C.J.; Burrows, Susannah; Rasch, Phil

    2015-12-12

    Description of the Project: This project has improved the aerosol formulation in a global climate model by using innovative new field and laboratory observations to develop and implement a novel wind-driven sea ice aerosol flux parameterization. This work fills a critical gap in the understanding of clouds, aerosol, and radiation in polar regions by addressing one of the largest missing particle sources in aerosol-climate modeling. Recent measurements of Arctic organic and inorganic aerosol indicate that the largest source of natural aerosol during the Arctic winter is emitted from crystal structures, known as frost flowers, formed on a newly frozen sea ice surface [Shaw et al., 2010]. We have implemented the new parameterization in an updated climate model making it the first capable of investigating how polar natural aerosol-cloud indirect effects relate to this important and previously unrecognized sea ice source. The parameterization is constrained by Arctic ARM in situ cloud and radiation data. The modified climate model has been used to quantify the potential pan-Arctic radiative forcing and aerosol indirect effects due to this missing source. This research supported the work of one postdoc (Li Xu) for two years and contributed to the training and research of an undergraduate student. This research allowed us to establish a collaboration between SIO and PNNL in order to contribute the frost flower parameterization to the new ACME model. One peer-reviewed publications has already resulted from this work, and a manuscript for a second publication has been completed. Additional publications from the PNNL collaboration are expected to follow.

  12. Stochastic Convection Parameterizations

    NASA Technical Reports Server (NTRS)

    Teixeira, Joao; Reynolds, Carolyn; Suselj, Kay; Matheou, Georgios

    2012-01-01

    computational fluid dynamics, radiation, clouds, turbulence, convection, gravity waves, surface interaction, radiation interaction, cloud and aerosol microphysics, complexity (vegetation, biogeochemistry, radiation versus turbulence/convection stochastic approach, non-linearities, Monte Carlo, high resolutions, large-Eddy Simulations, cloud structure, plumes, saturation in tropics, forecasting, parameterizations, stochastic, radiation-clod interaction, hurricane forecasts

  13. Incorporation of Advanced Activation Treatments into CESM/CAM5: Model Evaluation and Impacts on Aerosol Indirect Forcing

    NASA Astrophysics Data System (ADS)

    Gantt, B.; He, J.; Zhang, X.; Zhang, Y.; Nenes, A.

    2013-12-01

    One of the greatest sources of uncertainty in climate science is the influence of aerosols on clouds through indirect effects, especially processes affecting the activation of aerosols into cloud droplets. Aerosol activation parameterizations incorporate much of the complexity of these processes, but the small differences between parameterizations can have a large impact on the spatiotemporal distribution of activated aerosols and the resulting cloud properties. Currently, most models simulate aerosol activation using the Abdul-Razzak and Ghan [2000] (AR-G00) scheme which derives an empiric calculation of the maximum parcel supersaturation based on the regression of numerical parcel calculations. The Community Atmosphere Model version 5.1.1 within the Community Earth Systems Model version 1.0.5 (CESM/CAM5) is an online-coupled Earth Systems model that simulates the interactions among aerosols, clouds, and radiation. CESM/CAM5 uses the AR-G00 scheme to simulate aerosol activation. In this work, we update CESM/CAM5 by incorporating a series of explicit aerosol activation schemes (Fountoukis and Nenes [2005]; Barahona and Nenes [2007]; Kumar et al. [2009]; and Barahona et al. [2010]) which account for the impacts of insoluble aerosol adsorption, giant cloud condensation nuclei activation kinetics, and entrainment on cloud droplet number concentrations (CDNC). CESM/CAM5 results with the empiric and explicit aerosol activation schemes are evaluated against several global datasets including observed low-level CDNC and satellite-derived cloud optical thickness (COT), liquid water path (LWP), and shortwave cloud forcing (SWCF). Globally, the incorporation of all explicit schemes leads to an average increase in column CDNC of 155%, increase (more negative) in SWCF of 13%, and decrease in surface shortwave radiation of -4%. In terms of climate impacts, these schemes result in an annual mean decrease in surface temperature and precipitation of -0.9 K (~0.2%) and -0.04 mm day

  14. Parameterization of the cloud-mediated radiative forcing of climate due to aerosols in the two-way coupled WRF-CMAQ over the continental United States

    NASA Astrophysics Data System (ADS)

    Yu, S.; Mathur, R.; Pleim, J.; Wong, D.; Carlton, A. G.; Roselle, S. J.; Rao, S.

    2010-12-01

    Atmospheric emissions resulting from consumption of fossil fuels by human activities contribute to global warming and degrade air quality. The IPCC (2007) concludes that the total direct aerosol radiative forcing is estimated to be -0.5 [±0.4] W m-2, with a medium-low level of scientific understanding, while the radiative forcing due to the cloud albedo effect (also referred to as first indirect), is estimated to be -0.7 [-1.1, +0.4] W m-2, with a low level of scientific understanding. For a given cloud liquid water content, an increase in the cloud droplet number concentration implies a decrease in the effective radius, thus increasing the cloud reflectivity; this is know as the first indirect aerosol effect. The second indirect aerosol effect is based on the idea that decreasing the mean droplet size in the presence of enhanced aerosols decreases the cloud precipitation efficiency, producing clouds with a larger liquid water content and longer lifetime. In this study, the indirect aerosol effect is estimated with the newly developed two-way coupled WRF-CMAQ over the continental United States. The cloud droplet number concentrations are diagnosed from the activation of CMAQ-predicted aerosol. The resulting cloud droplet number is used to calculate variations in droplet effective radius, which in turn allows us to estimate aerosol effects on cloud optical depth and microphysical processes using a two-moment treatment of cloud water (cloud water mass and cloud droplet number) to model effects on precipitation. With the satellite observation data such as CERES, MODIS and CALIPSO, we will evaluate the cloud properties such as cloud optical depth, cloud droplet effective radius, and liquid water content and indirect aerosol forcing in the newly-developed coupled WRF-CMAQ.

  15. Secondary organic aerosol formation by limonene ozonolysis: Parameterizing multi-generational chemistry in ozone- and residence time-limited indoor environments

    NASA Astrophysics Data System (ADS)

    Waring, Michael S.

    2016-11-01

    Terpene ozonolysis reactions can be a strong source of secondary organic aerosol (SOA) indoors. SOA formation can be parameterized and predicted using the aerosol mass fraction (AMF), also known as the SOA yield, which quantifies the mass ratio of generated SOA to oxidized terpene. Limonene is a monoterpene that is at sufficient concentrations such that it reacts meaningfully with ozone indoors. It has two unsaturated bonds, and the magnitude of the limonene ozonolysis AMF varies by a factor of ∼4 depending on whether one or both of its unsaturated bonds are ozonated, which depends on whether ozone is in excess compared to limonene as well as the available time for reactions indoors. Hence, this study developed a framework to predict the limonene AMF as a function of the ozone [O3] and limonene [lim] concentrations and the air exchange rate (AER, h-1), which is the inverse of the residence time. Empirical AMF data were used to calculate a mixing coefficient, β, that would yield a 'resultant AMF' as the combination of the AMFs due to ozonolysis of one or both of limonene's unsaturated bonds, within the volatility basis set (VBS) organic aerosol framework. Then, β was regressed against predictors of log10([O3]/[lim]) and AER (R2 = 0.74). The β increased as the log10([O3]/[lim]) increased and as AER decreased, having the physical meaning of driving the resultant AMF to the upper AMF condition when both unsaturated bonds of limonene are ozonated. Modeling demonstrates that using the correct resultant AMF to simulate SOA formation owing to limonene ozonolysis is crucial for accurate indoor prediction.

  16. New and extended parameterization of the thermodynamic model AIOMFAC: calculation of activity coefficients for organic-inorganic mixtures containing carboxyl, hydroxyl, carbonyl, ether, ester, alkenyl, alkyl, and aromatic functional groups

    NASA Astrophysics Data System (ADS)

    Zuend, A.; Marcolli, C.; Booth, A. M.; Lienhard, D. M.; Soonsin, V.; Krieger, U. K.; Topping, D. O.; McFiggans, G.; Peter, T.; Seinfeld, J. H.

    2011-05-01

    We present a new and considerably extended parameterization of the thermodynamic activity coefficient model AIOMFAC (Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients) at room temperature. AIOMFAC combines a Pitzer-like electrolyte solution model with a UNIFAC-based group-contribution approach and explicitly accounts for interactions between organic functional groups and inorganic ions. Such interactions constitute the salt-effect, may cause liquid-liquid phase separation, and affect the gas-particle partitioning of aerosols. The previous AIOMFAC version was parameterized for alkyl and hydroxyl functional groups of alcohols and polyols. With the goal to describe a wide variety of organic compounds found in atmospheric aerosols, we extend here the parameterization of AIOMFAC to include the functional groups carboxyl, hydroxyl, ketone, aldehyde, ether, ester, alkenyl, alkyl, aromatic carbon-alcohol, and aromatic hydrocarbon. Thermodynamic equilibrium data of organic-inorganic systems from the literature are critically assessed and complemented with new measurements to establish a comprehensive database. The database is used to determine simultaneously the AIOMFAC parameters describing interactions of organic functional groups with the ions H+, Li+, Na+, K+, NH4+, Mg2+, Ca2+, Cl-, Br-, NO3-, HSO4-, and SO42-. Detailed descriptions of different types of thermodynamic data, such as vapor-liquid, solid-liquid, and liquid-liquid equilibria, and their use for the model parameterization are provided. Issues regarding deficiencies of the database, types and uncertainties of experimental data, and limitations of the model, are discussed. The challenging parameter optimization problem is solved with a novel combination of powerful global minimization algorithms. A number of exemplary calculations for systems containing atmospherically relevant aerosol components are shown. Amongst others, we discuss aqueous mixtures of ammonium sulfate with

  17. New and extended parameterization of the thermodynamic model AIOMFAC: calculation of activity coefficients for organic-inorganic mixtures containing carboxyl, hydroxyl, carbonyl, ether, ester, alkenyl, alkyl, and aromatic functional groups

    NASA Astrophysics Data System (ADS)

    Zuend, A.; Marcolli, C.; Booth, A. M.; Lienhard, D. M.; Soonsin, V.; Krieger, U. K.; Topping, D. O.; McFiggans, G.; Peter, T.; Seinfeld, J. H.

    2011-09-01

    We present a new and considerably extended parameterization of the thermodynamic activity coefficient model AIOMFAC (Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients) at room temperature. AIOMFAC combines a Pitzer-like electrolyte solution model with a UNIFAC-based group-contribution approach and explicitly accounts for interactions between organic functional groups and inorganic ions. Such interactions constitute the salt-effect, may cause liquid-liquid phase separation, and affect the gas-particle partitioning of aerosols. The previous AIOMFAC version was parameterized for alkyl and hydroxyl functional groups of alcohols and polyols. With the goal to describe a wide variety of organic compounds found in atmospheric aerosols, we extend here the parameterization of AIOMFAC to include the functional groups carboxyl, hydroxyl, ketone, aldehyde, ether, ester, alkenyl, alkyl, aromatic carbon-alcohol, and aromatic hydrocarbon. Thermodynamic equilibrium data of organic-inorganic systems from the literature are critically assessed and complemented with new measurements to establish a comprehensive database. The database is used to determine simultaneously the AIOMFAC parameters describing interactions of organic functional groups with the ions H+, Li+, Na+, K+, NH4+, Mg2+, Ca2+, Cl-, Br-, NO3-, HSO4-, and SO42-. Detailed descriptions of different types of thermodynamic data, such as vapor-liquid, solid-liquid, and liquid-liquid equilibria, and their use for the model parameterization are provided. Issues regarding deficiencies of the database, types and uncertainties of experimental data, and limitations of the model, are discussed. The challenging parameter optimization problem is solved with a novel combination of powerful global minimization algorithms. A number of exemplary calculations for systems containing atmospherically relevant aerosol components are shown. Amongst others, we discuss aqueous mixtures of ammonium sulfate with

  18. Comparison of in situ and columnar aerosol spectral measurements during TexAQS-GoMACCS 2006: testing parameterizations for estimating aerosol fine mode properties

    NASA Astrophysics Data System (ADS)

    Atkinson, D. B.; Massoli, P.; O'Neill, N. T.; Quinn, P. K.; Brooks, S.; Lefer, B.

    2009-08-01

    During the 2006 Texas Air Quality Study and Gulf of Mexico Atmospheric Composition and Climate Study (TexAQS-GoMACCS 2006), the optical, chemical and microphysical properties of atmospheric aerosols were measured on multiple mobile platforms and at ground based stations. In situ measurements of the aerosol light extinction coefficient (σep) were performed by two multi-wavelength cavity ring-down (CRD) instruments, one located on board the NOAA R/V Ronald H. Brown (RHB) and the other located at the University of Houston, Moody Tower (UHMT). An AERONET sunphotometer was also located at the UHMT to measure the columnar aerosol optical depth (AOD). The σep data were used to extract the extinction Ångström exponent (åep), a measure of the wavelength dependence of σep. There was general agreement between the åep (and to a lesser degree σep measurements by the two spatially separated CRD instruments during multi-day periods, suggesting a regional scale consistency of the sampled aerosols. Two spectral models are applied to the σep and AOD data to extract the fine mode fraction of extinction (η) and the fine mode effective radius (Reff f). These two parameters are robust measures of the fine mode contribution to total extinction and the fine mode size distribution respectively. The results of the analysis are compared to Reff f values extracted using AERONET V2 retrievals and calculated from in situ particle size measurements on the RHB and at UHMT. During a time period when fine mode aerosols dominated the extinction over a large area extending from Houston/Galveston Bay and out into the Gulf of Mexico, the various methods for obtaining Reff f agree qualitatively (showing the same temporal trend) and quantitatively (pooled standard deviation=28 nm).

  19. Comparison of in situ and columnar aerosol spectral measurements during TexAQS-GoMACCS 2006: testing parameterizations for estimating aerosol fine mode properties

    NASA Astrophysics Data System (ADS)

    Atkinson, D. B.; Massoli, P.; O'Neill, N. T.; Quinn, P. K.; Brooks, S. D.; Lefer, B.

    2010-01-01

    During the 2006 Texas Air Quality Study and Gulf of Mexico Atmospheric Composition and Climate Study (TexAQS-GoMACCS 2006), the optical, chemical and microphysical properties of atmospheric aerosols were measured on multiple mobile platforms and at ground based stations. In situ measurements of the aerosol light extinction coefficient (σep) were performed by two multi-wavelength cavity ring-down (CRD) instruments, one located on board the NOAA R/V Ronald H. Brown (RHB) and the other located at the University of Houston, Moody Tower (UHMT). An AERONET sunphotometer was also located at the UHMT to measure the columnar aerosol optical depth (AOD). The σep data were used to extract the extinction Ångström exponent (åep), a measure of the wavelength dependence of σep. There was general agreement between the åep (and to a lesser degree σep) measurements by the two spatially separated CRD instruments during multi-day periods, suggesting a regional scale consistency of the sampled aerosols. Two spectral models are applied to the σep and AOD data to extract the fine mode fraction of extinction (η) and the fine mode effective radius (Reff,f). These two parameters are robust measures of the fine mode contribution to total extinction and the fine mode size distribution, respectively. The results of the analysis are compared to Reff,f values extracted using AERONET V2 retrievals and calculated from in situ particle size measurements on the RHB and at UHMT. During a time period when fine mode aerosols dominated the extinction over a large area extending from Houston/Galveston Bay and out into the Gulf of Mexico, the various methods for obtaining Reff,f agree qualitatively (showing the same temporal trend) and quantitatively (pooled standard deviation = 28 nm).

  20. CCN activation of ambient and "synthetic ambient" urban aerosol

    NASA Astrophysics Data System (ADS)

    Burkart, Julia; Reischl, Georg; Steiner, Gerhard; Bauer, Heidi; Leder, Klaus; Kistler, Magda; Puxbaum, Hans; Hitzenberger, R.

    2013-05-01

    In this study, the Cloud Condensation Nuclei (CCN) activation properties of the urban aerosol in Vienna, Austria, were investigated in a long term (11 month) field study. Filter samples of the aerosol below 100 nm were taken in parallel to these measurements, and later used to generate "synthetic ambient" aerosols. Activation parameters of this "synthetic ambient" aerosol were also obtained. Hygroscopicity parameters κ [1] were calculated both for the urban and the "synthetic ambient" aerosol and also from the chemical composition. Average κ for the "synthetic ambient" aerosol ranged from 0.20 to 0.30 with an average value of 0.24, while the κ from the chemical composition of this "synthetic ambient" aerosol was significantly higher (average 0.43). The full results of the study are given elsewhere [2,3].

  1. Neural network radiative transfer solvers for the generation of high resolution solar irradiance spectra parameterized by cloud and aerosol parameters

    NASA Astrophysics Data System (ADS)

    Taylor, M.; Kosmopoulos, P. G.; Kazadzis, S.; Keramitsoglou, I.; Kiranoudis, C. T.

    2016-01-01

    This paper reports on the development of a neural network (NN) model for instantaneous and accurate estimation of solar radiation spectra and budgets geared toward satellite cloud data using a ≈2.4 M record, high-spectral resolution look up table (LUT) generated with the radiative transfer model libRadtran. Two NN solvers, one for clear sky conditions dominated by aerosol and one for cloudy skies, were trained on a normally-distributed and multiparametric subset of the LUT that spans a very broad class of atmospheric and meteorological conditions as inputs with corresponding high resolution solar irradiance target spectra as outputs. The NN solvers were tested by feeding them with a large (10 K record) "off-grid" random subset of the LUT spanning the training data space, and then comparing simulated outputs with target values provided by the LUT. The NN solvers demonstrated a capability to interpolate accurately over the entire multiparametric space. Once trained, the NN solvers allow for high-speed estimation of solar radiation spectra with high spectral resolution (1 nm) and for a quantification of the effect of aerosol and cloud optical parameters on the solar radiation budget without the need for a massive database. The cloudy sky NN solver was applied to high spatial resolution (54 K pixel) cloud data extracted from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the geostationary Meteosat Second Generation 3 (MSG3) satellite and demonstrated that coherent maps of spectrally-integrated global horizontal irradiance at this resolution can be produced on the order of 1 min.

  2. Cloud condensation nuclei (CCN) activity of aliphatic amine secondary aerosol

    NASA Astrophysics Data System (ADS)

    Tang, X.; Price, D.; Praske, E.; Vu, D. N.; Purvis-Roberts, K.; Silva, P. J.; Cocker, D. R., III; Asa-Awuku, A.

    2014-06-01

    Aliphatic amines can form secondary aerosol via oxidation with atmospheric radicals (e.g., hydroxyl radical and nitrate radical). The particle can contain both secondary organic aerosol (SOA) and inorganic salts. The ratio of organic to inorganic materials in the particulate phase influences aerosol hygroscopicity and cloud condensation nuclei (CCN) activity. SOA formed from trimethylamine (TMA) and butylamine (BA) reactions with hydroxyl radical (OH) is composed of organic material of low hygroscopicity (single hygroscopicity parameter, κ, ≤ 0.25). Secondary aerosol formed from the tertiary aliphatic amine (TMA) with N2O5 (source of nitrate radical, NO3) contains less volatile compounds than the primary aliphatic amine (BA) aerosol. As relative humidity (RH) increases, inorganic amine salts are formed as a result of acid-base reactions. The CCN activity of the humid TMA-N2O5 aerosol obeys Zdanovskii, Stokes, and Robinson (ZSR) ideal mixing rules. The humid BA + N2O5 aerosol products were found to be very sensitive to the temperature at which the measurements were made within the streamwise continuous-flow thermal gradient CCN counter; κ ranges from 0.4 to 0.7 dependent on the instrument supersaturation (ss) settings. The variance of the measured aerosol κ values indicates that simple ZSR rules cannot be applied to the CCN results from the primary aliphatic amine system. Overall, aliphatic amine aerosol systems' κ ranges within 0.2 < κ < 0.7. This work indicates that aerosols formed via nighttime reactions with amines are likely to produce hygroscopic and volatile aerosol, whereas photochemical reactions with OH produce secondary organic aerosol of lower CCN activity. The contributions of semivolatile secondary organic and inorganic material from aliphatic amines must be considered for accurate hygroscopicity and CCN predictions from aliphatic amine systems.

  3. Modeling aerosol activation in a tropical, orographic, island setting: Sensitivity tests and comparison with observations

    NASA Astrophysics Data System (ADS)

    Russotto, R. D.; Storelvmo, T.; Smith, R. B.

    2013-12-01

    The aerosol, updraft and cloud droplet observations from the 2011 Dominica Experiment (DOMEX) field campaign provide an interesting opportunity to investigate the process of cloud droplet activation in a tropical, orographic, convective setting. This study involves adiabatic parcel model simulations with a state-of-the-art parameterization of droplet activation, which we run with aerosol size distributions and updraft velocities based on DOMEX data. We compare the cloud droplet concentrations predicted by the parameterization with the observations from DOMEX, and run various sensitivity tests to changes in model inputs on the order of their uncertainty, in order to gain insights into what factors are most important in determining the aerosol activation fraction in this setting. Our control simulations overestimated the observed droplet concentrations, especially for the days with strong trade winds, but in most cases these discrepancies could be eliminated by realistic changes in our assumptions. The remaining error could be the result of entrainment of sub-saturated air, precipitation, or advection of pre-existing clouds from upwind. We found strong sensitivities to the mean updraft velocity and to the size distribution and composition of particles in the Aitken mode, the smallest mode including particles below 100 nm. The Aitken mode accounted for 42% to 68% of the simulated droplet concentration in our control simulations, and simulations excluding the Aitken mode underestimated the observed droplet concentrations under realistic assumptions. Droplets from the Aitken mode dominated the changes in the simulated droplet concentrations in our sensitivity tests. The precision of our simulations, and our ability to constrain the role of the Aitken mode, were limited by our lack of knowledge of the composition and size distribution of Aitken mode particles, highlighting the importance of measuring these variables in field campaigns in similar settings.

  4. Laboratory Studies of Processing of Carbonaceous Aerosols by Atmospheric Oxidants/Hygroscopicity and CCN Activity of Secondary & Processed Primary Organic Aerosols

    SciTech Connect

    Ziemann, P.J.; Arey, J.; Atkinson, R.; Kreidenweis, S.M.; Petters, M.D.

    2012-06-13

    to carry out reactions of representative anthropogenic and biogenic VOCs and organic particles with ozone (O3), and hydroxyl (OH), nitrate (NO3), and chlorine (Cl) radicals, which are the major atmospheric oxidants, under simulated atmospheric conditions in large-volume environmental chambers. A combination of on-line and off-line analytical techniques were used to monitor the chemical and physical properties of the particles including their hygroscopicity and CCN activity. The results of the studies were used to (1) improve scientific understanding of the relationships between the chemical composition of organic particles and their hygroscopicity and CCN activity, (2) develop an improved molecular level theoretical framework for describing these relationships, and (3) establish a large database that is being used to develop parameterizations relating organic aerosol chemical properties and SOA sources to particle hygroscopicity and CCN activity for use in regional and global atmospheric air quality and climate models.

  5. Redox activity of naphthalene secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    McWhinney, R. D.; Zhou, S.; Abbatt, J. P. D.

    2013-04-01

    Chamber secondary organic aerosol (SOA) from low-NOx photooxidation of naphthalene by hydroxyl radical was examined with respect to its redox cycling behaviour using the dithiothreitol (DTT) assay. Naphthalene SOA was highly redox active, consuming DTT at an average rate of 118 ± 14 pmol per minute per μg of SOA material. Measured particle-phase masses of the major previously identified redox active products, 1,2- and 1,4-naphthoquinone, accounted for only 21 ± 3% of the observed redox cycling activity. The redox-active 5-hydroxy-1,4-naphthoquinone was identified as a new minor product of naphthalene oxidation, and including this species in redox activity predictions increased the predicted DTT reactivity to 30 ± 5% of observations. Similar attempts to predict redox behaviour of oxidised two-stroke engine exhaust particles by measuring 1,2-naphthoquinone, 1,4-naphthoquinone and 9,10-phenanthrenequinone predicted DTT decay rates only 4.9 ± 2.5% of those observed. Together, these results suggest that there are substantial unidentified redox-active SOA constituents beyond the small quinones that may be important toxic components of these particles. A gas-to-SOA particle partitioning coefficient was calculated to be (7.0 ± 2.5) × 10-4 m3 μg-1 for 1,4-naphthoquinone at 25 °C. This value suggests that under typical warm conditions, 1,4-naphthoquinone is unlikely to contribute strongly to redox behaviour of ambient particles, although further work is needed to determine the potential impact under conditions such as low temperatures where partitioning to the particle is more favourable. As well, higher order oxidation products that likely account for a substantial fraction of the redox cycling capability of the naphthalene SOA are likely to partition much more strongly to the particle phase.

  6. A New Method for Multicomponent Activity Coefficients of Electrolytes in Aqueous Atmospheric Aerosols

    SciTech Connect

    Zaveri, Rahul A.; Easter, Richard C.; Wexler, Anthony S.

    2005-01-21

    Three-dimensional models of atmospheric inorganic aerosols need an accurate yet computationally efficient parameterization of activity coefficients of various electrolytes in multicomponent aqueous solutions. This paper describes the development and application of a new mixing rule for calculating activity coefficients of electrolytes typically found in atmospheric aerosol systems containing H+, NH4+, Na+, Ca2+ SO42-, HSO4-, NO3-, and Cl- ions. The new mixing rule, called MTEM (Multicomponent Taylor Expansion Model), estimates the mean activity coefficient of an electrolyte in a multicomponent solution based on its values in binary solutions of all the electrolytes present in the mixture at the solution water activity aw, assuming aw is equal to the ambient relative humidity. The aerosol water content is calculated using the Zdanovskii-Stokes-Robinson method. For self-consistency, most of the MTEM and Zdanovskii-Stokes-Robinson parameters are derived using the comprehensive Pitzer-Simonson-Clegg model at 298.15 K. MTEM is evaluated for several multicomponent systems representing various continental and marine aerosols, and is contrasted against the mixing rule of Kusik and Meissner and the newer approach of Metzger et al. [2002]. Predictions of MTEM are found to be generally within a factor of 0.8 to 1.25 of the comprehensive Pitzer-Simonson-Clegg model, and are shown to be significantly more accurate than predictions of the other two methods. MTEM also yields a non-iterative solution of the bisulfate ion dissociation in sulfate-rich systems – a major computational advantage over other iterative methods. CPU time requirements of MTEM relative to other methods for sulfate-poor and sulfate-rich systems are also discussed.

  7. The ice nucleation activity of biological aerosols

    NASA Astrophysics Data System (ADS)

    Grothe, H.; Pummer, B.; Bauer, H.; Bernardi, J.

    2012-04-01

    Primary Biological Aerosol Particles (PBAPs), including bacteria, spores and pollen may be important for several atmospheric processes. Particularly, the ice nucleation caused by PBAPs is a topic of growing interest, since their impact on ice cloud formation and thus on radiative forcing, an important parameter in global climate is not yet fully understood. In laboratory model studies we investigated the ice nucleation activity of selected PBAPs. We studied the immersion mode freezing using water-oil emulsion, which we observed by optical microscopy. We particularly focused on pollen. We show that pollen of different species strongly differ in their ice nucleation behavior. The average freezing temperatures in laboratory experiments range from 240 K to 255 K. As the most efficient nuclei (silver birch, Scots pine and common juniper pollen) have a distribution area up to the Northern timberline, their ice nucleation activity might be a cryoprotective mechanism. For comparison the ice nucleation activity of Snomax, fungal spores, and mushrooms will be discussed as well. In the past, pollen have been rejected as important atmospheric IN, as they are not as abundant in the atmosphere as bacteria or mineral dust and are too heavy to reach higher altitudes. However, in our experiments (Pummer et al. 2011) it turned out that water, which had been in contact with pollen and then been separated from the bodies, nucleates as good as the pollen grains themselves. So the ice nuclei have to be easily-suspendable macromolecules (100-300 kDa) located on the pollen. Once extracted, they can be distributed further through the atmosphere than the heavy pollen grains and so augment the impact of pollen on ice cloud formation even in the upper troposphere. It is widely known, that material from the pollen, like allergens and sugars, can indeed leave the pollen body and be distributed independently. The most probable mechanism is the pollen grain bursting by rain, which releases

  8. CCN Activity, Hygroscopicity, and Droplet Activation Kinetics of Secondary Organic Aerosol Resulting from the 2010 Gulf Oil Spill

    NASA Astrophysics Data System (ADS)

    Moore, R.; Lathem, T. L.; Cerully, K.; Bahreini, R.; Brock, C. A.; Langridge, J. M.; Middlebrook, A. M.; Nenes, A.; Calnex Science Team

    2010-12-01

    We present an analysis of the hygroscopicity and droplet activation kinetics of cloud condensation nuclei (CCN) sampled onboard the National Oceanic and Atmospheric Administration WP-3D aircraft downwind of the Deepwater Horizon oil spill site on June 8th and 10th, 2010. This set of measurements provides a unique case study for assessing in-situ the impact of fresh, hydrocarbonlike aerosols, which are expected to be formed via gas-to-particle conversion of the semi-volatile vapors released from oil evaporation. Similar hydrocarbon-rich aerosols constitute an important local emissions source in urban areas, but often coexist as an external/partially-internal mixture with more-oxidized, aged organic and sulfate aerosol. The DWH site provides the means to study the hygroscopic properties of these less-oxidized organic aerosols above a cleaner environmental background typical of marine environments in order to better discern their contribution to CCN activity and droplet growth. Measurements were performed with a Droplet Measurement Technologies Streamwise, Thermal-Gradient CCN counter, operating both as a counter (s=0.3%) and as a spectrometer (s=0.2-0.6%) using the newly-developed Scanning Flow CCN Analysis (SFCA) technique [1]. The instrument measures both the number concentration of particles able to nucleate droplets and also their resulting droplet sizes. The measured size information combined with a comprehensive computational fluid dynamics instrument model enables us to determine the rate of water uptake onto the particles and parameterize it in terms of an effective mass transfer coefficient [2], a key parameter needed to predict the number of activated droplets in ambient clouds. Non-refractory aerosol chemical composition was measured with an Aerodyne compact time-of-flight aerosol mass spectrometer. It was observed that the aerosols sampled downwind of the site on both days were composed predominantly of organics with a low degree of oxidation and low

  9. Calculating Capstone Depleted Uranium Aerosol Concentrations from Beta Activity Measurements

    SciTech Connect

    Szrom, Fran; Falo, Gerald A.; Parkhurst, MaryAnn; Whicker, Jeffrey J.; Alberth, David P.

    2009-03-01

    Beta activity measurements were used as surrogate measurements of uranium mass in aerosol samples collected during the field testing phase of the Capstone Depleted Uranium (DU) Aerosol Study. These aerosol samples generated by the perforation of armored combat vehicles were used to characterize the depleted uranium (DU) source term for the subsequent human health risk assessment (HHRA) of Capstone aerosols. Establishing a calibration curve between beta activity measurements and uranium mass measurements is straightforward if the uranium isotopes are in equilibrium with their immediate short-lived, beta-emitting progeny. For DU samples collected during the Capstone study, it was determined that the equilibrium between the uranium isotopes and their immediate short lived, beta-emitting progeny had been disrupted when penetrators had perforated target vehicles. Adjustments were made to account for the disrupted equilibrium and for wall losses in the aerosol samplers. Correction factors for the disrupted equilibrium ranged from 0.16 to 1, and the wall loss correction factors ranged from 1 to 1.92.

  10. Sub-grid Parameterization of Cumulus Vertical Velocities for Climate and Numerical Weather Prediction Models

    NASA Astrophysics Data System (ADS)

    Cooke, William; Donner, Leo

    2015-04-01

    Microphysical and aerosol processes determine the magnitude of climate forcing by aerosol-cloud interactions, are central aspects of cloud-climate feedback, and are important elements in weather systems for which accurate forecasting is a major goal of numerical weather prediction. Realistic simulation of these processes demands not only accurate microphysical and aerosol process representations but also realistic simulation of the vertical motions in which the aerosols and microphysics act. Aerosol activation, for example, is a strong function of vertical velocity. Cumulus parameterizations for climate and numerical weather prediction models have recently begun to include vertical velocities among the statistics they predict. These vertical velocities have been subject to only limited evaluation using observed vertical velocities. Deployments of multi-Doppler radars and dual-frequency profilers in recent field campaigns have substantially increased the observational base of cumulus vertical velocities, which for decades had been restricted mostly to GATE observations. Observations from TWP-ICE (Darwin, Australia) and MC3E (central United States) provide previously unavailable information on the vertical structure of cumulus vertical velocities and observations in differing synoptic contexts from those available in the past. They also provide an opportunity to independently evaluate cumulus parameterizations with vertical velocities tuned to earlier GATE observations. This presentation will compare vertical velocities observed in TWP-ICE and MC3E with cumulus vertical velocities using the parameterization in the GFDL CM3 climate model. Single-column results indicate parameterized vertical velocities are frequently greater than observed. Errors in parameterized vertical velocities exhibit similarities to vertical velocities explicitly simulated by cloud-system resolving models, and underlying issues in the treatment of microphysics may be important for both. The

  11. Validation of a Size-resolved Parameterization of Primary Organic Carbon in Fresh Marine Aerosols for Use in Air-Sea Exchange Simulations

    NASA Astrophysics Data System (ADS)

    Long, M. S.; Keene, W. C.; Kieber, D. J.; Frossard, A. A.; Russell, L. M.

    2011-12-01

    Marine aerosol production by bursting bubbles at the ocean surface is the largest source of aerosol mass in the atmosphere. The size-resolved organic and inorganic composition of marine aerosols has significant impacts on atmospheric chemistry, aerosol and cloud microphysics and radiative transfer. Recent estimates suggest that the global production flux of particulate organic matter (POM) associated with nascent marine aerosol may exceed the total production flux of particulate POM from secondary pathways involving gas-phase precursors. Observed size-resolved fluxes of marine-derived POM taken in the N. Atlantic Ocean, while limited, suggest that Langmuir-type sorption processes may be the limiting factor controlling the association of marine organic material with bubble plume surface area, and consequently, the size-resolved POM mass and number fluxes. A similar set of observations - including seawater temperature, salinity, and chlorophyll a (chl-a) concentrations - were made during a spring 2010 cruise of the R/V Atlantis in the eastern North Pacific Ocean. Chlorophyll a concentrations - as a proxy for marine OM - ranged from ~3 to 30 μg L-1 which exceeds that of the N. Atlantic studies by up to an order of magnitude. Significant relationships between chl-a, particle number production and particulate OM enrichments were observed. These data provide an excellent opportunity to validate and refine a previously formulated size-resolved inorganic/organic marine aerosol source function using in situ seawater composition and state constraints. This formulation will serve as the basis for atmospheric chemistry and climate simulations, and further our understanding of aerosol production and air-sea exchange processes.

  12. Ice Nucleation Activity of Various Agricultural Soil Dust Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Schiebel, Thea; Höhler, Kristina; Funk, Roger; Hill, Thomas C. J.; Levin, Ezra J. T.; Nadolny, Jens; Steinke, Isabelle; Suski, Kaitlyn J.; Ullrich, Romy; Wagner, Robert; Weber, Ines; DeMott, Paul J.; Möhler, Ottmar

    2016-04-01

    Recent investigations at the cloud simulation chamber AIDA (Aerosol Interactions and Dynamics in the Atmosphere) suggest that agricultural soil dust has an ice nucleation ability that is enhanced up to a factor of 10 compared to desert dust, especially at temperatures above -26 °C (Steinke et al., in preparation for submission). This enhancement might be caused by the contribution of very ice-active biological particles. In addition, soil dust aerosol particles often contain a considerably higher amount of organic matter compared to desert dust particles. To test agricultural soil dust as a source of ice nucleating particles, especially for ice formation in warm clouds, we conducted a series of laboratory measurements with different soil dust samples to extend the existing AIDA dataset. The AIDA has a volume of 84 m3 and operates under atmospherically relevant conditions over wide ranges of temperature, pressure and humidity. By controlled adiabatic expansions, the ascent of an air parcel in the troposphere can be simulated. As a supplement to the AIDA facility, we use the INKA (Ice Nucleation Instrument of the KArlsruhe Institute of Technology) continuous flow diffusion chamber based on the design by Rogers (1988) to expose the sampled aerosol particles to a continuously increasing saturation ratio by keeping the aerosol temperature constant. For our experiments, soil dust was dry dispersed into the AIDA vessel. First, fast saturation ratio scans at different temperatures were performed with INKA, sampling soil dust aerosol particles directly from the AIDA vessel. Then, we conducted the AIDA expansion experiment starting at a preset temperature. The combination of these two different methods provides a robust data set on the temperature-dependent ice activity of various agriculture soil dust aerosol particles with a special focus on relatively high temperatures. In addition, to extend the data set, we investigated the role of biological and organic matter in more

  13. Biological aerosol detection with combined passive-active infrared measurements

    NASA Astrophysics Data System (ADS)

    Ifarraguerri, Agustin I.; Vanderbeek, Richard G.; Ben-David, Avishai

    2004-12-01

    A data collection experiment was performed in November of 2003 to measure aerosol signatures using multiple sensors, all operating in the long-wave infrared. The purpose of this data collection experiment was to determine whether combining passive hyperspectral and LIDAR measurements can substantially improve biological aerosol detection performance. Controlled releases of dry aerosols, including road dust, egg albumin and two strains of Bacillus Subtilis var. Niger (BG) spores were performed using the ECBC/ARTEMIS open-path aerosol test chamber located in the Edgewood Area of Aberdeen Proving Grounds, MD. The chamber provides a ~ 20' path without optical windows. Ground truth devices included 3 aerodynamic particle sizers, an optical particle size spectrometer, 6 nephelometers and a high-volume particle sampler. Two sensors were used to make measurements during the test: the AIRIS long-wave infrared imaging spectrometer and the FAL CO2 LIDAR. The AIRIS and FAL data sets were analyzed for detection performance relative to the ground truth. In this paper we present experimental results from the individual sensors as well as results from passive-active sensor fusion. The sensor performance is presented in the form of receiver operating characteristic curves.

  14. CCN, hygroscopicity, and activation kinetics of Los Angeles aerosol

    NASA Astrophysics Data System (ADS)

    Lin, J. J.; Lathem, T. L.; Nenes, A.; Suski, K.; Cahill, J. F.; Prather, K. A.; Craven, J. S.; Metcalf, A. R.; Jonsson, H. H.; Flagan, R. C.; Seinfeld, J. H.

    2010-12-01

    The CalNex field campaign was designed as a comprehensive regional air quality and climate assessment study with an emphasis on the interaction between air quality and climate change. The southern California region is an excellent location for the study of air quality and climate change due to the existence and interaction of biogenic, dust, and urban plumes. Research flights aboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter platform focused on the origin and evolution of the Los Angeles plume as it is advected across the basin and outflows into the Coachella valley and Mojave Desert. This study focuses on cloud condensation nuclei (CCN) measurements taken aboard the Twin Otter. A continuous flow streamwise thermal gradient chamber operating in scanning flow CCN analysis (SFCA) mode provided high resolution, in situ CCN spectra (0.4-0.8% supersaturation) once every 40 seconds. In conjuncture with other aerosol instrumentation aboard the Twin Otter, the data provide a comprehensive picture of the interaction of ambient aerosol with water vapor. The analysis presented then quantifies the relationship between aerosol size, chemical composition, mixing state, hygroscopicity, and activation kinetics of aerosol from the variety of sources sampled.

  15. Ensemble projections of wildfire activity and carbonaceous aerosol concentrations over the western United States in the mid-21st century

    NASA Astrophysics Data System (ADS)

    Yue, Xu; Mickley, Loretta J.; Logan, Jennifer A.; Kaplan, Jed O.

    2013-10-01

    We estimate future wildfire activity over the western United States during the mid-21st century (2046-2065), based on results from 15 climate models following the A1B scenario. We develop fire prediction models by regressing meteorological variables from the current and previous years together with fire indexes onto observed regional area burned. The regressions explain 0.25-0.60 of the variance in observed annual area burned during 1980-2004, depending on the ecoregion. We also parameterize daily area burned with temperature, precipitation, and relative humidity. This approach explains ˜0.5 of the variance in observed area burned over forest ecoregions but shows no predictive capability in the semi-arid regions of Nevada and California. By applying the meteorological fields from 15 climate models to our fire prediction models, we quantify the robustness of our wildfire projections at midcentury. We calculate increases of 24-124% in area burned using regressions and 63-169% with the parameterization. Our projections are most robust in the southwestern desert, where all GCMs predict significant (p < 0.05) meteorological changes. For forested ecoregions, more GCMs predict significant increases in future area burned with the parameterization than with the regressions, because the latter approach is sensitive to hydrological variables that show large inter-model variability in the climate projections. The parameterization predicts that the fire season lengthens by 23 days in the warmer and drier climate at midcentury. Using a chemical transport model, we find that wildfire emissions will increase summertime surface organic carbon aerosol over the western United States by 46-70% and black carbon by 20-27% at midcentury, relative to the present day. The pollution is most enhanced during extreme episodes: above the 84th percentile of concentrations, OC increases by ˜90% and BC by ˜50%, while visibility decreases from 130 km to 100 km in 32 Federal Class 1 areas in

  16. Ensemble projections of wildfire activity and carbonaceous aerosol concentrations over the western United States in the mid-21st century.

    PubMed

    Yue, Xu; Mickley, Loretta J; Logan, Jennifer A; Kaplan, Jed O

    2013-10-01

    We estimate future wildfire activity over the western United States during the mid-21(st) century (2046-2065), based on results from 15 climate models following the A1B scenario. We develop fire prediction models by regressing meteorological variables from the current and previous years together with fire indexes onto observed regional area burned. The regressions explain 0.25-0.60 of the variance in observed annual area burned during 1980-2004, depending on the ecoregion. We also parameterize daily area burned with temperature, precipitation, and relative humidity. This approach explains ~0.5 of the variance in observed area burned over forest ecoregions but shows no predictive capability in the semi-arid regions of Nevada and California. By applying the meteorological fields from 15 climate models to our fire prediction models, we quantify the robustness of our wildfire projections at mid-century. We calculate increases of 24-124% in area burned using regressions and 63-169% with the parameterization. Our projections are most robust in the southwestern desert, where all GCMs predict significant (p<0.05) meteorological changes. For forested ecoregions, more GCMs predict significant increases in future area burned with the parameterization than with the regressions, because the latter approach is sensitive to hydrological variables that show large inter-model variability in the climate projections. The parameterization predicts that the fire season lengthens by 23 days in the warmer and drier climate at mid-century. Using a chemical transport model, we find that wildfire emissions will increase summertime surface organic carbon aerosol over the western United States by 46-70% and black carbon by 20-27% at midcentury, relative to the present day. The pollution is most enhanced during extreme episodes: above the 84(th) percentile of concentrations, OC increases by ~90% and BC by ~50%, while visibility decreases from 130 km to 100 km in 32 Federal Class 1 areas in

  17. [Investigation of Aerosol Mixed State and CCN Activity in Nanjing].

    PubMed

    Zhu, Lin; Ma, Yan; Zheng, Jun; Li, Shi-zheng; Wang, Li-peng

    2016-04-15

    During 11-18 September 2014, the size-resolved aerosol Cloud Condensation Nuclei (CCN) activity and mixing state were measured using Cloud Condensation Nuclei Counter (CCNC), Aerosol Particle Mass (APM) and Scanning Mobility Particle Sizer (SMPS). The results showed that aerosols mainly existed as an internal mixture. For 76, 111, 138 and 181 nm particles, black carbon (BC) accounted for 5.4%, 10%, l0.7% and 6.7% of the particle mass, but as high as 51%, 57%, 70% and 59% of the particle number concentrations, respectively, suggesting that BC was a type of important condensation nuclei in the atmosphere and made significant contributions to particle numbers. The occasionally observed external mixtures were mainly present in 111 and 138 nm particles. The critical supersaturation was 0.25%, 0.13%, 0.06% and 0.015% for 76, 111, 138 and 181 nm particles, respectively. Precipitation and haze had significant effects on the particle CCN activity. The hygroscopicity parameter K was 0.37, 0.29 and 0.39 in rainy, clear and hazy days, respectively. Particle density and CCN activity were impacted by chemical compositions. Compared with clear days, higher contents of inorganic salts and lower contents of organics were found on hazy days, accompanied by lower particle density and higher CCN activity. PMID:27548938

  18. Photochemical Activation of Chlorine by Iron and Iron Oxide Aerosol

    NASA Astrophysics Data System (ADS)

    Wittmer, J.; Zetzsch, C.

    2015-12-01

    The photochemical activation of chlorine by dissolved iron in sea-salt aerosol droplets and by highly dispersed Fe2O3 aerosol particles (mainly hematite, specific surface > 100 m2/g), exposed to gaseous HCl, was investigated in humidified air in a Teflon simulation chamber. Employing the radical-clock technique, we quantified the production of gaseous atomic Cl. When the artificial sea salt aerosols contained suspended Fe2O3 alone at pH 6, no significant Cl production could be observed, even if the dissolution of iron was forced by "weathering" (repeatedly freezing and thawing for five times). Adjusting the pH in the stock suspension to 2.6, 2.2, and 1.9 and equilibrating for one week resulted in a quantifiable amount of dissolved iron (0.03, 0.2, and 0.6 mmol/L, respectively) and in gaseous Cl production rates of ~1.6, 6, and 8 × 1021 atoms cm-2 h-1, respectively. Exposing the pure Fe2O3 aerosol in the absence of salt to various gaseous HCl concentrations resulted in rates ranging from 8 × 1020 Cl atoms cm-2 h-1 (at ~4 ppb HCl) to 5 × 1022 Cl atoms cm-2 h-1 (at ~350 ppb HCl) and confirmed the uptake and conversion of HCl to atomic Cl (at HCl to Cl conversion yields of 2-5 % mol/mol, depending on the relative humidity). The relevance for environmental processes in the atmosphere will be discussed.

  19. Study of the Microphysical and Optical Properties of Ice Clouds and Dust Aerosols using observations made by active and passive satellite sensors in conjunction with modeling capabilities

    NASA Astrophysics Data System (ADS)

    Yang, P.; Dessler, A. E.

    2011-12-01

    Ice clouds and airborne dust aerosols are two unique and important components of atmospheric constituents. The passive sensors (e.g., MODIS, POLDER, and MISR) and active senor (CALIPSO-CALIOP) from the A-train constellation provide an unprecedented opportunity to investigate the microphysical and optical properties of ice clouds and dust aerosols. In this talk, we will demonstrate how to use the CALIPSO-CALIOP observations in conjunction with modeling capabilities to quantify the percentage of horizontally oriented ice crystals in ice clouds. At present, in remote sensing applications and radiative parameterizations involving ice clouds, ice crystals are assumed to be randomly oriented. Because the optical properties of horizontally and randomly oriented ice crystals are quite different, it is necessary to estimate the percentage of horizontally oriented ice crystals for a better understanding of the radiative properties of ice clouds. To infer the percentage of horizontally oriented particles, we have developed new modeling capabilities to simulate the single-scattering and multiple scattering (i.e., radiative transfer) processes involving these particles. Furthermore, we will demonstrate how to use the polarization measurements by CALIOP and POLDER to infer the morphologies of ice crystals and dust aerosols. Specifically, by minimizing the differences between radiative transfer simulations and observations, an optimal mixture of various ice crystal habits and the mean aspect ratio of dust aerosols are inferred. The outcomes of this effort may be potentially useful for more accurate parameterizations of the bulk radiative properties of ice clouds and dust aerosols for applications to radiative transfer simulations involved in climate models.

  20. A statistical description of the evolution of cloud condensation nuclei activity during the heterogeneous oxidation of squalane and bis(2-ethylhexyl) sebacate aerosol by hydroxyl radicals.

    PubMed

    Harmon, Christopher W; Ruehl, Christopher R; Cappa, Christopher D; Wilson, Kevin R

    2013-06-28

    The heterogeneous reaction of hydroxyl radicals with chemically reduced organic aerosol comprised of either squalane or bis(2-ethylhexyl) sebacate are used as model systems to examine how cloud condensation nuclei (CCN) activity evolves with photochemical oxidation. Over the course of the reaction, the critical super-saturation evolves both by the formation of new oxygen functional groups and by changes in aerosol size through the formation of gas phase reaction products. A statistical model of the heterogeneous reaction reveals that it is the formation, volatilization, solubility, and surface activity of many generations of oxidation products that together control the average changes in aerosol hygroscopicity. The experimental observations and model demonstrate the importance of considering the underlying population or subpopulation of species within a particle and how they each uniquely contribute to the average hygroscopicity of a multi-component aerosol. To accurately predict changes in CCN activity upon oxidation requires a reduction in the surface tension of the activating droplet by a subpopulation of squalane reaction products. These results provide additional evidence that surface tension-concentration parameterizations based on macroscopic data should be modified for microscopic droplets.

  1. Observational Evidence of Aerosol Enhancement of Lightning Activity and Convective Invigoration

    NASA Technical Reports Server (NTRS)

    Yuan, Tianle; Remer, Lorraine A.; Pickering, Kenneth E.; Yu, Hongbin

    2011-01-01

    Lightning activity over the West Pacific Ocean east of the Philippines is usually much less frequent than over the nearby maritime continents. However, in 2005 the Lightning Imaging Sensor (LIS) aboard the TRMM satellite observed anomalously high lightning activity in that area. In the same year the Moderate resolution Imaging Spectroradiometer (MODIS) measured anomalously high aerosol loading. The high aerosol loading was traced to volcanic activity, and not to any factor linked to meteorology, disentangling the usual convolution between aerosols and meteorology. We show that in general lightning activity is tightly correlated with aerosol loadings at both inter-annual and biweekly time scales. We estimate that a approximately 60% increase in aerosol loading leads to more than 150% increase in lightning flashes. Aerosols increase lightning activity through modification of cloud microphysics. Cloud ice particle sizes are reduced and cloud glaciation is delayed to colder temperature when aerosol loading is increased. TRMM precipitation radar measurements indicate that anomalously high aerosol loading is associated with enhanced cloud mixed phase activity and invigorated convection over the maritime ocean. These observed associations between aerosols, cloud microphysics, morphology and lightning activity are not related to meteorological variables or ENSO events. The results have important implications for understanding the variability of lightning and resulting aerosol-chemistry interactions.

  2. CCN Activity of Organic Aerosols Observed Downwind of Urban Emissions during CARES

    SciTech Connect

    Mei, Fan; Setyan, Ari; Zhang, Qi; Wang, J. X.

    2013-12-17

    During the Carbonaceous Aerosols and Radiative Effects Study (CARES), activation fraction of size-resolved aerosol particles and aerosol chemical composition were characterized at the T1 site (~60 km downwind of Sacramento, California) from 10 June to 28 June 2010. The hygroscopicity of CCN-active particles (KCCN) with diameter from 100 to 170 nm, derived from the size-resolved activated fraction, varied from 0.10 to 0.21, with an average of 0.15, which was substantially lower than that proposed for continental sites in earlier studies. The low KCCN value was due to the high organic volume fraction, averaged over 80% at the T1 site. The derived KCCN exhibited little diurnal variation, consistent with the relatively constant organic volume fraction observed. At any time, over 90% of the size selected particles with diameter between 100 and 171nm were CCN active, suggesting most particles within this size range were aged background particles. Due to the large organic volume fraction, organic hygroscopicity (Korg) strongly impacted particle hygroscopicity and therefore calculated CCN concentration. For vast majority of the cases, an increase of Korg from 0.03 to 0.18, which are within the typical range, doubled the calculated CCN concentration. Organic hygroscopicity was derived from KCCN and aerosol chemical composition, and its variations with the fraction of total organic mass spectral signal at m/z 44 (f44) and O:C were compared to results from previous studies. Overall, the relationships between Korg and f44 are quite consistent for organic aerosol (OA) observed during field studies and those formed in smog chamber. Compared to the relationship between Korg and f44, the relationship between Korg and O:C exhibits more significant differences among different studies, suggesting korg may be better parameterized using f44. A

  3. Water Activity Limits the Hygroscopic Growth Factor of Organic Aerosols

    NASA Astrophysics Data System (ADS)

    Rodriguez, L. I.; Cabrera, J. A.; Golden, D.; Tabazadeh, A.

    2007-12-01

    In this work we study the hygroscopic behavior of organic aerosols, which has important implications for Earth's climate. The hygroscopic growth factor (HGF) is defined as the ratio of the diameter of a spherical particle when it is exposed to dry conditions to that at humid conditions. We present a new formulation to express the HGF of an aerosol particle as a function of water activity (aw) in the aqueous phase. This new formulation matches reported HGFs for common inorganic salts and water-miscible organic particles that are known to deliquesce into aqueous drops at high relative humidities (RH). Many studies use tandem differential mobility analyzers (TDMA) to determine the HGF of organic aerosols. For example, Brooks et al. used a TDMA to measure a HGF of 1.2 for 2 μm phthalic acid (PA) particles at 90% RH (aw= 0.9). However, water activity limits the growth of a particle that can be attributed to water uptake. We have assembled a vapor pressure apparatus to measure aw of aqueous solutions at room temperature. Measured water activities for PA, used in our growth formulation, yield a HGF of ~ 1.0005 for 2 μm PA particles at 90% RH. Comparing our results against Brooks et al. suggests that TDMA experiments may grossly overestimate the HGF of PA particles since water activity limits this growth to below 1.0005. Alternatively, we suggest that the adsorption of a negligible mass of water by a highly porous PA particle can lead to an apparent growth in particle size by changing its morphology. Other studies also use TDMAs to measure HGFs of secondary organic aerosols (SOAs). HGFs reported for SOAs are very similar to PA, suggesting that the observed growth may be due to morphological changes in particle size rather than water uptake as commonly assumed. We built a smog chamber where an organic precursor, such as d-limonene, reacts with nitrogen oxides under UV radiation to produce SOAs. We compare the HGFs for SOAs obtained with our method to those obtained with

  4. Evaluation of Aerosol-cloud Interaction in the GISS Model E Using ARM Observations

    NASA Technical Reports Server (NTRS)

    DeBoer, G.; Bauer, S. E.; Toto, T.; Menon, Surabi; Vogelmann, A. M.

    2013-01-01

    Observations from the US Department of Energy's Atmospheric Radiation Measurement (ARM) program are used to evaluate the ability of the NASA GISS ModelE global climate model in reproducing observed interactions between aerosols and clouds. Included in the evaluation are comparisons of basic meteorology and aerosol properties, droplet activation, effective radius parameterizations, and surface-based evaluations of aerosol-cloud interactions (ACI). Differences between the simulated and observed ACI are generally large, but these differences may result partially from vertical distribution of aerosol in the model, rather than the representation of physical processes governing the interactions between aerosols and clouds. Compared to the current observations, the ModelE often features elevated droplet concentrations for a given aerosol concentration, indicating that the activation parameterizations used may be too aggressive. Additionally, parameterizations for effective radius commonly used in models were tested using ARM observations, and there was no clear superior parameterization for the cases reviewed here. This lack of consensus is demonstrated to result in potentially large, statistically significant differences to surface radiative budgets, should one parameterization be chosen over another.

  5. Characterization of indoor cooking aerosol using neutron activation analysis

    SciTech Connect

    Wu, D.; Landsberger, S.; Larson, S. )

    1993-01-01

    Suspended particles in air are potentially harmful to human health, depending on their sizes and chemical composition. Residential indoor particles mainly come from (a) outdoor sources that are transported indoors, (b) indoor dust that is resuspended, and (c) indoor combustion sources, which include cigarette smoking, cooking, and heating. Jedrychowski stated that chronic phlegm in elderly women was strongly related to the cooking exposure. Kamens et al. indicated that cooking could generate small particles (<0.1 [mu]m), and cooking one meal could contribute [approximately]5 to 18% of total daytime particle volume exposure. Although cooking is a basic human activity, there are not many data available on the properties of particles generated by this activity. Some cooking methods, such as stir-frying and frying, which are the most favored for Chinese and other Far East people, generate a large quantity of aerosols. This research included the following efforts: 1. investigating particle number concentrations, distributions, and their variations with four different cooking methods and ventilation conditions; 2. measuring the chemical composition of cooking aerosol samples by instrumental neutron activation analysis.

  6. Cloud condensation nuclei activity of isoprene secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Engelhart, Gabriella J.; Moore, Richard H.; Nenes, Athanasios; Pandis, Spyros N.

    2011-01-01

    This work explores the cloud condensation nuclei (CCN) activity of isoprene secondary organic aerosol (SOA), likely a significant source of global organic particulate matter and CCN, produced from the oxidation with OH from HONO/HOOH photolysis in a temperature-controlled SOA chamber. CCN concentrations, activation diameter, and droplet growth kinetic information were monitored as a function of supersaturation (from 0.3% to 1.5%) for several hours using a cylindrical continuous-flow streamwise thermal gradient CCN counter connected to a scanning mobility particle sizer. The initial SOA concentrations ranged from 2 to 30 μg m-3 and presented CCN activity similar to monoterpene SOA with an activation diameter of 35 nm for 1.5% supersaturation and 72 nm for 0.6% supersaturation. The CCN activity improved slightly in some experiments as the SOA aged chemically and did not depend significantly on the level of NOx during the SOA production. The measured activation diameters correspond to a hygroscopicity parameter κ value of 0.12, similar to κ values of 0.1 ± 0.04 reported for monoterpene SOA. Analysis of the water-soluble carbon extracted from filter samples of the SOA suggest that it has a κ of 0.2-0.3 implying an average molar mass between 90 and 150 g mol-1 (assuming a zero and 5% surface tension reduction with respect to water, respectively). These findings are consistent with known oxidation products of isoprene. Using threshold droplet growth analysis, the CCN activation kinetics of isoprene SOA was determined to be similar to pure ammonium sulfate aerosol.

  7. Aerosol effects on deep convection in a multi-scale aerosol-climate model

    NASA Astrophysics Data System (ADS)

    Wang, M.; Ghan, S. J.; Morrison, H.

    2012-12-01

    Aerosols have been demonstrated to affect convective clouds and precipitation in observations, process models, and regional climate models. However, examining aerosol effects on convective clouds and precipitation in global climate models has been extremely challenging, as until recently the treatments in the few global climate models that include aerosol effects on convective clouds have used conventional cumulus parameterizations and hence have been quite crude. We have recently built a multi-scale aerosol-climate model, PNNL-MMF, which is an extension of a multi-scale modeling framework (MMF) model. The extended model explicitly treats aerosol effects on deep convection using a two-moment cloud microphysics scheme in the cloud-resolving model component of the MMF. In this presentation, we examine aerosol effects on convective clouds at the global scale using the PNNL-MMF model. Our results show that the frequency of precipitation occurrence at a given liquid water path increases with increasing aerosol loading for deep clouds with surface precipitation rate larger than 10 mm/day. This relationship is particularly evident during the summer time, when convection activity is strong, and may indicate invigoration of deep convection by aerosols. The modeled relationship of aerosols, clouds and precipitation is further compared with observations from the ARM long-term sites (e.g., SGP). The causes of the modeled relationship of aerosols, clouds and precipitations are examined by using a pair of 5-year MMF simulations with and without anthropogenic aerosols.

  8. Aerosol activation properties and CCN closure during TCAP

    NASA Astrophysics Data System (ADS)

    Mei, F.; Tomlinson, J. M.; Shilling, J. E.; Wilson, J. M.; Zelenyuk, A.; Chand, D.; Comstock, J. M.; Hubbe, J.; Berg, L. K.; Schmid, B.

    2013-12-01

    The indirect effects of atmospheric aerosols currently remain the most uncertain components in forcing of climate change over the industrial period (IPCC, 2007). This large uncertainty is partially due to our incomplete understanding of the ability of particles to form cloud droplets under atmospherically relevant supersaturation. In addition, there is a large uncertainty in the aerosol optical depth (AOD) simulated by climate models near the North American coast and a wide variety in the types of clouds are observed over this region. The goal of the US Department of Energy Two Column Aerosol Project (TCAP) is to understand the processes responsible for producing and maintaining aerosol distributions and associated radiative and cloud forcing off the coast of North America. During the TCAP study, aerosol total number concentration, cloud condensation nuclei (CCN) spectra and aerosol chemical composition were in-situ measured from the DOE Gulfstream 1 (G-1) research aircraft during two Intensive Operations Periods (IOPs), one conducted in July 2012 and the other in February 2013. An overall aerosol size distribution was achieved by merging the observations from several instruments, including Ultra High Sensitivity Aerosol Spectrometer - Airborne (UHSAS-A, DMT), Passive Cavity Aerosol Spectrometer Probe (PCASP-200, DMT), and Cloud Aerosol Spectrometer (CAS, DMT). Aerosol chemical composition was characterized using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS, Aerodyne Inc.) and single particle mass spectrometer, mini-SPLAT. Based on the aerosol size distribution, CCN number concentration (characterized by a DMT dual column CCN counter with a range from 0.1% to 0.4%), and chemical composition, a CCN closure was obtained. The sensitivity of CCN closure to organic hygroscopicity was investigated. The differences in aerosol/CCN properties between two columns, and between two phases, will be discussed.

  9. Cloud condensation nuclei activation of limited solubility organic aerosol

    NASA Astrophysics Data System (ADS)

    Huff Hartz, Kara E.; Tischuk, Joshua E.; Chan, Man Nin; Chan, Chak K.; Donahue, Neil M.; Pandis, Spyros N.

    The cloud condensation nuclei (CCN) activation of 19 organic species with water solubilities ( Csat) ranging from 10 -4 to 10 2 g solute 100 g -1 H 2O was measured. The organic particles were generated by nebulization of an aqueous or an alcohol solution. Use of alcohols as solvents enables the measurement of low solubility, non-volatile organic CCN activity and reduces the likelihood of residual water in the aerosol. The activation diameter of organic species with very low solubility in water ( Csat<0.3 g 100 g -1 H 2O) is in agreement with Köhler theory using the bulk solubility (limited solubility case) of the organic in water. Many species, including 2-acetylbenzoic acid, aspartic acid, azelaic acid, glutamic acid, homophthalic acid, phthalic acid, cis-pinonic acid, and salicylic acid are highly CCN active in spite of their low solubility (0.3 g 100 g -1 H 2O< Csat<1 g 100 g -1 H 2O), and activate almost as if completely water soluble. The CCN activity of most species is reduced, if the particles are produced using non-aqueous solvents. The existence of the particles in a metastable state at low RH can explain the observed enhancement in CCN activity beyond the levels suggested by their solubility.

  10. [Characteristics and Parameterization for Atmospheric Extinction Coefficient in Beijing].

    PubMed

    Chen, Yi-na; Zhao, Pu-sheng; He, Di; Dong, Fan; Zhao, Xiu-juan; Zhang, Xiao-ling

    2015-10-01

    In order to study the characteristics of atmospheric extinction coefficient in Beijing, systematic measurements had been carried out for atmospheric visibility, PM2.5 concentration, scattering coefficient, black carbon, reactive gases, and meteorological parameters from 2013 to 2014. Based on these data, we compared some published fitting schemes of aerosol light scattering enhancement factor [ f(RH)], and discussed the characteristics and the key influence factors for atmospheric extinction coefficient. Then a set of parameterization models of atmospheric extinction coefficient for different seasons and different polluted levels had been established. The results showed that aerosol scattering accounted for more than 94% of total light extinction. In the summer and autumn, the aerosol hygroscopic growth caused by high relative humidity had increased the aerosol scattering coefficient by 70 to 80 percent. The parameterization models could reflect the influencing mechanism of aerosol and relative humidity upon ambient light extinction, and describe the seasonal variations of aerosol light extinction ability. PMID:26841588

  11. [Characteristics and Parameterization for Atmospheric Extinction Coefficient in Beijing].

    PubMed

    Chen, Yi-na; Zhao, Pu-sheng; He, Di; Dong, Fan; Zhao, Xiu-juan; Zhang, Xiao-ling

    2015-10-01

    In order to study the characteristics of atmospheric extinction coefficient in Beijing, systematic measurements had been carried out for atmospheric visibility, PM2.5 concentration, scattering coefficient, black carbon, reactive gases, and meteorological parameters from 2013 to 2014. Based on these data, we compared some published fitting schemes of aerosol light scattering enhancement factor [ f(RH)], and discussed the characteristics and the key influence factors for atmospheric extinction coefficient. Then a set of parameterization models of atmospheric extinction coefficient for different seasons and different polluted levels had been established. The results showed that aerosol scattering accounted for more than 94% of total light extinction. In the summer and autumn, the aerosol hygroscopic growth caused by high relative humidity had increased the aerosol scattering coefficient by 70 to 80 percent. The parameterization models could reflect the influencing mechanism of aerosol and relative humidity upon ambient light extinction, and describe the seasonal variations of aerosol light extinction ability.

  12. Aerosol hygroscopicity and cloud droplet activation of extracts of filters from biomass burning experiments

    NASA Astrophysics Data System (ADS)

    Carrico, Christian M.; Petters, Markus D.; Kreidenweis, Sonia M.; Collett, Jeffrey L.; Engling, Guenter; Malm, William C.

    2008-04-01

    In this laboratory closure study, we compare sub- and supersaturated water uptake properties for aerosol particles possessing a range of hygroscopicity. Measurements for water sub-saturated conditions used a hygroscopic tandem differential mobility analyzer (HTDMA). Simultaneously, measurements of particle critical supersaturation were conducted on the same sample stream with a continuous flow cloud condensation nuclei (CCN) counter. For these experiments, we used filter-collected samples of biomass smoke generated in the combustion of two common wildland fire fuels, western sagebrush and Alaskan duff core. Extractions of separate sections of the filter were performed using two solvents, ultrapure water and methanol. The extracts were subsequently atomized, producing aerosols having a range of hygroscopic responses. HTDMA and CCN measurements were fit to a single-parameter model of water uptake, in which the fit parameter is denoted κ, the hygroscopicity parameter. Here, for the four extracts we observed mean values of the hygroscopicity parameter of 0.06 < κ < 0.30, similar to the range found previously for numerous pure organic compounds. Particles generated from the aqueous extracts of the filters had consistently larger κ than methanol extracts, while western sagebrush extract aerosols κ exceeded those from Alaskan duff core. HTDMA- and CCN-derived values of κ for each experiment agreed within approximately 20%. Applicability of the κ-parameterization to other multicomponent aerosols relevant to the atmosphere remains to be tested.

  13. DEVELOPMENT OF AN RH -DENUDED MIE ACTIVE SAMPLING SYSTEM AND TARGETED AEROSOL CALIBRATION

    EPA Science Inventory

    The MIE pDR 1200 nephelometer provides time resolved aerosol concentrations during personal and fixed-site sampling. Active (pumped) operation allows defining an upper PM2.5 particle size, however, this dramatically increases the aerosol mass passing through the phot...

  14. Development and Validation of a Model to Predict Aerosol Breathing Zone Concentrations During Common Outdoor Activities

    EPA Science Inventory

    Research has been conducted on aerosol emission rates during various activities as well as aerosol transport into the breathing zone under idealized conditions. However, there has been little effort to link the two into a model for predicting a person’s breathing zone concentrat...

  15. Cloud condensation nuclei activity of aliphatic amine secondary aerosol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aliphatic amines can form secondary aerosol via oxidation with atmospheric radicals (e.g. hydroxyl radical and nitrate radical). The resulting particle composition can contain both secondary organic aerosol (SOA) and inorganic salts. The fraction of organic to inorganic materials in the particulate ...

  16. Cloud — Aerosol interaction during lightning activity over land and ocean: Precipitation pattern assessment

    NASA Astrophysics Data System (ADS)

    Pal, Jayanti; Chaudhuri, Sutapa; Chowdhury, Arumita Roy; Bandyopadhyay, Tanuka

    2016-06-01

    The present study attempts to identify the land - ocean contrast in cloud - aerosol relation during lightning and non-lightning days and its effect on subsequent precipitation pattern. The thermal hypothesis in view of Convective Available Potential Energy (CAPE) behind the land - ocean contrast is observed to be insignificant in the present study region. The result shows that the lightning activities are significantly and positively correlated with aerosols over both land and ocean in case of low aerosol loading whereas for high aerosol loading the correlation is significant but, only over land. The study attempts to comprehend the mechanism through which the aerosol and lightning interact using the concept of aerosol indirect effect that includes the study of cloud effective radius, cloud fraction and precipitation rate. The result shows that the increase in lightning activity over ocean might have been caused due to the first aerosol indirect effect, while over land the aerosol indirect effect might have been suppressed due to lightning. Thus, depending on the region and relation between cloud parameters it is observed that the precipitation rate decreases (increases) over ocean during lightning (non-lightning) days. On the other hand during non-lightning days, the precipitation rate decreases over land.

  17. Global Distribution of Cloud Droplet Number Concentration, Autoconversion Rate, and Aerosol Indirect Effect Under Diabatic Droplet Activation

    NASA Technical Reports Server (NTRS)

    Barahona, Donifan; Sotiropoulou, Rafaella; Nenes, Athanasios

    2011-01-01

    This study presents a global assessment of the sensitivity of droplet number to diabatic activation (i.e., including effects from entrainment of dry air) and its first-order tendency on indirect forcing and autoconversion. Simulations were carried out with the NASA Global Modeling Initiative (GMI) atmospheric and transport model using climatological metereorological fields derived from the former NASA Data Assimilation Office (DAO), the NASA Finite volume GCM (FVGCM) and the Goddard Institute for Space Studies version II (GISS) GCM. Cloud droplet number concentration (CDNC) is calculated using a physically based prognostic parameterization that explicitly includes entrainment effects on droplet formation. Diabatic activation results in lower CDNC, compared to adiabatic treatment of the process. The largest decrease in CDNC (by up to 75 percent) was found in the tropics and in zones of moderate CCN concentration. This leads to a global mean effective radius increase between 0.2-0.5 micrometers (up to 3.5 micrometers over the tropics), a global mean autoconversion rate increase by a factor of 1.1 to 1.7 (up to a factor of 4 in the tropics), and a 0.2-0.4 W m(exp -2) decrease in indirect forcing. The spatial patterns of entrainment effects on droplet activation tend to reduce biases in effective radius (particularly in the tropics) when compared to satellite retrievals. Considering the diabatic nature of ambient clouds, entrainment effects on CDNC need to be considered in GCM studies of the aerosol indirect effect.

  18. Apparatus having reduced background for measuring radiation activity in aerosol particles

    DOEpatents

    Rodgers, John C.; McFarland, Andrew R.; Oritz, Carlos A.; Marlow, William H.

    1992-01-01

    Apparatus having reduced background for measuring radiation activity in aerosol particles. A continuous air monitoring sampler is described for use in detecting the presence of alpha-emitting aerosol particles. An inlet fractionating screen has been demonstrated to remove about 95% of freshly formed radon progeny from the aerosol sample, and approximately 33% of partially aged progeny. Addition of an electrical condenser and a modified dichotomous virtual impactor are expected to produce considerable improvement in these numbers, the goal being to enrich the transuranic (TRU) fraction of the aerosols. This offers the possibility of improving the signal-to-noise ratio for the detected alpha-particle energy spectrum in the region of interest for detecting TRU materials associated with aerosols, thereby enhancing the performance of background-compensation algorithms for improving the quality of alarm signals intended to warn personnel of potentially harmful quantities of TRU materials in the ambient air.

  19. An interfacial mechanism for cloud droplet formation on organic aerosols

    NASA Astrophysics Data System (ADS)

    Ruehl, Christopher R.; Davies, James F.; Wilson, Kevin R.

    2016-03-01

    Accurate predictions of aerosol/cloud interactions require simple, physically accurate parameterizations of the cloud condensation nuclei (CCN) activity of aerosols. Current models assume that organic aerosol species contribute to CCN activity by lowering water activity. We measured droplet diameters at the point of CCN activation for particles composed of dicarboxylic acids or secondary organic aerosol and ammonium sulfate. Droplet activation diameters were 40 to 60% larger than predicted if the organic was assumed to be dissolved within the bulk droplet, suggesting that a new mechanism is needed to explain cloud droplet formation. A compressed film model explains how surface tension depression by interfacial organic molecules can alter the relationship between water vapor supersaturation and droplet size (i.e., the Köhler curve), leading to the larger diameters observed at activation.

  20. The effect of vertical velocity probability distribution shape on cloud activation of aerosols: off-line calculations

    NASA Astrophysics Data System (ADS)

    Tonttila, J.; Romakkaniemi, S.; Räisänen, P.; Kokkola, H.; Järvinen, H.

    2012-04-01

    Off-line calculations of cloud activation of aerosols using a probability density function (PDF) for vertical velocity (w) are performed. The focus is on the variation of the shape of the PDF using two functional formulations: the Normal distribution PDF and the Pearson type IV PDF. The Normal distribution provides a familiar example, as it has been widely used to approximate vertical velocity distributions in numerous applications, including climate models. Pearson type IV distribution provides an alternative that, to our knowledge, has not been employed before to describe the vertical velocity PDF. The advantage of the Pearson distribution is its versatility in representing skewed and more peaked distribution shapes compared to the Normal distribution, though this is obtained at the expense of increased mathematical complexity. The experiments are performed using a box model, in which the environmental conditions, including the aerosol size distribution (bi-modal) and chemical composition (ammonium-sulphate particles) are prescribed as constants. Measured size distributions comprising clean and polluted cases are used. Cloud activation of aerosols is calculated by integrating over the positive side of the PDF of w, which yields the mean number of activated particles (Nact). The mean, variance, and skewness of the PDFs along with the type of the PDF itself are altered in order to explore the effect of the PDF shape on the activation process. All experiments are repeated for three well-documented activation parameterizations: Lin & Leaitch, Abdul-Razzak & Ghan and Fountoukis & Nenes. The results show that for symmetric distributions of w (skewness = 0) there is a maximum difference of 10-15 % in Nact between the cases with w given by the Normal distribution, and the more peaked Pearson distribution. The largest differences are seen for the most polluted cases. Nact in clean cases will saturate rather quickly with respect to the maximum supersaturation and, hence

  1. Aerosol measurements at a high-elevation site: composition, size, and cloud condensation nuclei activity

    SciTech Connect

    Friedman, Beth; Zelenyuk, Alla; Beranek, Josef; Kulkarni, Gourihar R.; Pekour, Mikhail S.; Hallar, Anna G.; McCubbin, Ian; Thornton, Joel A.; Cziczo, D. J.

    2013-12-09

    We present measurements of CCN concentrations and associated aerosol composition and size properties at a high-elevation research site in March 2011. CCN closure and aerosol hygroscopicity were assessed using simplified assumptions of bulk aerosol properties as well as a new method utilizing single particle composition and size to assess the importance of particle mixing state in CCN activation. Free troposphere analysis found no significant difference between the CCN activity of free tropospheric aerosol and boundary layer aerosol at this location. Closure results indicate that using only size and number information leads to adequate prediction, in the majority of cases within 50%, of CCN concentrations, while incorporating the hygroscopicity parameters of the individual aerosol components measured by single particle mass spectrometry adds to the agreement, in most cases within 20%, between predicted and measured CCN concentrations. For high-elevation continental sites, with largely aged aerosol and low amounts of local area emissions, a lack of chemical knowledge and hygroscopicity may not hinder models in predicting CCN concentrations. At sites influenced by fresh emissions or more heterogeneous particle types, single particle composition information may be more useful in predicting CCN concentrations and understanding the importance of particle mixing state on CCN activation.

  2. Temperature dependence of bromine activation due to reaction with ozone in a proxy for organic aerosols

    NASA Astrophysics Data System (ADS)

    Edebeli, Jacinta; Ammann, Markus; Gilgen, Anina; Eichler, Anja; Schneebeli, Martin; Bartels-Rausch, Thorsten

    2016-04-01

    The discovery of boundary layer ozone depletion events in the Polar Regions [1] and in the mid-latitudes [2], two areas of very different temperature regimes, begs the question of temperature dependence of reactions responsible for these observations [3]. These ODEs have been attributed to ozone reacting with halides leading to reactive halogens (halogen activation) of which bromide is extensively studied, R1 - R3 [4, 5] (R1 is a multiphase reaction). O3 + Br-→ O2 + OBr- (R1) OBr- + H+ ↔ HOBr (R2) HOBr + H+ + Br-→ Br2 + H2O (R3) Despite extensive studies of ozone-bromide interactions, the temperature dependence of bromine activation is not clear [3]. This limits parameterization of the involved reactions and factors in atmospheric models [3, 6]. Viscosity changes in the matrix (such as organic aerosols) due to temperature have been shown to influence heterogeneous reaction rates and products beyond pure temperature effect [7]. With the application of coated wall flow-tubes, the aim of this study is therefore to investigate the temperature dependence of bromine activation by ozone interaction while attempting to characterize the contributions of the bulk and surface reactions to observed ozone uptake. Citric acid is used in this study as a hygroscopically characterized matrix whose viscosity changes with temperature and humidity. Here, we present reactive ozone uptake measured between 258 and 289 K. The data show high reproducibility. Comparison of measured uptake with modelled bulk uptake at different matrix compositions (and viscosities) indicate that bulk reactive uptake dominates, but there are other factors which still need further consideration in the model. References 1. Barrie, L.A., et al., Nature, 1988. 334: p. 138 - 141. 2. Hebestreit, K., et al., Science, 1999. 283: p. 55-57. 3. Simpson, W.R., et al., Atmospheric Chemistry and Physics, 2007. 7: p. 4375 - 4418. 4. Haag, R.W. and J. Hoigné, Environ Sci Technol, 1983. 17: p. 261-267. 5. Oum, K.W., et

  3. Temperature dependence of bromine activation due to reaction with ozone in a proxy for organic aerosols

    NASA Astrophysics Data System (ADS)

    Edebeli, Jacinta; Ammann, Markus; Gilgen, Anina; Eichler, Anja; Schneebeli, Martin; Bartels-Rausch, Thorsten

    2016-04-01

    The discovery of boundary layer ozone depletion events in the Polar Regions [1] and in the mid-latitudes [2], two areas of very different temperature regimes, begs the question of temperature dependence of reactions responsible for these observations [3]. These ODEs have been attributed to ozone reacting with halides leading to reactive halogens (halogen activation) of which bromide is extensively studied, R1 - R3 [4, 5] (R1 is a multiphase reaction). O3 + Br‑→ O2 + OBr‑ (R1) OBr‑ + H+ ↔ HOBr (R2) HOBr + H+ + Br‑→ Br2 + H2O (R3) Despite extensive studies of ozone-bromide interactions, the temperature dependence of bromine activation is not clear [3]. This limits parameterization of the involved reactions and factors in atmospheric models [3, 6]. Viscosity changes in the matrix (such as organic aerosols) due to temperature have been shown to influence heterogeneous reaction rates and products beyond pure temperature effect [7]. With the application of coated wall flow-tubes, the aim of this study is therefore to investigate the temperature dependence of bromine activation by ozone interaction while attempting to characterize the contributions of the bulk and surface reactions to observed ozone uptake. Citric acid is used in this study as a hygroscopically characterized matrix whose viscosity changes with temperature and humidity. Here, we present reactive ozone uptake measured between 258 and 289 K. The data show high reproducibility. Comparison of measured uptake with modelled bulk uptake at different matrix compositions (and viscosities) indicate that bulk reactive uptake dominates, but there are other factors which still need further consideration in the model. References 1. Barrie, L.A., et al., Nature, 1988. 334: p. 138 - 141. 2. Hebestreit, K., et al., Science, 1999. 283: p. 55-57. 3. Simpson, W.R., et al., Atmospheric Chemistry and Physics, 2007. 7: p. 4375 - 4418. 4. Haag, R.W. and J. Hoigné, Environ Sci Technol, 1983. 17: p. 261-267. 5. Oum

  4. Aerosol identification using a hybrid active/passive system

    NASA Astrophysics Data System (ADS)

    D'Amico, Francis M.; Moon, Raphael P.; Davidson, Charles E.

    2005-08-01

    Recent experimental work has shown that passive systems such as hyperspectral FTIR and frequency-tunable IR cameras have application in detection of biological aerosols. This provided the motivation for a new detection technique, which we call Aerosol Ranging Spectroscopy (ARS), whereby a scattering LIDAR is used to augment passive spectrometer data to determine the location and optical depth of the aerosol plume. When the two systems are co-aligned or boresighted, the hybrid data product provides valuable enhancements for signal exploitation of the passive spectral data. This paper presents the motivation and theoretical basis for the ARS technique. A prototype implementation of an ARS system will also be described, along with preliminary results from recent outdoor field experiments.

  5. Impact of aerosol size representation on modeling aerosol-cloud interactions

    DOE PAGES

    Zhang, Y.; Easter, R. C.; Ghan, S. J.; Abdul-Razzak, H.

    2002-11-07

    In this study, we use a 1-D version of a climate-aerosol-chemistry model with both modal and sectional aerosol size representations to evaluate the impact of aerosol size representation on modeling aerosol-cloud interactions in shallow stratiform clouds observed during the 2nd Aerosol Characterization Experiment. Both the modal (with prognostic aerosol number and mass or prognostic aerosol number, surface area and mass, referred to as the Modal-NM and Modal-NSM) and the sectional approaches (with 12 and 36 sections) predict total number and mass for interstitial and activated particles that are generally within several percent of references from a high resolution 108-section approach.more » The modal approach with prognostic aerosol mass but diagnostic number (referred to as the Modal-M) cannot accurately predict the total particle number and surface areas, with deviations from the references ranging from 7-161%. The particle size distributions are sensitive to size representations, with normalized absolute differences of up to 12% and 37% for the 36- and 12-section approaches, and 30%, 39%, and 179% for the Modal-NSM, Modal-NM, and Modal-M, respectively. For the Modal-NSM and Modal-NM, differences from the references are primarily due to the inherent assumptions and limitations of the modal approach. In particular, they cannot resolve the abrupt size transition between the interstitial and activated aerosol fractions. For the 12- and 36-section approaches, differences are largely due to limitations of the parameterized activation for non-log-normal size distributions, plus the coarse resolution for the 12-section case. Differences are larger both with higher aerosol (i.e., less complete activation) and higher SO2 concentrations (i.e., greater modification of the initial aerosol distribution).« less

  6. Impact of aerosol size representation on modeling aerosol-cloud interactions

    SciTech Connect

    Zhang, Y.; Easter, R. C.; Ghan, S. J.; Abdul-Razzak, H.

    2002-11-07

    In this study, we use a 1-D version of a climate-aerosol-chemistry model with both modal and sectional aerosol size representations to evaluate the impact of aerosol size representation on modeling aerosol-cloud interactions in shallow stratiform clouds observed during the 2nd Aerosol Characterization Experiment. Both the modal (with prognostic aerosol number and mass or prognostic aerosol number, surface area and mass, referred to as the Modal-NM and Modal-NSM) and the sectional approaches (with 12 and 36 sections) predict total number and mass for interstitial and activated particles that are generally within several percent of references from a high resolution 108-section approach. The modal approach with prognostic aerosol mass but diagnostic number (referred to as the Modal-M) cannot accurately predict the total particle number and surface areas, with deviations from the references ranging from 7-161%. The particle size distributions are sensitive to size representations, with normalized absolute differences of up to 12% and 37% for the 36- and 12-section approaches, and 30%, 39%, and 179% for the Modal-NSM, Modal-NM, and Modal-M, respectively. For the Modal-NSM and Modal-NM, differences from the references are primarily due to the inherent assumptions and limitations of the modal approach. In particular, they cannot resolve the abrupt size transition between the interstitial and activated aerosol fractions. For the 12- and 36-section approaches, differences are largely due to limitations of the parameterized activation for non-log-normal size distributions, plus the coarse resolution for the 12-section case. Differences are larger both with higher aerosol (i.e., less complete activation) and higher SO2 concentrations (i.e., greater modification of the initial aerosol distribution).

  7. Reactive uptake coefficients for N2O5 determined from aircraft measurements during the Second Texas Air Quality Study: Comparison to current model parameterizations

    NASA Astrophysics Data System (ADS)

    Brown, Steven S.; Dubé, William P.; Fuchs, Hendrik; Ryerson, Thomas B.; Wollny, Adam G.; Brock, Charles A.; Bahreini, Roya; Middlebrook, Ann M.; Neuman, J. Andrew; Atlas, Elliot; Roberts, James M.; Osthoff, Hans D.; Trainer, Michael; Fehsenfeld, Frederick C.; Ravishankara, A. R.

    2009-04-01

    This paper presents determinations of reactive uptake coefficients for N2O5, γ(N2O5), on aerosols from nighttime aircraft measurements of ozone, nitrogen oxides, and aerosol surface area on the NOAA P-3 during Second Texas Air Quality Study (TexAQS II). Determinations based on both the steady state approximation for NO3 and N2O5 and a plume modeling approach yielded γ(N2O5) substantially smaller than current parameterizations used for atmospheric modeling and generally in the range 0.5-6 × 10-3. Dependence of γ(N2O5) on variables such as relative humidity and aerosol composition was not apparent in the determinations, although there was considerable scatter in the data. Determinations were also inconsistent with current parameterizations of the rate coefficient for homogenous hydrolysis of N2O5 by water vapor, which may be as much as a factor of 10 too large. Nocturnal halogen activation via conversion of N2O5 to ClNO2 on chloride aerosol was not determinable from these data, although limits based on laboratory parameterizations and maximum nonrefractory aerosol chloride content showed that this chemistry could have been comparable to direct production of HNO3 in some cases.

  8. Advancements in the Representation of Cloud-Aerosol Microphysics in the GEOS-5 AGCM

    NASA Technical Reports Server (NTRS)

    Lee, D.; Oreopoulos, L.; Sud, Y.; Barahona, D.; Nemes, A.; Bhattacharjee, P.

    2011-01-01

    Despite numerous challenges, the physical parameterization of cloud-aerosol interactions in atmospheric GCMs has become a top priority for advancement because of our need to simulate and understand past, current, and future indirect effects of aerosols on clouds. The challenges stem from the involvement of wide range of cloud-scale dynamics and aerosol activation physical processes. Cloud dynamics modulate cloud areal extent and condensate, while aerosol activation depends on aerosol mass load, size distribution, internal mixing state, and nucleating properties, and ultimately determines cloud optical properties via particle sizes. Both macro- and micro-scale processes are obviously important for cloud-radiation interactions. We will present the main features of cloud microphysical properties in the GEOS- 5 Atmospheric GCM (AGCM) as simulated by the McRAS-AC (Microphysics of Clouds with Relaxed Arakawa-Schubert and Aerosol-Cloud interaction) scheme. McRAS-AC uses Fountoukis and Nenes (2005) aerosol activation for liquid clouds, and has an option for either Liu and Penner (2005) or Barahona and Nenes (2008, 2009) aerosol activation for ice clouds. Aerosol loading (on-line or climatological) comes from GOCART, with an assumed log-normal size distribution. Other features of McRAS-AC are level-by-level cloud-scale thermodynamics, and Seifert-Beheng (2001)-type precipitation microphysics, particularly from moist convection. Results from Single-Column Model simulations will be shown to demonstrate how cloud radiative properties, lifetimes, and precipitation are influenced by different parameterization assumptions. Corresponding fields from year-long simulations of the full AGCM will also be presented with geographical distributions of cloud effective particle sizes compared to satellite retrievals. While the primary emphasis will be on current climate, simulation results with perturbed aerosol loadings will also be shown to expose the radiative sensitivity of the

  9. Analysis of CCN activity of Arctic aerosol and Canadian biomass burning during summer 2008

    NASA Astrophysics Data System (ADS)

    Lathem, T. L.; Beyersdorf, A. J.; Thornhill, K. L.; Winstead, E. L.; Cubison, M. J.; Hecobian, A.; Jimenez, J. L.; Weber, R. J.; Anderson, B. E.; Nenes, A.

    2013-03-01

    The NASA DC-8 aircraft characterized the aerosol properties, chemical composition, and cloud condensation nuclei (CCN) concentrations of the summertime Arctic during the 2008 NASA Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) campaign. Air masses characteristic of fresh and aged biomass burning, boreal forest, Arctic background, and anthropogenic industrial pollution were sampled. Observations were spatially extensive (50-85° N and 40-130° W) and exhibit significant variability in aerosol and CCN concentrations. The chemical composition was dominated by highly oxidized organics (66-94% by volume), with a water-soluble mass fraction of more than 50%. The aerosol hygroscopicity parameter, κ, ranged between κ = 0.08-0.32 for all air mass types. Industrial pollution had the lowest κ of 0.08 ± 0.01, while the Arctic background had the highest and most variable κ of 0.32 ± 0.21, resulting from a lower and more variable organic fraction. Both fresh and aged (long-range transported) biomass burning air masses exhibited remarkably similar κ (0.18 ± 0.13), consistent with observed rapid chemical and physical aging of smoke emissions in the atmosphere, even in the vicinity of fresh fires. The organic hygroscopicity (κorg) was parameterized by the volume fraction of water-soluble organic matter (ɛWSOM), with a κ = 0.12, such that κorg = 0.12ɛWSOM. Assuming bulk (size-independent) composition and including the κorg parameterization enabled CCN predictions to within 30% accuracy for nearly all environments sampled. The only exception was for industrial pollution from Canadian oil sands exploration, where an external mixture and size-dependent composition was required. Aerosol mixing state assumptions (internal vs. external) in all other environments did not significantly affect CCN predictions; however, the external mixing assumption provided the best results, even though the available observations could not determine

  10. Analysis of CCN activity of Arctic aerosol and Canadian biomass burning during summer 2008

    NASA Astrophysics Data System (ADS)

    Lathem, T. L.; Beyersdorf, A. J.; Thornhill, K. L.; Winstead, E. L.; Cubison, M. J.; Hecobian, A.; Jimenez, J. L.; Weber, R. J.; Anderson, B. E.; Nenes, A.

    2012-09-01

    The NASA DC-8 aircraft characterized the aerosol properties, chemical composition, and cloud condensation nuclei (CCN) concentrations of the summertime Arctic during the 2008 NASA Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) campaign. Air masses characteristic of fresh and aged biomass burning, boreal forest, Arctic background, and anthropogenic industrial pollution were sampled. Observations were spatially extensive (50-85° N and 40-130° W) and exhibit significant variability in aerosol and CCN concentrations. The chemical composition was dominated by highly oxidized organics (66-94% by volume), more than half of which was water-soluble. The aerosol hygroscopicity parameter, κ, ranged between κ = 0.1-0.32 for all air mass types. Industrial pollution had the lowest κ of 0.08 ± 0.01, while the Arctic background had the highest and most variable κ of 0.32 ± 0.21, resulting from a lower and more variable organic fraction. Both fresh and aged (long-range transported) biomass burning air masses exhibited remarkably similar κ (0.18 ± 0.13), consistent with observed rapid chemical and physical aging of smoke emissions in the atmosphere, even in the vicinity of fresh fires. The organic hygroscopicity (κorg) was parameterized by the volume fraction of water-soluble organic matter (ϵWSOM), with a κ = 0.12, such that κorg = 0.12ϵWSOM. Assuming bulk (size-independent) composition and including the κorg parameterization enabled CCN predictions to within 30% accuracy for nearly all environments sampled. The only exception was for industrial pollution from Canadian oil sands exploration, where an external mixture and size-dependent composition was required. Aerosol mixing state assumptions (internal vs. external) in all other environments did not significantly affect CCN predictions; however, the external mixing assumption provided the best results, even though the available observations could not

  11. Comparison of parameterizations for homogeneous and heterogeneous ice nucleation

    NASA Astrophysics Data System (ADS)

    Koop, T.; Zobrist, B.

    2009-04-01

    The formation of ice particles from liquid aqueous aerosols is of central importance for the physics and chemistry of high altitude clouds. In this paper, we present new laboratory data on ice nucleation and compare them with two different parameterizations for homogeneous as well as heterogeneous ice nucleation. In particular, we discuss and evaluate the effect of solutes and ice nuclei. One parameterization is the λ-approach which correlates the depression of the freezing temperature of aqueous droplets in comparison to pure water droplets, Tf, with the corresponding depression, Tm, of the equilibrium ice melting point: Tf = λ × Tm. Here, λ is independent of concentration and a constant that is specific for a particular solute or solute/ice nucleus combination. The other approach is water-activity-based ice nucleation theory which describes the effects of solutes on the freezing temperature Tf via their effect on water activity: aw(Tf) = awi(Tf) + aw. Here, awi is the water activity of ice and aw is a constant that depends on the ice nucleus but is independent of the type of solute. We present new data on both homogeneous and heterogeneous ice nucleation with varying types of solutes and ice nuclei. We evaluate and discuss the advantages and limitations of the two approaches for the prediction of ice nucleation in laboratory experiments and atmospheric cloud models.

  12. Reduction of photosynthetically active radiation under extreme stratospheric aerosol loads

    SciTech Connect

    Gerstl, S.A.W.; Zardecki, A.

    1981-08-01

    The recently published hypothesis that the Cretaceous-Tertiary extinctions might be caused by an obstruction of sunlight is tested by model calculations. First we compute the total mass of stratospheric aerosols under normal atmospheric conditions for four different (measured) aerosol size distributions and vertical profiles. For comparison, the stratospheric dust masses after four volcanic eruptions are also evaluated. Detailed solar radiative transfer calculations are then performed for artificially increased aerosol amounts until the postulated darkness scenario is obtained. Thus we find that a total stratospheric aerosol mass between 1 and 4 times 10/sup 1/ g is sufficient to reduce photosynthesis to 10/sup -3/ of normal. We also infer from this result tha the impact of a 0.4- to 3-km-diameter asteroid or a close encounter with a Halley-size comet may deposit that amount of particulates into the stratosphere. The darkness scenario of Alvarez et al. is thus shown to be a possible extinction mechanism, even with smaller size asteroids of comets than previously estimated.

  13. Comparative Antimicrobial Activities of Aerosolized Sodium Hypochlorite, Chlorine Dioxide, and Electrochemically Activated Solutions Evaluated Using a Novel Standardized Assay

    PubMed Central

    Thorn, R. M. S.; Robinson, G. M.

    2013-01-01

    The main aim of this study was to develop a standardized experimental assay to enable differential antimicrobial comparisons of test biocidal aerosols. This study represents the first chlorine-matched comparative assessment of the antimicrobial activities of aerosolized sodium hypochlorite, chlorine dioxide, and electrochemically activated solution (ECAS) to determine their relative abilities to decontaminate various surface-associated health care-relevant microbial challenges. Standard microbiological challenges were developed by surface-associating typed Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtilis spores, or a clinical methicillin-resistant S. aureus (MRSA) strain on stainless steel, polypropylene, or fabric. All test coupons were subjected to 20-min biocidal aerosols of chlorine-matched (100 ppm) sodium hypochlorite, chlorine dioxide, or ECAS within a standard aerosolization chamber using a commercial humidifier under defined conditions. Biocidal treatment type and material surface had a significant effect on the number of microorganisms recovered from various material surfaces following treatment exposure. Under the conditions of the assay, the order of antimicrobial efficacy of biocidal aerosol treatment was as follows: ECAS > chlorine dioxide > sodium hypochlorite. For all biocides, greater antimicrobial reductions were seen when treating stainless steel and fabric than when treating plastic-associated microorganisms. The experimental fogging system and assay protocol designed within this study were shown capable of differentiating the comparative efficacies of multiple chlorine-matched biocidal aerosols against a spectrum of target organisms on a range of test surface materials and would be appropriate for testing other biocidal aerosol treatments or material surfaces. PMID:23459480

  14. Activation of "synthetic ambient" aerosols - Relation to chemical composition of particles <100 nm

    NASA Astrophysics Data System (ADS)

    Burkart, J.; Hitzenberger, R.; Reischl, G.; Bauer, H.; Leder, K.; Puxbaum, H.

    2012-07-01

    Cloud condensation nuclei (CCN) are an important fraction of atmospheric aerosols because of their role in cloud formation. Experimental studies focus either on direct field measurements of complex ambient aerosols or laboratory investigations on well defined aerosols produced from single substances or substance mixtures. In this study, we focussed on the ultrafine aerosol because in terms of number concentration, the majority of the CCN are expected to have sizes in this range. A field study was performed from July 2007 to October 2008 to investigate the activation behaviour of the atmospheric aerosol in Vienna (Burkart et al., 2011). Filter samples of the aerosol <0.1 μm aerodynamic equivalent diameter were collected, elutriated and used to generate "synthetic ambient" aerosol in a nebulizer. Chemical analyses of the ultrafine water soluble material were also performed. The CCN properties of the "synthetic ambient" aerosol were obtained using the University of Vienna CCN counter (Giebl et al., 2002; Dusek et al., 2006b) at a nominal supersaturation (SS) of 0.5%. Activation diameters dact ranged from 54.5 nm to 66 nm, were larger than dact of typical single inorganic salts and showed no seasonal pattern in contrast to the fraction of water soluble organic carbon (WSOC), which ranged from 44% in spring to 15% in winter. The average hygroscopicity parameter κ (Petters and Kreidenweis, 2007) obtained from the activation curves ranged from 0.20 to 0.30 (average 0.24), which was significantly lower than κchem calculated from the chemical composition (0.43 ± 0.07).

  15. Calibration correction of an active scattering spectrometer probe to account for refractive index of stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Overbeck, V. R.; Snetsinger, K. G.; Russell, P. B.; Ferry, G. V.

    1990-01-01

    The use of the active scattering spectrometer probe (ASAS-X) to measure sulfuric acid aerosols on U-2 and ER-2 research aircraft has yielded results that are at times ambiguous due to the dependence of particles' optical signatures on refractive index as well as physical dimensions. The calibration correction of the ASAS-X optical spectrometer probe for stratospheric aerosol studies is validated through an independent and simultaneous sampling of the particles with impactors; sizing and counting of particles on SEM images yields total particle areas and volumes. Upon correction of calibration in light of these data, spectrometer results averaged over four size distributions are found to agree with similarly averaged impactor results to within a few percent: indicating that the optical properties or chemical composition of the sample aerosol must be known in order to achieve accurate optical aerosol spectrometer size analysis.

  16. Microfluidic Electrochemical Sensor for On-line Monitoring of Aerosol Oxidative Activity

    PubMed Central

    Sameenoi, Yupaporn; Koehler, Kirsten; Shapiro, Jeff; Boonsong, Kanokporn; Sun, Yele; Collett, Jeffrey; Volckens, John; Henry, Charles S.

    2012-01-01

    Particulate matter (PM) air pollution has a significant impact on human morbidity and mortality; however, the mechanisms of PM-induced toxicity are poorly defined. A leading hypothesis states that airborne PM induces harm by generating reactive oxygen species (ROS) in and around human tissues, leading to oxidative stress. We report here, a system employing a microfluidic electrochemical sensor coupled directly to a Particle-into-Liquid-Sampler (PILS) system to measure aerosol oxidative activity in an on-line format. The oxidative activity measurement is based on the dithiothreitol assay (DTT assay) where after oxidized by PM, the remaining reduced DTT was analyzed by the microfluidic sensor. The sensor consists of an array of working, reference, and auxiliary electrodes fabricated in a poly(dimethylsiloxane) (PDMS)-based microfluidic device. Cobalt (II) phthalocyanine (CoPC)-modified carbon paste was used as the working electrode material allowing selective detection of reduced DTT. The electrochemical sensor was validated off-line against the traditional DTT assay using filter samples taken from urban environments and biomass burning events. After off-line characterization, the sensor was coupled to a PILS to enable on-line sampling/analysis of aerosol oxidative activity. Urban dust and industrial incinerator ash samples were aerosolized in an aerosol chamber and analyzed for their oxidative activity. The on-line sensor reported DTT consumption rates (oxidative activity) in good correlation with aerosol concentration (R2 from 0.86–.97) with a time-resolution of approximately 3 minutes. PMID:22651886

  17. Final Report for Cloud-Aerosol Physics in Super-Parameterized Atmospheric Regional Climate Simulations (CAP-SPARCS)(DE-SC0002003) for 8/15/2009 through 8/14/2012

    SciTech Connect

    Russell, Lynn M; Somerville, Richard C.J.

    2012-11-05

    Improving the representation of local and non-local aerosol interactions in state-of-the-science regional climate models is a priority for the coming decade (Zhang, 2008). With this aim in mind, we have combined two new technologies that have a useful synergy: (1) an aerosol-enabled regional climate model (Advanced Weather Research and Forecasting Model with Chemistry WRF-Chem), whose primary weakness is a lack of high quality boundary conditions and (2) an aerosol-enabled multiscale modeling framework (PNNL Multiscale Aerosol Climate Model (MACM)), which is global but captures aerosol-convection-cloud feedbacks, and thus an ideal source of boundary conditions. Combining these two approaches has resulted in an aerosol-enabled modeling framework that not only resolves high resolution details in a particular region, but crucially does so within a global context that is similarly faithful to multi-scale aerosol-climate interactions. We have applied and improved the representation of aerosol interactions by evaluating model performance over multiple domains, with (1) an extensive evaluation of mid-continent precipitation representation by multiscale modeling, (2) two focused comparisons to transport of aerosol plumes to the eastern United States for comparison with observations made as part of the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT), with the first being idealized and the second being linked to an extensive wildfire plume, and (3) the extension of these ideas to the development of a new approach to evaluating aerosol indirect effects with limited-duration model runs by nudging to observations. This research supported the work of one postdoc (Zhan Zhao) for two years and contributed to the training and research of two graduate students. Four peer-reviewed publications have resulted from this work, and ground work for a follow-on project was completed.

  18. A Physically-Based Estimate of Radiative Forcing by Anthropogenic Sulfate Aerosol

    SciTech Connect

    Ghan, Steven J. ); Easter, Richard C. ); Chapman, Elaine G. ); Abdul-Razzak, Hayder; Zhang, Yang ); Leung, Ruby ); Laulainen, Nels S. ); Saylor, Rick D. ); Zaveri, Rahul A. )

    2001-04-01

    Estimates of direct and indirect radiative forcing by anthropogenic sulfate aerosols from an integrated global aerosol and climate modeling system are presented. A detailed global tropospheric chemistry and aerosol model that predicts concentrations of oxidants as well as aerosols and aerosol precursors, is coupled to a general circulation model that predicts both cloud water mass and cloud droplet number. Both number and mass of several externally-mixed aerosol size modes are predicted, with internal mixing assumed for the different aerosol components within each mode. Predicted aerosol species include sulfate, organic and black carbon, soil dust, and sea salt. The models use physically-based treatments of aerosol radiative properties (including dependence on relative humidity) and aerosol activation as cloud condensation nuclei. Parallel simulations with and without anthropogenic sulfate aerosol are performed for a global domain. The global and annual mean direct and indirect radiative forcing due to anthropogenic sulfate are estimated to be -0.3 to -0.5 and -1.5 to -3.0 W m-2, respectively. The radiative forcing is sensitive to the model's horizontal resolution, the use of predicted vs. analyzed relative humidity, the prediction vs. diagnosis of aerosol number and droplet number, and the parameterization of droplet collision/coalescence. About half of the indirect radiative forcing is due to changes in droplet radius and half to increased cloud liquid water.

  19. Activity size distribution and residence time of 7Be aerosols in the Arctic atmosphere

    NASA Astrophysics Data System (ADS)

    Ioannidou, Alexandra; Paatero, Jussi

    2014-05-01

    The activity size distributions of the natural radionuclide tracer 7Be in different size range fractions (<0.39 μm, 0.39-0.69 μm, 0.69-1.3 μm, 1.3-2.1 μm, 2.1-4.2 μm, 4.2-10.2 μm and >10.2 μm) were determined in the boreal atmosphere in the Arctic Research Centre of the Finnish Meteorological Institute (FMI) at Sodankylä, Finland (67°22‧ N, 26°38‧ E, 180 m asl). The activity median aerodynamic diameter (AMAD) ranged from 0.54 μm to 1.05 μm (average 0.83 μm). A residence time of about 8 days applies to aerosols of 0.83 μm diameter, representing the residence of aerosol particles in arctic environment. The observed positive correlation between AMAD values and RH% can be explained by the fact that condensation during high relative humidity conditions becomes more intense, resulting in increased particle sizes of atmospheric aerosols. However, greater aerosol particle sizes means higher wet scavenging rate of aerosols and as a result lower activity concentration of 7Be in the atmosphere, explaining the anti-correlation between the AMAD values and activity concentrations of 7Be. But this associated with possibly higher scavenging rates of aerosols does not necessarily alone explain the anti-correlation between the AMAD and the 7Be activities. The air mass origin associated with synoptic scale weather phenomena may contribute to that too. The Flextra model was used to assess the transport pattern and to explain the deviation in radionuclide activity concentrations and AMAD values observed in the site of investigation.

  20. Aerosol mixing state, hygroscopic growth and cloud activation efficiency during MIRAGE 2006

    NASA Astrophysics Data System (ADS)

    Lance, S.; Raatikainen, T.; Onasch, T. B.; Worsnop, D. R.; Yu, X.-Y.; Alexander, M. L.; Stolzenburg, M. R.; McMurry, P. H.; Smith, J. N.; Nenes, A.

    2013-05-01

    Observations of aerosol hygroscopic growth and CCN activation spectra for submicron particles are reported for the T1 ground site outside of Mexico City during the MIRAGE 2006 campaign. κ-Köhler theory is used to evaluate the characteristic hygroscopicity parameter, κ*, for the CCN active aerosol population using both size-resolved HTMDA and size-resolved CCNc measurements. Organic mass fractions (forg) are evaluated from size-resolved aerosol mass spectrometer (AMS) measurements, from which predictions of the hygroscopicity parameter are compared against κ*. Strong diurnal changes in aerosol water uptake parameters and aerosol composition are observed. We find that new particle formation (NPF) events are correlated with an increased κ* and CCN-active fraction during the daytime, with greater impact on smaller particles. During NPF events, the number concentration of 40 nm particles acting as CCN at 0.51% ± 0.06% supersaturation can surpass by more than a factor of two the corresponding concentrations of 100 nm particles. We also find that at 06:00-08:00 LT throughout the campaign, fresh traffic emissions result in substantial changes to the chemical distribution of the aerosol, with on average 65% externally mixed fraction for 40 nm particles and 30% externally mixed fraction for 100 nm particles, whereas at midday nearly all particles of both sizes can be described as "internally mixed". Average activation spectra and growth factor distributions are analyzed for different time periods characterizing the daytime (with and without NPF events), the early morning "rush hour" and the entire campaign. We show that κ* derived from CCNc measurements decreases as a function of size during all time periods, while the CCN-active fraction increases as a function of size. Size-resolved AMS measurements do not predict the observed trend for κ* versus particle size, which can be attributed to unresolved mixing state and the presence of refractory material not measured

  1. Relationship between volatility, hygroscopicity, and CCN activity of winter aerosols: Kanpur, Indo-Gangetic Basin

    NASA Astrophysics Data System (ADS)

    Bhattu, Deepika; Tripathi, Sachchida

    2016-04-01

    Aerosol volatility is one of the key property in deciding their lifetime and fate. The volatile species have the potential to affect SOA estimation, so their characterization and establishment of relationship with mass loading, chemical composition, hygroscopicity and CCN activity is required. A 42 days long winter campaign was conducted in an anthropogenically polluted location (Kanpur, India) where CCN activity of both ambient and thermally treated aerosols was characterized. Enhanced partitioning of semi-volatile molecules into particle phase at higher loading conditions was observed. Unexpectedly, the most oxidized organic factor was observed both least volatile and hygroscopic in nature. Lower

  2. Tying Biological Activity to Changes in Sea Spray Aerosol Chemical Composition via Single Particle Analyses

    NASA Astrophysics Data System (ADS)

    Sultana, C. M.; Lee, C.; Collins, D. B.; Axson, J. L.; Laskina, O.; Grandquist, J. R.; Grassian, V. H.; Prather, K. A.

    2014-12-01

    In remote marine environments, sea spray aerosols (SSA) often represent the greatest aerosol burden, thus having significant impacts on direct radiative interactions and cloud processes. Previous studies have shown that SSA is a complex mixture of inorganic salts and an array of dissolved and particulate organic components. Enrichment of SSA organic content is often correlated to seawater chlorophyll concentrations, a measure of oceanic biological activity. As the physical and chemical properties of aerosols control their radiative effects, recent studies conducted by the Center for Aerosol Impacts on Climate and the Environment have endeavored to further elucidate the ties between marine biological activity and primary SSA chemical composition using highly time resolved single particle analyses. A series of experiments performed in the recently developed Marine Aerosol Reference Tank evaluated the effect of changing marine microbial populations on SSA chemical composition, which was monitored via an aerosol time-of-flight mass spectrometer and a variety of offline spectroscopic and microscopic techniques. Each experiment was initiated using unfiltered and untreated seawater, thus maintaining a high level of biogeochemical complexity. This study is the first of its kind to capture daily changes in the primary SSA mixing state over the growth and death of a natural phytoplankton bloom. Increases in organic aerosol types (0.4-3 μm), internally and externally mixed with sea salt, could not be correlated to chlorophyll concentrations. Maximum production of these populations occurred two to four days after the in vivo chlorophyll fluorescence peaked in intensity. This work is in contrast to the current paradigm of correlating SSA organic content to seawater chlorophyll concentration.

  3. Cloud activation properties of organic aerosols observed at an urban site during CalNex-LA

    NASA Astrophysics Data System (ADS)

    Mei, F.; Hayes, P. L.; Ortega, A. M.; Jimenez, J.; Wang, J.

    2010-12-01

    Atmospheric aerosols strongly influence the global energy budget by scattering and absorbing sunlight (direct effects) and by changing the microphysical structure, lifetime, and coverage of clouds (indirect effects). Currently, the indirect effects of aerosols remain the most uncertain components in forcing of climate change over the industrial period. This large uncertainty is in part due to our incomplete understanding of the ability of aerosol particles to form cloud droplets under climatically relevant supersaturations. During CalNex study, size-resolved cloud condensation nuclei (CCN) spectrum and aerosol chemical composition were measured at an urban supersite in Pasadena, California from May 15 to June 6, 2010. Monodispersed aerosol particles are first classified using a differential mobility analyzer at sizes ranging from 25 to 320 nm. The activation efficiency of the classified aerosol, defined as the ratio of its CCN concentration (characterized by a DMT CCN counter) to total CN concentration (measured by a condensation particle counter, TSI 3771), is derived as a function of both particle size and supersaturation, which ranges from 0.08% to 0.39%. Aerosol chemical composition was characterized using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). In most of days, increases in aerosol mode diameter, organics mass loading, and aerosol organics volume fraction were observed from 10:00 AM to 15:00 PM. These increases are attributed to formation of secondary organic aerosols through photochemical reactions. On average, the aerosol was dominated by organics (~65% by volume), with the contribution from ammonium sulfate (~20%) and ammonium nitrate (~15%), and the balance being made up of elemental carbon. Positive matrix factorization (PMF) analysis shows the oxygenated organic aerosol (OOA) (~75%) was the dominant organics component. Additionally, the organics O:C ratio was within a narrow range of 0.50±0.12. Particle overall

  4. The influence of nitrogen oxides on the activation of bromide and chloride in salt aerosol

    NASA Astrophysics Data System (ADS)

    Bleicher, S.; Buxmann, J. C.; Sander, R.; Riedel, T. P.; Thornton, J. A.; Platt, U.; Zetzsch, C.

    2014-04-01

    Experiments on salt aerosol with different salt contents were performed in a Teflon chamber under tropospheric light conditions with various initial contents of nitrogen oxides (NOx = NO + NO2). A strong activation of halogens was found at high NOx mixing ratios, even in samples with lower bromide contents such as road salts. The ozone depletion by reactive halogen species released from the aerosol, was found to be a function of the initial NOx mixing ratio. Besides bromine, large amounts of chlorine have been released in our smog chamber. Time profiles of the halogen species Cl2, Br2, ClNO2, BrNO2 and BrO, ClO, OClO and Cl atoms were simultaneously measured by various techniques (chemical ionization mass spectrometry, differential optical absorption spectrometry coupled with a multi-reflection cell and gas chromatography of hydrocarbon tracers for Cl and OH, employing cryogenic preconcentration and flame ionization detection). Measurements are compared to calculations by the CAABA/MECCA 0-D box model, which was adapted to the chamber conditions and took the aerosol liquid water content and composition into account. The model results agree reasonably with the observations and provide important information about the prerequisites for halogen release, such as the time profiles of the aerosol bromide and chloride contents as well as the aerosol pH.

  5. Modelling aerosol-cloud-meteorology interaction: A case study with a fully coupled air quality model (GEM-MACH)

    NASA Astrophysics Data System (ADS)

    Gong, W.; Makar, P. A.; Zhang, J.; Milbrandt, J.; Gravel, S.; Hayden, K. L.; Macdonald, A. M.; Leaitch, W. R.

    2015-08-01

    A fully coupled on-line air quality forecast model, GEM-MACH, was used to study aerosol-cloud interactions for a case of an urban-industrial plume impacting stratocumulus. The aerosol effect on the cloud microphysics was achieved by the use of parameterization of cloud droplet nucleation predicted from the on-line size- and composition-resolved aerosols and coupled with a double-moment cloud microphysics parameterization. The model simulations with and without the on-line aerosol effect on cloud microphysics were compared and evaluated against in-situ aerosol and cloud observations from ICARTT 2004. Inclusion of the on-line aerosol interaction with cloud resulted in an increase in modelled cloud amount and cloud liquid water content (LWC) due to increased cloud droplet number concentration (Nd), a decrease in cloud droplet size and a reduction in warm precipitation. The modelled LWC and Nd agreed more closely with the observations when the on-line aerosol was allowed to affect the cloud than when aerosol effects on cloud were not explicitly simulated. The increased cloud amount due to the aerosol effects reduced the modelled downward shortwave radiative flux and air temperature at the surface, contributing to a decrease in ozone over the region of enhanced cloud and an increase in particle sulphate from an increased capacity for aqueous-phase production. Aerosol activation is shown to have a significant influence on the cloud microphysics and cloud processing of trace gases and aerosols. The importance of reasonable parameterization of cloud updraft speed is demonstrated.

  6. Optimization of parameterized lightpipes

    NASA Astrophysics Data System (ADS)

    Koshel, R. John

    2007-01-01

    Parameterization via the bend locus curve allows optimization of single-spherical-bend lightpipes. It takes into account the bend radii, the bend ratio, allowable volume, thickness, and other terms. Parameterization of the lightpipe allows the inclusion of a constrained optimizer to maximize performance of the lightpipe. The simplex method is used for optimization. The standard and optimal simplex methods are used to maximize the standard Lambertian transmission of the lightpipe. A second case presents analogous results when the ray-sample weighted, peak-to-average irradiance uniformity is included with the static Lambertian transmission. These results are compared to a study of the constrained merit space. Results show that both optimizers can locate the optimal solution, but the optimal simplex method accomplishes such with a reduced number of ray-trace evaluations.

  7. FY 2011 Second Quarter: Demonstration of New Aerosol Measurement Verification Testbed for Present-Day Global Aerosol Simulations

    SciTech Connect

    Koch, D

    2011-03-20

    The regional-scale Weather Research and Forecasting (WRF) model is being used by a DOE Earth System Modeling (ESM) project titled “Improving the Characterization of Clouds, Aerosols and the Cryosphere in Climate Models” to evaluate the performance of atmospheric process modules that treat aerosols and aerosol radiative forcing in the Arctic. We are using a regional-scale modeling framework for three reasons: (1) It is easier to produce a useful comparison to observations with a high resolution model; (2) We can compare the behavior of the CAM parameterization suite with some of the more complex and computationally expensive parameterizations used in WRF; (3) we can explore the behavior of this parameterization suite at high resolution. Climate models like the Community Atmosphere Model version 5 (CAM5) being used within the Community Earth System Model (CESM) will not likely be run at mesoscale spatial resolutions (10–20 km) until 5–10 years from now. The performance of the current suite of physics modules in CAM5 at such resolutions is not known, and current computing resources do not permit high-resolution global simulations to be performed routinely. We are taking advantage of two tools recently developed under PNNL Laboratory Directed Research and Development (LDRD) projects for this activity. The first is the Aerosol Modeling Testbed (Fast et al., 2011b), a new computational framework designed to streamline the process of testing and evaluating aerosol process modules over a range of spatial and temporal scales. The second is the CAM5 suite of physics parameterizations that have been ported into WRF so that their performance and scale dependency can be quantified at mesoscale spatial resolutions (Gustafson et al., 2010; with more publications in preparation).

  8. Parameterizing the Deceleration Parameter

    NASA Astrophysics Data System (ADS)

    Pavón, D.; Duran, I.; Del Campo, S.; Herrera, R.

    2015-01-01

    We propose and constrain with the latest observational data three parameterizations of the deceleration parameter, valid from the matter era to the far future. They are well behaved and do not diverge at any redshift. On the other hand, they are model independent in the sense that in constructing them the only assumption made was that the Universe is homogeneous and isotropic at large scales.

  9. Evolution of the Physicochemical and Activation Properties of Aerosols within Smoke Plumes during the Biomass Burning Observation Project (BBOP)

    NASA Astrophysics Data System (ADS)

    Tomlinson, J. M.; Mei, F.; Wang, J.; Comstock, J. M.; Hubbe, J. M.; Pekour, M. S.; Shilling, J. E.; Fortner, E.; Chand, D.; Sedlacek, A. J., III; Kleinman, L. I.; Senum, G.; Schmid, B.

    2014-12-01

    Biomass burning from wildfires and controlled agricultural burns are known to be a major source of fine particles and organic aerosols at northern temperate latitudes during the summer months. However, the evolution of the physicochemical properties of the aerosol during transport and the potential impact of this evolution on cloud condensation nuclei (CCN) activity has rarely been studied for these events. During the DOE-sponsored Biomass Burning Observation Project (BBOP) conducted in the summer and fall of 2013, over 30 research flights sampled biomass burning plumes from wildfires in the Northwestern United States and agricultural burns in the Mid-South region of the United States. A large suite of instruments aboard the DOE G-1 (Gulfstream-1) measured the chemical, physical, and optical properties of biomass burning aerosol with an emphasis on black carbon. A Fast Integrated Mobility Spectrometer (FIMS), Ultra High Sensitivity Aerosol Spectrometer - Airborne (UHSAS-A), and Passive Cavity Aerosol Spectrometer (PCASP) were used to measure the aerosol size distribution from 15 - 3,000 nm at 1-Hz. A dual column CCN counter measured the CCN number concentration at supersaturations of 0.25% and 0.50% at a time resolution of 1-Hz and the aerosol chemical composition was measured using a soot particle aerosol mass spectrometer (SP-AMS, Aerodyne, Inc). The SP-AMS was operated in two modes: (i) as a traditional high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS, Aerodyne Inc.), which measured chemical composition of non-refractory aerosols and (ii) as the SP-AMS which measured chemical composition of the refractory black carbon-containing (rBC) particle coating and rBC aerosol mass. Utilizing the aforementioned measurements, a CCN closure study is used to investigate the emitted aerosol hygroscopicity, the evolution of the physicochemical properties of the aerosol, and the potential impacts on cloud microphysics from the different fuel sources.

  10. The effect of phase partitioning of semivolatile compounds on the measured CCN activity of aerosol particles

    NASA Astrophysics Data System (ADS)

    Romakkaniemi, S.; Jaatinen, A.; Laaksonen, A.; Nenes, A.; Raatikainen, T.

    2013-09-01

    The effect of inorganic semivolatile aerosol compounds on the CCN activity of aerosol particles was studied by using a computational model for a DMT-CCN counter, a cloud parcel model for condensation kinetics and experiments to quantify the modelled results. Concentrations of water vapour and semivolatiles as well as aerosol trajectories in the CCN column were calculated by a computational fluid dynamics model. These trajectories and vapour concentrations were then used as an input for the cloud parcel model to simulate mass transfer kinetics of water and semivolatiles between aerosol particles and the gas phase. Two different questions were studied: (1) how big fraction of semivolatiles is evaporated from particles before activation in the CCN counter? (2) How much the CCN activity can be increased due to condensation of semivolatiles prior to the maximum water supersaturation in the case of high semivolatile concentration in the gas phase? The results show that, to increase the CCN activity of aerosol particles, a very high gas phase concentration (as compared to typical ambient conditions) is needed. We used nitric acid as a test compound. A concentration of several ppb or higher is needed for measurable effect. In the case of particle evaporation, we used ammonium nitrate as a test compound and found that it partially evaporates before maximum supersaturation is reached in the CCN counter, thus causing an underestimation of CCN activity. The effect of evaporation is clearly visible in all supersaturations, leading to an underestimation of the critical dry diameter by 10 to 15 nanometres in the case of ammonium nitrate particles in different supersaturations. This result was also confirmed by measurements in supersaturations between 0.1 and 0.7%.

  11. Modeling Secondary Organic Aerosols over Europe: Impact of Activity Coefficients and Viscosity

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Sartelet, K.; Couvidat, F.

    2014-12-01

    Semi-volatile organic species (SVOC) can condense on suspended particulate materials (PM) in the atmosphere. The modeling of condensation/evaporation of SVOC often assumes that gas-phase and particle-phase concentrations are at equilibrium. However, recent studies show that secondary organic aerosols (SOA) may not be accurately represented by an equilibrium approach between the gas and particle phases, because organic aerosols in the particle phase may be very viscous. The condensation in the viscous liquid phase is limited by the diffusion from the surface of PM to its core. Using a surrogate approach to represent SVOC, depending on the user's choice, the secondary organic aerosol processor (SOAP) may assume equilibrium or model dynamically the condensation/evaporation between the gas and particle phases to take into account the viscosity of organic aerosols. The model is implemented in the three-dimensional chemistry-transport model of POLYPHEMUS. In SOAP, activity coefficients for organic mixtures can be computed using UNIFAC for short-range interactions between molecules and AIOMFAC to also take into account the effect of inorganic species on activity coefficients. Simulations over Europe are performed and POLYPHEMUS/SOAP is compared to POLYPHEMUS/H2O, which was previously used to model SOA using the equilibrium approach with activity coefficients from UNIFAC. Impacts of the dynamic approach on modeling SOA over Europe are evaluated. The concentrations of SOA using the dynamic approach are compared with those using the equilibrium approach. The increase of computational cost is also evaluated.

  12. Anticandidal activity of pomegranate peel extract aerosol as an applicable sanitizing method.

    PubMed

    Tayel, Ahmed A; El-Tras, Wael F

    2010-03-01

    Pomegranate is a wonderful fruit from the paradise which contains a wide variety of precious phytochemical compounds applicable in the fields of therapeutics and health care. Candida albicans is the most common etiological agent for many clinical mycoses which could lead to human and animal death. Determination of the anticandidal activity of pomegranate peel extracts (PPE), and application of PPE aerosol as sanitizer agent against C. albicans contamination were investigated. Agar diffusion assay and broth microdilution susceptibility test were applied for qualitative and quantitative determining the PPE anticandidal activity, respectively, versus commonly used fungicides. Aerosolization of PPE using an experimentally designed sanitizer room was applied for examining C. albicans sanitation potentiality of extract. PPE exhibited potent anticandidal activity against C. albicans strains comparing with standard fungicides in both used susceptibility techniques. Methanol, ethanol and water extracts were the most effective for inhibiting C. albicans growth. PPE aerosol was an efficient method for complete sanitizing of semi-closed places against C. albicans growth. Application of PPE aerosol is a proper sanitizing method for preventing C. albicans contamination and growth in suspected places. PMID:19207830

  13. Control of dengue fever with active surveillance and the use of insecticidal aerosol cans.

    PubMed

    Osaka, K; Ha, D Q; Sakakihara, Y; Khiem, H B; Umenai, T

    1999-09-01

    An interventional study was conducted in southern Vietnam to evaluate the feasibility and effectiveness of a new approach to control dengue fever. The approach consisted of active surveillance of dengue patients and the use of insecticidal aerosol cans. Febrile patients were tested serologically at local health centers and insecticidal aerosol cans were given to the family and employed in the neighborhood of dengue patients instead of ultra low volume (ULV) fogging with insecticide. The number of dengue IgM antibody positive cases among febrile patients, the number of reported dengue hemorrhagic fever patients and the total cost were compared in the 2 approaches (prompt focal ULV fogging and the use of insecticidal aerosol cans) in 1997. The aerosol cans were employed 5 times (in June, July, August, September and October) in the study area. ULV fogging in the control area was performed 5 times (in March, May, July, August and September). Twenty-two serologically positive cases were found in the study area which was about half that found in the control area (43 cases). A total of 16 dengue hemorrhagic fever patients was reported in the study area and 43 in the control area. Compared with the reported numbers of the previous year, the reduction rate in the number of dengue hemorrhagic fever cases was 71.4% in the study area and 51.7% in the control area. There were statistically significant differences in the morbidity of dengue fever and the reduction rate of dengue hemorrhagic fever. The cost of the insecticidal aerosol cans was US$393 which was lower than the cost of US$553 for ULV fogging. The findings suggest that insecticidal aerosol cans were effective and feasible for dengue fever control.

  14. Role of clouds, aerosols, and aerosol-cloud interaction in 20th century simulations with GISS ModelE2

    NASA Astrophysics Data System (ADS)

    Nazarenko, L.; Rind, D. H.; Bauer, S.; Del Genio, A. D.

    2015-12-01

    Simulations of aerosols, clouds and their interaction contribute to the major source of uncertainty in predicting the changing Earth's energy and in estimating future climate. Anthropogenic contribution of aerosols affects the properties of clouds through aerosol indirect effects. Three different versions of NASA GISS global climate model are presented for simulation of the twentieth century climate change. All versions have fully interactive tracers of aerosols and chemistry in both the troposphere and stratosphere. All chemical species are simulated prognostically consistent with atmospheric physics in the model and the emissions of short-lived precursors [Shindell et al., 2006]. One version does not include the aerosol indirect effect on clouds. The other two versions include a parameterization of the interactive first indirect aerosol effect on clouds following Menon et al. [2010]. One of these two models has the Multiconfiguration Aerosol Tracker of Mixing state (MATRIX) that permits detailed treatment of aerosol mixing state, size, and aerosol-cloud activation. The main purpose of this study is evaluation of aerosol-clouds interactions and feedbacks, as well as cloud and aerosol radiative forcings, for the twentieth century climate under different assumptions and parameterizations for aerosol, clouds and their interactions in the climate models. The change of global surface air temperature based on linear trend ranges from +0.8°C to +1.2°C between 1850 and 2012. Water cloud optical thickness increases with increasing temperature in all versions with the largest increase in models with interactive indirect effect of aerosols on clouds, which leads to the total (shortwave and longwave) cloud radiative cooling trend at the top of the atmosphere. Menon, S., D. Koch, G. Beig, S. Sahu, J. Fasullo, and D. Orlikowski (2010), Black carbon aerosols and the third polar ice cap, Atmos. Chem. Phys., 10,4559-4571, doi:10.5194/acp-10-4559-2010. Shindell, D., G. Faluvegi

  15. Aerosol hygroscopicity and CCN activation kinetics in a boreal forest environment during the 2007 EUCAARI campaign

    NASA Astrophysics Data System (ADS)

    Cerully, K. M.; Raatikainen, T.; Lance, S.; Tkacik, D.; Tiitta, P.; Petäjä, T.; Ehn, M.; Kulmala, M.; Worsnop, D. R.; Laaksonen, A.; Smith, J. N.; Nenes, A.

    2011-12-01

    Measurements of size-resolved cloud condensation nuclei (CCN) concentrations, subsaturated hygroscopic growth, size distribution, and chemical composition were collected from March through May, 2007, in the remote Boreal forests of Hyytiälä, Finland, as part of the European Integrated project on Aerosol Cloud Climate and Air Quality Interactions (EUCAARI) campaign. Hygroscopicity parameter, κ, distributions were derived independently from Continuous Flow-Streamwise Thermal Gradient CCN Chamber (CFSTGC) and Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA) measurements. CFSTGC-derived κ values for 40, 60, and 80 nm particles range mostly between 0.10 and 0.40 with an average characteristic of highly oxidized organics of 0.20 ± 0.10, indicating that organics play a dominant role for this environment. HTDMA-derived κ were generally 30% lower. Diurnal trends of κ show a minimum at sunrise and a maximum in the late afternoon; this trend covaries with inorganic mass fraction and the m/z 44 organic mass fraction given by a quadrupole aerosol mass spectrometer, further illustrating the importance of organics in aerosol hygroscopicity. The chemical dispersion inferred from the observed κ distributions indicates that while 60 and 80 nm dispersion increases around midday, 40 nm dispersion remains constant. Additionally, 80 nm particles show a markedly higher level of chemical dispersion than both 40 and 60 nm particles. An analysis of droplet activation kinetics for the sizes considered indicates that most of the CCN activate as rapidly as (NH4)2SO4 calibration aerosol.

  16. Aerosol hygroscopicity and CCN activation kinetics in a boreal forest environment during the 2007 EUCAARI campaign

    NASA Astrophysics Data System (ADS)

    Cerully, K. M.; Raatikainen, T.; Lance, S.; Tkacik, D.; Tiitta, P.; Petäjä, T.; Ehn, M.; Kulmala, M.; Worsnop, D. R.; Laaksonen, A.; Smith, J. N.; Nenes, A.

    2011-05-01

    Measurements of size-resolved cloud condensation nuclei (CCN), subsaturated hygroscopic growth, size distribution, and chemical composition were collected from March through May, 2007, in the remote Boreal forests of Hyytiälä, Finland, as part of the European Integrated project on Aerosol Cloud Climate and Air Quality Interactions (EUCAARI) campaign. Hygroscopicity parameter, κ, distributions were derived independently from Continuous Flow-Streamwise Thermal Gradient CCN Chamber (CFSTGC) and Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA) measurements. CFSTGC-derived κ values for 40, 60, and 80 nm particles range mostly between 0.10 and 0.40 with an average of 0.20 ± 0.10; this is characteristic of highly oxidized organics and reflect their dominant influence in this environment. HTDMA-derived κ were generally 30 % lower. Diurnal trends of κ show a minimum at sunrise and a maximum in the late afternoon; this trend covaries with inorganic mass fraction and the m/z 44 organic mass fraction given by a quadrupole aerosol mass spectrometer, further illustrating the importance of ageing on aerosol hygroscopicity. The chemical dispersion inferred from the observed κ distributions indicates that while 60 and 80 nm dispersion increases around midday, 40 nm dispersion remains constant. Additionally, 80 nm particles show a markedly higher level of chemical dispersion than both 40 and 60 nm particles. An analysis of droplet activation kinetics for the sizes considered indicates that the CCN activate as rapidly as (NH4)2SO4 calibration aerosol.

  17. Parameterization and comparative evaluation of the CCN number concentration on Mt. Huang, China

    NASA Astrophysics Data System (ADS)

    Fang, Shasha; Han, Yongxiang; Chen, Kui; Lu, Chunsong; Yin, Yan; Tan, Haobo; Wang, Jin

    2016-11-01

    Quantifying regional CCN concentration is important for reliable estimations of aerosol indirect effects. Based on observational data of the number concentrations of total aerosol (NCN) and cloud condensation nuclei (NCCN), particle number size distribution (PNSD) and, size-resolved activation ratio (SRAR) obtained on Mt. Huang in southeast China from September 19 to October 11, 2012, seven parameterization schemes are used to calculate NCCN employing CCN spectra, bulk activation ratio, cut-off diameter and SRAR. The calculations and the observations are compared and analyzed at four supersaturations (S) from 0.109% to 0.67%. Results show that (1) the parameterization using the average cut-off diameter Dm, which is derived from the various measured PNSD and NCCN, provides the best estimate of NCCN, with coefficient of determination, R2 = 0.70-0.90 and NCCN,cal/NCCN,obs = 0.92-1.11, followed by the method of combining an average size-resolved activation curve with the PNSD, with R2 = 0.71-0.91 and NCCN,cal/NCCN,obs = 0.71-0.91; average D50 together with the PNSD also provides a rational scheme for NCCN prediction, with NCCN,cal/NCCN,obs = 0.86-0.94 and R2 = 0.70-0.89; (2) the method of parameterizing CCN spectra, though straightforward, has limits under polluted conditions. Reasonable NCCN estimate could only be obtained at high S (R2 ≥ 0.85 at S = 0.39% and 0.67%). (3) For the method employing the bulk activation ratio ARB(S), NCCN are substantially overestimated by using total mode-based ARB(S) (NCCN,cal/NCCN,obs = 0.94-1.39, R2 = 0.17-0.67), while applying ammonium sulfate-based ARB(S) yields improved CCN predictions (NCCN,cal/NCCN,obs = 0.91-1.11, R2 = 0.70-0.91). In southern China, when determining the parameterization schemes in climate models, it is first recommended to use the method of average cut-off diameter or SRAR, with the various measured PNSD to predict NCCN. Besides, the method using ammonium sulfate-based ARB(S) and parameterizing CCN spectra

  18. Anti-tumor activity of CpG-ODN aerosol in mouse lung metastases.

    PubMed

    Sfondrini, Lucia; Sommariva, Michele; Tortoreto, Monica; Meini, Alessandra; Piconese, Silvia; Calvaruso, Marco; Van Rooijen, Nick; Bonecchi, Raffaella; Zaffaroni, Nadia; Colombo, Mario P; Tagliabue, Elda; Balsari, Andrea

    2013-07-15

    Studies in preclinical models have demonstrated the superior anti-tumor effect of CpG oligodeoxynucleotides (CpG-ODN) when administered at the tumor site rather than systemically. We evaluated the effect of aerosolized CpG-ODN on lung metastases in mice injected with immunogenic N202.1A mammary carcinoma cells or weakly immunogenic B16 melanoma cells. Upon reaching the bronchoalveolar space, aerosolized CpG-ODN activated a local immune response, as indicated by production of IL-12p40, IFN-γ and IL-1β and by recruitment and maturation of DC cells in bronchoalveolar lavage fluid of mice. Treatment with aerosolized CpG-ODN induced an expansion of CD4+ cells in lung and was more efficacious than systemic i.p. administration against experimental lung metastases of immunogenic N202.1A mammary carcinoma cells, whereas only i.p. delivery of CpG-ODN provided anti-tumor activity, which correlated with NK cell expansion in the lung, against lung metastases of the poorly immunogenic B16 melanoma. The inefficacy of aerosol therapy to induce NK expansion was related to the presence of immunosuppressive macrophages in B16 tumor-bearing lungs, as mice depleted of these cells by clodronate treatment responded to aerosol CpG-ODN through expansion of the NK cell population and significantly reduced numbers of lung metastases. Our results indicate that tumor immunogenicity and the tumor-induced immunosuppressive environment are critical factors to the success of CpG therapy in the lung, and point to the value of routine sampling of the lung immune environment in defining an optimal immunotherapeutic strategy. PMID:23319306

  19. Active and passive smoking - New insights on the molecular composition of different cigarette smoke aerosols by LDI-FTICRMS

    NASA Astrophysics Data System (ADS)

    Schramm, Sébastien; Carré, Vincent; Scheffler, Jean-Luc; Aubriet, Frédéric

    2014-08-01

    The aerosol generated when a cigarette is smoked is a significant indoor contaminant. Both smokers and non-smokers can be exposed to this class of pollutants. Nevertheless, they are not exposed to the same kind of smoke. The active smoker breathes in the mainstream smoke (MSS) during a puff, whereas the passive smoker inhales not only the smoke generated by the lit cigarette between two puffs (SSS) but also the smoke exhaled by active smokers (EXS). The aerosol fraction of EXS has until now been poorly documented; its composition is expected to be different from MSS. This study aims to investigate the complex composition of aerosol from EXS to better understand the difference in exposure between active and passive smokers. To address this, the in-situ laser desorption ionisation Fourier transform ion cyclotron mass spectrometry (LDI-FTICRMS) was used to characterise the aerosol composition of EXS from two different smokers. Results clearly indicated many similarities between EXS samples but also significant differences with MSS and SSS aerosol. The comparison of MSS and EXS aerosol allowed the chemicals retained by the active smoker's lungs to be identified, whereas the convolution of the EXS and SSS aerosol compositions were considered relevant to the exposition of a passive smoker. As a consequence, active smokers are thought to be mainly exposed to polar and poorly unsaturated oxygenated and nitrogenated organics, compared with poorly oxygenated but highly unsaturated compounds in passive smokers.

  20. Improving aerosol distributions below clouds by assimilating satellite-retrieved cloud droplet number.

    PubMed

    Saide, Pablo E; Carmichael, Gregory R; Spak, Scott N; Minnis, Patrick; Ayers, J Kirk

    2012-07-24

    Limitations in current capabilities to constrain aerosols adversely impact atmospheric simulations. Typically, aerosol burdens within models are constrained employing satellite aerosol optical properties, which are not available under cloudy conditions. Here we set the first steps to overcome the long-standing limitation that aerosols cannot be constrained using satellite remote sensing under cloudy conditions. We introduce a unique data assimilation method that uses cloud droplet number (N(d)) retrievals to improve predicted below-cloud aerosol mass and number concentrations. The assimilation, which uses an adjoint aerosol activation parameterization, improves agreement with independent N(d) observations and with in situ aerosol measurements below shallow cumulus clouds. The impacts of a single assimilation on aerosol and cloud forecasts extend beyond 24 h. Unlike previous methods, this technique can directly improve predictions of near-surface fine mode aerosols responsible for human health impacts and low-cloud radiative forcing. Better constrained aerosol distributions will help improve health effects studies, atmospheric emissions estimates, and air-quality, weather, and climate predictions.

  1. Improving aerosol distributions below clouds by assimilating satellite-retrieved cloud droplet number

    PubMed Central

    Saide, Pablo E.; Carmichael, Gregory R.; Spak, Scott N.; Minnis, Patrick; Ayers, J. Kirk

    2012-01-01

    Limitations in current capabilities to constrain aerosols adversely impact atmospheric simulations. Typically, aerosol burdens within models are constrained employing satellite aerosol optical properties, which are not available under cloudy conditions. Here we set the first steps to overcome the long-standing limitation that aerosols cannot be constrained using satellite remote sensing under cloudy conditions. We introduce a unique data assimilation method that uses cloud droplet number (Nd) retrievals to improve predicted below-cloud aerosol mass and number concentrations. The assimilation, which uses an adjoint aerosol activation parameterization, improves agreement with independent Nd observations and with in situ aerosol measurements below shallow cumulus clouds. The impacts of a single assimilation on aerosol and cloud forecasts extend beyond 24 h. Unlike previous methods, this technique can directly improve predictions of near-surface fine mode aerosols responsible for human health impacts and low-cloud radiative forcing. Better constrained aerosol distributions will help improve health effects studies, atmospheric emissions estimates, and air-quality, weather, and climate predictions. PMID:22778436

  2. Modeling immersion freezing with aerosol-dependent prognostic ice nuclei in Arctic mixed-phase clouds

    NASA Astrophysics Data System (ADS)

    Paukert, M.; Hoose, C.

    2014-07-01

    While recent laboratory experiments have thoroughly quantified the ice nucleation efficiency of different aerosol species, the resulting ice nucleation parameterizations have not yet been extensively evaluated in models on different scales. Here the implementation of an immersion freezing parameterization based on laboratory measurements of the ice nucleation active surface site density of mineral dust and ice nucleation active bacteria, accounting for nucleation scavenging of ice nuclei, into a cloud-resolving model with two-moment cloud microphysics is presented. We simulated an Arctic mixed-phase stratocumulus cloud observed during Flight 31 of the Indirect and Semi-Direct Aerosol Campaign near Barrow, Alaska. Through different feedback cycles, the persistence of the cloud strongly depends on the ice number concentration. It is attempted to bring the observed cloud properties, assumptions on aerosol concentration, and composition and ice formation parameterized as a function of these aerosol properties into agreement. Depending on the aerosol concentration and on the ice crystal properties, the simulated clouds are classified as growing, dissipating, and quasi-stable. In comparison to the default ice nucleation scheme, the new scheme requires higher aerosol concentrations to maintain a quasi-stable cloud. The simulations suggest that in the temperature range of this specific case, mineral dust can only contribute to a minor part of the ice formation. The importance of ice nucleation active bacteria and possibly other ice formation modes than immersion freezing remains poorly constrained in the considered case, since knowledge on local variations in the emissions of ice nucleation active organic aerosols in the Arctic is scarce.

  3. Aerosol mixingstate, hygroscopic growth and cloud activation efficiency during MIRAGE 2006

    SciTech Connect

    Lance, Sara; Raatikainen, T.; Onasch, Timothy B.; Worsnop, Douglas R.; Yu, Xiao-Ying; Alexander, M. L.; Stolzenberg, Mark; McMurry, Peter; Smith, James N.; Nenes, Athanasios

    2013-05-15

    Observations of aerosol hygroscopic growth and CCN activation spectra for submicron particles are reported for the T1 ground site outside of Mexico City during the MIRAGE 2006 campaign. K¨ohler theory is used to evaluate the characteristic water uptake coefficient, k*, for the CCN active aerosol population using both size-resolved HTMDA and size-resolved CCNc measurements. Organic mass fractions, (forg), are evaluated from size-resolved aerosol mass spectrometer (AMS) measurements, from which kAMS is inferred and compared against k*. Strong diurnal profiles of aerosol water uptake parameters and aerosol composition are observed. We find that new particle formation (NPF) events are correlated with an increased k* and CCN-active fraction during the daytime, with greater impact on smaller particles. During NPF events, the number concentration of 40 nm particles acting as CCN can surpass by more than a factor of two the concentrations of 100 nm particles acting as CCN, at supersaturations of 0.51% +/- 0.06%. We also find that at 0600-0800 in the morning throughout the campaign, fresh traffic emissions result in substantial changes to the chemical distribution of the aerosol, with on average 65% externally-mixed fraction for 40 nm particles and 30% externally-mixed fraction for 100 nm particles, whereas at midday nearly all particles of both sizes can be described as “internally-mixed”. Average activation spectra and growth factor distributions are analyzed for different time periods characterizing the daytime (with and without NPF events), the early morning “rush hour”, and the entire campaign. We show that k* derived from CCNc measurements decreases as a function of size during all time periods, while the CCN-active fraction increases as a function of size. Size-resolved AMS measurements do not predict the observed trend for k* versus particle size, which can be attributed to unresolved mixing-state and the presence of refractory material not measured by the

  4. Aerosol mixing-state, hygroscopic growth and cloud activation efficiency during MIRAGE 2006

    NASA Astrophysics Data System (ADS)

    Lance, S.; Raatikainen, T.; Onasch, T.; Worsnop, D. R.; Yu, X.-Y.; Alexander, M. L.; Stolzenburg, M. R.; McMurry, P. H.; Smith, J. N.; Nenes, A.

    2012-06-01

    Observations of aerosol hygroscopic growth and CCN activation spectra for submicron particles are reported for the T1 ground site outside of Mexico City during the MIRAGE 2006 campaign. κ-Köhler theory is used to evaluate the characteristic water uptake coefficient, κ*, for the CCN active aerosol population using both size-resolved HTDMA and size-resolved CCNc measurements. Organic mass fractions, forg, are evaluated from size-resolved aerosol mass spectrometer (AMS) measurements, from which κAMS is inferred and compared against κ*. Strong diurnal profiles of aerosol water uptake parameters and aerosol composition are observed. We find that new particle formation (NPF) events are correlated with an increased κ* and CCN-active fraction during the daytime, with greater impact on smaller particles. During NPF events, the number concentration of 40 nm particles acting as CCN can surpass by more than a factor of two the concentrations of 100 nm particles acting as CCN, at supersaturations of 0.51% ± 0.06%. We also find that at 06:00-08:00 in the morning throughout the campaign, fresh traffic emissions result in substantial changes to the chemical distribution of the aerosol, with on average 65% externally-mixed fraction for 40 nm particles and 30% externally-mixed fraction for 100 nm particles, whereas at midday nearly all particles of both sizes can be described as internally-mixed. Average activation spectra and growth factor distributions are analyzed for different time periods characterizing the daytime (with and without NPF events), the early morning "rush hour", and the entire campaign. We show that κ* derived from CCNc measurements decreases as a function of size during all time periods, while the CCN-active fraction increases as a function of size. Size-resolved AMS measurements do not predict the observed trend for κ* versus particle size, which can be attributed to unresolved mixing-state and the presence of refractory material not measured by the AMS

  5. Determining the mutagenic activity of a tar, its vapors and aerosols.

    PubMed

    Penalva, J M; Chalabreysse, J; Archimbaud, M; Bourgineau, G

    1983-04-01

    The Ames test was performed on Salmonella typhimurium, strain TA98, TA100, TA1535, TA1537, TA1538, to evaluate the mutagenic potential of a tar as well as its vapors and aerosols emitted at 250, 350 and 550 degrees C. Two chemical procedures were used: extractions of aromatics for DMSO; elimination of acids, alcohols and phenols. Weak mutagenic activity was demonstrated at each temperature. Then, using only Salmonella typhimurium strains TA98 and TA100, a study was made on the effects of the mutagenic compounds, benzo[a]pyrene, 2-aminoanthracene, nitrofluorene, methyl methanesulfonate and on the vapors and aerosols emitted at 350 degrees C by road-coating tar. For promutagenic compounds, an enhancing effect was observed before an inhibition effect. For direct mutagenic compounds, only the inhibition effect appeared. The mutagenic and/or carcinogenic activity was usually tested on a pure isolated chemical compound. PMID:6339912

  6. Parameterization of daily solar global ultraviolet irradiation.

    PubMed

    Feister, U; Jäkel, E; Gericke, K

    2002-09-01

    Daily values of solar global ultraviolet (UV) B and UVA irradiation as well as erythemal irradiation have been parameterized to be estimated from pyranometer measurements of daily global and diffuse irradiation as well as from atmospheric column ozone. Data recorded at the Meteorological Observatory Potsdam (52 degrees N, 107 m asl) in Germany over the time period 1997-2000 have been used to derive sets of regression coefficients. The validation of the method against independent data sets of measured UV irradiation shows that the parameterization provides a gain of information for UVB, UVA and erythemal irradiation referring to their averages. A comparison between parameterized daily UV irradiation and independent values of UV irradiation measured at a mountain station in southern Germany (Meteorological Observatory Hohenpeissenberg at 48 degrees N, 977 m asl) indicates that the parameterization also holds even under completely different climatic conditions. On a long-term average (1953-2000), parameterized annual UV irradiation values are 15% and 21% higher for UVA and UVB, respectively, at Hohenpeissenberg than they are at Potsdam. Daily global and diffuse irradiation measured at 28 weather stations of the Deutscher Wetterdienst German Radiation Network and grid values of column ozone from the EPTOMS satellite experiment served as inputs to calculate the estimates of the spatial distribution of daily and annual values of UV irradiation across Germany. Using daily values of global and diffuse irradiation recorded at Potsdam since 1937 as well as atmospheric column ozone measured since 1964 at the same site, estimates of daily and annual UV irradiation have been derived for this site over the period from 1937 through 2000, which include the effects of changes in cloudiness, in aerosols and, at least for the period of ozone measurements from 1964 to 2000, in atmospheric ozone. It is shown that the extremely low ozone values observed mainly after the eruption of Mt

  7. Parameterization of heterogeneous ice nucleation on mineral dust particles: An application in a regional scale model

    NASA Astrophysics Data System (ADS)

    Niemand, M.; Vogel, B.; Vogel, H.; Connolly, P.; Klein, H.; Bingemer, H.; Hoose, C.; Moehler, O.; Leisner, T.

    2010-12-01

    In climate and weather models, the quantitative description of aerosol and cloud processes relies on simplified assumptions. This contributes major uncertainties to the prediction of global and regional climate change. The parameterization of heterogeneous ice nucleation is a step towards improving our current knowledge of the importance of the cloud ice phase in weather and climate models and can aid in the theoretical understanding of such processes. This contribution presents a new parameterization derived from a large number of experiments carried out at the aerosol and cloud chamber facility AIDA [1] of Karlsruhe Institute of Technology. AIDA is especially suitable to study ice nucleation processes at tropospheric and stratospheric cloud conditions covering a wide range of temperature and pressure. During pumping expansion, cooling rates between -0.3 and -5.0 K/min, equating to vertical wind velocities of 0.5 to 8 m/s, and a relative humidity range of up to more than 200% with respect to ice can be reached. The parameterization is valid for the temperature range -35°C to -15°C. In order to derive and test the parameterization a parameter called the ice-active surface site density was calculated for a number of different experiments with mineral dust acting as ice nuclei in the immersion and/or deposition mode. An exponential function was fitted to this data of ice-active surface site density vs. temperature. The curve fit was then used within the bin microphysical model ACPIM [2] to simulate the ice formation rates from the experiments. The major dust outbreak over the Sahara in May 2008 which was followed by a dust transport over the Mediterranean and Western Europe was simulated using the regional scale online coupled model system COSMO-ART (Vogel et al., 2009). Based on the model results the exponential curve fit was used to calculate the ice nuclei number concentration at Kleiner Feldberg (Germany). The results will be compared to measurements from

  8. Temporal variations of 7Be and 210Pb activity in aerosols at Xiamen, China

    NASA Astrophysics Data System (ADS)

    Huang, Dekun

    2016-04-01

    The radionuclides serve as powerful tracers to identify and quantify several atmospheric processes, such as source, transport and mixing of air masses, air masses exchanging between various atmospheric layers, residence times of atmospheric gasses and pollutants. 7Be and 210Pb activities in aerosols were measurement from October, 2013 to September, 2015 at Xiamen (24°26'7.44″N, 118°5'31.30″N) in South China. The activity of 7Be and 210Pb in aerosols from 2013 to 2015 in Xiamen ranged from 0.26 to 9.05 (mean:4.15) mBq m-3 and from 0.14 to 2.64 (mean:1.05) mBq m-3, respectively. The mean activity of 7Be was comparable with the activities of other places in the same latitude, while the mean activity of 210Pb was lower than the activity of the locations at high altitudes. The possible reason is that Xiamen is a coastal city located on southwest Pacific. The activities of 7Be and 210Pb had a commonly low value in summer (July-September) and a high value in autumn (October-December), it may be controlled by the rainfall. There is significant relationship between the monthly 210Pb activities and the concentration of PM 2.5 and PM 10. In contrast, monthly 7Be activities only show significant correlation with the concentration of PM 10, which implies that 7Be and 210Pb can be used to trace the different sources of the aerosols. And the dry 7Be depositional fluxes increased with latitude along the coast of China (R2=0.92, n=8).

  9. Activity prediction of substrates in NADH-dependent carbonyl reductase by docking requires catalytic constraints and charge parameterization of catalytic zinc environment.

    PubMed

    Dhoke, Gaurao V; Loderer, Christoph; Davari, Mehdi D; Ansorge-Schumacher, Marion; Schwaneberg, Ulrich; Bocola, Marco

    2015-11-01

    Molecular docking of substrates is more challenging compared to inhibitors as the reaction mechanism has to be considered. This becomes more pronounced for zinc-dependent enzymes since the coordination state of the catalytic zinc ion is of greater importance. In order to develop a predictive substrate docking protocol, we have performed molecular docking studies of diketone substrates using the catalytic state of carbonyl reductase 2 from Candida parapsilosis (CPCR2). Different docking protocols using two docking methods (AutoDock Vina and AutoDock4.2) with two different sets of atomic charges (AM1-BCC and HF-RESP) for catalytic zinc environment and substrates as well as two sets of vdW parameters for zinc ion were examined. We have selected the catalytic binding pose of each substrate by applying mechanism based distance criteria. To compare the performance of the docking protocols, the correlation plots for the binding energies of these catalytic poses were obtained against experimental Vmax values of the 11 diketone substrates for CPCR2. The best correlation of 0.73 was achieved with AutoDock4.2 while treating catalytic zinc ion in optimized non-bonded (NBopt) state with +1.01 charge on the zinc ion, compared to 0.36 in non-bonded (+2.00 charge on the zinc ion) state. These results indicate the importance of catalytic constraints and charge parameterization of catalytic zinc environment for the prediction of substrate activity in zinc-dependent enzymes by molecular docking. The developed predictive docking protocol described here is in principle generally applicable for the efficient in silico substrate spectra characterization of zinc-dependent ADH.

  10. Hygroscopicity Behavior, Activation Properties and Chemical Composition of Atmospheric Aerosol at a Background Site in the Megacity Region of Peking

    NASA Astrophysics Data System (ADS)

    Henning, Silvia; Nowak, Andreas; Mildenberger, Katrin; Göbel, Tina; Nekat, Bettina; van Pinxteren, Dominik; Herrmann, Hartmut; Zhao, Chunsheng; Wiedensohler, Alfred; Stratmann, Frank

    2010-05-01

    Large areas of China suffer from heavy air pollution (both gaseous and particulate) caused by strong economic growth in the last two decades. However, knowledge concerning the physical and chemical properties of the resulting aerosol particles populations, and their effects on the optical properties of the atmosphere, is still sparse. In the framework of the investigations presented here, comprehensive measurements concerning aerosol particle hygroscopicity, CCN ability, composition, and optical properties were performed. The investigations are part of the DFG-funded project HaChi (Haze in China) and are conducted in collaboration with the Peking University. A conclusive parameterization of aerosol hygroscopicity and activation data is aimed for, which will then be implemented in a meso-scale model to investigate aerosol-cloud-radiation and precipitation interactions. During two intensive measurements campaigns (March 2009 and July/ August 2009), in-situ aerosol measurements have been performed in an air-conditioned mobile laboratory next to the Wuqing Meteorological Station (39°23'8.53"N, 117°1'25.88"E), which is located between Bejing and Tijanjin and is thereby an ideal background site in a megacity region. The particle number size distribution (TDMPS), the particle optical properties (MAAP and nephelometer) and their hygroscopic properties at high RH (HH-TDMA, LACIS-mobile) were characterized as well as their cloud nucleating properties above supersaturation (DMT-CCNC). 24 h PM1 particle samples were continuously collected over the two campaigns in winter and summer using a DIGITEL high volume sampler (DHA-80). Additionally two 6h size-resolved samples (daytime and night-time) were collected each day applying an 11-stage Berner impactor. The size-selection of HH-TDMA, LACIS and the CCNC was synchronized with the Berner stages. Opening analysis of the winter campaign data showed that the HH-TDMA usually detected a hydrophobic and a hygroscopic mode, i.e., the

  11. The Two-Column Aerosol Project (TCAP) Science Plan

    SciTech Connect

    Berkowitz, CM; Berg, LK; Cziczo, DJ; Flynn, CJ; Kassianov, EI; Fast, JD; Rasch, PJ; Shilling, JE; Zaveri, RA; Zelenyuk, A; Ferrare, RA; Hostetler, CA; Cairns, B; Russell, PB; Ervens, B

    2011-07-27

    The Two-Column Aerosol Project (TCAP) field campaign will provide a detailed set of observations with which to (1) perform radiative and cloud condensation nuclei (CCN) closure studies, (2) evaluate a new retrieval algorithm for aerosol optical depth (AOD) in the presence of clouds using passive remote sensing, (3) extend a previously developed technique to investigate aerosol indirect effects, and (4) evaluate the performance of a detailed regional-scale model and a more parameterized global-scale model in simulating particle activation and AOD associated with the aging of anthropogenic aerosols. To meet these science objectives, the Atmospheric Radiation Measurement (ARM) Climate Research Facility will deploy the ARM Mobile Facility (AMF) and the Mobile Aerosol Observing System (MAOS) on Cape Cod, Massachusetts, for a 12-month period starting in the summer of 2012 in order to quantify aerosol properties, radiation, and cloud characteristics at a location subject to both clear and cloudy conditions, and clean and polluted conditions. These observations will be supplemented by two aircraft intensive observation periods (IOPs), one in the summer and a second in the winter. Each IOP will deploy one, and possibly two, aircraft depending on available resources. The first aircraft will be equipped with a suite of in situ instrumentation to provide measurements of aerosol optical properties, particle composition and direct-beam irradiance. The second aircraft will fly directly over the first and use a multi-wavelength high spectral resolution lidar (HSRL) and scanning polarimeter to provide continuous optical and cloud properties in the column below.

  12. The influence of marine microbial activities on aerosol production: A laboratory mesocosm study

    NASA Astrophysics Data System (ADS)

    Alpert, Peter A.; Kilthau, Wendy P.; Bothe, Dylan W.; Radway, JoAnn C.; Aller, Josephine Y.; Knopf, Daniel A.

    2015-09-01

    The oceans cover most of the Earth's surface, contain nearly half the total global primary biomass productivity, and are a major source of atmospheric aerosol particles. Here we experimentally investigate links between biological activity in seawater and sea spray aerosol (SSA) flux, a relationship of potential significance for organic aerosol loading and cloud formation over the oceans and thus for climate globally. Bubbles were generated in laboratory mesocosm experiments either by recirculating impinging water jets or glass frits. Experiments were conducted with Atlantic Ocean seawater collected off the eastern end of Long Island, NY, and with artificial seawater containing cultures of bacteria and phytoplankton Thalassiosira pseudonana, Emiliania huxleyi, and Nannochloris atomus. Changes in SSA size distributions occurred during all phases of bacterial and phytoplankton growth, as characterized by cell concentrations, dissolved organic carbon, total particulate carbon, and transparent exopolymer particles (gel-forming polysaccharides representing a major component of biogenic exudate material). Over a 2 week growth period, SSA particle concentrations increased by a factor of less than 2 when only bacteria were present and by a factor of about 3 when bacteria and phytoplankton were present. Production of jet-generated SSA particles of diameter less than 200 nm increased with time, while production of all particle diameters increased with time when frits were used. The implications of a marine biological activity dependent SSA flux are discussed.

  13. Droplet activation properties of organic aerosols observed at an urban site during CalNex-LA

    SciTech Connect

    Mei, Fan; Hayes, Patrick L.; Ortega, Amber; Taylor, Jonathan W.; Allan, James D.; Gilman, Jessica; Kuster, William; de Gouw, Joost; Jimenez, Jose L.; Wang, Jian

    2013-04-11

    Size-resolved cloud condensation nuclei (CCN) spectra and aerosol chemical composition were characterized at an urban supersite in Pasadena, California, from 15 May to 4 June 2010, during the CalNex campaign. The derived hygroscopicity (κCCN) of CCN-active particles with diameter between 97 and 165 nm ranged from 0.05 to 0.4. Diurnal variation showed a slight decrease of κCCN from 8:00 to 16:00 (from 0.24 to 0.20), which is attributed to increasing organics volume fraction resulted from secondary organic aerosol (SOA) formation. The derived hygroscopicity distribution and maximum activated fraction of the size selected particles were examined as functions of photochemical age. The result indicates that condensation of secondary species (e.g., SOA and sulfate) quickly converted hydrophobic particles to hydrophilic ones, and during daytime, nearly every particle became a CCN at ~0.4% in just a few hours. Based on κCCN and aerosol chemical composition, the organic hygroscopicity (κorg) was derived, and ranged from 0.05 to 0.23 with an average value of 0.13, consistent with the results from earlier studies. The derived κorg generally increased with the organic oxidation level, and most of the variation in κorg could be explained by the variation of the organic O : C atomic ratio alone. The least squares fit of the data yielded κorg = (0.83 ± 0.06) × (O:C) + (-0.19 ± 0.02). Compared to previous results based on CCN measurements of laboratory generated aerosols, κorg derived from measurements during the CalNex campaign exhibited stronger increase with O : C atomic ratio and therefore substantially higher values for organics with average O : C greater than 0.5.

  14. Sun-Sky Radiometer Synthesis of Interplay Between Aerosols and Monsoon Activity Over Pune, India

    NASA Astrophysics Data System (ADS)

    Devara, P. C. S.; Kumar, Sumit; Vijayakumar, K.; Pandithurai, G.

    2014-09-01

    Besides several thematic campaigns, utilizing a variety of platforms including satellites, ground-based networks have been established to improve our understanding of the role of aerosols in the changing monsoon climate. Two such widely known networks over the globe are `SKYNET' and `AERONET' with sun-sky radiometers as the principal equipment that characterizes aerosols and gases over different geographical locations under varied air mass conditions. Pune (18°43'N, 73°51'E, 559 m above mean sea level), a fast growing low-latitude, urban city in India, is one of the sites where Prede (POM-01L, SKYNET) and Cimel (CE-318, AERONET) Sun-sky radiometers have been in operation since 2004. These radiometers have been extensively used in several studies related to stand-alone and coupled aerosol-cloud-climate processes. The Prede instrument at this site is being augmented for the network of the Global Atmospheric Watch program of the World Meteorological Organization to facilitate data coordination through the World Data Center for Aerosols. The present study envisages understanding the response of atmospheric constituents, through simultaneous operation of the radiometers amongst others, for the rainfall activity over Pune during two contrasting monsoon years of 2008 (active, 98 % of long period average (LPA) rainfall over the whole country) and 2009 (weak, 78 % of LPA). The synthesis of data indicates that, apart from excellent agreement between the direct Sun observations, both radiometers capture well the monsoon features within the instrument density and efficacy of data retrieval algorithms involved. The meteorological fields from the ECMWF re-analysis and NOAA-HYSPLIT air-mass back-trajectory analysis during the study period have been utilized to explain the variations observed in the radiometer products.

  15. Parameterization of HONO sources in Mega-Cities

    NASA Astrophysics Data System (ADS)

    Li, Guohui; Zhang, Renyi; Tie, Xuxie; Molina, Luisa

    2013-04-01

    Nitrous acid (HONO) plays an important role in the photochemistry of the troposphere because the photolysis of HONO is a primary source of the hydroxyl radical (OH) in the early morning. However, the formation or sources of HONO are still poorly understood in the troposphere; hence the representation of the HONO sources in chemical transport models (CTMs) has lack comprehensive consideration. In the present study, the observed HONO, NOx, and aerosols at an urban supersite T0 during the MCMA-2006 field campaign in Mexico City are used to interpret the HONO formation in association with the suggested HONO sources from literature. The HONO source parameterizations are proposed and incorporated into the WRF-CHEM model. Homogeneous sources of HONO include the reaction of NO with OH and excited NO2 with H2O. Four HONO heterogeneous sources are considered: NO2 reaction with semivolatile organics, NO2 reaction with freshly emitted soot, NO2 reaction on aerosol and ground surfaces. Four cases are used in the present study to evaluate the proposed HONO parameterizations during four field campaigns in which HONO measurements are available, including MCMA-2003 and MCMA-2006 (Mexico City Metropolitan Area, Mexico), MIRAGE-2009 (Shanghai, China), and SHARP (Houston, USA). The WRF-CHEM model with the proposed HONO parameterizations performs moderately well in reproducing the observed diurnal variation of HONO concentrations, showing that the HONO parameterizations in the study are reasonable and potentially useful in improving the HONO simulation in CTMs.

  16. Parameterization of HONO sources in Mega-Cities

    NASA Astrophysics Data System (ADS)

    Li, G.; Zhang, R.; Tie, X.; Molina, L. T.

    2013-05-01

    Nitrous acid (HONO) plays an important role in the photochemistry of the troposphere because the photolysis of HONO is a primary source of the hydroxyl radical (OH) in the early morning. However, the formation or sources of HONO are still poorly understood in the troposphere and thence the representation of the HONO sources in chemical transport models (CTMs) is lack of comprehensive consideration. In the present study, the observed HONO, NOx, and aerosols at an urban supersite T0 during the MCMA-2006 field campaign in Mexico City are used to interpret the HONO formation in association with the suggested HONO sources from literature. The HONO source parameterizations are proposed and incorporated into the WRF-CHEM model. Homogeneous sources of HONO include the reaction of NO with OH and excited NO2 with H2O. Four HONO heterogeneous sources are considered: NO2 reaction with semivolatile organics, NO2 reaction with freshly emitted soot, NO2 reaction on aerosol and ground surfaces. Four cases are used in the present study to evaluate the proposed HONO parameterizations during four field campaigns in which HONO measurements are available, including MCMA-2003 and MCMA-2006 (Mexico City Metropolitan Area, Mexico), MIRAGE-2009 (Shanghai, China), and SHARP (Houston, USA). The WRF-CHEM model with the proposed HONO parameterizations performs moderately well in reproducing the observed diurnal variation of HONO concentrations, showing that the HONO parameterizations in the study are reasonable and potentially useful in improving the HONO simulation in CTMs.

  17. A Microfluidic Paper-Based Analytical Device (μPAD) for Aerosol Oxidative Activity

    PubMed Central

    Sameenoi, Yupaporn; Panymeesamer, Pantila; Supalakorn, Natcha; Koehler, Kirsten; Chailapakul, Orawon; Henry, Charles S.; Volckens, John

    2013-01-01

    Human exposure to particulate matter (PM) air pollution has been linked with respiratory, cardiovascular, and neurodegenerative diseases, in addition to various cancers. Consistent among all of these associations is the hypothesis that PM induces inflammation and oxidative stress in the affected tissue. Consequently, a variety of assays have been developed to quantify the oxidative activity of PM as a means to characterize its ability to induced oxidative stress. The vast majority of these assays rely on high-volume, fixed-location sampling methods due to limitations in assay sensitivity and detection limit. As a result, our understanding of how personal exposure contributes to the intake of oxidative air pollution is limited. To further this understanding, we present a microfluidic paper-based analytical device (μPAD) for measuring PM oxidative activity on filters collected by personal sampling. The μPAD is inexpensive to fabricate and provides fast and sensitive analysis of aerosol oxidative activity. The oxidative activity measurement is based on the dithiothreitol assay (DTT assay), uses colorimetric detection, and can be completed in the field within 30 min following sample collection. The μPAD assay was validated against the traditional DTT assay using 13 extracted aerosol samples including urban aerosols, biomass burning PM, cigarette smoke and incense smoke. The results showed no significant differences in DTT consumption rate measured by the two methods. To demonstrate the utility of the approach, personal samples were collected to estimate human exposures to PM from indoor air, outdoor air on a clean day, and outdoor air on a wildfire-impacted day in Fort Collins, CO. Filter samples collected on the wildfire day gave the highest oxidative activity on a mass normalized basis, whereas typical ambient background air showed the lowest oxidative activity. PMID:23227907

  18. On the Water Uptake and CCN Activation of Tropospheric Organic Aerosols

    NASA Astrophysics Data System (ADS)

    Rastak, Narges; Pajunoja, Aki; Acosta Navarro, Juan-Camilo; Leong, Yu Jun; Cerully, Kate M.; Nenes, Athanasios; Kirkevåg, Alf; Topping, David; Virtanen, Annele; Riipinen, Ilona

    2016-04-01

    Aerosol particles introduce high uncertainties to radiative climate forcing. If exposed to a given relative humidity (RH), aerosol particles containing soluble material can absorb water and grow in size (hygroscopic growth). If RH is increased further beyond supersaturation (RH >100%) the particles can act as cloud condensation nuclei (CCN). Aerosol particles interactions with water vapour determine to a large extent their influence on climate. Organic aerosols (OA) contribute a large fraction (20-90%) of atmospheric submicron particulate mass, on the other hand they often consist of thousands of compounds with different properties. One of these properties is solubility, which affects the hygroscopic growth and cloud condensation nucleus (CCN) activation of the organic particles. We investigate the hygroscopic behaviour of complex organic aerosols accounting for the distribution of solubilities present in these mixtures. We use the SPARC method to estimate the solubility distributions of isoprene (IP) and monoterpene (MT) SOA based on their chemical composition, as predicted by the Master Chemical Mechanism (MCM). Combining these solubility distributions with the adsorption theory along with the non-ideal behaviour of organic mixtures, we predict the expected hygroscopic growth factors (HGFs), CCN activation behaviour and the related hygroscopicity parameters kappa for these mixtures. The predictions are compared to laboratory measurements as well as field data from MT- and IP-dominated measurement sites. The predicted solubility distributions do a good job in explaining the water uptake of these two mixture types at high relative humidities (RH around 90%), as well as their CCN activation - including the potential differences between the kappa values derived from HGF vs. CCN data. At lower relative humidities, however, the observed water uptake is higher than predicted on solubility alone, particularly for the MT-derived SOA. The data from the low RHs are further

  19. Effects of aerosol sources and chemical compositions on cloud drop sizes and glaciation temperatures

    NASA Astrophysics Data System (ADS)

    Zipori, Assaf; Rosenfeld, Daniel; Tirosh, Ofir; Teutsch, Nadya; Erel, Yigal

    2015-09-01

    The effect of aerosols on cloud properties, such as its droplet sizes and its glaciation temperatures, depends on their compositions and concentrations. In order to examine these effects, we collected rain samples in northern Israel during five winters (2008-2011 and 2013) and determined their chemical composition, which was later used to identify the aerosols' sources. By combining the chemical data with satellite-retrieved cloud properties, we linked the aerosol types, sources, and concentrations with the cloud glaciation temperatures (Tg). The presence of dust increased Tg from -26°C to -12°C already at relatively low dust concentrations. This result is in agreement with the conventional wisdom that desert dust serves as good ice nuclei (INs). With higher dust concentrations, Tg saturated at -12°C, even though cloud droplet sizes decreased as a result of the cloud condensation nucleating (CCN) activity of the dust. Marine air masses also encouraged freezing, but in this case, freezing was enhanced by the larger cloud droplet sizes in the air masses (caused by low CCN concentrations) and not by IN concentrations or by aerosol type. An increased fraction of anthropogenic aerosols in marine air masses caused a decrease in Tg, indicating that these aerosols served as poor IN. Anthropogenic aerosols reduced cloud droplet sizes, which further decreased Tg. Our results could be useful in climate models for aerosol-cloud interactions, as we investigated the effects of aerosols of different sources on cloud properties. Such parameterization can simplify these models substantially.

  20. Parameterization of solar cells

    NASA Astrophysics Data System (ADS)

    Appelbaum, J.; Chait, A.; Thompson, D.

    1992-10-01

    The aggregation (sorting) of the individual solar cells into an array is commonly based on a single operating point on the current-voltage (I-V) characteristic curve. An alternative approach for cell performance prediction and cell screening is provided by modeling the cell using an equivalent electrical circuit, in which the parameters involved are related to the physical phenomena in the device. These analytical models may be represented by a double exponential I-V characteristic with seven parameters, by a double exponential model with five parameters, or by a single exponential equation with four or five parameters. In this article we address issues concerning methodologies for the determination of solar cell parameters based on measured data points of the I-V characteristic, and introduce a procedure for screening of solar cells for arrays. We show that common curve fitting techniques, e.g., least squares, may produce many combinations of parameter values while maintaining a good fit between the fitted and measured I-V characteristics of the cell. Therefore, techniques relying on curve fitting criteria alone cannot be directly used for cell parameterization. We propose a consistent procedure which takes into account the entire set of parameter values for a batch of cells. This procedure is based on a definition of a mean cell representing the batch, and takes into account the relative contribution of each parameter to the overall goodness of fit. The procedure is demonstrated on a batch of 50 silicon cells for Space Station Freedom.

  1. Parameterization of solar cells

    NASA Technical Reports Server (NTRS)

    Appelbaum, J.; Chait, A.; Thompson, D.

    1992-01-01

    The aggregation (sorting) of the individual solar cells into an array is commonly based on a single operating point on the current-voltage (I-V) characteristic curve. An alternative approach for cell performance prediction and cell screening is provided by modeling the cell using an equivalent electrical circuit, in which the parameters involved are related to the physical phenomena in the device. These analytical models may be represented by a double exponential I-V characteristic with seven parameters, by a double exponential model with five parameters, or by a single exponential equation with four or five parameters. In this article we address issues concerning methodologies for the determination of solar cell parameters based on measured data points of the I-V characteristic, and introduce a procedure for screening of solar cells for arrays. We show that common curve fitting techniques, e.g., least squares, may produce many combinations of parameter values while maintaining a good fit between the fitted and measured I-V characteristics of the cell. Therefore, techniques relying on curve fitting criteria alone cannot be directly used for cell parameterization. We propose a consistent procedure which takes into account the entire set of parameter values for a batch of cells. This procedure is based on a definition of a mean cell representing the batch, and takes into account the relative contribution of each parameter to the overall goodness of fit. The procedure is demonstrated on a batch of 50 silicon cells for Space Station Freedom.

  2. Effects of a polar stratosphere cloud parameterization on ozone depletion due to stratospheric aircraft in a two-dimensional model

    NASA Technical Reports Server (NTRS)

    Considine, David B.; Douglass, Anne R.; Jackman, Charles H.

    1994-01-01

    A parameterization of Type 1 and 2 polar stratospheric cloud (PSC) formation is presented which is appropriate for use in two-dimensional (2-D) photochemical models of the stratosphere. The calculations of PSC frequency of occurrence and surface area density uses climatological temperature probability distributions obtained from National Meteorological Center data to avoid using zonal mean temperatures, which are not good predictors of PSC behavior. The parameterization does not attempt to model the microphysics of PSCs. The parameterization predicts changes in PSC formation and heterogeneous processing due to perturbations of stratospheric trace constituents. It is therefore useful in assessing the potential effects of a fleet of stratospheric aircraft (high speed civil transports, or HSCTs) on stratospheric composition. the model calculated frequency of PSC occurrence agrees well with a climatology based on stratospheric aerosol measurement (SAM) 2 observations. PSCs are predicted to occur in the tropics. Their vertical range is narrow, however, and their impact on model O3 fields is small. When PSC and sulfate aerosol heterogeneous processes are included in the model calculations, the O3 change for 1980 - 1990 is in substantially better agreement with the total ozone mapping spectrometer (TOMS)-derived O3 trend than otherwise. The overall changes in model O3 response to standard HSCT perturbation scenarios produced by the parameterization are small and tend to decrease the model sensitivity to the HSCT perturbation. However, in the southern hemisphere spring a significant increase in O3 sensitivity to HSCT perturbations is found. At this location and time, increased PSC formation leads to increased levels of active chlorine, which produce the O3 decreases.

  3. Analysis of CCN activity of Remote and Combustion Aerosol over the South East Pacific during autumn 2008 and links to Sc cloud properties

    NASA Astrophysics Data System (ADS)

    Freitag, S.; Clarke, A. D.; Howell, S. G.; Twohy, C. H.; Snider, J. R.; Toohey, D. W.; Shank, L.; McNaughton, C. S.; Brekhovskikh, V.; Kapustin, V.

    2013-12-01

    The earth's most extensive Stratocumulus (Sc) deck, situated off the coast of Northern Chile and Southern Peru, strongly influences the radiation budget and climate over the South East Pacific (SEP) by enhancing solar reflection. This feature makes Sc clouds an important constituent for climate modeling, yet these clouds are poorly represented in models. A large uncertainty in understanding the variability in these low cloud fields arises from our deficit in understanding the role of aerosol. Hence, a major goal of the VOCALS (www.eol.ucar.edu/projects/vocals) campaign in 2008 was to further explore and assess interactions of natural and anthropogenic aerosol with Sc clouds in both the more polluted coastal environment and west of 80W where we encountered nearly pristine boundary layer clouds often exposed to cloud-top entrainment of pollution aerosol from the free troposphere. Extensive airborne measurements of size-resolved aerosol volatility and chemical composition collected aboard the NCAR C-130 were analyzed with an aerosol mass spectrometer (AMS) and a single particle soot photometer (SP2) to calculate aerosol hygroscopicity (κ) and predict cloud condensation nuclei (CCN) concentration for all observed air mass types above and below cloud utilizing estimated Sc cloud supersaturations deduced from cloud-processed aerosol size distribution information. The predicted CCN agree to within 10% to measured CCN. Results from this analysis are presented here and CCN variability observed along VOCALS flight tracks is discussed in conjunction with size-resolved cloud droplet information. This includes assessing the impact of aerosol perturbations on the shape of the cloud droplet size distribution parameterized in models and satellite algorithms such as cloud top effective radius retrievals. We will further discuss cloud droplet residual composition collected using a counterflow virtual impactor (CVI) and analyzed with the AMS and SP2. Size resolved variations in

  4. Integrated approach towards understanding interactions of mineral dust aerosol with warm clouds

    NASA Astrophysics Data System (ADS)

    Kumar, Prashant

    2011-12-01

    to biases as it generates a bimodal size distribution with a broad range of hygroscopicity. It is found that smaller particles generated in the more hygroscopic peak follow CCN activation by KT, while the larger peak is less hydrophilic with activation similar to dry generated dust that follow FHH-AT. Droplet activation kinetics measurements demonstrate that dry generated mineral aerosol display retarded activation kinetics with an equivalent water vapor uptake coefficient that is 30 - 80% lower relative to ammonium sulfate aerosol. Wet generated mineral aerosols, however, display similar activation kinetics to ammonium sulfate. These results suggest that at least a monolayer of water vapor (the rate-limiting step for adsorption) persists during the timescale of aerosol generation in the experiment, and questions the atmospheric relevance of studies on mineral aerosol generated from wet atomization method. A new parameterization of cloud droplet formation from insoluble dust CCN for regional and global climate models is also developed. The parameterization framework considers cloud droplet formation from dust CCN activating via FHH-AT, and soluble aerosol with activation described through KT. The parameterization is validated against a numerical parcel model, agreeing with predictions to within 10% (R2 ˜ 0.98). The potential role of dust GCCN activating by FHH-AT within warm stratocumulus and convective clouds is also evaluated. It is found that under pristine aerosol conditions, dust GCCN can act as collector drops with implications to dust-cloud-precipitation linkages. Biases introduced from describing dust GCCN activation by KT are also addressed. The results demonstrate that dust particles do not require deliquescent material to act as CCN in the atmosphere. Furthermore, the impact of dust particles as giant CCN on warm cloud and precipitation must be considered. Finally, the new parameterization of cloud droplet formation can be implemented in regional and

  5. A highly sensitive technique for detecting catalytically active nanoparticles against a background of general workplace aerosols

    NASA Astrophysics Data System (ADS)

    Neubauer, N.; Weis, F.; Binder, A.; Seipenbusch, M.; Kasper, G.

    2011-07-01

    A new measurement technique was studied using catalysis to specifically detect airborne nanoparticles in presence of background particles in the workplace air. Catalytically active nanoparticles produced by spark discharge were used as aerosol catalysts. According to these particles suitable catalytic test reactions were chosen and investigated by two different approaches: catalysis on airborne nanoparticles and catalysis on deposited nanoparticles. The results indicate that catalysis is applicable for the specific measurement of nanoparticles in the workplace air. Catalysis on airborne particles is suitable for the specific detection of very active nanoparticles, e.g. platinum or nickel, at high concentrations of about 107 #/cm3. The approach of catalysis on deposited particles is better suited for nanoparticle aerosols at low concentrations, for slow catalytic reactions or less active nanoparticles like iron oxide (Fe2O3). On the basis of the experimental results detection limits in the range of μg or even ng were calculated which assure the good potential of catalysis for the specific detection of nanoparticles in the workplace air based on their catalytic activity.

  6. Circular Polarimetry: Diagnostic of Magnetic Fields, Atmospheric Aerosols and Biologic Activity

    NASA Astrophysics Data System (ADS)

    Yanamandra-Fisher, P. A.

    2013-12-01

    The overarching goals for the remote sensing and robotic exploration of planetary systems are: (1) understanding the formation of planetary systems and their diversity; and (2) search for habitability. Our solar system is a dynamic laboratory with unique linear and circular polarimetric signatures of planets, satellites, comets, asteroids, dust, etc.. The study of both linear and circular polarization of a given system, therefore, provides insight into its origin and physical properties. Specifically, linear and circular polarimetric signatures of the object arise from different physical processes. Additionally, spectral dependence of polarization is important to separate the macroscopic (bulk) properties of the scattering medium from the microscopic (particulate) properties of the scattering medium. Linear polarization of reflected light by various solar system objects provides insight into the scattering characteristics of atmospheric aerosols and hazes; and surficial properties of atmosphereless bodies. Measurements of linear limb polarization characterizes the variation of aerosol properties across the planetary disk. Many optically active materials are anisotropic and so their scattering properties differ with the object's principal axes (such as dichroic or birefringent materials) and are crystalline in structure instead of amorphous, eg., the presence of olivines and silicates in cometary dust and circumstellar disks; Titan, etc.). Ices (water and other species) are abundant in the system indicated in their near-infrared spectra. Gas giants form outside the frost line (where ices condense), and their satellites and ring systems exhibit signature of water ice; clathrates, non-ices (Si, C, Fe) in their NIR spectra and spectral dependence of linear polarization. Circular polarization is diagnostic of magnetic fields, atmospheric aerosols and biologic activity. Aurorae occur in response to changing local magnetic fields (Earth, Jupiter, Ganymede, etc.). Biologic

  7. Conversion of Atmospheric Aerosol by Bacteria and Their Influence on Ice-Nucleation Activity

    NASA Astrophysics Data System (ADS)

    Kos, G.; Shawi, M.; Ariya, P. A.

    2004-05-01

    The presence of microorganisms such as bacteria and fungi in the boundary layer of the atmosphere has been established for some time. These species can also convert organic aerosol species (e.g. dicarboxylic acids), a transformation that was so far assumed to occur only via physico-chemical pathways. As a result, the ice nucleation activity of certain aerosol species can be altered by biochemical transformations including metabolite production and bacterial growth and these new species as well as the microorganisms themselves can act as ice nuclei. In this study we have used dicarboxylic acids (DCA) as model nutrients, which are commonly observed in the aerosol population of the boundary layer. Pseudomonas syringae and Erwinia herbicolae are two types of bacteria that have been found to possess ice nucleation ability, caused by lipoglycoprotein, which consists of a sequence of amino acids that favor the formation of ice. The main objective was to look into the conversion of DCA by bacterial species, their ice nucleating ability and the identification of metabolites from bacterial activity. Furthermore, the influence of different parameters on the ice nucleation of bacteria was investigated. A Freezing Nuclei apparatus was used in order to assess the freezing temperature of a population of small drops to study both homogenous and heterogeneous nucleation of different concentrations of malonic acid containing bacterial species. An acid concentration in the lower Fg/l-range was chosen, matching earlier observations in an urban environment. Other varied parameters include the pH and bacterial membrane shearing. All labware was sterilized prior to use and airtight containers minimized external contamination. Malonic acid concentration was determined by gas chromatography with mass spectrometric detection (GC-MS) after esterification with a mixture of borontrifluoride and 1-propanol, modified from Kawamura, 1991. Malonic acid and its metabolites were identified by

  8. Importance of aerosol composition and mixing state for cloud droplet activation in the high Arctic

    NASA Astrophysics Data System (ADS)

    Leck, C.; Svensson, E.

    2014-08-01

    Concentrations of cloud condensation nuclei (CCN) were measured throughout an expedition by icebreaker around the central Arctic Ocean, including a 3 week ice drift operation at 87° N, from 3 August to 9 September 2008. In agreement with previous observations in the area and season median daily CCN concentrations at 0.2% water vapor supersaturation were typically in the range of 15 to 30 cm-3, but concentrations varied by two to three orders of magnitude over the expedition and were occasionally below 1 cm-3. The CCN concentrations were highest near the ice edge and fell by a factor of three in the first 48 h of transport from the open sea into the pack ice region. For longer transport times they increased again indicating a local source over the pack ice, suggested to be polymer gels, via drops injected into the air by bubbles bursting on open leads. By assuming Köhler theory and simulating the cloud nucleation process using a Lagrangian adiabatic air parcel model that solves the kinetic formulation for condensation of water on size resolved aerosol particles we inferred the properties of the unexplained non-water soluble aerosol fraction that is necessary for reproducing the observed concentrations of CCN. We propose that the portion of the internally/externally mixed water insoluble particles was larger in the corresponding smaller aerosol sizes ranges. These particles were physically and chemically behaving as polymer gels: the interaction of the hydrophilic and hydrophobic entities on the structures of polymer gels during cloud droplet activation would at first only show a partial wetting character and only weak hygroscopic growth. Given time, a high CCN activation efficiency is achieved, which is promoted by the hydrophilicity or surface-active properties of the gels. Thus the result in this study argues for that the behavior of the high Arctic aerosol in CCN-counters operating at water vapor supersaturations > 0.4% (high relative humidities) may not be

  9. Activity and stability of yeast alcohol dehydrogenase (YADH) entrapped in aerosol OT reverse micelles.

    PubMed

    Sarcar, S; Jain, T K; Maitra, A

    1992-02-20

    The activity and stability of yeast alcohol dehydrogenase (YADH) entrapped in aerosol OT reverse micellar droplets have been investigated spectrophotometrically. Various physical parameters, e.g., water pool size, w(0), pH, and temperature, were optimized for YADH in water/AOT/isooctane reverse micelles. It was found that the enzyme exhibits maximum activity at w(0) = 28 and pH 8.1. It was more active in reverse micelles than in aqueous buffers at a particular temperature and was denatured at about 307 degrees C in both the systems. At a particular temperature YADH entrapped in reverse micelles was less stable than when it was dissolved in aqueous buffer.

  10. Discernible signals of aerosol effects on the diurnal, weekly and decadal variations in thunderstorm activities

    NASA Astrophysics Data System (ADS)

    Li, Z.

    2015-12-01

    Aerosol can affect atmospheric convection, cloud and precipitation in a variety of means by altering energy balance at the surface and in the atmospheric column, and by altering cloud micro- and macro-physical properties. The effects are often contingent upon meteorological variables and aerosol properties. By reducing surface energy budget, aerosol tends to suppress convection, but aerosol-induced heating in the lower atmosphere can destabilize the upper atmosphere and strengthen convection. Aerosol-induced altering cloud microphysics may also suppress or invigorate cloud development pending on various factors. In this talk, I will illustrate how aerosols likely contribute to the thunderstorm variability on three distinct time scales from diurnal, weekly to decadal and how different types of aerosols and varying meteorological conditions may affect with the observed trends. I will first demonstrate the opposite effects of conservative scattering and hygroscopic aerosols versus absorbing and hydrophobic aerosol on the long-term trends of thunderstorms. I will then illustrate that aerosol can have a discernible effect on the weekly cycle of thunderstorms and there is the dependence of the phase of the weekly cycle on aerosol types. Last, I will show how aerosol delays the occurrence of thunderstorms. Of course, the plausible connections are subject to various uncertainties that should be tackled with more rigorous modeling and extensive observation studies.

  11. Soot Aerosol Particles as Cloud Condensation Nuclei: from Ice Nucleation Activity to Ice Crystal Morphology

    NASA Astrophysics Data System (ADS)

    Pirim, Claire; Ikhenazene, Raouf; Ortega, Isamel Kenneth; Carpentier, Yvain; Focsa, Cristian; Chazallon, Bertrand; Ouf, François-Xavier

    2016-04-01

    Emissions of solid-state particles (soot) from engine exhausts due to incomplete fuel combustion is considered to influence ice and liquid water cloud droplet activation [1]. The activity of these aerosols would originate from their ability to be important centers of ice-particle nucleation, as they would promote ice formation above water homogeneous freezing point. Soot particles are reported to be generally worse ice nuclei than mineral dust because they activate nucleation at higher ice-supersaturations for deposition nucleation and at lower temperatures for immersion freezing than ratios usually expected for homogeneous nucleation [2]. In fact, there are still numerous opened questions as to whether and how soot's physico-chemical properties (structure, morphology and chemical composition) can influence their nucleation ability. Therefore, systematic investigations of soot aerosol nucleation activity via one specific nucleation mode, here deposition nucleation, combined with thorough structural and compositional analyzes are needed in order to establish any association between the particles' activity and their physico-chemical properties. In addition, since the morphology of the ice crystals can influence their radiative properties [3], we investigated their morphology as they grow over both soot and pristine substrates at different temperatures and humidity ratios. In the present work, Combustion Aerosol STandart soot samples were produced from propane using various experimental conditions. Their nucleation activity was studied in deposition mode (from water vapor), and monitored using a temperature-controlled reactor in which the sample's relative humidity is precisely measured with a cryo-hygrometer. Formation of water/ice onto the particles is followed both optically and spectroscopically, using a microscope coupled to a Raman spectrometer. Vibrational signatures of hydroxyls (O-H) emerge when the particle becomes hydrated and are used to characterize ice

  12. Global distribution and climate forcing of marine organic aerosol: 1. Model improvements and evaluation

    SciTech Connect

    Meskhidze, N.; Xu, J.; Gantt, Brett; Zhang, Yang; Nenes, Athanasios; Ghan, Steven J.; Liu, Xiaohong; Easter, Richard C.; Zaveri, Rahul A.

    2011-11-23

    Marine organic aerosol emissions have been implemented and evaluated within the National Center of Atmospheric Research (NCAR)'s Community Atmosphere Model (CAM5) with the Pacific Northwest National Laboratory's 7-mode Modal Aerosol Module (MAM-7). Emissions of marine primary organic aerosols (POA), phytoplanktonproduced isoprene- and monoterpenes-derived secondary organic aerosols (SOA) and methane sulfonate (MS{sup -}) are shown to affect surface concentrations of organic aerosols in remote marine regions. Global emissions of submicron marine POA is estimated to be 7.9 and 9.4 Tg yr{sup -1}, for the Gantt et al. (2011) and Vignati et al. (2010) emission parameterizations, respectively. Marine sources of SOA and particulate MS{sup -} (containing both sulfur and carbon atoms) contribute an additional 0.2 and 5.1 Tg yr{sup -1}, respectively. Widespread areas over productive waters of the Northern Atlantic, Northern Pacific, and the Southern Ocean show marine-source submicron organic aerosol surface concentrations of 100 ngm{sup -3}, with values up to 400 ngm{sup -3} over biologically productive areas. Comparison of long-term surface observations of water insoluble organic matter (WIOM) with POA concentrations from the two emission parameterizations shows that despite revealed discrepancies (often more than a factor of 2), both Gantt et al. (2011) and Vignati et al. (2010) formulations are able to capture the magnitude of marine organic aerosol concentrations, with the Gantt et al. (2011) parameterization attaining better seasonality. Model simulations show that the mixing state of the marine POA can impact the surface number concentration of cloud condensation nuclei (CCN). The largest increases (up to 20 %) in CCN (at a supersaturation (S) of 0.2 %) number concentration are obtained over biologically productive ocean waters when marine organic aerosol is assumed to be externally mixed with sea-salt. Assuming marine organics are internally-mixed with sea

  13. Long-term study of cloud condensation nuclei (CCN) activation of the atmospheric aerosol in Vienna

    NASA Astrophysics Data System (ADS)

    Burkart, J.; Steiner, G.; Reischl, G.; Hitzenberger, R.

    2011-10-01

    During a total of 11 months, cloud condensation nuclei (CCN at super-saturation S 0.5%) and condensation nuclei (CN) concentrations were measured in the urban background aerosol of Vienna, Austria. For several months, number size distributions between 13.22 nm and 929 nm were also measured with a scanning mobility particle spectrometer (SMPS). Activation ratios (i.e. CCN/CN ratios) were calculated and apparent activation diameters obtained by integrating the SMPS size distributions. Variations in all CCN parameters (concentration, activation ratio, apparent activation diameter) are quite large on timescales of days to weeks. Passages of fronts influenced CCN parameters. Concentrations decreased with the passage of a front. No significant differences were found for fronts from different sectors (for Vienna mainly north to west and south to east). CCN concentrations at 0.5% S ranged from 160 cm-3 to 3600 cm-3 with a campaign average of 820 cm-3. Activation ratios were quite low (0.02-0.47, average: 0.13) and comparable to activation ratios found in other polluted regions (e.g. Cubison et al., 2008). Apparent activation diameters were found to be much larger (campaign average: 169 nm, range: (69-370) nm) than activation diameters for single-salt particles (around 50 nm depending on the salt). Contrary to CN concentrations, which are influenced by source patterns, CCN concentrations did not exhibit distinct diurnal patterns. Activation ratios showed diurnal variations counter-current to the variations of CN concentrations.

  14. A Thermal Infrared Radiation Parameterization for Atmospheric Studies

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah; Suarez, Max J.; Liang, Xin-Zhong; Yan, Michael M.-H.; Cote, Charles (Technical Monitor)

    2001-01-01

    This technical memorandum documents the longwave radiation parameterization developed at the Climate and Radiation Branch, NASA Goddard Space Flight Center, for a wide variety of weather and climate applications. Based on the 1996-version of the Air Force Geophysical Laboratory HITRAN data, the parameterization includes the absorption due to major gaseous absorption (water vapor, CO2, O3) and most of the minor trace gases (N2O, CH4, CFCs), as well as clouds and aerosols. The thermal infrared spectrum is divided into nine bands. To achieve a high degree of accuracy and speed, various approaches of computing the transmission function are applied to different spectral bands and gases. The gaseous transmission function is computed either using the k-distribution method or the table look-up method. To include the effect of scattering due to clouds and aerosols, the optical thickness is scaled by the single-scattering albedo and asymmetry factor. The parameterization can accurately compute fluxes to within 1% of the high spectral-resolution line-by-line calculations. The cooling rate can be accurately computed in the region extending from the surface to the 0.01-hPa level.

  15. Detection and quantification of water-based aerosols using active open-path FTIR.

    PubMed

    Kira, Oz; Linker, Raphael; Dubowski, Yael

    2016-04-28

    Aerosols have a leading role in many eco-systems and knowledge of their properties is critical for many applications. This study suggests using active Open-Path Fourier Transform Infra-Red (OP-FTIR) spectroscopy for quantifying water droplets and solutes load in the atmosphere. The OP-FTIR was used to measure water droplets, with and without solutes, in a 20 m spray tunnel. Three sets of spraying experiments generated different hydrosols clouds: (1) tap water only, (2) aqueous ammonium sulfate (0.25-3.6%wt) and (3) aqueous ethylene glycol (0.47-2.38%wt). Experiment (1) yielded a linear relationship between the shift of the extinction spectrum baseline and the water load in the line-of-sight (LOS) (R(2) = 0.984). Experiment (2) also yielded a linear relationship between the integrated extinction in the range of 880-1150 cm(-1) and the ammonium sulfate load in the LOS (R(2) = 0.972). For the semi-volatile ethylene glycol (experiment 3), present in the gas and condense phases, quantification was much more complex and two spectral approaches were developed: (1) according to the linear relationship from the first experiment (determination error of 8%), and (2) inverse modeling (determination error of 57%). This work demonstrates the potential of the OP-FTIR for detecting clouds of water-based aerosols and for quantifying water droplets and solutes at relatively low concentrations.

  16. Detection and quantification of water-based aerosols using active open-path FTIR

    NASA Astrophysics Data System (ADS)

    Kira, Oz; Linker, Raphael; Dubowski, Yael

    2016-04-01

    Aerosols have a leading role in many eco-systems and knowledge of their properties is critical for many applications. This study suggests using active Open-Path Fourier Transform Infra-Red (OP-FTIR) spectroscopy for quantifying water droplets and solutes load in the atmosphere. The OP-FTIR was used to measure water droplets, with and without solutes, in a 20 m spray tunnel. Three sets of spraying experiments generated different hydrosols clouds: (1) tap water only, (2) aqueous ammonium sulfate (0.25–3.6%wt) and (3) aqueous ethylene glycol (0.47–2.38%wt). Experiment (1) yielded a linear relationship between the shift of the extinction spectrum baseline and the water load in the line-of-sight (LOS) (R2 = 0.984). Experiment (2) also yielded a linear relationship between the integrated extinction in the range of 880–1150 cm‑1 and the ammonium sulfate load in the LOS (R2 = 0.972). For the semi-volatile ethylene glycol (experiment 3), present in the gas and condense phases, quantification was much more complex and two spectral approaches were developed: (1) according to the linear relationship from the first experiment (determination error of 8%), and (2) inverse modeling (determination error of 57%). This work demonstrates the potential of the OP-FTIR for detecting clouds of water-based aerosols and for quantifying water droplets and solutes at relatively low concentrations.

  17. Detection of dust aerosol by combining CALIPSO active lidar and passive IIR measurements

    NASA Astrophysics Data System (ADS)

    Chen, B.; Huang, J.; Minnis, P.; Hu, Y.; Yi, Y.; Liu, Z.; Zhang, D.; Wang, X.

    2010-02-01

    The version 2 Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) dust layer detection method, which is based only on lidar measurements, misclassified about 43% dust layers (mainly dense dust layer) as cloud layers over the Taklamakan Desert. To address this problem, a new method was developed by combining the CALIPSO Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and passive Infrared Imaging Radiometer (IIR) measurements. This combined lidar and IR measurement (hereafter, CLIM) method uses the IIR tri-spectral IR brightness temperatures to discriminate between ice cloud and dense dust layers, and lidar measurements alone to detect thin dust and water cloud layers. The brightness temperature difference between 10.60 and 12.05 μm (BTD11-12) is typically negative for dense dust and generally positive for ice cloud, but it varies from negative to positive for thin dust layers, which the CALIPSO lidar correctly identifies. Results show that the CLIM method could significantly reduce misclassification rates to as low as ~7% for the active dust season of spring 2008 over the Taklamakan Desert. The CLIM method also revealed 18% more dust layers having greatly intensified backscatter between 1.8 and 4 km altitude over the source region compared to the CALIPSO version 2 data. These results allow a more accurate assessment of the effect of dust on climate.

  18. Detection of dust aerosol by combining CALIPSO active lidar and passive IIR measurements

    NASA Astrophysics Data System (ADS)

    Chen, B.; Huang, J.; Minnis, P.; Hu, Y.; Yi, Y.; Liu, Z.; Zhang, D.; Wang, X.

    2010-05-01

    The version 2 Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) dust layer detection method, which is based only on lidar measurements, misclassified about 43% dust layers (mainly dense dust layers) as cloud layers over the Taklamakan Desert. To address this problem, a new method was developed by combining the CALIPSO Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and passive Infrared Imaging Radiometer (IIR) measurements. This combined lidar and IR measurement (hereafter, CLIM) method uses the IIR tri-spectral IR brightness temperatures to discriminate between ice cloud and dense dust layers, and lidar measurements alone to detect thin dust and water cloud layers. The brightness temperature difference between 10.60 and 12.05 μm (BTD11-12) is typically negative for dense dust and generally positive for ice cloud, but it varies from negative to positive for thin dust layers, which the CALIPSO lidar correctly identifies. Results show that the CLIM method could significantly reduce misclassification rates to as low as ~7% for the active dust season of spring 2008 over the Taklamakan Desert. The CLIM method also revealed 18% more dust layers having greatly intensified backscatter between 1.8 and 4 km altitude over the source region compared to the CALIPSO version 2 data. These results allow a more accurate assessment of the effect of dust on climate.

  19. VEGF neutralizing aerosol therapy in primary pulmonary adenocarcinoma with K-ras activating-mutations.

    PubMed

    Hervé, Virginie; Rabbe, Nathalie; Guilleminault, Laurent; Paul, Flora; Schlick, Laurène; Azzopardi, Nicolas; Duruisseaux, Michael; Fouquenet, Delphine; Montharu, Jérôme; Redini, Françoise; Paintaud, Gilles; Lemarié, Etienne; Cadranel, Jacques; Wislez, Marie; Heuzé-Vourc'h, Nathalie

    2014-01-01

    K-ras mutations promote angiogenesis in lung cancer and contribute to the drug resistance of cancer cells. It is not clear whether K-ras mutated adenocarcinomas are sensitive to anti-angiogenic therapy with monoclonal antibodies (mAbs) that target vascular endothelial growth factor (VEGF). Anti-angiogenic mAbs are usually delivered systemically, but only a small proportion reaches the lung after intravenous injection. We investigated the relevance of a non-invasive pulmonary route for the delivery of anti-VEGF mAbs in the mouse K-ras(LA1) model. We found that pulmonary delivery of these mAbs significantly reduced the number of tumor lesions and inhibited malignant progression. The antitumor effect involves the VEGFR2-dependent inhibition of blood vessel growth, which impairs tumor proliferation. Pharmacokinetic analysis of aerosolized anti-VEGF showed its low rate of passage into the bloodstream, suggesting that this delivery route is associated with reduced systemic side effects. Our findings highlight the value of the aerosol route for administration of anti-angiogenic mAbs in pulmonary adenocarcinoma with K-ras activating-mutations. PMID:25484066

  20. Aerosol indirect effect on tropospheric ozone via lightning

    NASA Astrophysics Data System (ADS)

    Yuan, Tianle; Remer, Lorraine A.; Bian, Huisheng; Ziemke, Jerald R.; Albrecht, Rachel; Pickering, Kenneth E.; Oreopoulos, Lazaros; Goodman, Steven J.; Yu, Hongbin; Allen, Dale J.

    2012-09-01

    Tropospheric ozone (O3) is a pollutant and major greenhouse gas and its radiative forcing is still uncertain. Inadequate understanding of processes related to O3 production, in particular those natural ones such as lightning, contributes to this uncertainty. Here we demonstrate a new effect of aerosol particles on O3production by affecting lightning activity and lightning-generated NOx (LNOx). We find that lightning flash rate increases at a remarkable rate of 30 times or more per unit of aerosol optical depth. We provide observational evidence that indicates the observed increase in lightning activity is caused by the influx of aerosols from a volcano. Satellite data analyses show O3is increased as a result of aerosol-induced increase in lightning and LNOx, which is supported by modle simulations with prescribed lightning change. O3production increase from this aerosol-lightning-ozone link is concentrated in the upper troposphere, where O3 is most efficient as a greenhouse gas. In the face of anthropogenic aerosol increase our findings suggest that lightning activity, LNOx and O3, especially in the upper troposphere, have all increased substantially since preindustrial time due to the proposed aerosol-lightning-ozone link, which implies a stronger O3 historical radiative forcing. Aerosol forcing therefore has a warming component via its effect on O3 production and this component has mostly been ignored in previous studies of climate forcing related to O3and aerosols. Sensitivity simulations suggest that 4-8% increase of column tropospheric ozone, mainly in the tropics, is expected if aerosol-lighting-ozone link is parameterized, depending on the background emission scenario. We note, however, substantial uncertainties remain on the exact magnitude of aerosol effect on tropospheric O3 via lightning. The challenges for obtaining a quantitative global estimate of this effect are also discussed. Our results have significant implications for understanding past and

  1. Aerosol indirect effect on tropospheric ozone via lightning

    NASA Astrophysics Data System (ADS)

    Yuan, T.; Remer, L. A.; Bian, H.; Ziemke, J. R.; Albrecht, R. I.; Pickering, K. E.; Oreopoulos, L.; Goodman, S. J.; Yu, H.; Allen, D. J.

    2012-12-01

    Tropospheric ozone (O3) is a pollutant and major greenhouse gas and its radiative forcing is still uncertain. The unresolved difference between modeled and observed natural background O3 concentrations is a key source of the uncertainty. Here we demonstrate remarkable sensitivity of lightning activity to aerosol loading with lightning activity increasing more than 30 times per unit of aerosol optical depth over our study area. We provide observational evidence that indicates the observed increase in lightning activity is caused by the influx of aerosols from a volcano. Satellite data analyses suggest O3 is increased as a result of aerosol-induced increase in lightning and lightning produced NOx. Model simulations with prescribed lightning change corroborate the satellite data analysis. This aerosol-O3 connection is achieved via aerosol increasing lightning and thus lightning produced nitrogen oxides. This aerosol-lightning-ozone link provides a potential physical mechanism that may account for a part of the model-observation difference in background O3 concentration. More importantly, O3 production increase from this link is concentrated in the upper troposphere, where O3 is most efficient as a greenhouse gas. Both of these implications suggest a stronger O3 historical radiative forcing. This introduces a new pathway, through which increasing in aerosols from pre-industrial time to present day enhances tropospheric O3 production. Aerosol forcing thus has a warming component via its effect on O3 production. Sensitivity simulations suggest that 4-8% increase of tropospheric ozone, mainly in the tropics, is expected if aerosol-lighting-ozone link is parameterized, depending on the background emission scenario. We note, however, substantial uncertainties remain on the exact magnitude of aerosol effect on tropospheric O3 via lightning. The challenges for obtaining a quantitative global estimate of this effect are also discussed. Our results have significant implications

  2. Tropospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Buseck, P. R.; Schwartz, S. E.

    2003-12-01

    It is widely believed that "On a clear day you can see forever," as proclaimed in the 1965 Broadway musical of the same name. While an admittedly beautiful thought, we all know that this concept is only figurative. Aside from Earth's curvature and Rayleigh scattering by air molecules, aerosols - colloidal suspensions of solid or liquid particles in a gas - limit our vision. Even on the clearest day, there are billions of aerosol particles per cubic meter of air.Atmospheric aerosols are commonly referred to as smoke, dust, haze, and smog, terms that are loosely reflective of their origin and composition. Aerosol particles have arisen naturally for eons from sea spray, volcanic emissions, wind entrainment of mineral dust, wildfires, and gas-to-particle conversion of hydrocarbons from plants and dimethylsulfide from the oceans. However, over the industrial period, the natural background aerosol has been greatly augmented by anthropogenic contributions, i.e., those produced by human activities. One manifestation of this impact is reduced visibility (Figure 1). Thus, perhaps more than in other realms of geochemistry, when considering the composition of the troposphere one must consider the effects of these activities. The atmosphere has become a reservoir for vast quantities of anthropogenic emissions that exert important perturbations on it and on the planetary ecosystem in general. Consequently, much recent research focuses on the effects of human activities on the atmosphere and, through them, on the environment and Earth's climate. For these reasons consideration of the geochemistry of the atmosphere, and of atmospheric aerosols in particular, must include the effects of human activities. (201K)Figure 1. Impairment of visibility by aerosols. Photographs at Yosemite National Park, California, USA. (a) Low aerosol concentration (particulate matter of aerodynamic diameter less than 2.5 μm, PM2.5=0.3 μg m-3; particulate matter of aerodynamic diameter less than 10

  3. The role of dataset selection in cloud microphysics parameterization development

    NASA Astrophysics Data System (ADS)

    Kogan, Y. L.

    2009-12-01

    A number of cloud microphysical parameterizations have been developed during the last decade using various datasets of cloud drop spectra. These datasets can be obtained either from observations, artificially produced by some drop size spectra generator (e.g. by solving the coagulation equation under different input conditions), or obtained as output of LES model which can predict cloud drop spectra explicitly. Each of the methods has its deficiencies, for example in-situ aircraft observations being constrained to the flight path and the dependence of coagulation equation solutions on input conditions. The ultimate aim is to create a cloud drop spectra dataset that mimics realistically drop parameters in real clouds. These parameters are closely related to the distribution of thermodynamical conditions, which are difficult, if not impossible, to obtain a priori. Using LES model with explicit microphysics (SAMEX) we have demonstrated high sensitivity of cloud parameterizations to the choice of a dataset. We emphasize that the development of accurate parameterizations should require the use of a dynamically balanced cloud drop spectra dataset. The accuracy of conversion rates can be increased by scaling them with precipitation intensity. We also demonstrate that the accuracy of the saturation adjustment scheme employed in calculations of latent heat release can be increased by accounting for the aerosol load. Finally we show how to formulate the new saturation adjustment in the framework of a two-moment cloud physics parameterization.

  4. Use of active and passive ground based remote sensors to explore cloud droplet modifications in aerosol-cloud interactions

    NASA Astrophysics Data System (ADS)

    Han, Zaw Thet

    We explore the potential aerosol impact on cloud optical properties which is a strong modifier of climate forcing. Previous studies have shown that increased aerosol loading can affect the cloud optical properties such as cloud optical depth and cloud droplet effective radius in rural areas, particularly at the Atmospheric Radiation Measurement, Southern Great Plain site. In this study, we attempt to observe and quantify aerosol-cloud interaction over New York City, using a combination of passive and active radiometric sensors. In particular, we look for signatures of the Twomey indirect effect which states that the droplet size of water phase clouds will decrease with increasing aerosols. We find that under certain conditions, a strong signature is found between the cloud drop effective radius and extinction and this effect is in part due to vertical wind uptake. In demonstrating the Aerosol Cloud Interaction, we use multiple approaches. For example, we derive the integrated liquid water path using both a multiband neural network and dual channel approach and show general agreement between two methods while the DC approach seems more robust. We also find that these measurements are difficult and sensitive to the position of the aerosols relative to the cloud base. As a corollary, we explore whether near surface aerosol loading can effecting the cloud by using particulate matter (PM2.5) and find that the effects are too variable to be given any statistical weight. Finally, we explore the potential of modifying our approach to remove the noisy and difficult measurement of Raman LIDAR derived extinction with calibrated LIDAR backscatter. The results seem to show a general improvement in correlation and offer the possibility of increasing the number of cases observed.

  5. Selectivity Across the Interface: A Test of Surface Activity in the Composition of Organic-Enriched Aerosols from Bubble Bursting.

    PubMed

    Cochran, Richard E; Jayarathne, Thilina; Stone, Elizabeth A; Grassian, Vicki H

    2016-05-01

    Although theories have been developed that describe surface activity of organic molecules at the air-water interface, few studies have tested how surface activity impacts the selective transfer of molecules from solution phase into the aerosol phase during bubble bursting. The selective transfer of a series of organic compounds that differ in their solubility and surface activity from solution into the aerosol phase is quantified experimentally for the first time. Aerosol was produced from solutions containing salts and a series of linear carboxlyates (LCs) and dicarboxylates (LDCs) using a bubble bursting process. Surface activity of these molecules dominated the transport across the interface, with enrichment factors of the more surface-active C4-C8 LCs (55 ± 8) being greater than those of C4-C8 LDCs (5 ± 1). Trends in the estimated surface concentrations of LCs at the liquid-air interface agreed well with their relative concentrations in the aerosol phase. In addition, enrichment of LCs was followed by enrichment of calcium with respect to other inorganic cations and depletion of chloride and sulfate. PMID:27093579

  6. Summary of Cumulus Parameterization Workshop

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Starr, David OC.; Hou, Arthur; Newman, Paul; Sud, Yogesh

    2002-01-01

    A workshop on cumulus parameterization took place at the NASA Goddard Space Flight Center from December 3-5, 2001. The major objectives of this workshop were (1) to review the problem of representation of moist processes in large-scale models (mesoscale models, Numerical Weather Prediction models and Atmospheric General Circulation Models), (2) to review the state-of-the-art in cumulus parameterization schemes, and (3) to discuss the need for future research and applications. There were a total of 31 presentations and about 100 participants from the United States, Japan, the United Kingdom, France and South Korea. The specific presentations and discussions during the workshop are summarized in this paper.

  7. GFDL ARM Project Technical Report: Using ARM Observations to Evaluate Cloud and Convection Parameterizations & Cloud-Convection-Radiation Interactions in the GFDL Atmospheric General Circulation Model

    SciTech Connect

    V. Ramaswamy; L. J. Donner; J-C. Golaz; S. A. Klein

    2010-06-17

    This report briefly summarizes the progress made by ARM postdoctoral fellow, Yanluan Lin, at GFDL during the period from October 2008 to present. Several ARM datasets have been used for GFDL model evaluation, understanding, and improvement. This includes a new ice fall speed parameterization with riming impact and its test in GFDL AM3, evaluation of model cloud and radiation diurnal and seasonal variation using ARM CMBE data, model ice water content evaluation using ARM cirrus data, and coordination of the TWPICE global model intercomparison. The work illustrates the potential and importance of ARM data for GCM evaluation, understanding, and ultimately, improvement of GCM cloud and radiation parameterizations. Future work includes evaluation and improvement of the new dynamicsPDF cloud scheme and aerosol activation in the GFDL model.

  8. CCN activation and efficiency of nucleation and impaction removal process of biomass burning aerosols in Brazil: preliminary results.

    NASA Astrophysics Data System (ADS)

    Sánchez Gácita, Madeleine; Longo, Karla M.; Freitas, Saulo R.; Martin, Scot T.

    2015-04-01

    The biomass burning activity constitutes an important source of aerosols and trace gases to the atmosphere globally. In South America, during the dry season, aerosols prevenient from biomass burning are typically transported to long distances from its sources before being removed though contributing significantly to the aerosol budget on a continental scale. The uncertainties in the magnitude of the impacts on the hydrological cycle, the radiation budget and the biogeochemical cycles on a continental scale are still noteworthy. The still unknowns on the efficiency of biomass burning aerosol to act as cloud condensation nuclei (CCN) and the effectiveness of the nucleation and impaction scavenging mechanisms in removing them from the atmosphere contribute to such uncertainties. In the present work, the explicit modelling of the early stages of cloud development using a parcel model for the typical conditions of the dry season and dry-to-wet transition periods in Amazonia allowed an estimation of the efficiency of nucleation scavenging process and the ability of South American biomass burning aerosol to act as CCN. Additionally, the impaction scavenging was simulated for the same aerosol population following a method based on the widely used concept of the efficiency of collision between a raindrop and an aerosol particle. DMPS and H-TDMA data available in the literature for biomass burning aerosol population in the region indicated the presence of a nearly hydrophobic fraction (on average, with specific hygroscopic parameter κ=0.04, and relative abundance of 73 %) and nearly hygroscopic fraction (κ=0.13, 27 %), externally mixed. The hygroscopic parameters and relative abundances of each hygroscopic group, as well as the weighted average specific hygroscopic parameter for the entire population κ=0.06, were used in calculations of aerosol activation and population mass and number concentration scavenged by nucleation. Results from both groups of simulations are

  9. Parameterization of Solar Global Uv Irradiation

    NASA Astrophysics Data System (ADS)

    Feister, U.; Jaekel, E.; Gericke, K.

    Daily doses of solar global UV-B, UV-A, and erythemal irradiation have been param- eterized to be calculated from pyranometer data of global and diffuse irradiation as well as from atmospheric column ozone measured at Potsdam (52 N, 107 m asl). The method has been validated against independent data of measured UV irradiation. A gain of information is provided by use of the parameterization for the three UV compo- nents (UV-B, UV-A and erythemal) referring to average values of UV irradiation. Ap- plying the method to UV irradiation measured at the mountain site Hohenpeissenberg (48 N, 977 m asl) shows that the parameterization even holds under completely differ- ent climatic conditions. On a long-term average (1953 - 2000), parameterized annual UV irradiation values are by 15 % (UV-A) and 21 % (UV-B), respectively, higher at Hohenpeissenberg, than they are at Potsdam. Using measured input data from 27 Ger- man weather stations, the method has been also applied to estimate the spatial distribu- tion of UV irradiation across Germany. Daily global and diffuse irradiation measured at Potsdam (1937 -2000) as well as atmospheric column ozone measured at Potsdam between1964 - 2000 have been used to derive long-term estimates of daily and annual totals of UV irradiation that include the effects of changes in cloudiness, in aerosols and, at least for the period 1964 to 2000, also in atmospheric ozone. It is shown that the extremely low ozone values observed mainly after the volcanic eruptions of Mt. Pinatubo in 1991 have substantially enhanced UV-B irradiation in the first half of the 90ies of the last century. The non-linear long-term changes between 1968 and 2000 amount to +4% ...+5% for annual global and UV-A irradiation mainly due to changing cloudiness, and +14% ... +15% for UV-B and erythemal irradiation due to both chang- ing cloudiness and decreasing column ozone. Estimates of long-term changes in UV irradiation derived from data measured at other German sites are

  10. RACORO aerosol data processing

    SciTech Connect

    Elisabeth Andrews

    2011-10-31

    The RACORO aerosol data (cloud condensation nuclei (CCN), condensation nuclei (CN) and aerosol size distributions) need further processing to be useful for model evaluation (e.g., GCM droplet nucleation parameterizations) and other investigations. These tasks include: (1) Identification and flagging of 'splash' contaminated Twin Otter aerosol data. (2) Calculation of actual supersaturation (SS) values in the two CCN columns flown on the Twin Otter. (3) Interpolation of CCN spectra from SGP and Twin Otter to 0.2% SS. (4) Process data for spatial variability studies. (5) Provide calculated light scattering from measured aerosol size distributions. Below we first briefly describe the measurements and then describe the results of several data processing tasks that which have been completed, paving the way for the scientific analyses for which the campaign was designed. The end result of this research will be several aerosol data sets which can be used to achieve some of the goals of the RACORO mission including the enhanced understanding of cloud-aerosol interactions and improved cloud simulations in climate models.

  11. Assessing aerosol indirect effect through ice clouds in CAM5

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Liu, Xiaohong; Yoon, Jin-Ho; Wang, Minghuai; Comstock, Jennifer M.; Barahona, Donifan; Kooperman, Gabriel

    2013-05-01

    Ice clouds play an important role in regulating the Earth's radiative budget and influencing the hydrological cycle. Aerosols can act as solution droplets or ice nuclei for ice crystal formation, thus affecting the physical properties of ice clouds. Because the related dynamical and microphysical processes happen at very small spatial and temporal scales, it is a great challenge to accurately represent them in global climate models. Consequently, the aerosol indirect effect through ice clouds (ice AIE) estimated by global climate models is associated with large uncertainties. In order to better understand these processes and improve ice cloud parameterization in the Community Atmospheric Model, version 5 (CAM5), we analyze in-situ measurements from various research campaigns, and use the derived statistical information to evaluate and constrain the model [1]. We also make use of new model capabilities (prescribed aerosols and nudging) to estimate the aerosol indirect effect through ice clouds, and quantify the uncertainties associated with ice nucleation processes. In this study, a new approach is applied to separate the impact of aerosols on warm and cold clouds by using the prescribed-aerosol capability in CAM5 [2]. This capability allows a single simulation to simultaneously include up to three aerosol fields: online calculated, as well as prescribed pre-industrial (PI) and present-day conditions (PD). In a set of sensitivity simulations, we use the same aerosol fields to drive droplet activation in warm clouds, and different (PD and PI) conditions for different components of the ice nucleation parameterization in pure ice clouds, so as to investigate various ice nucleation mechanisms in an isolated manner. We also applied nudging in our simulations, which helps to increase the signal-to-noise ratio in much shorter simulation period [3] and isolate the impact of aerosols on ice clouds from other factors, such as temperature and relative humidity change. The

  12. Ice nucleation by soil dust compared to desert dust aerosols

    NASA Astrophysics Data System (ADS)

    Moehler, O.; Steinke, I.; Ullrich, R.; Höhler, K.; Schiebel, T.; Hoose, C.; Funk, R.

    2015-12-01

    A minor fraction of atmospheric aerosol particles, so-called ice-nucleating particles (INPs), initiates the formation of the ice phase in tropospheric clouds and thereby markedly influences the Earth's weather and climate systems. Whether an aerosol particle acts as an INP depends on its size, morphology and chemical compositions. The INP fraction of certain aerosol types also strongly depends on the temperature and the relative humidity. Because both desert dust and soil dust aerosols typically comprise a variety of different particles, it is difficult to assess and predict their contribution to the atmospheric INP abundance. This requires both accurate modelling of the sources and atmospheric distribution of atmospheric dust components and detailed investigations of their ice nucleation activities. The latter can be achieved in laboratory experiments and parameterized for use in weather and climate models as a function of temperature and particle surface area, a parameter called ice-nucleation active site (INAS) density. Concerning ice nucleation activity studies, the soil dust is of particular interest because it contains a significant fraction of organics and biological components, both with the potential for contributing to the atmospheric INP abundance at relatively high temperatures compared to mineral components. First laboratory ice nucleation experiments with a few soil dust samples indicated their INP fraction to be comparable or slightly enhanced to that of desert dust. We have used the AIDA (Aerosol Interaction and Dynamics in the Atmosphere) cloud simulation chamber to study the immersion freezing ability of four different arable soil dusts, sampled in Germany, China and Argentina. For temperatures higher than about -20°C, we found the INP fraction of aerosols generated from these samples by a dry dispersion technique to be significantly higher compared to various desert dust aerosols also investigated in AIDA experiments. In this contribution, we

  13. A wave roughness Reynolds number parameterization of the sea spray source flux

    NASA Astrophysics Data System (ADS)

    Norris, Sarah J.; Brooks, Ian M.; Salisbury, Dominic J.

    2013-08-01

    of the sea spray aerosol source flux are derived as functions of wave roughness Reynolds numbers, RHa and RHw, for particles with radii between 0.176 and 6.61 µm at 80% relative humidity. These source functions account for up to twice the variance in the observations than does wind speed alone. This is the first such direct demonstration of the impact of wave state on the variability of sea spray aerosol production. Global European Centre for Medium-Range Weather Forecasts operational mode fields are used to drive the parameterizations. The source flux from the RH parameterizations varies from approximately 0.1 to 3 (RHa) and 5 (RHw) times that from a wind speed parameterization, derived from the same measurements, where the wave state is substantially underdeveloped or overdeveloped, respectively, compared to the equilibrium wave state at the local wind speed.

  14. New particle-dependent parameterizations of heterogeneous freezing processes: sensitivity studies of convective clouds with an air parcel model

    NASA Astrophysics Data System (ADS)

    Diehl, K.; Mitra, S. K.

    2015-11-01

    Based on the outcome of laboratory results, new particle-dependent parameterizations of heterogeneous freezing were derived and used to improve and extend a two-dimensional spectral microphysics scheme. They include (1) a particle-type-dependent parameterization of immersion freezing using the numbers of active sites per mass, (2) a particle-type and size-resolved parameterization of contact freezing, and (3) a particle-type-dependent description of deposition freezing. The modified microphysical scheme was embedded in an adiabatic air parcel model with entrainment. Sensitivity studies were performed to simulate convective situations and to investigate the impact of ice nuclei concentrations and types on ice formation. As a central diagnostic parameter, the ice water fraction (IWF) was selected, which is the relation of the ice water content to the total amount of water in the condensed form. The following parameters were varied: initial aerosol particle number size distributions, types of ice nucleating particles, final temperature, and the fractions of potential ice nucleating particles. Single and coupled freezing processes were investigated. The results show that immersion freezing seems to be the most efficient process. Contact freezing is constrained by the collision kernel between supercooled drops and potential ice nucleating particles. The importance of deposition freezing lies in secondary ice formation; i.e., small ice particles produced by deposition nucleation trigger the freezing of supercooled drops by collisions. Thus, a broader ice particle spectrum is generated than that by immersion and contact freezing. During coupled immersion-contact and contact-deposition freezing no competition was observed, and both processes contribute to cloud ice formation but do not impede each other. As already suggested in the literature, mineral dust particles seem to be the most important ice nucleating particles. Biological particles are probably not involved in

  15. Parameterization of cloud glaciation by atmospheric dust

    NASA Astrophysics Data System (ADS)

    Nickovic, Slobodan; Cvetkovic, Bojan; Madonna, Fabio; Pejanovic, Goran; Petkovic, Slavko

    2016-04-01

    The exponential growth of research interest on ice nucleation (IN) is motivated, inter alias, by needs to improve generally unsatisfactory representation of cold cloud formation in atmospheric models, and therefore to increase the accuracy of weather and climate predictions, including better forecasting of precipitation. Research shows that mineral dust significantly contributes to cloud ice nucleation. Samples of residual particles in cloud ice crystals collected by aircraft measurements performed in the upper tropopause of regions distant from desert sources indicate that dust particles dominate over other known ice nuclei such as soot and biological particles. In the nucleation process, dust chemical aging had minor effects. The observational evidence on IN processes has substantially improved over the last decade and clearly shows that there is a significant correlation between IN concentrations and the concentrations of coarser aerosol at a given temperature and moisture. Most recently, due to recognition of the dominant role of dust as ice nuclei, parameterizations for immersion and deposition icing specifically due to dust have been developed. Based on these achievements, we have developed a real-time forecasting coupled atmosphere-dust modelling system capable to operationally predict occurrence of cold clouds generated by dust. We have been thoroughly validated model simulations against available remote sensing observations. We have used the CNR-IMAA Potenza lidar and cloud radar observations to explore the model capability to represent vertical features of the cloud and aerosol vertical profiles. We also utilized the MSG-SEVIRI and MODIS satellite data to examine the accuracy of the simulated horizontal distribution of cold clouds. Based on the obtained encouraging verification scores, operational experimental prediction of ice clouds nucleated by dust has been introduced in the Serbian Hydrometeorological Service as a public available product.

  16. Long-term study of cloud condensation nuclei (CCN) activation of the atmospheric aerosol in Vienna.

    PubMed

    Burkart, J; Steiner, G; Reischl, G; Hitzenberger, R

    2011-10-01

    During a total of 11 months, cloud condensation nuclei (CCN at super-saturation S 0.5%) and condensation nuclei (CN) concentrations were measured in the urban background aerosol of Vienna, Austria. For several months, number size distributions between 13.22 nm and 929 nm were also measured with a scanning mobility particle spectrometer (SMPS). Activation ratios (i.e. CCN/CN ratios) were calculated and apparent activation diameters obtained by integrating the SMPS size distributions. Variations in all CCN parameters (concentration, activation ratio, apparent activation diameter) are quite large on timescales of days to weeks. Passages of fronts influenced CCN parameters. Concentrations decreased with the passage of a front. No significant differences were found for fronts from different sectors (for Vienna mainly north to west and south to east). CCN concentrations at 0.5% S ranged from 160 cm(-3) to 3600 cm(-3) with a campaign average of 820 cm(-3). Activation ratios were quite low (0.02-0.47, average: 0.13) and comparable to activation ratios found in other polluted regions (e.g. Cubison et al., 2008). Apparent activation diameters were found to be much larger (campaign average: 169 nm, range: (69-370) nm) than activation diameters for single-salt particles (around 50 nm depending on the salt). Contrary to CN concentrations, which are influenced by source patterns, CCN concentrations did not exhibit distinct diurnal patterns. Activation ratios showed diurnal variations counter-current to the variations of CN concentrations.

  17. Effects of surface-active organic matter on carbon dioxide nucleation in atmospheric wet aerosols: a molecular dynamics study.

    PubMed

    Daskalakis, Vangelis; Charalambous, Fevronia; Panagiotou, Fostira; Nearchou, Irene

    2014-11-21

    Organic matter (OM) uptake in cloud droplets produces water-soluble secondary organic aerosols (SOA) via aqueous chemistry. These play a significant role in aerosol properties. We report the effects of OM uptake in wet aerosols, in terms of the dissolved-to-gas carbon dioxide nucleation using molecular dynamics (MD) simulations. Carbon dioxide has been implicated in the natural rainwater as well as seawater acidity. Variability of the cloud and raindrop pH is assumed in space and time, as regional emissions, local human activities and geophysical characteristics differ. Rain scavenging of inorganic SOx, NOx and NH3 plays a major role in rain acidity in terms of acid-base activity, however carbon dioxide solubility also remains a key parameter. Based on the MD simulations we propose that the presence of surface-active OM promotes the dissolved-to-gas carbon dioxide nucleation in wet aerosols, even at low temperatures, strongly decreasing carbon dioxide solubility. A discussion is made on the role of OM in controlling the pH of a cloud or raindrop, as a consequence, without involving OM ionization equilibrium. The results are compared with experimental and computational studies in the literature. PMID:25272147

  18. Effects of surface-active organic matter on carbon dioxide nucleation in atmospheric wet aerosols: a molecular dynamics study.

    PubMed

    Daskalakis, Vangelis; Charalambous, Fevronia; Panagiotou, Fostira; Nearchou, Irene

    2014-11-21

    Organic matter (OM) uptake in cloud droplets produces water-soluble secondary organic aerosols (SOA) via aqueous chemistry. These play a significant role in aerosol properties. We report the effects of OM uptake in wet aerosols, in terms of the dissolved-to-gas carbon dioxide nucleation using molecular dynamics (MD) simulations. Carbon dioxide has been implicated in the natural rainwater as well as seawater acidity. Variability of the cloud and raindrop pH is assumed in space and time, as regional emissions, local human activities and geophysical characteristics differ. Rain scavenging of inorganic SOx, NOx and NH3 plays a major role in rain acidity in terms of acid-base activity, however carbon dioxide solubility also remains a key parameter. Based on the MD simulations we propose that the presence of surface-active OM promotes the dissolved-to-gas carbon dioxide nucleation in wet aerosols, even at low temperatures, strongly decreasing carbon dioxide solubility. A discussion is made on the role of OM in controlling the pH of a cloud or raindrop, as a consequence, without involving OM ionization equilibrium. The results are compared with experimental and computational studies in the literature.

  19. Aqueous aerosol SOA formation: impact on aerosol physical properties.

    PubMed

    Woo, Joseph L; Kim, Derek D; Schwier, Allison N; Li, Ruizhi; McNeill, V Faye

    2013-01-01

    Organic chemistry in aerosol water has recently been recognized as a potentially important source of secondary organic aerosol (SOA) material. This SOA material may be surface-active, therefore potentially affecting aerosol heterogeneous activity, ice nucleation, and CCN activity. Aqueous aerosol chemistry has also been shown to be a potential source of light-absorbing products ("brown carbon"). We present results on the formation of secondary organic aerosol material in aerosol water and the associated changes in aerosol physical properties from GAMMA (Gas-Aerosol Model for Mechanism Analysis), a photochemical box model with coupled gas and detailed aqueous aerosol chemistry. The detailed aerosol composition output from GAMMA was coupled with two recently developed modules for predicting a) aerosol surface tension and b) the UV-Vis absorption spectrum of the aerosol, based on our previous laboratory observations. The simulation results suggest that the formation of oligomers and organic acids in bulk aerosol water is unlikely to perturb aerosol surface tension significantly. Isoprene-derived organosulfates are formed in high concentrations in acidic aerosols under low-NO(x) conditions, but more experimental data are needed before the potential impact of these species on aerosol surface tension may be evaluated. Adsorption of surfactants from the gas phase may further suppress aerosol surface tension. Light absorption by aqueous aerosol SOA material is driven by dark glyoxal chemistry and is highest under high-NO(x) conditions, at high relative humidity, in the early morning hours. The wavelength dependence of the predicted absorption spectra is comparable to field observations and the predicted mass absorption efficiencies suggest that aqueous aerosol chemistry can be a significant source of aerosol brown carbon under urban conditions. PMID:24601011

  20. Detection and quantification of water-based aerosols using active open-path FTIR

    PubMed Central

    Kira, Oz; Linker, Raphael; Dubowski, Yael

    2016-01-01

    Aerosols have a leading role in many eco-systems and knowledge of their properties is critical for many applications. This study suggests using active Open-Path Fourier Transform Infra-Red (OP-FTIR) spectroscopy for quantifying water droplets and solutes load in the atmosphere. The OP-FTIR was used to measure water droplets, with and without solutes, in a 20 m spray tunnel. Three sets of spraying experiments generated different hydrosols clouds: (1) tap water only, (2) aqueous ammonium sulfate (0.25–3.6%wt) and (3) aqueous ethylene glycol (0.47–2.38%wt). Experiment (1) yielded a linear relationship between the shift of the extinction spectrum baseline and the water load in the line-of-sight (LOS) (R2 = 0.984). Experiment (2) also yielded a linear relationship between the integrated extinction in the range of 880–1150 cm−1 and the ammonium sulfate load in the LOS (R2 = 0.972). For the semi-volatile ethylene glycol (experiment 3), present in the gas and condense phases, quantification was much more complex and two spectral approaches were developed: (1) according to the linear relationship from the first experiment (determination error of 8%), and (2) inverse modeling (determination error of 57%). This work demonstrates the potential of the OP-FTIR for detecting clouds of water-based aerosols and for quantifying water droplets and solutes at relatively low concentrations. PMID:27121498

  1. Performance of McRAS-AC in the GEOS-5 AGCM: Part 1, Aerosol-Activated Cloud Microphysics, Precipitation, Radiative Effects, and Circulation

    NASA Technical Reports Server (NTRS)

    Sud, Y. C.; Lee, D.; Oreopoulos, L.; Barahona, D.; Nenes, A.; Suarez, M. J.

    2012-01-01

    A revised version of the Microphysics of clouds with Relaxed Arakawa-Schubert and Aerosol-Cloud interaction (McRAS-AC), including, among others, the Barahona and Nenes ice nucleation parameterization, is implemented in the GEOS-5 AGCM. Various fields from a 10-year long integration of the AGCM with McRAS-AC were compared with their counterparts from an integration of the baseline GEOS-5 AGCM, and with satellite data as observations. Generally using McRAS-AC reduced biases in cloud fields and cloud radiative effects are much better over most of the regions of the Earth. Two weaknesses are identified in the McRAS-AC runs, namely, too few cloud particles around 40S-60S, and too high cloud water path during northern hemisphere summer over the Gulf Stream and North Pacific. Sensitivity analyses showed that these biases potentially originated from biases in the aerosol input. The first bias is largely eliminated in a sensitivity test using 50% smaller aerosol particles, while the second bias is much reduced when interactive aerosol chemistry was turned on. The main drawback of McRAS-AC is dearth of low-level marine stratus clouds, probably due to lack of dry-convection, not yet implemented into the cloud scheme. Despite these biases, McRAS-AC does simulate realistic clouds and their optical properties that can improve with better aerosol-input and thereby has the potential to be a valuable tool for climate modeling research because of its aerosol indirect effect simulation capabilities involving prediction of cloud particle number concentration and effective particle size for both convective and stratiform clouds is quite realistic.

  2. Spectroscopic investigations of organic aerosol and its reaction with halogens, released by sea-salt activation

    NASA Astrophysics Data System (ADS)

    Ofner, J.; Zetzsch, C.

    2009-04-01

    The release of reactive halogen species from sea-salt aerosol offers a class of reactants for heterogeneous reactions of utmost importance. These heterogeneous reactions have been overlooked so far, although they may occur with internal and external mixtures of sea-salt aerosol and organic aerosol or organic matter. Such reactions might constitute sources of gaseous organohalogen compounds or halogenated organic aerosol in the atmospheric boundary layer. Infrared and UV/VIS spectroscopy provide an insight into chemical processes at reactive sites of the organic phase on a molecular level. Model studies of heterogeneous reactions of halogens with different kinds of (secondary) organic aerosols and organic matter were performed using a 700L smog chamber with a solar simulator. The model compounds alpha-pinene, catechol and humic acid have been chosen as precursors/material for the condensed, organic phase of the aerosol. After formation of the secondary organic aerosol or preparation of the organic material and the sea-salt solution the reaction was carried out using molecular chlorine and bromine in the presence of simulated sunlight. Chemical transformation of the organic material was studied using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) on a ZnSe crystal and diffuse reflectance UV/VIS spectroscopy. An electrostatic precipitator was developed to deposit the aerosol particles on the ATR crystal as a thin film. On the other hand, longpath-FTIR spectroscopy with a 40m White-cell allows us to monitor both the condensed and gas phase of the aerosol in situ in the smog chamber directly. These spectroscopic techniques enable us to characterize different organic aerosol particles and their functional groups at reactive sites on these particles as well as to study aerosol formation and transformation directly. The heterogeneous reaction of reactive halogen species with organic material at atmospheric conditions leads to small reactive

  3. Elastolytic activity in the lungs of rats exposed to cadmium aerosolization

    SciTech Connect

    Padmanabhan, R.V.; Gudapaty, S.R.; Liener, I.E.; Hoidal, J.R.

    1982-10-01

    Rats were exposed for 1 hr per day for up to 35 days to an aerosol of 0.1% cadmium chloride. At periodic intervals, animals were sacrificed and their lungs lavaged. The lung lavage fluid was examined for polymorphonuclear leukocytes (PMN) and alveolar macrophages (AM). A portion of the cells of the lavage fluid was lysed, and the remainder of the cells were cultured. The lavage fluids, cell lysates, and conditioned media were assayed for elastolytic activity in the presence and absence of a peptide chloromethyl ketone and EDTA. Exposure to cadmium evoked a biphasic cellular response characterized by an initial influx (1-3 days) of PMN followed by a gradual increase in AM. This biphasic cellular response was accompanied by a shift in the type of elastolytic activity which was present in the lung lavage and its cellular components. The initial PMN phase was accompanied by the enhanced production of an elastase inhibited only by the peptide chloromethyl ketone, while the subsequent AM phase was associated with an elastase activity which was inhibited only by EDTA. The possible implication of these results with respect to the pathogenesis of emphysema is considered.

  4. Aerosol typing - key information from aerosol studies

    NASA Astrophysics Data System (ADS)

    Mona, Lucia; Kahn, Ralph; Papagiannopoulos, Nikolaos; Holzer-Popp, Thomas; Pappalardo, Gelsomina

    2016-04-01

    Aerosol typing is a key source of aerosol information from ground-based and satellite-borne instruments. Depending on the specific measurement technique, aerosol typing can be used as input for retrievals or represents an output for other applications. Typically aerosol retrievals require some a priori or external aerosol type information. The accuracy of the derived aerosol products strongly depends on the reliability of these assumptions. Different sensors can make use of different aerosol type inputs. A critical review and harmonization of these procedures could significantly reduce related uncertainties. On the other hand, satellite measurements in recent years are providing valuable information about the global distribution of aerosol types, showing for example the main source regions and typical transport paths. Climatological studies of aerosol load at global and regional scales often rely on inferred aerosol type. There is still a high degree of inhomogeneity among satellite aerosol typing schemes, which makes the use different sensor datasets in a consistent way difficult. Knowledge of the 4d aerosol type distribution at these scales is essential for understanding the impact of different aerosol sources on climate, precipitation and air quality. All this information is needed for planning upcoming aerosol emissions policies. The exchange of expertise and the communication among satellite and ground-based measurement communities is fundamental for improving long-term dataset consistency, and for reducing aerosol type distribution uncertainties. Aerosol typing has been recognized as one of its high-priority activities of the AEROSAT (International Satellite Aerosol Science Network, http://aero-sat.org/) initiative. In the AEROSAT framework, a first critical review of aerosol typing procedures has been carried out. The review underlines the high heterogeneity in many aspects: approach, nomenclature, assumed number of components and parameters used for the

  5. Aerosol-Radiation-Cloud Interactions in the South-East Atlantic: Future Suborbital Activities to Address Knowledge Gaps in Satellite and Model Assessments

    NASA Astrophysics Data System (ADS)

    Redemann, J.; Wood, R.; Zuidema, P.; Haywood, J. M.; Piketh, S.; Formenti, P.; L'Ecuyer, T. S.; Kacenelenbogen, M. S.; Segal-Rosenhaimer, M.; Shinozuka, Y.; LeBlanc, S. E.; Vaughan, M. A.; Schmidt, S.; Flynn, C. J.; Song, S.; Schmid, B.; Luna, B.; Abel, S.

    2015-12-01

    Southern Africa produces almost a third of the Earth's biomass burning (BB) aerosol particles. Particles lofted into the mid-troposphere are transported westward over the South-East (SE) Atlantic, home to one of the three permanent subtropical stratocumulus (Sc) cloud decks in the world. The SE Atlantic stratocumulus deck interacts with the dense layers of BB aerosols that initially overlay the cloud deck, but later subside and may mix into the clouds. These interactions include adjustments to aerosol-induced solar heating and microphysical effects, and their global representation in climate models remains one of the largest uncertainties in estimates of future climate. Hence, new observations over the SE Atlantic have significant implications for global climate change scenarios. Our understanding of aerosol-cloud interactions in the SE Atlantic is hindered both by the lack of knowledge on aerosol and cloud properties, as well as the lack of knowledge about detailed physical processes involved. Most notably, we are missing knowledge on the absorptive and cloud nucleating properties of aerosols, including their vertical distribution relative to clouds, on the locations and degree of aerosol mixing into clouds, on the processes that govern cloud property adjustments, and on the importance of aerosol effects on clouds relative to co-varying synoptic scale meteorology. We discuss the current knowledge of aerosol and cloud property distributions based on satellite observations and sparse suborbital sampling. Recent efforts to make full use of A-Train aerosol sensor synergies will be highlighted. We describe planned field campaigns in the region to address the existing knowledge gaps. Specifically, we describe the scientific objectives and implementation of the five synergistic, international research activities aimed at providing some of the key aerosol and cloud properties and a process-level understanding of aerosol-cloud interactions over the SE Atlantic: NASA

  6. Aerosol-Radiation-Cloud Interactions in the South-East Atlantic: Future Suborbital Activities to Address Knowledge Gaps in Satellite and Model Assessments

    NASA Technical Reports Server (NTRS)

    Redemann, Jens; Wood, R.; Zuidema, P.; Haywood, J.; Piketh, S.; Formenti, P.; L'Ecuyer, T.; Kacenelenbogen, M.; Segal-Rosenheimer, M.; Shinozuka, Y.; LeBlanc, S.; Vaughan, M.; Schmidt, S.; Flynn, C.; Schmid, B.; Luna, B.; Abel, S.

    2016-01-01

    Southern Africa produces almost a third of the Earth's biomass burning (BB) aerosol particles. Particles lofted into the mid-troposphere are transported westward over the South-East (SE) Atlantic, home to one of the three permanent subtropical stratocumulus (Sc) cloud decks in the world. The SE Atlantic stratocumulus deck interacts with the dense layers of BB aerosols that initially overlay the cloud deck, but later subside and may mix into the clouds. These interactions include adjustments to aerosol-induced solar heating and microphysical effects, and their global representation in climate models remains one of the largest uncertainties in estimates of future climate. Hence, new observations over the SE Atlantic have significant implications for global climate change scenarios. Our understanding of aerosol-cloud interactions in the SE Atlantic is hindered both by the lack of knowledge on aerosol and cloud properties, as well as the lack of knowledge about detailed physical processes involved. Most notably, we are missing knowledge on the absorptive and cloud nucleating properties of aerosols, including their vertical distribution relative to clouds, on the locations and degree of aerosol mixing into clouds, on the processes that govern cloud property adjustments, and on the importance of aerosol effects on clouds relative to co-varying synoptic scale meteorology. We discuss the current knowledge of aerosol and cloud property distributions based on satellite observations and sparse suborbital sampling. Recent efforts to make full use of A-Train aerosol sensor synergies will be highlighted. We describe planned field campaigns in the region to address the existing knowledge gaps. Specifically, we describe the scientific objectives and implementation of the five synergistic, international research activities aimed at providing some of the key aerosol and cloud properties and a process-level understanding of aerosol-cloud interactions over the SE Atlantic: NASA

  7. Parameterized Beyond-Einstein Growth

    SciTech Connect

    Linder, Eric; Linder, Eric V.; Cahn, Robert N.

    2007-09-17

    A single parameter, the gravitational growth index gamma, succeeds in characterizing the growth of density perturbations in the linear regime separately from the effects of the cosmic expansion. The parameter is restricted to a very narrow range for models of dark energy obeying the laws of general relativity but can take on distinctly different values in models of beyond-Einstein gravity. Motivated by the parameterized post-Newtonian (PPN) formalism for testing gravity, we analytically derive and extend the gravitational growth index, or Minimal Modified Gravity, approach to parameterizing beyond-Einstein cosmology. The analytic formalism demonstrates how to apply the growth index parameter to early dark energy, time-varying gravity, DGP braneworld gravity, and some scalar-tensor gravity.

  8. Parameterizing the Raindrop Size Distribution

    NASA Technical Reports Server (NTRS)

    Haddad, Ziad S.; Durden, Stephen L.; Im, Eastwood

    1996-01-01

    This paper addresses the problem of finding a parametric form for the raindrop size distribution (DSD) that(1) is an appropriate model for tropical rainfall, and (2) involves statistically independent parameters. Such a parameterization is derived in this paper. One of the resulting three "canonical" parameters turns out to vary relatively little, thus making the parameterization particularly useful for remote sensing applications. In fact, a new set of r drop-size-distribution-based Z-R and k-R relations is obtained. Only slightly more complex than power laws, they are very good approximations to the exact radar relations one would obtain using Mie scattering. The coefficients of the new relations are directly related to the shape parameters of the particular DSD that one starts with. Perhaps most important, since the coefficients are independent of the rain rate itself, the relations are ideally suited for rain retrieval algorithms.

  9. A Novel Shape Parameterization Approach

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    1999-01-01

    This paper presents a novel parameterization approach for complex shapes suitable for a multidisciplinary design optimization application. The approach consists of two basic concepts: (1) parameterizing the shape perturbations rather than the geometry itself and (2) performing the shape deformation by means of the soft objects animation algorithms used in computer graphics. Because the formulation presented in this paper is independent of grid topology, we can treat computational fluid dynamics and finite element grids in a similar manner. The proposed approach is simple, compact, and efficient. Also, the analytical sensitivity derivatives are easily computed for use in a gradient-based optimization. This algorithm is suitable for low-fidelity (e.g., linear aerodynamics and equivalent laminated plate structures) and high-fidelity analysis tools (e.g., nonlinear computational fluid dynamics and detailed finite element modeling). This paper contains the implementation details of parameterizing for planform, twist, dihedral, thickness, and camber. The results are presented for a multidisciplinary design optimization application consisting of nonlinear computational fluid dynamics, detailed computational structural mechanics, performance, and a simple propulsion module.

  10. An inexpensive active optical remote sensing instrument for assessing aerosol distributions.

    PubMed

    Barnes, John E; Sharma, Nimmi C P

    2012-02-01

    Air quality studies on a broad variety of topics from health impacts to source/sink analyses, require information on the distributions of atmospheric aerosols over both altitude and time. An inexpensive, simple to implement, ground-based optical remote sensing technique has been developed to assess aerosol distributions. The technique, called CLidar (Charge Coupled Device Camera Light Detection and Ranging), provides aerosol altitude profiles over time. In the CLidar technique a relatively low-power laser transmits light vertically into the atmosphere. The transmitted laser light scatters off of air molecules, clouds, and aerosols. The entire beam from ground to zenith is imaged using a CCD camera and wide-angle (100 degree) optics which are a few hundred meters from the laser. The CLidar technique is optimized for low altitude (boundary layer and lower troposphere) measurements where most aerosols are found and where many other profiling techniques face difficulties. Currently the technique is limited to nighttime measurements. Using the CLidar technique aerosols may be mapped over both altitude and time. The instrumentation required is portable and can easily be moved to locations of interest (e.g. downwind from factories or power plants, near highways). This paper describes the CLidar technique, implementation and data analysis and offers specifics for users wishing to apply the technique for aerosol profiles.

  11. Aerosol Gemcitabine: Preclinical Safety and In Vivo Antitumor Activity in Osteosarcoma-Bearing Dogs

    PubMed Central

    Crabbs, Torrie A.; Wilson, Dennis W.; Cannan, Virginia A.; Skorupski, Katherine A.; Gordon, Nancy; Koshkina, Nadya; Kleinerman, Eugenie; Anderson, Peter M.

    2010-01-01

    Abstract Background Osteosarcoma is the most common skeletal malignancy in the dog and in young humans. Although chemotherapy improves survival time, death continues to be attributed to metastases. Aerosol delivery can provide a strategy with which to improve the lung drug delivery while reducing systemic toxicity. The purpose of this study is to assess the safety of a regional aerosol approach to chemotherapy delivery in osteosarcoma-bearing dogs, and second, to evaluate the effect of gemcitabine on Fas expression in the pulmonary metastasis. Methods We examined the systemic and local effects of aerosol gemcitabine on lung and pulmonary metastasis in this relevant large-animal tumor model using serial laboratory and arterial blood gas analysis and histopathology and immunohistochemistry, respectively. Results and Conclusions Six hundred seventy-two 1-h doses of aerosol gemcitabine were delivered. The treatment was well tolerated by these subjects with osteosarcoma (n = 20). Aerosol-treated subjects had metastatic foci that demonstrated extensive, predominately central, intratumoral necrosis. Fas expression was decreased in pulmonary metastases compared to the primary tumor (p = 0.008). After aerosol gemcitabine Fas expression in the metastatic foci was increased compared to lung metastases before treatment (p = 0.0075), and even was higher than the primary tumor (p = 0.025). Increased apoptosis (TUNEL) staining was also detected in aerosol gemcitabine treated metastasis compared to untreated controls (p = 0.028). The results from this pivotal translational study support the concept that aerosol gemcitabine may be useful against pulmonary metastases of osteosarcoma. Additional studies that evaluate the aerosol route of administration of gemcitabine in humans should be safe and are warranted. PMID:19803732

  12. Improved Arctic Cloud and Aerosol Research and Model Parameterizations

    SciTech Connect

    Kenneth Sassen

    2007-03-01

    In this report are summarized our contributions to the Atmospheric Measurement (ARM) program supported by the Department of Energy. Our involvement commenced in 1990 during the planning stages of the design of the ARM Cloud and Radiation Testbed (CART) sites. We have worked continuously (up to 2006) on our ARM research objectives, building on our earlier findings to advance our knowledge in several areas. Below we summarize our research over this period, with an emphasis on the most recent work. We have participated in several aircraft-supported deployments at the SGP and NSA sites. In addition to deploying the Polarization Diversity Lidar (PDL) system (Sassen 1994; Noel and Sassen 2005) designed and constructed under ARM funding, we have operated other sophisticated instruments W-band polarimetric Doppler radar, and midinfrared radiometer for intercalibration and student training purposes. We have worked closely with University of North Dakota scientists, twice co-directing the Citation operations through ground-to-air communications, and serving as the CART ground-based mission coordinator with NASA aircraft during the 1996 SUCCESS/IOP campaign. We have also taken a leading role in initiating case study research involving a number of ARM coinvestigators. Analyses of several case studies from these IOPs have been reported in journal articles, as we show in Table 1. The PDL has also participated in other major field projects, including FIRE II and CRYSTAL-FACE. In general, the published results of our IOP research can be divided into two categories: comprehensive cloud case study analyses to shed light on fundamental cloud processes using the unique CART IOP measurement capabilities, and the analysis of in situ data for the testing of remote sensing cloud retrieval algorithms. One of the goals of the case study approach is to provide sufficiently detailed descriptions of cloud systems from the data-rich CART environment to make them suitable for application to cloud modeling groups, such as the GEWEX Cloud Simulation Study (GCSS) Cirrus Working Groups. In this paper we summarize our IOP-related accomplishments.

  13. Raman lidar and sun photometer measurements of aerosols and water vapor during the ARM RCS experiment

    NASA Technical Reports Server (NTRS)

    Ferrare, R. A.; Whiteman, D. N.; Melfi, S. H.; Evans, K. D.; Holben, B. N.

    1995-01-01

    The first Atmospheric Radiation Measurement (ARM) Remote Cloud Study (RCS) Intensive Operations Period (IOP) was held during April 1994 at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site near Lamont, Oklahoma. This experiment was conducted to evaluate and calibrate state-of-the-art, ground based remote sensing instruments and to use the data acquired by these instruments to validate retrieval algorithms developed under the ARM program. These activities are part of an overall plan to assess general circulation model (GCM) parameterization research. Since radiation processes are one of the key areas included in this parameterization research, measurements of water vapor and aerosols are required because of the important roles these atmospheric constituents play in radiative transfer. Two instruments were deployed during this IOP to measure water vapor and aerosols and study their relationship. The NASA/Goddard Space Flight Center (GSFC) Scanning Raman Lidar (SRL) acquired water vapor and aerosol profile data during 15 nights of operations. The lidar acquired vertical profiles as well as nearly horizontal profiles directed near an instrumented 60 meter tower. Aerosol optical thickness, phase function, size distribution, and integrated water vapor were derived from measurements with a multiband automatic sun and sky scanning radiometer deployed at this site.

  14. The thermodynamic and kinetic impacts of organics on marine aerosols

    NASA Astrophysics Data System (ADS)

    Crahan, Kathleen

    Organics can change the manner in which aerosols scatter radiation directly as hydrated aerosols and indirectly as in-cloud activated aerosols, through changing the solution activity, the surface tension, and the accommodation coefficient of the hydrated aerosol. This work explores the kinetic and thermodynamic impacts of the organic component of marine aerosols through data collected over four field campaigns and through several models used to reproduce observations. The Rough Evaporation Duct (RED) project was conducted in the summer of 2001 off the coast of Oahu using the Twin Otter Aircraft and the Floating Instrument Platform research platform for data collection. The Cloud-Aerosol Research in the Marine Atmosphere (CARMA) campaigns were conducted over three summers (2002, 2004, 2005) off the coast of Monterey, California. During the CARMA campaigns, a thick, moist, stratocumulus deck was present during most days, and the Twin Otter Aircraft was the primary research platform used to collect data. However, the research goals and exact instrumentation onboard the Twin Otter varied from campaign to campaign, and each data set was analyzed individually. Data collected from CARMA I were used to explore the mechanism of oxalic acid production in cloud droplets. Oxalate was observed in the clouds in excess to below cloud concentrations by an average of 0.11 mug m-3, suggesting an in-cloud production. The tentative identification in cloud water of an intermediate species in the aqueous oxalate production mechanism lends further support to an in-cloud oxalate source. The data sets collected during the RED campaign and the CARMA II and CARMA III campaigns were used to investigate the impact of aerosol chemical speciation on aerosol hygroscopic behavior. Several models were used to correlate the observations in the subsaturated regime to theory including an explicit thermodynamic model, simple Kohler theory, and a parameterization of the solution activity. These models

  15. Surface fractal dimension, water adsorption efficiency, and cloud nucleation activity of insoluble aerosol

    PubMed Central

    Laaksonen, Ari; Malila, Jussi; Nenes, Athanasios; Hung, Hui-Ming; Chen, Jen-Ping

    2016-01-01

    Surface porosity affects the ability of a substance to adsorb gases. The surface fractal dimension D is a measure that indicates the amount that a surface fills a space, and can thereby be used to characterize the surface porosity. Here we propose a new method for determining D, based on measuring both the water vapour adsorption isotherm of a given substance, and its ability to act as a cloud condensation nucleus when introduced to humidified air in aerosol form. We show that our method agrees well with previous methods based on measurement of nitrogen adsorption. Besides proving the usefulness of the new method for general surface characterization of materials, our results show that the surface fractal dimension is an important determinant in cloud drop formation on water insoluble particles. We suggest that a closure can be obtained between experimental critical supersaturation for cloud drop activation and that calculated based on water adsorption data, if the latter is corrected using the surface fractal dimension of the insoluble cloud nucleus. PMID:27138171

  16. Surface fractal dimension, water adsorption efficiency, and cloud nucleation activity of insoluble aerosol

    NASA Astrophysics Data System (ADS)

    Laaksonen, Ari; Malila, Jussi; Nenes, Athanasios; Hung, Hui-Ming; Chen, Jen-Ping

    2016-05-01

    Surface porosity affects the ability of a substance to adsorb gases. The surface fractal dimension D is a measure that indicates the amount that a surface fills a space, and can thereby be used to characterize the surface porosity. Here we propose a new method for determining D, based on measuring both the water vapour adsorption isotherm of a given substance, and its ability to act as a cloud condensation nucleus when introduced to humidified air in aerosol form. We show that our method agrees well with previous methods based on measurement of nitrogen adsorption. Besides proving the usefulness of the new method for general surface characterization of materials, our results show that the surface fractal dimension is an important determinant in cloud drop formation on water insoluble particles. We suggest that a closure can be obtained between experimental critical supersaturation for cloud drop activation and that calculated based on water adsorption data, if the latter is corrected using the surface fractal dimension of the insoluble cloud nucleus.

  17. Surface fractal dimension, water adsorption efficiency, and cloud nucleation activity of insoluble aerosol.

    PubMed

    Laaksonen, Ari; Malila, Jussi; Nenes, Athanasios; Hung, Hui-Ming; Chen, Jen-Ping

    2016-01-01

    Surface porosity affects the ability of a substance to adsorb gases. The surface fractal dimension D is a measure that indicates the amount that a surface fills a space, and can thereby be used to characterize the surface porosity. Here we propose a new method for determining D, based on measuring both the water vapour adsorption isotherm of a given substance, and its ability to act as a cloud condensation nucleus when introduced to humidified air in aerosol form. We show that our method agrees well with previous methods based on measurement of nitrogen adsorption. Besides proving the usefulness of the new method for general surface characterization of materials, our results show that the surface fractal dimension is an important determinant in cloud drop formation on water insoluble particles. We suggest that a closure can be obtained between experimental critical supersaturation for cloud drop activation and that calculated based on water adsorption data, if the latter is corrected using the surface fractal dimension of the insoluble cloud nucleus. PMID:27138171

  18. Surface fractal dimension, water adsorption efficiency, and cloud nucleation activity of insoluble aerosol.

    PubMed

    Laaksonen, Ari; Malila, Jussi; Nenes, Athanasios; Hung, Hui-Ming; Chen, Jen-Ping

    2016-05-03

    Surface porosity affects the ability of a substance to adsorb gases. The surface fractal dimension D is a measure that indicates the amount that a surface fills a space, and can thereby be used to characterize the surface porosity. Here we propose a new method for determining D, based on measuring both the water vapour adsorption isotherm of a given substance, and its ability to act as a cloud condensation nucleus when introduced to humidified air in aerosol form. We show that our method agrees well with previous methods based on measurement of nitrogen adsorption. Besides proving the usefulness of the new method for general surface characterization of materials, our results show that the surface fractal dimension is an important determinant in cloud drop formation on water insoluble particles. We suggest that a closure can be obtained between experimental critical supersaturation for cloud drop activation and that calculated based on water adsorption data, if the latter is corrected using the surface fractal dimension of the insoluble cloud nucleus.

  19. Chemical and physical influences on aerosol activation in liquid clouds: a study based on observations from the Jungfraujoch, Switzerland

    NASA Astrophysics Data System (ADS)

    Hoyle, Christopher R.; Webster, Clare S.; Rieder, Harald E.; Nenes, Athanasios; Hammer, Emanuel; Herrmann, Erik; Gysel, Martin; Bukowiecki, Nicolas; Weingartner, Ernest; Steinbacher, Martin; Baltensperger, Urs

    2016-03-01

    A simple statistical model to predict the number of aerosols which activate to form cloud droplets in warm clouds has been established, based on regression analysis of data from four summertime Cloud and Aerosol Characterisation Experiments (CLACE) at the high-altitude site Jungfraujoch (JFJ). It is shown that 79 % of the observed variance in droplet numbers can be represented by a model accounting only for the number of potential cloud condensation nuclei (defined as number of particles larger than 80 nm in diameter), while the mean errors in the model representation may be reduced by the addition of further explanatory variables, such as the mixing ratios of O3, CO, and the height of the measurements above cloud base. The statistical model has a similar ability to represent the observed droplet numbers in each of the individual years, as well as for the two predominant local wind directions at the JFJ (northwest and southeast). Given the central European location of the JFJ, with air masses in summer being representative of the free troposphere with regular boundary layer in-mixing via convection, we expect that this statistical model is generally applicable to warm clouds under conditions where droplet formation is aerosol limited (i.e. at relatively high updraught velocities and/or relatively low aerosol number concentrations). A comparison between the statistical model and an established microphysical parametrization shows good agreement between the two and supports the conclusion that cloud droplet formation at the JFJ is predominantly controlled by the number concentration of aerosol particles.

  20. Quantum Consequences of Parameterizing Geometry

    NASA Astrophysics Data System (ADS)

    Wanas, M. I.

    2002-12-01

    The marriage between geometrization and quantization is not successful, so far. It is well known that quantization of gravity , using known quantization schemes, is not satisfactory. It may be of interest to look for another approach to this problem. Recently, it is shown that geometries with torsion admit quantum paths. Such geometries should be parameterizied in order to preserve the quantum properties appeared in the paths. The present work explores the consequences of parameterizing such geometry. It is shown that quantum properties, appeared in the path equations, are transferred to other geometric entities.

  1. Chemical aging of single and multicomponent biomass burning aerosol surrogate particles by OH: implications for cloud condensation nucleus activity

    DOE PAGES

    Slade, J. H.; Thalman, R.; Wang, J.; Knopf, D. A.

    2015-09-14

    Multiphase OH and O3 oxidation reactions with atmospheric organic aerosol (OA) can influence particle physicochemical properties including composition, morphology, and lifetime. Chemical aging of initially insoluble or low-soluble single-component OA by OH and O3 can increase their water solubility and hygroscopicity, making them more active as cloud condensation nuclei (CCN) and susceptible to wet deposition. However, an outstanding problem is whether the effects of chemical aging on their CCN activity are preserved when mixed with other organic or inorganic compounds exhibiting greater water solubility. In this work, the CCN activity of laboratory-generated biomass burning aerosol (BBA) surrogate particles exposed tomore » OH and O3 is evaluated by determining the hygroscopicity parameter, κ, as a function of particle type, mixing state, and OH and O3 exposure applying a CCN counter (CCNc) coupled to an aerosol flow reactor (AFR). Levoglucosan (LEV), 4-methyl-5-nitrocatechol (MNC), and potassium sulfate (KS) serve as representative BBA compounds that exhibit different hygroscopicity, water solubility, chemical functionalities, and reactivity with OH radicals, and thus exemplify the complexity of mixed inorganic/organic aerosol in the atmosphere. The CCN activities of all of the particles were unaffected by O3 exposure. Following exposure to OH, κ of MNC was enhanced by an order of magnitude, from 0.009 to ~ 0.1, indicating that chemically aged MNC particles are better CCN and more prone to wet deposition than pure MNC particles. No significant enhancement in κ was observed for pure LEV particles following OH exposure. κ of the internally mixed particles was not affected by OH oxidation. Furthermore, the CCN activity of OH-exposed MNC-coated KS particles is similar to the OH unexposed atomized 1 : 1 by mass MNC : KS binary-component particles. Our results strongly suggest that when OA is dominated by water-soluble organic carbon (WSOC) or inorganic ions

  2. Chemical aging of single and multicomponent biomass burning aerosol surrogate-particles by OH: implications for cloud condensation nucleus activity

    DOE PAGES

    Slade, J. H.; Thalman, R.; Wang, J.; Knopf, D. A.

    2015-03-06

    Multiphase OH and O3 oxidation reactions with atmospheric organic aerosol (OA) can influence particle physicochemical properties including composition, morphology, and lifetime. Chemical aging of initially insoluble or low soluble single-component OA by OH and O3 can increase their water-solubility and hygroscopicity, making them more active as cloud condensation nuclei (CCN) and susceptible to wet deposition. However, an outstanding problem is whether the effects of chemical aging on their CCN activity are preserved when mixed with other organic or inorganic compounds exhibiting greater water-solubility. In this work, the CCN activity of laboratory-generated biomass burning aerosol (BBA) surrogate-particles exposed to OH andmore » O3 is evaluated by determining the hygroscopicity parameter, κ, as a function of particle type, mixing state, and OH/O3 exposure applying a CCN counter (CCNc) coupled to an aerosol flow reactor (AFR). Levoglucosan (LEV), 4-methyl-5-nitrocatechol (MNC), and potassium sulfate (KS) serve as representative BBA compounds that exhibit different hygroscopicity, water solubility, chemical functionalities, and reactivity with OH radicals, and thus exemplify the complexity of mixed inorganic/organic aerosol in the atmosphere. The CCN activities of all of the particles were unaffected by O3 exposure. Following exposure to OH, κ of MNC was enhanced by an order of magnitude, from 0.009 to ~0.1, indicating that chemically-aged MNC particles are better CCN and more prone to wet deposition than pure MNC particles. No significant enhancement in κ was observed for pure LEV particles following OH exposure. κ of the internally-mixed particles was not affected by OH oxidation. Furthermore, the CCN activity of OH exposed MNC-coated KS particles is similar to the OH unexposed atomized 1 : 1 by mass MNC : KS binary-component particles. Our results strongly suggest that when OA is dominated by water-soluble organic carbon (WSOC) or inorganic ions, chemical

  3. Chemical aging of single and multicomponent biomass burning aerosol surrogate-particles by OH: implications for cloud condensation nucleus activity

    NASA Astrophysics Data System (ADS)

    Slade, J. H.; Thalman, R.; Wang, J.; Knopf, D. A.

    2015-03-01

    Multiphase OH and O3 oxidation reactions with atmospheric organic aerosol (OA) can influence particle physicochemical properties including composition, morphology, and lifetime. Chemical aging of initially insoluble or low soluble single-component OA by OH and O3 can increase their water-solubility and hygroscopicity, making them more active as cloud condensation nuclei (CCN) and susceptible to wet deposition. However, an outstanding problem is whether the effects of chemical aging on their CCN activity are preserved when mixed with other organic or inorganic compounds exhibiting greater water-solubility. In this work, the CCN activity of laboratory-generated biomass burning aerosol (BBA) surrogate-particles exposed to OH and O3 is evaluated by determining the hygroscopicity parameter, κ, as a function of particle type, mixing state, and OH/O3 exposure applying a CCN counter (CCNc) coupled to an aerosol flow reactor (AFR). Levoglucosan (LEV), 4-methyl-5-nitrocatechol (MNC), and potassium sulfate (KS) serve as representative BBA compounds that exhibit different hygroscopicity, water solubility, chemical functionalities, and reactivity with OH radicals, and thus exemplify the complexity of mixed inorganic/organic aerosol in the atmosphere. The CCN activities of all of the particles were unaffected by O3 exposure. Following exposure to OH, κ of MNC was enhanced by an order of magnitude, from 0.009 to ~0.1, indicating that chemically-aged MNC particles are better CCN and more prone to wet deposition than pure MNC particles. No significant enhancement in κ was observed for pure LEV particles following OH exposure. κ of the internally-mixed particles was not affected by OH oxidation. Furthermore, the CCN activity of OH exposed MNC-coated KS particles is similar to the OH unexposed atomized 1 : 1 by mass MNC : KS binary-component particles. Our results strongly suggest that when OA is dominated by water-soluble organic carbon (WSOC) or inorganic ions, chemical aging

  4. Chemical aging of single and multicomponent biomass burning aerosol surrogate particles by OH: implications for cloud condensation nucleus activity

    NASA Astrophysics Data System (ADS)

    Slade, J. H.; Thalman, R.; Wang, J.; Knopf, D. A.

    2015-09-01

    Multiphase OH and O3 oxidation reactions with atmospheric organic aerosol (OA) can influence particle physicochemical properties including composition, morphology, and lifetime. Chemical aging of initially insoluble or low-soluble single-component OA by OH and O3 can increase their water solubility and hygroscopicity, making them more active as cloud condensation nuclei (CCN) and susceptible to wet deposition. However, an outstanding problem is whether the effects of chemical aging on their CCN activity are preserved when mixed with other organic or inorganic compounds exhibiting greater water solubility. In this work, the CCN activity of laboratory-generated biomass burning aerosol (BBA) surrogate particles exposed to OH and O3 is evaluated by determining the hygroscopicity parameter, κ, as a function of particle type, mixing state, and OH and O3 exposure applying a CCN counter (CCNc) coupled to an aerosol flow reactor (AFR). Levoglucosan (LEV), 4-methyl-5-nitrocatechol (MNC), and potassium sulfate (KS) serve as representative BBA compounds that exhibit different hygroscopicity, water solubility, chemical functionalities, and reactivity with OH radicals, and thus exemplify the complexity of mixed inorganic/organic aerosol in the atmosphere. The CCN activities of all of the particles were unaffected by O3 exposure. Following exposure to OH, κ of MNC was enhanced by an order of magnitude, from 0.009 to ~ 0.1, indicating that chemically aged MNC particles are better CCN and more prone to wet deposition than pure MNC particles. No significant enhancement in κ was observed for pure LEV particles following OH exposure. κ of the internally mixed particles was not affected by OH oxidation. Furthermore, the CCN activity of OH-exposed MNC-coated KS particles is similar to the OH unexposed atomized 1 : 1 by mass MNC : KS binary-component particles. Our results strongly suggest that when OA is dominated by water-soluble organic carbon (WSOC) or inorganic ions, chemical

  5. Variability of CCN Activation Behaviour of Aerosol Particles in the Marine Boundary Layer of the Northern and Southern Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Henning, Silvia; Dieckmann, Katrin; Hartmann, Susan; Schäfer, Michael; Wu, Zhijun; Merkel, Maik; Wiedensohler, Alfred; Stratmann, Frank

    2013-04-01

    The variability of cloud condensation nucleus (CCN) activation behaviour and total CCN number concentrations was investigated during three ship cruises. Measurements were performed in a mobile laboratory on the German research vessel FS Polarstern cruising between Cape Town and Bremerhaven (April / May and October / November 2011) as well as between Punta Arenas and Bremerhaven (April / May 2012). CCN size distributions were measured for supersaturations between 0.1% and 0.4% using a Cloud Condensation Nucleus Counter (DMT, USA). Aerosol particle and CCN total number concentrations as well as the hygroscopicity parameter κ (Petters and Kreidenweis, 2007) were determined. Furthermore, size distribution data were collected. The hygroscopicity parameter κ featured a high variability during the cruises, with a median κ-value of 0.52 ± 0.26. The κ-values are depended on air mass origin; and are as expected mainly dominated by marine influences, but also long range transport of aerosol particles was detected. In the Celtic Sea, κ was found to be lower than that of clean marine aerosol particles (0.72 ± 0.24; Pringle et al., 2010) with κ-values ~0.2, possibly influenced by anthropogenic emissions from Europe. Close to the West African coast particle hygroscopicity was found to be influenced by the Saharan dust plume, resulting in low κ-values ~0.25. Petters, M.D. and S.M. Kreidenweis (2007), A single parameter representation of hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem. and Phys., 7, 1961-1971. Pringle, K.J., H. Tost, A. Pozzer, U. Pöschl, and J. Lelieveld (2010), Global distribution of the effective aerosol hygroscopicity parameter for CCN activation, Atmos. Chem. Phys., 10, 5241-5255.

  6. Aerosol Modeling for the Global Model Initiative

    NASA Technical Reports Server (NTRS)

    Weisenstein, Debra K.; Ko, Malcolm K. W.

    2001-01-01

    The goal of this project is to develop an aerosol module to be used within the framework of the Global Modeling Initiative (GMI). The model development work will be preformed jointly by the University of Michigan and AER, using existing aerosol models at the two institutions as starting points. The GMI aerosol model will be tested, evaluated against observations, and then applied to assessment of the effects of aircraft sulfur emissions as needed by the NASA Subsonic Assessment in 2001. The work includes the following tasks: 1. Implementation of the sulfur cycle within GMI, including sources, sinks, and aqueous conversion of sulfur. Aerosol modules will be added as they are developed and the GMI schedule permits. 2. Addition of aerosol types other than sulfate particles, including dust, soot, organic carbon, and black carbon. 3. Development of new and more efficient parameterizations for treating sulfate aerosol nucleation, condensation, and coagulation among different particle sizes and types.

  7. Parameterization of oceanic whitecap fraction based on satellite observations

    NASA Astrophysics Data System (ADS)

    Albert, M. F. M. A.; Anguelova, M. D.; Manders, A. M. M.; Schaap, M.; de Leeuw, G.

    2015-08-01

    In this study the utility of satellite-based whitecap fraction (W) values for the prediction of sea spray aerosol (SSA) emission rates is explored. More specifically, the study is aimed at improving the accuracy of the sea spray source function (SSSF) derived by using the whitecap method through the reduction of the uncertainties in the parameterization of W by better accounting for its natural variability. The starting point is a dataset containing W data, together with matching environmental and statistical data, for 2006. Whitecap fraction W was estimated from observations of the ocean surface brightness temperature TB by satellite-borne radiometers at two frequencies (10 and 37 GHz). A global scale assessment of the data set to evaluate the wind speed dependence of W revealed a quadratic correlation between W and U10, as well as a relatively larger spread in the 37 GHz data set. The latter could be attributed to secondary factors affecting W in addition to U10. To better visualize these secondary factors, a regional scale assessment over different seasons was performed. This assessment indicates that the influence of secondary factors on W is for the largest part imbedded in the exponent of the wind speed dependence. Hence no further improvement can be expected by looking at effects of other factors on the variation in W explicitly. From the regional analysis, a new globally applicable quadratic W(U10) parameterization was derived. An intrinsic correlation between W and U10 that could have been introduced while estimating W from TB was determined, evaluated and presumed to lie within the error margins of the newly derived W(U10) parameterization. The satellite-based parameterization was compared to parameterizations from other studies and was applied in a SSSF to estimate the global SSA emission rate. The thus obtained SSA production for 2006 of 4.1 × 1012 kg is within previously reported estimates. While recent studies that account for parameters other than U

  8. Can we better use existing and emerging computing hardware to embed activity coefficient predictions in complex atmospheric aerosol models?

    NASA Astrophysics Data System (ADS)

    Topping, David; Alibay, Irfan; Ruske, Simon; Hindriksen, Vincent; Noisternig, Michael

    2016-04-01

    To predict the evolving concentration, chemical composition and ability of aerosol particles to act as cloud droplets, we rely on numerical modeling. Mechanistic models attempt to account for the movement of compounds between the gaseous and condensed phases at a molecular level. This 'bottom up' approach is designed to increase our fundamental understanding. However, such models rely on predicting the properties of molecules and subsequent mixtures. For partitioning between the gaseous and condensed phases this includes: saturation vapour pressures; Henrys law coefficients; activity coefficients; diffusion coefficients and reaction rates. Current gas phase chemical mechanisms predict the existence of potentially millions of individual species. Within a dynamic ensemble model, this can often be used as justification for neglecting computationally expensive process descriptions. Indeed, on whether we can quantify the true sensitivity to uncertainties in molecular properties, even at the single aerosol particle level it has been impossible to embed fully coupled representations of process level knowledge with all possible compounds, typically relying on heavily parameterised descriptions. Relying on emerging numerical frameworks, and designed for the changing landscape of high-performance computing (HPC), in this study we show that comprehensive microphysical models from single particle to larger scales can be developed to encompass a complete state-of-the-art knowledge of aerosol chemical and process diversity. We focus specifically on the ability to capture activity coefficients in liquid solutions using the UNIFAC method, profiling traditional coding strategies and those that exploit emerging hardware.

  9. Characteristics of aerosolized ice forming marine biogenic particles

    NASA Astrophysics Data System (ADS)

    Alpert, Peter A.

    atomus and Emiliania huxleyi, cells and cell fragments efficiently nucleate ice in the deposition mode, however, only T. pseudonana and N. atomus form ice in the immersion mode, presumably due to different cell wall compositions. This further corroborates the role of phytoplanktonic species for aerosolization of marine biogenic cloud active particles. Experimental data are used to parameterize marine biogenic particle fluxes and heterogeneous ice nucleation as a function of biological activity. The atmospheric implications of the results and their implementation into cloud and climate models are discussed.

  10. COMPUTATIONAL CHEMISTRY METHOD FOR PREDICTING VAPOR PRESSURES AND ACTIVITY COEFFICIENTS OF POLAR ORGANIC OXYGENATES IN PM2.5

    EPA Science Inventory

    Parameterizations of interactions of polar multifunctional organic oxygenates in PM2.5 must be included in aerosol chemistry models for evaluating control strategies for reducing ambient concentrations of PM2.5 compounds. Vapor pressures and activity coefficients of these compo...

  11. Aerosols: unexpected disequilibrium phenomena between airborne radio activities of lead-210 and its progenies bismuth-210 and polonium-210.

    PubMed

    Wallner, Gabriele; Berner, Axel; Irlweck, Karl

    2002-12-01

    For the first time, concentrations of the long lived radon progenies (210)Pb, (210)Bi and (210)Po were measured in the mine atmosphere of the so called "healing gallery" in Badgastein, Austria, a region famous for its radioactive springs. These investigations were performed in order to study the radioactive equilibrium between the (210)Pb-(210)Bi and the (210)Pb-(210)Po pairs so as to gain more information about the aerosol-forming processes in the mine. The particle size distribution of the aerosols was determined under different ventilation conditions. Six-stage and eight-stage cascade impactors with working ranges from 0.15 to 5 micro m and from 0.063 to 8 micro m, respectively, were used to collect the mine aerosols. These samples were analysed in the laboratory and measured by liquid scintillation spectrometry. The most surprising results were found under full ventilation, when the total activity concentrations of (210)Pb, (210)Bi and (210)Po were 4.6, 2.0 and 16.5 mBq/m(3), respectively. In this case (210)Po/(210)Pb activity ratios ranged between 1.8+/-0.3 and 4.3+/-0.3. These unexpected results were confirmed by the eight-stage impactor samples. For the smallest particles, between 0.062 and 0.125 micro m, an even higher value of 7.5 was observed. As outside sources could be excluded, such (210)Po enrichments must occur during the aerosol-forming process itself inside the mine.

  12. Hygroscopicity of aerosol particles and CCN activity of nearly hydrophobic particles in the urban atmosphere over Japan during summer

    NASA Astrophysics Data System (ADS)

    Ogawa, Shuhei; Setoguchi, Yoshitaka; Kawana, Kaori; Nakayama, Tomoki; Ikeda, Yuka; Sawada, Yuuki; Matsumi, Yutaka; Mochida, Michihiro

    2016-06-01

    We investigated the hygroscopicity of 150 nm particles and the number-size distributions and the cloud condensation nuclei (CCN) activity of nearly hydrophobic particles in aerosols over Nagoya, Japan, during summer. We analyzed the correlations between the number concentrations of particles in specific hygroscopic growth factor (g) ranges and the mass concentrations of chemical components. This analysis suggests the association of nearly hydrophobic particles with hydrocarbon-like organic aerosol, elemental carbon and semivolatile oxygenated organic aerosol (SV-OOA), that of less hygroscopic particles with SV-OOA and nitrate and that of more hygroscopic particles with low-volatile oxygenated organic aerosol (LV-OOA) and sulfate. The hygroscopicity parameter (κ) of organics was derived based on the g distributions and chemical composition of 150 nm particles. The κ of the organics correlated positively with the fraction of the total organic mass spectral signal at m/z 44 and the volume fraction of the LV-OOA to the organics, indicating that organics with highly oxygenated structures including carboxylic acid groups contribute to the water uptake. The number-size distributions of the nearly hydrophobic particles with g around 1.0 and 1.1 correlated with the mass concentrations of chemical components. The results show that the chemical composition of the particles with g around 1.0 was different between the Aitken mode and the accumulation mode size ranges. An analysis for a parameter Fmax of the curves fitted to the CCN efficiency spectra of the particles with g around 1.0 suggests that the coating by organics associated with SV-OOA elevated the CCN activity of these particles.

  13. Limited Effect of Anthropogenic Nitrogen Oxides on Secondary Organic Aerosol Formation

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Unger, N.; Hodzic, A.; Knote, C. J.; Tilmes, S.; Emmons, L. K.; Lamarque, J. F.; Yu, P.

    2014-12-01

    Globally secondary organic aerosol (SOA) is mostly formed from biogenic vegetation emissions and as such is regarded as natural aerosol that cannot be reduced by emission control legislation. However, recent research implies that human activities facilitate SOA formation by affecting the amount of precursor emission, the chemical processing and the partitioning into the aerosol phase. Among the multiple human influences, nitrogen oxides (NO + NO2 = NOx) have been assumed to play a critical role in the chemical formation of low volatile compounds. The goal of this study is to improve the SOA scheme in the global NCAR Community Atmospheric Model version 4 with chemistry (CAM4-Chem) by implementing an updated 4-product Volatility Basis Set (VBS) scheme, and apply it to investigate the impact of anthropogenic NOx on SOA. We first compare three different SOA parameterizations: a 2-product model and the updated VBS model both with and without a SOA aging parameterization. Secondly we evaluate predicted organic aerosol amounts against surface measurement from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network and Aerosol Mass Spectrometer (AMS) measurements from 13 aircraft-based field campaigns. We then perform sensitivity experiments to examine how the SOA loading responds to a 50% reduction in anthropogenic NOx in different regions. We find limited SOA reductions of -2.3%, -5.6% and -4.0% for global, southeastern U.S. and Amazon NOx perturbations, respectively. To investigate the chemical processes in more detail, we also use a simplified box model with the same gas-phase chemistry and gas-aerosol partitioning mechanism as in CAM4-Chem to examine the SOA yields dependence on initial precursor emissions and background NOx level. The fact that SOA formation is almost unaffected by changes in NOx can be largely attributed to buffering in chemical pathways (low- versus high-NOx pathways, OH versus NO3-initiated oxidation) and to offsetting

  14. Ganges valley aerosol experiment.

    SciTech Connect

    Kotamarthi, V.R.; Satheesh, S.K.

    2011-08-01

    In June 2011, the Ganges Valley Aerosol Experiment (GVAX) began in the Ganges Valley region of India. The objective of this field campaign is to obtain measurements of clouds, precipitation, and complex aerosols to study their impact on cloud formation and monsoon activity in the region.

  15. Infrared radiation parameterizations in numerical climate models

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah; Kratz, David P.; Ridgway, William

    1991-01-01

    This study presents various approaches to parameterizing the broadband transmission functions for utilization in numerical climate models. One-parameter scaling is applied to approximate a nonhomogeneous path with an equivalent homogeneous path, and the diffuse transmittances are either interpolated from precomputed tables or fit by analytical functions. Two-parameter scaling is applied to parameterizing the carbon dioxide and ozone transmission functions in both the lower and middle atmosphere. Parameterizations are given for the nitrous oxide and methane diffuse transmission functions.

  16. Competing effects of viscosity and surface-tension depression on the hygroscopicity and CCN activity of laboratory surrogates for oligomers in atmospheric aerosol

    NASA Astrophysics Data System (ADS)

    Hodas, N.; Zuend, A.; Shiraiwa, M.; Flagan, R. C.; Seinfeld, J.; Schilling, K.; Berkemeier, T.

    2015-12-01

    The presence of oligomers in biomass burning aerosol, as well as secondary organic aerosol derived from other sources, influences particle viscosity and can introduce kinetic limitations to water uptake. This, in turn, impacts aerosol optical properties and the efficiency with which these particles serve as cloud condensation nuclei (CCN). To explore the influence of organic-component viscosity on aerosol hygroscopicity, the water-uptake behavior of aerosol systems comprised of polyethylene glycol (PEG) and mixtures of PEG and ammonium sulfate (AS) was measured under sub- and supersaturated relative humidity (RH) conditions. Experiments were conducted with systems containing PEG with average molecular weights ranging from 200 to 10,000 g/mol, corresponding to a range in viscosity of 0.004 - 4.5 Pa s under dry conditions. While evidence suggests that viscous aerosol components can suppress water uptake at RH < 90%, under supersaturated conditions (with respect to RH), an increase in CCN activity with increasing PEG molecular weight was observed. We attribute this to an increase in the efficiency with which PEG serves as a surfactant with increasing molecular weight. This effect is most pronounced for PEG-AS mixtures and, in fact, a modest increase in CCN activity is observed for the PEG 10,000-AS mixture as compared to pure AS, as evidenced by a 4% reduction in critical activation diameter. Experimental results are compared with calculations of hygroscopic growth at thermodynamic equilibrium using the Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients model and the potential influence of kinetic limitations to observed water uptake is further explored with the Kinetic Multi-Layer Model of Gas-Particle Interactions. Results suggest the competing effects of organic-component viscosity and surface-tension depression may lead to RH-dependent differences in hygroscopicity for oligomers and other surface-active compounds present in atmospheric

  17. A review of research on human activity induced climate change I. Greenhouse gases and aerosols

    NASA Astrophysics Data System (ADS)

    Wang, Mingxing; Liu, Qiang; Yang, Xin

    2004-06-01

    Extensive research on the sources and sinks of greenhouse gases, carbon cycle modeling, and the characterization of atmospheric aerosols has been carried out in China during the last 10 years or so. This paper presents the major achievements in the fields of emissions of greenhouse gases from agricultural lands, carbon cycle modeling, the characterization of Asian mineral dust, source identification of the precursors of the tropospheric ozone, and observations of the concentrations of atmospheric organic compounds. Special, more detailed information on the emissions of methane from rice fields and the physical and chemical characteristics of mineral aerosols are presented.

  18. Parameterization of precipitating shallow convection

    NASA Astrophysics Data System (ADS)

    Seifert, Axel

    2015-04-01

    Shallow convective clouds play a decisive role in many regimes of the atmosphere. They are abundant in the trade wind regions and essential for the radiation budget in the sub-tropics. They are also an integral part of the diurnal cycle of convection over land leading to the formation of deeper modes of convection later on. Errors in the representation of these small and seemingly unimportant clouds can lead to misforecasts in many situations. Especially for high-resolution NWP models at 1-3 km grid spacing which explicitly simulate deeper modes of convection, the parameterization of the sub-grid shallow convection is an important issue. Large-eddy simulations (LES) can provide the data to study shallow convective clouds and their interaction with the boundary layer in great detail. In contrast to observation, simulations provide a complete and consistent dataset, which may not be perfectly realistic due to the necessary simplifications, but nevertheless enables us to study many aspects of those clouds in a self-consistent way. Today's supercomputing capabilities make it possible to use domain sizes that not only span several NWP grid boxes, but also allow for mesoscale self-organization of the cloud field, which is an essential behavior of precipitating shallow convection. By coarse-graining the LES data to the grid of an NWP model, the sub-grid fluctuations caused by shallow convective clouds can be analyzed explicitly. These fluctuations can then be parameterized in terms of a PDF-based closure. The necessary choices for such schemes like the shape of the PDF, the number of predicted moments, etc., will be discussed. For example, it is shown that a universal three-parameter distribution of total water may exist at scales of O(1 km) but not at O(10 km). In a next step the variance budgets of moisture and temperature in the cloud-topped boundary layer are studied. What is the role and magnitude of the microphysical correlation terms in these equations, which

  19. Effects of airflow rates and operator activity on containment of bacterial aerosols in a class II safety cabinet.

    PubMed Central

    Macher, J M; First, M W

    1984-01-01

    Biological safety cabinets are frequently relied upon to provide sterile work environments in which hazardous microorganisms can be safely handled. Verification of correct airstream velocities does not, by itself, ensure that adequate protection will be achieved under all users. Instead, the concentration of microorganisms in a cabinet operator's breathing zone must be measured during typical cabinet use conditions to determine whether the exposure is below acceptable limits. In this study, cabinet operator exposures were measured with a personal air sampler. Bacterial spores were released inside a cabinet as a uniform challenge aerosol, and the number of escaping spores was measured for several cabinet arrangements during a number of typical operations. The following were studied to determine their effects on aerosol containment: inflow air velocity, size of access opening, type of operator movements, location of operator's hands, and pace of activity. Other experiments examined differences in aerosol containment for eight typical microbiology operations when performed by six operators who covered a range of body heights and volumes. PMID:6437327

  20. Aerosol disturbances of the stratosphere over Tomsk according to data of lidar observations in volcanic activity period 2006-2011

    NASA Astrophysics Data System (ADS)

    Makeev, Andrey P.; Burlakov, Vladimir D.; Dolgii, Sergey I.; Nevzorov, Aleksey V.; Trifonov, Dimitar A.

    2012-11-01

    We summarize and analyze the lidar measurements (Tomsk: 56.5°N; 85.0°E) of the optical characteristics of the stratospheric aerosol layer (SAL) in the volcanic activity period 2006-2011. The background SAL state with minimal aerosol content, which was observed since 1997 under the conditions of long-term volcanically quiescent period, was interrupted in October 2006 by a series of explosive eruptions of volcanoes of the Pacific Ring of Fire: Rabaul (October 2006, New Guinea); Okmok and Kasatochi (July-August 2008, Aleutian Islands); Redoubt (March-April 2009, Alaska); Sarychev Peak (June 2009, Kuril Islands), and Grimsvötn (May 2011, Iceland). A short-term and minor disturbance of the lower stratosphere was also observed in April 2010 after eruption of the Icelandic volcano Eyjafjallajokull. The developed regional empirical model of the vertical distribution of background SAL optical characteristics was used to identify the periods of elevated stratospheric aerosol content after each of the volcanic eruptions.

  1. Evolution of Organic Aerosols in the Atmosphere

    NASA Astrophysics Data System (ADS)

    Jimenez, J. L.; Canagaratna, M. R.; Donahue, N. M.; Prevot, A. S. H.; Zhang, Q.; Kroll, J. H.; DeCarlo, P. F.; Allan, J. D.; Coe, H.; Ng, N. L.; Aiken, A. C.; Docherty, K. S.; Ulbrich, I. M.; Grieshop, A. P.; Robinson, A. L.; Duplissy, J.; Smith, J. D.; Wilson, K. R.; Lanz, V. A.; Hueglin, C.; Sun, Y. L.; Tian, J.; Laaksonen, A.; Raatikainen, T.; Rautiainen, J.; Vaattovaara, P.; Ehn, M.; Kulmala, M.; Tomlinson, J. M.; Collins, D. R.; Cubison, M. J.; Dunlea, J.; Huffman, J. A.; Onasch, T. B.; Alfarra, M. R.; Williams, P. I.; Bower, K.; Kondo, Y.; Schneider, J.; Drewnick, F.; Borrmann, S.; Weimer, S.; Demerjian, K.; Salcedo, D.; Cottrell, L.; Griffin, R.; Takami, A.; Miyoshi, T.; Hatakeyama, S.; Shimono, A.; Sun, J. Y.; Zhang, Y. M.; Dzepina, K.; Kimmel, J. R.; Sueper, D.; Jayne, J. T.; Herndon, S. C.; Trimborn, A. M.; Williams, L. R.; Wood, E. C.; Middlebrook, A. M.; Kolb, C. E.; Baltensperger, U.; Worsnop, D. R.

    2009-12-01

    Organic aerosol (OA) particles affect climate forcing and human health, but their sources and evolution remain poorly characterized. We present a unifying model framework describing the atmospheric evolution of OA that is constrained by high-time-resolution measurements of its composition, volatility, and oxidation state. OA and OA precursor gases evolve by becoming increasingly oxidized, less volatile, and more hygroscopic, leading to the formation of oxygenated organic aerosol (OOA), with concentrations comparable to those of sulfate aerosol throughout the Northern Hemisphere. Our model framework captures the dynamic aging behavior observed in both the atmosphere and laboratory: It can serve as a basis for improving parameterizations in regional and global models.

  2. Parameterization of solar flare dose

    SciTech Connect

    Lamarche, A.H.; Poston, J.W.

    1996-12-31

    A critical aspect of missions to the moon or Mars will be the safety and health of the crew. Radiation in space is a hazard for astronauts, especially high-energy radiation following certain types of solar flares. A solar flare event can be very dangerous if astronauts are not adequately shielded because flares can deliver a very high dose in a short period of time. The goal of this research was to parameterize solar flare dose as a function of time to see if it was possible to predict solar flare occurrence, thus providing a warning time. This would allow astronauts to take corrective action and avoid receiving a dose greater than the recommended limit set by the National Council on Radiation Protection and Measurements (NCRP).

  3. New Approaches to Parameterizing Convection

    NASA Technical Reports Server (NTRS)

    Randall, David A.; Lappen, Cara-Lyn

    1999-01-01

    Many general circulation models (GCMs) currently use separate schemes for planetary boundary layer (PBL) processes, shallow and deep cumulus (Cu) convection, and stratiform clouds. The conventional distinctions. among these processes are somewhat arbitrary. For example, in the stratocumulus-to-cumulus transition region, stratocumulus clouds break up into a combination of shallow cumulus and broken stratocumulus. Shallow cumulus clouds may be considered to reside completely within the PBL, or they may be regarded as starting in the PBL but terminating above it. Deeper cumulus clouds often originate within the PBL with also can originate aloft. To the extent that our models separately parameterize physical processes which interact strongly on small space and time scales, the currently fashionable practice of modularization may be doing more harm than good.

  4. Overview of the Cumulus Humilis Aerosol Processing Study.

    SciTech Connect

    Berg, L. K.; Berkowitz, C. M.; Ogren, J. A.; Hostetler, C. A.; Ferrare, R. A.; Dubey, M.; Andrews, E.; Coulter, R. L.; Hair, J. W.; Hubbe, J. M.Lee, Y. N.; Mazzoleni, C; Olfert, J; Springston, SR; Environmental Science Division; PNNL; NOAA Earth System Research Lab.; NASA Langley Research Center; LANL; BNL; Univ.of Alberta; Univ. of Colorado

    2009-11-01

    interest to the ASP: (1) How do the below-cloud and above-cloud aerosol optical and cloud nucleating properties downwind of a typical North American city differ from the optical and nucleating properties of aerosols in air unperturbed by urban emissions? Our interest is in the differences in the radiative properties, chemical composition, hygroscopic properties, and size distributions below and above cloud, and upwind and downwind of such a city. (2) How does the distribution of aerosol extinction vary in relation to the proximity to individual clouds and fields of clouds and why? (3) What are the differences, in terms of both size distributions and chemical composition, between activated aerosols within the urban plume and those outside the urban plume? (4) To what extent can models with state-of-the-art cloud parameterizations capture the statistical features of the below-above-cloud aerosols?

  5. What's Up in the Atmosphere? Exploring How Aerosols Impact Sky Color Through Hands-on Activities with Elementary GLOBE

    NASA Astrophysics Data System (ADS)

    Damadeo, K.; Taylor, J.

    2015-12-01

    What color is the sky today? The GLOBE Kids - Anita, Simon, and Dennis want to know why the sky isn't always the same shade of blue and sometimes isn't even blue. Through the new Elementary GLOBE Aerosols Storybook and Learning Activities, the GLOBE Kids learn that there's a lot more than air in the atmosphere, which can affect the colors we see in the sky. There are four hands-on activities in this unit: 1) Sky Observers - Students make observations of the sky, record their findings and share their observation reports with their peers. The activity promotes active observation and recording skills to help students observe sky color, and recognize that sky color changes; 2) Why (Not) So Blue? - Students make predictions about how drops of milk will affect color and visibility in cups of water representing the atmosphere to help them understand that aerosols in the atmosphere have an effect on sky conditions, including sky color and visibility. The activity also introduces the classification categories for daytime sky color and visibility; 3) See the Light - Students use prisms and glue sticks to explore the properties of light. The activity demonstrates that white light is made up of seven colors that represent different wavelengths, and illustrates why the sky is blue during the day and red at sunset; 4) Up in the Air - Students work in groups to make an aerosol sampler, a simple adhesive tool that allows students to collect data and estimate the extent of aerosols present at their school, understanding that, in fact, there are particles in the air we breathe. NGSS Alignment includes: Disciplinary Core Ideas- ESS2.D: Weather and Climate, ESS3.C: Human Impacts on Earth Systems, PS4.B: Electromagnetic Radiation, ESS3.A: Natural Resources; Science and Engineering Practices- Asking Questions and Defining Problems, Planning and Carrying Out an Investigation, Analyzing and Interpreting Data, Engaging in Argument from Evidence, Obtaining, Evaluating, and Communicating

  6. Cloud Condensation Nuclei Activity, Droplet Growth Kinetics and Hygroscopicity of Biogenic and Anthropogenic Secondary Organic Aerosol (SOA)

    NASA Astrophysics Data System (ADS)

    Zhao, Defeng; Buchholz, Angela; Kortner, Birthe; Schlag, Patrick; Rubach, Florian; Hendrik, Fucks; Kiendler-Scharr, Astrid; Tillmann, Ralf; Wahner, Andreas; Hallquist, Mattias; Flores, Michel; Rudich, Yinon; Glasius, Marianne; Kourtchev, Ivan; Kalberer, Markus; Mentel, Thomas

    2015-04-01

    Recent field data and model analysis show that secondary organic aerosol (SOA) formation is enhanced under anthropogenic influences (de Gouw et al. 2005, Spracklen et al. 2011). The interaction of biogenic VOCs (BVOCs) with anthropogenic emissions such as anthropogenic VOCs (AVOCs) could change the particle formation yields and the aerosol properties, as was recently demonstrated (Emanuelsson et al., 2013; Flores et al., 2014). However, the effect of the interaction of BVOCs with AVOCs on cloud condensation nuclei (CCN) activity and hygroscopicity of SOA remains elusive. Characterizing such changes is necessary in order to assess the indirect radiative forcing of biogenic aerosols that form under anthropogenic influence. In this study, we investigated the influence of AVOCs on CCN activation and hygroscopic growth of BSOA. SOA was formed from photooxidation of monoterpenes and aromatics as representatives of BVOCs and AVOCs, respectively. The hygroscopicity and CCN activation of BSOA were studied and compared with that of anthropogenic SOA (ASOA) and the mixture of ASOA and BSOA (ABSOA). We found that ASOA had a significantly higher hygroscopicity than BSOA at similar OH dose, which is attributed to a higher oxidation level of ASOA. While the ASOA fraction had an enhancing effect on the hygroscopicity of ABSOA compared to BSOA, the hygroscopicity of ABSOA cannot be explained by a linear combination of the pure ASOA and BSOA systems, indicating potentially additional non-linear effects such as oligomerization. However, in contrast to hygroscopicity, ASOA showed similar CCN activity as BSOA, in spite of its higher oxidation level. The ASOA fraction did not enhance the CCN activity of ABSOA. The discrepancy between hygroscopicity and CCN activity is discussed. In addition, BSOA, ABSOA and ASOA formed similar droplet size with ammonium sulfate in CCN at a given supersaturation, indicating none of these aerosols had a delay in the water uptake in the supersaturated

  7. Stochastic methods for aerosol chemistry: a compact molecular description of functionalization and fragmentation in the heterogeneous oxidation of squalane aerosol by OH radicals.

    PubMed

    Wiegel, A A; Wilson, K R; Hinsberg, W D; Houle, F A

    2015-02-14

    The heterogeneous oxidation of organic aerosol by hydroxyl radicals (OH) can proceed through two general pathways: functionalization, in which oxygen functional groups are added to the carbon skeleton, and fragmentation, in which carbon-carbon bonds are broken, producing higher volatility, lower molecular weight products. An ongoing challenge is to develop a quantitative molecular description of these pathways that connects the oxidative evolution of the average aerosol properties (e.g. size and hygroscopicity) to the transformation of free radical intermediates. In order to investigate the underlying molecular mechanism of aerosol oxidation, a relatively compact kinetics model is developed for the heterogeneous oxidation of squalane particles by OH using free radical intermediates that convert reactive hydrogen sites into oxygen functional groups. Stochastic simulation techniques are used to compare calculated system properties over ten oxidation lifetimes with the same properties measured in experiment. The time-dependent average squalane aerosol mass, volume, density, carbon number distribution of scission products, and the average elemental composition are predicted using known rate coefficients. For functionalization, the calculations reveal that the distribution of alcohol and carbonyl groups is controlled primarily by the initial OH abstraction rate and to lesser extent by the branching ratio between secondary peroxy radical product channels. For fragmentation, the calculations reveal that the formation of activated alkoxy radicals with neighboring functional groups controls the molecular decomposition, particularly at high O/C ratios. This kinetic scheme provides a framework for understanding the oxidation chemistry of a model organic aerosol and informs parameterizations of more complex systems.

  8. A new parameterization of the UV irradiance altitude dependence for clear-sky conditions and its application in the on-line UV tool over Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Chubarova, Nataly; Zhdanova, Yekaterina; Nezval, Yelena

    2016-09-01

    A new method for calculating the altitude UV dependence is proposed for different types of biologically active UV radiation (erythemally weighted, vitamin-D-weighted and cataract-weighted types). We show that for the specified groups of parameters the altitude UV amplification (AUV) can be presented as a composite of independent contributions of UV amplification from different factors within a wide range of their changes with mean uncertainty of 1 % and standard deviation of 3 % compared with the exact model simulations with the same input parameters. The parameterization takes into account for the altitude dependence of molecular number density, ozone content, aerosol and spatial surface albedo. We also provide generalized altitude dependencies of the parameters for evaluating the AUV. The resulting comparison of the altitude UV effects using the proposed method shows a good agreement with the accurate 8-stream DISORT model simulations with correlation coefficient r > 0.996. A satisfactory agreement was also obtained with the experimental UV data in mountain regions. Using this parameterization we analyzed the role of different geophysical parameters in UV variations with altitude. The decrease in molecular number density, especially at high altitudes, and the increase in surface albedo play the most significant role in the UV growth. Typical aerosol and ozone altitude UV effects do not exceed 10-20 %. Using the proposed parameterization implemented in the on-line UV tool (http://momsu.ru/uv/) for Northern Eurasia over the PEEX domain we analyzed the altitude UV increase and its possible effects on human health considering different skin types and various open body fraction for January and April conditions in the Alpine region.

  9. Air mass origin and its influence on radionuclide activities ( 7Be and 210Pb) in aerosol particles at a coastal site in the western Mediterranean

    NASA Astrophysics Data System (ADS)

    Dueñas, C.; Orza, J. A. G.; Cabello, M.; Fernández, M. C.; Cañete, S.; Pérez, M.; Gordo, E.

    2011-07-01

    Studies of radionuclide activities in aerosol particles provide a means for evaluating the integrated effects of transport and meteorology on the atmospheric loadings of substances with different sources. Measurements of aerosol mass concentration and specific activities of 7Be and 210Pb in aerosols at Málaga (36° 43' 40″ N; 4° 28' 8″ W) for the period 2000-2006 were used to obtain the relationships between radionuclide activities and airflow patterns by comparing the data grouped by air mass trajectory clusters. The average concentration values of 7Be and 210Pb over the 7 year period have been found to be 4.6 and 0.58 mBq m -3, respectively, with mean aerosol mass concentration of 53.6 μg m -3. The identified air flow types arriving at Málaga reflect the transitional location of the Iberian Peninsula and show significant differences in radionuclide activities. Air concentrations of both nuclides and the aerosol mass concentration are controlled predominantly by the synoptic scenarios leading to the entrance of dust-laden continental flows from northern Africa and the arrival of polar maritime air masses, as implied by the strong correlations found between the monthly frequencies of the different air masses and the specific activities of both radionuclides. Correlations between activity concentrations and precipitation are significant though lower than with air masses.

  10. An approach for parameterizing mesoscale precipitating systems

    SciTech Connect

    Weissbluth, M.J.; Cotton, W.R.

    1991-01-01

    A cumulus parameterization laboratory has been described which uses a reference numerical model to fabricate, calibrate and verify a cumulus parameterization scheme suitable for use in mesoscale models. Key features of this scheme include resolution independence and the ability to provide hydrometeor source functions to the host model. Thus far, only convective scale drafts have been parameterized, limiting the use of the scheme to those models which can resolve the mesoscale circulations. As it stands, the scheme could probably be incorporated into models having a grid resolution greater than 50 km with results comparable to the existing schemes for the large-scale models. We propose, however, to quantify the mesoscale circulations through the use of the cumulus parameterization laboratory. The inclusion of these mesoscale drafts in the existing scheme will hopefully allow the correct parameterization of the organized mesoscale precipitating systems.

  11. An approach for parameterizing mesoscale precipitating systems

    SciTech Connect

    Weissbluth, M.J.; Cotton, W.R.

    1991-12-31

    A cumulus parameterization laboratory has been described which uses a reference numerical model to fabricate, calibrate and verify a cumulus parameterization scheme suitable for use in mesoscale models. Key features of this scheme include resolution independence and the ability to provide hydrometeor source functions to the host model. Thus far, only convective scale drafts have been parameterized, limiting the use of the scheme to those models which can resolve the mesoscale circulations. As it stands, the scheme could probably be incorporated into models having a grid resolution greater than 50 km with results comparable to the existing schemes for the large-scale models. We propose, however, to quantify the mesoscale circulations through the use of the cumulus parameterization laboratory. The inclusion of these mesoscale drafts in the existing scheme will hopefully allow the correct parameterization of the organized mesoscale precipitating systems.

  12. Glass shards, pumice fragments and volcanic aerosol particles - diagenesis a recorder of volcanic activity?

    NASA Astrophysics Data System (ADS)

    Obenholzner, J. H.; Schroettner, H.; Poelt, P.; Delgado, H.

    2003-04-01

    Detailed SEM/EDS studies of Triassic (Southern Alps, A, I, Sl) and Miocene (Mixteca Alta, Mexico) tuffs revealed that volcanic glass shards can be replaced by zeolites (analcite), chlorites and smectites preserving the shape of primary shards (1). The Triassic pyroclastic deposits have been incorporated in the pre-Alpine burial diagenesis, the Miocene pyroclastic deposits are bentonites. The volcanologist is impressed by the circumstances that million years old pyroclast relict textures can be sized. Shape parameters obtained by image analysis can be compared with much younger pyroclastic deposits (2). Both deposits have not been effected by shearing. The alteration of pumice fragments of Triassic age is not a simple replacement process. Intergrowth of different illites and chlorites and probably vesicle filling by SiO2 and subsequent overgrowth make a reconstruction sometimes difficult. These processes are accompanied by the formation of REE-, Y- and Zr-bearing minerals as well as with the alteration of zircons. Studies of recently erupted ash from Popocatepetl volcano reveal the presence of a variety of µm-sized contact-metamorphosed clasts being a part of the volcanic ash (3). Such clasts should be present in many older pyroclastic deposits, especially where volcanoes had been situated on massive sedimentary units providing contact metamorphism in the realm of a magma chamber or during magma ascent. Volcanic aerosol particles collected in 1997 from the passively degassing plume of Popocatepetl volcano revealed in FESEM/EDS analysis (H. Schroettner and P. Poelt) a wide spectrum of fluffy, spherical and coagulated spherical particles (µm-sized). Under pre-vacuum conditions they remained stable for ca. 3 years (3). In nature the fate of these particles in the atmosphere is unknown. Are there relicts in marine, lacustrine sediments and ice cores, which could be used as proxies of volcanic activity? (1) Obenholzner &Heiken,1999. Ann.Naturhist.Mus.Wien, 100 A, 13

  13. Chemical Aging and Cloud Condensation Nuclei Activity of Biomass Burning Aerosol Proxies in the Presence of OH Radicals

    NASA Astrophysics Data System (ADS)

    Slade, Jonathan H., Jr.

    Biomass burning aerosol (BBA) can adversely impact regional and global air quality and represents a significant source of organic aerosol (OA) to the atmosphere that can affect climate. Aerosol particles can alter the transfer of radiation in earth's atmosphere directly by scattering and absorbing radiation or indirectly via cloud formation. Gas-to-particle, also termed heterogeneous, oxidation reactions can significantly alter the particle's physical and chemical properties. In turn, this can lead to the degradation of biomolecular markers for air quality-related aerosol source apportionment studies, the particles' lifetime, and modify the particles' abilities to serve as cloud condensation nuclei (CCN). However, the rates, mechanisms, and conditions by which these multiphase oxidation reactions occur and influence the CCN activity of OA is not well understood. The work presented here aims to determine the reactivity and products from the interaction of BBA surrogate-particles and trace gas-phase oxidants and to link the effects of OA chemical aging on the particles' ability to nucleate clouds. The reactive uptake of OH by BBA surrogate-substrates and particles, including levoglucosan, nitroguaiacol, abietic acid, and methyl-nitrocatechol, was determined as a function of both OH concentration and relative humidity (RH) using chemical ionization mass spectrometry coupled to various flow reactors. OH reactive uptake decreased with increasing OH concentration, indicative of OH adsorption followed by reaction. OH oxidation led to significant volatilization, i.e. mass loss of the organic material, as determined by application of high resolution proton transfer reaction time-of-flight mass spectrometry. Volatilized reaction products were identified, providing mechanistic insight of the chemical pathways in the heterogeneous OH oxidation of BBA. The reactive uptake of OH by levoglucosan particles increased with RH due to enhanced OH and organic bulk diffusivity. In

  14. Incorporation of new particle formation and early growth treatments into WRF/Chem: Model improvement, evaluation, and impacts of anthropogenic aerosols over East Asia

    NASA Astrophysics Data System (ADS)

    Cai, Changjie; Zhang, Xin; Wang, Kai; Zhang, Yang; Wang, Litao; Zhang, Qiang; Duan, Fengkui; He, Kebin; Yu, Shao-Cai

    2016-01-01

    New particle formation (NPF) provides an important source of aerosol particles and cloud condensation nuclei, which may result in enhanced cloud droplet number concentration (CDNC) and cloud shortwave albedo. In this work, several nucleation parameterizations and one particle early growth parameterization are implemented into the online-coupled Weather Research and Forecasting model coupled with chemistry (WRF/Chem) to improve the model's capability in simulating NPF and early growth of ultrafine particles over East Asia. The default 8-bin over the size range of 39 nm-10 μm used in the Model for Simulating Aerosol Interactions and Chemistry aerosol module is expanded to the 12-bin over 1 nm-10 μm to explicitly track the formation and evolution of new particles. Although model biases remain in simulating H2SO4, condensation sink, growth rate, and formation rate, the evaluation of July 2008 simulation identifies a combination of three nucleation parameterizations (i.e., COMB) that can best represent the atmospheric nucleation processes in terms of both surface nucleation events and the resulting vertical distribution of ultrafine particle concentrations. COMB consists of a power law of Wang et al. (2011) based on activation theory for urban areas in planetary boundary layer (PBL), a power law of Boy et al. (2008) based on activation theory for non-urban areas in PBL, and the ion-mediated nucleation parameterization of YU10 for above PBL. The application and evaluation of the improved model with 12-bin and the COMB nucleation parameterization in East Asia during January, April, July, and October in 2001 show that the model has an overall reasonably good skill in reproducing most observed meteorological variables and surface and column chemical concentrations. Relatively large biases in simulated precipitation and wind speeds are due to inaccurate surface roughness and limitations in model treatments of cloud formation and aerosol-cloud-precipitation interactions

  15. Measurements of physical and chemical properties of urban aerosols and their CCN activities in Seoul during the KORUS-AQ pre-campaign

    NASA Astrophysics Data System (ADS)

    Kim, N.; Yum, S. S.; Park, M.; Shin, H. J.; Bae, G. N.; Kwak, K. H.; Park, J. S.; Park, S. M.; Ahn, J.

    2015-12-01

    Interest in cloud condensation nuclei (CCN) has been increasing for the last few decades due to their first order effects on radiative and microphysical properties of clouds. Particularly, scientific understanding of CCN from anthropogenic sources becomes important because it is now considered that large uncertainties in climate change predictions stem from insufficient understanding of CCN. CCN activity is influenced by size and chemical component of aerosols. The KORUS-AQ campaign, jointly organized by National Institute of Environmental Research (NIER) of Korea and National Aeronautics and Space Administration (NASA) aims at understanding various aspects of air quality problem in Korea and will be held in spring, 2016. In preparation for this campaign, pre-campaign was held during May 18-June 13, 2015, in Seoul where numerous local anthropogenic sources exist and influence of Chinese continental outflow directly affects. Here we present some of the important results from the pre-campaign. Chemical properties of aerosols were measured with AMS. Aerosol and CCN number concentrations, aerosol size distribution and aerosol hygroscopic growth factor were measured by CPC, CCN counter, SMPS and H-TDMA, respectively. Average diurnal variation of aerosol number concentration showed three dominant peaks at around 0600_UTC and morning and evening rush hours. Each peak seemed to have different characteristics and therefore detailed analyses of physical and chemical properties of aerosols during the peaks as well as during some special events will be made. The hygroscopicity parameter, kappa, will be estimated by examining CCN activity, H-TDMA measured hygroscopic growth factor and mixing rule of aerosol chemical components, and the result will be compared as well.

  16. Modification of postfrontal convective clouds and precipitation by natural and anthropogenic aerosols

    NASA Astrophysics Data System (ADS)

    Rieger, Daniel; Bangert, Max; Vogel, Bernhard

    2013-04-01

    Shallow postfrontal convective clouds are thought to be sensitive to the aerosol burden. In our case study we present results of model runs, simulating April 25, 2008. On this day a cold front passes Germany from north to south. During this situation the sea salt aerosol transported by the northerly flow into the model domain replaces the preexisting anthropogenic aerosol. We quantify the effect of the aerosol on the microphysical properties of the convective clouds that develop after the passage of the cold front. The model system COSMO-ART (Vogel et al., 2009, Bangert et al., 2010) is a comprehensive online coupled model system to simulate the spatial and temporal distribution of reactive gaseous and particulate matter. It is used to quantify the feedback processes between aerosols and the. state of the atmosphere on the continental to the regional scale with two-way interactions between different atmospheric processes. The model system enables further investigations of the aerosol-cloud-interactions and associated feedback processes. The model framework contains a two-moment cloud microphysics scheme (Seifert and Beheng, 2006) in combination with sophisticated activation parameterizations (Bangert et al., 2012). We carried out sensitivity runs. One applies a bulk microphysics scheme as used in the operational forecasts of the German weather service. In two of them the aerosol was. prescribed (continental, maritime) and kept constant in space and time. In the fourth one we used the full capabilities of COSMO-ART to simulate the dynamic behavior of aerosol and its feedback with radiation and cloud microphysics. We compare our model results with radar data, satellite IR images, and rain gauges.

  17. Measurements of BC-Containing Aerosol and Ice Nucleation Active Residuals in Colorado.

    NASA Astrophysics Data System (ADS)

    Katich, J. M.

    2015-12-01

    A recent ice nucleation (IN) chamber inter-comparison study (FIN-3) provided an opportunity to deploy two single particle soot photometers (SP2s) to the Stormpeak Laboratory in the mountains of Colorado in September of 2015. Aerosol was sampled from ambient air, as well as from behind both a coarse-mode aerosol concentrator and an ice nucleation chamber providing ice residuals. The SP2s characterized the size and mixing state of refractory black carbon-containing particles. Initial analyses of laboratory and ambient data collected over 3 weeks will be presented, with an emphasis on both coarse mode BC observations and BC contributions to ice residuals. The results will help constrain the role of BC from local and regional sources on heterogeneous ice nucleation.

  18. Importance of aerosol composition and mixing state for cloud droplet activation over the Arctic pack ice in summer

    NASA Astrophysics Data System (ADS)

    Leck, C.; Svensson, E.

    2015-03-01

    Concentrations of cloud condensation nuclei (CCN) were measured throughout an expedition by icebreaker around the central Arctic Ocean, including a 3 week ice drift operation at 87° N, from 3 August to 9 September 2008. In agreement with previous observations in the area and season, median daily CCN concentrations at 0.2% water vapour supersaturation (SS) were typically in the range of 15 to 30 cm-3, but concentrations varied by 2 to 3 orders of magnitude over the expedition and were occasionally below 1 cm-3. The CCN concentrations were highest near the ice edge and fell by a factor of 3 in the first 48 h of transport from the open sea into the pack ice region. For longer transport times they increased again, indicating a local source over the pack ice, suggested to be polymer gels, via drops injected into the air by bubbles bursting on open leads. We inferred the properties of the unexplained non-water soluble aerosol fraction that was necessary for reproducing the observed concentrations of CCN. This was made possible by assuming Köhler theory and simulating the cloud nucleation process using a Lagrangian adiabatic air parcel model that solves the kinetic formulation for condensation of water on size resolved aerosol particles. We propose that the portion of the internally/externally mixed water insoluble particles was larger in the corresponding smaller aerosol size ranges. These particles were physically and chemically behaving as polymer gels: the interaction of the hydrophilic and hydrophobic entities on the structures of polymer gels during cloud droplet activation would at first only show a partial wetting character and only weak hygroscopic growth. Given time, a high CCN activation efficiency is achieved, which is promoted by the hydrophilicity or surface-active properties of the gels. Thus the result in this study argues that the behaviour of the high Arctic aerosol in CCN-counters operating at water vapour SSs > 0.4% (high relative humidities) may not

  19. Organic aerosols

    SciTech Connect

    Penner, J.E.

    1994-01-01

    Organic aerosols scatter solar radiation. They may also either enhance or decrease concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the sources of organic aerosol matter. The anthropogenic sources of organic aerosols may be as large as the anthropogenic sources of sulfate aerosols, implying a similar magnitude of direct forcing of climate. The source estimates are highly uncertain and subject to revision in the future. A slow secondary source of organic aerosols of unknown origin may contribute to the observed oceanic concentrations. The role of organic aerosols acting as cloud condensation nuclei (CCN) is described and it is concluded that they may either enhance or decrease the ability of anthropogenic sulfate aerosols to act as CCN.

  20. MBAS (Methylene Blue Active Substances) and LAS (Linear Alkylbenzene Sulphonates) in Mediterranean coastal aerosols: Sources and transport processes

    NASA Astrophysics Data System (ADS)

    Becagli, S.; Ghedini, C.; Peeters, S.; Rottiers, A.; Traversi, R.; Udisti, R.; Chiari, M.; Jalba, A.; Despiau, S.; Dayan, U.; Temara, A.

    2011-12-01

    Methylene Blue Active Substances (MBAS) and Linear Alkylbenzene Sulphonates (LAS) concentrations, together with organic carbon and ions were measured in atmospheric coastal aerosols in the NW Mediterranean Basin. Previous studies have suggested that the presence of surfactants in coastal aerosols may result in vegetation damage without specifically detecting or quantifying these surfactants. Coastal aerosols were collected at a remote site (Porquerolles Island-Var, France) and at a more anthropised site (San Rossore National Park-Tuscany, Italy). The chemical data were interpreted according to a comprehensive local meteorological analysis aiming to decipher the airborne source and transport processes of these classes of compounds. The LAS concentration (anthropogenic surfactants) was measured in the samples using LC-MS/MS, a specific analytical method. The values were compared with the MBAS concentration, determined by a non-specific analytical method. At Porquerolles, the MBAS concentration (103 ± 93 ng m -3) in the summer samples was significantly higher than in the winter samples. In contrast, LAS concentrations were rarely greater than in the blank filters. At San Rossore, the mean annual MBAS concentration (887 ± 473 ng m -3 in PM10) contributed about 10% to the total atmospheric particulate organic matter. LAS mean concentration in these same aerosol samples was 11.5 ± 10.5 ng m -3. A similar MBAS (529 ± 454 ng m -3) - LAS (7.1 ± 4.1 ng m -3 LAS) ratio of ˜75 was measured in the fine (PM2.5) aerosol fraction. No linear correlation was found between MBAS and LAS concentrations. At San Rossore site the variation of LAS concentrations was studied on a daily basis over a year. The LAS concentrations in the coarse fraction (PM10-2.5) were higher during strong sea storm conditions, characterized by strong air flow coming from the sea sector. These events, occurring with more intensity in winter, promoted the formation of primary marine aerosols containing LAS

  1. Aerosol Activity and Hygroscopicity Combined with Lidar Data in the Urban Atmosphere of Athens, Greece in the Frame of the HYGRA_CD Campaign

    NASA Astrophysics Data System (ADS)

    Bougiatioti, Aikaterini; Papayannis, Alexandros; Vratolis, Stergios; Argyrouli, Athina; Mihalopoulos, Nikolaos; Tsagkaraki, Maria; Nenes, Athanasios; Eleftheriadis, Konstantinos

    2016-06-01

    Measurements of cloud condensation nuclei (CCN) concentrations between 0.2-1.0% supersaturation and aerosol size distribution were performed at an urban background site of Athens during HygrA-CD. The site is affected by local and long-range transported emissions as portrayed by the external mixing of the particles, as the larger ones appear to be more hygroscopic and more CCN-active than smaller ones. Activation fractions at all supersaturations exhibit a diurnal variability with minimum values around noon, which are considerably lower than unity. This reinforces the conclusion that the aerosol is mostly externally mixed between "fresher", less hygroscopic components with more aged, CCN active constituents.

  2. Parameterization of biomass burning aerosolsin the BRAZIL-SR radiative transfer model.

    NASA Astrophysics Data System (ADS)

    Martins, F. R.; Pereira, E. B.; Stuhlmann, R.

    2003-04-01

    This work describes the impact of the aerosols that are generated during biomass burning events in the solar irradiation, and presents a parameterization technique to improve the model estimations of the surface incident solar irradiation obtained by the BRASIL-SR radiative transfer model. It was verified that the mean systematic deviation error (MBE) of model estimates grows about 3 times and the value of root mean squared error (RMSE) duplicates in clear sky days for stations close to burned sites in central region of Brazil. The proximity of burned sites produces an increment of the same order of that produced by the presence of clouds in MBE. The parameterization technique of the biomass burning aerosols uses optical properties provided by "Global Aerosol Data Set" (GADS) and it is in accordance with measurements values obtained in two field missions: TRACE-A (1992) and SCAR-B (1995). Three different compositions were used in this study and the difference among them is the ratio of black carbon present in the aerosols: 5%, 7.8% and 10% of black carbon. These values are within the range of measured values observed in the field missions: from 4% to 12%. The aerosol profile and spatial distribution was obtained from a transport model for estimation of tracers spreading from biomass burning areas developed at INPE-CPTEC. The surface incident solar irradiation estimates, obtained with new aerosol parameterization, presented smaller systematic deviations in all the stations used in the validation process. The correlation among estimated and measured values for surface incident solar radiation grew about 2,5 times by adopting a composition with 5% of elementary carbon. The validation procedure showed that the improvements in aerosol parameterization allowed for better estimates by the model. However, the improvements are still masked by limitation imposed by the availability of only tri-hourly image schedules for the GOES-8 satellite in Southern Hemisphere

  3. Parameterized Linear Longitudinal Airship Model

    NASA Technical Reports Server (NTRS)

    Kulczycki, Eric; Elfes, Alberto; Bayard, David; Quadrelli, Marco; Johnson, Joseph

    2010-01-01

    A parameterized linear mathematical model of the longitudinal dynamics of an airship is undergoing development. This model is intended to be used in designing control systems for future airships that would operate in the atmospheres of Earth and remote planets. Heretofore, the development of linearized models of the longitudinal dynamics of airships has been costly in that it has been necessary to perform extensive flight testing and to use system-identification techniques to construct models that fit the flight-test data. The present model is a generic one that can be relatively easily specialized to approximate the dynamics of specific airships at specific operating points, without need for further system identification, and with significantly less flight testing. The approach taken in the present development is to merge the linearized dynamical equations of an airship with techniques for estimation of aircraft stability derivatives, and to thereby make it possible to construct a linearized dynamical model of the longitudinal dynamics of a specific airship from geometric and aerodynamic data pertaining to that airship. (It is also planned to develop a model of the lateral dynamics by use of the same methods.) All of the aerodynamic data needed to construct the model of a specific airship can be obtained from wind-tunnel testing and computational fluid dynamics

  4. Deriving aerosol hygroscopic mixing state from size-resolved CCN activity and HR-ToF-AMS measurements

    NASA Astrophysics Data System (ADS)

    Bhattu, Deepika; Tripathi, S. N.; Chakraborty, Abhishek

    2016-10-01

    The ability of a particle to uptake water and form a cloud droplet depends on its hygroscopicity. To understand its impact on cloud properties and ultimately radiative forcing, knowledge of chemically-resolved mixing state information or the one based on hygroscopic growth is crucial. Typically, global models assume either pure internal or external mixing state which might not be true for all conditions and sampling locations. To investigate into this, the current study employed an indirect approach to infer the probable mixing state. The hygroscopic parameters derived from κ-Kohler theory using size-resolved CCN measurements (κCCN) and bulk/size-resolved aerosol mass spectrometer (AMS) measurements (κAMS) were compared. The accumulation mode particles were found to be more hygroscopic (κCCN = 0.24) than Aitken mode (κCCN = 0.13), perhaps due to increased ratio of inorganic to organic mass fraction. The activation diameter calculated from size-resolved CCN activity measurements at 5 different supersaturation (SS) levels varied in the range of 115 nm-42 nm with κCCN = 0.13-0.23 (avg = 0.18 ± 0.10 (±1σ)). Further, κAMS>κCCN was observed possibly due to the fact that organic and inorganic mass present in the Aitken mode was not correctly represented by bulk chemical composition and size-resolved fractional contribution of oxidized OA was not accurately accounted. Better correlation of organic fraction (forg) and κCCN at lower SS explained this behaviour. The decrease in κCCN with the time of the day was more pronounced at lower SS because of the relative mass reduction of soluble inorganic species by ∼17%. Despite the large differences between κ measured from two approaches, less over-prediction (up to 18%) between measured and predicted CCN concentration suggested lower impact of chemical composition and mixing state at higher SS. However, at lower SS, presences of externally mixed CCN-inactive aerosols lead to CCN over-prediction reflecting the

  5. Ice nucleating particles at a coastal marine boundary layer site: correlations with aerosol type and meteorological conditions

    NASA Astrophysics Data System (ADS)

    Mason, R. H.; Si, M.; Li, J.; Chou, C.; Dickie, R.; Toom-Sauntry, D.; Pöhlker, C.; Yakobi-Hancock, J. D.; Ladino, L. A.; Jones, K.; Leaitch, W. R.; Schiller, C. L.; Abbatt, J. P. D.; Huffman, J. A.; Bertram, A. K.

    2015-11-01

    Information on what aerosol particle types are the major sources of ice nucleating particles (INPs) in the atmosphere is needed for climate predictions. To determine which aerosol particles are the major sources of immersion-mode INPs at a coastal site in Western Canada, we investigated correlations between INP number concentrations and both concentrations of different atmospheric particles and meteorological conditions. We show that INP number concentrations are strongly correlated with the number concentrations of fluorescent bioparticles between -15 and -25 °C, and that the size distribution of INPs is most consistent with the size distribution of fluorescent bioparticles. We conclude that biological particles were likely the major source of ice nuclei at freezing temperatures between -15 and -25 °C at this site for the time period studied. At -30 °C, INP number concentrations are also well correlated with number concentrations of the total aerosol particles ≥ 0.5 μm, suggesting that non-biological particles may have an important contribution to the population of INPs active at this temperature. As we found that black carbon particles were unlikely to be a major source of ice nuclei during this study, these non-biological INPs may include mineral dust. Furthermore, correlations involving chemical tracers of marine aerosols and marine biological activity, sodium and methanesulfonic acid, indicate that the majority of INPs measured at the coastal site likely originated from terrestrial rather than marine sources. Finally, six existing empirical parameterizations of ice nucleation were tested to determine if they accurately predict the measured INP number concentrations. We found that none of the parameterizations selected are capable of predicting INP number concentrations with high accuracy over the entire temperature range investigated. This finding illustrates that additional measurements are needed to improve parameterizations of INPs and their

  6. The Project for Intercomparison of Land-surface Parameterization Schemes

    NASA Technical Reports Server (NTRS)

    Henderson-Sellers, A.; Yang, Z.-L.; Dickinson, R. E.

    1993-01-01

    The Project for Intercomparison of Land-surface Parameterization Schemes (PILPS) is described and the first stage science plan outlined. PILPS is a project designed to improve the parameterization of the continental surface, especially the hydrological, energy, momentum, and carbon exchanges with the atmosphere. The PILPS Science Plan incorporates enhanced documentation, comparison, and validation of continental surface parameterization schemes by community participation. Potential participants include code developers, code users, and those who can provide datasets for validation and who have expertise of value in this exercise. PILPS is an important activity because existing intercomparisons, although piecemeal, demonstrate that there are significant differences in the formulation of individual processes in the available land surface schemes. These differences are comparable to other recognized differences among current global climate models such as cloud and convection parameterizations. It is also clear that too few sensitivity studies have been undertaken with the result that there is not yet enough information to indicate which simplifications or omissions are important for the near-surface continental climate, hydrology, and biogeochemistry. PILPS emphasizes sensitivity studies with and intercomparisons of existing land surface codes and the development of areally extensive datasets for their testing and validation.

  7. Organic Aerosol Formation in the Humid, Photochemically-Active Southeastern US: SOAS Experiments and Simulations

    NASA Astrophysics Data System (ADS)

    Sareen, N.; Lim, Y. B.; Carlton, A. G.; Turpin, B. J.

    2013-12-01

    Aqueous multiphase chemistry in the atmosphere can lead to rapid transformation of organic compounds, forming highly oxidized low volatility organic aerosol and, in some cases, light absorbing (brown) carbon. Because liquid water is globally abundant, this chemistry could substantially impact climate, air quality, health, and the environment. Gas-phase precursors released from biogenic and anthropogenic sources are oxidized and fragmented forming water-soluble gases that can undergo reactions in the aqueous phase (in clouds, fogs, and wet aerosols) leading to the formation of secondary organic aerosol (SOAAQ). Recent studies have highlighted the role of certain precursors like glyoxal, methylglyoxal, glycolaldehyde, acetic acid, acetone, and epoxides in the formation of SOAAQ. The goal of this work is to identify other precursors that are atmospherically important. In this study, ambient mixtures of water-soluble gases were scrubbed from the atmosphere at Brent, Alabama during the Southern Oxidant and Aerosol Study (SOAS). Four mist chambers in parallel collected ambient gases in a DI water medium at 20-25 LPM with a 4 hr collection time. Total organic carbon (TOC) values in daily composited samples were 64-180 μM. Aqueous OH radical oxidation experiments were conducted with these mixtures in a newly designed cuvette chamber to understand the formation of SOA through gas followed by aqueous chemistry. OH radicals (3.5E-2 μM [OH] s-1) were formed in-situ in the chamber, continuously by H2O2 photolysis. Precursors and products of these aqueous OH experiments were characterized using ion chromatography (IC), electrospray ionization mass spectrometry (ESI-MS), and IC-ESI-MS. ESI-MS results from a June 12th, 2013 sample showed precursors to be primarily odd, positive mode ions, indicative of the presence of non-nitrogen containing alcohols, aldehydes, organic peroxides, or epoxides. Products were seen in the negative mode and included organic acid ions like pyruvate

  8. Organic aerosol formation from biogenic compounds over the Ponderosa pine forest in Colorado

    NASA Astrophysics Data System (ADS)

    Roux, Alma Hodzic; Lee-Taylor, Julia; Cui, Yuyan; Madronich, Sasha

    2013-05-01

    The secondary organic aerosol (SOA) formation and regional growth from biogenic precursors is of particular interest given their abundance in the atmosphere, and has been investigated during the Rocky Mountain Biogenic Aerosol field Study in 2011 in the pine forest canopy (dominated by terpene emissions) using both WRF/Chem 4km simulations and the GECKO-A explicit chemistry box-model runs. We have quantified the relative contribution of different biogenic precursors to SOA levels that were measured by the aerosol mass spectrometer at the site, and investigated the relative contribution of OH, O3 and NO3 chemistry to the formed SOA mass during day-and nighttime. Although, the local production and mass concentrations of submicron organic aerosols at the site seem relatively modest ˜1-2 ug/m3, we show that the optically active regional mass is increased as the SOA formation continues for several days in the background forest air. We investigate whether the simplified SOA parameterizations used in 3D models can capture this growth. In addition, preliminary comparisons of the number concentrations and the composition of ultrafine particles (8 - 30nm) from WRF/Chem simulations and TD-CIMS measurements are also discussed, and the contribution of organic aerosols to CCN formation is quantified.

  9. Complex vertical layering and mixing of aerosols over the eastern Mediterranean: active and passive remote sensing at the Cyprus University of Technology

    NASA Astrophysics Data System (ADS)

    Mamouri, R.-E.; Nisantzi, A.; Hadjimitsis, D. G.; Ansmann, A.; Schwarz, A.; Basart, S.; Baldasano, J. M.

    2013-08-01

    Aerosols can have a complicated influence on climate conditions, directly as well as indirectly via cloud formation. The southeastern Mediterranean region can be characterized as a cross road of aerosols originating from European, Asian and African continents. Complex vertical aerosol distributions are frequently detected over Cyprus by means of active remote sensing. Observations of such complex aerosol layering and comparison of the measurements with aerosol products of regional and global atmospheric transport models are required to improve our understanding of life cycles of aerosol mixtures and their impact on climate as well as on satellite remote sensing products. In this study, a case of an intense desert dust outbreak from Syria and Saudi Arabia towards the eastern Mediterranean in September 2011 is presented. The observations used in this study were performed with a 532-nm polarization Lidar and a sun/sky AERONET photometer operated at 8 channels from 340 to 1640 nm wavelength. Both instruments belong to remote sensing station of the Cyprus Technical University at Limassol, Cyprus (34°N, 33°E). The lofted dust plume was doped with air masses that crossed sources of biomass burning smoke and anthropogenic pollution. In addition, the shallow marine boundary layer over the Mediterranean Sea and over Limassol became mixed with the anthropogenic haze by sea breeze circulations. The case study demonstrates the potential of combined lidar/photometer observations to deliver detailed vertically resolved information of the aerosol characteristics in terms of particle optical and microphysical properties, separately for the spherical particle fraction as well as for the non-spherical aerosol mode.

  10. Comparative analysis of hygroscopic properties of atmospheric aerosols at ZOTTO Siberian background station during summer and winter campaigns of 2011

    NASA Astrophysics Data System (ADS)

    Ryshkevich, T. I.; Mironov, G. N.; Mironova, S. Yu.; Vlasenko, S. S.; Chi, X.; Andreae, M. O.; Mikhailov, E. F.

    2015-09-01

    The results of measurements of hygroscopic properties and chemical analysis of atmospheric aerosol samples collected from June 10 to 20 and December 15 to 25, 2011, at the ZOTTO background stations (60.8° N, 89.35° E) in Central Siberia are presented. The sorption properties of aerosols are studied with the help of a differential analyzer of absorbed water mass in the relative humidity range of 5 to 99%. It has been found that the hygroscopic growth factor of aerosol particles collected during the winter campaign is on average 45% higher than that of the aerosol collected in the summer campaign, which leads to a 40% decrease in the critical supersaturation threshold of cloud activation of particles. The measurement data are analyzed and parameterized using a new approach that takes into account the concentration effects in the particle—water vapor system at low humidities. Based on the chemical analysis, the content of water-soluble substances in the winter sample is 2.5 times higher than in the summer sample. Here, the amount of sulfates and nitrates increases 20 and 88 times, respectively. A trajectory analysis of air mass motion shows that the increased content of inorganic ions in aerosols for the winter sample is caused by long-range transport of pollutants from industrial areas of Siberia. This difference in the chemical composition is the main source of the observed difference in hygroscopic and condensation properties of the aerosol particles.

  11. Enhanced High-Temperature Ice Nucleation Ability of Crystallized Aerosol Particles after Pre-Activation at Low Temperature

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Moehler, O.; Saathoff, H.; Schnaiter, M.

    2014-12-01

    The term pre-activation in heterogeneous ice nucleation describes the observation that the ice nucleation ability of solid ice nuclei may improve after they have already been involved in ice crystal formation or have been exposed to a temperature lower than 235 K. This can be explained by the retention of small ice embryos in cavities or crevices at the particle surface or by the capillary condensation and freezing of supercooled water, respectively. In recent cloud chamber experiments with crystallized aqueous ammonium sulfate, oxalic acid, and succinic acid solution droplets, we have unraveled a further pre-activation mechanism under ice subsaturated conditions which does not require the preceding growth of ice on the seed aerosol particles (Wagner, R. et al., J. Geophys. Res. Atmos., 119, doi: 10.1002/2014JD021741). First cloud expansion experiments were performed at a high temperature (267 - 244 K) where the crystallized particles did not promote any heterogeneous ice nucleation. Ice nucleation at this temperature, however, could be triggered by temporarily cooling the crystallized particles to a lower temperature. This is because upon crystallization, residuals of the aqueous solution are trapped within the crystals. These captured liquids can freeze when cooled below their respective homogeneous or heterogeneous freezing temperature, leading to the formation of ice pockets in the crystalline particles. When warmed again to the higher temperature, ice formation by the pre-activated particles occurred via depositional and deliquescence-induced ice growth, with ice active fractions ranging from 1 to 4% and 4 to 20%, respectively. Pre-activation disappeared above the eutectic temperature, which for the organic acids are close to the melting point of ice. This mechanism could therefore contribute to the very small fraction of atmospheric aerosol particles that are still ice active well above 263 K.

  12. Swept Volume Parameterization for Isogeometric Analysis

    NASA Astrophysics Data System (ADS)

    Aigner, M.; Heinrich, C.; Jüttler, B.; Pilgerstorfer, E.; Simeon, B.; Vuong, A.-V.

    Isogeometric Analysis uses NURBS representations of the domain for performing numerical simulations. The first part of this paper presents a variational framework for generating NURBS parameterizations of swept volumes. The class of these volumes covers a number of interesting free-form shapes, such as blades of turbines and propellers, ship hulls or wings of airplanes. The second part of the paper reports the results of isogeometric analysis which were obtained with the help of the generated NURBS volume parameterizations. In particular we discuss the influence of the chosen parameterization and the incorporation of boundary conditions.

  13. Urban aerosol refractive index prediction by partial molar refraction approach

    SciTech Connect

    Stelson, A.W. )

    1990-11-01

    The ambient aerosol of the polluted troposphere is a complex mixture of water, electrolytes, ionic solids, metal oxides and glasses, and carbonaceous material. Prediction of the refractive indexes of these inhomogeneous mixtures can be a formidable task. Contained within this paper is the necessary parameterization to estimate the mean real aerosol refractive index based on aerosol chemical composition and the partial molar refraction approach. This approach assumes all chemical constituents are homogeneously distributed throughout the aerosol phase. Consistency of the data is discussed, and this approach is verified by prediction of refractive indexes of NaOH-Si-O{sub 2}-H{sub 2}O mixtures. Finally, aerosol chemical composition data from the Los Angeles Basin are used to predict mean real aerosol refractive indexes. These values are compared to urban aerosol refractive indexes calculated via other techniques (light scattering).

  14. Investigation of molar volume and surfactant characteristics of water-soluble organic compounds in biomass burning aerosol

    NASA Astrophysics Data System (ADS)

    Asa-Awuku, A.; Sullivan, A. P.; Hennigan, C. J.; Weber, R. J.; Nenes, A.

    2008-02-01

    In this study, we characterize the CCN activity of the water-soluble organics in biomass burning aerosol. The aerosol after collection upon filters is dissolved in water using sonication. Hydrophobic and hydrophilic components are fractionated from a portion of the original sample using solid phase extraction, and subsequently desalted. The surface tension and CCN activity of these different samples are measured with a KSV CAM 200 goniometer and a DMT Streamwise Thermal Gradient CCN Counter, respectively. The measurements show that the strongest surfactants are isolated in the hydrophobic fraction, while the hydrophilics exhibit negligible surface tension depression. The presence of salts (primarily (NH4)2SO4) in the hydrophobic fraction substantially enhances surface tension depression; their synergistic effects considerably enhance CCN activity, exceeding that of pure (NH4)2SO4. From our analysis, average thermodynamic properties (i.e, molar volume) are determined for samples using our newly developed Köhler Theory Analysis (KTA) method. The molar mass of the hydrophilic and hydrophobic aerosol components is estimated to be 87±26 g mol-1 and 780±231 g mol-1, respectively. KTA also suggests that the relative proportion (in moles) of hydrophobic to hydrophilic compounds in the original sample to be 1:3. For the first time, KTA is applied to an aerosol with this level of complexity and displays its potential for providing physically-based constraints for GCM parameterizations of the aerosol indirect effect.

  15. Investigation of molar volume and surfactant characteristics of water-soluble organic compounds in biomass burning aerosol

    NASA Astrophysics Data System (ADS)

    Asa-Awuku, A.; Nenes, A.; Sullivan, A. P.; Hennigan, C. J.; Weber, R. J.

    2007-03-01

    In this study, we characterize the CCN activity of the water-soluble organics in biomass burning aerosol. The aerosol after collection upon filters is dissolved in water using sonication. Hydrophobic and hydrophilic components are fractionated from a portion of the original sample using solid phase extraction, and subsequently desalted. The surface tension and CCN activity of these different samples are measured with a KSV CAM 200 goniometer and a DMT Streamwise Thermal Gradient CCN Counter, respectively. The measurements show that the strongest surfactants are isolated in the hydrophobic fraction, while the hydrophilics exhibit negligible surface tension depression. The presence of salts (primarily (NH4)2SO4) in the hydrophobic fraction substantially enhances surface tension depression; their synergistic effects considerably enhance CCN activity, exceeding that of pure (NH4)2SO4. For our analysis, average thermodynamic properties (i.e., molar volume) are determined for samples using our newly developed Köhler Theory Analysis (KTA) method. We have found that, the molar mass of the hydrophilic and hydrophobic aerosol components is estimated to be 87±26 g mol-1 and 780±231 g mol-1, respectively. KTA also suggests that the relative proportion (in moles) of hydrophobic to hydrophilic compounds in the original sample to be 1:3. For the first time, KTA is applied to an aerosol with this level of complexity and displays its potential for providing physically-based constraints for GCM parameterizations of the aerosol indirect effect.

  16. A Comparative Study of Nucleation Parameterizations: 2. Three-Dimensional Model Application and Evaluation

    EPA Science Inventory

    Following the examination and evaluation of 12 nucleation parameterizations presented in part 1, 11 of them representing binary, ternary, kinetic, and cluster‐activated nucleation theories are evaluated in the U.S. Environmental Protection Agency Community Multiscale Air Quality ...

  17. Global modelling of direct and indirect effects of sea spray aerosol using a source function encapsulating wave state

    NASA Astrophysics Data System (ADS)

    Partanen, A.-I.; Dunne, E. M.; Bergman, T.; Laakso, A.; Kokkola, H.; Ovadnevaite, J.; Sogacheva, L.; Baisnée, D.; Sciare, J.; Manders, A.; O'Dowd, C.; de Leeuw, G.; Korhonen, H.

    2014-11-01

    Recently developed parameterizations for the sea spray aerosol source flux, encapsulating wave state, and its organic fraction were incorporated into the aerosol-climate model ECHAM-HAMMOZ to investigate the direct and indirect radiative effects of sea spray aerosol particles. Our simulated global sea salt emission of 805 Tg yr-1 (uncertainty range 378-1233 Tg yr-1) was much lower than typically found in previous studies. Modelled sea salt and sodium ion concentrations agreed relatively well with measurements in the smaller size ranges at Mace Head (annual normalized mean model bias -13% for particles with vacuum aerodynamic diameter Dva < 1 μm), Point Reyes (-29% for particles with aerodynamic diameter Da < 2.5 μm) and Amsterdam Island (-52% for particles with Da < 1 μm) but the larger sizes were overestimated (899% for particles with 2.5 μm < Da < 10 μm) at Amsterdam Island. This suggests that at least the high end of the previous estimates of sea spray mass emissions is unrealistic. On the other hand, the model clearly underestimated the observed concentrations of organic or total carbonaceous aerosol at Mace Head (-82%) and Amsterdam Island (-68%). The large overestimation (212%) of organic matter at Point Reyes was due to the contribution of continental sources. At the remote Amsterdam Island site, the organic concentration was underestimated especially in the biologically active months, suggesting a need to improve the parameterization of the organic sea spray fraction. Globally, the satellite-retrieved AOD over the oceans, using PARASOL data, was underestimated by the model (means over ocean 0.16 and 0.10, respectively); however, in the pristine region around Amsterdam Island the measured AOD fell well within the simulated uncertainty range. The simulated sea spray aerosol contribution to the indirect radiative effect was positive (0.3 W m-2), in contrast to previous studies. This positive effect was ascribed to the tendency of sea salt aerosol to

  18. Global modelling of direct and indirect effects of sea spray aerosol using a source function encapsulating wave state

    NASA Astrophysics Data System (ADS)

    Partanen, A.-I.; Dunne, E. M.; Bergman, T.; Laakso, A.; Kokkola, H.; Ovadnevaite, J.; Sogacheva, L.; Baisnée, D.; Sciare, J.; Manders, A.; O'Dowd, C.; de Leeuw, G.; Korhonen, H.

    2014-02-01

    Recently developed parameterizations for the sea spray aerosol source flux, encapsulating wave state, and its organic fraction were incorporated into the aerosol-climate model ECHAM-HAMMOZ to investigate the direct and indirect radiative effects of sea spray aerosol particles. Our simulated global sea salt emission of 805 Tg yr-1 (uncertainty range 378-1233 Tg yr-1) was much lower than typically found in previous studies. Modelled sea salt and sodium ion concentrations agreed relatively well with measurements in the smaller size ranges at Mace Head (annual normalized mean model bias -13% for particles with vacuum aerodynamic diameter Dva < 1 μm), Point Reyes (-29% for particles with aerodynamic diameter Da < 2.5 μm) and Amsterdam Island (-52% for particles with Da < 1 μm) but the larger sizes were overestimated (899% for particles with 2.5 μm aerosol at Mace Head (-82%) and Amsterdam Island (-68%). The large overestimation (212%) of organic matter at Point Reyes was due to the contribution of continental sources. At the remote Amsterdam Island site, the organic concentration was underestimated especially in the biologically active months, suggesting a need to improve the parameterization of the organic sea spray fraction. Globally, the satellite-retrieved AOD over the oceans, using PARASOL data, was underestimated by the model (means over ocean 0.16 and 0.10, respectively); however, in the pristine region around Amsterdam Island the measured AOD fell well within the simulated uncertainty range. The simulated sea spray aerosol contribution to the indirect radiative effect was positive (0.3 W m-2), in contrast to previous studies. This positive effect was ascribed to the tendency of sea salt aerosol to

  19. Methods of testing parameterizations: Vertical ocean mixing

    NASA Technical Reports Server (NTRS)

    Tziperman, Eli

    1992-01-01

    The ocean's velocity field is characterized by an exceptional variety of scales. While the small-scale oceanic turbulence responsible for the vertical mixing in the ocean is of scales a few centimeters and smaller, the oceanic general circulation is characterized by horizontal scales of thousands of kilometers. In oceanic general circulation models that are typically run today, the vertical structure of the ocean is represented by a few tens of discrete grid points. Such models cannot explicitly model the small-scale mixing processes, and must, therefore, find ways to parameterize them in terms of the larger-scale fields. Finding a parameterization that is both reliable and plausible to use in ocean models is not a simple task. Vertical mixing in the ocean is the combined result of many complex processes, and, in fact, mixing is one of the less known and less understood aspects of the oceanic circulation. In present models of the oceanic circulation, the many complex processes responsible for vertical mixing are often parameterized in an oversimplified manner. Yet, finding an adequate parameterization of vertical ocean mixing is crucial to the successful application of ocean models to climate studies. The results of general circulation models for quantities that are of particular interest to climate studies, such as the meridional heat flux carried by the ocean, are quite sensitive to the strength of the vertical mixing. We try to examine the difficulties in choosing an appropriate vertical mixing parameterization, and the methods that are available for validating different parameterizations by comparing model results to oceanographic data. First, some of the physical processes responsible for vertically mixing the ocean are briefly mentioned, and some possible approaches to the parameterization of these processes in oceanographic general circulation models are described in the following section. We then discuss the role of the vertical mixing in the physics of the

  20. Chemical and physical influences on aerosol activation in liquid clouds: an empirical study based on observations from the Jungfraujoch, Switzerland

    NASA Astrophysics Data System (ADS)

    Hoyle, C. R.; Webster, C. S.; Rieder, H. E.; Hammer, E.; Gysel, M.; Bukowiecki, N.; Weingartner, E.; Steinbacher, M.; Baltensperger, U.

    2015-06-01

    A simple empirical model to predict the number of aerosols which activate to form cloud droplets in a warm, free tropospheric cloud has been established, based on data from four summertime Cloud and Aerosol Characterisation Experiments (CLACE) campaigns at the Jungfraujoch (JFJ). It is shown that 76% of the observed variance in droplet numbers can be represented by a model accounting only for the number of potential CCN (defined as number of particles larger than 90 nm in diameter), while the mean errors in the model representation may be reduced by the addition of further explanatory variables, such as the mixing ratios of O3, CO and the height of the measurements above cloud base. The model has similar ability to represent the observed droplet numbers in each of the individual years, as well as for the two predominant local wind directions at the JFJ (north west and south east). Given the central European location of the JFJ, with air masses in summer being representative of the free troposphere with regular boundary layer in-mixing via convection, we expect that this model is applicable to warm, free tropospheric clouds over the European continent.

  1. Toward a macroscopic parameterization of iceberg calving

    NASA Astrophysics Data System (ADS)

    Amundson, J. M.

    2014-12-01

    Parameterization of iceberg calving for prognostic glacier and ice sheet models remains a major challenge due to a poor understanding of the physical processes governing calving. Here, I propose a semi-empirical, macroscopic parameterization of calving that ignores the complex physics of the glacier-ocean interface, can be applied to any calving margin, and is easy to implement with very little computational cost. To test the parameterization, I apply it to a one-dimensional flowline model of an Alaskan-style tidewater glacier and subject the model to various climatic forcings. The model produces results that are roughly consistent with observations, i.e., rapid retreat and flow acceleration through an overdeepening over decades and slow re-advance over millenia. Model results are compared to the previously proposed water depth, height above flotation, and crevasse-depth calving parameterizations to show that they are consistent with the macroscopic parameterization under certain conditions. Although there remains a great deal of uncertainty in the exact form of the macroscopic parameterization, it does appear to be a promising and simple way to model the glacier-ocean boundary.

  2. Ceilometer for aerosol profiling: comparison with the multiwavelength in the frame of INTERACT (INTERcomparison of Aerosol and Cloud Tracking)

    NASA Astrophysics Data System (ADS)

    Madonna, Fabio; Vande Hey, Joshua; Rosoldi, Marco; Amato, Francesco; Pappalardo, Gelsomina

    2015-04-01

    Observations of cloud base height are important for meteorology, observations of aerosols are important for air quality applications, observations of cloud cover and aerosols address key uncertainties in climate study. To improve parameterization and uncertainties of numerical models, observations provided by high resolution networks of ground-based instruments are needed. In order to achieve broad, high resolution coverage, low-cost instruments are preferable, though it is essential that the sensitivity, stability, biases and uncertainties of these instruments are well-understood. Despite of their differences from more advanced and more powerful lidars, low construction and operation cost of ceilometer, originally designed for cloud base height monitoring, has fostered their use for the quantitative study of aerosol properties. The large number of ceilometers available worldwide represent a strong motivation to investigate to which extent they can be used to fill the geographical gaps between advanced lidar stations and how their continuous data flow can be linked to existing networks of the advanced lidars, like EARLINET (European Aerosol research LIdar NETwork). In order to make the best use of existing and future ceilometer deployments, ceilometer must be better characterized. This is the purpose of the INTERACT campaign carried out in the frame of ACTRIS Transnational Access activities at CNR-IMAA Atmospheric Observatory (CIAO - 760 m a.s.l., 40.60 N, 15.72 E). In this paper, an overview of the results achieved during the campaign is provided. In particular multi-wavelength Raman lidar measurements are used to investigate the capability of ceilometers to provide reliable information about atmospheric aerosol content through the INTERACT (INTERcomparison of Aerosol and Cloud Tracking) campaign carried out at the CNR-IMAA Atmospheric Observatory (760 m a.s.l., 40.60N, 15.72E), in the framework of ACTRIS (Aerosol Clouds Trace gases Research InfraStructure) FP7

  3. Meteorological and aerosol effects on marine cloud microphysical properties

    NASA Astrophysics Data System (ADS)

    Sanchez, K. J.; Russell, L. M.; Modini, R. L.; Frossard, A. A.; Ahlm, L.; Corrigan, C. E.; Roberts, G. C.; Hawkins, L. N.; Schroder, J. C.; Bertram, A. K.; Zhao, R.; Lee, A. K. Y.; Lin, J. J.; Nenes, A.; Wang, Z.; Wonaschütz, A.; Sorooshian, A.; Noone, K. J.; Jonsson, H.; Toom, D.; Macdonald, A. M.; Leaitch, W. R.; Seinfeld, J. H.

    2016-04-01

    Meteorology and microphysics affect cloud formation, cloud droplet distributions, and shortwave reflectance. The Eastern Pacific Emitted Aerosol Cloud Experiment and the Stratocumulus Observations of Los-Angeles Emissions Derived Aerosol-Droplets studies provided measurements in six case studies of cloud thermodynamic properties, initial particle number distribution and composition, and cloud drop distribution. In this study, we use simulations from a chemical and microphysical aerosol-cloud parcel (ACP) model with explicit kinetic drop activation to reproduce observed cloud droplet distributions of the case studies. Four cases had subadiabatic lapse rates, resulting in fewer activated droplets, lower liquid water content, and higher cloud base height than an adiabatic lapse rate. A weighted ensemble of simulations that reflect measured variation in updraft velocity and cloud base height was used to reproduce observed droplet distributions. Simulations show that organic hygroscopicity in internally mixed cases causes small effects on cloud reflectivity (CR) (<0.01), except for cargo ship and smoke plumes, which increased CR by 0.02 and 0.07, respectively, owing to their high organic mass fraction. Organic hygroscopicity had larger effects on droplet concentrations for cases with higher aerosol concentrations near the critical diameter (namely, polluted cases with a modal peak near 0.1 µm). Differences in simulated droplet spectral widths (k) caused larger differences in CR than organic hygroscopicity in cases with organic mass fractions of 60% or less for the cases shown. Finally, simulations from a numerical parameterization of cloud droplet activation suitable for general circulation models compared well with the ACP model, except under high organic mass fraction.

  4. Parameterizing Size Distribution in Ice Clouds

    SciTech Connect

    DeSlover, Daniel; Mitchell, David L.

    2009-09-25

    cloud optical properties formulated in terms of PSD parameters in combination with remote measurements of thermal radiances to characterize the small mode. This is possible since the absorption efficiency (Qabs) of small mode crystals is larger at 12 µm wavelength relative to 11 µm wavelength due to the process of wave resonance or photon tunneling more active at 12 µm. This makes the 12/11 µm absorption optical depth ratio (or equivalently the 12/11 µm Qabs ratio) a means for detecting the relative concentration of small ice particles in cirrus. Using this principle, this project tested and developed PSD schemes that can help characterize cirrus clouds at each of the three ARM sites: SGP, NSA and TWP. This was the main effort of this project. These PSD schemes and ice sedimentation velocities predicted from them have been used to test the new cirrus microphysics parameterization in the GCM known as the Community Climate Systems Model (CCSM) as part of an ongoing collaboration with NCAR. Regarding the second problem, we developed and did preliminary testing on a passive thermal method for retrieving the total water path (TWP) of Arctic mixed phase clouds where TWPs are often in the range of 20 to 130 g m-2 (difficult for microwave radiometers to accurately measure). We also developed a new radar method for retrieving the cloud ice water content (IWC), which can be vertically integrated to yield the ice water path (IWP). These techniques were combined to determine the IWP and liquid water path (LWP) in Arctic clouds, and hence the fraction of ice and liquid water. We have tested this approach using a case study from the ARM field campaign called M-PACE (Mixed-Phase Arctic Cloud Experiment). This research led to a new satellite remote sensing method that appears promising for detecting low levels of liquid water in high clouds typically between -20 and -36 oC. We hope to develop this method in future research.

  5. Evaluating WRF-Chem aerosol indirect effects in Southeast Pacific marine stratocumulus during VOCALS-REx

    SciTech Connect

    Saide P. E.; Springston S.; Spak, S. N.; Carmichael, G. R.; Mena-Carrasco, M. A.; Yang, Q.; Howell, S.; Leon, D. C.; Snider, J. R.; Bandy, A. R.; Collett, J. L.; Benedict, K. B.; de Szoeke, S. P.; Hawkins, L. N.; Allen, G.; Crawford, I.; Crosier, J.

    2012-03-29

    We evaluate a regional-scale simulation with the WRF-Chem model for the VAMOS (Variability of the American Monsoon Systems) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx), which sampled the Southeast Pacific's persistent stratocumulus deck. Evaluation of VOCALS-REx ship-based and three aircraft observations focuses on analyzing how aerosol loading affects marine boundary layer (MBL) dynamics and cloud microphysics. We compare local time series and campaign-averaged longitudinal gradients, and highlight differences in model simulations with (W) and without (NW) wet deposition processes. The higher aerosol loadings in the NW case produce considerable changes in MBL dynamics and cloud microphysics, in accordance with the established conceptual model of aerosol indirect effects. These include increase in cloud albedo, increase in MBL and cloud heights, drizzle suppression, increase in liquid water content, and increase in cloud lifetime. Moreover, better statistical representation of aerosol mass and number concentration improves model fidelity in reproducing observed spatial and temporal variability in cloud properties, including top and base height, droplet concentration, water content, rain rate, optical depth (COD) and liquid water path (LWP). Together, these help to quantify confidence in WRF-Chem's modeled aerosol-cloud interactions, especially in the activation parameterization, while identifying structural and parametric uncertainties including: irreversibility in rain wet removal; overestimation of marine DMS and sea salt emissions, and accelerated aqueous sulfate conversion. Our findings suggest that WRF-Chem simulates marine cloud-aerosol interactions at a level sufficient for applications in forecasting weather and air quality and studying aerosol climate forcing, and may do so with the reliability required for policy analysis.

  6. A Physically Based Framework for Modelling the Organic Fractionation of Sea Spray Aerosol from Bubble Film Langmuir Equilibria

    SciTech Connect

    Burrows, Susannah M.; Ogunro, O.; Frossard, Amanda; Russell, Lynn M.; Rasch, Philip J.; Elliott, S.

    2014-12-19

    The presence of a large fraction of organic matter in primary sea spray aerosol (SSA) can strongly affect its cloud condensation nuclei activity and interactions with marine clouds. Global climate models require new parameterizations of the SSA composition in order to improve the representation of these processes. Existing proposals for such a parameterization use remotely-sensed chlorophyll-a concentrations as a proxy for the biogenic contribution to the aerosol. However, both observations and theoretical considerations suggest that existing relationships with chlorophyll-a, derived from observations at only a few locations, may not be representative for all ocean regions. We introduce a novel framework for parameterizing the fractionation of marine organic matter into SSA based on a competitive Langmuir adsorption equilibrium at bubble surfaces. Marine organic matter is partitioned into classes with differing molecular weights, surface excesses, and Langmuir adsorption parameters. The classes include a lipid-like mixture associated with labile dissolved organic carbon (DOC), a polysaccharide-like mixture associated primarily with semi-labile DOC, a protein-like mixture with concentrations intermediate between lipids and polysaccharides, a processed mixture associated with recalcitrant surface DOC, and a deep abyssal humic-like mixture. Box model calculations have been performed for several cases of organic adsorption to illustrate the underlying concepts. We then apply the framework to output from a global marine biogeochemistry model, by partitioning total dissolved organic carbon into several classes of macromolecule. Each class is represented by model compounds with physical and chemical properties based on existing laboratory data. This allows us to globally map the predicted organic mass fraction of the nascent submicron sea spray aerosol. Predicted relationships between chlorophyll-\\textit{a} and organic fraction are similar to existing empirical

  7. The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3

    USGS Publications Warehouse

    Donner, L.J.; Wyman, B.L.; Hemler, R.S.; Horowitz, L.W.; Ming, Y.; Zhao, M.; Golaz, J.-C.; Ginoux, P.; Lin, S.-J.; Schwarzkopf, M.D.; Austin, J.; Alaka, G.; Cooke, W.F.; Delworth, T.L.; Freidenreich, S.M.; Gordon, C.T.; Griffies, S.M.; Held, I.M.; Hurlin, W.J.; Klein, S.A.; Knutson, T.R.; Langenhorst, A.R.; Lee, H.-C.; Lin, Y.; Magi, B.I.; Malyshev, S.L.; Milly, P.C.D.; Naik, V.; Nath, M.J.; Pincus, R.; Ploshay, J.J.; Ramaswamy, V.; Seman, C.J.; Shevliakova, E.; Sirutis, J.J.; Stern, W.F.; Stouffer, R.J.; Wilson, R.J.; Winton, M.; Wittenberg, A.T.; Zeng, F.

    2011-01-01

    The Geophysical Fluid Dynamics Laboratory (GFDL) has developed a coupled general circulation model (CM3) for the atmosphere, oceans, land, and sea ice. The goal of CM3 is to address emerging issues in climate change, including aerosol-cloud interactions, chemistry-climate interactions, and coupling between the troposphere and stratosphere. The model is also designed to serve as the physical system component of earth system models and models for decadal prediction in the near-term future-for example, through improved simulations in tropical land precipitation relative to earlier-generation GFDL models. This paper describes the dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component (AM3) of this model. Relative to GFDL AM2, AM3 includes new treatments of deep and shallow cumulus convection, cloud droplet activation by aerosols, subgrid variability of stratiform vertical velocities for droplet activation, and atmospheric chemistry driven by emissions with advective, convective, and turbulent transport. AM3 employs a cubed-sphere implementation of a finite-volume dynamical core and is coupled to LM3, a new land model with ecosystem dynamics and hydrology. Its horizontal resolution is approximately 200 km, and its vertical resolution ranges approximately from 70 m near the earth's surface to 1 to 1.5 km near the tropopause and 3 to 4 km in much of the stratosphere. Most basic circulation features in AM3 are simulated as realistically, or more so, as in AM2. In particular, dry biases have been reduced over South America. In coupled mode, the simulation of Arctic sea ice concentration has improved. AM3 aerosol optical depths, scattering properties, and surface clear-sky downward shortwave radiation are more realistic than in AM2. The simulation of marine stratocumulus decks remains problematic, as in AM2. The most intense 0.2% of precipitation rates occur less frequently in AM3 than observed. The last two decades of

  8. Parameter sensitivity study of Arctic aerosol vertical distribution in CAM5

    NASA Astrophysics Data System (ADS)

    Jiao, C.; Flanner, M.

    2015-12-01

    Arctic surface temperature response to light-absorbing aerosols (black carbon, brown carbon and dust) depends strongly on their vertical distributions. Improving model simulations of three dimensional aerosol fields in the remote Arctic region will therefore lead to improved projections of the climate change caused by aerosol emissions. In this study, we investigate how different physical parameterizations in the Community Atmosphere Model version 5 (CAM5) influence the simulated vertical distribution of Arctic aerosols. We design experiments to test the sensitivity of the simulated aerosol fields to perturbations of selected aerosol process-related parameters in the Modal Aerosol Module with seven lognormal modes (MAM7), such as those govern aerosol aging, in-cloud and below-cloud scavenging, aerosol hygroscopicity and so on. The simulations are compared with observed aerosol vertical distributions and total optical depth to assess model performance and quantify uncertainties associated with these model parameterizations. Observations applied here include Arctic aircraft measurements of black carbon and sulfate vertical profiles, along with Aerosol Robotic Network (AERONET) optical depth measurements. We also assess the utility of using High Spectral Resolution Lidar (HSRL) measurements from the ARM Barrow site to infer vertical profiles of aerosol extinction. The sensitivity study explored here will provide guidance for optimizing global aerosol simulations.

  9. A process-based fire parameterization of intermediate complexity in a Dynamic Global Vegetation Model

    NASA Astrophysics Data System (ADS)

    Li, F.; Zeng, X. D.; Levis, S.

    2012-07-01

    A process-based fire parameterization of intermediate complexity has been developed for global simulations in the framework of a Dynamic Global Vegetation Model (DGVM) in an Earth System Model (ESM). Burned area in a grid cell is estimated by the product of fire counts and average burned area of a fire. The scheme comprises three parts: fire occurrence, fire spread, and fire impact. In the fire occurrence part, fire counts rather than fire occurrence probability are calculated in order to capture the observed high burned area fraction in areas of high fire frequency and realize parameter calibration based on MODIS fire counts product. In the fire spread part, post-fire region of a fire is assumed to be elliptical in shape. Mathematical properties of ellipses and some mathematical derivations are applied to improve the equation and assumptions of an existing fire spread parameterization. In the fire impact part, trace gas and aerosol emissions due to biomass burning are estimated, which offers an interface with atmospheric chemistry and aerosol models in ESMs. In addition, flexible time-step length makes the new fire parameterization easily applied to various DGVMs. Global performance of the new fire parameterization is assessed by using an improved version of the Community Land Model version 3 with the Dynamic Global Vegetation Model (CLM-DGVM). Simulations are compared against the latest satellite-based Global Fire Emission Database version 3 (GFED3) for 1997-2004. Results show that simulated global totals and spatial patterns of burned area and fire carbon emissions, regional totals and spreads of burned area, global annual burned area fractions for various vegetation types, and interannual variability of burned area are reasonable, and closer to GFED3 than CLM-DGVM simulations with the commonly used Glob-FIRM fire parameterization and the old fire module of CLM-DGVM. Furthermore, average error of simulated trace gas and aerosol emissions due to biomass burning

  10. A process-based fire parameterization of intermediate complexity in a Dynamic Global Vegetation Model

    NASA Astrophysics Data System (ADS)

    Li, F.; Zeng, X. D.; Levis, S.

    2012-03-01

    A process-based fire parameterization of intermediate complexity has been developed for global simulations in the framework of a Dynamic Global Vegetation Model (DGVM) in an Earth System Model (ESM). Burned area in a grid cell is estimated by the product of fire counts and average burned area per fire. The scheme comprises three parts: fire occurrence, fire spread, and fire impact. In the fire occurrence part, fire counts rather than fire occurrence probability is calculated in order to capture the observed high burned area fraction in regions where fire occurs frequently. In the fire spread part, post-fire region of a fire is assumed to be elliptical in shape. Mathematical properties of ellipses and mathematical derivation are applied to remove redundant and unreasonable equation and assumptions in existing fire spread parameterization. In the fire impact part, trace gas and aerosol emissions due to biomass burning are estimated, which offers an interface with atmospheric chemistry and aerosol models in ESMs. In addition, flexible time-step length makes the new fire parameterization easily applied to various DGVMs. Global performance of the new fire parameterization is assessed by using an improved version of the Community Land Model version 3 with the Dynamic Global Vegetation Model (CLM-DGVM). Simulations are compared against the latest satellite-based Global Fire Emission Database version 3 (GFED3) for 1997-2004. Results show that simulated global totals and spatial patterns of burned area and fire carbon emissions, global annual burned area fractions for various vegetation types and interannual variability of burned area are in close agreement with the GFED3, and more accurate than CLM-DGVM simulations with the commonly used Glob-FIRM fire parameterization and the old fire module of CLM-DGVM. Furthermore, the average relative error of simulated trace gas and aerosol emissions due to biomass burning is 7 %. Results suggest that the new fire parameterization may

  11. Coagulation effect on the activity size distributions of long lived radon progeny aerosols and its application to atmospheric residence time estimation techniques.

    PubMed

    Anand, S; Mayya, Y S

    2015-03-01

    The long lived naturally occurring radon progeny species in the atmosphere, namely (210)Pb, (210)Bi and (210)Po, have been used as important tracers for understanding the atmospheric mixing processes and estimating aerosol residence times. Several observations in the past have shown that the activity size distribution of these species peaks at larger particle sizes as compared to the short lived radon progeny species - an effect that has been attributed to the process of coagulation of the background aerosols to which they are attached. To address this issue, a mathematical equation is derived for the activity-size distribution of tracer species by formulating a generalized distribution function for the number of tracer atoms present in coagulating background particles in the presence of radioactive decay and removal. A set of these equations is numerically solved for the progeny chain using Fuchs coagulation kernel combined with a realistic steady-state aerosol size spectrum that includes nucleation, accumulation and coarse mode components. The important findings are: (i) larger shifts in the modal sizes of (210)Pb and (210)Po at higher aerosol concentrations such as that found in certain Asian urban regions (ii) enrichment of tracer specific activity on particles as compared to that predicted by pure attachment laws (iii) sharp decline of daughter-to-parent activity ratios for decreasing particle sizes. The implication of the results to size-fractionated residence time estimation techniques is highlighted. A coagulation corrected graphical approach is presented for estimating the residence times from the size-segregated activity ratios of (210)Bi and (210)Po with respect to (210)Pb. The discrepancy between the residence times predicted by conventional formula and the coagulation corrected approach for specified activity ratios increases at higher atmospheric aerosol number concentrations (>10(10) #/m(3)) for smaller sizes (<1 μm). The results are further

  12. Coagulation effect on the activity size distributions of long lived radon progeny aerosols and its application to atmospheric residence time estimation techniques.

    PubMed

    Anand, S; Mayya, Y S

    2015-03-01

    The long lived naturally occurring radon progeny species in the atmosphere, namely (210)Pb, (210)Bi and (210)Po, have been used as important tracers for understanding the atmospheric mixing processes and estimating aerosol residence times. Several observations in the past have shown that the activity size distribution of these species peaks at larger particle sizes as compared to the short lived radon progeny species - an effect that has been attributed to the process of coagulation of the background aerosols to which they are attached. To address this issue, a mathematical equation is derived for the activity-size distribution of tracer species by formulating a generalized distribution function for the number of tracer atoms present in coagulating background particles in the presence of radioactive decay and removal. A set of these equations is numerically solved for the progeny chain using Fuchs coagulation kernel combined with a realistic steady-state aerosol size spectrum that includes nucleation, accumulation and coarse mode components. The important findings are: (i) larger shifts in the modal sizes of (210)Pb and (210)Po at higher aerosol concentrations such as that found in certain Asian urban regions (ii) enrichment of tracer specific activity on particles as compared to that predicted by pure attachment laws (iii) sharp decline of daughter-to-parent activity ratios for decreasing particle sizes. The implication of the results to size-fractionated residence time estimation techniques is highlighted. A coagulation corrected graphical approach is presented for estimating the residence times from the size-segregated activity ratios of (210)Bi and (210)Po with respect to (210)Pb. The discrepancy between the residence times predicted by conventional formula and the coagulation corrected approach for specified activity ratios increases at higher atmospheric aerosol number concentrations (>10(10) #/m(3)) for smaller sizes (<1 μm). The results are further

  13. Type-segregated aerosol effects on regional monsoon activity: A study using ground-based experiments and model simulations

    NASA Astrophysics Data System (ADS)

    Vijayakumar, K.; Devara, P. C. S.; Sonbawne, S. M.

    2014-12-01

    Classification of observed aerosols into key types [e.g., clean-maritime (CM), desert-dust (DD), urban-industrial/biomass-burning (UI/BB), black carbon (BC), organic carbon (OC) and mixed-type aerosols (MA)] would facilitate to infer aerosol sources, effects, and feedback mechanisms, not only to improve the accuracy of satellite retrievals but also to quantify the assessment of aerosol radiative impacts on climate. In this paper, we report the results of a study conducted in this direction, employing a Cimel Sun-sky radiometer at the Indian Institute of Tropical Meteorology (IITM), Pune, India during 2008 and 2009, which represent two successive contrasting monsoon years. The study provided an observational evidence to show that the local sources are subject to heavy loading of absorbing aerosols (dust and black carbon), with strong seasonality closely linked to the monsoon annual rainfall cycle over Pune, a tropical urban station in India. The results revealed the absence of CM aerosols in the pre-monsoon as well as in the monsoon seasons of 2009 as opposed to 2008. Higher loading of dust aerosols is observed in the pre-monsoon and monsoon seasons of 2009; majority may be coated with fine BC aerosols from local emissions, leading to reduction in regional rainfall. Further, significant decrease in coarse-mode AOD and presence of carbonaceous aerosols, affecting the aerosol-cloud interaction and monsoon-rain processes via microphysics and dynamics, is considered responsible for the reduction in rainfall during 2009. Additionally, we discuss how optical depth, contributed by different types of aerosols, influences the distribution of monsoon rainfall over an urban region using the Monitoring Atmospheric Composition and Climate (MACC) aerosol reanalysis. Furthermore, predictions of the Dust REgional Atmospheric Model (DREAM) simulations combined with HYSPLIT (HYbrid Single Particle Lagrangian Integrated Trajectory) cluster model are also discussed in support of the

  14. Connecting the solubility and CCN activation of complex organic aerosols: A theoretical study using the Solubility Basis Set (SBS)

    NASA Astrophysics Data System (ADS)

    Rastak, Narges; Riipinen, Ilona; Pandis, Spyros

    2015-04-01

    INTRODUCTION Organic aerosol particles often consist of thousands of compounds with different properties. One of these properties is solubility, which affects the hygroscopic growth and CCN activation of the organic particles. Here we investigate the CCN activation behavior of complex organic aerosols accounting for the distribution of solubilities present in these mixtures. METHODS We considered a monodisperse population of spherical aerosol particles consisting of an internal mixture of organic compounds. When exposed to water vapor, these particles were assumed to grow reaching a thermodynamic equilibrium between the water vapor and the particle phase. The composition of the organic and aqueous phases was determined on one hand by the equilibrium between the aqueous phase and water vapor, and on the other hand by the equilibrium of the aqueous phase with the organic insoluble phase. We modelled the mixtures with the help of a solubility basis set (SBS, analogous to the volatility basis set VBS, Donahue et al. 2006, 2011, 2012), describing the mixture with n surrogate compounds with varying solubilities. We varied the range and shape of the solubility distribution, and the number of components n in the distribution, we also assumed two different kinds of interactions between the organic compounds in the insoluble phase 1) ideal mixture, where organics limit each other's dissolution; 2) unity activity, where organics behave as pure compounds and do not influence each other's dissolution. Critical supersaturations and the dissolution behavior at the point of CCN activation were calculated utilizing the Köhler theory for all organic mixtures (denoted here as the "full model"). The full model predictions were compared with the three simplified models: 1) assuming complete dissolution of all compounds; 2) treating the organic mixture solubility with the hygroscopicity parameter κ and 3) assuming a fixed soluble fraction ɛ for each mixture. RESULTS AND CONCLUSIONS

  15. MIRAGE: Model Description and Evaluation of Aerosols and Trace Gases

    SciTech Connect

    Easter, Richard C.; Ghan, Steven J.; Zhang, Yang; Saylor, Rick D.; Chapman, Elaine G.; Laulainen, Nels S.; Abdul-Razzak, Hayder; Leung, Lai-Yung R.; Bian, Xindi; Zaveri, Rahul A.

    2004-10-27

    The MIRAGE (Model for Integrated Research on Atmospheric Global Exchanges) modeling system, designed to study the impacts of anthropogenic aerosols on the global environment, is described. MIRAGE consists of a chemical transport model coupled on line with a global climate model. The chemical transport model simulates trace gases, aerosol number, and aerosol chemical component mass [sulfate, MSA, organic matter, black carbon (BC), sea salt, mineral dust] for four aerosol modes (Aitken, accumulation, coarse sea salt, coarse mineral dust) using the modal aerosol dynamics approach. Cloud-phase and interstitial aerosol are predicted separately. The climate model, based on the CCM2, has physically-based treatments of aerosol direct and indirect forcing. Stratiform cloud water and droplet number are simulated using a bulk microphysics parameterization that includes aerosol activation. Aerosol and trace gas species simulated by MIRAGE are presented and evaluated using surface and aircraft measurements. Surface-level SO2 in N. American and European source regions is higher than observed. SO2 above the boundary layer is in better agreement with observations, and surface-level SO2 at marine locations is somewhat lower than observed. Comparison with other models suggests insufficient SO2 dry deposition; increasing the deposition velocity improves simulated SO2. Surface-level sulfate in N. American and European source regions is in good agreement with observations, although the seasonal cycle in Europe is stronger than observed. Surface-level sulfate at high-latitude and marine locations, and sulfate above the boundary layer, are higher than observed. This is attributed primarily to insufficient wet removal; increasing the wet removal improves simulated sulfate at remote locations and aloft. Because of the high sulfate bias, radiative forcing estimates for anthropogenic sulfur in Ghan et al. [2001c] are probably too high. Surface-level DMS is {approx}40% higher than observed

  16. What We Can Say About the Roles of Natural and Anthropogenic Aerosols in Climate Change

    NASA Astrophysics Data System (ADS)

    Kahn, Ralph

    2016-07-01

    Although particles from natural sources dominate the globally averaged aerosol load, it is widely understood that human activity has added significantly to the atmospheric aerosol inventory in many regions. Anthropogenic contributions include pollution particles from industrial activity, transportation, cook-stoves, and other combustion sources, smoke from agricultural fires and those wildfires that result from land-management practices, soil and mineral dust mobilized in regions where overgrazing, severe tilling, or overuse of surface water resources have occurred, and biogenic particles from vegetation planted and maintained by the populance. The history of human influence is complex - in the 18th and 19th centuries agricultural burning tended to dominate the anthropogenic component in most places, whereas more recently, fossil fuel combustion leads the human contribution is many areas. However, identifying and quantifying the anthropogenic aerosol component on global scales is a challenging endeavor at present. Most estimates of the anthropogenic component come from aerosol transport models that are initialized with aerosol and precursor-gas source locations, emission strengths, and injection heights. The aerosol is then advected based on meteorological modeling, possibly modified chemically or physically, and removed by parameterized wet or dry deposition processes. Aerosol effects on clouds are also represented in some climate models, but with even greater uncertainty than the direct aerosol effects on Earth's radiation balance. Even for present conditions, aerosol source inventories are deduced from whatever constraints can be found, along with much creativity and many assumptions. Aerosol amount (i.e., aerosol optical depth) is routinely measured globally from space, but observational constraints on the anthropogenic component require some knowledge of the aerosol type as well, a much more difficult quantity to derive. As large-swath, multi-spectral, single

  17. [The problem of heat activation of bacterial spores after disinfection with regard to an aerosol method of decontaminating equipment and rooms].

    PubMed

    Fuhrmann, H; Floerke, I; Böhm, K H

    1986-10-01

    This paper describes investigations on disinfection of germ carriers, contaminated with an alcoholic suspension of Bacillus cereus or Bacillus subtilis. Result of disinfection is compared with that of an additional heat treatment (80 degrees C, 60 min) after disinfection. Besides Formalin, Tegodor forte (Th. Goldschmidt, Essen) and P 3 oxonia active (Henkel KG, Düsseldorf) are tested with different concentration and duration. Heat activation was possible with all three disinfectants. For illuminating the conditions of activation, circumstances of heat action after disinfection with formaldehyde-aerosol have been varied. Heat activation in dry air, moist air and distilled water was not successful. Only in Nutrient Broth (Standard I-Bouillon; Merck, Darmstadt) spores were viable again, after activation. Addition of serum as a protective cover had no influence on the result. Consequences of the results on a disinfection method with formaldehyde-aerosol are discussed.

  18. Development of an aerosol module in MOCAGE

    NASA Astrophysics Data System (ADS)

    Nho-Kim, E.-Y.; Josse, B.; Michou, M.; Peuch, V.-H.; Simon, P.

    2003-04-01

    An aerosol module was developed to introduce in MOCAGE, the global chemistry and transport model of Météo-France. This study includes the size specific parameterization of the atmospheric processes of aerosols and comprises the representation of particle size distribution, the emission, the transport, the gravitational sedimentation, the dry deposition and the wet scavenging of aerosols. The particle size distribution is represented by combining one or several modes of lognormal distribution. The distribution is then discretized in classes according to the particles size, and the number density or the mass of each class is introduced in the model as a tracer. The settling velocity of aerosol particles for a given diameter is caculated according to Stokes' Law taking into account thin air condition at higher altitude. Mass transfer by sedimentation was carried out in all model layers except the nearest layer from the surface where the sedimentation is integrated in the dry deposition process. The characterization of dry deposition velocity is based on Slinn and Slinn's (1980) model. The aerodynamic resistance has been estimated as a function of the atmospheric stability, the surface roughness, and the wind speed. The grid surface roughness length has been calculated taking into account the contribution of the land cover and of the subgrid scale orography. The quasi-laminar layer resistance has been parameterized by considering the effects of the Brownian diffusion, the inertial impaction and the contribution of interception by vegetative hairs. In the model, the dry deposition flux is calculated as a product of this velocity by the local concentration of the lowest model level. The aerosol scavenging by the precipitation is parameterized by two different manners, in-cloud scavenging and below-cloud scavenging. The below-cloud scavenging rate is calculated as a function of the collision efficiency between droplets and aerosols and of the vertical flux of the

  19. Predicting/Extrapolating Active Layer Thickness Using Statistical Learning from Remotely-Sensed High-resolution Data in Arctic Permafrost Landscapes: Improved parameterization of Ice-wedge polygons from LiDAR/WorldView-2 derived metrics

    NASA Astrophysics Data System (ADS)

    Gangodagamage, C.; Rowland, J. C.; Hubbard, S. S.; Brumby, S. P.; Liljedahl, A.; Wainwright, H. M.; Sloan, V. L.; Altmann, G.; Skurikhin, A. N.; Shelef, E.; Wilson, C. J.; Dafflon, B.; Peterson, J.; Ulrich, C.; Gibbs, A.; Tweedie, C. E.; Painter, S. L.; Wullschleger, S. D.

    2014-12-01

    Landscape attributes that vary with micro-topography, such as active layer thickness (ALT) in ice-wedge polygon ground, are labor-intensive to document in the field at large spatial extents, necessitating remotely sensed methods. Robust techniques to estimate ALT over large areas would improve understanding of coupled dynamics between permafrost, hydrology and landsurface processes, and improve simulations of the rate and timing of release of soil carbon from permafrost settings. In particular, it would provide critically needed data to parameterize and initialize soil property information in permafrost models and evaluate model predictions for large, complex domains. In this work, we demonstrate a new data fusion approach using high-resolution remotely sensed data for estimating cm scale ALT in a 5 km2 area of ice-wedge polygon terrain in Barrow, Alaska. We used topographic (directed distance, slope, wavelet-curvature) and spectral (NDVI) metrics derived from multisensor data obtained from LiDAR and WorldView-2 platforms to develop a simple data fusion algorithm using statistical machine learning. This algorithm was used to estimate ALT (2 m spatial resolution) across the study area. A comparison of the estimates with ground-based measurements documented the accuracy (±4.4 cm, r2=0.76) of the approach. Our findings suggest that the broad climatic variability associated with warming air temperature will govern the regional averages of ALT, but the smaller-scale variability could be controlled by local eco-hydro-geomorphic variables. This work demonstrates a path forward for mapping subsurface properties over large areas from readily available remote sensing data. Methodology of Mapping and Characterization Polygons:We convolve LiDAR elevations with multiscale wavelets and objectively chose appropriate scales to map interconnected troughs of high- and low-centered polygons. For the ice wedges where LiDAR surface expressions (troughs) are not well developed, we used

  20. Final Report for Research Conducted at The Scripps Institution of Oceanography, University of California San Diego from 2/2002 to 8/2003 for ''Aerosol and Cloud-Field Radiative Effects in the Tropical Western Pacific: Analyses and General Circulation Model Parameterizations''

    SciTech Connect

    Vogelmann, A. M.

    2004-01-27

    OAK-B135 Final report from the University of California San Diego for an ongoing research project that was moved to Brookhaven National Laboratory where proposed work will be completed. The research uses measurements made by the Atmospheric Radiation Measurement (ARM) Program to quantify the effects of aerosols and clouds on the Earth's energy balance in the climatically important Tropical Western Pacific.

  1. Evaluating Aerosol Process Modules within the Framework of the Aerosol Modeling Testbed

    NASA Astrophysics Data System (ADS)

    Fast, J. D.; Velu, V.; Gustafson, W. I.; Chapman, E.; Easter, R. C.; Shrivastava, M.; Singh, B.

    2012-12-01

    Factors that influence predictions of aerosol direct and indirect forcing, such as aerosol mass, composition, size distribution, hygroscopicity, and optical properties, still contain large uncertainties in both regional and global models. New aerosol treatments are usually implemented into a 3-D atmospheric model and evaluated using a limited number of measurements from a specific case study. Under this modeling paradigm, the performance and computational efficiency of several treatments for a specific aerosol process cannot be adequately quantified because many other processes among various modeling studies (e.g. grid configuration, meteorology, emission rates) are different as well. The scientific community needs to know the advantages and disadvantages of specific aerosol treatments when the meteorology, chemistry, and other aerosol processes are identical in order to reduce the uncertainties associated with aerosols predictions. To address these issues, an Aerosol Modeling Testbed (AMT) has been developed that systematically and objectively evaluates new aerosol treatments for use in regional and global models. The AMT consists of the modular Weather Research and Forecasting (WRF) model, a series testbed cases for which extensive in situ and remote sensing measurements of meteorological, trace gas, and aerosol properties are available, and a suite of tools to evaluate the performance of meteorological, chemical, aerosol process modules. WRF contains various parameterizations of meteorological, chemical, and aerosol processes and includes interactive aerosol-cloud-radiation treatments similar to those employed by climate models. In addition, the physics suite from the Community Atmosphere Model version 5 (CAM5) have also been ported to WRF so that they can be tested at various spatial scales and compared directly with field campaign data and other parameterizations commonly used by the mesoscale modeling community. Data from several campaigns, including the 2006

  2. Impact of Aerosol Processing on Orographic Clouds

    NASA Astrophysics Data System (ADS)

    Pousse-Nottelmann, Sara; Zubler, Elias M.; Lohmann, Ulrike

    2010-05-01

    Aerosol particles undergo significant modifications during their residence time in the atmosphere. Physical processes like coagulation, coating and water uptake, and aqueous surface chemistry alter the aerosol size distribution and composition. At this, clouds play a primary role as physical and chemical processing inside cloud droplets contributes considerably to the changes in aerosol particles. A previous study estimates that on global average atmospheric particles are cycled three times through a cloud before being removed from the atmosphere [1]. An explicit and detailed treatment of cloud-borne particles has been implemented in the regional weather forecast and climate model COSMO-CLM. The employed model version includes a two-moment cloud microphysical scheme [2] that has been coupled to the aerosol microphysical scheme M7 [3] as described by Muhlbauer and Lohmann, 2008 [4]. So far, the formation, transfer and removal of cloud-borne aerosol number and mass were not considered in the model. Following the parameterization for cloud-borne particles developed by Hoose et al., 2008 [5], distinction between in-droplet and in-crystal particles is made to more physically account for processes in mixed-phase clouds, such as the Wegener-Bergeron-Findeisen process and contact and immersion freezing. In our model, this approach has been extended to allow for aerosol particles in five different hydrometeors: cloud droplets, rain drops, ice crystals, snow flakes and graupel. We account for nucleation scavenging, freezing and melting processes, autoconversion, accretion, aggregation, riming and selfcollection, collisions between interstitial aerosol particles and hydrometeors, ice multiplication, sedimentation, evaporation and sublimation. The new scheme allows an evaluation of the cloud cycling of aerosol particles by tracking the particles even when scavenged into hydrometeors. Global simulations of aerosol processing in clouds have recently been conducted by Hoose et al

  3. Water uptake of clay and desert dust aerosol particles at sub- and supersaturated water vapor conditions.

    PubMed

    Herich, Hanna; Tritscher, Torsten; Wiacek, Aldona; Gysel, Martin; Weingartner, Ernest; Lohmann, Ulrike; Baltensperger, Urs; Cziczo, Daniel J

    2009-09-28

    Airborne mineral dust particles serve as cloud condensation nuclei (CCN), thereby influencing the formation and properties of warm clouds. It is therefore of atmospheric interest how dust aerosols with different mineralogy behave when exposed to high relative humidity (RH) or supersaturation (SS) with respect to liquid water. In this study the subsaturated hygroscopic growth and the supersaturated cloud condensation nucleus activity of pure clays and real desert dust aerosols were determined using a hygroscopicity tandem differential mobility analyzer (HTDMA) and a cloud condensation nuclei counter (CCNC), respectively. Five different illite, montmorillonite and kaolinite clay samples as well as three desert dust samples (Saharan dust (SD), Chinese dust (CD) and Arizona test dust (ATD)) were investigated. Aerosols were generated both with a wet and a dry disperser. The water uptake was parameterized via the hygroscopicity parameter kappa. The hygroscopicity of dry generated dust aerosols was found to be negligible when compared to processed atmospheric aerosols, with CCNC derived kappa values between 0.00 and 0.02 (the latter corresponds to a particle consisting of 96.7% by volume insoluble material and approximately 3.3% ammonium sulfate). Pure clay aerosols were generally found to be less hygroscopic than natural desert dust particles. The illite and montmorillonite samples had kappa approximately 0.003. The kaolinite samples were less hygroscopic and had kappa=0.001. SD (kappa=0.023) was found to be the most hygroscopic dry-generated desert dust followed by CD (kappa=0.007) and ATD (kappa=0.003). Wet-generated dust showed an increased water uptake when compared to dry-generated samples. This is considered to be an artifact introduced by redistribution of soluble material between the particles. Thus, the generation method is critically important when presenting such data. These results indicate any atmospheric processing of a fresh mineral dust particle which

  4. Water uptake of clay and desert dust aerosol particles at sub- and supersaturated water vapor conditions.

    PubMed

    Herich, Hanna; Tritscher, Torsten; Wiacek, Aldona; Gysel, Martin; Weingartner, Ernest; Lohmann, Ulrike; Baltensperger, Urs; Cziczo, Daniel J

    2009-09-28

    Airborne mineral dust particles serve as cloud condensation nuclei (CCN), thereby influencing the formation and properties of warm clouds. It is therefore of atmospheric interest how dust aerosols with different mineralogy behave when exposed to high relative humidity (RH) or supersaturation (SS) with respect to liquid water. In this study the subsaturated hygroscopic growth and the supersaturated cloud condensation nucleus activity of pure clays and real desert dust aerosols were determined using a hygroscopicity tandem differential mobility analyzer (HTDMA) and a cloud condensation nuclei counter (CCNC), respectively. Five different illite, montmorillonite and kaolinite clay samples as well as three desert dust samples (Saharan dust (SD), Chinese dust (CD) and Arizona test dust (ATD)) were investigated. Aerosols were generated both with a wet and a dry disperser. The water uptake was parameterized via the hygroscopicity parameter kappa. The hygroscopicity of dry generated dust aerosols was found to be negligible when compared to processed atmospheric aerosols, with CCNC derived kappa values between 0.00 and 0.02 (the latter corresponds to a particle consisting of 96.7% by volume insoluble material and approximately 3.3% ammonium sulfate). Pure clay aerosols were generally found to be less hygroscopic than natural desert dust particles. The illite and montmorillonite samples had kappa approximately 0.003. The kaolinite samples were less hygroscopic and had kappa=0.001. SD (kappa=0.023) was found to be the most hygroscopic dry-generated desert dust followed by CD (kappa=0.007) and ATD (kappa=0.003). Wet-generated dust showed an increased water uptake when compared to dry-generated samples. This is considered to be an artifact introduced by redistribution of soluble material between the particles. Thus, the generation method is critically important when presenting such data. These results indicate any atmospheric processing of a fresh mineral dust particle which

  5. POET: Parameterized Optimization for Empirical Tuning

    SciTech Connect

    Yi, Q; Seymour, K; You, H; Vuduc, R; Quinlan, D

    2007-01-29

    The excessive complexity of both machine architectures and applications have made it difficult for compilers to statically model and predict application behavior. This observation motivates the recent interest in performance tuning using empirical techniques. We present a new embedded scripting language, POET (Parameterized Optimization for Empirical Tuning), for parameterizing complex code transformations so that they can be empirically tuned. The POET language aims to significantly improve the generality, flexibility, and efficiency of existing empirical tuning systems. We have used the language to parameterize and to empirically tune three loop optimizations-interchange, blocking, and unrolling-for two linear algebra kernels. We show experimentally that the time required to tune these optimizations using POET, which does not require any program analysis, is significantly shorter than that when using a full compiler-based source-code optimizer which performs sophisticated program analysis and optimizations.

  6. Modeling of clouds and radiation for developing parameterizations for general circulation models. Annual report, 1995

    SciTech Connect

    Toon, O.B.; Westphal, D.L.

    1996-07-01

    We have used a hierarchy of numerical models for cirrus and stratus clouds and for radiative transfer to improve the reliability of general circulation models. Our detailed cloud microphysical model includes all of the physical processes believed to control the lifecycles of liquid and ice clouds in the troposphere. We have worked on specific GCM parameterizations for the radiative properties of cirrus clouds, making use of a mesocale model as the test-bed for the parameterizations. We have also modeled cirrus cloud properties with a detailed cloud physics model to better understand how the radiatively important properties of cirrus are controlled by their environment. We have used another cloud microphysics model to investigate of the interactions between aerosols and clouds. This work is some of the first to follow the details of interactions between aerosols and cloud droplets and has shown some unexpected relations between clouds and aerosols. We have also used line-by- line radiative transfer results verified with ARM data, to derive a GCMS.

  7. Regional scale effects of the aerosol cloud interaction simulated with an online coupled comprehensive chemistry model

    NASA Astrophysics Data System (ADS)

    Bangert, M.; Kottmeier, C.; Vogel, B.; Vogel, H.

    2011-05-01

    We have extended the coupled mesoscale atmosphere and chemistry model COSMO-ART to account for the transformation of aerosol particles into cloud condensation nuclei and to quantify their interaction with warm cloud microphysics on the regional scale. The new model system aims to fill the gap between cloud resolving models and global scale models. It represents the very complex microscale aerosol and cloud physics as detailed as possible, whereas the continental domain size and efficient codes will allow for both studying weather and regional climate. The model system is applied in a first extended case study for Europe for a cloudy five day period in August 2005. The model results show that the mean cloud droplet number concentration of clouds is correlated with the structure of the terrain, and we present a terrain slope parameter TS to classify this dependency. We propose to use this relationship to parameterize the probability density function, PDF, of subgrid-scale cloud updraft velocity in the activation parameterizations of climate models. The simulations show that the presence of cloud condensation nuclei (CCN) and clouds are closely related spatially. We find high aerosol and CCN number concentrations in the vicinity of clouds at high altitudes. The nucleation of secondary particles is enhanced above the clouds. This is caused by an efficient formation of gaseous aerosol precursors above the cloud due to more available radiation, transport of gases in clean air above the cloud, and humid conditions. Therefore the treatment of complex photochemistry is crucial in atmospheric models to simulate the distribution of CCN. The mean cloud droplet number concentration and droplet diameter showed a close link to the change in the aerosol. To quantify the net impact of an aerosol change on the precipitation we calculated the precipitation susceptibility β for the whole model domain over a period of two days with an hourly resolution. The distribution function of

  8. Relating Aerosol Mass and Optical Depth in the Summertime Continental Boundary Layer

    NASA Astrophysics Data System (ADS)

    Brock, C. A.; Wagner, N.; Middlebrook, A. M.; Attwood, A. R.; Washenfelder, R. A.; Brown, S. S.; McComiskey, A. C.; Gordon, T. D.; Welti, A.; Carlton, A. G.; Murphy, D. M.

    2014-12-01

    Aerosol optical depth (AOD), the column-integrated ambient aerosol light extinction, is determined from satellite and ground-based remote sensing measurements. AOD is the parameter most often used to validate earth system model simulations of aerosol mass. Relating aerosol mass to AOD, however, is problematic due to issues including aerosol water uptake as a function of relative humidity (RH) and the complicated relationship between aerosol physicochemical properties and light extinction. Measurements of aerosol microphysical, chemical, and optical properties help to constrain the relationship between aerosol mass and optical depth because aerosol extinction at ambient RH is a function of the abundance, composition and size distribution of the aerosol. We use vertical profiles of humidity and dry aerosol extinction observed in the southeastern United States (U.S.) to examine the relationship between submicron aerosol mass concentration and extinction at ambient RH. We show that the κ-Köhler parameterization directly, and without additional Mie calculations, describes the change in extinction with varying RH as a function of composition for both aged aerosols typical of the polluted summertime continental boundary layer and the biomass burning aerosols we encountered. We calculate how AOD and the direct radiative effect in the eastern U.S. have likely changed due to trends in aerosol composition in recent decades. We also examine the sensitivity of AOD to the RH profile and to aerosol composition, size distribution and abundance.

  9. Application of a semi-spectral cloud water parameterization to cooling tower plumes simulations

    NASA Astrophysics Data System (ADS)

    Bouzereau, Emmanuel; Musson Genon, Luc; Carissimo, Bertrand

    2008-10-01

    In order to simulate the plume produced by large natural draft cooling towers, a semi-spectral warm cloud parameterization has been implemented in an anelastic and non-hydrostatic 3D micro-scale meteorological code. The model results are compared to observations from a detailed field experiment carried out in 1980 at Bugey (location of an electrical nuclear power plant in the Rhône valley in East Central France) including airborne dynamical and microphysical measurements. Although we observe a slight overestimation of the liquid-water content, the results are satisfactory for all the 15 different cases simulated, which include different meteorological conditions ranging from low wind speed and convective conditions in clear sky to high wind and very cloudy. Such parameterization, which includes semi-spectral determination for droplet spectra, seems to be promising to describe plume interaction with atmosphere especially for aerosols and cloud droplets.

  10. An intermediate process-based fire parameterization in Dynamic Global Vegetation Model

    NASA Astrophysics Data System (ADS)

    Li, F.; Zeng, X.

    2011-12-01

    An intermediate process-based fire parameterization has been developed for global fire simulation. It fits the framework of Dynamic Global Vegetation Model (DGVM) which has been a pivot component in Earth System Model (ESM). The fire parameterization comprises three parts: fire occurrence, fire spread, and fire impact. In the first part, the number of fires is determined by ignition counts due to anthropogenic and natural causes and three constraints: fuel load, fuel moisture, and human suppression. Human caused ignition and suppression is explicitly considered as a nonlinear function of population density. The fire counts rather than fire occurrence probability is estimated to avoid underestimating the observed high burned area fraction in tropical savannas where fire occurs frequently. In the second part, post-fire region is assumed to be elliptical in shape with the wind direction along the major axis and the point of ignition at one of the foci. Burned area is determined by fire spread rate,fire duration, and fire counts. Mathematical characteristics of ellipse and some mathematical derivations are used to avoid redundant and unreasonable equations and assumptions in the CTEM-FIRE and make the parameterization equations self-consistently. In the third part, the impact of fire on vegetation component and structure, carbon cycle, trace gases and aerosol emissions are taken into account. The new estimates of trace gas and aerosol emissions due to biomass burning offers an interface with aerosol and atmospheric chemistry model in ESMs. Furthermore, in the new fire parameterization, fire occurrence part and fire spread part can be updated hourly or daily, and fire impact part can be updated daily, monthly, or annually. Its flexibility in selection of time-step length makes it easily applied to various DGVMs. The improved Community Land Model 3.0's Dynamic Global Vegetation Model (CLM-DGVM) is used as the model platform to assess the global performance of the new

  11. Improving aerosol interaction with clouds and precipitation in a regional chemical weather modeling system

    NASA Astrophysics Data System (ADS)

    Zhou, C.; Zhang, X.; Gong, S.

    2015-12-01

    A comprehensive aerosol-cloud-precipitation interaction (ACI) scheme has been developed under CMA chemical weather modeling system GRAPES/CUACE. Calculated by a sectional aerosol activation scheme based on the information of size and mass from CUACE and the thermal-dynamic and humid states from the weather model GRAPES at each time step, the cloud condensation nuclei (CCN) is fed online interactively into a two-moment cloud scheme (WDM6) and a convective parameterization to drive the cloud physics and precipitation formation processes. The modeling system has been applied to study the ACI for January 2013 when several persistent haze-fog events and eight precipitation events occurred. The results show that interactive aerosols with the WDM6 in GRAPES/CUACE obviously increase the total cloud water, liquid water content and cloud droplet number concentrations while decrease the mean diameter of cloud droplets with varying magnitudes of the changes in each case and region. These interactive micro-physical properties of clouds improve the calculation of their collection growth rates in some regions and hence the precipitation rate and distributions in the model, showing 24% to 48% enhancements of TS scoring for 6-h precipitation in almost all regions. The interactive aerosols with the WDM6 also reduce the regional mean bias of temperature by 3 °C during certain precipitation events, but the monthly means bias is only reduced by about 0.3°C.

  12. Multicomponent aerosol dynamics model UHMA: model development and validation

    NASA Astrophysics Data System (ADS)

    Korhonen, H.; Lehtinen, K. E. J.; Kulmala, M.

    2004-05-01

    A size-segregated aerosol dynamics model UHMA (University of Helsinki Multicomponent Aerosol model) was developed for studies of multicomponent tropospheric aerosol particles. The model includes major aerosol microphysical processes in the atmosphere with a focus on new particle formation and growth; thus it incorporates particle coagulation and multicomponent condensation, applying a revised treatment of condensation flux onto free molecular regime particles and the activation of nanosized clusters by organic vapours (Nano-Köhler theory), as well as recent parameterizations for binary H2SO4-H2O and ternary H2SO4-NH3-H2O homogeneous nucleation and dry deposition. The representation of particle size distribution can be chosen from three sectional methods: the hybrid method, the moving center method, and the retracking method in which moving sections are retracked to a fixed grid after a certain time interval. All these methods can treat particle emissions and atmospheric transport consistently, and are therefore suitable for use in large scale atmospheric models. In a test simulation against an accurate high resolution solution, all the methods showed reasonable treatment of new particle formation with 20 size sections although the hybrid and the retracking methods suffered from artificial widening of the distribution. The moving center approach, on the other hand, showed extra dents in the particle size distribution and failed to predict the onset of detectable particle formation. In a separate test simulation of an observed nucleation event, the model captured the key qualitative behaviour of the system well. Furthermore, its prediction of the organic volume fraction in newly formed particles, suggesting values as high as 0.5 for 3-4 nm particles and approximately 0.8 for 10 nm particles, agrees with recent indirect composition measurements.

  13. Approaches for Subgrid Parameterization: Does Scaling Help?

    NASA Astrophysics Data System (ADS)

    Yano, Jun-Ichi

    2016-04-01

    Arguably the scaling behavior is a well-established fact in many geophysical systems. There are already many theoretical studies elucidating this issue. However, the scaling law is slow to be introduced in "operational" geophysical modelling, notably for weather forecast as well as climate projection models. The main purpose of this presentation is to ask why, and try to answer this question. As a reference point, the presentation reviews the three major approaches for traditional subgrid parameterization: moment, PDF (probability density function), and mode decomposition. The moment expansion is a standard method for describing the subgrid-scale turbulent flows both in the atmosphere and the oceans. The PDF approach is intuitively appealing as it directly deals with a distribution of variables in subgrid scale in a more direct manner. The third category, originally proposed by Aubry et al (1988) in context of the wall boundary-layer turbulence, is specifically designed to represent coherencies in compact manner by a low--dimensional dynamical system. Their original proposal adopts the proper orthogonal decomposition (POD, or empirical orthogonal functions, EOF) as their mode-decomposition basis. However, the methodology can easily be generalized into any decomposition basis. The mass-flux formulation that is currently adopted in majority of atmospheric models for parameterizing convection can also be considered a special case of the mode decomposition, adopting the segmentally-constant modes for the expansion basis. The mode decomposition can, furthermore, be re-interpreted as a type of Galarkin approach for numerically modelling the subgrid-scale processes. Simple extrapolation of this re-interpretation further suggests us that the subgrid parameterization problem may be re-interpreted as a type of mesh-refinement problem in numerical modelling. We furthermore see a link between the subgrid parameterization and downscaling problems along this line. The mode

  14. Using Airborne High Spectral Resolution Lidar Data to Evaluate Combined Active Plus Passive Retrievals of Aerosol Extinction Profiles

    NASA Technical Reports Server (NTRS)

    Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Kittaka, C.; Vaughn, M. A.; Remer, L. A.

    2010-01-01

    We derive aerosol extinction profiles from airborne and space-based lidar backscatter signals by constraining the retrieval with column aerosol optical thickness (AOT), with no need to rely on assumptions about aerosol type or lidar ratio. The backscatter data were acquired by the NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL) and by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite. The HSRL also simultaneously measures aerosol extinction coefficients independently using the high spectral resolution lidar technique, thereby providing an ideal data set for evaluating the retrieval. We retrieve aerosol extinction profiles from both HSRL and CALIOP attenuated backscatter data constrained with HSRL, Moderate-Resolution Imaging Spectroradiometer (MODIS), and Multiangle Imaging Spectroradiometer column AOT. The resulting profiles are compared with the aerosol extinction measured by HSRL. Retrievals are limited to cases where the column aerosol thickness is greater than 0.2 over land and 0.15 over water. In the case of large AOT, the results using the Aqua MODIS constraint over water are poorer than Aqua MODIS over land or Terra MODIS. The poorer results relate to an apparent bias in Aqua MODIS AOT over water observed in August 2007. This apparent bias is still under investigation. Finally, aerosol extinction coefficients are derived from CALIPSO backscatter data using AOT from Aqua MODIS for 28 profiles over land and 9 over water. They agree with coincident measurements by the airborne HSRL to within +/-0.016/km +/- 20% for at least two-thirds of land points and within +/-0.028/km +/- 20% for at least two-thirds of ocean points.

  15. Absence of Detectable Influenza RNA Transmitted via Aerosol during Various Human Respiratory Activities – Experiments from Singapore and Hong Kong

    PubMed Central

    Cowling, Benjamin J.; Koh, Gerald C.; Chu, Daniel; Heilbronn, Cherie; Lloyd, Belinda; Pantelic, Jovan; Nicolle, Andre D.; Klettner, Christian A.; Peiris, J. S. Malik; Sekhar, Chandra; Cheong, David K. W.; Tham, Kwok Wai; Koay, Evelyn S. C.; Tsui, Wendy; Kwong, Alfred; Chan, Kitty; Li, Yuguo

    2014-01-01

    Two independent studies by two separate research teams (from Hong Kong and Singapore) failed to detect any influenza RNA landing on, or inhaled by, a life-like, human manikin target, after exposure to naturally influenza-infected volunteers. For the Hong Kong experiments, 9 influenza-infected volunteers were recruited to breathe, talk/count and cough, from 0.1 m and 0.5 m distance, onto a mouth-breathing manikin. Aerosolised droplets exhaled from the volunteers and entering the manikin’s mouth were collected with PTFE filters and an aerosol sampler, in separate experiments. Virus detection was performed using an in-house influenza RNA reverse-transcription polymerase chain reaction (RT-PCR) assay. No influenza RNA was detected from any of the PTFE filters or air samples. For the Singapore experiments, 6 influenza-infected volunteers were asked to breathe (nasal/mouth breathing), talk (counting in English/second language), cough (from 1 m/0.1 m away) and laugh, onto a thermal, breathing manikin. The manikin’s face was swabbed at specific points (around both eyes, the nostrils and the mouth) before and after exposure to each of these respiratory activities, and was cleaned between each activity with medical grade alcohol swabs. Shadowgraph imaging was used to record the generation of these respiratory aerosols from the infected volunteers and their impact onto the target manikin. No influenza RNA was detected from any of these swabs with either team’s in-house diagnostic influenza assays. All the influenza-infected volunteers had diagnostic swabs taken at recruitment that confirmed influenza (A/H1, A/H3 or B) infection with high viral loads, ranging from 105-108 copies/mL (Hong Kong volunteers/assay) and 104–107 copies/mL influenza viral RNA (Singapore volunteers/assay). These findings suggest that influenza RNA may not be readily transmitted from naturally-infected human source to susceptible recipients via these natural respiratory activities, within these

  16. Absence of detectable influenza RNA transmitted via aerosol during various human respiratory activities--experiments from Singapore and Hong Kong.

    PubMed

    Tang, Julian W; Gao, Caroline X; Cowling, Benjamin J; Koh, Gerald C; Chu, Daniel; Heilbronn, Cherie; Lloyd, Belinda; Pantelic, Jovan; Nicolle, Andre D; Klettner, Christian A; Peiris, J S Malik; Sekhar, Chandra; Cheong, David K W; Tham, Kwok Wai; Koay, Evelyn S C; Tsui, Wendy; Kwong, Alfred; Chan, Kitty; Li, Yuguo

    2014-01-01

    Two independent studies by two separate research teams (from Hong Kong and Singapore) failed to detect any influenza RNA landing on, or inhaled by, a life-like, human manikin target, after exposure to naturally influenza-infected volunteers. For the Hong Kong experiments, 9 influenza-infected volunteers were recruited to breathe, talk/count and cough, from 0.1 m and 0.5 m distance, onto a mouth-breathing manikin. Aerosolised droplets exhaled from the volunteers and entering the manikin's mouth were collected with PTFE filters and an aerosol sampler, in separate experiments. Virus detection was performed using an in-house influenza RNA reverse-transcription polymerase chain reaction (RT-PCR) assay. No influenza RNA was detected from any of the PTFE filters or air samples. For the Singapore experiments, 6 influenza-infected volunteers were asked to breathe (nasal/mouth breathing), talk (counting in English/second language), cough (from 1 m/0.1 m away) and laugh, onto a thermal, breathing manikin. The manikin's face was swabbed at specific points (around both eyes, the nostrils and the mouth) before and after exposure to each of these respiratory activities, and was cleaned between each activity with medical grade alcohol swabs. Shadowgraph imaging was used to record the generation of these respiratory aerosols from the infected volunteers and their impact onto the target manikin. No influenza RNA was detected from any of these swabs with either team's in-house diagnostic influenza assays. All the influenza-infected volunteers had diagnostic swabs taken at recruitment that confirmed influenza (A/H1, A/H3 or B) infection with high viral loads, ranging from 10(5)-10(8) copies/mL (Hong Kong volunteers/assay) and 10(4)-10(7) copies/mL influenza viral RNA (Singapore volunteers/assay). These findings suggest that influenza RNA may not be readily transmitted from naturally-infected human source to susceptible recipients via these natural respiratory activities, within these

  17. Black Carbon, Metal Concentrations and Lead Isotopes Ratios in Aerosols as Tracers of Human and Natural Activities in Northern Vietnam

    NASA Astrophysics Data System (ADS)

    Guinot, B. P.

    2015-12-01

    Atmospheric brown clouds (ABC) observed as widespread layers of brownish haze are regional scale plumes of air pollutants with a hot spot of emission located in East Asia. ABC are mainly composed of aerosol particles such as Black Carbon (BC) emitted to the atmosphere during biomass burning and fossil fuels combustion. The atmospheric lifetime of BC ranges from a few days in wet season up to one month in dry season. The use of stable lead isotopes and 21 elements as tracers of air pollution was applied to identify and characterized the main sources of anthropogenic activities in Asian region. Aerosol samples from Haiphong (North Vietnam) were collected by a high volume sampler for a period of one year from October 2012 to October 2013. Vietnam's 207Pb/206Pb ratios were almost identical to those found for China. Ratios of 207Pb/206Pb ranged from 0.837 to 0.871 which agrees with values previously reported for the last 10 years in China (0.841 - 0.879). No significant variation in isotope ratio was observed during the sampling period, which suggests that there was no large seasonal variation in the isotope ratios of airborne lead. Trajectory analysis showed that almost two third of the air masses originated from East Northeast which implies that China was a major source of lead in atmosphere. Enrichment factor calculations indicated a large influence of coal activity (EF(Al) As = 1982 ± 796, EF(Al) Cd = 972 ± 659, EF(Al) Sb = 1358 ± 930) but the difference between combustion and mining exploitation could not be evidenced. Significant correlations were found between two others groups of elements: As, Cu, Ni, Zn, and Al, Fe K, Co. Wind dilution was effective on metals concentration variation. During the cold and dry season (winter) ambient concentrations were high and variable, during the warm and wet season (summer) concentrations were stable and low. Taken together, these factors also identified industrial and lithogenic activities in the region.

  18. Direct Quantification of Ice Nucleation Active Bacteria in Aerosols and Precipitation: Their Potential Contribution as Ice Nuclei

    NASA Astrophysics Data System (ADS)

    Hill, T. C.; DeMott, P. J.; Garcia, E.; Moffett, B. F.; Prenni, A. J.; Kreidenweis, S. M.; Franc, G. D.

    2013-12-01

    Ice nucleation active (INA) bacteria are a potentially prodigious source of highly active (≥-12°C) atmospheric ice nuclei, especially from agricultural land. However, we know little about the conditions that promote their release (eg, daily or seasonal cycles, precipitation, harvesting or post-harvest decay of litter) or their typical contribution to the pool of boundary layer ice nucleating particles (INP). To initiate these investigations we developed a quantitative Polymerase Chain Reaction (qPCR) test of the ina gene, the gene that codes for the ice nucleating protein, to directly count INA bacteria in environmental samples. The qPCR test amplifies most forms of the gene and is highly sensitive, able to detect perhaps a single gene copy (ie, a single bacterium) in DNA extracted from precipitation. Direct measurement of the INA bacteria is essential because environmental populations will be a mixture of living, viable-but-not culturable, moribund and dead cells, all of which may retain ice nucleating proteins. Using the qPCR test on leaf washings of plants from three farms in Wyoming, Colorado and Nebraska we found INA bacteria to be abundant on crops, especially on cereals. Mid-summer populations on wheat and barley were ~108/g fresh weigh of foliage. Broadleaf crops, such as corn, alfalfa, sugar beet and potato supported 105-107/g. Unexpectedly, however, in the absence of a significant physical disturbance, such as harvesting, we were unable to detect the ina gene in aerosols sampled above the crops. Likewise, in fresh snow samples taken over two winters, ina genes from a range of INA bacteria were detected in about half the samples but at abundances that equated to INA bacterial numbers that accounted for only a minor proportion of INP active at -10°C. By contrast, in a hail sample from a summer thunderstorm we found 0.3 INA bacteria per INP at -10°C and ~0.5 per hail stone. Although the role of the INA bacteria as warm-temperature INP in these samples

  19. A uniform parameterization of moment tensors

    NASA Astrophysics Data System (ADS)

    Tape, C.; Tape, W.

    2015-12-01

    A moment tensor is a 3 x 3 symmetric matrix that expresses an earthquake source. We construct a parameterization of the five-dimensional space of all moment tensors of unit norm. The coordinates associated with the parameterization are closely related to moment tensor orientations and source types. The parameterization is uniform, in the sense that equal volumes in the coordinate domain of the parameterization correspond to equal volumes of moment tensors. Uniformly distributed points in the coordinate domain therefore give uniformly distributed moment tensors. A cartesian grid in the coordinate domain can be used to search efficiently over moment tensors. We find that uniformly distributed moment tensors have uniformly distributed orientations (eigenframes), but that their source types (eigenvalue triples) are distributed so as to favor double couples. An appropriate choice of a priori moment tensor probability is a prerequisite for parameter estimation. As a seemingly sensible choice, we consider the homogeneous probability, in which equal volumes of moment tensors are equally likely. We believe that it will lead to improved characterization of source processes.

  20. Evaluating N2O5 heterogeneous hydrolysis parameterizations for CalNex 2010

    NASA Astrophysics Data System (ADS)

    Chang, Wayne L.; Brown, Steven S.; Stutz, Jochen; Middlebrook, Ann M.; Bahreini, Roya; Wagner, Nicholas L.; Dubé, William P.; Pollack, Ilana B.; Ryerson, Thomas B.; Riemer, Nicole

    2016-05-01

    Nighttime chemistry in the troposphere is closely tied to the dinitrogen pentoxide (N2O5) budget, but high uncertainties remain regarding the model representation of the heterogeneous hydrolysis of N2O5 on aerosol particles. In this study we used the community model WRF-Chem to simulate a 3-day period during the California Nexus (CalNex) Campaign in 2010. We extended WRF-Chem to include the heterogeneous hydrolysis of N2O5 and contrasted the impact of different published parameterizations of N2O5 heterogeneous hydrolysis on the spatial distribution of uptake coefficients and the resulting N2O5 concentrations. For all the cases, modeled N2O5 uptake coefficients showed strong spatial variability, with higher values in the nocturnal boundary layer compared to the residual layer, especially in environments with high relative humidities, such as over the ocean and along the coast. The best agreement of modeled and observed uptake coefficients was obtained using the parameterization by Davis et al. (2008) combined with the treatment of organic coating by Riemer et al. (2009). For this case the temporal evolution of lower boundary layer N2O5 mixing ratios was reproduced well, and the predictions of surface mixing ratios of ozone and NOx were improved. However, the model still overpredicted the uptake coefficients in the residual layer and consequently underpredicted N2O5 concentrations in the residual layer. This study also highlights that environments with low relative humidities pose a challenge for aerosol thermodynamic models in calculating aerosol water uptake, and this impacts N2O5 heterogeneous hydrolysis parameterizations.

  1. Influence of absorbing aerosols on the inference of solar surface radiation budget and cloud absorption

    SciTech Connect

    Li, Zhanqing

    1998-01-01

    This study addresses the impact of absorbing aerosols on the retrieval of the solar surface radiation budget (SSRB) and on the inference of cloud absorption using multiple global datasets. The data pertain to the radiation budgets at the top of the atmosphere (TOA), at the surface, and to precipitation and tropical biomass burning. Satellite-based SSRB data were derived from the Earth Radiation Budget Experiment and the International Satellite Cloud Climatology Program using different inversion algorithms. A manifestation of the aerosol effect emerges from a zonal comparison between satellite-based and surface-observed SSRB, which shows good agreement in most regions except over the tropical continents active in biomass burning. Another indication arises from the variation of the ratio of cloud radiative forcing at the TOA and at the surface, which was used in many recent studies addressing the cloud absorption problem. The author`s studies showed that the ratio is around unity under most circumstances except when there is heavy urban/industrial pollution or fires. These exceptions register discrepancy between observed and modeled SSRB. The discrepancy is found to increase with decreasing cloudiness, implying that it has more to do with the treatment of aerosols than clouds, although minor influences by other factors may also exist. The largest discrepancy is observed in the month of minimal cloud cover and maximal aerosol loading. The corresponding maximum monthly mean aerosol optical thickness is estimated to be around 1.0 by a parameterization developed in this study. After the effects of aerosols on SSRB are accounted for using biomass burning and precipitation data, disagreements no longer exist between the theory and observation with regard to the transfer of solar radiation. It should be pointed out that the tropical data employed in this study are limited to a small number of continental sites. 75 refs., 9 figs., 1 tab.

  2. Empirical parameterization of setup, swash, and runup

    USGS Publications Warehouse

    Stockdon, H.F.; Holman, R.A.; Howd, P.A.; Sallenger, A.H.

    2006-01-01

    Using shoreline water-level time series collected during 10 dynamically diverse field experiments, an empirical parameterization for extreme runup, defined by the 2% exceedence value, has been developed for use on natural beaches over a wide range of conditions. Runup, the height of discrete water-level maxima, depends on two dynamically different processes; time-averaged wave setup and total swash excursion, each of which is parameterized separately. Setup at the shoreline was best parameterized using a dimensional form of the more common Iribarren-based setup expression that includes foreshore beach slope, offshore wave height, and deep-water wavelength. Significant swash can be decomposed into the incident and infragravity frequency bands. Incident swash is also best parameterized using a dimensional form of the Iribarren-based expression. Infragravity swash is best modeled dimensionally using offshore wave height and wavelength and shows no statistically significant linear dependence on either foreshore or surf-zone slope. On infragravity-dominated dissipative beaches, the magnitudes of both setup and swash, modeling both incident and infragravity frequency components together, are dependent only on offshore wave height and wavelength. Statistics of predicted runup averaged over all sites indicate a - 17 cm bias and an rms error of 38 cm: the mean observed runup elevation for all experiments was 144 cm. On intermediate and reflective beaches with complex foreshore topography, the use of an alongshore-averaged beach slope in practical applications of the runup parameterization may result in a relative runup error equal to 51% of the fractional variability between the measured and the averaged slope.

  3. A stochastic parameterization for deep convection using cellular automata

    NASA Astrophysics Data System (ADS)

    Bengtsson, L.; Steinheimer, M.; Bechtold, P.; Geleyn, J.

    2012-12-01

    Cumulus parameterizations used in most operational weather and climate models today are based on the mass-flux concept which took form in the early 1970's. In such schemes it is assumed that a unique relationship exists between the ensemble-average of the sub-grid convection, and the instantaneous state of the atmosphere in a vertical grid box column. However, such a relationship is unlikely to be described by a simple deterministic function (Palmer, 2011). Thus, because of the statistical nature of the parameterization challenge, it has been recognized by the community that it is important to introduce stochastic elements to the parameterizations (for instance: Plant and Craig, 2008, Khouider et al. 2010, Frenkel et al. 2011, Bentsson et al. 2011, but the list is far from exhaustive). There are undoubtedly many ways in which stochastisity can enter new developments. In this study we use a two-way interacting cellular automata (CA), as its intrinsic nature possesses many qualities interesting for deep convection parameterization. In the one-dimensional entraining plume approach, there is no parameterization of horizontal transport of heat, moisture or momentum due to cumulus convection. In reality, mass transport due to gravity waves that propagate in the horizontal can trigger new convection, important for the organization of deep convection (Huang, 1988). The self-organizational characteristics of the CA allows for lateral communication between adjacent NWP model grid-boxes, and temporal memory. Thus the CA scheme used in this study contain three interesting components for representation of cumulus convection, which are not present in the traditional one-dimensional bulk entraining plume method: horizontal communication, memory and stochastisity. The scheme is implemented in the high resolution regional NWP model ALARO, and simulations show enhanced organization of convective activity along squall-lines. Probabilistic evaluation demonstrate an enhanced spread in

  4. Using Airborne High Spectral Resolution Lidar Data to Evaluate Combined Active Plus Passive Retrievals of Aerosol Extinction Profiles

    NASA Technical Reports Server (NTRS)

    Burton, S. P.; Ferrare, R. A.; Kittaka, C.; Hostetler, C. A.; Hair, J. W.; Obland, M. D.; Rogers, R. R.; Cook, A. L.; Haper, D. B.

    2008-01-01

    Aerosol extinction profiles are derived from backscatter data by constraining the retrieval with column aerosol optical thickness (AOT), for example from coincident MODIS observations and without reliance on a priori assumptions about aerosol type or optical properties. The backscatter data were acquired with the NASA Langley High Spectral Resolution Lidar (HSRL). The HSRL also simultaneously measures extinction independently, thereby providing an ideal data set for evaluating the constrained retrieval of extinction from backscatter. We will show constrained extinction retrievals using various sources of column AOT, and examine comparisons with the HSRL extinction measurements and with a similar retrieval using data from the CALIOP lidar on the CALIPSO satellite.

  5. Aerosolized Antibiotics.

    PubMed

    Restrepo, Marcos I; Keyt, Holly; Reyes, Luis F

    2015-06-01

    Administration of medications via aerosolization is potentially an ideal strategy to treat airway diseases. This delivery method ensures high concentrations of the medication in the targeted tissues, the airways, with generally lower systemic absorption and systemic adverse effects. Aerosolized antibiotics have been tested as treatment for bacterial infections in patients with cystic fibrosis (CF), non-CF bronchiectasis (NCFB), and ventilator-associated pneumonia (VAP). The most successful application of this to date is treatment of infections in patients with CF. It has been hypothesized that similar success would be seen in NCFB and in difficult-to-treat hospital-acquired infections such as VAP. This review summarizes the available evidence supporting the use of aerosolized antibiotics and addresses the specific considerations that clinicians should recognize when prescribing an aerosolized antibiotic for patients with CF, NCFB, and VAP.

  6. Global Aerosols

    Atmospheric Science Data Center

    2013-04-19

    ... sizes and from multiple sources, including biomass burning, mineral dust, sea salt and regional industrial pollution. A color scale is ... desert source region. Deserts are the main sources of mineral dust, and MISR obtains aerosol optical depth at visible wavelengths ...

  7. Aerosol residence times and changes in radioiodine-131I and radiocaesium-137 Cs activity over Central Poland after the Fukushima-Daiichi Nuclear reactor accident.

    PubMed

    Długosz-Lisiecka, Magdalena; Bem, Henryk

    2012-05-01

    The first detectable activities of radioiodine (131)I, and radiocaesium (134)Cs and (137)Cs in the air over Central Poland were measured in dust samples collected by the ASS-500 station in the period of 21(st) to 24(th) of March, 2011. However, the highest activity of both fission products, (131)I and (137)Cs: 8.3 mBq m(-3) and 0.75 mBq m(-3), respectively, were obtained in the samples collected on 30(th) March, i.e.∼18 days after the beginning of the fission products' discharge from the damaged units of the Fukushima Daiichi Nuclear Power Plant. The simultaneously determined corrected aerosol residence time for the same samples by (210)Pb/(210)Bi and (210)Pb/(210)Po methods was equal to 10 days. Additionally, on the basis of the activity ratio of two other natural cosmogenic radionuclides, (7)Be and (22)Na in these aerosol samples, it was possible to estimate the aerosol residence time at ∼150 days for the solid particles coming from the stratospheric fallout. These data, as well as the differences in the activity size distribution of (7)Be and (131)I in the air particulate matter, show, in contrast to the Chernobyl discharge, a negligible input of stratospheric transport of Fukushima-released fission products.

  8. Optical modeling of aerosol extinction for remote sensing in the marine environment

    NASA Astrophysics Data System (ADS)

    Kaloshin, G. A.

    2013-05-01

    A microphysical model is presented for the surface layer marine and coastal atmospheric aerosols that is based on long-term observations of size distributions for 0.01-100 μm particles in different geographic sites. The fundamental feature of the model is a parameterization of amplitudes and widths for aerosol modes of the aerosol size distribution function (ASDF) as functions of fetch and wind speed. The shape of the ASDF and its dependence on meteorological parameters, altitudes above sea level (H), fetch (X), wind speed (U) and relative humidity (RH) are investigated. The spectral profiles of the aerosol extinction coefficients calculated by MaexPro (Marine Aerosol Extinction Profiles) are in good agreement with observational data and the numerical results obtained from the Navy Aerosol Model (NAM) and the Advanced Navy Aerosol Model (ANAM). Moreover, MaexPro was found to be an accurate and reliable tool for investigation of the optical properties of atmospheric aerosols.

  9. Investigating primary marine aerosol properties: CCN activity of sea salt and mixed particles

    NASA Astrophysics Data System (ADS)

    King, S. M.; Butcher, A. C.; Rosenoern, T.; Coz, E.; Lieke, K. I.; de Leeuw, G.; Nilsson, E. D.; Bilde, M.

    2012-04-01

    Sea salt particles ejected as a result of bubbles bursting from artificial seawater in a closed stainless steel tank were sampled for size distribution, morphology, and cloud condensation nucleus (CCN) activity. The two-component artificial seawater consisted of salt, either NaCl or sea salt, and one organic compound in deionized water. Several organic molecules representative of oceanic organic matter were investigated. Bubbles were generated either by aeration through a porous diffuser or by water jet impingement on the surface of the artificial seawater. The effect of bubble lifetime, which was controlled by varying the depth of the diffuser in the water column, on particle size and CCN activity was investigated and was found to be insignificant for the organic compounds studied. The CCN activities of particles produced from diffuser-generated bubbles were generally governed by the high hygroscopicity of salt, such that activation was indistinguishable from that of salt, except in the case of very low mass ratio of salt to organic matter in the seawater solution. There was, however, a considerable decrease in CCN activity for particles produced from jet impingement on seawater that had a salinity of 10‰ and contained 0.45 mM of sodium laurate, an organic surfactant. The production of a thick foam layer from impingement may explain the difference in activation and supports hypotheses that particle production from the two methods of generating bubbles is not similar. Accurate conclusions from observed CCN activities of particles from artificial seawater containing organic matter require knowledge of the CCN activity of the inorganic component, especially as a small amount of the inorganic can heavily influence activation. Therefore, the CCN activity of both artificial sea salt and NaCl were measured and compared. Part of the discrepancy observed between the CCN activities of the two salts may be due to morphological differences, which were investigated using

  10. Parameterization of contrail radiative properties for climate studies

    NASA Astrophysics Data System (ADS)

    Xie, Yu; Yang, Ping; Liou, Kuo-Nan; Minnis, Patrick; Duda, David P.

    2012-12-01

    The study of contrails and their impact on global climate change requires a cloud model that statistically represents contrail radiative properties. In this study, the microphysical properties of global contrails are statistically analyzed using collocated Moderate Resolution Imaging Spectroradiometer (MODIS) and Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) observations. The MODIS contrail pixels are detected using an automated contrail detection algorithm and a manual technique using the brightness temperature differences between the MODIS 11 and 12 μm channels. The scattering and absorption properties of typical contrail ice crystals are used to determine an appropriate contrail model to minimize the uncertainties arising from the assumptions in a particular cloud model. The depolarization ratio is simulated with a variety of ice crystal habit fractions and matched to the collocated MODIS and CALIOP observations. The contrail habit fractions are determined and used to compute the bulk-scattering properties of contrails. A parameterization of shortwave and longwave contrail optical properties is developed for the spectral bands of the Rapid Radiative Transfer Model (RRTM). The contrail forcing at the top of the atmosphere is investigated using the RRTM and compared with spherical and hexagonal ice cloud models. Contrail forcing is overestimated when spherical ice crystals are used to represent contrails, but if a hexagonal ice cloud model is used, the forcing is underestimated for small particles and overestimated for large particles in comparison to the contrail model developed in this study.

  11. A Simple Parameterization of 3 x 3 Magic Squares

    ERIC Educational Resources Information Center

    Trenkler, Gotz; Schmidt, Karsten; Trenkler, Dietrich

    2012-01-01

    In this article a new parameterization of magic squares of order three is presented. This parameterization permits an easy computation of their inverses, eigenvalues, eigenvectors and adjoints. Some attention is paid to the Luoshu, one of the oldest magic squares.

  12. European upper mantle tomography: adaptively parameterized models

    NASA Astrophysics Data System (ADS)

    Schäfer, J.; Boschi, L.

    2009-04-01

    We have devised a new algorithm for upper-mantle surface-wave tomography based on adaptive parameterization: i.e. the size of each parameterization pixel depends on the local density of seismic data coverage. The advantage in using this kind of parameterization is that a high resolution can be achieved in regions with dense data coverage while a lower (and cheaper) resolution is kept in regions with low coverage. This way, parameterization is everywhere optimal, both in terms of its computational cost, and of model resolution. This is especially important for data sets with inhomogenous data coverage, as it is usually the case for global seismic databases. The data set we use has an especially good coverage around Switzerland and over central Europe. We focus on periods from 35s to 150s. The final goal of the project is to determine a new model of seismic velocities for the upper mantle underlying Europe and the Mediterranean Basin, of resolution higher than what is currently found in the literature. Our inversions involve regularization via norm and roughness minimization, and this in turn requires that discrete norm and roughness operators associated with our adaptive grid be precisely defined. The discretization of the roughness damping operator in the case of adaptive parameterizations is not as trivial as it is for the uniform ones; important complications arise from the significant lateral variations in the size of pixels. We chose to first define the roughness operator in a spherical harmonic framework, and subsequently translate it to discrete pixels via a linear transformation. Since the smallest pixels we allow in our parameterization have a size of 0.625 °, the spherical-harmonic roughness operator has to be defined up to harmonic degree 899, corresponding to 810.000 harmonic coefficients. This results in considerable computational costs: we conduct the harmonic-pixel transformations on a small Beowulf cluster. We validate our implementation of adaptive

  13. Fluorescence spectra and biological activity of aerosolized bacillus spores and MS2 bacteriophage exposed to ozone at different relative humidities in a rotating drum

    NASA Astrophysics Data System (ADS)

    Ratnesar-Shumate, Shanna; Pan, Yong-Le; Hill, Steven C.; Kinahan, Sean; Corson, Elizabeth; Eshbaugh, Jonathan; Santarpia, Joshua L.

    2015-03-01

    Biological aerosols (bioaerosols) released into the environment may undergo physical and chemical transformations when exposed to atmospheric constituents such as solar irradiation, reactive oxygenated species, ozone, free radicals, water vapor and pollutants. Aging experiments were performed in a rotating drum chamber subjecting bioaerosols, Bacillus thuringiensis Al Hakam (BtAH) spores and MS2 bacteriophages to ozone at 0 and 150 ppb, and relative humidities (RH) at 10%, 50%, and 80+%. Fluorescence spectra and intensities of the aerosols as a function of time in the reaction chamber were measured with a single particle fluorescence spectrometer (SPFS) and an Ultra-Violet Aerodynamic Particle Sizer® Spectrometer (UV-APS). Losses in biological activity were measured by culture and quantitative polymerase chain reaction (q-PCR) assay. For both types of aerosols the largest change in fluorescence emission was between 280 and 400 nm when excited at 263 nm followed by fluorescence emission between 380 and 700 nm when excited at 351 nm. The fluorescence for both BtAH and MS2 were observed to decrease significantly at high ozone concentration and high RH when excited at 263 nm excitation. The decreases in 263 nm excited fluorescence are indicative of hydrolysis and oxidation of tryptophan in the aerosols. Fluorescence measured with the UV-APS (355-nm excitation) increased with time for both BtAH and MS2 aerosols. A two log loss of MS2 bacteriophage infectivity was observed in the presence of ozone at ~50% and 80% RH when measured by culture and normalized for physical losses by q-PCR. Viability of BtAH spores after exposure could not be measured due to the loss of genomic material during experiments, suggesting degradation of extracelluar DNA attributable to oxidation. The results of these studies indicate that the physical and biological properties of bioaerosols change significantly after exposure to ozone and water vapor.

  14. Fluorescence spectra and biological activity of aerosolized bacillus spores and MS2 bacteriophage exposed to ozone at different relative humidities in a rotating drum

    DOE PAGES

    Ratnesar-Shumate, Shanna; Pan, Yong-Le; Hill, Steven C.; Kinahan, Sean; Corson, Elizabeth; Eshbaugh, Jonathan; Santarpia, Joshua L.

    2015-10-14

    Biological aerosols (bioaerosols) released into the environment may undergo physical and chemical transformations when exposed to atmospheric constituents such as solar irradiation, reactive oxygenated species, ozone, free radicals, water vapor and pollutants. Aging experiments were performed in a rotating drum chamber subjecting bioaerosols, Bacillus thuringiensis Al Hakam (BtAH) spores and MS2 bacteriophages to ozone at 0 and 150 ppb, and relative humidities (RH) at 10%, 50%, and 80+%. Fluorescence spectra and intensities of the aerosols as a function of time in the reaction chamber were measured with a single particle fluorescence spectrometer (SPFS) and an Ultra-Violet Aerodynamic Particle Sizer® Spectrometermore » (UV-APS). Losses in biological activity were measured by culture and quantitative polymerase chain reaction (q-PCR) assay. For both types of aerosols the largest change in fluorescence emission was between 280 and 400 nm when excited at 263 nm followed by fluorescence emission between 380 and 700 nm when excited at 351 nm. The fluorescence for both BtAH and MS2 were observed to decrease significantly at high ozone concentration and high RH when excited at 263 nm excitation. The decreases in 263 nm excited fluorescence are indicative of hydrolysis and oxidation of tryptophan in the aerosols. Fluorescence measured with the UV-APS (355-nm excitation) increased with time for both BtAH and MS2 aerosols. A two log loss of MS2 bacteriophage infectivity was observed in the presence of ozone at ~50% and 80% RH when measured by culture and normalized for physical losses by q-PCR. Viability of BtAH spores after exposure could not be measured due to the loss of genomic material during experiments, suggesting degradation of extracelluar DNA attributable to oxidation. The results of these studies indicate that the physical and biological properties of bioaerosols change significantly after exposure to ozone and water vapor.« less

  15. Fluorescence spectra and biological activity of aerosolized bacillus spores and MS2 bacteriophage exposed to ozone at different relative humidities in a rotating drum

    SciTech Connect

    Ratnesar-Shumate, Shanna; Pan, Yong-Le; Hill, Steven C.; Kinahan, Sean; Corson, Elizabeth; Eshbaugh, Jonathan; Santarpia, Joshua L.

    2015-10-14

    Biological aerosols (bioaerosols) released into the environment may undergo physical and chemical transformations when exposed to atmospheric constituents such as solar irradiation, reactive oxygenated species, ozone, free radicals, water vapor and pollutants. Aging experiments were performed in a rotating drum chamber subjecting bioaerosols, Bacillus thuringiensis Al Hakam (BtAH) spores and MS2 bacteriophages to ozone at 0 and 150 ppb, and relative humidities (RH) at 10%, 50%, and 80+%. Fluorescence spectra and intensities of the aerosols as a function of time in the reaction chamber were measured with a single particle fluorescence spectrometer (SPFS) and an Ultra-Violet Aerodynamic Particle Sizer® Spectrometer (UV-APS). Losses in biological activity were measured by culture and quantitative polymerase chain reaction (q-PCR) assay. For both types of aerosols the largest change in fluorescence emission was between 280 and 400 nm when excited at 263 nm followed by fluorescence emission between 380 and 700 nm when excited at 351 nm. The fluorescence for both BtAH and MS2 were observed to decrease significantly at high ozone concentration and high RH when excited at 263 nm excitation. The decreases in 263 nm excited fluorescence are indicative of hydrolysis and oxidation of tryptophan in the aerosols. Fluorescence measured with the UV-APS (355-nm excitation) increased with time for both BtAH and MS2 aerosols. A two log loss of MS2 bacteriophage infectivity was observed in the presence of ozone at ~50% and 80% RH when measured by culture and normalized for physical losses by q-PCR. Viability of BtAH spores after exposure could not be measured due to the loss of genomic material during experiments, suggesting degradation of extracelluar DNA attributable to oxidation. The results of these studies indicate that the physical and biological properties of bioaerosols change significantly after exposure to ozone and water vapor.

  16. Tropical anvil characteristics and water vapor of the tropical tropopause layer: Impact of heterogeneous and homogeneous freezing parameterizations

    SciTech Connect

    Fan, Jiwen; Comstock, Jennifer M.; Ovchinnikov, Mikhail; McFarlane, Sally A.; McFarquhar, Greg; Allen, Grant

    2010-06-16

    Abstract Two isolated deep convective clouds (DCCs) that developed in clean-humid and polluted-dry air masses, observed during the TWP-ICE and ACTIVE campaigns, are simulated using a 3-dimensional cloud-resolving model with size-resolved aerosol and cloud microphysics. We examine the impacts of different homogeneous and immersion freezing parameterizations on the anvil characteristics and the water vapor content (WVC) in the Tropical Tropopause Layer (TTL) for the two DCCs that developed in contrasting environments. The modeled cloud properties such as liquid/ice water path and precipitation generally agree with the available radar and satellite retrievals and in situ aircraft measurements. We find that anvil size and anvil microphysical properties such as ice number concentration and ice effective radius (rei) are much more sensitive to the homogeneous freezing parameterization (HomFP) under the polluted-dry condition, while the strength of anvil convection is more sensitive to HomFP under the clean-humid condition. Specifically, the cloud anvil with the Koop et al. (2000) (KOOP) relative humidity dependent scheme has up to 2 and 4 times lower ice number than those with other schemes (temperature dependent) for the clean humid and polluted-dry cases, respectively. Consequently, the rei is increased in both cases, with a larger increase in the polluted-dry case. As a result, extinction coefficient of cloud anvils is reduced by over 25% for the polluted-dry case. Anvil size and evolution are also much affected by HomFPs in the polluted-dry case. Higher immersion-freezing rates leads to a stronger convective cloud, with higher precipitation and ice water path under both humid and dry conditions. As a result, homogeneous freezing rates are enhanced by over 20%. Also, the higher immersion-freezing rate results in stronger convection in cloud anvils, much larger anvil size (up to 3 times) and longer lifetime. The moistening effect of deep convection on the WVC in the

  17. The Earth Clouds and Radiation Explorer (EarthCARE) Mission: Cloud and Aerosol Lidar and Imager algorithms.

    NASA Astrophysics Data System (ADS)

    Donovan, David; van Zadelhoff, Gerd-Jan; Wandinger, Ulla; Hünerbein, Anjah; Fischer, Jurgen; von Bismarck, Jonas; Eisinger, Michael; Lajas, Dulce; Wehr, Tobias

    2015-04-01

    The value of multi-sensor remote sensing applied to clouds and aerosol has become clear in recent years. For example, combinations of instruments including passive radiometers, lidars and cloud radars have proved invaluable for their ability to retrieve profiles of cloud macrophysical and microphysical properties. This is amply illustrated by various results from the US-DoE ARM (and similar) surface sites as well as results from data collected by sensors aboard the A-train satellites CloudSat, CALIPSO, and Terra. The Earth Clouds Aerosol and Radiation Explorer (EarthCARE) mission is a combined ESA/JAXA mission to be launched in 2018 which has been designed with sensor-synergy playing a key role. The mission consists of a cloud-profiling radar (CPR), a high-spectral resolution cloud/aerosol lidar (ATLID), a cloud/aerosol multi-spectral imager (MSI), and a three-view broad-band radiometer (BBR). The mission will deliver cloud, aerosol and radiation products focusing on horizontal scales ranging from 1 km to 10 km. EarthCARE data will be used in multiple ways ranging from model evaluation studies, to GCM-orientated cloud microphysical property parameterization development, to data assimilation activities. Recently a number of activities, funded by ESA, have kicked-off which will ultimately deliver operational algorithms for EarthCARE. One of these activities is the "Atmospheric Products from Imager and Lidar" (APRIL) project which focuses on the development of lidar, imager and combined lidar-imager cloud and aerosol algorithms. In this presentation an overview of the APRIL algorithms within the wider context of the planned EarthCARE processing chain will be given.

  18. Indian aerosols: present status.

    PubMed

    Mitra, A P; Sharma, C

    2002-12-01

    This article presents the status of aerosols in India based on the research activities undertaken during last few decades in this region. Programs, like International Geophysical Year (IGY), Monsoon Experiment (MONEX), Indian Middle Atmospheric Program (IMAP) and recently conducted Indian Ocean Experiment (INDOEX), have thrown new lights on the role of aerosols in global change. INDOEX has proved that the effects of aerosols are no longer confined to the local levels but extend at regional as well as global scales due to occurrence of long range transportation of aerosols from source regions along with wind trajectories. The loading of aerosols in the atmosphere is on rising due to energy intensive activities for developmental processes and other anthropogenic activities. One of the significant observation of INDOEX is the presence of high concentrations of carbonaceous aerosols in the near persistent winter time haze layer over tropical Indian Ocean which have probably been emitted from the burning of fossil-fuels and biofuels in the source region. These have significant bearing on the radiative forcing in the region and, therefore, have potential to alter monsoon and hydrological cycles. In general, the SPM concentrations have been found to be on higher sides in ambient atmosphere in many Indian cities but the NOx concentrations have been found to be on lower side. Even in the haze layer over Indian Ocean and surrounding areas, the NOx concentrations have been reported to be low which is not conducive of O3 formation in the haze/smog layer. The acid rain problem does not seem to exist at the moment in India because of the presence of neutralizing soil dust in the atmosphere. But the high particulate concentrations in most of the cities' atmosphere in India are of concern as it can cause deteriorated health conditions. PMID:12492171

  19. Indian aerosols: present status.

    PubMed

    Mitra, A P; Sharma, C

    2002-12-01

    This article presents the status of aerosols in India based on the research activities undertaken during last few decades in this region. Programs, like International Geophysical Year (IGY), Monsoon Experiment (MONEX), Indian Middle Atmospheric Program (IMAP) and recently conducted Indian Ocean Experiment (INDOEX), have thrown new lights on the role of aerosols in global change. INDOEX has proved that the effects of aerosols are no longer confined to the local levels but extend at regional as well as global scales due to occurrence of long range transportation of aerosols from source regions along with wind trajectories. The loading of aerosols in the atmosphere is on rising due to energy intensive activities for developmental processes and other anthropogenic activities. One of the significant observation of INDOEX is the presence of high concentrations of carbonaceous aerosols in the near persistent winter time haze layer over tropical Indian Ocean which have probably been emitted from the burning of fossil-fuels and biofuels in the source region. These have significant bearing on the radiative forcing in the region and, therefore, have potential to alter monsoon and hydrological cycles. In general, the SPM concentrations have been found to be on higher sides in ambient atmosphere in many Indian cities but the NOx concentrations have been found to be on lower side. Even in the haze layer over Indian Ocean and surrounding areas, the NOx concentrations have been reported to be low which is not conducive of O3 formation in the haze/smog layer. The acid rain problem does not seem to exist at the moment in India because of the presence of neutralizing soil dust in the atmosphere. But the high particulate concentrations in most of the cities' atmosphere in India are of concern as it can cause deteriorated health conditions.

  20. Mechanistic Parameterization of the Kinomic Signal in Peptide Arrays

    PubMed Central

    Dussaq, Alex; Anderson, Joshua C; Willey, Christopher D; Almeida, Jonas S

    2016-01-01

    Kinases play a role in every cellular process involved in tumorigenesis ranging from proliferation, migration, and protein synthesis to DNA repair. While genetic sequencing has identified most kinases in the human genome, it does not describe the ‘kinome’ at the level of activity of kinases against their substrate targets. An attempt to address that limitation and give researchers a more direct view of cellular kinase activity is found in the PamGene PamChip® system, which records and compares the phosphorylation of 144 tyrosine or serine/threonine peptides as they are phosphorylated by cellular kinases. Accordingly, the kinetics of this time dependent kinomic signal needs to be well understood in order to transduce a parameter set into an accurate and meaningful mathematical model. Here we report the analysis and mathematical modeling of kinomic time series, which achieves a more accurate description of the accumulation of phosphorylated product than the current model, which assumes first order enzyme-substrate kinetics. Reproducibility of the proposed solution was of particular attention. Specifically, the non-linear parameterization procedure is delivered as a public open source web application where kinomic time series can be accurately decomposed into the model’s two parameter values measuring phosphorylation rate and capacity. The ability to deliver model parameterization entirely as a client side web application is an important result on its own given increasing scientific preoccupation with reproducibility. There is also no need for a potentially transitory and opaque server-side component maintained by the authors, nor of exchanging potentially sensitive data as part of the model parameterization process since the code is transferred to the browser client where it can be inspected and executed.

  1. Mechanistic Parameterization of the Kinomic Signal in Peptide Arrays

    PubMed Central

    Dussaq, Alex; Anderson, Joshua C; Willey, Christopher D; Almeida, Jonas S

    2016-01-01

    Kinases play a role in every cellular process involved in tumorigenesis ranging from proliferation, migration, and protein synthesis to DNA repair. While genetic sequencing has identified most kinases in the human genome, it does not describe the ‘kinome’ at the level of activity of kinases against their substrate targets. An attempt to address that limitation and give researchers a more direct view of cellular kinase activity is found in the PamGene PamChip® system, which records and compares the phosphorylation of 144 tyrosine or serine/threonine peptides as they are phosphorylated by cellular kinases. Accordingly, the kinetics of this time dependent kinomic signal needs to be well understood in order to transduce a parameter set into an accurate and meaningful mathematical model. Here we report the analysis and mathematical modeling of kinomic time series, which achieves a more accurate description of the accumulation of phosphorylated product than the current model, which assumes first order enzyme-substrate kinetics. Reproducibility of the proposed solution was of particular attention. Specifically, the non-linear parameterization procedure is delivered as a public open source web application where kinomic time series can be accurately decomposed into the model’s two parameter values measuring phosphorylation rate and capacity. The ability to deliver model parameterization entirely as a client side web application is an important result on its own given increasing scientific preoccupation with reproducibility. There is also no need for a potentially transitory and opaque server-side component maintained by the authors, nor of exchanging potentially sensitive data as part of the model parameterization process since the code is transferred to the browser client where it can be inspected and executed. PMID:27601856

  2. A global model study of processes controlling aerosol size distributions in the Arctic spring and summer

    NASA Astrophysics Data System (ADS)

    Korhonen, Hannele; Carslaw, Kenneth S.; Spracklen, Dominick V.; Ridley, David A.; StröM, Johan

    2008-04-01

    We use a global chemical transport model (CTM) with size-resolved aerosol microphysics to evaluate our understanding of the processes that control Arctic aerosol, focussing on the seasonal changes in the particle size distribution during the transition from Arctic haze in spring to cleaner conditions in summer. This period presents several challenges for a global model simulation because of changes in meteorology, which affect transport pathways and precipitation scavenging rates, changes in the ocean-atmosphere flux of trace gases and particulates associated with sea ice break-up and increased biological activity, and changes in photolysis and oxidation rates which can affect particle nucleation and growth rates. Observations show that these changes result in a transition from an accumulation mode-dominated aerosol in spring to one dominated by Aitken and nucleation mode particles in summer. We find that remote Arctic aerosol size distribution is very sensitive to the model treatment of wet removal. In order to simulate the high accumulation mode concentrations typical of winter and spring it was necessary to substantially reduce the scavenging of these particles during transport. The resulting increases in accumulation mode lead to improvement in the modeled Aitken mode particle concentrations (which fall, due to increased scavenging in the free troposphere) and produce aerosol optical depths in good agreement with observations. The summertime increase in nucleation and Aitken mode particles is consistent with changes in local aerosol nucleation rates driven mainly by increased photochemical production of sulphuric acid vapor and, to a lesser extent, by decreases in the condensation sink as Arctic haze decreases. Alternatively, to explain the observed summertime Aitken mode particle concentrations in terms of ultrafine sea spray particles requires a sea-air flux a factor 5-25greater than predicted by current wind speed and sea surface temperature dependent flux

  3. Evolution of Organic Aerosols in the Atmosphere.

    SciTech Connect

    Jimenez, J. L.; Canagaratna, M. R.; Donahue, N. M.; Prevot, A. S. H.; Zhang, Qi; Kroll, Jesse H.; DeCarlo, Peter F.; Allan, James D.; Coe, H.; Ng, N. L.; Aiken, Allison; Docherty, Kenneth S.; Ulbrich, Ingrid M.; Grieshop, A. P.; Robinson, A. L.; Duplissy, J.; Smith, J. D.; Wilson, K. R.; Lanz, V. A.; Hueglin, C.; Sun, Y. L.; Tian, J.; Laaksonen, A.; Raatikainen, T.; Rautiainen, J.; Vaattovaara, P.; Ehn, M.; Kulmala, M.; Tomlinson, Jason M.; Collins, Donald R.; Cubison, Michael J.; Dunlea, E. J.; Huffman, John A.; Onasch, Timothy B.; Alfarra, M. R.; Williams, Paul I.; Bower, K.; Kondo, Yutaka; Schneider, J.; Drewnick, F.; Borrmann, S.; Weimer, S.; Demerjian, K.; Salcedo, D.; Cottrell, L.; Griffin, Robert; Takami, A.; Miyoshi, T.; Hatakeyama, S.; Shimono, A.; Sun, J. Y.; Zhang, Y. M.; Dzepina, K.; Kimmel, Joel; Sueper, D.; Jayne, J. T.; Herndon, Scott C.; Trimborn, Achim; Williams, L. R.; Wood, Ezra C.; Middlebrook, A. M.; Kolb, C. E.; Baltensperger, Urs; Worsnop, Douglas R.

    2009-12-11

    Organic aerosol (OA) particles affect climate forcing and human health, but their sources and evolution remain poorly characterized. We present a unifying model framework that describes the atmospheric evolution of OA and is constrained and motivated by new, high time resolution, experimental characterizations of their composition, volatility, and oxidation state. OA and OA-precursor gases evolve by becoming increasingly oxidized, less volatile, and more hygroscopic, leading to the formation of large amounts of oxygenated organic aerosol (OOA) mass that has comparable concentrations to sulfate aerosol over the Northern Hemisphere. Our new model framework captures the dynamic aging behavior observed in the atmosphere and the laboratory and can serve as a basis for improving parameterizations in regional and global models.

  4. Parameterization of cloud effects on the absorption of solar radiation

    NASA Technical Reports Server (NTRS)

    Davies, R.

    1983-01-01

    A radiation parameterization for the NASA Goddard climate model was developed, tested, and implemented. Interactive and off-hire experiments with the climate model to determine the limitations of the present parameterization scheme are summarized. The parameterization of Cloud absorption in terms of solar zeith angle, column water vapors about the cloud top, and cloud liquid water content is discussed.

  5. Cloud parameterization for climate modeling - Status and prospects

    NASA Technical Reports Server (NTRS)

    Randall, David A.

    1989-01-01

    The current status of cloud parameterization research is reviewed. It is emphasized that the upper tropospheric stratiform clouds associated with deep convection are both physically important and poorly parameterized in current models. Emerging parameterizations are described in general terms, with emphasis on prognostic cloud water and fractional cloudiness, and how these relate to the problem just mentioned.

  6. Numerical Archetypal Parameterization for Mesoscale Convective Systems

    NASA Astrophysics Data System (ADS)

    Yano, J. I.

    2015-12-01

    Vertical shear tends to organize atmospheric moist convection into multiscale coherent structures. Especially, the counter-gradient vertical transport of horizontal momentum by organized convection can enhance the wind shear and transport kinetic energy upscale. However, this process is not represented by traditional parameterizations. The present paper sets the archetypal dynamical models, originally formulated by the second author, into a parameterization context by utilizing a nonhydrostatic anelastic model with segmentally-constant approximation (NAM-SCA). Using a two-dimensional framework as a starting point, NAM-SCA spontaneously generates propagating tropical squall-lines in a sheared environment. A high numerical efficiency is achieved through a novel compression methodology. The numerically-generated archetypes produce vertical profiles of convective momentum transport that are consistent with the analytic archetype.

  7. A Survey of Shape Parameterization Techniques

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    1999-01-01

    This paper provides a survey of shape parameterization techniques for multidisciplinary optimization and highlights some emerging ideas. The survey focuses on the suitability of available techniques for complex configurations, with suitability criteria based on the efficiency, effectiveness, ease of implementation, and availability of analytical sensitivities for geometry and grids. The paper also contains a section on field grid regeneration, grid deformation, and sensitivity analysis techniques.

  8. A Bioluminescence Assay System for Imaging Metal Cationic Activities in Urban Aerosols.

    PubMed

    Kim, Sung-Bae; Naganawa, Ryuichi; Murata, Shingo; Nakayama, Takayoshi; Miller, Simon; Senda, Toshiya

    2016-01-01

    A bioluminescence-based assay system was fabricated for an efficient determination of the activities of air pollutants. The following four components were integrated into this assay system: (1) an 8-channel assay platform uniquely designed for simultaneously sensing multiple optical samples, (2) single-chain probes illuminating toxic chemicals or heavy metal cations from air pollutants, (3) a microfluidic system for circulating medium mimicking the human body, and (4) the software manimulating the above system. In the protocol, we briefly introduce how to integrate the components into the system and the application to the illumination of the metal cationic activities in air pollutants. PMID:27424913

  9. A Bioluminescence Assay System for Imaging Metal Cationic Activities in Urban Aerosols.

    PubMed

    Kim, Sung-Bae; Naganawa, Ryuichi; Murata, Shingo; Nakayama, Takayoshi; Miller, Simon; Senda, Toshiya

    2016-01-01

    A bioluminescence-based assay system was fabricated for an efficient determination of the activities of air pollutants. The following four components were integrated into this assay system: (1) an 8-channel assay platform uniquely designed for simultaneously sensing multiple optical samples, (2) single-chain probes illuminating toxic chemicals or heavy metal cations from air pollutants, (3) a microfluidic system for circulating medium mimicking the human body, and (4) the software manimulating the above system. In the protocol, we briefly introduce how to integrate the components into the system and the application to the illumination of the metal cationic activities in air pollutants.

  10. Implicit Shape Parameterization for Kansei Design Methodology

    NASA Astrophysics Data System (ADS)

    Nordgren, Andreas Kjell; Aoyama, Hideki

    Implicit shape parameterization for Kansei design is a procedure that use 3D-models, or concepts, to span a shape space for surfaces in the automotive field. A low-dimensional, yet accurate shape descriptor was found by Principal Component Analysis of an ensemble of point-clouds, which were extracted from mesh-based surfaces modeled in a CAD-program. A theoretical background of the procedure is given along with step-by-step instructions for the required data-processing. The results show that complex surfaces can be described very efficiently, and encode design features by an implicit approach that does not rely on error-prone explicit parameterizations. This provides a very intuitive way to explore shapes for a designer, because various design features can simply be introduced by adding new concepts to the ensemble. Complex shapes have been difficult to analyze with Kansei methods due to the large number of parameters involved, but implicit parameterization of design features provides a low-dimensional shape descriptor for efficient data collection, model-building and analysis of emotional content in 3D-surfaces.

  11. Identifying Aerosol Type/Mixture from Aerosol Absorption Properties Using AERONET

    NASA Technical Reports Server (NTRS)

    Giles, D. M.; Holben, B. N.; Eck, T. F.; Sinyuk, A.; Dickerson, R. R.; Thompson, A. M.; Slutsker, I.; Li, Z.; Tripathi, S. N.; Singh, R. P.; Zibordi, G.

    2010-01-01

    Aerosols are generated in the atmosphere through anthropogenic and natural mechanisms. These sources have signatures in the aerosol optical and microphysical properties that can be used to identify the aerosol type/mixture. Spectral aerosol absorption information (absorption Angstrom exponent; AAE) used in conjunction with the particle size parameterization (extinction Angstrom exponent; EAE) can only identify the dominant absorbing aerosol type in the sample volume (e.g., black carbon vs. iron oxides in dust). This AAE/EAE relationship can be expanded to also identify non-absorbing aerosol types/mixtures by applying an absorption weighting. This new relationship provides improved aerosol type distinction when the magnitude of absorption is not equal (e.g, black carbon vs. sulfates). The Aerosol Robotic Network (AERONET) data provide spectral aerosol optical depth and single scattering albedo - key parameters used to determine EAE and AAE. The proposed aerosol type/mixture relationship is demonstrated using the long-term data archive acquired at AERONET sites within various source regions. The preliminary analysis has found that dust, sulfate, organic carbon, and black carbon aerosol types/mixtures can be determined from this AAE/EAE relationship when applying the absorption weighting for each available wavelength (Le., 440, 675, 870nm). Large, non-spherical dust particles absorb in the shorter wavelengths and the application of 440nm wavelength absorption weighting produced the best particle type definition. Sulfate particles scatter light efficiently and organic carbon particles are small near the source and aggregate over time to form larger less absorbing particles. Both sulfates and organic carbon showed generally better definition using the 870nm wavelength absorption weighting. Black carbon generation results from varying combustion rates from a number of sources including industrial processes and biomass burning. Cases with primarily black carbon showed

  12. Increased Cloud Activation Potential of Secondary Organic Aerosol for Atmospheric Mass Loadings

    SciTech Connect

    King, Stephanie M.; Rosenoern, Thomas; Shilling, John E.; Chen, Qi; Martin, Scot T.

    2009-05-01

    The effect of organic particle mass loading from 1 to ≥100 μg m-3 on the cloud condensation nuclei (CCN) properties of mixed organic-sulfate particles was investigated in the Harvard Environmental Chamber. Mixed particles were produced by the condensation of organic molecules onto ammonium sulfate particles during the dark ozonolysis of α-pinene. A continuous-flow mode of the chamber provided stable conditions over long time periods, allowing for signal integration and hence increased measurement precision at low organic mass loadings representative of atmospheric conditions. CCN activity was measured at eight mass loadings for 80- and 100-nm particles grown on 50-nm sulfate seeds. A two-component (organic/sulfate) Köhler model, which included the particle heterogeneity arising from DMA size selection and from organic volume fraction for the selected 80- and 100-nm particles, was used to predict CCN activity. For organic mass loadings of 2.9 μg m-3 and greater, the observed activation curves were well predicted using a single set of physicochemical parameters for the organic component. For mass loadings of 1.74 μg m-3 and less, the observed CCN activity increased beyond predicted values using the same parameters, implying changed physicochemical properties of the organic component. Of possible changes in surface tension, effective molecular weight, and effective density, a sensitivity analysis implicated a decrease of up to 10% in surface tension at low mass loadings as the plausible dominant mechanism for the observed increase in CCN activity.

  13. Cloud-Driven Changes in Aerosol Optical Properties - Final Technical Report

    SciTech Connect

    Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

    2007-09-30

    The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles’ lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

  14. Cloud Scavenging Effects on Aerosol Radiative and Cloud-nucleating Properties - Final Technical Report

    SciTech Connect

    Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

    2009-03-05

    The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles’ lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

  15. Parameterization Impacts on Linear Uncertainty Calculation

    NASA Astrophysics Data System (ADS)

    Fienen, M. N.; Doherty, J.; Reeves, H. W.; Hunt, R. J.

    2009-12-01

    Efficient linear calculation of model prediction uncertainty can be an insightful diagnostic metric for decision-making. Specifically, the contributions of parameter uncertainty or the location and type of data to prediction uncertainty can be used to evaluate which types of information are most valuable. Information that most significantly reduces prediction uncertainty can be considered to have greater worth. Prediction uncertainty is commonly calculated including or excluding specific information and compared to a base scenario. The quantitative difference in uncertainty with or without the information is indicative of that information's worth in the decision-making process. These results can be calculated at many hypothetical locations to guide network design (i.e., where to install new wells/stream gages/etc.) or used to indicate which parameters are the most important to understand thus likely candidates for future characterization work. We examine a hypothetical case in which an inset model is created from a large regional model in order to better represent a surface stream network and make predictions of head near and flux in a stream due to installation and pumping of a large well near a stream headwater. Parameterization and edge boundary conditions are inherited from the regional model, the simple act of refining discretization and stream geometry shows improvement in the representation of the streams. Even visual inspection of the simulated head field highlights the need to recalibrate and potentially re-parametrize the inset model. A network of potential head observations is evaluated and contoured in the shallowest two layers of the six-layer model to assess their worth in both predicting flux at a specific gage, and head at a specific location near the stream. Three hydraulic conductivity parameterization scenarios are evaluated: using a single multiplier on hydraulic conductivity acting on the inherited hydraulic conductivity zonation using; the

  16. Increased cloud activation potential of secondary organic aerosol for atmospheric mass loadings

    NASA Astrophysics Data System (ADS)

    King, S. M.; Rosenoern, T.; Shilling, J. E.; Chen, Q.; Martin, S. T.

    2009-05-01

    The effect of organic particle mass loading from 1 to ≥100 μg m-3 on the cloud condensation nuclei (CCN) properties of mixed organic-sulfate particles was investigated in the Harvard Environmental Chamber. Mixed particles were produced by the condensation of organic molecules onto ammonium sulfate particles during the dark ozonolysis of α-pinene. A continuous-flow mode of the chamber provided stable conditions over long time periods, allowing for signal integration and hence increased measurement precision at low organic mass loadings representative of atmospheric conditions. CCN activity was measured at eight mass loadings for 80- and 100-nm particles grown on 50-nm sulfate seeds. A two-component (organic/sulfate) Köhler model, which included the particle heterogeneity arising from DMA size selection and from organic volume fraction for the selected 80- and 100-nm particles, was used to predict CCN activity. For organic mass loadings of 2.9 μg m-3 and greater, the observed activation curves were well predicted using a single set of physicochemical parameters for the organic component. For mass loadings of 1.74 μg m-3 and less, the observed CCN activity increased beyond predicted values using the same parameters, implying changed physicochemical properties of the organic component. A sensitivity analysis suggests that a drop in surface tension must be invoked to explain quantitatively the CCN observations at low SOA particle mass loadings. Other factors, such as decreased molecular weight, increased density, or increased van't Hoff factor, can contribute to the explanation but are quantitatively insufficient as the full explanation.

  17. Aerosol in the Pacific troposphere

    NASA Technical Reports Server (NTRS)

    Clarke, Antony D.

    1989-01-01

    The use of near real-time optical techniques is emphasized for the measurement of mid-tropospheric aerosol over the Central Pacific. The primary focus is on measurement of the aerosol size distribution over the range of particle diameters from 0.15 to 5.0 microns that are essential for modeling CO2 backscatter values in support of the laser atmospheric wind sounder (LAWS) program. The measurement system employs a LAS-X (Laser Aerosol Spectrometer-PMS, Boulder, CO) with a custom 256 channel pulse height analyzer and software for detailed measurement and analysis of aerosol size distributions. A thermal preheater system (Thermo Optic Aerosol Descriminator (TOAD) conditions the aerosol in a manner that allows the discrimination of the size distribution of individual aerosol components such as sulfuric acid, sulfates and refractory species. This allows assessment of the relative contribution of each component to the BCO2 signal. This is necessary since the different components have different sources, exhibit independent variability and provide different BCO2 signals for a given mass and particle size. Field activities involve experiments designed to examine both temporal and spatial variability of these aerosol components from ground based and aircraft platforms.

  18. Enhanced Bactericidal Activity of Silver Thin Films Deposited via Aerosol-Assisted Chemical Vapor Deposition.

    PubMed

    Ponja, Sapna D; Sehmi, Sandeep K; Allan, Elaine; MacRobert, Alexander J; Parkin, Ivan P; Carmalt, Claire J

    2015-12-30

    Silver thin films were deposited on SiO2-barrier-coated float glass, fluorine-doped tin oxide (FTO) glass, Activ glass, and TiO2-coated float glass via AACVD using silver nitrate at 350 °C. The films were annealed at 600 °C and analyzed by X-ray powder diffraction, X-ray photoelectron spectroscopy, UV/vis/near-IR spectroscopy, and scanning electron microscopy. All the films were crystalline, and the silver was present in its elemental form and of nanometer dimension. The antibacterial activity of these samples was tested against Escherichia coli and Staphylococcus aureus in the dark and under UV light (365 nm). All Ag-deposited films reduced the numbers of E. coli by 99.9% within 6 h and the numbers of S. aureus by 99.9% within only 2 h. FTO/Ag reduced bacterial numbers of E. coli to below the detection limit after 60 min and caused a 99.9% reduction of S. aureus within only 15 min of UV irradiation. Activ/Ag reduced the numbers of S. aureus by 66.6% after 60 min and TiO2/Ag killed 99.9% of S. aureus within 60 min of UV exposure. More remarkably, we observed a 99.9% reduction in the numbers of E. coli within 6 h and the numbers of S. aureus within 4 h in the dark using our novel TiO2/Ag system. PMID:26632854

  19. Aerosol Size Distribution in the marine regions

    NASA Astrophysics Data System (ADS)

    Markuszewski, Piotr; Petelski, Tomasz; Zielinski, Tymon; Pakszys, Paulina; Strzalkowska, Agata; Makuch, Przemyslaw; Kowalczyk, Jakub

    2014-05-01

    We would like to present the data obtained during the regular research cruises of the S/Y Oceania over a period of time between 2009 - 2012. The Baltic Sea is a very interesting polygon for aerosol measurements, however, also difficult due to the fact that mostly cases of a mixture of continental and marine aerosols are observed. It is possible to measure clear marine aerosol, but also advections of dust from southern Europe or even Africa. This variability of data allows to compare different conditions. The data is also compared with our measurements from the Arctic Seas, which have been made during the ARctic EXperiment (AREX). The Arctic Seas are very suitable for marine aerosol investigations since continental advections of aerosols are far less frequent than in other European sea regions. The aerosol size distribution was measured using the TSI Laser Aerosol Spectrometer model 3340 (99 channels, measurement range 0.09 μm to 7 μm), condensation particle counter (range 0.01 μm to 3 μm) and laser particle counter PMS CSASP-100-HV-SP (range 0.5 μm to 47 μm in 45 channels). Studies of marine aerosol production and transport are important for many Earth sciences such as cloud physics, atmospheric optics, environmental pollution studies and interaction between ocean and atmosphere. All equipment was placed on one of the masts of S/Y Oceania. Measurements using the laser aerosol spectrometer and condensation particle counter were made on one level (8 meters above sea level). Measurements with the laser particle counter were performed at five different levels above the sea level (8, 11, 14, 17 and 20 m). Based on aerosol size distribution the parameterizations with a Log-Normal and a Power-Law distributions were made. The aerosol source functions, characteristic for the region were also determined. Additionally, poor precision of the sea spray emission determination was confirmed while using only the aerosol concentration data. The emission of sea spray depends

  20. Development of new parameterizations for SOA production from SVOC and IVOC oxidation

    NASA Astrophysics Data System (ADS)

    Lemaire, Vincent; Coll, Isabelle; Camredon, Marie; Aumont, Bernard; Siour, Guillaume

    2014-05-01

    Recent experimental studies have demonstrated the partially volatile pattern of primary organic aerosol (POA) that is actually associated with organic species of so-called intermediate volatility (IVOCs), and by semi-volatile (SVOCs) species. Indeed, 50% to 75% of the total emitted mass of POA may be present in the atmospheric gas phase in accordance with the thermodynamic properties of its components (Shrivastava et al., 2006). During the processing of the emission plume, this gaseous material will then undergo photochemical oxidation, enhancing the production of secondary organic aerosol (SOA) (Robinson et al., 2007; Hodzic et al., 2010; Lee-Taylor et al., 2011). Considering POA as non volatile in Chemistry Transport Models (CTMs) could thus lead to an underestimation of SOA and an overestimation of POA (Aksoyoglu et al., 2011) and bias the temporal formation of the organic aerosol (Kroll et al., 2007; Presto et al., 2012). However, very rare experimental data exist on the fate of these species and their aerosol yield, but all existing studies have shown a significant SOA production (Presto et al., 2009; Miracolo et al., 2010; Lambe et al., 2012). Our works aims at including and testing in the CHIMERE CTM new parameterizations of SOA formation from the oxidation of IVOCs and SVOCs, arising from explicit 0D-model experiments. Our approach is based on the works of Aumont et al., (2013) who used the GECKO-A tool (Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere) to generate the explicit chemistry and gas-particle partitioning of superior alkanes and their oxidation products. Using this explicit scheme, Aumont et al., (2013) indeed produced 0D simulations of the oxidation of given SVOCs and IVOCs under different initial conditions of organic aerosol mass. We first focused on the chemistry of n-hexadecane. From the 0D-experiments, we tested the influence of the number of first generation surrogate species and the number of generation taken

  1. FY 2010 Fourth Quarter Report: Evaluation of the Dependency of Drizzle Formation on Aerosol Properties

    SciTech Connect

    Lin, W; McGraw, R; Liu, Y; Wang, J; Vogelmann, A; Daum, PH

    2010-10-01

    Metric for Quarter 4: Report results of implementation of composite parameterization in single-column model (SCM) to explore the dependency of drizzle formation on aerosol properties. To better represent VOCALS conditions during a test flight, the Liu-Duam-McGraw (LDM) drizzle parameterization is implemented in the high-resolution Weather Research and Forecasting (WRF) model, as well as in the single-column Community Atmosphere Model (CAM), to explore this dependency.

  2. International Cooperative for Aerosol Prediction Workshop on Aerosol Forecast Verification

    NASA Technical Reports Server (NTRS)

    Benedetti, Angela; Reid, Jeffrey S.; Colarco, Peter R.

    2011-01-01

    The purpose of this workshop was to reinforce the working partnership between centers who are actively involved in global aerosol forecasting, and to discuss issues related to forecast verification. Participants included representatives from operational centers with global aerosol forecasting requirements, a panel of experts on Numerical Weather Prediction and Air Quality forecast verification, data providers, and several observers from the research community. The presentations centered on a review of current NWP and AQ practices with subsequent discussion focused on the challenges in defining appropriate verification measures for the next generation of aerosol forecast systems.

  3. Evaluating the Impact of Aerosols on Numerical Weather Prediction

    NASA Astrophysics Data System (ADS)

    Freitas, Saulo; Silva, Arlindo; Benedetti, Angela; Grell, Georg; Members, Wgne; Zarzur, Mauricio

    2015-04-01

    The Working Group on Numerical Experimentation (WMO, http://www.wmo.int/pages/about/sec/rescrosscut/resdept_wgne.html) has organized an exercise to evaluate the impact of aerosols on NWP. This exercise will involve regional and global models currently used for weather forecast by the operational centers worldwide and aims at addressing the following questions: a) How important are aerosols for predicting the physical system (NWP, seasonal, climate) as distinct from predicting the aerosols themselves? b) How important is atmospheric model quality for air quality forecasting? c) What are the current capabilities of NWP models to simulate aerosol impacts on weather prediction? Toward this goal we have selected 3 strong or persistent events of aerosol pollution worldwide that could be fairly represented in current NWP models and that allowed for an evaluation of the aerosol impact on weather prediction. The selected events includes a strong dust storm that blew off the coast of Libya and over the Mediterranean, an extremely severe episode of air pollution in Beijing and surrounding areas, and an extreme case of biomass burning smoke in Brazil. The experimental design calls for simulations with and without explicitly accounting for aerosol feedbacks in the cloud and radiation parameterizations. In this presentation we will summarize the results of this study focusing on the evaluation of model performance in terms of its ability to faithfully simulate aerosol optical depth, and the assessment of the aerosol impact on the predictions of near surface wind, temperature, humidity, rainfall and the surface energy budget.

  4. Measuring of urban ultrafine aerosol as a part of regular air pollution monitoring activities

    NASA Astrophysics Data System (ADS)

    Hejkrlík, Libor; Plachá, Helena

    2015-04-01

    Number size distribution of UFP has been measured since June 2012 to present time (end of 2014) at a background urban site in Northern Bohemia in the frame of UltraSchwarz Project. The project sustainability guarantees at least five years further measuring thus this highly specific activity already becomes part of existing air pollution monitoring system of Czech Hydrometeorological Institute. Number concentrations of UFP were measured by SMPS in a diameter range of 10 to 800 nm in 7 channels with time resolution of 10 minutes. For the purposes of this study the data were re-arranged into series of one-hour means in three size categories: nucleation mode (10-30 nm), Aitken mode (30-100 nm) and accumulation mode (100-800 nm). At the same measuring site 7 other air pollutants (PM1-BC, NO, NOX, NO2, O3, PM10 and SO2) were measured with identical time resolution. The successive daily courses of submicron particles in three size modes as well as of seven other ambient air pollutants were drawn in the form of 3D surface diagrams expressing different behavior of specific substances in the course of 26 months of continuous measuring campaign, allowing for analysis of both diurnal and seasonal changes. The three modes of UFP manifest diverse pictures, the nucleation mode is apparent mainly during warm seasons, the particles in Aitken mode behave rather indifferently to the period of the year and the accumulation mode has close relationship to coarse particles. Month by month correlation analysis indicate that nucleation mode nanoparticles are positively correlated especially with increasing O3 and SO2 concentration and that there exists connection between Aitken and accumulation modes and nitrogen oxides. In order to better understand fine time patterns we plan to calculate moving correlation indices over shorter time periods. Good idea would also be to make use of large database of data from nearby stations of CHMI to analyze the role of meteorological conditions.

  5. [Aerosol therapy].

    PubMed

    Wildhaber, J H

    1998-08-15

    Aerosol therapy plays a major role in the diagnosis and treatment of various lung diseases. The aim of inhalation therapy is to deposit a reproducible and adequate dose of a specific drug to the airways, in order to achieve a high, local, clinical effect while avoiding serious systemic side effects. To achieve this goal, it is therefore important to have an efficient inhalation device to deliver different medications. However, the currently available therapeutic inhalation devices (nebuliser, pressurised metered-dose inhaler and dry powder inhaler) are not very efficient in aerosol delivery and have several disadvantages. Inhalation devices can be assessed by in vitro studies, filter studies and radiolabelled deposition studies. Several radiolabelled deposition studies have shown that nebulisers and pressurised metered-dose inhalers are not very efficient in aerosol delivery. In children, before 1997, only 0.5% to 15% of the total nebulised or actuated dose from a nebuliser or pressurised metered-dose inhaler actually reached the lungs. These numbers were somewhat improved in adults, 30% of the total nebulised or actuated dose reaching the airways. Aerosol therapy with dry powder inhalers was the most efficient before 1997, 30% of the total dose being deposited in the lungs of adults and children. In 1997, new developments in pressurised metered-dose inhalers much improved their efficiency in aerosol delivery. Lung deposition can be increased by up to 60% with use of a non-electrostatic holding chamber and/or a pressurised metered-dose inhaler with a hydrofluoroalkane propellant possessing superior aerosol characteristics. Several studies comparing the clinical efficiency of different inhalation devices have shown that the choice of an optimal inhalation device is crucial. In addition to the aerosol characteristics, ventilation parameters and airway morphology have an important bearing on deposition patterns. These parameters may be greatly influenced by the

  6. Lightning parameterization in a storm electrification model

    NASA Technical Reports Server (NTRS)

    Helsdon, John H., Jr.; Farley, Richard D.; Wu, Gang

    1988-01-01

    The parameterization of an intracloud lightning discharge has been implemented in our Storm Electrification Model. The initiation, propagation direction, termination and charge redistribution of the discharge are approximated assuming overall charge neutrality. Various simulations involving differing amounts of charge transferred have been done. The effects of the lightning-produced ions on the hydrometeor charges, electric field components and electrical energy depend strongly on the charge transferred. A comparison between the measured electric field change of an actual intracloud flash and the field change due to the simulated discharge show favorable agreement.

  7. A parameterization of the evaporation of rainfall

    NASA Technical Reports Server (NTRS)

    Schlesinger, Michael E.; Oh, Jai-Ho; Rosenfeld, Daniel

    1988-01-01

    A general theoretical expression for the rainfall rate and the total evaporation rate as a function of the distance below cloud base is developed, and is then specialized to the gamma raindrop size distribution. The theoretical framework is used to analyze the data of Rosenfeld and Mintz (1988) on the radar observations of the rainfall rate as a function of the distance below cloud base, for rain falling from continental convective cells in central South Africa, obtaining a parameterization for the evaporation of rainfall.

  8. Stratospheric Aerosol Measurements

    NASA Technical Reports Server (NTRS)

    Pueschel, Rudolf, F.; Gore, Warren J. (Technical Monitor)

    1998-01-01

    Stratospheric aerosols affect the atmospheric energy balance by scattering and absorbing solar and terrestrial radiation. They also can alter stratospheric chemical cycles by catalyzing heterogeneous reactions which markedly perturb odd nitrogen, chlorine and ozone levels. Aerosol measurements by satellites began in NASA in 1975 with the Stratospheric Aerosol Measurement (SAM) program, to be followed by the Stratospheric Aerosol and Gas Experiment (SAGE) starting in 1979. Both programs employ the solar occultation, or Earth limb extinction, techniques. Major results of these activities include the discovery of polar stratospheric clouds (PSCs) in both hemispheres in winter, illustrations of the impacts of major (El Chichon 1982 and Pinatubo 1991) eruptions, and detection of a negative global trend in lower stratospheric/upper tropospheric aerosol extinction. This latter result can be considered a triumph of successful worldwide sulfur emission controls. The SAGE record will be continued and improved by SAGE III, currently scheduled for multiple launches beginning in 2000 as part of the Earth Observing System (EOS). The satellite program has been supplemented by in situ measurements aboard the ER-2 (20 km ceiling) since 1974, and from the DC-8 (13 km ceiling) aircraft beginning in 1989. Collection by wire impactors and subsequent electron microscopic and X-ray energy-dispersive analyses, and optical particle spectrometry have been the principle techniques. Major findings are: (1) The stratospheric background aerosol consists of dilute sulfuric acid droplets of around 0.1 micrometer modal diameter at concentration of tens to hundreds of monograms per cubic meter; (2) Soot from aircraft amounts to a fraction of one percent of the background total aerosol; (3) Volcanic eruptions perturb the sulfuric acid, but not the soot, aerosol abundance by several orders of magnitude; (4) PSCs contain nitric acid at temperatures below 195K, supporting chemical hypotheses

  9. On Parameterizing Turbulence in the Stably Stratified Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Wilson, Jordan M.; Venayagamoorthy, Subhas K.

    2014-11-01

    Parameterizing turbulent mixing in the stably stratified atmospheric boundary layer remains an active area of research connecting available field measurements with appropriate model parameters. The research presented studies the pertinent mixing lengths for shear- and buoyancy-dominated (or weakly stable and very stable) regimes in the stable atmospheric boundary layer (SABL). Incorporating shear and buoyancy effects, two length scales can be constructed, LkS =k 1 / 2 / S and LkN =k 1 / 2 / N , respectively. Extending the conceptual framework of Mater & Venayagamoorthy (2014), LkS and LkN are shown to be accurate representations of large-scale motions from which relevant model parameters are developed using observations from three field campaigns. An a priori analysis of large-eddy simulation (LES) data evaluates the efficacy of parameterizations applied to the vertical structure of the SABL. The results of this study provide a thorough evaluation of the pertinent mixing lengths in stably stratified turbulence through applications to atmospheric observations and numerical models for the boundary layer extendable to larger-scale weather prediction or global circulation models. S.K.V. gratefully acknowledges the support of the National Science Foundation under Grant No. OCE-1151838.

  10. Parameterizing correlations between hydrometeor species in mixed-phase Arctic clouds

    NASA Astrophysics Data System (ADS)

    Larson, Vincent E.; Nielsen, Brandon J.; Fan, Jiwen; Ovchinnikov, Mikhail

    2011-01-01

    Mixed-phase Arctic clouds, like other clouds, contain small-scale variability in hydrometeor fields, such as cloud water or snow mixing ratio. This variability may be worth parameterizing in coarse-resolution numerical models. In particular, for modeling multispecies processes such as accretion and aggregation, it would be useful to parameterize subgrid correlations among hydrometeor species. However, one difficulty is that there exist many hydrometeor species and many microphysical processes, leading to complexity and computational expense. Existing lower and upper bounds on linear correlation coefficients are too loose to serve directly as a method to predict subgrid correlations. Therefore, this paper proposes an alternative method that begins with the spherical parameterization framework of Pinheiro and Bates (1996), which expresses the correlation matrix in terms of its Cholesky factorization. The values of the elements of the Cholesky matrix are populated here using a "cSigma" parameterization that we introduce based on the aforementioned bounds on correlations. The method has three advantages: (1) the computational expense is tolerable; (2) the correlations are, by construction, guaranteed to be consistent with each other; and (3) the methodology is fairly general and hence may be applicable to other problems. The method is tested noninteractively using simulations of three Arctic mixed-phase cloud cases from two field experiments: the Indirect and Semi-Direct Aerosol Campaign and the Mixed-Phase Arctic Cloud Experiment. Benchmark simulations are performed using a large-eddy simulation (LES) model that includes a bin microphysical scheme. The correlations estimated by the new method satisfactorily approximate the correlations produced by the LES.

  11. Parameterizing correlations between hydrometeor species in mixed-phase Arctic clouds

    SciTech Connect

    Larson, Vincent E.; Nielsen, Brandon J.; Fan, Jiwen; Ovchinnikov, Mikhail

    2011-08-16

    Mixed-phase Arctic clouds, like other clouds, contain small-scale variability in hydrometeor fields, such as cloud water or snow mixing ratio. This variability may be worth parameterizing in coarse-resolution numerical models. In particular, for modeling processes such as accretion and aggregation, it would be useful to parameterize subgrid correlations among hydrometeor species. However, one difficulty is that there exist many hydrometeor species and many microphysical processes, leading to complexity and computational expense.Existing lower and upper bounds (inequalities) on linear correlation coefficients provide useful guidance, but these bounds are too loose to serve directly as a method to predict subgrid correlations. Therefore, this paper proposes an alternative method that is based on a blend of theory and empiricism. The method begins with the spherical parameterization framework of Pinheiro and Bates (1996), which expresses the correlation matrix in terms of its Cholesky factorization. The values of the elements of the Cholesky matrix are parameterized here using a cosine row-wise formula that is inspired by the aforementioned bounds on correlations. The method has three advantages: 1) the computational expense is tolerable; 2) the correlations are, by construction, guaranteed to be consistent with each other; and 3) the methodology is fairly general and hence may be applicable to other problems. The method is tested non-interactively using simulations of three Arctic mixed-phase cloud cases from two different field experiments: the Indirect and Semi-Direct Aerosol Campaign (ISDAC) and the Mixed-Phase Arctic Cloud Experiment (M-PACE). Benchmark simulations are performed using a large-eddy simulation (LES) model that includes a bin microphysical scheme. The correlations estimated by the new method satisfactorily approximate the correlations produced by the LES.

  12. An efficient physically based parameterization to derive surface solar irradiance based on satellite atmospheric products

    NASA Astrophysics Data System (ADS)

    Qin, Jun; Tang, Wenjun; Yang, Kun; Lu, Ning; Niu, Xiaolei; Liang, Shunlin

    2015-05-01

    Surface solar irradiance (SSI) is required in a wide range of scientific researches and practical applications. Many parameterization schemes are developed to estimate it using routinely measured meteorological variables, since SSI is directly measured at a very limited number of stations. Even so, meteorological stations are still sparse, especially in remote areas. Remote sensing can be used to map spatiotemporally continuous SSI. Considering the huge amount of satellite data, coarse-resolution SSI has been estimated for reducing the computational burden when the estimation is based on a complex radiative transfer model. On the other hand, many empirical relationships are used to enhance the retrieval efficiency, but the accuracy cannot be guaranteed out of regions where they are locally calibrated. In this study, an efficient physically based parameterization is proposed to balance computational efficiency and retrieval accuracy for SSI estimation. In this parameterization, the transmittances for gases, aerosols, and clouds are all handled in full band form and the multiple reflections between the atmosphere and surface are explicitly taken into account. The newly proposed parameterization is applied to estimate SSI with both Moderate Resolution Imaging Spectroradiometer (MODIS) atmospheric and land products as inputs. These retrievals are validated against in situ measurements at the Surface Radiation Budget Network and at the North China Plain on an instantaneous basis, and moreover, they are validated and compared with Global Energy and Water Exchanges-Surface Radiation Budget and International Satellite Cloud Climatology Project-flux data SSI estimates at radiation stations of China Meteorological Administration on a daily mean basis. The estimation results indicates that the newly proposed SSI estimation scheme can effectively retrieve SSI based on MODIS products with mean root-mean-square errors of about 100 Wm- 1 and 35 Wm- 1 on an instantaneous and daily

  13. Effect of the secondary organic aerosol coatings on black carbon water uptake, cloud condensation nuclei activity, and particle collapse

    EPA Science Inventory

    The ability of black carbon aerosols to absorb water and act as a cloud condensation nuclei (CCN) directly controls their lifetime in the atmosphere as well as their impact on cloud formation, thus impacting the earth’s climate. Black carbon emitted from most combustion pro...

  14. Towards a parameterization of convective wind gusts in Sahel

    NASA Astrophysics Data System (ADS)

    Largeron, Yann; Guichard, Françoise; Bouniol, Dominique; Couvreux, Fleur; Birch, Cathryn; Beucher, Florent

    2014-05-01

    ] who focused on the wet tropical Pacific region, and linked wind gusts to convective precipitation rates alone, here, we also analyse the subgrid wind distribution during convective events, and quantify the statistical moments (variance, skewness and kurtosis) in terms of mean wind speed and convective indexes such as DCAPE. Next step of the work will be to formulate a parameterization of the cold pool convective gust from those probability density functions and analytical formulaes obtained from basic energy budget models. References : [Carslaw et al., 2010] A review of natural aerosol interactions and feedbacks within the earth system. Atmospheric Chemistry and Physics, 10(4):1701{1737. [Engelstaedter et al., 2006] North african dust emissions and transport. Earth-Science Reviews, 79(1):73{100. [Knippertz and Todd, 2012] Mineral dust aerosols over the sahara: Meteorological controls on emission and transport and implications for modeling. Reviews of Geophysics, 50(1). [Marsham et al., 2011] The importance of the representation of deep convection for modeled dust-generating winds over west africa during summer.Geophysical Research Letters, 38(16). [Marticorena and Bergametti, 1995] Modeling the atmospheric dust cycle: 1. design of a soil-derived dust emission scheme. Journal of Geophysical Research, 100(D8):16415{16. [Menut, 2008] Sensitivity of hourly saharan dust emissions to ncep and ecmwf modeled wind speed. Journal of Geophysical Research: Atmospheres (1984{2012), 113(D16). [Pierre et al., 2012] Impact of vegetation and soil moisture seasonal dynamics on dust emissions over the sahel. Journal of Geophysical Research: Atmospheres (1984{2012), 117(D6). [Redelsperger et al., 2000] A parameterization of mesoscale enhancement of surface fluxes for large-scale models. Journal of climate, 13(2):402{421.

  15. Intercomparison of land-surface parameterizations launched

    NASA Astrophysics Data System (ADS)

    Henderson-Sellers, A.; Dickinson, R. E.

    One of the crucial tasks for climatic and hydrological scientists over the next several years will be validating land surface process parameterizations used in climate models. There is not, necessarily, a unique set of parameters to be used. Different scientists will want to attempt to capture processes through various methods “for example, Avissar and Verstraete, 1990”. Validation of some aspects of the available (and proposed) schemes' performance is clearly required. It would also be valuable to compare the behavior of the existing schemes [for example, Dickinson et al., 1991; Henderson-Sellers, 1992a].The WMO-CAS Working Group on Numerical Experimentation (WGNE) and the Science Panel of the GEWEX Continental-Scale International Project (GCIP) [for example, Chahine, 1992] have agreed to launch the joint WGNE/GCIP Project for Intercomparison of Land-Surface Parameterization Schemes (PILPS). The principal goal of this project is to achieve greater understanding of the capabilities and potential applications of existing and new land-surface schemes in atmospheric models. It is not anticipated that a single “best” scheme will emerge. Rather, the aim is to explore alternative models in ways compatible with their authors' or exploiters' goals and to increase understanding of the characteristics of these models in the scientific community.

  16. Mixing parameterizations in ocean climate modeling

    NASA Astrophysics Data System (ADS)

    Moshonkin, S. N.; Gusev, A. V.; Zalesny, V. B.; Byshev, V. I.

    2016-03-01

    Results of numerical experiments with an eddy-permitting ocean circulation model on the simulation of the climatic variability of the North Atlantic and the Arctic Ocean are analyzed. We compare the ocean simulation quality with using different subgrid mixing parameterizations. The circulation model is found to be sensitive to a mixing parametrization. The computation of viscosity and diffusivity coefficients by an original splitting algorithm of the evolution equations for turbulence characteristics is found to be as efficient as traditional Monin-Obukhov parameterizations. At the same time, however, the variability of ocean climate characteristics is simulated more adequately. The simulation of salinity fields in the entire study region improves most significantly. Turbulent processes have a large effect on the circulation in the long-term through changes in the density fields. The velocity fields in the Gulf Stream and in the entire North Atlantic Subpolar Cyclonic Gyre are reproduced more realistically. The surface level height in the Arctic Basin is simulated more faithfully, marking the Beaufort Gyre better. The use of the Prandtl number as a function of the Richardson number improves the quality of ocean modeling.

  17. A sea-state based source function for size and composition resolved marine aerosol

    SciTech Connect

    Long, Michael S; Keene, William C; Erickson III, David J

    2011-01-01

    A parameterization for the size- and composition-resolved production fluxes of nascent marine aerosol was developed from prior experimental observations and extrapolated to ambient conditions based on estimates of air entrainment by the breaking of wind-driven ocean waves. Production of particulate organic carbon (OC{sub aer}) was parameterized based on Langmuir equilibrium-type association of organic matter to bubble plumes in seawater and resulting aerosol as constrained by measurements of aerosol produced from productive and oligotrophic seawater. This novel approach is the first to parameterize size- and composition-resolved aerosol production based on explicit evaluation of wind-driven air entrainment/detrainment fluxes and chlorophyll-a as a proxy for surfactants in surface seawater. Production fluxes were simulated globally with an eight aerosol-size-bin version of the NCAR Community Atmosphere Model (CAM v3.5.07). Simulated production fluxes fell within the range of published estimates based on observationally constrained parameterizations. Because the parameterization does not consider contributions from spume drops, the simulated global mass flux (1.5 x 10{sup 3} Tg y{sup -1}) is near the lower end of published estimates. The simulated production of aerosol number (1.4 x 10{sup 6} m{sup -2} s{sup -1}) and OC{sub aer} (29 Tg C y{sup -1}) fall near the upper end of published estimates and suggest that primary marine aerosols may have greater influences on the physicochemical evolution of the troposphere, radiative transfer and climate, and associated feedbacks on the surface ocean than suggested by previous model studies.

  18. Apparatus for rapid measurement of aerosol bulk chemical composition

    DOEpatents

    Lee, Yin-Nan E.; Weber, Rodney J.

    2003-01-01

    An apparatus and method for continuous on-line measurement of chemical composition of aerosol particles with a fast time resolution are provided. The apparatus includes a modified particle size magnifier for producing activated aerosol particles and a collection device which collects the activated aerosol particles into a liquid stream for quantitative analysis by analytical methods. The method provided for on-line measurement of chemical composition of aerosol particles includes exposing aerosol carrying sample air to hot saturated steam thereby forming activated aerosol particles; collecting the activated aerosol particles by a collection device for delivery as a jet stream onto an impaction surface; flushing off the activated aerosol particles from the impaction surface into a liquid stream for delivery of the collected liquid stream to an analytical instrument for quantitative measurement.

  19. Apparatus for rapid measurement of aerosol bulk chemical composition

    DOEpatents

    Lee, Yin-Nan E.; Weber, Rodney J.; Orsini, Douglas

    2006-04-18

    An apparatus for continuous on-line measurement of chemical composition of aerosol particles with a fast time resolution is provided. The apparatus includes an enhanced particle size magnifier for producing activated aerosol particles and an enhanced collection device which collects the activated aerosol particles into a liquid stream for quantitative analysis by analytical means. Methods for on-line measurement of chemical composition of aerosol particles are also provided, the method including exposing aerosol carrying sample air to hot saturated steam thereby forming activated aerosol particles; collecting the activated aerosol particles by a collection device for delivery as a jet stream onto an impaction surface; and flushing off the activated aerosol particles from the impaction surface into a liquid stream for delivery of the collected liquid stream to an analytical instrument for quantitative measurement.

  20. A new parameterization of spectral and broadband ocean surface albedo.

    PubMed

    Jin, Zhonghai; Qiao, Yanli; Wang, Yingjian; Fang, Yonghua; Yi, Weining

    2011-12-19

    A simple yet accurate parameterization of spectral and broadband ocean surface albedo has been developed. To facilitate the parameterization and its applications, the albedo is parameterized for the direct and diffuse incident radiation separately, and then each of them is further divided into two components: the contributions from surface and water, respectively. The four albedo components are independent of each other, hence, altering one will not affect the others. Such a designed parameterization scheme is flexible for any future update. Users can simply replace any of the adopted empirical formulations (e.g., the relationship between foam reflectance and wind speed) as desired without a need to change the parameterization scheme. The parameterization is validated by in situ measurements and can be easily implemented into a climate or radiative transfer model. PMID:22274228

  1. BRAIN SURFACE CONFORMAL PARAMETERIZATION WITH THE RICCI FLOW

    PubMed Central

    Wang, Yalin; Gu, Xianfeng; Chan, Tony F.; Thompson, Paul M.; Yau, Shing-Tung

    2013-01-01

    In medical imaging, parameterized 3D surface models are of great interest for anatomical modeling and visualization, statistical comparisons of anatomy, and surface-based registration and signal processing. By solving the Yamabe equation with the Ricci flow method, we can conformally parameterize a brain surface via a mapping to a multi-hole disk. The resulting parameterizations do not have any singularities and are intrinsic and stable. To illustrate the technique, we computed parameterizations of cortical surfaces in MRI scans of the brain. We also show the parameterization results are consistent with constraints imposed on the mappings of selected landmark curves, and the resulting surfaces can be matched to each other using constrained harmonic maps. Unlike previous planar conformal parameterization methods, our algorithm does not introduce any singularity points. PMID:21926017

  2. Toward Quantifying the Mass-Based Hygroscopicity of Individual Submicron Atmospheric Aerosol Particles with STXM/NEXAFS and SEM/EDX

    NASA Astrophysics Data System (ADS)

    Yancey Piens, D.; Kelly, S. T.; OBrien, R. E.; Wang, B.; Petters, M. D.; Laskin, A.; Gilles, M. K.

    2014-12-01

    The hygroscopic behavior of atmospheric aerosols influences their optical and cloud-nucleation properties, and therefore affects climate. Although changes in particle size as a function of relative humidity have often been used to quantify the hygroscopic behavior of submicron aerosol particles, it has been noted that calculations of hygroscopicity based on size contain error due to particle porosity, non-ideal volume additivity and changes in surface tension. We will present a method to quantify the hygroscopic behavior of submicron aerosol particles based on changes in mass, rather than size, as a function of relative humidity. This method results from a novel experimental approach combining scanning transmission x-ray microscopy with near-edge x-ray absorption fine spectroscopy (STXM/NEXAFS), as well as scanning electron microscopy with energy dispersive x-ray spectroscopy (SEM/EDX) on the same individual particles. First, using STXM/NEXAFS, our methods are applied to aerosol particles of known composition ‒ for instance ammonium sulfate, sodium bromide and levoglucosan ‒ and validated by theory. Then, using STXM/NEXAFS and SEM/EDX, these methods are extended to mixed atmospheric aerosol particles collected in the field at the DOE Atmospheric Radiation Measurement (ARM) Climate Research Facility at the Southern Great Planes sampling site in Oklahoma, USA. We have observed and quantified a range of hygroscopic behaviors which are correlated to the composition and morphology of individual aerosol particles. These methods will have implications for parameterizing aerosol mixing state and cloud-nucleation activity in atmospheric models.

  3. Improving the simulation of organic aerosols from anthropogenic and burning sources: a simplified SOA formation mechanism and the impact of trash burning

    NASA Astrophysics Data System (ADS)

    Hodzic, A.; Wiedinmyer, C.; Jimenez, J. L.

    2011-12-01

    Organic aerosols (OA) are an major component of fine aerosols, but their sources are poorly understood. We present results of two methods to improve OA predictions in anthropogenic pollution and biomass-burning impacted regions. (1) An empirical parameterization for secondary organic aerosol (SOA) formation in polluted air and biomass burning smoke is implemented into community chemistry-transport models (WRF/Chem and CHIMERE) and tested in this work, towards the goal of a computationally inexpensive method to calculate pollution and biomass burning SOA. This approach is based on the observed proportionality of SOA concentrations to excess CO and photochemical age of the airmass, as described in Hodzic and Jimenez (GMDD, 2011). The oxygen to carbon ratio in organic aerosols is also parameterizated vs. photochemical aged based on the ambient observations, and is used to estimate the aerosol hygroscopicity and CCN activity. The predicted SOA is assessed against observations from the Mexico City metropolitan area during the MILAGRO 2006 field experiment, and compared to previous model results using the more complex volatility basis approach (VBS) of Robinson et al.. The results suggest that the simplified approach reproduces the observed average SOA mass within 30% in the urban area and downwind, and gives better results than the original VBS. In addition to being much less computationally expensive than VBS-type methods, the empirical approach can also be used in regions where the emissions of SOA precursors are not yet available. (2) The contribution of trash burning emissions to primary and secondary organic aerosols in Mexico City are estimated, using a recently-developed emission inventory. Submicron antimony (Sb) is used as a garbage-burning tracer following the results of Christian et al. (ACP 2010), which allows evaluation of the emissions inventory. Results suggests that trash burning may be an appreciable source of organic aerosols in the Mexico City

  4. The measurement and parameterization of ice nucleating particles in different backgrounds of China

    NASA Astrophysics Data System (ADS)

    Jiang, Hui; Yin, Yan; Wang, Xu; Gao, Renjie; Yuan, Liang; Chen, Kui; Shan, Yunpeng

    2016-11-01

    Investigation of the number concentration of ice nucleating particles (INP) in the deposition nucleation mode during a dust event is reported. The results discussed in this paper are the first continuous INP measurements in Xinjiang, northwest of China, over a period with a strong dust event. The average INP concentration at - 20 °C and 22% of supersaturation with respect to ice during non-dust days is found around 11 particles per liter, but it reached several hundred per liter in a dust event. A close correlation is also found between the INP number concentration with the number concentration of aerosol particles larger than 0.5 μm in diameter measured during a dust event, which means that a higher concentration of larger particles induced higher INP number concentration. Parameterizations were developed based on measurements to represent the variations of INP concentration with temperature, supersaturation, and the number concentration of aerosol particles with size larger than 0.5 μm. It should be the first ever, as we have known so far, to measure ice nuclei and aerosol properties simultaneously in a desert area and to contrast INP concentrations in dust and dust-free days, and could advancing our understanding of the effects of dust particles on ice nucleation.

  5. Aerosol Lidar and MODIS Satellite Comparisons for Future Aerosol Loading Forecast

    NASA Technical Reports Server (NTRS)

    DeYoung, Russell; Szykman, James; Severance, Kurt; Chu, D. Allen; Rosen, Rebecca; Al-Saadi, Jassim

    2006-01-01

    Knowledge of the concentration and distribution of atmospheric aerosols using both airborne lidar and satellite instruments is a field of active research. An aircraft based aerosol lidar has been used to study the distribution of atmospheric aerosols in the California Central Valley and eastern US coast. Concurrently, satellite aerosol retrievals, from the MODIS (Moderate Resolution Imaging Spectroradiometer) instrument aboard the Terra and Aqua satellites, were take over the Central Valley. The MODIS Level 2 aerosol data product provides retrieved ambient aerosol optical properties (e.g., optical depth (AOD) and size distribution) globally over ocean and land at a spatial resolution of 10 km. The Central Valley topography was overlaid with MODIS AOD (5x5 sq km resolution) and the aerosol scattering vertical profiles from a lidar flight. Backward air parcel trajectories for the lidar data show that air from the Pacific and northern part of the Central Valley converge confining the aerosols to the lower valley region and below the mixed layer. Below an altitude of 1 km, the lidar aerosol and MODIS AOD exhibit good agreement. Both data sets indicate a high presence of aerosols near Bakersfield and the Tehachapi Mountains. These and other results to be presented indicate that the majority of the aerosols are below the mixed layer such that the MODIS AOD should correspond well with surface measurements. Lidar measurements will help interpret satellite AOD retrievals so that one day they can be used on a routine basis for prediction of boundary layer aerosol pollution events.

  6. Ganges Valley Aerosol Experiment (GVAX) Final Campaign Report

    SciTech Connect

    Kotamarthi, VR

    2013-12-01

    In general, the Indian Summer Monsoon (ISM) as well as the and the tropical monsoon climate is influenced by a wide range of factors. Under various climate change scenarios, temperatures over land and into the mid troposphere are expected to increase, intensifying the summer pressure gradient differential between land and ocean and thus strengthening the ISM. However, increasing aerosol concentration, air pollution, and deforestation result in changes to surface albedo and insolation, potentially leading to low monsoon rainfall. Clear evidence points to increasing aerosol concentrations over the Indian subcontinent with time, and several hypotheses regarding the effect on monsoons have been offered. The Ganges Valley Aerosol Experiment (GVAX) field study aimed to provide critical data to address these hypotheses and contribute to developing better parameterizations for tropical clouds, convection, and aerosol-cloud interactions. The primary science questions for the mission were as follows:

  7. Deliquescent phenomena of ambient aerosols on the North China Plain

    NASA Astrophysics Data System (ADS)

    Kuang, Y.; Zhao, C. S.; Ma, N.; Liu, H. J.; Bian, Y. X.; Tao, J. C.; Hu, Min

    2016-08-01

    In this study, we report that the deliquescent phenomena of ambient aerosols on the North China Plain are frequently observed using a humidified nephelometer system. The deliquescence relative humidity (RH) primarily ranges from 73% to 81%, with an average of 76.8%. The observed deliquescent phenomena of ambient aerosols exhibit distinct diurnal patterns and are highly correlated with ammonium sulfate. The diurnal variations of ammonium and nitrate may play significant roles on occurrences of observed deliquescent phenomena. The frequently observed deliquescent phenomena of ambient aerosols in this paper imply that current parameterization schemes that describe the RH dependence of particle light scattering may result in a significant bias when estimating aerosol effects on climate.

  8. Aerosol indirect effect on the grid-scale clouds in the two-way coupled WRF-CMAQ: model description, development, evaluation and regional analysis

    EPA Science Inventory

    This study implemented first, second and glaciations aerosol indirect effects (AIE) on resolved clouds in the two-way coupled WRF-CMAQ modeling system by including parameterizations for both cloud drop and ice number concentrations on the basis of CMAQ predicted aerosol distribu...

  9. Grid-scale Indirect Radiative Forcing of Climate due to aerosols over the northern hemisphere simulated by the integrated WRF-CMAQ model: Preliminary results

    EPA Science Inventory

    In this study, indirect aerosol effects on grid-scale clouds were implemented in the integrated WRF3.3-CMAQ5.0 modeling system by including parameterizations for both cloud droplet and ice number concentrations calculated from the CMAQ-predicted aerosol particles. The resulting c...

  10. Parameterized Facial Expression Synthesis Based on MPEG-4

    NASA Astrophysics Data System (ADS)

    Raouzaiou, Amaryllis; Tsapatsoulis, Nicolas; Karpouzis, Kostas; Kollias, Stefanos

    2002-12-01

    In the framework of MPEG-4, one can include applications where virtual agents, utilizing both textual and multisensory data, including facial expressions and nonverbal speech help systems become accustomed to the actual feelings of the user. Applications of this technology are expected in educational environments, virtual collaborative workplaces, communities, and interactive entertainment. Facial animation has gained much interest within the MPEG-4 framework; with implementation details being an open research area (Tekalp, 1999). In this paper, we describe a method for enriching human computer interaction, focusing on analysis and synthesis of primary and intermediate facial expressions (Ekman and Friesen (1978)). To achieve this goal, we utilize facial animation parameters (FAPs) to model primary expressions and describe a rule-based technique for handling intermediate ones. A relation between FAPs and the activation parameter proposed in classical psychological studies is established, leading to parameterized facial expression analysis and synthesis notions, compatible with the MPEG-4 standard.

  11. Optika : a GUI framework for parameterized applications.

    SciTech Connect

    Nusbaum, Kurtis L.

    2011-06-01

    In the field of scientific computing there are many specialized programs designed for specific applications in areas such as biology, chemistry, and physics. These applications are often very powerful and extraordinarily useful in their respective domains. However, some suffer from a common problem: a non-intuitive, poorly-designed user interface. The purpose of Optika is to address this problem and provide a simple, viable solution. Using only a list of parameters passed to it, Optika can dynamically generate a GUI. This allows the user to specify parameters values in a fashion that is much more intuitive than the traditional 'input decks' used by some parameterized scientific applications. By leveraging the power of Optika, these scientific applications will become more accessible and thus allow their designers to reach a much wider audience while requiring minimal extra development effort.

  12. Planet temperatures with surface cooling parameterized

    NASA Astrophysics Data System (ADS)

    Levenson, Barton Paul

    2011-06-01

    A semigray (shortwave and longwave) surface temperature model is developed from conditions on Venus, Earth and Mars, where the greenhouse effect is mostly due to carbon dioxide and water vapor. In addition to estimating longwave optical depths, parameterizations are developed for surface cooling due to shortwave absorption in the atmosphere, and for convective (sensible and latent) heat transfer. An approximation to the Clausius-Clapeyron relation provides water-vapor feedback. The resulting iterative algorithm is applied to three "super-Earths" in the Gliese 581 system, including the "Goldilocks" planet g ( Vogt et al., 2010). Surprisingly, none of the three appear habitable. One cannot accurately locate a star's habitable zone without data or assumptions about a planet's atmosphere.

  13. A Genus Oblivious Approach to Cross Parameterization

    SciTech Connect

    Bennett, J C; Pascucci, V; Joy, K I

    2008-06-16

    In this paper we present a robust approach to construct a map between two triangulated meshes, M and M{prime} of arbitrary and possibly unequal genus. We introduce a novel initial alignment scheme that allows the user to identify 'landmark tunnels' and/or a 'constrained silhouette' in addition to the standard landmark vertices. To describe the evolution of non-landmark tunnels we automatically derive a continuous deformation from M to M{prime} using a variational implicit approach. Overall, we achieve a cross parameterization scheme that is provably robust in the sense that it can map M to M{prime} without constraints on their relative genus. We provide a number of examples to demonstrate the practical effectiveness of our scheme between meshes of different genus and shape.

  14. The natural parameterization of cosmic neutrino oscillations

    NASA Astrophysics Data System (ADS)

    Palladino, Andrea; Vissani, Francesco

    2015-09-01

    The natural parameterization of vacuum oscillations in three neutrino flavors is studied. Compact and exact relations of its three parameters with the ordinary three mixing angles and CP-violating phase are obtained. Its usefulness is illustrated by considering various applications: the study of the flavor ratio and of its uncertainties, the comparison of expectations and observations in the flavor triangle, and the intensity of the signal due to Glashow resonance. The results in the literature are easily reproduced and in particular the recently obtained agreement of the observations of IceCube with the hypothesis of cosmic neutrino oscillations is confirmed. It is argued that a Gaussian treatment of the errors appropriately describes the effects of the uncertainties on the neutrino oscillation parameters.

  15. Cumulus parameterizations in chemical transport models

    NASA Astrophysics Data System (ADS)

    Mahowald, Natalie M.; Rasch, Philip J.; Prinn, Ronald G.

    1995-12-01

    Global three-dimensional chemical transport models (CTMs) are valuable tools for studying processes controlling the distribution of trace constituents in the atmosphere. A major uncertainty in these models is the subgrid-scale parametrization of transport by cumulus convection. This study seeks to define the range of behavior of moist convective schemes and point toward more reliable formulations for inclusion in chemical transport models. The emphasis is on deriving convective transport from meteorological data sets (such as those from the forecast centers) which do not routinely include convective mass fluxes. Seven moist convective parameterizations are compared in a column model to examine the sensitivity of the vertical profile of trace gases to the parameterization used in a global chemical transport model. The moist convective schemes examined are the Emanuel scheme [Emanuel, 1991], the Feichter-Crutzen scheme [Feichter and Crutzen, 1990], the inverse thermodynamic scheme (described in this paper), two versions of a scheme suggested by Hack [Hack, 1994], and two versions of a scheme suggested by Tiedtke (one following the formulation used in the ECMWF (European Centre for Medium-Range Weather Forecasting) and ECHAM3 (European Centre and Hamburg Max-Planck-Institut) models [Tiedtke, 1989], and one formulated as in the TM2 (Transport Model-2) model (M. Heimann, personal communication, 1992). These convective schemes vary in the closure used to derive the mass fluxes, as well as the cloud model formulation, giving a broad range of results. In addition, two boundary layer schemes are compared: a state-of-the-art nonlocal boundary layer scheme [Holtslag and Boville, 1993] and a simple adiabatic mixing scheme described in this paper. Three tests are used to compare the moist convective schemes against observations. Although the tests conducted here cannot conclusively show that one parameterization is better than the others, the tests are a good measure of the

  16. Toward parameterization of the stable boundary layer

    NASA Technical Reports Server (NTRS)

    Wetzel, P. J.

    1982-01-01

    Wangara data is used to examine the depth of the nocturnal boundary layer (NBL) and the height to which surface-linked turbulence extends. It is noted that a linearity of virtual temperature profiles has been found to extend up to a significant portion of the NBL, and then diverge where the wind shear rides over the surface-induced turbulence. A series of Richardson numbers are examined for varying degrees of turbulence and the significant cooling region is observed to have greater depth than the depth of the linear relationship layer. A three-layer parameterization of the thermodynamic structure of the NBL is developed so that a system of five equations must be solved when the wind velocity profile and the temperature at the surface are known. A correlation between the bulk Richardson number and the depth of the linear layer was found to be 0.89.

  17. Climate impacts of parameterized Nordic Sea overflows

    NASA Astrophysics Data System (ADS)

    Danabasoglu, Gokhan; Large, William G.; Briegleb, Bruce P.

    2010-11-01

    A new overflow parameterization (OFP) of density-driven flows through ocean ridges via narrow, unresolved channels has been developed and implemented in the ocean component of the Community Climate System Model version 4. It represents exchanges from the Nordic Seas and the Antarctic shelves, associated entrainment, and subsequent injection of overflow product waters into the abyssal basins. We investigate the effects of the parameterized Denmark Strait (DS) and Faroe Bank Channel (FBC) overflows on the ocean circulation, showing their impacts on the Atlantic Meridional Overturning Circulation and the North Atlantic climate. The OFP is based on the Marginal Sea Boundary Condition scheme of Price and Yang (1998), but there are significant differences that are described in detail. Two uncoupled (ocean-only) and two fully coupled simulations are analyzed. Each pair consists of one case with the OFP and a control case without this parameterization. In both uncoupled and coupled experiments, the parameterized DS and FBC source volume transports are within the range of observed estimates. The entrainment volume transports remain lower than observational estimates, leading to lower than observed product volume transports. Due to low entrainment, the product and source water properties are too similar. The DS and FBC overflow temperature and salinity properties are in better agreement with observations in the uncoupled case than in the coupled simulation, likely reflecting surface flux differences. The most significant impact of the OFP is the improved North Atlantic Deep Water penetration depth, leading to a much better comparison with the observational data and significantly reducing the chronic, shallow penetration depth bias in level coordinate models. This improvement is due to the deeper penetration of the southward flowing Deep Western Boundary Current. In comparison with control experiments without the OFP, the abyssal ventilation rates increase in the North

  18. Dust Aerosol Impact on North Africa Climate: A GCM Investigation of Aerosol-Cloud-Radiation Interactions Using A-Train Satellite Data

    SciTech Connect

    Gu, Y.; Liou, K. N.; Jiang, Jonathan; Su, Hui; Liu, Xiaohong

    2012-02-15

    The climatic effects of dust aerosols in North Africa have been investigated using the atmospheric general circulation model (AGCM) developed at the University of California, Los Angeles (UCLA). The model includes an efficient and physically based radiation parameterization scheme developed specifically for application to clouds and aerosols. Parameterization of the effective ice particle size in association with the aerosol indirect effect based on cloud and aerosol data retrieved from A-Train satellite observations have been employed in the climate model simulations. Offline simulations reveal that the direct solar, IR, and net forcings by dust aerosols generally increase with increasing aerosol optical depth (AOD). When the dust semi-direct effect is included with the presence of ice clouds, positive IR radiative forcing is enhanced, since ice clouds trap substantial IR radiation, while the positive solar forcing with dust aerosols alone has been changed to negative values due to the strong reflection of solar radiation by clouds, indicating that cloud forcing could exceed aerosol forcing. With the aerosol indirect effect, the net cloud forcing is generally reduced for ice water path (IWP) larger than 20 g m-2. The magnitude of the reduction increases with IWP. AGCM simulations show that the reduced ice crystal mean effective size due to the aerosol first indirect effect result in less OLR and net solar flux at the top of the atmosphere over the cloudy area of the North Africa region because ice clouds with smaller size trap more IR radiation and reflect more solar radiation. The precipitation in the same area, however, increases due to the aerosol indirect effect on ice clouds, corresponding to the enhanced convection as indicated by reduced OLR. The increased precipitation seems to be associated with enhanced ice water contents in this region. The 200 mb radiative heating rate shows more cooling with the aerosol indirect effect since greater cooling is

  19. Development of advanced cloud parameterizations to examine air quality, cloud properties, and cloud-radiation feedback in mesoscale models

    SciTech Connect

    Lee, In Young

    1993-09-01

    The distribution of atmospheric pollutants is governed by dynamic processes that create the general conditions for transport and mixing, by microphysical processes that control the evolution of aerosol and cloud particles, and by chemical processes that transform chemical species and form aerosols. Pollutants emitted into the air can undergo homogeneous gas reactions to create a suitable environment for the production by heterogeneous nucleation of embryos composed of a few molecules. The physicochemical properties of preexisting aerosols interact with newly produced embryos to evolve by heteromolecular diffusion and coagulation. Hygroscopic particles wig serve as effective cloud condensation nuclei (CCN), while hydrophobic particles will serve as effective ice-forming nuclei. Clouds form initially by condensation of water vapor on CCN and evolve in a vapor-liquid-solid system by deposition, sublimation, freezing, melting, coagulation, and breakup. Gases and aerosols that enter the clouds undergo aqueous chemical processes and may acidity hydrometer particles. Calculations for solar and longwave radiation fluxes depend on how the respective spectra are modified by absorbers such as H{sub 2}O, CO{sub 2}, O{sub 3}, CH{sub 4}, N{sub 2}O, chlorofruorocarbons, and aerosols. However, the flux calculations are more complicated for cloudy skies, because the cloud optical properties are not well defined. In this paper, key processes such as tropospheric chemistry, cloud microphysics parameterizations, and radiation schemes are reviewed in terms of physicochemical processes occurring, and recommendations are made for the development of advanced modules applicable to mesoscale models.

  20. A modeling study of the aerosol effects on ice microphysics in convective cloud and precipitation development under different thermodynamic conditions

    NASA Astrophysics Data System (ADS)

    Lee, Hannah; Yum, Seong Soo; Lee, Seoung-Soo

    2014-08-01

    An improved approach for cloud droplet activation process parameterization is proposed that can utilize the empirically determined hygroscopicity information and practically limit the sizes of newly activated droplets. With the implementation of the improved approach in a cloud model, the aerosol effects on ice microphysics in convective cloud and precipitation development under different thermodynamic conditions is investigated. The model is run for four different thermodynamic soundings and three different aerosol types, maritime (M), continental (C) and polluted (P). Warm rain suppression by increased aerosol (i.e., CCN) is clearly demonstrated when weakly convective warm clouds are generated but the results are mixed when relatively stronger convective warm clouds are generated. For one of the two soundings that generate strong convective cold clouds, the accumulated precipitation amount is larger for C and P than for M, demonstrating the precipitation enhancement by increased CCN. For the maritime cloud, precipitation is initiated by the warm rain processes but ice hydrometeor particles form fast, which leads to early but weak cloud invigoration. Another stronger cloud invigoration occurs later for M but it is still weaker than that for C and P. It is the delayed accumulation of more water drops and ice particles for a burst of riming process and the latent heat release during the depositional growth of rimed ice particles that invigorate the cloud strongly for C and P. For the other sounding where freezing level is low, ice particles form fast for all three aerosol types and therefore warm rain suppression is not clearly shown. However, there still is more precipitation for C and P than for M until the accumulated precipitation amount becomes larger for M than for C near to the end of the model run. The results demonstrate that the precipitation response to aerosols indeed depends on the environmental conditions.

  1. Modeling the clouds on Venus: model development and improvement of a nucleation parameterization

    NASA Astrophysics Data System (ADS)

    Määttänen, Anni; Bekki, Slimane; Vehkamäki, Hanna; Julin, Jan; Montmessin, Franck; Ortega, Ismael K.; Lebonnois, Sébastien

    2014-05-01

    As both the clouds of Venus and aerosols in the Earth's stratosphere are composed of sulfuric acid droplets, we use the 1-D version of a model [1,4] developed for stratospheric aerosols and clouds to study the clouds on Venus. We have removed processes and compounds related to the stratospheric clouds so that the only species remaining are water and sulfuric acid, corresponding to the stratospheric sulfate aerosols, and we have added some key processes. The model describes microphysical processes including condensation/evaporation, and sedimentation. Coagulation, turbulent diffusion, and a parameterization for two-component nucleation [8] of water and sulfuric acid have been added in the model. Since the model describes explicitly the size distribution with a large number of size bins (50-500), it can handle multiple particle modes. The validity ranges of the existing nucleation parameterization [7] have been improved to cover a larger temperature range, and the very low relative humidity (RH) and high sulfuric acid concentrations found in the atmosphere of Venus. We have made several modifications to improve the 2002 nucleation parameterization [7], most notably ensuring that the two-component nucleation model behaves as predicted by the analytical studies at the one-component limit reached at extremely low RH. We have also chosen to use a self-consistent cluster distribution [9], constrained by scaling it to recent quantum chemistry calculations [3]. First tests of the cloud model have been carried out with temperature profiles from VIRA [2] and from the LMD Venus GCM [5], and with a compilation of water vapor and sulfuric acid profiles, as in [6]. The temperature and pressure profiles do not evolve with time, but the vapour profiles naturally change with the cloud. However, no chemistry is included for the moment, so the vapor concentrations are only dependent on the microphysical processes. The model has been run for several hundreds of Earth days to reach a

  2. Meteorological and Aerosol effects on Marine Cloud Microphysical Properties

    NASA Astrophysics Data System (ADS)

    Sanchez, K. J.; Russell, L. M.; Modini, R. L.; Frossard, A. A.; Ahlm, L.; Roberts, G.; Hawkins, L. N.; Schroder, J. C.; Wang, Z.; Lee, A.; Abbatt, J.; Lin, J.; Nenes, A.; Wonaschuetz, A.; Sorooshian, A.; Noone, K.; Jonsson, H.; Albrecht, B. A.; Desiree, T. S.; Macdonald, A. M.; Seinfeld, J.; Zhao, R.