Science.gov

Sample records for aerosol air quality

  1. Connecting Water Quality With Air Quality Through Microbial Aerosols

    NASA Astrophysics Data System (ADS)

    Dueker, M. Elias

    air by increasing microbial aerosol settling rates and enhancing viability of aerosolized marine microbes. Using methods developed for the non-urban site, the role of local environment and winds in mediating water-air connections was further investigated in the urban environment. The local environment, including water surfaces, was an important source of microbial aerosols at urban sites. Large portions of the urban waterfront microbial aerosol communities were aquatic and, at a highly polluted Superfund waterfront, were closely related to bacteria previously described in environments contaminated with hydrocarbons, heavy metals, sewage and other industrial waste. Culturable urban aerosols and surface waters contained bacterial genera known to include human pathogens and asthma agents. High onshore winds strengthened this water-air connection by playing both a transport and production role. The microbial connection between water and air quality outlined by this dissertation highlights the need for information on the mechanisms that deliver surface water materials to terrestrial systems on a much larger scale. Moving from point measurements to landscape-level analyses will allow for the quantitative assessment of implications for this microbial water-air-land transfer in both urban and non-urban arenas.

  2. Intercontinental Transport of Aerosols: Implication for Regional Air Quality

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Diehl, Thomas; Ginoux, Paul

    2006-01-01

    Aerosol particles, also known as PM2.5 (particle diameter less than 2.5 microns) and PM10 (particle diameter less than 10 microns), is one of the key atmospheric components that determine ambient air quality. Current US air quality standards for PM10 (particles with diameter < 10 microns) and PM2.5 (particles with diameter 2.5 microns) are 50 pg/cu m and 15 pg/cu m, respectively. While local and regional emission sources are the main cause of air pollution problems, aerosols can be transported on a hemispheric or global scale. In this study, we use the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model to quantify contributions of long-range transport vs. local/regional pollution sources and from natural vs. anthropogenic sources to PM concentrations different regions. In particular, we estimate the hemispheric impact of anthropogenic sulfate aerosols and dust from major source areas on other regions in the world. The GOCART model results are compared with satellite remote sensing and ground-based network measurements of aerosol optical depth and concentrations.

  3. ISS Ambient Air Quality: Updated Inventory of Known Aerosol Sources

    NASA Technical Reports Server (NTRS)

    Meyer, Marit

    2014-01-01

    Spacecraft cabin air quality is of fundamental importance to crew health, with concerns encompassing both gaseous contaminants and particulate matter. Little opportunity exists for direct measurement of aerosol concentrations on the International Space Station (ISS), however, an aerosol source model was developed for the purpose of filtration and ventilation systems design. This model has successfully been applied, however, since the initial effort, an increase in the number of crewmembers from 3 to 6 and new processes on board the ISS necessitate an updated aerosol inventory to accurately reflect the current ambient aerosol conditions. Results from recent analyses of dust samples from ISS, combined with a literature review provide new predicted aerosol emission rates in terms of size-segregated mass and number concentration. Some new aerosol sources have been considered and added to the existing array of materials. The goal of this work is to provide updated filtration model inputs which can verify that the current ISS filtration system is adequate and filter lifetime targets are met. This inventory of aerosol sources is applicable to other spacecraft, and becomes more important as NASA considers future long term exploration missions, which will preclude the opportunity for resupply of filtration products.

  4. Using Satellite Aerosol Retrievals to Monitor Surface Particulate Air Quality

    NASA Technical Reports Server (NTRS)

    Levy, Robert C.; Remer, Lorraine A.; Kahn, Ralph A.; Chu, D. Allen; Mattoo, Shana; Holben, Brent N.; Schafer, Joel S.

    2011-01-01

    The MODIS and MISR aerosol products were designed nearly two decades ago for the purpose of climate applications. Since launch of Terra in 1999, these two sensors have provided global, quantitative information about column-integrated aerosol properties, including aerosol optical depth (AOD) and relative aerosol type parameters (such as Angstrom exponent). Although primarily designed for climate, the air quality (AQ) community quickly recognized that passive satellite products could be used for particulate air quality monitoring and forecasting. However, AOD and particulate matter (PM) concentrations have different units, and represent aerosol conditions in different layers of the atmosphere. Also, due to low visible contrast over brighter surface conditions, satellite-derived aerosol retrievals tend to have larger uncertainty in urban or populated regions. Nonetheless, the AQ community has made significant progress in relating column-integrated AOD at ambient relative humidity (RH) to surface PM concentrations at dried RH. Knowledge of aerosol optical and microphysical properties, ambient meteorological conditions, and especially vertical profile, are critical for physically relating AOD and PM. To make urban-scale maps of PM, we also must account for spatial variability. Since surface PM may vary on a finer spatial scale than the resolution of standard MODIS (10 km) and MISR (17km) products, we test higher-resolution versions of MODIS (3km) and MISR (1km research mode) retrievals. The recent (July 2011) DISCOVER-AQ campaign in the mid-Atlantic offers a comprehensive network of sun photometers (DRAGON) and other data that we use for validating the higher resolution satellite data. In the future, we expect that the wealth of aircraft and ground-based measurements, collected during DISCOVER-AQ, will help us quantitatively link remote sensed and ground-based measurements in the urban region.

  5. Natural sources of atmospheric aerosols influencing air quality across Europe.

    PubMed

    Viana, M; Pey, J; Querol, X; Alastuey, A; de Leeuw, F; Lükewille, Anke

    2014-02-15

    Atmospheric aerosols are emitted by natural and anthropogenic sources. Contributions from natural sources to ambient aerosols vary widely with time (inter-annual and seasonal variability) and as a function of the distance to source regions. This work aims to identify the main natural sources of atmospheric aerosols affecting air quality across Europe. The origin, frequency, magnitude, and spatial and temporal variability of natural events were assessed for the years 2008 and 2009. The main natural sources of atmospheric aerosols identified were African dust, sea spray and wildfires. Primary biological particles were not included in the present work. Volcanic eruptions did not affect air quality significantly in Europe during the study period. The impact of natural episodes on air quality was significant in Southern and Western Europe (Cyprus, Spain, France, UK, Greece, Malta, Italy and Portugal), where they contributed to surpass the PM10 daily and annual limit values. In Central and Northern Europe (Germany, Austria and Latvia) the impact of these events was lower, as it resulted in the exceedance of PM daily but not annual limit values. Contributions from natural sources to mean annual PM10 levels in 2008 and 2009 ranged between 1 and 2 μg/m(3) in Italy, France and Portugal, between 1 and 4 μg/m(3) in Spain (10 μg/m(3) when including the Canary Islands), 5 μg/m(3) in UK, between 3 and 8 μg/m(3) in Greece, and reached up to 13 μg/m(3) in Cyprus. The evaluation of the number of monitoring stations per country reporting natural exceedances of the daily limit value (DLV) is suggested as a potential tool for air quality monitoring networks to detect outliers in the assessment of natural contributions. It is strongly suggested that a reference methodology for the identification and quantification of African dust contributions should be adopted across Europe. PMID:24342088

  6. Influence of Biomass Burning Aerosols on Southeast Asia Air Quality

    NASA Astrophysics Data System (ADS)

    Lee, Hsiang-He; Bar-Or, Rotem; Wang, Chien

    2016-04-01

    Biomass burning activities in Southeast Asia have become a major concern of general public as well as governments in the region. This is because that aerosols emitted from such fires can cause long-lasting haze events under favorite weather conditions in downwind locations such as Singapore, degrading air quality and causing human health issues. In order to improve our understanding of the spatiotemporal coverage and influence of biomass burning aerosols in Southeast Asia, we have used the Weather Research and Forecasting (WRF) model with a smoke aerosol module to conduct multi-year simulations covering the period from 2002 to 2014, driven by the biomass burning emissions from the Fire INventory from NCAR (FINN) version 1.5. To attribute the aerosol influences over various target regions to specific fire locations, we have also partitioned aerosols emitted from five major fire regions of Southeast Asia in the simulations. Based on the simulation results, we have examined the influences of various meteorological regimes on the aerosol transport and wet removal. We find that the transport and scavenging of biomass burning aerosols are strongly modulated by the Southeast Asian monsoon wind field and precipitation. We also identified that in the past decade, smoke aerosols are responsible for a substantial fraction of low visibility events in the major metropolitan areas of the region: 35% in Bangkok, 25% in Kuala Lumpur, 16% in Singapore, and 22% in Jakarta. The fires in the Indochina peninsula account for the largest percentage of the total fire enhancement to PM2.5 in Bangkok (98.9%), and fires in Sumatra were the major contributor in Kuala Lumpur (49%), Singapore (39%), and Jakarta (48%).

  7. VIIRS Aerosol Optical Depth (AOD) Products for Air Quality Applications

    NASA Astrophysics Data System (ADS)

    Huff, A. K.; Zhang, H.; Kondragunta, S.; Laszlo, I.

    2014-12-01

    The air quality community uses satellite aerosol optical depth (AOD) for a variety of applications, including daily air quality forecasting, retrospective event analysis, and justification for Exceptional Events. AOD is suitable for ambient air quality applications because is related to particulate matter (e.g., PM2.5) concentrations in the atmosphere; higher values of AOD correspond to higher concentrations of particulate matter. AOD is useful for identifying and tracking areas of high PM2.5 concentrations that correspond to air quality events, such as wildfires, dust storms, or haze episodes. Currently, the air quality community utilizes AOD from the MODIS instrument on NASA's polar-orbiting Terra and Aqua satellites and from NOAA's GOES geostationary satellites (e.g, GASP). The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument on the Suomi-NPP satellite is making AOD measurements that are similar to MODIS AOD, but with higher spatial resolution. Two AOD products are available from VIIRS: the 750 m nadir resolution Intermediate Product (IP) and the 6 km resolution Environmental Data Record (EDR) product, which is aggregated from IP measurements. These VIIRS AOD products offer a substantial increase in spatial resolution compared to the MODIS AOD 3 km and 10 km AOD products, respectively. True color (RGB) imagery is also available from VIIRS as a decision aid for air quality applications. It serves as a complement to AOD measurements by providing visible information about areas of smoke, haze, and blowing dust in the atmosphere. Case studies of VIIRS AOD and RGB data for recent air quality events will be presented, with a focus on wildfires, and the relative pros and cons of the VIIRS AOD IP and EDR for air quality applications will be discussed in comparison to MODIS AOD products. Improvements to VIIRS aerosol products based on user feedback as part of the NOAA Satellite Air Quality Proving Ground (AQPG) will be outlined, and an overview of future

  8. INTEGRATION OF SATELLITE-DERIVED AEROSOL DATA INTO THE AIR QUALITY APPLICATIONS

    EPA Science Inventory

    Historically, the only source of aerosol air quality data available on an ongoing and systematic basis at national levels was generated by ambient air monitoring networks put in place for the US EPA's Air Quality Programs. Over the past several years, the remote sensing of aeros...

  9. Assessing Impact of Aerosol Intercontinental Transport on Regional Air Quality and Climate: What Satellites Can Help

    NASA Technical Reports Server (NTRS)

    Yu, Hongbin

    2011-01-01

    Mounting evidence for intercontinental transport of aerosols suggests that aerosols from a region could significantly affect climate and air quality in downwind regions and continents. Current assessment of these impacts for the most part has been based on global model simulations that show large variability. The aerosol intercontinental transport and its influence on air quality and climate involve many processes at local, regional, and intercontinental scales. There is a pressing need to establish modeling systems that bridge the wide range of scales. The modeling systems need to be evaluated and constrained by observations, including satellite measurements. Columnar loadings of dust and combustion aerosols can be derived from the MODIS and MISR measurements of total aerosol optical depth and particle size and shape information. Characteristic transport heights of dust and combustion aerosols can be determined from the CALIPSO lidar and AIRS measurements. CALIPSO liar and OMI UV technique also have a unique capability of detecting aerosols above clouds, which could offer some insights into aerosol lofting processes and the importance of above-cloud transport pathway. In this presentation, I will discuss our efforts of integrating these satellite measurements and models to assess the significance of intercontinental transport of dust and combustion aerosols on regional air quality and climate.

  10. Impact of aerosol direct effect on East Asian air quality during the EAST-AIRE campaign

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Allen, Dale J.; Pickering, Kenneth E.; Li, Zhanqing; He, Hao

    2016-06-01

    WRF-Chem simulations were performed for the March 2005 East Asian Studies of Tropospheric Aerosols: an International Regional Experiment (EAST-AIRE) Intensive Observation Campaign (IOC) to investigate the direct effects of aerosols on surface radiation and air quality. Domain-wide, WRF-Chem showed a decrease of 20 W/m2 in surface shortwave (SW) radiation due to the aerosol direct effect (ADE), consistent with observational studies. The ADE caused 24 h surface PM2.5 (particulate matter with diameter < 2.5 µm) concentrations to increase in eastern China (4.4%), southern China (10%), western China (2.3%), and the Sichuan Basin (9.6%), due to different aerosol compositions in these four regions. Conversely, surface 1 h maximum ozone was reduced by 2.3% domain-wide and up to 12% in eastern China because less radiation reached the surface. We also investigated the impact of reducing SO2 and black carbon (BC) emissions by 80% on aerosol amounts via two sensitivity simulations. Reducing SO2 decreased surface PM2.5 concentrations in the Sichuan Basin and southern China by 5.4% and decreased ozone by up to 6 ppbv in the Sichuan Basin and Southern China. Reducing BC emissions decreased PM2.5 by 3% in eastern China and the Sichuan Basin but increased surface ozone by up to 3.6 ppbv in eastern China and the Sichuan Basin. This study indicates that the benefits of reducing PM2.5 associated with reducing absorbing aerosols may be partially offset by increases in ozone at least for a scenario when NOx and VOC emissions are unchanged.

  11. MODELS-3 COMMUNITY MULTISCALE AIR QUALITY (CMAQ) MODEL AEROSOL COMPONENT 1: MODEL DESCRIPTION

    EPA Science Inventory

    The aerosol component of the Community Multiscale Air Quality (CMAQ) model is designed to be an efficient and economical depiction of aerosol dynamics in the atmosphere. The approach taken represents the particle size distribution as the superposition of three lognormal subdis...

  12. SIMULATION OF AEROSOL DYNAMICS: A COMPARATIVE REVIEW OF ALGORITHMS USED IN AIR QUALITY MODELS

    EPA Science Inventory

    A comparative review of algorithms currently used in air quality models to simulate aerosol dynamics is presented. This review addresses coagulation, condensational growth, nucleation, and gas/particle mass transfer. Two major approaches are used in air quality models to repres...

  13. IMPROVING NATIONAL AIR QUALITY FORECASTS WITH SATELLITE AEROSOL OBSERVATIONS

    EPA Science Inventory

    Air quality forecasts for major US metropolitan areas have been provided to the public through a partnership between the US Environmental Protection Agency and state and local air agencies since 1997. Recent years have witnessed improvement in forecast skill and expansion of fore...

  14. Impact of Aerosol Direct Effect on East Asian Air Quality During the EAST-AIRE Campaign

    NASA Astrophysics Data System (ADS)

    Wang, J.; Allen, D. J.; Pickering, K. E.; Li, Z.

    2015-12-01

    Three WRF-Chem simulations were conducted for East Asia region during March 2005 East Asian Studies of Tropospheric Aerosols: an International Regional Experiment (EAST-AIRE) Intensive Observation Campaign (IOC) period to investigate the direct effects of aerosols on surface radiation and air quality. WRF-Chem captured the temporal and spatial variations of meteorological fields, trace gases, and aerosol loadings. Surface shortwave radiation changes due to the aerosol direct effect (ADE) were calculated and compared with data from six World Radiation Data Center (WRDC) stations. The comparison indicated that WRF-Chem can simulate the surface short wave radiation moderately well, with temporal correlations between 0.4 and 0.7, and high biases between 9 to 120 W/m2. Domain-wide, WRF-Chem showed a decrease of 22 W/m2 in surface SW radiation due to the aerosol direct effect, consistent with observational studies. The ADE demonstrates diverse influences on air quality in East Asian. For example, the surface concentration of PM2.5 increases in eastern China (~11.1%) due to ADE, but decreases in central China (-7.3%), western China (-8.8%), and Sichuan Basin (-4%). Surface 1-hour maximum ozone is reduced by 2.3%, owing to less radiation reaching the surface due to the ADE. Since PM2.5 pollution raises serious public concern in China, regulations that control the emissions of PM2.5 and its precursors have been implemented. We investigate the impact of reducing two different types of aerosols, sulfate (scattering) and black carbon (absorbing), by cutting 80% of SO2 and black carbon (BC) emissions in two sensitivity simulations. We found that reducing SO2 emissions results in the decline of PM2.5 as much as 16mg/m3 in eastern China, and 20mg/m3 in the Sichuan Basin. Reducing the BC emissions by the same percentage causes the PM2.5 to decrease as much as 40mg/m3 in eastern China, and 25mg/m3 in the Sichuan Basin. The monthly averaged surface 1-hour maximum ozone increases 3

  15. Impact of transpacific aerosol on air quality over the United States: A perspective from aerosol-cloud-radiation interactions

    NASA Astrophysics Data System (ADS)

    Tao, Zhining; Yu, Hongbin; Chin, Mian

    2016-01-01

    Observations have well established that aerosols from various sources in Asia, Europe, and Africa can travel across the Pacific and reach the contiguous United States (U.S.) at least on episodic bases throughout a year, with a maximum import in spring. The imported aerosol not only can serve as an additional source to regional air pollution (e.g., direct input), but also can influence regional air quality through the aerosol-cloud-radiation (ACR) interactions that change local and regional meteorology. This study assessed impacts of the transpacific aerosol on air quality, focusing on surface ozone and PM2.5, over the U.S. using the NASA Unified Weather Research Forecast model. Based on the results of 3-month (April to June of 2010) simulations, the impact of direct input (as an additional source) of transpacific aerosol caused an increase of surface PM2.5 concentration by approximately 1.5 μg m-3 over the west coast and about 0.5 μg m-3 over the east coast of the U.S. By influencing key meteorological processes through the ACR interactions, the transpacific aerosol exerted a significant effect on both surface PM2.5 (±6 μg m-3) and ozone (±12 ppbv) over the central and eastern U.S. This suggests that the transpacific transport of aerosol could either improve or deteriorate local air quality and complicate local effort toward the compliance with the U.S. National Ambient Air Quality Standards.

  16. Aerosol Absorption by Black Carbon and Dust: Implications of Climate Change and Air Quality in Asia

    NASA Technical Reports Server (NTRS)

    Chin, Mian

    2010-01-01

    Atmospheric aerosol distributions from 2000 to 2007 are simulated with the global model GOCART to attribute light absorption by aerosol to its composition and sources. We show the seasonal and interannual variations of absorbing aerosols in the atmosphere over Asia, mainly black carbon and dust. and their linkage to the changes of anthropogenic and dust emissions in the region. We compare our results with observations from satellite and ground-based networks, and estimate the importance of black carbon and dust on regional climate forcing and air quality.

  17. MODIS aerosol product at 3 km spatial resolution for urban and air quality studies

    NASA Astrophysics Data System (ADS)

    Mattoo, S.; Remer, L. A.; Levy, R. C.; Holben, B. N.; Smirnov, A.

    2008-12-01

    The MODerate resolution Imaging Spectroradiometer (MODIS) aboard the Terra and Aqua satellites has been producing an aerosol product since early 2000. The original product reports aerosol optical depth and a variety of other aerosol parameters at a spatial resolution of 10 km over both land and ocean. The 10 km product is actually constructed from 500 m pixels, which permits a strict selection process to choose the "best" or "cleanest" pixels in each 10 km square for use in the aerosol retrieval. Thus, the original 10 km product provides a useful product, accurate in many applications. However, the 10 km product can miss narrow aerosol plumes and the spatial variability associated with urban air pollution. The MODIS aerosol team will be introducing a finer resolution aerosol product over land regions in the next release of the product (Collection 6). The new product will be produced at 3 km resolution. It is based on the same procedures as the original product and benefits from the same spatial variability criteria for finding and masking cloudy pixels. The 3 km product does capture the higher spatial variability associated with individual aerosol plumes. However, it is noisier than the 10 km product. Both products will be available operationally in Collection 6. The new 3km product offers new synergistic possibilities with PM2.5 monitoring networks, AERONET and various air quality models such as CMAQ.

  18. Using global aerosol models and satellite data for air quality studies: Challenges and data needs

    NASA Technical Reports Server (NTRS)

    Chin, Mian

    2006-01-01

    Aerosol particles, also known as PM2.5 (particle diameter less than 2.5 pm) and PM10 (particle diameter less than 10 pm), are one of the key atmospheric components that determines air quality. Yet, air quality forecasts for PM are still in their infancy and remain a challenging task. It is difficult to simply relate PM levels to local meteorological conditions, and large uncertainties exist in regional air quality model emission inventories and initial and boundary conditions. Especially challenging are periods when a significant amount of aerosol comes from outside the regional modeling domain through long-range transport. In the past few years, NASA has launched several satellites with global aerosol measurement capabilities, providing large-scale chemical weather pictures. NASA has also supported development of global models which simulate atmospheric transport and transformation processes of important atmospheric gas and aerosol species. I will present the current modeling and satellite capabilities for PM2.5 studies, the possibilities and challenges in using satellite data for PM2.5 forecasts, and the needs of future remote sensing data for improving air quality monitoring and modeling.

  19. Updating sea spray aerosol emissions in the Community Multiscale Air Quality (CMAQ) model

    EPA Science Inventory

    Sea spray aerosols (SSA) impact the particle mass concentration and gas-particle partitioning in coastal environments, with implications for human and ecosystem health. In this study, the Community Multiscale Air Quality (CMAQ) model is updated to enhance fine mode SSA emissions,...

  20. Smartphone Air Quality and Atmospheric Aerosol Characterization for Public Health Applications

    NASA Astrophysics Data System (ADS)

    Strong, S. B.; Brown, D. M.; Brown, A.

    2014-12-01

    Air quality is a major global concern. Tracking and monitoring air quality provides individuals with the knowledge to make personal decisions about their health and investigate the environment in which they live. Satellite remote sensing and ground-based observations (e.g. Environmental Protection Agency, NASA Aerosol Robotic Network) of air quality is spatially and temporarlly limited and often neglects to provide individuals with the freedom to understand their own personal environment using their personal observations. Given the ubiquitous nature of smartphones, individuals have access to powerful processing and sensing capabilities. When coupled with the appropriate sensor parameters, filters, and algorithms, smartphones can be used both for 'citizen science' air quality applications and 'professional' scientific atmospheric investigations, alike, simplifying data analysis, processing, and improving deployment efficiency. We evaluate the validity of smartphone technology for air quality investigations using standard Cimel CE 318 sun photometry and Fourier Transform Infrared Spectroradiometer (FTIR) observations at specific locations.

  1. Satellite Characterization of Fire Emissions of Aerosols and Gases Relevant to Air-Quality Modeling

    NASA Astrophysics Data System (ADS)

    Ichoku, C. M.; Ellison, L.; Yue, Y.; Wang, J.

    2015-12-01

    Because of the transient and widespread nature of wildfires and other types of open biomass burning, satellite remote sensing has become an indispensable technique for characterizing their smoke emissions for modeling applications, especially at regional to global scales. Fire radiative energy (FRE), whose instantaneous rate of release or fire radiative power (FRP) is measurable from space, has been found to be proportional to both the biomass consumption and emission of aerosol particulate matter. We have leveraged this relationship to generate a global, gridded smoke-aerosol emission coefficients (Ce) dataset based on FRP and aerosol optical thickness (AOT) measurements from the MODIS sensors aboard the Terra and Aqua satellites. Ce is a simple coefficient to convert FRE to smoke aerosol emissions, in the same manner as traditional emission factors are used to convert burned biomass to emissions. The first version of this Fire Energetics and Emissions Research (FEER.v1) global gridded Ce product at 1°x1° resolution is available at http://feer.gsfc.nasa.gov/. Based on published emission ratios, the FEER.v1 Ce product for total smoke aerosol has also been used to generate similar products for specific fire-emitted aerosols and gases, including those that are regulated as 'criteria pollutants' under the US Environmental Protection Agency's National Ambient Air Quality Standards (NAAQS), such as particulate matter (PM) and carbon monoxide (CO). These gridded Ce products were used in conjunction with satellite measurements of FRP to derive emissions of several smoke constituents, which were applied to WRF-Chem fully coupled meteorology-chemistry-aerosol model simulations, with promising results. In this presentation, we analyze WRF-Chem simulations of surface-level concentrations of various pollutants based on FEER.v1 emission products to illustrate their value for air-quality modeling, particularly in parts of Africa and southeast Asia where ground-based air-quality

  2. Daily and hourly chemical impact of springtime transboundary aerosols on Japanese air quality

    NASA Astrophysics Data System (ADS)

    Moreno, T.; Kojima, T.; Amato, F.; Lucarelli, F.; de la Rosa, J.; Calzolai, G.; Nava, S.; Chiari, M.; Alastuey, A.; Querol, X.; Gibbons, W.

    2013-02-01

    The regular eastward drift of transboundary aerosol intrusions from the Asian mainland into the NW Pacific region has a pervasive impact on air quality in Japan, especially during springtime. Analysis of 24-h filter samples with Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) and Mass Spectrometry (ICP-MS), and hourly Streaker with Particle Induced X-ray Emission (PIXE) samples collected continuously for six weeks reveal the chemistry of successive waves of natural mineral desert dust ("Kosa") and metalliferous sulphatic pollutants arriving in western Japan during spring 2011. The main aerosol sources recognised by Positive Matrix Factorization (PMF) analysis of Streaker data are mineral dust and fresh sea salt (both mostly in the coarser fraction PM2.5-10), As-bearing sulphatic aerosol (PM0.1-2.5), metalliferous sodic particulate matter (PM) interpreted as aged, industrially contaminated marine aerosol, and ZnCu-bearing aerosols. Whereas mineral dust arrivals are typically highly transient, peaking over a few hours, sulphatic intrusions build up and decline more slowly, and are accompanied by notable rises in ambient concentrations of metallic trace elements such as Pb, As, Zn, Sn and Cd. The magnitude of the loss in regional air quality due to the spread and persistence of pollution from mainland Asia is especially clear when cleansing oceanic air advects westward across Japan, removing the continental influence and reducing concentrations of the undesirable metalliferous pollutants by over 90%. Our new chemical database, especially the Streaker data, demonstrates the rapidly changing complexity of ambient air inhaled during these transboundary events, and implicates Chinese coal combustion as the main source of the anthropogenic aerosol component.

  3. Daily and hourly chemical impact of springtime transboundary aerosols on Japanese air quality

    NASA Astrophysics Data System (ADS)

    Moreno, T.; Kojima, T.; Amato, F.; Lucarelli, F.; Nava, S.; de la Rosa, J.; Calzolai, G.; Chiari, M.; Alastuey, A.; Querol, X.; Gibbons, W.

    2012-09-01

    The regular eastward drift of transboundary aerosol intrusions from the Asian mainland into the NW Pacific region has a~pervasive impact on air quality in Japan, especially during springtime. Analysis of 24-h filter samples (ICP-AES and ICP-MS) and hourly Streaker (PIXE) samples of particulate matter collected continuously for six weeks reveal the chemistry of successive waves of natural mineral desert dust ("Kosa") and metalliferous sulphatic pollutants arriving in Western Japan during spring 2011. The main aerosol sources recognised by PMF analysis of Streaker data are mineral dust and fresh sea salt (both mostly in the coarser fraction PM2.5-10), As-bearing sulphatic aerosol (PM0.1-2.5), metalliferous sodic PM interpreted as aged, industrially contaminated marine aerosol, and ZnCu-bearing aerosols. Whereas mineral dust arrivals are typically highly transient, peaking over a few hours, sulphatic intrusions build up and decline more slowly, and are accompanied by notable rises in ambient concentrations of metallic trace elements such as Pb, As, Zn, Sn and Cd. The magnitude of the loss in regional air quality due to the spread and persistence of pollution from mainland Asia is especially clear when cleansing oceanic air advects westward across Japan, removing the continental influence and reducing concentrations of the more undesirable metalliferous pollutants by over 90%. Our new chemical database, especially the Streaker data, demonstrates the rapidly changing complexity of ambient air inhaled during these transboundary events, and implicates Chinese coal combustion as the main source of the anthropogenic aerosol component.

  4. The use of MODIS data and aerosol products for air quality prediction

    NASA Astrophysics Data System (ADS)

    Hutchison, Keith D.; Smith, Solar; Faruqui, Shazia

    2004-09-01

    The Center for Space Research (CSR) is exploring new approaches to integrate data collected by the MODerate resolution Imaging Spectroradiometer (MODIS) sensor, flown on NASA's Earth Observing System (EOS) satellites, into a real-time prediction methodology to support operational air quality forecasts issued by the Monitoring Operations Division (MOD) of the Texas Commission on Environmental Quality (TCEQ). Air pollution is a widespread problem in the United States, with over 130 million individuals exposed to levels of air pollution that exceed one or more health-based standards. Texas air quality is under assault by a variety of anthropogenic sources associated with a rapidly growing population along with increases in emissions from the diesel engines that drive international trade between the US and Central America. The challenges of meeting air quality standards established by the Environmental Protection Agency are further impacted by the transport of pollution into Texas that originates from outside its borders and are cumulative with those generated by local sources. In an earlier study, CSR demonstrated the value of MODIS imagery and aerosol products for monitoring ozone-laden pollution that originated in the central US before migrating into Texas and causing TCEQ to issue a health alert for 150 counties. Now, data from this same event are re-analyzed in an attempt to predict air quality from MODIS aerosol optical thickness (AOT) observations. The results demonstrate a method to forecast air quality from remotely sensed satellite observations when the transient pollution can be isolated from local sources. These pollution sources can be separated using TCEQ's network of ground-based Continuous Air quality Monitoring (CAM) stations.

  5. Urban air quality assessment using monitoring data of fractionized aerosol samples, chemometrics and meteorological conditions.

    PubMed

    Yotova, Galina I; Tsitouridou, Roxani; Tsakovski, Stefan L; Simeonov, Vasil D

    2016-01-01

    The present article deals with assessment of urban air by using monitoring data for 10 different aerosol fractions (0.015-16 μm) collected at a typical urban site in City of Thessaloniki, Greece. The data set was subject to multivariate statistical analysis (cluster analysis and principal components analysis) and, additionally, to HYSPLIT back trajectory modeling in order to assess in a better way the impact of the weather conditions on the pollution sources identified. A specific element of the study is the effort to clarify the role of outliers in the data set. The reason for the appearance of outliers is strongly related to the atmospheric condition on the particular sampling days leading to enhanced concentration of pollutants (secondary emissions, sea sprays, road and soil dust, combustion processes) especially for ultra fine and coarse particles. It is also shown that three major sources affect the urban air quality of the location studied-sea sprays, mineral dust and anthropogenic influences (agricultural activity, combustion processes, and industrial sources). The level of impact is related to certain extent to the aerosol fraction size. The assessment of the meteorological conditions leads to defining of four downwind patterns affecting the air quality (Pelagic, Western and Central Europe, Eastern and Northeastern Europe and Africa and Southern Europe). Thus, the present study offers a complete urban air assessment taking into account the weather conditions, pollution sources and aerosol fractioning.

  6. INTEGRATION OF SATELLITE, MODELED, AND GROUND BASED AEROSOL DATA FOR USE IN AIR QUALITY AND PUBLIC HEALTH APPLICATIONS

    EPA Science Inventory

    Case studies of severe pollution events due to forest fires/dust storms/industrial haze, from the integrated 2001 aerosol dataset, will be presented within the context of air quality and human health.

  7. Air Quality Monitoring and Forecasting Applications of Suomi NPP VIIRS Aerosol Products

    NASA Astrophysics Data System (ADS)

    Kondragunta, Shobha

    , air quality warnings by Environmental Protection Agency (EPA). This talk will provide an overview of VIIRS algorithms, aerosol product validation, and examples of various applications with a discussion on the relevance of product accuracy.

  8. The Influence of Atmospheric Aerosols on Air Quality Status of the Egyptian Nile Delta

    NASA Astrophysics Data System (ADS)

    El-Askary, H. M.; Zakey, A.

    2014-12-01

    Due to the combination of natural and anthropogenic sources of emission over the Nile Delta region, the air quality status is very poor and has a significant health hazards impacts on the population. Here we focused on the optical and chemical characterizations of atmospheric aerosols in the Nile Delta using the online integrated Environmental-Climate Aerosols model (EnvClimA) during a 10 year period 2000-2010. Observations from MODIS and SeaWiFS measurements supplemented by CALIPSO and some ground-based data from AERONET, are used to validate the EnvClimA model and to illustrate the aerosol characteristics and their sources. CALIPSO measurements were used to characterize the vertical structure of aerosols and their shapes (spherical and non-spherical) for major dust storms and biomass burning events. In this study we discussed the synoptic patterns and features, which are associated with either the dust storm or high pollution events. We used MODIS derived aerosol parameters to study seasonal changes in aerosol parameters due to the influence of dust storms, anthropogenic pollution and biomass (crop residue) burning. MODIS derived deep blue AOD provided better representation of aerosol loading over north Africa (Sahara region) along with dark-target AOD and related parameters. AERONET data provided aerosol optical depth, angstrom, fine mode fraction, size fraction, volume, effective radius, refractive index, single scattering albedo, and radiative forcing during different seasons dominated by dust storms, anthropogenic pollution and biomass burning (black cloud phenomena). The results indicated that the observed AOD decreases in the summer and increases again in the fall due to agricultural burning events. Ground-based AERONET data support the "Dark Product" MODIS retrievals, as they typically show a fall peak in the 500 nm region. The number of dust distribution frequencies over Egypt has more frequency in the southeast and northwest of Egypt (5-7.5 days

  9. Polarization properties of aerosol particles over western Japan: classification, seasonal variation, and implications for air quality

    NASA Astrophysics Data System (ADS)

    Pan, Xiaole; Uno, Itsushi; Hara, Yukari; Osada, Kazuo; Yamamoto, Shigekazu; Wang, Zhe; Sugimoto, Nobuo; Kobayashi, Hiroshi; Wang, Zifa

    2016-08-01

    Ground-based observation of the polarization properties of aerosol particles using a polarization optical particle counter (POPC) was made from 27 October 2013, to 31 December 2015, at a suburban site in the Kyushu area of Japan. We found that the depolarization ratio (DR, the fraction of s-polarized signal in the total backward light scattering signal) of aerosol particles showed prominent seasonal variability, with peaks in spring (0.21-0.23) and winter (0.19-0.23), and a minimum value (0.09-0.14) in summer. The aerosol compositions in both fine mode (aerodynamic diameter of particle, Dp < 2.5 µm) and coarse mode (2.5 µm < Dp < 10 µm), and the size-dependent polarization characteristics were analyzed for long-range transport dust particles, sea salt, and anthropogenic pollution-dominant aerosols. The DR value increased with increasing particle size, and DR = 0.1 was a reliable threshold value to identify the sphericity of supermicron (Dp > 1 µm) particles. Occurrence of substandard air quality days in Kyushu was closely related with mixed type (coexistence of anthropogenic pollutants and dust particles in the atmosphere), especially in winter and spring, indicating that dust events in the Asian continent played a key role in the cross-boundary transport of continental pollution. Backward trajectory analysis demonstrated that air masses originating from the western Pacific contained large amounts of spherical particles due to the influence of sea salt, especially in summer; however, for air masses from the Asian continent, the dependence of number fraction of spherical particles on air relative humidity was insignificant, indicating the predominance of less-hygroscopic substances (e.g., mineral dust), although the mass concentrations of anthropogenic pollutants were elevated.

  10. Aerosol climate effects and air quality impacts from 1980 to 2030

    SciTech Connect

    Menon, Surabi; Menon, Surabi; Unger, Nadine; Koch, Dorothy; Francis, Jennifer; Garrett, Tim; Sednev, Igor; Shindell, Drew; Streets, David

    2007-11-26

    We investigate aerosol effects on climate for 1980, 1995 (meant to reflect present-day) and 2030 using the NASA Goddard Institute for Space Studies climate model coupled to an on-line aerosol source and transport model with interactive oxidant and aerosol chemistry. Aerosols simulated include sulfates, organic matter (OM), black carbon (BC), sea-salt and dust and additionally, the amount of tropospheric ozone is calculated, allowing us to estimate both changes to air quality and climate for different time periods and emission amounts. We include both the direct aerosol effect and indirect aerosol effects for liquid-phase clouds. Future changes for the 2030 A1B scenario are examined, focusing on the Arctic and Asia, since changes are pronounced in these regions. Our results for the different time periods include both emission changes and physical climate changes. We find that the aerosol indirect effect (AIE) has a large impact on photochemical processing, decreasing ozone amount and ozone forcing, especially for the future (2030-1995). Ozone forcings increase from 0 to 0.12 Wm{sup -2} and the total aerosol forcing increases from -0.10 Wm{sup -2} to -0.94 Wm{sup -2} (AIE increases from -0.13 to -0.68 Wm{sup -2}) for 1995-1980 versus 2030-1995. Over the Arctic we find that compared to ozone and the direct aerosol effect, the AIE contributes the most to net radiative flux changes. The AIE, calculated for 1995-1980, is positive (1.0 Wm{sup -2}), but the magnitude decreases (-0.3Wm{sup -2}) considerably for the future scenario. Over Asia, we evaluate the role of biofuel and transportation-based emissions (for BC and OM) via a scenario (2030A) that includes a projected increase (factor of two) in biofuel and transport-based emissions for 2030 A1B over Asia. Projected changes from present-day due to the 2030A emissions versus 2030 A1B are a factor of 4 decrease in summertime precipitation in Asia. Our results are sensitive to emissions used. Uncertainty in present

  11. Evaluation of regional air quality models in the presence of moderate to strong aerosol events

    NASA Astrophysics Data System (ADS)

    O'Neill, N. T.; Thulasiraman, S.; Pancrati, O.; Aube, M.; Lupu, A.; Neary, L.; Strawbridge, K.; Freemantle, J.; Kaminski, J.; McConnell, J.

    2006-12-01

    During the 2004 to 2006 period a program of synchronized sunphotometry and lidar backscatter measurements were carried out at Egbert, Ontario (70 km north of Toronto). A variety of events, ranging from moderate to strong pollution events, long and short distance smoke transport, long distance dust transport and the presence of thin homogeneous clouds were registered and optically analyzed. These data were employed to help evaluate the performance of the Canadian GEM-AQ air quality model as well an aerosol optical assimilation model (NOMAD). The evaluations were based on optical indicators of integrated aerosol content (aerosol optical depth), particle size indicators such as Angstrom exponent, and vertical profiles of the aerosol backscatter ratio. Some preliminary analyses will be presented; the focus will be on the problems associated with emissions modelling, the influence of cloud screening algorithms in the data and in the model, the robustness of particle size information in the passive optical data and the ability of the models to capture subtle variations, and the vertical performance of the models relative to the lidar backscatter data.

  12. Air quality impact and physicochemical aging of biomass burning aerosols during the 2007 San Diego wildfires.

    PubMed

    Zauscher, Melanie D; Wang, Ying; Moore, Meagan J K; Gaston, Cassandra J; Prather, Kimberly A

    2013-07-16

    Intense wildfires burning >360000 acres in San Diego during October, 2007 provided a unique opportunity to study the impact of wildfires on local air quality and biomass burning aerosol (BBA) aging. The size-resolved mixing state of individual particles was measured in real-time with an aerosol time-of-flight mass spectrometer (ATOFMS) for 10 days after the fires commenced. Particle concentrations were high county-wide due to the wildfires; 84% of 120-400 nm particles by number were identified as BBA, with particles <400 nm contributing to mass concentrations dangerous to public health, up to 148 μg/m(3). Evidence of potassium salts heterogeneously reacting with inorganic acids was observed with continuous high temporal resolution for the first time. Ten distinct chemical types shown as BBA factors were identified through positive matrix factorization coupled to single particle analysis, including particles comprised of potassium chloride and organic nitrogen during the beginning of the wildfires, ammonium nitrate and amines after an increase of relative humidity, and sulfate dominated when the air mass back trajectories passed through the Los Angeles port region. Understanding BBA aging processes and quantifying the size-resolved mass and number concentrations are important in determining the overall impact of wildfires on air quality, health, and climate.

  13. Developing a stronger understanding of aerosol sources and the impact of aqueous phase processing on coastal air quality

    NASA Astrophysics Data System (ADS)

    Prather, K. A.

    2014-12-01

    Atmospheric aerosols are produced by a variety of sources including emissions from cars and trucks, wildfires, ships, dust, and sea spray and play a significant role in impacting air pollution and regional climate. The ability of an aerosol to uptake water and undergo aqueous phase processing strongly depends on composition. On-line single particle mass spectrometry can provide insight into how particle composition impacts the degree of photochemical and aging processes atmospheric aerosols undergo. In particular, specific sulfur species including sulfate, hydroxymethanesulfate (HMS), and methanesulfonic acid (MSA) can serve as indicators of when an air mass has undergone aqueous phase processing. This presentation will describe recent field studies conducted at coastal sites to demonstrate how different aerosol sources and secondary processing impact coastal air quality.

  14. Simulating aerosol-radiation-cloud feedbacks on meteorology and air quality over eastern China under severe haze conditionsin winter

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Wang, Y.; Hao, J.

    2015-03-01

    The aerosol-radiation-cloud feedbacks on meteorology and air quality over eastern China under severe winter haze conditions in January 2013 are simulated using the fully coupled online Weather Research and Forecasting/Chemistry (WRF-Chem) model. Three simulation scenarios including different aerosol configurations are undertaken to distinguish the aerosol's radiative (direct and semi-direct) and indirect effects. Simulated spatial and temporal variations of PM2.5 are generally consistent with surface observations, with a mean bias of -18.9 μg m-3 (-15.0%) averaged over 71 big cities in China. Comparisons between different scenarios reveal that aerosol radiative effects (direct effect and semi-direct effects) result in reductions of downward shortwave flux at the surface, 2 m temperature, 10 m wind speed and planetary boundary layer (PBL) height by up to 84.0 W m-2, 3.2°C, 0.8 m s-1, and 268 m, respectively. The simulated impact of the aerosol indirect effects is comparatively smaller. Through reducing the PBL height and stabilizing lower atmosphere, the aerosol effects lead to increases in surface concentrations of primary pollutants (CO and SO2). Surface O3 mixing ratio is reduced by up to 6.9 ppb (parts per billion) due to reduced incoming solar radiation and lower temperature, while the aerosol feedbacks on PM2.5 mass concentrations show some spatial variations. Comparisons of model results with observations show that inclusion of aerosol feedbacks in the model significantly improves model performance in simulating meteorological variables and improves simulations of PM2.5 temporal distributions over the North China Plain, the Yangtze River delta, the Pearl River delta, and central China. Although the aerosol-radiation-cloud feedbacks on aerosol mass concentrations are subject to uncertainties, this work demonstrates the significance of aerosol-radiation-cloud feedbacks for real-time air quality forecasting under haze conditions.

  15. Effect of Aerosols on Surface Radiation and Air Quality in the Central American Region Estimated Using Satellite UV Instruments

    NASA Astrophysics Data System (ADS)

    Bhartia, P. K.; Torres, O.; Krotkov, N. A.

    2007-05-01

    Solar radiation reaching the Earth's surface is reduced by both aerosol scattering and aerosol absorption. Over many parts of the world the latter effect can be as large or larger than the former effect, and small changes in the aerosol single scattering albedo can either cancel the former effect or enhance it. In addition, absorbing aerosols embedded in clouds can greatly reduce the amount of radiation reaching the surface by multiple scattering. Though the potential climatic effects of absorbing aerosols have received considerable attention lately, their effect on surface UV, photosynthesis, and photochemistry can be equally important for our environment and may affect human health and agricultural productivity. Absorption of all aerosols commonly found in the Earth's atmosphere becomes larger in the UV and blue wavelengths and has a relatively strong wavelength dependence. This is particularly true of mineral dust and organic aerosols. However, these effects have been very difficult to estimate on a global basis since the satellite instruments that operate in the visible are primarily sensitive to aerosol scattering. A notable exception is the UV Aerosol Index (AI), first produced using NASA's Nimbus-7 TOMS data. AI provides a direct measure of the effect of aerosol absorption on the backscattered UV radiation in both clear and cloudy conditions, as well as over snow/ice. Although many types of aerosols produce a distinct color cast in the visible images, and aerosols absorption over clouds and snow/ice could, in principle be detected from their color, so far this technique has worked well only in the UV. In this talk we will discuss what we have learned from the long-term record of AI produced from TOMS and Aura/OMI about the possible role of aerosols on surface radiation and air quality in the Central American region.

  16. The Application of TOMS Ozone, Aerosol and UV-B Data to Madagascar Air Quality Determination

    NASA Technical Reports Server (NTRS)

    Aikin, A.C.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Total Ozone Mapping Spectrometer (TOMS) data products for the area of Madagascar are presented. In addition to total ozone, aerosols and UV-B tropospheric ozone results are shown from 1979 to the present. Tropospheric ozone over Africa and Madagascar is enhanced by 10 to 15 DU in October. This maximum coincides with the time of maximum biomass area burning in Africa and Madagascar. Ozone observations were made from 1979 to 1999 using the TOMS tropospheric ozone convective cloud differential method. As a result of easterly trade winds, ozone originating on Madagascar is transported to the west over the Mozambique Channel. In El Nino years higher level westerly winds descend to transport low level ozone easterly. This results in African continental ozone being transported east of Madagascar. Long range transport of African ozone is observed during El Nino periods. The potential of TOMS and other space data for use in public education and research on Madagascar air quality is demonstrated.

  17. Modelling aerosol-cloud-meteorology interaction: A case study with a fully coupled air quality model (GEM-MACH)

    NASA Astrophysics Data System (ADS)

    Gong, W.; Makar, P. A.; Zhang, J.; Milbrandt, J.; Gravel, S.; Hayden, K. L.; Macdonald, A. M.; Leaitch, W. R.

    2015-08-01

    A fully coupled on-line air quality forecast model, GEM-MACH, was used to study aerosol-cloud interactions for a case of an urban-industrial plume impacting stratocumulus. The aerosol effect on the cloud microphysics was achieved by the use of parameterization of cloud droplet nucleation predicted from the on-line size- and composition-resolved aerosols and coupled with a double-moment cloud microphysics parameterization. The model simulations with and without the on-line aerosol effect on cloud microphysics were compared and evaluated against in-situ aerosol and cloud observations from ICARTT 2004. Inclusion of the on-line aerosol interaction with cloud resulted in an increase in modelled cloud amount and cloud liquid water content (LWC) due to increased cloud droplet number concentration (Nd), a decrease in cloud droplet size and a reduction in warm precipitation. The modelled LWC and Nd agreed more closely with the observations when the on-line aerosol was allowed to affect the cloud than when aerosol effects on cloud were not explicitly simulated. The increased cloud amount due to the aerosol effects reduced the modelled downward shortwave radiative flux and air temperature at the surface, contributing to a decrease in ozone over the region of enhanced cloud and an increase in particle sulphate from an increased capacity for aqueous-phase production. Aerosol activation is shown to have a significant influence on the cloud microphysics and cloud processing of trace gases and aerosols. The importance of reasonable parameterization of cloud updraft speed is demonstrated.

  18. Assimilation of next generation geostationary aerosol optical depth retrievals to improve air quality simulations

    NASA Astrophysics Data System (ADS)

    Saide, Pablo E.; Kim, Jhoon; Song, Chul H.; Choi, Myungje; Cheng, Yafang; Carmichael, Gregory R.

    2014-12-01

    Planned geostationary satellites will provide aerosol optical depth (AOD) retrievals at high temporal and spatial resolution which will be incorporated into current assimilation systems that use low-Earth orbiting (e.g., Moderate Resolution Imaging Spectroradiometer (MODIS)) AOD. The impacts of such additions are explored in a real case scenario using AOD from the Geostationary Ocean Color Imager (GOCI) on board of the Communication, Ocean, and Meteorology Satellite, a geostationary satellite observing northeast Asia. The addition of GOCI AOD into the assimilation system generated positive impacts, which were found to be substantial in comparison to only assimilating MODIS AOD. We found that GOCI AOD can help significantly to improve surface air quality simulations in Korea for dust, biomass burning smoke, and anthropogenic pollution episodes when the model represents the extent of the pollution episodes and retrievals are not contaminated by clouds. We anticipate future geostationary missions to considerably contribute to air quality forecasting and provide better reanalyses for health assessments and climate studies.

  19. The role of aerosol in altering North Atlantic atmospheric circulation in winter and air-quality feedbacks

    NASA Astrophysics Data System (ADS)

    Pausata, F. S. R.; Gaetani, M.; Messori, G.; Kloster, S.; Dentener, F. J.

    2014-09-01

    Numerical model scenarios of future climate depict a global increase in temperatures and changing precipitation patterns, driven by increasing greenhouse gas (GHG) concentrations. Aerosol concentrations also play an important role in altering Earth's radiation budget and consequently surface temperature. Here, we use the general circulation aerosol model ECHAM5-HAM, coupled to a mixed layer ocean model, to investigate the impacts of future air pollution mitigation strategies in Europe on winter atmospheric circulation over the North Atlantic. We analyze the extreme case of a maximum feasible end-of-pipe reduction of aerosols in the near future (2030), in combination with increasing GHG concentrations. Our results show a more positive North Atlantic Oscillation (NAO) mean state in the near future, together with a significant eastward shift of the southern centre of action of the sea level pressure (SLP). Moreover, we show a significantly increased blocking frequency over the western Mediterranean. By separating the aerosol and GHG impacts, our study suggests that the aerosol abatement in the near future may be the primary driver of such circulation changes. All these concomitant modifications of the atmospheric circulation over the Euro-Atlantic sector lead to more stagnant weather conditions that favor air pollutant accumulation in the Mediterranean, especially in the western sector. These changes in atmospheric circulation should be included in future air pollution mitigation assessments. Our results suggest that an evaluation of NAO changes in individual climate model simulations will allow an objective assessment of the role of changes in wintertime circulation on future air quality.

  20. Simulating aerosol-radiation-cloud feedbacks on meteorology and air quality over eastern China under severe haze conditions in winter

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Wang, Yuxuan; Hao, Jiming

    2015-04-01

    The aerosol-radiation-cloud feedbacks on meteorology and air quality over eastern China under severe winter haze conditions during January 2013 are simulated using the fully coupled on-line Weather Research and Forecasting/Chemistry (WRF-Chem) model. Three simulation scenarios including different aerosol configurations are undertaken to distinguish the impact of aerosol radiative (direct and semi-direct) and indirect effects on meteorological variables and air quality. Simulated spatial and temporal variations of PM2.5 are generally consistent with surface observations, with a mean bias of -18.9 μg/m3 (-15.0%) averaged over 71 big cities in China. Comparisons between different scenarios reveal that aerosol radiative effects (direct effect and semi-direct effects) result in reductions of downward shortwave flux at the surface, 2 m temperature, 10 m wind speed and planetary boundary layer (PBL) height by up to 84.0 W/m2, 3.2 oC, 0.8 m/s, and 268 m, respectively. The simulated impact of the aerosol indirect effects is comparatively smaller. Through reducing the PBL height and wind speeds, the aerosol effects lead to increases in surface concentrations of primary pollutants (CO and SO2) and PM2.5. The aerosol feedbacks on secondary pollutants such as surface ozone and PM2.5 mass concentrations show some spatial variations. Surface O3 mixing ratio is reduced by up to 6.9 ppb due to reduced incoming solar radiation and lower temperature. Comparisons of model results with observations show that inclusion of aerosol feedbacks in the model significantly improves model performance in simulating meteorological variables and improves simulations of PM2.5 temporal distributions over the North China Plain, the Yangtze River Delta, the Pearl River Delta, and Central China. Although the aerosol-radiation-cloud feedbacks on aerosol mass concentrations are subject to uncertainties, this work demonstrates the significance of aerosol-radiation-cloud feedbacks for real-time air

  1. Simulating aerosol-radiation-cloud feedbacks on meteorology and air quality over eastern China under severe haze conditions in winter

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Wang, Y. X.; Hao, J. M.

    2014-10-01

    The aerosol-radiation-cloud feedbacks on meteorology and air quality over eastern China under severe winter haze conditions during January~2013 are simulated using the fully coupled on-line Weather Research and Forecasting/Chemistry (WRF-Chem) model. Three simulation scenarios including different aerosol configurations are undertaken to distinguish the impact of aerosol radiative (direct and semi-direct) and indirect effects on meteorological variables and air quality. Simulated spatial and temporal variations of PM2.5 are generally consistent with surface observations, with a mean bias of -18.9 μg m-3 (-15.0%) averaged over 71 big cities in China. Comparisons between different scenarios reveal that aerosol radiative effects (direct effect and semi-direct effects) result in reductions of downward shortwave flux at the surface, 2 m temperature, 10 m wind speed and planetary boundary layer (PBL) height by up to 84.0 W m-2, 3.2 °C, 0.8 m s-1, and 268 m, respectively. The simulated impact of the aerosol indirect effects is comparatively smaller. Through reducing the PBL height and wind speeds, the aerosol effects lead to increases in surface concentrations of primary pollutants (CO and SO2) and PM2.5. The aerosol feedbacks on secondary pollutants such as surface ozone and PM2.5 mass concentrations show some spatial variations. Surface O3 mixing ratio is reduced by up to 6.9 ppb due to reduced incoming solar radiation and lower temperature. Comparisons of model results with observations show that inclusion of aerosol feedbacks in the model significantly improves model's performances in simulating meteorological variables and improves simulations of PM2.5 temporal distributions over the North China Plain, the Yangtze River Delta, the Pearl River Delta, and Central China. Although the aerosol-radiation-cloud feedbacks on aerosol mass concentrations are subject to uncertainties, this work demonstrates the significance of aerosol-radiation-cloud feedbacks for real

  2. MODELS-3 COMMUNITY MULTISCALE AIR QUALITY (CMAQ) MODEL AEROSOL COMPONENT 2. MODEL EVALUATION

    EPA Science Inventory

    Ambient air concentrations of particulate matter (atmospheric suspensions of solid of liquid materials, i.e., aerosols) continue to be a major concern for the U.S. Environmental Protection Agency (EPA). High particulate matter (PM) concentrations are associated not only with adv...

  3. Impacts of the Denver Cyclone on regional air quality and aerosol formation in the Colorado Front Range during FRAPPÉ 2014

    NASA Astrophysics Data System (ADS)

    Vu, Kennedy T.; Dingle, Justin H.; Bahreini, Roya; Reddy, Patrick J.; Apel, Eric C.; Campos, Teresa L.; DiGangi, Joshua P.; Diskin, Glenn S.; Fried, Alan; Herndon, Scott C.; Hills, Alan J.; Hornbrook, Rebecca S.; Huey, Greg; Kaser, Lisa; Montzka, Denise D.; Nowak, John B.; Pusede, Sally E.; Richter, Dirk; Roscioli, Joseph R.; Sachse, Glen W.; Shertz, Stephen; Stell, Meghan; Tanner, David; Tyndall, Geoffrey S.; Walega, James; Weibring, Peter; Weinheimer, Andrew J.; Pfister, Gabriele; Flocke, Frank

    2016-09-01

    We present airborne measurements made during the 2014 Front Range Air Pollution and Photochemistry Experiment (FRAPPÉ) project to investigate the impacts of the Denver Cyclone on regional air quality in the greater Denver area. Data on trace gases, non-refractory submicron aerosol chemical constituents, and aerosol optical extinction (βext) at λ = 632 nm were evaluated in the presence and absence of the surface mesoscale circulation in three distinct study regions of the Front Range: In-Flow, Northern Front Range, and the Denver metropolitan area. Pronounced increases in mass concentrations of organics, nitrate, and sulfate in the Northern Front Range and the Denver metropolitan area were observed during the cyclone episodes (27-28 July) compared to the non-cyclonic days (26 July, 2-3 August). Organic aerosols dominated the mass concentrations on all evaluated days, with a 45 % increase in organics on cyclone days across all three regions, while the increase during the cyclone episode was up to ˜ 80 % over the Denver metropolitan area. In the most aged air masses (NOx / NOy < 0.5), background organic aerosols over the Denver metropolitan area increased by a factor of ˜ 2.5 due to transport from Northern Front Range. Furthermore, enhanced partitioning of nitric acid to the aerosol phase was observed during the cyclone episodes, mainly due to increased abundance of gas phase ammonia. During the non-cyclone events, βext displayed strong correlations (r = 0.71) with organic and nitrate in the Northern Front Range and only with organics (r = 0.70) in the Denver metropolitan area, while correlation of βext during the cyclone was strongest (r = 0.86) with nitrate over Denver. Mass extinction efficiency (MEE) values in the Denver metropolitan area were similar on cyclone and non-cyclone days despite the dominant influence of different aerosol species on βext. Our analysis showed that the meteorological patterns associated with the Denver Cyclone increased aerosol

  4. Integrated Observation of Aerosol Plumes Transport and Impacts on the Air Quality Remote Sensing in the Northeast U.S.

    NASA Astrophysics Data System (ADS)

    Wu, Yonghua; Nazmi, Chowdhury; Han, Zaw; Li, Cuiya; Gross, Barry; Moshary, Fred

    2016-06-01

    In this paper, we present a cluster analysis of plume transport paths to New York City (NYC, 40.821ºN, 73.949ºW) for the 8-year period during 2006-2013. We also show cases of such aloft aerosol plumes intrusion and mixing into the boundary layer (PBL) and the impact on local air quality. Range-resolved monthly occurrence frequency and modification of local aerosol optical properties are presented. The NOAA-HYSPLIT cluster analysis indicates 6 main transport paths; and the optical properties (optical depth-AOD, Angstrom exponent-AE and single scatter albedo-SSA) of aerosol for each cluster are characterized. We further illustrate the impact of these aloft plumes on the satellite MODIS estimate of ground PM2.5 levels and observe that when the aloft plumes-layer AODs are filtered out using lidar, the correlation of MODIS AOD-PM2.5 can be much improved.

  5. Combination of spaceborne sensor(s) and 3-D aerosol models to assess global daily near-surface air quality

    NASA Astrophysics Data System (ADS)

    Kacenelenbogen, M.; Redemann, J.; Russell, P. B.

    2009-12-01

    Aerosol Particulate Matter (PM), measured by ground-based monitoring stations, is used as a standard by the EPA (Environmental Protection Agency) to evaluate daily air quality. PM monitoring is particularly important for human health protection because the exposure to suspended particles can contribute, among others, to lung and respiratory diseases and even premature death. However, most of the PM monitoring stations are located close to cities, leaving large areas without any operational data. Satellite remote sensing is well suited for a global coverage of the aerosol load and can provide an independent and supplemental data source to in situ monitoring. Nevertheless, PM at the ground cannot easily be determined from satellite AOD (Aerosol Optical Depth) without additional information on the optical/microphysical properties and vertical distribution of the aerosols. The objective of this study is to explore the efficacy and accuracy of combining a 3-D aerosol transport model and satellite remote sensing as a cost-effective approach for estimating ground-level PM on a global and daily basis. The estimation of the near-surface PM will use the vertical distribution (and, if possible, the physicochemical properties) of the aerosols inferred from a transport model and the measured total load of particles in the atmospheric column retrieved by satellite sensor(s). The first step is to select a chemical transport model (CTM) that provides “good” simulated aerosol vertical profiles. A few global (e.g., WRF-Chem-GOCART) or regional (e.g., MM5-CMAQ, PM-CAMx) CTM will be compared during selected airborne campaigns like ARCTAS-CARB (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites- California Air Resources Board). The next step will be to devise an algorithm that combines the satellite and model data to infer PM mass estimates at the ground, after evaluating different spaceborne instruments and possible multi-sensor combinations.

  6. Physicochemical Properties of Aerosols Over the Indo-Gangetic Plain, Northern India: Implications to Air-quality

    NASA Astrophysics Data System (ADS)

    Ram, K.; Sarin, M.; Tripathi, S. N.

    2015-12-01

    Biomass burning, vehicular and industrials emissions of atmospheric fine-particulate matter over south and south-east Asia have led to degradation of regional air-quality, poor visibility and possible impact on regional climate change. In addition to airborne particles of primary origin, secondary aerosol formation has been recognized as a dominant process contributing to air pollution and visibility impairment over urban areas. The Indo-Gangetic Plain (IGP) is one of the densely populated regions in northern India where PM2.5 and PM10 mass concentrations exceed the National Ambient Air Quality Standards (NAAQS) throughout the year. Aerosol chemical composition analysis suggests that carbonaceous (EC, OC) and water-soluble inorganic species (WSIS) contribute ~30-35% and ~15-20% of PM10 mass, respectively during wintertime. The formation of fog and haze, a common phenomenon observed during wintertime in the IGP, is associated with high aerosol loading from anthropogenic emission sources as well as formation of secondary aerosols via gas to particle conversion under favorable meteorological conditions. Our studies indicate that mass concentrations of EC, OC and WSOC show nearly 30% increase during fog and haze events; whereas inorganic constituents (NH4+, NO3 - and SO4 2-) are 2-3 times higher than those during clear days. The sulphur and nitrogen oxidation ratios (SOR and NOR) also exhibit significant increase suggesting possible enhancement of secondary formation of SO42- and NO3- during fog and haze events. The average WSOC/OC ratio is relatively high in the day-time samples (0.66 ± 0.11) compared to that in the night-time (0.47 ± 0.07); suggesting an increased contribution of secondary organic aerosols. This talk will discuss our understanding of optical, microphysical, CCN and cloud activation processes over northern India.

  7. The role of aerosol in altering North Atlantic atmospheric circulation in winter and its impact on air quality

    NASA Astrophysics Data System (ADS)

    Pausata, F. S. R.; Gaetani, M.; Messori, G.; Kloster, S.; Dentener, F. J.

    2015-02-01

    Numerical model scenarios of future climate depict a global increase in temperatures and changing precipitation patterns, primarily driven by increasing greenhouse gas (GHG) concentrations. Aerosol particles also play an important role by altering the Earth's radiation budget and consequently surface temperature. Here, we use the general circulation aerosol model ECHAM5-HAM, coupled to a mixed layer ocean model, to investigate the impacts of future air pollution mitigation strategies in Europe on winter atmospheric circulation over the North Atlantic. We analyse the extreme case of a maximum feasible end-of-pipe reduction of aerosols in the near future (2030), in combination with increasing GHG concentrations. Our results show a more positive North Atlantic Oscillation (NAO) mean state by 2030, together with a significant eastward shift of the southern centre of action of sea-level pressure (SLP). Moreover, we show a significantly increased blocking frequency over the western Mediterranean. By separating the impacts of aerosols and GHGs, our study suggests that future aerosol abatement may be the primary driver of both the eastward shift in the southern SLP centre of action and the increased blocking frequency over the western Mediterranean. These concomitant modifications of the atmospheric circulation over the Euro-Atlantic sector lead to more stagnant weather conditions that favour air pollutant accumulation, especially in the western Mediterranean sector. Changes in atmospheric circulation should therefore be included in future air pollution mitigation assessments. The indicator-based evaluation of atmospheric circulation changes presented in this work will allow an objective first-order assessment of the role of changes in wintertime circulation on future air quality in other climate model simulations.

  8. Multi-generational oxidation model to simulate secondary organic aerosol in a 3-D air quality model

    NASA Astrophysics Data System (ADS)

    Jathar, S. H.; Cappa, C. D.; Wexler, A. S.; Seinfeld, J. H.; Kleeman, M. J.

    2015-08-01

    Multi-generational gas-phase oxidation of organic vapors can influence the abundance, composition and properties of secondary organic aerosol (SOA). Only recently have SOA models been developed that explicitly represent multi-generational SOA formation. In this work, we integrated the statistical oxidation model (SOM) into SAPRC-11 to simulate the multi-generational oxidation and gas/particle partitioning of SOA in the regional UCD/CIT (University of California, Davis/California Institute of Technology) air quality model. In the SOM, evolution of organic vapors by reaction with the hydroxyl radical is defined by (1) the number of oxygen atoms added per reaction, (2) the decrease in volatility upon addition of an oxygen atom and (3) the probability that a given reaction leads to fragmentation of the organic molecule. These SOM parameter values were fit to laboratory smog chamber data for each precursor/compound class. SOM was installed in the UCD/CIT model, which simulated air quality over 2-week periods in the South Coast Air Basin of California and the eastern United States. For the regions and episodes tested, the two-product SOA model and SOM produce similar SOA concentrations but a modestly different SOA chemical composition. Predictions of the oxygen-to-carbon ratio qualitatively agree with those measured globally using aerosol mass spectrometers. Overall, the implementation of the SOM in a 3-D model provides a comprehensive framework to simulate the atmospheric evolution of organic aerosol.

  9. The Role of Aerosol-Cloud-Radiation Interactions in Regional Air Quality - A NU-WRF Study Over the United States

    NASA Astrophysics Data System (ADS)

    Tao, Z.; Yu, H.; Chin, M.

    2014-12-01

    Aerosol plays an integrated role in the Earth's weather and climate system. It alters the atmospheric heating profiles through absorbing and/or scattering solar radiation that leads to changes in temperature, wind, and humidity. It also serves as cloud condensation nuclei and ice nuclei to modify cloud properties and precipitation. The aerosol-induced changes in local/regional weather pattern and planetary boundary layer structure would subsequently impact atmospheric composition and air quality. Before the advent of the fully coupled air quality models, the feedbacks among aerosol, cloud, and radiation (ACR) are often ignored, and the impact of such feedbacks on air quality is less understood. The principle purpose of this work is to assess the impact of ACR interactions on U.S. regional air quality, focusing on ozone and PM2.5, using the NASA Unified WRF (NU-WRF) modeling system. NU-WRF builds on the community WRF model with integrations of several NASA components. Specifically it couples with the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model to account for ACR effects explicitly. A series of three month long simulations spanning from spring to early summer, a season laden with both local and long-range transported aerosols, have been carried out to explore the effect of ACR interactions on U.S. air quality, in which the factor separation method has been applied in order to isolate the contribution from aerosol-radiation and aerosol-cloud effect.

  10. Crop Burning in the North and Northwestern Parts in India and Its Impact on Air Quality and Aerosol Parameters

    NASA Astrophysics Data System (ADS)

    Chauhan, A.

    2015-12-01

    Crop burning in the North and Northwestern parts of India started sometime in 1986 when the farmers started using mechanized forming. During October-November and April-May crop residues are burnt which is a serious health threat to people living in the areas and also it impacts climate of the northern parts of India including Himalayan region. Detailed analysis of satellite data, MODIS, AIRS and OMI AURA have been carried out to study aerosol and meteorological parameters near the source of biomass burning and also at far region. During crop burning period, pronounced changes in the aerosol and meteorological parameters are observed at different pressure levels. The emissions from the crop burning are spread in the Indo-Gangetic plains from west-east, over the Himalayan region and over the central parts of India depending upon the wind direction and wind speed. The air quality changes anomalously affecting the visibility and aerosol parameters. The emissions from crop burning mixes with the local emissions (vehicular and industrial sources) affecting the trace gas concentrations and aerosol optical parameters as a result dense haze fog and smog are observed during burning period. Long range transport of emissions from crop burning over India and its various climatic and health consequences will be presented.

  11. Aerosol Properties under Air Quality Control Measures of APEC 2014 in Beijing

    NASA Astrophysics Data System (ADS)

    Chen, X.; Xu, H.; Lv, Y.; Xie, Y.; Li, K.; Li, Z.; Li, D.; Ma, Y.; Mei, X.

    2015-12-01

    Because the economic and society were developing fast in the middle of last century, Los Angeles and London both were polluted by photochemical smog, which massacred thousands of people. Now, many regions are often covered by heavy haze in those large developing countries, especially in China and India. The Asia-Pacific Economic Cooperation (APEC) was held in Beijing during 5-11 November 2014. Beijing, Hebei, Tianjin, Shandong, Shanxi, Inner Mongolia reduced air pollution emissions for the APEC 2014 meeting held in Beijing. Only in Hebei province, there were 1028 factories stopped or restricted and 881 construction sites stopped. Half of the cars were prohibited driving even in the Zibo city which is 400 km far from Beijing. For scientific aims, these control measures were indeed a huge and uncommon atmospheric experiment led by the government. During the experiment, what did the "APEC Blue" mean? We analyzed aerosol properties with the data of an AERONET site in Beijing which is located 500m far from the main reception hall of APEC 2014. The Cimel solar photometers can give a series parameters of aerosol and water vapor. In this paper, we used CE318 solar photometer which is the main instrument of NASA AERONET. The CE318 of RADI belongs to the Chinese SONET (Sun-sky radiometer Observation NETwork) too. We analyzed the total, coarse and fine Aerosol Optical Depth (AOD), Fine-Mode Fraction (FMF) and Ångström exponent, Size Distribution and Real Refractive Index. In conclusion, the aerosol properties were analysed with the measurements of a sun photometer. During the APEC 2014, AOD decreased obviously with a 0.27 mean value compared with the annual mean 0.7. Around Beijing, the southern is polluted emission area including the cross part of Shandong, Shanxi, Hebei, Henan four provinces, and the northern is clean for less fine mode particles emission in the large Inner Mongolia province. In fact, during the APEC 2014, the weather condition was not good for the

  12. Impact of Emissions and Long-Range Transport on Multi-Decadal Aerosol Trends: Implications for Air Quality and Climate

    NASA Technical Reports Server (NTRS)

    Chin, Mian

    2012-01-01

    We present a global model analysis of the impact of long-range transport and anthropogenic emissions on the aerosol trends in the major pollution regions in the northern hemisphere and in the Arctic in the past three decades. We will use the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model to analyze the multi-spatial and temporal scale data, including observations from Terra, Aqua, and CALIPSO satellites and from the long-term surface monitoring stations. We will analyze the source attribution (SA) and source-receptor (SR) relationships in North America, Europe, East Asia, South Asia, and the Arctic at the surface and free troposphere and establish the quantitative linkages between emissions from different source regions. We will discuss the implications for regional air quality and climate change.

  13. Aerosol Health Impact Source Attribution Studies with the CMAQ Adjoint Air Quality Model

    NASA Astrophysics Data System (ADS)

    Turner, M. D.

    , reductions in emissions from large industrial combustion sources that are not classified as EGUs (i.e., non-EGU) are estimated to have up to triple the benefits per unit emission of reductions to onroad diesel sectors, and provide similar benefits per unit of reduced emission to that of onroad gasoline emissions in the region. While a majority of vehicle emission controls that regulate PM focus on diesel emissions, our analysis shows the most efficient target for stricter controls is actually onroad gasoline emissions. From an analysis of the health impacts of BC emissions on specific demographic populations, we find that emissions in the southern half of the US tend to disproportionally affect persons with a below high school education and persons below 50% of the poverty level. Analysis of national risk (independent of population and mortality rates) shows that the largest risks are associated with drier climates, due to the increased atmospheric lifetime resulting from less wet removal of aerosols. Lastly, analysis of the impacts of BC emissions on maximum individual risk shows that contributions to maximum individual risk are weakly to strongly correlated with emissions (R2 ranging from 0.23 in the San Joaquin Valley to 0.93 in the Dallas region). Overall, this thesis shows the value of high-resolution, adjoint-based source attribution studies for determining the locations, seasons, and sectors that have the greatest estimated impact on human health in air quality models.

  14. Daily air quality forecast (gases and aerosols) over Switzerland. Modeling tool description and first results analysis.

    NASA Astrophysics Data System (ADS)

    Couach, O.; Kirchner, F.; Porchet, P.; Balin, I.; Parlange, M.; Balin, D.

    2009-04-01

    Map3D, the acronym for "Mesoscale Air Pollution 3D modelling", was developed at the EFLUM laboratory (EPFL) and received an INNOGRANTS awards in Summer 2007 in order to move from a research phase to a professional product giving daily air quality forecast. It is intended to give an objective base for political decisions addressing the improvement of regional air quality. This tool is a permanent modelling system which provides daily forecast of the local meteorology and the air pollutant (gases and particles) concentrations. Map3D has been successfully developed and calculates each day at the EPFL site a three days air quality forecast over Europe and the Alps with 50 km and 15 km resolution, respectively (see http://map3d.epfl.ch). The Map3D user interface is a web-based application with a PostgreSQL database. It is written in object-oriented PHP5 on a MVC (Model-View-Controller) architecture. Our prediction system is operational since August 2008. A first validation of the calculations for Switzerland is performed for the period of August 2008 - January 2009 comparing the model results for O3, NO2 and particulates with the results of the Nabel measurements stations. The subject of air pollution regimes (NOX/VOC) and specific indicators application with the forecast will be also addressed.

  15. Changes in future air quality, deposition, and aerosol-cloud interactions under future climate and emission scenarios

    NASA Astrophysics Data System (ADS)

    Glotfelty, Timothy; Zhang, Yang; Karamchandani, Prakash; Streets, David G.

    2016-08-01

    The prospect of global climate change will have wide scale impacts, such as ecological stress and human health hazards. One aspect of concern is future changes in air quality that will result from changes in both meteorological forcing and air pollutant emissions. In this study, the GU-WRF/Chem model is employed to simulate the impact of changing climate and emissions following the IPCC AR4 SRES A1B scenario. An average of 4 future years (2020, 2030, 2040, and 2050) is compared against an average of 2 current years (2001 and 2010). Under this scenario, by the Mid-21st century global air quality is projected to degrade with a global average increase of 2.5 ppb in the maximum 8-hr O3 level and of 0.3 μg m-3 in 24-hr average PM2.5. However, PM2.5 changes are more regional due to regional variations in primary aerosol emissions and emissions of gaseous precursor for secondary PM2.5. Increasing NOx emissions in this scenario combines with a wetter climate elevating levels of OH, HO2, H2O2, and the nitrate radical and increasing the atmosphere's near surface oxidation state. This differs from findings under the RCP scenarios that experience declines in OH from reduced NOx emissions, stratospheric recovery of O3, and increases in CH4 and VOCs. Increasing NOx and O3 levels enhances the nitrogen and O3 deposition, indicating potentially enhanced crop damage and ecosystem stress under this scenario. The enhanced global aerosol level results in enhancements in aerosol optical depth, cloud droplet number concentration, and cloud optical thickness. This leads to dimming at the Earth's surface with a global average reduction in shortwave radiation of 1.2 W m-2. This enhanced dimming leads to a more moderate warming trend and different trends in radiation than those found in NCAR's CCSM simulation, which does not include the advanced chemistry and aerosol treatment of GU-WRF/Chem and cannot simulate the impacts of changing climate and emissions with the same level of detailed

  16. A Novel Method to Retrieve Aerosol Optical Thickness from High-Resolution Optical Satellite Images for Air Quality Monitoring

    NASA Astrophysics Data System (ADS)

    Nield, J. M.; Wilson, R. T.; Milton, E. J.

    2015-12-01

    Aerosol Optical Thickness (AOT) data has many important applications including atmospheric correction of satellite imagery and monitoring of particulate matter air pollution. Current data products are generally available at a kilometre-scale resolution, but many applications require far higher resolutions. For example, particulate matter concentrations vary on a metre-scale, and thus data products at a similar scale are required to provide accurate assessments of particle densities and allow effective monitoring of air quality and analysis of local air quality effects on health. A novel method has been developed which retrieves per-pixel AOT values from high-resolution (~30m) satellite data. This method is designed to work over a wide range of land covers - including both bright and dark surfaces - and requires only standard visible and near-infrared data, making it applicable to a range of data from sensors such as Landsat, SPOT and Sentinel-2. The method is based upon an extension of the Haze Optimized Transform (HOT). The HOT was originally designed for assessing areas of thick haze in satellite imagery by calculating a 'haziness' value for each pixel in an image as the distance from a 'Clear Line' in feature space, defined by the high correlation between visible bands. Here, we adapt the HOT method and use it to provide AOT data instead. Significant extensions include Monte Carlo estimation of the 'Clear Line', object-based correction for land cover, and estimation of AOT from the haziness values through radiative transfer modelling. This novel method will enable many new applications of AOT data that were impossible with previously available low-resolution data, and has the potential to contribute significantly to our understanding of the air quality on health, the accuracy of satellite image atmospheric correction and the role of aerosols in the climate system.

  17. The potential of LIRIC to validate the vertical profiles of the aerosol mass concentration estimated by an air quality model

    NASA Astrophysics Data System (ADS)

    Siomos, Nikolaos; Filoglou, Maria; Poupkou, Anastasia; Liora, Natalia; Dimopoulos, Spyros; Melas, Dimitris; Chaikovsky, Anatoli; Balis, Dimitris

    2015-04-01

    Vertical profiles of the aerosol mass concentration derived by a retrieval algorithm that uses combined sunphotometer and LIDAR data (LIRIC) were used in order to validate the mass concentration profiles estimated by the air quality model CAMx. LIDAR and CIMEL measurements of the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki were used for this validation.The aerosol mass concentration profiles of the fine and coarse mode derived by CAMx were compared with the respective profiles derived by the retrieval algorithm. For the coarse mode particles, forecasts of the Saharan dust transportation model BSC-DREAM8bV2 were also taken into account. Each of the retrieval algorithm's profiles were matched to the models' profile with the best agreement within a time window of four hours before and after the central measurement. OPAC, a software than can provide optical properties of aerosol mixtures, was also employed in order to calculate the angstrom exponent and the lidar ratio values for 355nm and 532nm for each of the model's profiles aiming in a comparison with the angstrom exponent and the lidar ratio values derived by the retrieval algorithm for each measurement. The comparisons between the fine mode aerosol concentration profiles resulted in a good agreement between CAMx and the retrieval algorithm, with the vertical mean bias error never exceeding 7 μgr/m3. Concerning the aerosol coarse mode concentration profiles both CAMx and BSC-DREAM8bV2 values are severely underestimated, although, in cases of Saharan dust transportation events there is an agreement between the profiles of BSC-DREAM8bV2 model and the retrieval algorithm.

  18. Assessment of an aerosol treatment to improve air quality in a swine concentrated animal feeding operation (CAFO).

    PubMed

    Rule, Ana M; Chapin, Amy R; McCarthy, Sheila A; Gibson, Kristen E; Schwab, Kellogg J; Buckley, Timothy J

    2005-12-15

    Poor air quality within swine concentrated animal feeding operations (CAFOs) poses a threat to workers, the surrounding community, and farm production. Accordingly, the current study was conducted to evaluate a technology for reducing air pollution including particulate matter (PM), viable bacteria, and ammonia within such a facility. The technology consists of an acid-oil-alcohol aerosol applied daily. Its effectiveness was evaluated by comparing air quality from before to after treatment and between treated and untreated sides of a barn separated by an impervious partition. On the untreated side, air quality was typical for a swine CAFO, with mean PM2.5 of 0.28 mg/m3 and PM(TOT) of 1.5 mg/m3. The treatment yielded a reduction in PM concentration of 75-90% from before to after treatment. Effectiveness increased with time, application, and particle size (40% reduction for 1 microm and 90% for >10 microm). Airborne bacteria levels (total bacteria, Enterobacteriaceae, and gram-positive cocci) decreased one logarithmic unit after treatment. In contrast, treatment had no effect on ammonia concentrations. These findings demonstrate the effectiveness of an intervention in yielding exposure and emission reductions. PMID:16475347

  19. Integration of Satellite, Modeled, and Ground Based Aerosol Data for use in Air Quality and Public Health Applications

    NASA Astrophysics Data System (ADS)

    Garcia, V.; Kondragunta, S.; Holland, D.; Dimmick, F.; Boothe, V.; Szykman, J.; Chu, A.; Kittaka, C.; Al-Saadi, J.; Engel-Cox, J.; Hoff, R.; Wayland, R.; Rao, S.; Remer, L.

    2006-05-01

    Advancements in remote sensing over the past decade have been recognized by governments around the world and led to the development of the international Global Earth Observation System of Systems 10-Year Implementation Plan. The plan for the U.S. contribution to GEOSS has been put forth in The Strategic Plan for the U.S. Integrated Earth Observation System (IEOS) developed under IWGEO-CENR. The approach for the development of the U.S. IEOS is to focus on specific societal benefits that can be achieved by integrating the nation's Earth observation capabilities. One such challenge is our ability to understand the impact of poor air quality on human health and well being. Historically, the air monitoring networks put in place for the Nations air quality programs provided the only aerosol air quality data on an ongoing and systematic basis at national levels. However, scientific advances in the remote sensing of aerosols from space have improved dramatically. The MODIS sensor and GOES Imager aboard NASA and NOAA satellites, respectively, provide synoptic-scale measurements of aerosol optical depth (AOD) which have been demonstrated to correlate with high levels of PM10 and PM2.5 at the surface. The MODIS sensor has been shown to be capable of a 1 km x 1 km (at nadir) AOD product, while the GOES Imager can provide AOD at 4 km x 4 km every 30 minutes. Within the next several years NOAA and EPA will begin to issue PM2.5 air quality forecasts over the entire domain of the eastern United States, eventually extending to national coverage. These forecasts will provide continuous estimated values of PM2.5 on a daily basis. A multi-agency collaborative project among government and academia is underway to improve the spatial prediction of fine particulate matter through the integration of multi-sensor and multi-platform aerosol observations (MODIS and GOES), numerical model output, and air monitoring data. By giving more weight to monitoring data in monitored areas and relying

  20. High Resolution Aerosol Data from MODIS Satellite for Urban Air Quality Studies

    NASA Technical Reports Server (NTRS)

    Chudnovsky, A.; Lyapustin, A.; Wang, Y.; Tang, C.; Schwartz, J.; Koutrakis, P.

    2013-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) provides daily global coverage, but the 10 km resolution of its aerosol optical depth (AOD) product is not suitable for studying spatial variability of aerosols in urban areas. Recently, a new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm was developed for MODIS which provides AOD at 1 km resolution. Using MAIAC data, the relationship between MAIAC AOD and PM(sub 2.5) as measured by the 27 EPA ground monitoring stations was investigated. These results were also compared to conventional MODIS 10 km AOD retrievals (MOD04) for the same days and locations. The coefficients of determination for MOD04 and for MAIAC are R(exp 2) =0.45 and 0.50 respectively, suggested that AOD is a reasonably good proxy for PM(sub 2.5) ground concentrations. Finally, we studied the relationship between PM(sub 2.5) and AOD at the intra-urban scale (10 km) in Boston. The fine resolution results indicated spatial variability in particle concentration at a sub-10 kilometer scale. A local analysis for the Boston area showed that the AOD-PM(sub 2.5) relationship does not depend on relative humidity and air temperatures below approximately 7 C. The correlation improves for temperatures above 7 - 16 C. We found no dependence on the boundary layer height except when the former was in the range 250-500 m. Finally, we apply a mixed effects model approach to MAIAC aerosol optical depth (AOD) retrievals from MODIS to predict PM(sub 2.5) concentrations within the greater Boston area. With this approach we can control for the inherent day-to-day variability in the AOD-PM(sub 2.5) relationship, which depends on time-varying parameters such as particle optical properties, vertical and diurnal concentration profiles and ground surface reflectance. Our results show that the model-predicted PM(sub 2.5) mass concentrations are highly correlated with the actual observations (out-of-sample R(exp 2) of 0.86). Therefore, adjustment

  1. The Potential of The Synergy of Sunphotometer and Lidar Data to Validate Vertical Profiles of The Aerosol Mass Concentration Estimated by An Air Quality Model

    NASA Astrophysics Data System (ADS)

    Siomos, N.; Filioglou, M.; Poupkou, A.; Liora, N.; Dimopoulos, S.; Melas, D.; Chaikovsky, A.; Balis, D. S.

    2016-06-01

    Vertical profiles of the aerosol mass concentration derived by the Lidar/Radiometer Inversion Code (LIRIC), that uses combined sunphotometer and lidar data, were used in order to validate the aerosol mass concentration profiles estimated by the air quality model CAMx. Lidar and CIMEL measurements performed at the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki, Greece (40.5N, 22.9E) from the period 2013-2014 were used in this study.

  2. CONTINUED DEVELOPMENT AND TESTING OF A NEW THERMODYNAMIC AEROSOL MODULE FOR URBAN AND REGIONAL AIR QUALITY MODELS. (R824793)

    EPA Science Inventory

    A computationally efficient and rigorous thermodynamic model (ISORROPIA) that predicts the physical state and composition of inorganic atmospheric aerosol is presented. The advantages of this particular model render it suitable for incorporation into urban and regional air qualit...

  3. Characterization of indoor aerosol temporal variations for the real-time management of indoor air quality

    NASA Astrophysics Data System (ADS)

    Ciuzas, Darius; Prasauskas, Tadas; Krugly, Edvinas; Sidaraviciute, Ruta; Jurelionis, Andrius; Seduikyte, Lina; Kauneliene, Violeta; Wierzbicka, Aneta; Martuzevicius, Dainius

    2015-10-01

    The study presents the characterization of dynamic patterns of indoor particulate matter (PM) during various pollution episodes for real-time IAQ management. The variation of PM concentrations was assessed for 20 indoor activities, including cooking related sources, other thermal sources, personal care and household products. The pollution episodes were modelled in full-scale test chamber representing a standard usual living room with the forced ventilation of 0.5 h-1. In most of the pollution episodes, the maximum concentration of particles in exhaust air was reached within a few minutes. The most rapid increase in particle concentration was during thermal source episodes such as candle, cigarette, incense stick burning and cooking related sources, while the slowest decay of concentrations was associated with sources, emitting ultrafine particle precursors, such as furniture polisher spraying, floor wet mopping with detergent etc. Placement of the particle sensors in the ventilation exhaust vs. in the centre of the ceiling yielded comparable results for both measured maximum concentrations and temporal variations, indicating that both locations were suitable for the placement of sensors for the management of IAQ. The obtained data provides information that may be utilized considering measurements of aerosol particles as indicators for the real-time management of IAQ.

  4. MODELING THE FORMATION OF SECONDARY ORGANIC AEROSOL WITHIN A COMPREHENSIVE AIR QUALITY MODEL SYSTEM

    EPA Science Inventory

    The aerosol component of the CMAQ model is designed to be an efficient and economical depiction of aerosol dynamics in the atmosphere. The approach taken represents the particle size distribution as the superposition of three lognormal subdistributions, called modes. The proces...

  5. Improving Aerosol Simulation over South Asia for Climate and Air Quality Studies

    NASA Technical Reports Server (NTRS)

    Pan, Xiaohua; Chin, Mian; Bian, Huisheng; Gautam, Ritesh

    2014-01-01

    Atmospheric pollution over South Asia attracts special attention due to its effects on regional climate, the water cycle, and human health. These effects are potentially growing owing to rising trends of anthropogenic aerosol emissions found there. However, it has been proved quite challenging to adequately represent the aerosol spatial distribution and magnitude over this critical region in global models (Pan et al. 2014), with the surface concentrations, aerosol optical depth (AOD), and absorbing AOD (AAOD) significantly underestimated, especially in October-January when the agricultural waste burning and anthropogenic aerosol dominate over dust aerosol. In this study, we aim to investigate the causes for such discrepancy in winter by conducting sets of model experiments with NASA's GEOS-5 in terms of (1) spatial resolution, (2) emission amount, and (3) meteorological fields.

  6. Air ions and aerosol science

    NASA Astrophysics Data System (ADS)

    Tammet, Hannes

    1996-03-01

    Collaboration between Gas Discharge and Plasma Physics, Atmospheric Electricity, and Aerosol Science is a factor of success in the research of air ions. The concept of air ion as of any carrier of electrical current through the air is inherent to Atmospheric Electricity under which a considerable statistical information about the air ion mobility spectrum is collected. A new model of air ion size-mobility correlation has been developed proceeding from Aerosol Science and joining the methods of neighboring research fields. The predicted temperature variation of the mobility disagrees with the commonly used Langevin rule for the reduction of air ion mobilities to the standard conditions. Concurrent errors are too big to be neglected in applications. The critical diameter distinguishing cluster ions and charged aerosol particles has been estimated to be 1.4-1.8 nm.

  7. Colorado air quality impacted by long-range-transported aerosol: a set of case studies during the 2015 Pacific Northwest fires

    NASA Astrophysics Data System (ADS)

    Creamean, Jessie M.; Neiman, Paul J.; Coleman, Timothy; Senff, Christoph J.; Kirgis, Guillaume; Alvarez, Raul J.; Yamamoto, Atsushi

    2016-09-01

    Biomass burning plumes containing aerosols from forest fires can be transported long distances, which can ultimately impact climate and air quality in regions far from the source. Interestingly, these fires can inject aerosols other than smoke into the atmosphere, which very few studies have evidenced. Here, we demonstrate a set of case studies of long-range transport of mineral dust aerosols in addition to smoke from numerous fires (including predominantly forest fires and a few grass/shrub fires) in the Pacific Northwest to Colorado, US. These aerosols were detected in Boulder, Colorado, along the Front Range using beta-ray attenuation and energy-dispersive X-ray fluorescence spectroscopy, and corroborated with satellite-borne lidar observations of smoke and dust. Further, we examined the transport pathways of these aerosols using air mass trajectory analysis and regional- and synoptic-scale meteorological dynamics. Three separate events with poor air quality and increased mass concentrations of metals from biomass burning (S and K) and minerals (Al, Si, Ca, Fe, and Ti) occurred due to the introduction of smoke and dust from regional- and synoptic-scale winds. Cleaner time periods with good air quality and lesser concentrations of biomass burning and mineral metals between the haze events were due to the advection of smoke and dust away from the region. Dust and smoke present in biomass burning haze can have diverse impacts on visibility, health, cloud formation, and surface radiation. Thus, it is important to understand how aerosol populations can be influenced by long-range-transported aerosols, particularly those emitted from large source contributors such as wildfires.

  8. Variability of carbonaceous aerosols in remote, rural, urban and industrial environments in Spain: implications for air quality policy

    NASA Astrophysics Data System (ADS)

    Querol, X.; Alastuey, A.; Viana, M.; Moreno, T.; Reche, C.; Minguillón, M. C.; Ripoll, A.; Pandolfi, M.; Amato, F.; Karanasiou, A.; Pérez, N.; Pey, J.; Cusack, M.; Vázquez, R.; Plana, F.; Dall'Osto, M.; de la Rosa, J.; de la Campa Sánchez, A.; Fernández-Camacho, R.; Rodríguez, S.; Pío, C.; Alados-Arboledas, L.; Titos, G.; Artíñano, B.; Salvador, P.; Dos Santos García, S.; Patier Fernández, R.

    2013-03-01

    standards have been much less effective for the abatement of NOx exhaust emissions in passenger diesel cars. This study concludes that EC, EBC, and especially nmC and OC+EC are very good candidates for new air quality standards since they cover both emission impact and health related issues.

  9. Variability of carbonaceous aerosols in remote, rural, urban and industrial environments in Spain: implications for air quality policy

    NASA Astrophysics Data System (ADS)

    Querol, X.; Alastuey, A.; Viana, M.; Moreno, T.; Reche, C.; Minguillón, M. C.; Ripoll, A.; Pandolfi, M.; Amato, F.; Karanasiou, A.; Pérez, N.; Pey, J.; Cusack, M.; Vázquez, R.; Plana, F.; Dall'Osto, M.; de la Rosa, J.; Sánchez de la Campa, A.; Fernández-Camacho, R.; Rodríguez, S.; Pio, C.; Alados-Arboledas, L.; Titos, G.; Artíñano, B.; Salvador, P.; García Dos Santos, S.; Fernández Patier, R.

    2013-07-01

    NO2 / (OC + EC) ratios as these standards have been much less effective for the abatement of NOx exhaust emissions in passenger diesel cars. This study concludes that EC, EBC, and especially nmC and OC + EC are very good candidates for new air quality standards since they cover both emission impact and health-related issues.

  10. Updating sea spray aerosol emissions in the Community Multiscale Air Quality (CMAQ) model version 5.0.2

    NASA Astrophysics Data System (ADS)

    Gantt, B.; Kelly, J. T.; Bash, J. O.

    2015-11-01

    Sea spray aerosols (SSAs) impact the particle mass concentration and gas-particle partitioning in coastal environments, with implications for human and ecosystem health. Model evaluations of SSA emissions have mainly focused on the global scale, but regional-scale evaluations are also important due to the localized impact of SSAs on atmospheric chemistry near the coast. In this study, SSA emissions in the Community Multiscale Air Quality (CMAQ) model were updated to enhance the fine-mode size distribution, include sea surface temperature (SST) dependency, and reduce surf-enhanced emissions. Predictions from the updated CMAQ model and those of the previous release version, CMAQv5.0.2, were evaluated using several coastal and national observational data sets in the continental US. The updated emissions generally reduced model underestimates of sodium, chloride, and nitrate surface concentrations for coastal sites in the Bay Regional Atmospheric Chemistry Experiment (BRACE) near Tampa, Florida. Including SST dependency to the SSA emission parameterization led to increased sodium concentrations in the southeastern US and decreased concentrations along parts of the Pacific coast and northeastern US. The influence of sodium on the gas-particle partitioning of nitrate resulted in higher nitrate particle concentrations in many coastal urban areas due to increased condensation of nitric acid in the updated simulations, potentially affecting the predicted nitrogen deposition in sensitive ecosystems. Application of the updated SSA emissions to the California Research at the Nexus of Air Quality and Climate Change (CalNex) study period resulted in a modest improvement in the predicted surface concentration of sodium and nitrate at several central and southern California coastal sites. This update of SSA emissions enabled a more realistic simulation of the atmospheric chemistry in coastal environments where marine air mixes with urban pollution.

  11. Aerosol Quality Monitor (AQUAM)

    NASA Astrophysics Data System (ADS)

    Liang, X.; Ignatov, A.

    2011-12-01

    The Advanced Clear-Sky Processor for Oceans (ACSPO) developed at NESDIS generates three products from AVHRR, operationally: clear sky radiances in all bands, and sea surface temperature (SST) derived from clear-sky brightness temperatures (BT) in Ch3B (centered at 3.7 μm), Ch4 (11 μm) and Ch5 (12 μm), and aerosol optical depths (AOD) derived from clear-sky reflectances in Ch1 (0.63), Ch2 (0.83) and Ch3A (1.61 μm). An integral part of ACSPO is the fast Community Radiative Transfer Model (CRTM), which calculates first-guess clear-sky BTs using global NCEP forecast atmospheric and Reynolds SST fields. Simulated BTs are employed in ACSPO for improved cloud screening, physical (RTM-based) SST inversions, and to monitor and validate satellite BTs. The model minus observation biases are monitored online in near-real time using the Monitoring IR Clear-sky radiances over Oceans for SST (MICROS; http://www.star.nesdis.noaa.gov/sod/sst/micros/). A persistent positive M-O bias is observed in MICROS, partly attributed to missing aerosol in CRTM input, causing "M" to be warmer than "O". It is thus necessary to include aerosols in CRTM and quantify their effects on AVHRR BTs and SSTs. However, sensitivity of thermal bands to aerosol is only minimal, and use of solar reflectance bands is preferable to evaluate the accuracy of CRTM modeling, with global aerosol fields as input (from e.g. Goddard Chemistry Aerosol Radiation and Transport, GOCART, or Navy Aerosol Analysis and Prediction System, NAAPS). Once available, the corresponding M-O biases in solar reflectance bands will be added to MICROS. Also, adding CRTM simulated reflectances in ACSPO would greatly improve cloud detection, help validate CRTM in the solar reflectance bands, and assist aerosol retrievals. Running CRTM with global aerosol as input is very challenging, computationally. While CRTM is being optimized to handle such global scattering computations, a near-real time web-based Aerosol Quality Monitor (AQUAM

  12. Size-Segregated Aerosol Composition and Mass Loading of Atmospheric Particles as Part of the Pacific Northwest 2001(PNW2001) Air Quality Study In Puget Sound

    NASA Astrophysics Data System (ADS)

    Disselkamp, R. S.; Barrie, L. A.; Shutthanadan, S.; Cliff, S.; Cahill, T.

    2001-12-01

    In mid-August, 2001, an aircraft-based air-quality study was performed in the Puget Sound, WA, area entitled PNW2001 (http://www.pnl.gov/pnw2001). The objectives of this field campaign were the following: 1. reveal information about the 3-dimensional distribution of ozone, its gaseous precursors and fine particulate matter during weather conditions favoring air pollution; 2. derive information about the accuracy of urban and biogenic emissions inventories that are used to drive the air quality forecast models; and 3. examine the accuracy of modeled ozone concentration with that observed. In support of these efforts, we collected time-averaged ( { ~}10 minute averages), size-segregated, aerosol composition and mass-loading information using ex post facto analysis techniques of synchrotron x-ray fluorescence (s-XRF), proton induced x-ray emissions(PIXE), proton elastic scattering (PESA), and scanning transmission ion microscopy (STIM). This is the first time these analysis techniques have been used together on samples collected from aircraft using an optimized 3-stage rotating drum impactor. In our presentation, we will discuss the aerosol components in three aerosol size fractions as identified by statistical analysis of multielemental data (including total mass, H, Na, Mg, Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Pb) and relate variations in these components to physical aerosol properties, other gaseous trace constituents and to air mass origin.

  13. Aircraft observations of aerosol composition and ageing in New England and Mid-Atlantic States during the summer 2002 New England Air Quality Study field campaign

    NASA Astrophysics Data System (ADS)

    Kleinman, Lawrence I.; Daum, Peter H.; Lee, Yin-Nan; Senum, Gunnar I.; Springston, Stephen R.; Wang, Jian; Berkowitz, Carl; Hubbe, John; Zaveri, Rahul A.; Brechtel, Fred J.; Jayne, John; Onasch, Timothy B.; Worsnop, Douglas

    2007-05-01

    Aerosol chemical composition, size distribution, and optical properties were measured during 17 aircraft flights in New England and Middle Atlantic States as part of the summer 2002 New England Air Quality Study field campaign. An Aerodyne aerosol mass spectrometer (AMS) was operated with a measurement cycle of 30 s, about an order of magnitude faster than used for ground-based measurements. Noise levels within a single measurement period were sub μg m-3. Volume data derived from the AMS were compared with volume measurements from a Passive Cavity Aerosol Spectrometer (PCASP) optical particle detector and a Twin Scanning Electrical Mobility Spectrometer (TSEMS); calculated light scattering was compared with measured values from an integrating nephelometer. The median ratio for AMS/TSEMS volume was 1.25 (1.33 with an estimated refractory component); the median ratio for AMS/nephelometer scattering was 1.18. A dependence of the AMS collection efficiency on aerosol acidity was quantified by a comparison between AMS and PCASP volumes in two high sulfate plumes. For the entire field campaign, the average aerosol concentration was 11 μg m-3. Compared with monitoring data from the IMPROVE network, the organic component made up a large fraction of total mass, varying from 70% in clean air to 40% in high concentration sulfate plumes. In combination with other optical and chemical measurements, the AMS gave information on secondary organic aerosol (SOA) production and the time evolution of aerosol light absorption. CO is taken as a conservative tracer of urban emissions and the ratios of organic aerosol and aerosol light absorption to CO examined as a function of photochemical age. Comparisons were made to ratios determined from surface measurements under conditions of minimal atmospheric processing. In air masses in which the NOx to NOy ratio has decreased to 10%, the ratio of organic aerosol to CO has quadrupled indicating that 75% of the organic aerosol is secondary

  14. The Contribution of Trans-Pacific Submicron Aerosols and Local Particle Nucleation Bursts to California's Air Quality as Seen from the Pacific Coast Mountain Range

    NASA Astrophysics Data System (ADS)

    Asher, E. C. C.; Christensen, J. N.; Post, A.; Faloona, I. C.

    2015-12-01

    The long-range transport of dust and anthropogenic aerosols to the Western US has received considerable attention due to the growing disparity between North American and Asian air quality. Using MODIS and space-borne LIDAR measurements some have argued that the transcontinental transport of dust from Asia, Africa, and Europe outweighs that of locally produced combustion aerosols (Yu et al. 2012). This study seeks to compare the aerosol composition, number, and size distribution of locally derived submicron aerosols (including particle nucleation events) vs. long-range transported aerosols observed at a remote mountain site near the Pacific Coast. Toward this aim, rotating drum impactor (RDI) and scanning mobility particle size (SMPS) measurements of size-segregated elemental compositions and size spectra were collected from February to November of 2012 at Chews Ridge (elevation 1450 m) in Monterey County, California. This mountaintop site experiences two main wind modes. The main mode is ohshore-directed winds from the southwest, which are most likely to bring trans-Pacific aerosols to the site; and offshore-directed, northeasterly winds that bring continental aerosols to the site from the interior of California. Elemental ratios (normalized to Al), matrix factorization, and a k-cluster analysis of these data suggest distinct crustal, combustion, and marine sources with considerable seasonal as well as short-term variability. HYSPLIT model back trajectories support the hypothesized sources of these submicron aerosols. Locally, SMPS data reveal consistent nucleation bursts and subsequent growth in the 20-60 nm range during the afternoons. A distinct but weaker diel cycle was observed in the 70 - 100 nm range, corresponding to the smallest RDI impactor stage. Finally, the Pb isotopic composition (206Pb/207Pb and 208Pb/207Pb) of aerosol samples from selected dates will be measured by MC-ICPMS to further identify aerosol origins (e.g. Ewing et al. 2010).

  15. The Detroit Exposure and Aerosol Research Study (DEARS) - Article in National Ambient Air Quality Status and Trends through 2007

    EPA Science Inventory

    A research study that the U.S. Environmental Protection Agency conducted in Detroit, Michigan, named the Detroit Exposure and Aerosol Research Study (DEARS), will help develop data that improves our understanding of human exposure to various air pollutants in our environment.

  16. Evaluating the Use of MODIS AOD for Air Quality Determination by Comparison with the Vertical Distribution of Aerosol Light Scattering Coefficient Obtained with a Balloon-Borne Nephelometer

    NASA Astrophysics Data System (ADS)

    Sumlin, B.; Arnott, W. P.; Moosmuller, H.

    2012-12-01

    The MODIS instruments aboard the Aqua and Terra satellites provide aerosol optical depth information for the entire Earth on a daily basis. Ideally, satellite measurements should correlate with ground-based measurements in order to be useful for air quality applications. Reno, Nevada, USA is a high desert city situated in the Great Basin. Its unique geography and proximity to urban and biomass burning aerosol sources make it an ideal candidate for aerosol research. In August 2011, the Reno Aerosol Characterization Experiment measured atmospheric aerosols with a ground-based Cimel CE-318 sun-photometer and in situ photoacoustic instrumentation to quantify aerosol concentrations at the surface and in the column. However, the results of these measurements indicated the existence of a more complex system of aerosol mixing above the atmospheric boundary layer than previously thought. In order to validate these measurements, an autonomous suite of instrumentation has been developed. This device is carried aloft by a weather balloon and utilizes a reciprocal nephelometer to obtain a high-resolution profile of the vertical distribution of aerosol light scattering coefficient, as well as instrumentation to record atmospheric variables such as temperature, pressure, relative humidity, and dew point. Position, course, speed, and altitude are logged with an onboard GPS module and correlated with atmospheric and aerosol measurements. Presented is the design and development of this new instrument, its comparison with proven laboratory instruments, data gathered from flights during August-November 2012, and its comparison to ground-based measurements and satellite data from the MODIS instruments.

  17. A High-Spatial-Resolution, Localized MODIS Aerosol Optical Depth Product for Use in Air Quality Exposure Assessment During Large Wildfire Smoke Events

    NASA Astrophysics Data System (ADS)

    McCarthy, M. C.; Raffuse, S. M.; DeWinter, J. L.; Craig, K. J.; Jumbam, L. K.; Fruin, S.; Lurmann, F.

    2011-12-01

    Aerosol optical depth (AOD) has potential use for determining the intra-urban variability of airborne particulate matter exposure during wildfire events; however, the standard Moderate Resolution Imaging Spectroradiometer (MODIS) AOD products have limitations for this application. Specifically, the 10x10 km resolution is too coarse for intra-urban population exposure assessments, the assumed aerosol optical properties are not representative of biomass burning aerosol, and the cloud masking algorithm misinterprets heavy smoke as clouds. We developed a localized MODIS AOD product at 1.5 and 2.5 km resolutions and tested the performance in northern California during the 2008 wildfires. The localized product's algorithm uses local biomass burning aerosol optical properties, local surface reflectance data, and a relaxed cloud filter. During the 2008 season, persistent heavy smoke was produced over northern California and the San Joaquin Valley for over two months. As California is both highly populated and covered with a relatively dense network of ground-based aerosol monitoring stations, this event provided an excellent opportunity to develop the AOD product and test its ability to predict aerosol concentrations on the ground to assess population exposure. We will present our methodology and discuss its potential for air quality and public health applications.

  18. Variations in optical properties of aerosols on monsoon seasonal change and estimation of aerosol optical depth using ground-based meteorological and air quality data

    NASA Astrophysics Data System (ADS)

    Tan, F.; Lim, H. S.; Abdullah, K.; Yoon, T. L.; Holben, B.

    2014-07-01

    In this study, the optical properties of aerosols in Penang, Malaysia were analyzed for four monsoonal seasons (northeast monsoon, pre-monsoon, southwest monsoon, and post-monsoon) based on data from the AErosol RObotic NETwork (AERONET) from February 2012 to November 2013. The aerosol distribution patterns in Penang for each monsoonal period were quantitatively identified according to the scattering plots of the aerosol optical depth (AOD) against the Angstrom exponent. A modified algorithm based on the prototype model of Tan et al. (2014a) was proposed to predict the AOD data. Ground-based measurements (i.e., visibility and air pollutant index) were used in the model as predictor data to retrieve the missing AOD data from AERONET because of frequent cloud formation in the equatorial region. The model coefficients were determined through multiple regression analysis using selected data set from in situ data. The predicted AOD of the model was generated based on the coefficients and compared against the measured data through standard statistical tests. The predicted AOD in the proposed model yielded a coefficient of determination R2 of 0.68. The corresponding percent mean relative error was less than 0.33% compared with the real data. The results revealed that the proposed model efficiently predicted the AOD data. Validation tests were performed on the model against selected LIDAR data and yielded good correspondence. The predicted AOD can beneficially monitor short- and long-term AOD and provide supplementary information in atmospheric corrections.

  19. Monsoonal variations in aerosol optical properties and estimation of aerosol optical depth using ground-based meteorological and air quality data in Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Tan, F.; Lim, H. S.; Abdullah, K.; Yoon, T. L.; Holben, B.

    2015-04-01

    Obtaining continuous aerosol-optical-depth (AOD) measurements is a difficult task due to the cloud-cover problem. With the main motivation of overcoming this problem, an AOD-predicting model is proposed. In this study, the optical properties of aerosols in Penang, Malaysia were analyzed for four monsoonal seasons (northeast monsoon, pre-monsoon, southwest monsoon, and post-monsoon) based on data from the AErosol RObotic NETwork (AERONET) from February 2012 to November 2013. The aerosol distribution patterns in Penang for each monsoonal period were quantitatively identified according to the scattering plots of the Ångström exponent against the AOD. A new empirical algorithm was proposed to predict the AOD data. Ground-based measurements (i.e., visibility and air pollutant index) were used in the model as predictor data to retrieve the missing AOD data from AERONET due to frequent cloud formation in the equatorial region. The model coefficients were determined through multiple regression analysis using selected data set from in situ data. The calibrated model coefficients have a coefficient of determination, R2, of 0.72. The predicted AOD of the model was generated based on these calibrated coefficients and compared against the measured data through standard statistical tests, yielding a R2 of 0.68 as validation accuracy. The error in weighted mean absolute percentage error (wMAPE) was less than 0.40% compared with the real data. The results revealed that the proposed model efficiently predicted the AOD data. Performance of our model was compared against selected LIDAR data to yield good correspondence. The predicted AOD can enhance measured short- and long-term AOD and provide supplementary information for climatological studies and monitoring aerosol variation.

  20. THE DISTRIBUTION OF CHLORPYRIFOSIN AIR, CARPETING, AND DUST AND ITS REEMISSION FROM CARPETING FOLLOWING THE USE OF TOTAL RELEASE AEROSOLS IN AN INDOOR AIR QUALITY TEST HOUSE

    EPA Science Inventory

    The paper gives results of experiments to explore the relationships between the insecticide chlorpyrifos and its distribution into carpet., carpet dust, and reemission into air. Two total release aerosols containing 0.5% chlorpyrifos were applied in the living room and den of EP...

  1. REMOTE SENSING MEASUREMENTS OF AEROSOL OPTICAL THICKNESS AND CORRELATION WITH IN-SITU AIR QUALITY PARAMETERS DURING A SMOKE HAZE EPISODE IN SOUTHEAST ASIA

    NASA Astrophysics Data System (ADS)

    Chew, B.; Salinas Cortijo, S. V.; Liew, S.

    2009-12-01

    Transboundary smoke haze due to biomass burning is a major environmental problem in Southeast Asia which has not only affected air quality in the source region, but also in the surrounding countries. Air quality monitoring stations and meteorological stations can provide valuable information on the concentrations of criteria pollutants such as sulphur dioxide, nitrogen oxide, carbon monoxide, ozone and particulate mass (PM10) as well as health advisory to the general public during the haze episodes. Characteristics of aerosol particles in the smoke haze such as the aerosol optical thickness (AOT), aerosol size distribution and Angstrom exponent are also measured or retrieved by sun-tracking photometers, such as those deployed in the world-wide AErosol RObotic NETwork (AERONET). However, due to the limited spatial coverage by the air quality monitoring stations and AERONET sites, it is difficult to study and monitor the spatial and temporal variability of the smoke haze during a biomass burning episode, especially in areas without ground-based instrumentation. As such, we combine the standard in-situ measurements of PM10 by air quality monitoring stations with the remote sensing imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) on board NASA's Terra and Aqua satellites. The columnar AOT is first derived from the MODIS images for regions where PM10 measurements are available. Empirical correlations between AOT and PM10 measurements are then established for 50 sites in both Malaysia and Singapore during the smoke haze episode in 2006. When available, vertical feature information from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) is used to examine the validity of the correlations. Aloft transport of aerosols, which can weaken the correlations between AOT and PM10 measurements, is also identified by CALIPSO and taken into consideration for the analysis. With this integrated approach, we hope to enhance and

  2. Correlating MODIS aerosol optical thickness data with ground-based PM 2.5 observations across Texas for use in a real-time air quality prediction system

    NASA Astrophysics Data System (ADS)

    Hutchison, Keith D.; Smith, Solar; Faruqui, Shazia J.

    Investigations have been conducted at the Center for Space Research (CSR) into approaches to correlate MODIS aerosol optical thickness (AOT) values with ground-based, PM 2.5 observations made at continuous air monitoring station locations operated by the Texas Commission on Environmental Quality (TCEQ). These correlations are needed to more fully utilize real-time MODIS AOT analyses generated at CSR in operational air quality forecasts issued by TCEQ using a trajectory-based forecast model developed by NASA. Initial analyses of two data sets collected during 3 months in 2003 and all of 2004 showed linear correlations in the 0.4-0.5 range in the data collected over Texas. Stronger correlations (exceeding 0.9) were obtained by averaging these same data over longer timescales but this approach is considered unsuitable for use in issuing air quality forecasts. Peculiarities in the MODIS AOT analyses, referred to as hot spots, were recognized while attempting to improve these correlations. It is demonstrated that hot spots are possible when pixels that contain surface water are not detected and removed from the AOT retrieval algorithms. An approach to reduce the frequency of hot spots in AOT analyses over Texas is demonstrated by tuning thresholds used to detect inland water surfaces and remove pixels that contain them from the analysis. Finally, the potential impact of hot spots on MODIS AOT-PM 2.5 correlations is examined through the analysis of a third data set that contained sufficient levels of aerosols to mask inland water surfaces from the AOT algorithms. In this case, significantly stronger correlations, that exceed the 0.9 value considered suitable for use in a real-time air quality prediction system, were observed between the MODIS AOT observations and ground-based PM 2.5 measurements.

  3. Global Air Quality and Climate

    NASA Technical Reports Server (NTRS)

    Fiore, Arlene M.; Naik, Vaishali; Steiner, Allison; Unger, Nadine; Bergmann, Dan; Prather, Michael; Righi, Mattia; Rumbold, Steven T.; Shindell, Drew T.; Skeie, Ragnhild B.; Sudo, Kengo; Szopa, Sophie; Horowitz, Larry W.; Takemura, Toshihiko; Zeng, Guang; Cameron-Smith, Philip J.; Cionni, Irene; Collins, William J.; Dalsoren, Stig; Eyring, Veronika; Folberth, Gerd A.; Ginoux, Paul; Josse, Batrice; Lamarque, Jean-Francois; OConnor, Fiona M.; Mackenzie, Ian A.; Nagashima, Tatsuya; Shindell, Drew Todd; Spracklen, Dominick V.

    2012-01-01

    Emissions of air pollutants and their precursors determine regional air quality and can alter climate. Climate change can perturb the long-range transport, chemical processing, and local meteorology that influence air pollution. We review the implications of projected changes in methane (CH4), ozone precursors (O3), and aerosols for climate (expressed in terms of the radiative forcing metric or changes in global surface temperature) and hemispheric-to-continental scale air quality. Reducing the O3 precursor CH4 would slow near-term warming by decreasing both CH4 and tropospheric O3. Uncertainty remains as to the net climate forcing from anthropogenic nitrogen oxide (NOx) emissions, which increase tropospheric O3 (warming) but also increase aerosols and decrease CH4 (both cooling). Anthropogenic emissions of carbon monoxide (CO) and non-CH4 volatile organic compounds (NMVOC) warm by increasing both O3 and CH4. Radiative impacts from secondary organic aerosols (SOA) are poorly understood. Black carbon emission controls, by reducing the absorption of sunlight in the atmosphere and on snow and ice, have the potential to slow near-term warming, but uncertainties in coincident emissions of reflective (cooling) aerosols and poorly constrained cloud indirect effects confound robust estimates of net climate impacts. Reducing sulfate and nitrate aerosols would improve air quality and lessen interference with the hydrologic cycle, but lead to warming. A holistic and balanced view is thus needed to assess how air pollution controls influence climate; a first step towards this goal involves estimating net climate impacts from individual emission sectors. Modeling and observational analyses suggest a warming climate degrades air quality (increasing surface O3 and particulate matter) in many populated regions, including during pollution episodes. Prior Intergovernmental Panel on Climate Change (IPCC) scenarios (SRES) allowed unconstrained growth, whereas the Representative

  4. Three air quality studies: Great Lakes ozone formation and nitrogen dry deposition; and Tucson aerosol chemical characterization

    NASA Astrophysics Data System (ADS)

    Foley, Theresa

    The Clean Air Act of 1970 was promulgated after thousands of lives were lost in four catastrophic air pollution events. It authorized the establishment of National Ambient Air Quality Standards or (NAAQS) for six pollutants that are harmful to human health and welfare: carbon monoxide, lead, nitrogen dioxide, particulate matter, ozone and sulfur dioxide. The Clean Air Act also led to the establishment of the United Stated Environmental Protection Agency (US EPA) to set and enforce regulations. The first paper in this dissertation studies ozone in the Lake Michigan region (Foley, T., Betterton, E.A., Jacko, R., Hillery, J., 2011. Lake Michigan air quality: The 1994-2003 LADCO Aircraft Project (LAP). Atmospheric Environment 45, 3192-3202.) The Chicago-Milwaukee-Gary metropolitan area has been unable to meet the ozone NAAQS since the Clean Air Act was implemented. The Lake Michigan Air Directors' Consortium (LADCO) hypothesized that land breezes transport ozone precursor compounds over the lake, where a large air/water temperature difference creates a shallow conduction layer, which is an efficient reaction chamber for ozone formation. In the afternoon, lake breezes and prevailing synoptic winds then transport ozone back over the land. To further evaluate this hypothesis, LADCO sponsored the 1994-2003 LADCO Aircraft Project (LAP) to measure the air quality over Lake Michigan and the surrounding areas. This study has found that the LAP data supports this hypothesis of ozone formation, which has strong implications for ozone control strategies in the Lake Michigan region. The second paper is this dissertation (Foley, T., Betterton, E.A., Wolf, A.M.A., 2012. Ambient PM10 and metal concentrations measured in the Sunnyside Unified School District, Tucson, Arizona. Journal of the Arizona-Nevada Academy of Science, 43, 67-76) evaluated the airborne concentrations of PM10 (particulate matter with an aerodynamic diameter of 10 microns or less) and eight metalloids and metals

  5. Modeling ozone and aerosol formation and transport in the pacific northwest with the community Multi-Scale Air Quality (CMAQ) modeling system.

    PubMed

    O'Neill, Susan M; Lamb, Brian K; Chen, Jack; Claiborn, Candis; Finn, Dennis; Otterson, Sally; Figueroa, Cristiana; Bowman, Clint; Boyer, Mike; Wilson, Rob; Arnold, Jeff; Aalbers, Steven; Stocum, Jeffrey; Swab, Christopher; Stoll, Matt; Dubois, Mike; Anderson, Mary

    2006-02-15

    The Community Multi-Scale Air Quality (CMAQ) modeling system was used to investigate ozone and aerosol concentrations in the Pacific Northwest (PNW) during hot summertime conditions during July 1-15, 1996. Two emission inventories (El) were developed: emissions for the first El were based upon the National Emission Trend 1996 (NET96) database and the BEIS2 biogenic emission model, and emissions for the second El were developed through a "bottom up" approach that included biogenic emissions obtained from the GLOBEIS model. The two simulations showed that elevated PM2.5 concentrations occurred near and downwind of the Interstate-5 corridor along the foothills of the Cascade Mountains and in forested areas of central Idaho. The relative contributions of organic and inorganic aerosols varied by region, but generally organic aerosols constituted the largest fraction of PM2.5. In wilderness areas near the 1-5 corridor, organic carbon from anthropogenic sources contributed approximately 50% of the total organic carbon with the remainder from biogenic precursors, while in wilderness areas in Idaho, biogenic organic carbon accounted for 80% of the total organic aerosol. Regional analysis of the secondary organic aerosol formation in the Columbia River Gorge, Central Idaho, and the Olympics/Puget Sound showed that the production rate of secondary organic carbon depends on local terpene concentrations and the local oxidizing capacity of the atmosphere, which was strongly influenced by anthropogenic emissions. Comparison with observations from 12 IMPROVE sites and 21 ozone monitoring sites showed that results from the two El simulations generally bracketed the average observed PM parameters and that errors calculated for the model results were within acceptable bounds. Analysis across all statistical parameters indicated that the NW-AIRQUEST El solution performed better at predicting PM2.5, PM1, and beta(ext) even though organic carbon PM was over-predicted, and the NET96 El

  6. Modeling ozone and aerosol formation and transport in the pacific northwest with the community Multi-Scale Air Quality (CMAQ) modeling system.

    PubMed

    O'Neill, Susan M; Lamb, Brian K; Chen, Jack; Claiborn, Candis; Finn, Dennis; Otterson, Sally; Figueroa, Cristiana; Bowman, Clint; Boyer, Mike; Wilson, Rob; Arnold, Jeff; Aalbers, Steven; Stocum, Jeffrey; Swab, Christopher; Stoll, Matt; Dubois, Mike; Anderson, Mary

    2006-02-15

    The Community Multi-Scale Air Quality (CMAQ) modeling system was used to investigate ozone and aerosol concentrations in the Pacific Northwest (PNW) during hot summertime conditions during July 1-15, 1996. Two emission inventories (El) were developed: emissions for the first El were based upon the National Emission Trend 1996 (NET96) database and the BEIS2 biogenic emission model, and emissions for the second El were developed through a "bottom up" approach that included biogenic emissions obtained from the GLOBEIS model. The two simulations showed that elevated PM2.5 concentrations occurred near and downwind of the Interstate-5 corridor along the foothills of the Cascade Mountains and in forested areas of central Idaho. The relative contributions of organic and inorganic aerosols varied by region, but generally organic aerosols constituted the largest fraction of PM2.5. In wilderness areas near the 1-5 corridor, organic carbon from anthropogenic sources contributed approximately 50% of the total organic carbon with the remainder from biogenic precursors, while in wilderness areas in Idaho, biogenic organic carbon accounted for 80% of the total organic aerosol. Regional analysis of the secondary organic aerosol formation in the Columbia River Gorge, Central Idaho, and the Olympics/Puget Sound showed that the production rate of secondary organic carbon depends on local terpene concentrations and the local oxidizing capacity of the atmosphere, which was strongly influenced by anthropogenic emissions. Comparison with observations from 12 IMPROVE sites and 21 ozone monitoring sites showed that results from the two El simulations generally bracketed the average observed PM parameters and that errors calculated for the model results were within acceptable bounds. Analysis across all statistical parameters indicated that the NW-AIRQUEST El solution performed better at predicting PM2.5, PM1, and beta(ext) even though organic carbon PM was over-predicted, and the NET96 El

  7. A TEST OF THERMODYNAMIC EQUILIBRIUM MODELS AND 3-D AIR QUALITY MODELS FOR PREDICTIONS OF AEROSOL NO3-

    EPA Science Inventory

    The inorganic species of sulfate, nitrate and ammonium constitute a major fraction of atmospheric aerosols. The behavior of nitrate is one of the most intriguing aspects of inorganic atmospheric aerosols because particulate nitrate concentrations depend not only on the amount of ...

  8. Determination of Water Soluble Organic Carbon Collected ~1 km above the Earth's Surface during a Mid-Atlantic Air Quality Episode and Comparison to Aerosol Optical Properties

    NASA Astrophysics Data System (ADS)

    Brent, L. C.; He, H.; Arkinson, H. L.; Stehr, J. W.; Ring, A.; Marufu, L.; Reiner, J.; Sander, L. C.; Dickerson, R. R.

    2014-12-01

    Routine, light aircraft air-monitoring conducted in MD provides insight into atmospheric photochemical processing as a function of altitude in the boundary layer and lower free troposphere. We present correlations between the optical properties and chemical composition of aerosols at ~1 km altitude over Maryland. Data were collected during the peak smog day and a dissipation day during an air quality episode studied in DISCOVER-AQ, July 2011. Post flight filter sample analysis shows a positive trend between measurable carboxylate concentrations and particle size with a recirculating, aged, urban air mass influenced with southeasterly marine winds (peak day). A westerly influx of air from the Ohio River Valley on the dissipation day was depleted in carboxylates compared with samples collected over the same location two days prior. These samples contained quantifiable concentrations of cis-pinonic acid, a reaction product of pinene after ozonation and photochemical oxidation. New techniques were developed to improve airborne data collection and analysis of water soluble organic acids (WSOA), a frequently dominant fraction of particulate matter (PM). An ion chromatographic mass spectrometric method was developed using NIST Standard Referencing Material 1649b, Urban Dust, as a surrogate material to achieve separation and resolution of at least 34 organic acids. Analysis of aircraft filter samples resulted in detection of 16 organic acids of which 12 were quantified. Eight inorganic species were also quantified. Aged, re-circulated metropolitan air showed a greater number of dicarboxylic acids than new transport air from the west and may provide a useful test of SOA formation theory.

  9. Visual air quality simulation techniques

    NASA Astrophysics Data System (ADS)

    Molenar, John V.; Malm, William C.; Johnson, Christopher E.

    Visual air quality is primarily a human perceptual phenomenon beginning with the transfer of image-forming information through an illuminated, scattering and absorbing atmosphere. Visibility, especially the visual appearance of industrial emissions or the degradation of a scenic view, is the principal atmospheric characteristic through which humans perceive air pollution, and is more sensitive to changing pollution levels than any other air pollution effect. Every attempt to quantify economic costs and benefits of air pollution has indicated that good visibility is a highly valued and desired environmental condition. Measurement programs can at best approximate the state of the ambient atmosphere at a few points in a scenic vista viewed by an observer. To fully understand the visual effect of various changes in the concentration and distribution of optically important atmospheric pollutants requires the use of aerosol and radiative transfer models. Communication of the output of these models to scientists, decision makers and the public is best done by applying modern image-processing systems to generate synthetic images representing the modeled air quality conditions. This combination of modeling techniques has been under development for the past 15 yr. Initially, visual air quality simulations were limited by a lack of computational power to simplified models depicting Gaussian plumes or uniform haze conditions. Recent explosive growth in low cost, high powered computer technology has allowed the development of sophisticated aerosol and radiative transfer models that incorporate realistic terrain, multiple scattering, non-uniform illumination, varying spatial distribution, concentration and optical properties of atmospheric constituents, and relative humidity effects on aerosol scattering properties. This paper discusses these improved models and image-processing techniques in detail. Results addressing uniform and non-uniform layered haze conditions in both

  10. Updating sea spray aerosol emissions in the Community Multiscale Air Quality (CMAQ) model version 5.0.2

    EPA Science Inventory

    Sea spray aerosols (SSAs) impact the particle mass concentration and gas-particle partitioning in coastal environments, with implications for human and ecosystem health. Model evaluations of SSA emissions have mainly focused on the global scale, but regional-scale evaluations are...

  11. A COMPUTATIONALLY EFFICIENT HYBRID APPROACH FOR DYNAMIC GAS/AEROSOL TRANSFER IN AIR QUALITY MODELS. (R826371C005)

    EPA Science Inventory

    Dynamic mass transfer methods have been developed to better describe the interaction of the aerosol population with semi-volatile species such as nitrate, ammonia, and chloride. Unfortunately, these dynamic methods are computationally expensive. Assumptions are often made to r...

  12. Indoor Air Quality Manual.

    ERIC Educational Resources Information Center

    Baldwin Union Free School District, NY.

    This manual identifies ways to improve a school's indoor air quality (IAQ) and discusses practical actions that can be carried out by school staff in managing air quality. The manual includes discussions of the many sources contributing to school indoor air pollution and the preventive planning for each including renovation and repair work,…

  13. Atmospheric removal times of the aerosol-bound radionuclides 137Cs and 131I measured after the Fukushima Dai-ichi nuclear accident - a constraint for air quality and climate models

    NASA Astrophysics Data System (ADS)

    Kristiansen, N. I.; Stohl, A.; Wotawa, G.

    2012-11-01

    obtained from aerosol models, typically in the range of 3-7 days, warrants further research on the cause of this discrepancy. Too short modeled AM aerosol lifetimes would have serious implications for air quality and climate model predictions.

  14. Transforming air quality management

    SciTech Connect

    Janet McCabe

    2005-04-01

    Earlier this year, the Clean Air Act Advisory Committee submitted to EPA 38 recommendations intended to improve air quality management in the United States. This article summarizes the evaluation process leading up to the Committee's recommendations. 3 refs., 2 figs.

  15. Aerosol particle and trace gas emissions from earthworks, road construction, and asphalt paving in Germany: Emission factors and influence on local air quality

    NASA Astrophysics Data System (ADS)

    Faber, Peter; Drewnick, Frank; Borrmann, Stephan

    2015-12-01

    Aerosol emissions from construction sites have a strong impact on local air quality. The chemical and physical characteristics of particles and trace gases emitted by earthworks (excavation and loading of soil as well as traffic on unpaved roads) and road works (asphalt sawing, smashing, soil compacting, asphalt paving) have therefore been addressed in this study by using a mobile set-up of numerous modern online aerosol and trace gas instruments including a high-resolution aerosol mass spectrometer. Fuel-based emission factors for several variables have been determined, showing that earthwork activities and compacting by use of a plate compactor revealed the highest median emission factors for PM10 (up to 54 g l-1). Construction activities were assigned to contribute about 17% (36 000 t a-1) to total PM10 emissions and 3% (13 500 t a-1) to total traffic-related NOx emissions in Germany. In particular, calculated PM10 emissions by earthworks are about 15 800 t a-1 corresponding to 44% of total PM10 emissions by construction activities in Germany. Mechanical processes such as asphalt sawing (PM1/PM10 = 18 ± 31%), soil compacting by a plate compactor (PM1/PM10 = 5 ± 6%) and earthworks (PM1/PM10 = 2 ± 5%) emit predominantly coarse mineral dust particles. Contrary to that, particle emissions by thermal construction processes (asphalt paving: PM1/PM10 = 62 ± 14%) and by the internal combustion engines of heavy machinery (e.g. road roller PM1/PM10 = 94 ± 9%) are mostly in the submicron range. These particles were mainly composed of organics containing non-polar saturated and unsaturated hydrocarbons (e.g. asphalting: O:C < 0.01, H:C = 2.01). Besides construction activities, mineral dust is also emitted over cleared land by wind-driven resuspension depending on wind speed. PM10 emissions by construction activities often result in local concentrations > 100 μg m-3 and can easily breach the European limit level of PM10. This study also shows that particulate mineral

  16. Traffic air quality index.

    PubMed

    Bagieński, Zbigniew

    2015-02-01

    Vehicle emissions are responsible for a considerable share of urban air pollution concentrations. The traffic air quality index (TAQI) is proposed as a useful tool for evaluating air quality near roadways. The TAQI associates air quality with the equivalent emission from traffic sources and with street structure (roadway structure) as anthropogenic factors. The paper presents a method of determining the TAQI and defines the degrees of harmfulness of emitted pollution. It proposes a classification specifying a potential threat to human health based on the TAQI value and shows an example of calculating the TAQI value for real urban streets. It also considers the role that car traffic plays in creating a local UHI.

  17. Atmospheric removal times of the aerosol-bound radionuclides 137Cs and 131I during the months after the Fukushima Dai-ichi nuclear power plant accident - a constraint for air quality and climate models

    NASA Astrophysics Data System (ADS)

    Kristiansen, N. I.; Stohl, A.; Wotawa, G.

    2012-05-01

    Caesium-137 (137Cs) and iodine-131 (131I) are radionuclides of particular concern during nuclear accidents, because they are emitted in large amounts and are of significant health impact. 137Cs and 131I attach to the ambient accumulation-mode (AM) aerosols and share their fate as the aerosols are removed from the atmosphere by scavenging within clouds, precipitation and dry deposition. Here, we estimate their removal times from the atmosphere using a unique high-precision global measurement data set collected over several months after the accident at the Fukushima Dai-ichi nuclear power plant in March 2011. The noble gas xenon-133 (133Xe), also released during the accident, served as a passive tracer of air mass transport for determining the removal times of 137Cs and 131I via the decrease in the measured ratios 137Cs/133Xe and 131I/133Xe over time. After correction for radioactive decay, the 137Cs/133Xe ratios reflect the removal of aerosols by wet and dry deposition, whereas the 131I/133Xe ratios are also influenced by aerosol production from gaseous 131I. We find removal times for 137Cs of 10.0-13.9 days and for 131I of 17.1-24.2 days during April and May 2011. We discuss possible caveats (e.g. late emissions, resuspension) that can affect the results, and compare the 137Cs removal times with observation-based and modeled aerosol lifetimes. Our 137Cs removal time of 10.0-13.9 days should be representative of a "background" AM aerosol well mixed in the extratropical Northern Hemisphere troposphere. It is expected that the lifetime of this vertically mixed background aerosol is longer than the lifetime of AM aerosols originating from surface sources. However, the substantial difference to the mean lifetimes of AM aerosols obtained from aerosol models, typically in the range of 3-7 days, warrants further research on the cause of this discrepancy. Too short modeled AM aerosol lifetimes would have serious implications for air quality and climate model predictions.

  18. Aircraft Observations of Aerosol Composition and Ageing in New England and Mid-Atlantic States during the Summer 2002 New England Air Quality Study Field Campaign

    SciTech Connect

    Kleinman, Lawrence I.; Daum, Peter H.; Lee, Y.- N.; Senum, Gunar; Springston, Stephen R.; Wang, Jian; Berkowitz, Carl M.; Hubbe, John M.; Zaveri, Rahul A.; Brechtel, Fred J.; Jayne, J. T.; Onasch, Timothy B.; Worsnop, Douglas R.

    2007-05-11

    Aerosol chemical composition, size distributions, and optical properties were measured during 17 aircraft flights in New England and Middle Atlantic States as part of the summer 2002 NEAQS field campaign. An Aerodyne Aerosol Mass Spectrometer (AMS) was operated with a measurement cycle of 30 s, about an order of magnitude faster than used for ground-based measurements. Noise levels within a single measurement period were sub μg m-3. Volume data derived from the AMS were compared with volume measurements from a PCASP optical particle detector and an Scanning Mobility Particle Spectrometer (SMPS); calculated light scattering was compared with measured values from an integrating nephelometer. The median ratio for AMS/SMPS volume was 1.25; the median ratio for AMS/nephelometer scattering was 1.18. Size spectra were compared for subsets of samples with different effective diameters (Deff). There is good agreement between the AMS, PCASP, and SMPS spectra for larger values of Deff but an unexplained over-prediction in the AMS for small values. A dependence of the AMS collection efficiency on aerosol acidity was quantified by a comparison between AMS and PCASP volumes in 2 high sulfate plumes. Average aerosol concentrations were 11 μg m-3. The organic content was high in comparison to monitoring data from the IMPROVE network, varying from 70% in clean air to 40% in high concentration sulfate plumes. The ratio of organic aerosol to CO and light absorption acting were examined as a function of photochemical age. CO is a conservative tracer for urban emissions and light absorption is a surrogate for black carbon which is also conservative. Comparisons were made to surface ratios measured under conditions where there is little secondary organic aerosol (SOA). An increase in these ratios relative to surface values indicates that 70 - 80% of the organic aerosol in polluted air masses was secondary. Most of this SOA is rapidly formed within a few hours. At longer time scales

  19. Comparison of two different sea-salt aerosol schemes as implemented in air quality models applied to the Mediterranean Basin

    NASA Astrophysics Data System (ADS)

    Jimenez-Guerrero, P.; Jorba, O.; Pay, M. T.; Montavez, J. P.; Jerez, S.; Gomez-Navarro, J. J.; Baldasano, J. M.

    2010-12-01

    A number of attempts have been made to incorporate sea-salt aerosols (SSA) source functions in chemistry transport models with varying results according to the complexity of the scheme considered. This contribution compares the inclusion of two different SSA algorithms in two chemistry transport models: CMAQ and CHIMERE. The main goal is to examine the differences in average SSA mass and composition and to study the seasonality of the prediction of SSA when applied to the Mediterranean area with high resolution in a reference year. Dry and wet deposition schemes are also analyzed to better understand the differences observed between both models in the target area. The applied emission algorithm in CHIMERE uses a semi-empirical formulation which obtains the surface emission rate of SSA as a function of the surface wind speed cubed and particle size. The emission parameterization included within CMAQ is somehow more sophisticated, since fluxes of SSA are corrected with relative humidity. In order to evaluate their strengths and weaknesses, the participating algorithms as implemented in the chemistry transport models were evaluated against AOD measurements from Aeronet and available surface measurements in Southern Europe and the Mediterranean area, showing biases around -0.003 and -1.2 μg m-3, respectively. The results indicate that both models represent accurately the patterns and dynamics of SSA and its non-uniform behavior in the Mediterranean basin, showing a strong seasonality. The levels of SSA vary strongly across the Western and the Eastern Mediterranean, reproducing CHIMERE higher annual levels in the Aegean Sea (12 μg m-3) and CMAQ in the Gulf of Lion (9 μg m-3). The large difference found for the ratio PM2.5/total SSA in CMAQ and CHIMERE is also investigated. The dry and wet removal rates are very similar for both models despite the different schemes implemented. Dry deposition essentially follows the surface drag stress patterns, meanwhile wet

  20. Comparison of two different sea-salt aerosol schemes as implemented in air quality models applied to the Mediterranean Basin

    NASA Astrophysics Data System (ADS)

    Jiménez-Guerrero, P.; Jorba, O.; Pay, M. T.; Montávez, J. P.; Jerez, S.; Gómez-Navarro, J. J.; Baldasano, J. M.

    2011-05-01

    A number of attempts have been made to incorporate sea-salt aerosol (SSA) source functions in chemistry transport models with varying results according to the complexity of the scheme considered. This contribution compares the inclusion of two different SSA algorithms in two chemistry transport models: CMAQ and CHIMERE. The main goal is to examine the differences in average SSA mass and composition and to study the seasonality of the prediction of SSA when applied to the Mediterranean area with high resolution for a reference year. Dry and wet deposition schemes are also analyzed to better understand the differences observed between both models in the target area. The applied emission algorithm in CHIMERE uses a semi-empirical formulation which obtains the surface emission rate of SSA as a function of the particle size and the surface wind speed raised to the power 3.41. The emission parameterization included within CMAQ is somehow more sophisticated, since fluxes of SSA are corrected with relative humidity. In order to evaluate their strengths and weaknesses, the participating algorithms as implemented in the chemistry transport models were evaluated against AOD measurements from Aeronet and available surface measurements in Southern Europe and the Mediterranean area, showing biases around -0.002 and -1.2 μg m-3, respectively. The results indicate that both models represent accurately the patterns and dynamics of SSA and its non-uniform behavior in the Mediterranean basin, showing a strong seasonality. The levels of SSA strongly vary across the Western and the Eastern Mediterranean, reproducing CHIMERE higher annual levels in the Aegean Sea (12 μg m-3) and CMAQ in the Gulf of Lion (9 μg m-3). The large difference found for the ratio PM2.5/total SSA in CMAQ and CHIMERE is also investigated. The dry and wet removal rates are very similar for both models despite the different schemes implemented. Dry deposition essentially follows the surface drag stress patterns

  1. Culture systems: air quality.

    PubMed

    Thomas, Theodore

    2012-01-01

    Poor laboratory air quality is a known hazard to the culture of human gametes and embryos. Embryologists and chemists have employed analytical methods for identifying and measuring bulk and select air pollutants to assess the risk they pose to the embryo culture system. However, contaminant concentrations that result in gamete or embryotoxicity are poorly defined. Combating the ill effects of poor air quality requires an understanding of how toxicants can infiltrate the laboratory, the incubator, and ultimately the culture media. A further understanding of site-specific air quality can then lead to the consideration of laboratory design and management strategies that can minimize the deleterious effects that air contamination may have on early embryonic development in vitro.

  2. Process air quality data

    NASA Technical Reports Server (NTRS)

    Butler, C. M.; Hogge, J. E.

    1978-01-01

    Air quality sampling was conducted. Data for air quality parameters, recorded on written forms, punched cards or magnetic tape, are available for 1972 through 1975. Computer software was developed to (1) calculate several daily statistical measures of location, (2) plot time histories of data or the calculated daily statistics, (3) calculate simple correlation coefficients, and (4) plot scatter diagrams. Computer software was developed for processing air quality data to include time series analysis and goodness of fit tests. Computer software was developed to (1) calculate a larger number of daily statistical measures of location, and a number of daily monthly and yearly measures of location, dispersion, skewness and kurtosis, (2) decompose the extended time series model and (3) perform some goodness of fit tests. The computer program is described, documented and illustrated by examples. Recommendations are made for continuation of the development of research on processing air quality data.

  3. State Air Quality Standards.

    ERIC Educational Resources Information Center

    Pollution Engineering, 1978

    1978-01-01

    This article presents in tabular form the air quality standards for sulfur dioxide, carbon monoxide, nitrogen dioxide, photochemicals, non-methane hydrocarbons and particulates for each of the 50 states and the District of Columbia. (CS)

  4. Inter-comparison of MAX-DOAS Retrieved Vertical Profiles of Aerosol Extinction, SO2 and NO2 in the Alberta Oil Sands with LIDAR Data and GEM-MACH Air Quality Model.

    NASA Astrophysics Data System (ADS)

    Davis, Zoe; Friess, Udo; Strawbridge, Kevin; Whiteway, James; Aggarwal, Monika; Makar, Paul; Li, Shao-Meng; O'Brien, Jason; Baray, Sabour; Schnitzler, Elijah; Olfert, Jason S.; Osthoff, Hans D.; Lobo, Akshay; McLaren, Robert

    2016-04-01

    Understanding industrial emissions of trace gas pollutants in the Alberta oil sands is essential to maintaining air quality standards and informing public policy. Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements of trace gases can improve knowledge of pollutant levels, vertical distribution and chemical transformation. During an intensive air measurement campaign to study emissions, transport, transformation and deposition of oil sands air pollutants from August to September of 2013, a MAX-DOAS instrument was deployed at a site north of Fort McMurray, Alberta to determine the vertical profiles of aerosol extinction, NO2 and SO2 through retrieval from the MAX-DOAS spectral measurements using an optimal estimation method. The large complement of data collected from multiple instruments deployed during this field campaign provides a unique opportunity to validate and characterize the performance of the MAX-DOAS vertical profile retrievals. Aerosol extinction profiles determined from two Light Detection and Ranging (LIDAR) instruments, one collocated and the other on a Twin Otter aircraft that flew over the site during the study, will be compared to the MAX-DOAS aerosol extinction profile retrievals. Vertical profiles of NO2 and SO2 retrieved from the MAX-DOAS measurements will be further compared with the composite vertical profiles measured from the flights of a second aircraft, the NRC-Convair 580, over the field site during the same measurement period. Finally, the MAX-DOAS retrieved tropospheric vertical column densities (VCDs) of SO2 and NO2 will be compared to the predicted VCDs from Environment and Climate Change Canada's Global Environmental Multi-scale - Modelling Air quality and Chemistry (GEM-MACH) air quality model over the grid cell containing the field site. Emission estimates of SO2 from the major oil mining facility Syncrude Mildred Lake using the MAX-DOAS VCD results, validated through the detailed characterization above

  5. Behavioral-physiological effects of red phosphorous smoke inhalation on two wildlife species. Task 1. Inhalation equipment development/ambient CO evaluation/aerosol distribution and air-quality study. Final report, March 1985-December 1986

    SciTech Connect

    Sterner, R.T.; Shumake, S.A.; Johns, B.E.; Thompson, R.D.

    1987-12-01

    Tests to evaluate the spatial and temporal uniformity of red phosphorous - butyl rubber smoke produced in a commercial 1-CuM inhalation chamber are described. Several modifications to the inhalation exposure system aimed at improving air filtration, relative humidity, and temperature control for the conduct of animal studies are also presented. Smoke generation involved the use of a system for the continuous generation of phosphoric acid aerosols. Assessments of spatial and temporal uniformity of smoke were based upon measurements of aerosol mass concentration (gravimetric analysis), phosphoric acid deposition (titration analysis), aerosol opacity (infrared sensor), and particle size (cascade impactor); assessments of air quality and combustion products within the chamber involved checks for oxygen, carbon dioxide, phosphine, hexane, and carbon monoxide using either gas chromatography or industrial-hygiene-analyzer tubes. Results for aerosol mass, phosphoric acid, and particle size showed that the within-chamber smoke was highly uniform among burns. Although a number of statistically significant effects were obtained, further inspection showed these to be limited to specific sampling locations and within a priori criteria established to define acceptable uniformity.

  6. Traffic air quality index.

    PubMed

    Bagieński, Zbigniew

    2015-02-01

    Vehicle emissions are responsible for a considerable share of urban air pollution concentrations. The traffic air quality index (TAQI) is proposed as a useful tool for evaluating air quality near roadways. The TAQI associates air quality with the equivalent emission from traffic sources and with street structure (roadway structure) as anthropogenic factors. The paper presents a method of determining the TAQI and defines the degrees of harmfulness of emitted pollution. It proposes a classification specifying a potential threat to human health based on the TAQI value and shows an example of calculating the TAQI value for real urban streets. It also considers the role that car traffic plays in creating a local UHI. PMID:25461063

  7. MISR Aerosol Air Mass Type Mapping over Mega-City: Validation and Applications

    NASA Astrophysics Data System (ADS)

    Patadia, F.; Kahn, R. A.

    2010-12-01

    Most aerosol air-quality monitoring in mega-city environments is done from scattered ground stations having detailed chemical and optical sampling capabilities. Satellite instruments such as the Multi-angle Imaging SpectroRadiometer (MISR) can retrieve total-column Aerosol Optical Depth (AOD), along with some information about particle microphysical properties. Although the particle property information from MISR is much less detailed than that obtained from the ground sampling stations, the coverage is extensive, making it possible to put individual surface observations into the context of regional aerosol air mass types. This paper presents an analysis of MISR aerosol observations made coincident with aircraft and ground-based instruments during the INTEX-B field campaign. These detailed comparisons of satellite aerosol property retrievals against dedicated field measurements provide the opportunity to validate the retrievals quantitatively at a regional level, and help to improve aerosol representation in retrieval algorithms. Validation of MISR retrieved AOD and other aerosol properties over the INTEX-B study region in and around Mexico City will be presented. MISR’s ability to distinguish among aerosol air mass types will be discussed. The goal of this effort is to use the MISR aerosol property retrievals for mapping both aerosol air mass type and AOD gradients in mega-city environments over the decade-plus that MISR has made global observations.

  8. Indoor air quality

    SciTech Connect

    Not Available

    1987-08-01

    Possible indoor air contaminants include carbon monoxide, carbon dioxide, nitrogen oxides, particulates, bacteria, fungi, and VOCs (volatile organic compounds). Sources comprise paints, pesticides, solvents, sealants, smoke, soils, adhesives, aerosols, dusts, cleansers, and moisture. Health effects can range from simple discomfort, tight-building syndrome symptoms, and dermatitis to much more serious maladies, such as Legionnaire's disease and cancer. Difficulties abound in dealing with IAQ problems. Government standards used in industrial settings-such as the OSHA permissible exposure limits or threshold limit values of the American Conference of Governmental Industrial Hygienists-are typically designed for heavy, short-term exposures to specific hazardous substances. These frequently prove inadequate in determining the deleterious nature of an IAQ complaint in a home, office, or school where pollutant concentrations may be quite low, exposures long-term, contaminants mixed, and, with some substances, interactions and health effects unknown. Also, government authority and responsibilities in nonindustrial settings are ill-defined.

  9. Aerosol optical depth, aerosol composition and air pollution during summer and winter conditions in Budapest.

    PubMed

    Alföldy, B; Osán, J; Tóth, Z; Török, S; Harbusch, A; Jahn, C; Emeis, S; Schäfer, K

    2007-09-20

    The dependence of aerosol optical depth (AOD) on air particulate concentrations in the mixing layer height (MLH) was studied in Budapest in July 2003 and January 2004. During the campaigns gaseous (CO, SO(2), NO(x), O(3)), solid components (PM(2.5), PM(10)), as well as ionic species (ammonium, sulfate and nitrate) were measured at several urban and suburban sites. Additional data were collected from the Budapest air quality monitoring network. AOD was measured by a ground-based sun photometer. The mixing layer height and other common meteorological parameters were recorded. A linear relationship was found between the AOD and the columnar aerosol burden; the best linear fit (R(2)=0.96) was obtained for the secondary sulfate aerosol due to its mostly homogeneous spatial distribution and its optically active size range. The linear relationship is less pronounced for the PM(2.5) and PM(10) fractions since local emissions are very heterogeneous in time and space. The results indicate the importance of the mixing layer height in determining pollutant concentrations. During the winter campaign, when the boundary layer decreases to levels in between the altitudes of the sampling stations, measured concentrations showed significant differences due to different local sources and long-range transport. In the MLH time series unexpected nocturnal peaks were observed. The nocturnal increase of the MLH coincided with decreasing concentrations of all pollutants except for ozone; the ozone concentration increase indicates nocturnal vertical mixing between different air layers.

  10. Tribal Air Quality Monitoring.

    ERIC Educational Resources Information Center

    Wall, Dennis

    2001-01-01

    The Institute for Tribal Environmental Professionals (ITEP) (Flagstaff, Arizona) provides training and support for tribal professionals in the technical job skills needed for air quality monitoring and other environmental management tasks. ITEP also arranges internships, job placements, and hands-on training opportunities and supports an…

  11. INTEGRATION OF SATELLITE, MODELED, AND GROUND BASED AEROSOL DATA FOR USE IN AIR QUALITY AND PUBLIC HEALTH APPLICATIONS ( AGU-BALTIMORE )

    EPA Science Inventory

    Within the next several years NOAA and EPA will begin to issue PM2.5 air quality forecasts over the entire domain of the eastern United States, eventually extending to national coverage. These forecasts will provide continuous estimated values of particulate matter on ...

  12. Regional air quality in Leipzig, Germany: detailed source apportionment of size-resolved aerosol particles and comparison with the year 2000.

    PubMed

    van Pinxteren, D; Fomba, K W; Spindler, G; Müller, K; Poulain, L; Iinuma, Y; Löschau, G; Hausmann, A; Herrmann, H

    2016-07-18

    A detailed source apportionment of size-resolved aerosol particles in the area of Leipzig, Germany, was performed. Sampling took place at four sites (traffic, traffic/residential, urban background, regional background) in parallel during summer 2013 and the winters 2013/14/15. Twenty-one samples were taken per season with a 5-stage Berner impactor and analysed for particulate mass, inorganic ions, organic and elemental carbon, water-soluble organic carbon, trace metals, and a wide range of organic species. The compositional data were used to estimate source contributions to particulate matter (PM) in quasi-ultrafine (up to 140 nm), accumulation mode, and coarse size ranges using Positive Matrix Factorisation (PMF) receptor modelling. Traffic (exhaust and general traffic emissions), coal combustion, biomass combustion, photochemistry, general secondary formation, cooking, fungal spores, urban dust, fresh sea/road salt, and aged sea salt were all found to contribute to different extents to observed PM concentrations. PMF derived estimates agreed reasonably with estimates from established macrotracer approaches. Quasi-ultrafine PM originated mainly from traffic (20-50%) and photochemistry (30-50%) in summer, while it was dominated by solid fuel (mainly biomass) combustion in winter (50-70%). Tentatively identified cooking aerosol contributed up to 36% on average at the residential site. For accumulation mode particles, two secondary sources typically contributed 40-90% to particle mass. In winter, biomass and coal combustion contributions were up to ca. 25% and 45%, respectively. Main sources of coarse particles were diverse and included nearly all PMF-resolved ones depending on season and air mass origin. For PM10, traffic (typically 20-40% at kerbside sites), secondary formation (30-60%), biomass combustion (10-15% in winter), and coal combustion (30-40% in winter with eastern air mass inflow) were the main quantified sources. At the residential site, contributions

  13. Monitoring Air Quality from Space using AURA Data

    NASA Technical Reports Server (NTRS)

    Gleason, James F.; Chance, Kelly V.; Fishman, Jack; Torres, Omar; Veefkind, Pepijn

    2003-01-01

    Measurements from the Earth Observing System (EOS) AURA mission will provide a unique perspective on air quality monitoring. Ozone, nitrogen dioxide, formaldehyde and aerosols from the Ozone Monitoring Instrument (OMI) and carbon monoxide from the Tropospheric Emission Spectrometer (TES) will be simultaneously measured with the spatial resolution and coverage needed for improving our understanding of air quality. AURA data products useful for air quality monitoring will be given.

  14. Energy and air quality

    NASA Astrophysics Data System (ADS)

    Orgill, M. M.; Thorp, J. M.

    Many coal, oil shale, and geothermal energy sources are located in areas where atmospheric transport and dispersion processes are dominated by the complexity of the terrain. The U.S. Department of Energy (DOE), responsible for developing new energy technologies that meet air-quality regulations, developed a program aimed specifically at Atmospheric Studies in Complex Terrain (ASCOT) in 1978. The program uses theoretical atmospheric physics research, mathematical models, field experiments, and physical models. The goal is to develop a modeling and measurement methodology to (1) improve fundamental knowledge of transport and dispersion processes in complex terrain and (2) build on this improvement to provide a methodology for performing air quality assessments. The ASCOT team, managed by Marvin Dickerson and Paul Gudiksen of Lawrence Livermore Laboratory, Livermore, Calif., is composed of scientists from DOE supported research laboratories and university programs.

  15. Ozone - Current Air Quality Index

    MedlinePlus

    ... reducing exposure to extremely high levels of particle pollution is available here . Fires: Current Conditions Click to ... Air Quality Basics Air Quality Index | Ozone | Particle Pollution | Smoke from fires | What You Can Do Health ...

  16. Air quality management in Mexico.

    PubMed

    Fernández-Bremauntz, Adrián

    2008-01-01

    Several significant program and policy measures have been implemented in Mexico over the past 15 yr to improve air quality. This article provides an overview of air quality management strategies in Mexico, including (1) policy initiatives such as vehicle use restrictions, air quality standards, vehicle emissions, and fuel quality standards, and (2) supporting programs including establishment of a national emission inventory, an air pollution episodes program, and the implementation of exposure and health effects studies. Trends in air pollution episodes and ambient air pollutant concentrations are described.

  17. Safeguarding indoor air quality

    SciTech Connect

    Sexton, K.; Wesolowski, J.J.

    1985-01-01

    California has created and implemented the first state program devoted exclusively to the investigation of nonindustrial indoor air quality. The program is responsible for promoting and conducting research on the determining factors of healthful indoor environments and is structured to obtain information about emission sources, ventilation effects, indoor concentrations, human activity patterns, exposures, health risks, control measures and public policy options. Data are gathered by a variety of methods, including research conducted by staff members, review of the available scientific literature, participation in technical meetings, contractual agreements with outside agencies, cooperative research projects with other groups and consultation with experts. 23 references, 1 figure, 1 table.

  18. Indoor Air Quality in Schools.

    ERIC Educational Resources Information Center

    Torres, Vincent M.

    Asserting that the air quality inside schools is often worse than outdoor pollution, leading to various health complaints and loss of productivity, this paper details factors contributing to schools' indoor air quality. These include the design, operation, and maintenance of heating, ventilating, and air conditioning (HVAC) systems; building…

  19. Aerosols in clean and smoky air at Bozeman, Montana

    NASA Astrophysics Data System (ADS)

    Shaw, J. A.; Thomas, M.; Lathem, T. L.; Shaw, G. E.; Nenes, A.; Pust, N.; Repasky, K. S.

    2010-12-01

    The northern Rocky Mountain region of the United States is a natural laboratory for studying aerosols in a relatively uncontaminated environment punctuated by episodes of wildfire smoke. In autumn 2009, we conducted a field experiment at Montana State University in Bozeman, Montana to characterize the boundary layer aerosols as they transition from smoky periods to relatively clean background air. Physical and chemical properties of the aerosols were conducted, including high time resolution of Cloud Condensation Nuclei and inter comparison with AERONET data during times of deep atmospheric mixing. The key results of this experiment are: 1) the air in this northern Rocky Mountain location is surprisingly pristine with frequent aerosol size distributions devoid of a an accumulation mode; 2) periods of night-time growth of Aitken-mode aerosols were observed; 3) a persistent diurnal variation occurred, with upslope daytime winds bringing aerosols exhibiting moderate anthropogenic influence , and down slope nighttime winds bringing aerosols with weak accumulation mode; 4) the smoke aerosol was weakly soluble; and 5) satisfactory agreement was found between the inverted estimate of the fine mode aerosol from AERONET solar radiometry with that measured in situ.

  20. Air Quality Monitor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Stak-Tracker CEM (Continuous Emission Monitor) Gas Analyzer is an air quality monitor capable of separating the various gases in a bulk exhaust stream and determining the amounts of individual gases present within the stream. The monitor is produced by GE Reuter- Stokes, a subsidiary of GE Corporate Research & Development Center. The Stak-Tracker uses a Langley Research Center software package which measures the concentration of a target gas by determining the degree to which molecules of that gas absorb an infrared beam. The system is environmental-friendly, fast and has relatively low installation and maintenance costs. It is applicable to gas turbines and various industries including glass, paper and cement.

  1. Modeling multi-scale aerosol dynamics and micro-environmental air quality near a large highway intersection using the CTAG model.

    PubMed

    Wang, Yan Jason; Nguyen, Monica T; Steffens, Jonathan T; Tong, Zheming; Wang, Yungang; Hopke, Philip K; Zhang, K Max

    2013-01-15

    A new methodology, referred to as the multi-scale structure, integrates "tailpipe-to-road" (i.e., on-road domain) and "road-to-ambient" (i.e., near-road domain) simulations to elucidate the environmental impacts of particulate emissions from traffic sources. The multi-scale structure is implemented in the CTAG model to 1) generate process-based on-road emission rates of ultrafine particles (UFPs) by explicitly simulating the effects of exhaust properties, traffic conditions, and meteorological conditions and 2) to characterize the impacts of traffic-related emissions on micro-environmental air quality near a highway intersection in Rochester, NY. The performance of CTAG, evaluated against with the field measurements, shows adequate agreement in capturing the dispersion of carbon monoxide (CO) and the number concentrations of UFPs in the near road micro-environment. As a proof-of-concept case study, we also apply CTAG to separate the relative impacts of the shutdown of a large coal-fired power plant (CFPP) and the adoption of the ultra-low-sulfur diesel (ULSD) on UFP concentrations in the intersection micro-environment. Although CTAG is still computationally expensive compared to the widely-used parameterized dispersion models, it has the potential to advance our capability to predict the impacts of UFP emissions and spatial/temporal variations of air pollutants in complex environments. Furthermore, for the on-road simulations, CTAG can serve as a process-based emission model; Combining the on-road and near-road simulations, CTAG becomes a "plume-in-grid" model for mobile emissions. The processed emission profiles can potentially improve regional air quality and climate predictions accordingly.

  2. Air Quality Impact of the Deepwater Horizon Oil Spill (Invited)

    NASA Astrophysics Data System (ADS)

    Middlebrook, A. M.; Ahmadov, R.; Atlas, E. L.; Bahreini, R.; Blake, D. R.; Brioude, J.; Brock, C. A.; de Gouw, J. A.; Fahey, D. W.; Fehsenfeld, F. C.; Gao, R.; Holloway, J. S.; Lueb, R.; McKeen, S. A.; Meagher, J. F.; Meinardi, S.; Murphy, D. M.; Parrish, D. D.; Peischl, J.; Perring, A.; Pollack, I. B.; Ravishankara, A. R.; Roberts, J. M.; Robinson, A. L.; Ryerson, T. B.; Schwarz, J. P.; Spackman, J. R.; Warneke, C.; Watts, L.

    2010-12-01

    On April 20, 2010, an explosion led to a rupture of the wellhead underneath the Deepwater Horizon (DWH) drilling platform. In addition to impacts on marine life and coasts, the resulting oil spill and cleanup operations also affected air quality. We measured a wide range of gas and aerosol species in the air close to and downwind of the DWH site. Among all of the measured species, the most important air quality concern for populations along the Gulf coast and inland was aerosols in respirable sizes. Since the measured gas-phase hydrocarbons were distributed in a fairly narrow plume evaporating from fresh surface oil and organic aerosol was measured in a much broader plume, the secondary organic aerosol (SOA) evidently formed from unmeasured, less volatile hydrocarbons that were emitted from a wider area around the site. Older surface oil near the coasts of Mississippi, Alabama, and Florida had little effect on SOA formation. The SOA mass increased with distance downwind of the DWH site. Preliminary results indicate that at least a few percent by mass of the spilled oil is converted into SOA. From the flaring, surface recovery, and cleanup operations, initial calculations of emission ratios also indicate that a few percent by mass of oil burned on the surface was emitted as black carbon aerosols. These organic and black carbon aerosols from the DWH oil spill influence local visibility and radiation and have potential health effects. Furthermore, they likely occasionally reached populated areas at concentrations that were a significant fraction of air quality standards.

  3. Biogenic organic emissions, air quality and climate

    NASA Astrophysics Data System (ADS)

    Guenther, A. B.

    2015-12-01

    Living organisms produce copious amounts of a diverse array of metabolites including many volatile organic compounds that are released into the atmosphere. These compounds participate in numerous chemical reactions that influence the atmospheric abundance of important air pollutants and short-lived climate forcers including organic aerosol, ozone and methane. The production and release of these organics are strongly influenced by environmental conditions including air pollution, temperature, solar radiation, and water availability and they are highly sensitive to stress and extreme events. As a result, releases of biogenic organics to the atmosphere have an impact on, and are sensitive to, air quality and climate leading to potential feedback couplings. Their role in linking air quality and climate is conceptually clear but an accurate quantitative representation is needed for predictive models. Progress towards this goal will be presented including numerical model development and assessments of the predictive capability of the Model of Emission of Gases and Aerosols from Nature (MEGAN). Recent studies of processes controlling the magnitude and variations in biogenic organic emissions will be described and observations of their impact on atmospheric composition will be shown. Recent advances and priorities for future research will be discussed including laboratory process studies, long-term measurements, multi-scale regional studies, global satellite observations, and the development of a next generation model for simulating land-atmosphere chemical exchange.

  4. Effect of Air Ions on Submicron T1 Bacteriophage Aerosols

    PubMed Central

    Happ, John W.; Harstad, J. Bruce; Buchanan, Lee M.

    1966-01-01

    The effect of a high concentration of ionized air molecules on sampling T1 phage aerosols of submicron particle size was evaluated by comparing the phage recoveries of all-glass impingers (AGI-4) and type 6 filter papers. Sampler recoveries of all ionized aerosols were less than the recoveries of nonionized control aerosols. These reductions in recovery were greater with positive ions than with negative ions or ions of mixed polarity. The AGI-4 allowed considerable slippage, which was not affected by the air ions. Type 6 filter paper recoveries were less than AGI-4 recoveries. The air ions did not appear to affect the aerosol particle size as determined by an electron microscope. Images Fig. 1 Fig. 3 PMID:16349691

  5. Air pollution and climate response to aerosol direct radiative effects: A modeling study of decadal trends across the northern hemisphere

    EPA Science Inventory

    Decadal hemispheric Weather Research and Forecast-Community Multiscale Air Quality simulations from 1990 to 2010 were conducted to examine the meteorology and air quality responses to the aerosol direct radiative effects. The model's performance for the simulation of hourly surfa...

  6. New Federal Air Quality Standards.

    ERIC Educational Resources Information Center

    Stopinski, O. W.

    The report discusses the current procedures for establishing air quality standards, the bases for standards, and, finally, proposed and final National Primary and Secondary Ambient Air Quality Standards for sulfur dioxide, particulate matter, carbon monoxide, nonmethane hydrocarbons, photochemical oxidants, and nitrogen dioxide. (Author/RH)

  7. Building Air Quality. Action Plan.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Indoor Air Div.

    Building managers and owners often confront competing demands to reduce operating costs and increase revenues that can siphon funds and resources from other building management concerns such as indoor air quality (IAQ). This resource booklet, designed for use with the "Building Air Quality Guide," provides building owners and managers with an…

  8. Present and potential future contributions of sulfate, black and organic carbon aerosols from China to global air quality, premature mortality and radiative forcing

    NASA Astrophysics Data System (ADS)

    Saikawa, E.; Naik, V.; Horowitz, L. W.; Liu, J.; Mauzerall, D. L.

    2008-12-01

    Aerosols are harmful to human health and have both direct and indirect effects on climate. China is a major contributor to global emissions of sulfur dioxide (SO2), a sulfate (SO42-) precursor, organic carbon (OC), and black carbon (BC) aerosols. Although increasingly examined, the effect of present and potential future levels of these emissions on global premature mortality and climate change has not been well quantified. Through both direct and indirect effects, SO42- and OC exert negative radiative forcing (cooling) while BC exerts positive forcing (warming). We analyze the effect of China's emissions of SO2, SO42-, OC and BC in 2000 and for three emission scenarios in 2030 on global surface aerosol concentrations, premature mortality, and radiative forcing. Using global models of chemical transport (MOZART-2) and radiative transfer (GFDL RTM), and combining simulation results with gridded population data, mortality rates, and concentration-response relationships from the epidemiological literature, we estimate the contribution of Chinese aerosols to global annual premature mortality and to radiative forcing in 2000 and 2030. In 2000, we estimate these aerosols cause 385,320 premature deaths in China and an additional 18 240 globally. In 2030, aggressive emission controls lead to a reduction in premature deaths to 200,370 in China and 7,740 elsewhere, while under a high emissions scenario premature deaths would increase to 602,950 in China and to 29,750 elsewhere. Because the negative radiative forcing from SO42- and OC is larger than the positive forcing from BC, the Chinese aerosols lead to global net direct radiative forcing of -74 mW m-2 in 2000 and between -15 and -97 mW m-2 in 2030 based on the emissions scenario. Our analysis suggests that environmental policies that simultaneously improve public health and mitigate climate change would be highly beneficial (eg. reductions in BC emissions).

  9. AN ASSESSMENT OF THE ABILITY OF 3-D AIR QUALITY MODELS WITH CURRENT THERMODYNAMIC EQUILIBRIUM MODELS TO PREDICT AEROSOL NO3

    EPA Science Inventory

    The partitioning of total nitrate (TNO3) and total ammonium (TNH4) between gas and aerosol phases is studied with two thermodynamic equilibrium models, ISORROPIA and AIM, and three datasets: high time-resolution measurement data from the 1999 Atlanta SuperSite Experiment and from...

  10. Three-Dimensional Air Quality System (3D-AQS)

    NASA Astrophysics Data System (ADS)

    Engel-Cox, J.; Hoff, R.; Weber, S.; Zhang, H.; Prados, A.

    2007-12-01

    The 3-Dimensional Air Quality System (3DAQS) integrates remote sensing observations from a variety of platforms into air quality decision support systems at the U.S. Environmental Protection Agency (EPA), with a focus on particulate air pollution. The decision support systems are the Air Quality System (AQS) / AirQuest database at EPA, Infusing satellite Data into Environmental Applications (IDEA) system, the U.S. Air Quality weblog (Smog Blog) at UMBC, and the Regional East Atmospheric Lidar Mesonet (REALM). The project includes an end user advisory group with representatives from the air quality community providing ongoing feedback. The 3DAQS data sets are UMBC ground based LIDAR, and NASA and NOAA satellite data from MODIS, OMI, AIRS, CALIPSO, MISR, and GASP. Based on end user input, we are co-locating these measurements to the EPA's ground-based air pollution monitors as well as re-gridding to the Community Multiscale Air Quality (CMAQ) model grid. These data provide forecasters and the scientific community with a tool for assessment, analysis, and forecasting of U.S Air Quality. The third dimension and the ability to analyze the vertical transport of particulate pollution are provided by aerosol extinction profiles from the UMBC LIDAR and CALIPSO. We present examples of a 3D visualization tool we are developing to facilitate use of this data. We also present two specific applications of 3D-AQS data. The first is comparisons between PM2.5 monitor data and remote sensing aerosol optical depth (AOD) data, which show moderate agreement but variation with EPA region. The second is a case study for Baltimore, Maryland, as an example of 3D-analysis for a metropolitan area. In that case, some improvement is found in the PM2.5 /LIDAR correlations when using vertical aerosol information to calculate an AOD below the boundary layer.

  11. Colorado Air Quality Control Regulations and Ambient Air Quality Standards.

    ERIC Educational Resources Information Center

    Colorado State Dept. of Health, Denver. Div. of Air Pollution Control.

    Regulations and standards relative to air quality control in Colorado are defined in this publication. Presented first are definitions of terms, a statement of intent, and general provisions applicable to all emission control regulations adopted by the Colorado Air Pollution Control Commission. Following this, three regulations are enumerated: (1)…

  12. Indoor Air Quality

    NASA Astrophysics Data System (ADS)

    Miyazaki, Takeji

    The reduction of intake of outdoor air volume in air conditioned buildings, adopted as the strategy for saving energy, has caused sick building syndrome abroad. Such symptoms of sick building as headache, stimuli of eye and nose and lethargy, appears to result from cigarette smoke, folmaldehyde and volatile organic carbons. On the other hand, in airtight residences not only carbon monoxide and nitrogen oxides from domestic burning appliances but also allergens of mite, fungi, pollen and house dust, have become a subject of discussion. Moreover, asbestos and radon of carcinogen now attract a great deal of attention. Those indoor air pollutants are discussed.

  13. Indoor Air Quality

    MedlinePlus

    ... is critical. Learn how to recognize and eliminate pollution sources in and around your home, on the ... especially vulnerable to the harmful effects of air pollution. Cleaning up pollution in their schools will help ...

  14. Air quality implications of the Deepwater Horizon oil spill

    PubMed Central

    Middlebrook, Ann M.; Murphy, Daniel M.; Ahmadov, Ravan; Atlas, Elliot L.; Bahreini, Roya; Blake, Donald R.; Brioude, Jerome; de Gouw, Joost A.; Fehsenfeld, Fred C.; Frost, Gregory J.; Holloway, John S.; Lack, Daniel A.; Langridge, Justin M.; Lueb, Rich A.; McKeen, Stuart A.; Meagher, James F.; Meinardi, Simone; Neuman, J. Andrew; Nowak, John B.; Parrish, David D.; Peischl, Jeff; Perring, Anne E.; Pollack, Ilana B.; Roberts, James M.; Ryerson, Thomas B.; Schwarz, Joshua P.; Spackman, J. Ryan; Warneke, Carsten; Ravishankara, A. R.

    2012-01-01

    During the Deepwater Horizon (DWH) oil spill, a wide range of gas and aerosol species were measured from an aircraft around, downwind, and away from the DWH site. Additional hydrocarbon measurements were made from ships in the vicinity. Aerosol particles of respirable sizes were on occasions a significant air quality issue for populated areas along the Gulf Coast. Yields of organic aerosol particles and emission factors for other atmospheric pollutants were derived for the sources from the spill, recovery, and cleanup efforts. Evaporation and subsequent secondary chemistry produced organic particulate matter with a mass yield of 8 ± 4% of the oil mixture reaching the water surface. Approximately 4% by mass of oil burned on the surface was emitted as soot particles. These yields can be used to estimate the effects on air quality for similar events as well as for this spill at other times without these data. Whereas emission of soot from burning surface oil was large during the episodic burns, the mass flux of secondary organic aerosol to the atmosphere was substantially larger overall. We use a regional air quality model to show that some observed enhancements in organic aerosol concentration along the Gulf Coast were likely due to the DWH spill. In the presence of evaporating hydrocarbons from the oil, NOx emissions from the recovery and cleanup operations produced ozone. PMID:22205764

  15. Mind Your Indoor Air Quality

    ERIC Educational Resources Information Center

    Mak, Lily

    2012-01-01

    When it comes to excelling in the classroom, it turns out the air students are breathing is just as important as the lessons they are learning. Studies show poor indoor air quality (IAQ) can lessen the comfort of students as well as staff--affecting concentration, attendance and student performance. It can even lead to lower IQs. What's more, poor…

  16. [Indoor air quality in schools].

    PubMed

    Cartieaux, E; Rzepka, M-A; Cuny, D

    2011-07-01

    Indoor air quality in schools has received particular attention over the past several years. Children are considered as one of the most sensitive groups to atmospheric pollution because their bodies are actively growing and they breathe higher volumes of air relative to their body weights than adults do. They also spend more time in school or group structures (preschools, day nurseries) than in any indoor environments other than the home. The analysis of children's exposure to air pollution at school requires the identification of the main pollutant sources present in these educational institutions. Both a strong contribution of outdoor pollution and a very specific pollution bound to school activities such as the use of paints, markers, glues, and manufactured ink eraser pens, exist. The ventilation in school buildings also plays an important role in air quality. A higher air exchange may improve thermal comfort and air quality. The cause of indoor air pollution is a combinatory effect of physical, chemical, and biological factors, and the adequacy of ventilation in the environment. Several pollutants have been reported to exist in classrooms such as bacteria, molds, volatile organic compounds, persistent organic pollutants and microparticles. There is a correlation between the concentrations of the pollutants and onset of health problems in schoolchildren. We observe predominantly respiratory symptoms as well as a prevalence of respiratory diseases such as asthma and allergies. This study shows that poor indoor air quality affects children's health. PMID:21621987

  17. [Indoor air quality in schools].

    PubMed

    Cartieaux, E; Rzepka, M-A; Cuny, D

    2011-07-01

    Indoor air quality in schools has received particular attention over the past several years. Children are considered as one of the most sensitive groups to atmospheric pollution because their bodies are actively growing and they breathe higher volumes of air relative to their body weights than adults do. They also spend more time in school or group structures (preschools, day nurseries) than in any indoor environments other than the home. The analysis of children's exposure to air pollution at school requires the identification of the main pollutant sources present in these educational institutions. Both a strong contribution of outdoor pollution and a very specific pollution bound to school activities such as the use of paints, markers, glues, and manufactured ink eraser pens, exist. The ventilation in school buildings also plays an important role in air quality. A higher air exchange may improve thermal comfort and air quality. The cause of indoor air pollution is a combinatory effect of physical, chemical, and biological factors, and the adequacy of ventilation in the environment. Several pollutants have been reported to exist in classrooms such as bacteria, molds, volatile organic compounds, persistent organic pollutants and microparticles. There is a correlation between the concentrations of the pollutants and onset of health problems in schoolchildren. We observe predominantly respiratory symptoms as well as a prevalence of respiratory diseases such as asthma and allergies. This study shows that poor indoor air quality affects children's health.

  18. Lagrangian Sampling of 3-D Air Quality Model Results for Regional Transport Contributions to Sulfate Aerosol Concentrations at Baltimore, MD in Summer of 2004

    EPA Science Inventory

    The Lagrangian method provides estimates of the chemical and physical evolution of air arriving in the daytime boundary layer at Baltimore. Study results indicate a dominant role for regional transport contributions of those days when sulfate air pollution is highest in Baltimor...

  19. Room air monitor for radioactive aerosols

    DOEpatents

    Balmer, D.K.; Tyree, W.H.

    1987-03-23

    A housing assembly for use with a room air monitor for simultaneous collection and counting of suspended particles includes a casing containing a combination detector-preamplifier system at one end, a filter system at the other end, and an air flow system consisting of an air inlet formed in the casing between the detector-preamplifier system and the filter system and an air passageway extending from the air inlet through the casing and out the end opposite the detector-preamplifier combination. The filter system collects suspended particles transported directly through the housing by means of the air flow system, and these particles are detected and examined for radioactivity by the detector-preamplifier combination. 2 figs.

  20. Room air monitor for radioactive aerosols

    DOEpatents

    Balmer, David K.; Tyree, William H.

    1989-04-11

    A housing assembly for use with a room air monitor for simultaneous collection and counting of suspended particles includes a casing containing a combination detector-preamplifier system at one end, a filter system at the other end, and an air flow system consisting of an air inlet formed in the casing between the detector-preamplifier system and the filter system and an air passageway extending from the air inlet through the casing and out the end opposite the detector-preamplifier combination. The filter system collects suspended particles transported directly through the housing by means of the air flow system, and these particles are detected and examined for radioactivity by the detector-pre The U.S. Government has rights in this invention pursuant to Contract No. DE-AC04-76DP03533 between the Department of Energy and Rockwell International Corporation.

  1. Laboratory Testing of Aerosol for Enclosure Air Sealing

    SciTech Connect

    Harrington, Curtis; Modera, Mark

    2012-05-01

    This report presents a process for improving the air tightness of a building envelope by sealing shell leaks with an aerosol sealing technology. Both retrofit and new construction applications are possible through applying this process either in attics and crawlspaces or during rough-in stage.

  2. Aeromicrobiology/air quality

    USGS Publications Warehouse

    Andersen, Gary L.; Frisch, A.S.; Kellogg, Christina A.; Levetin, E.; Lighthart, Bruce; Paterno, D.

    2009-01-01

    The most prevalent microorganisms, viruses, bacteria, and fungi, are introduced into the atmosphere from many anthropogenic sources such as agricultural, industrial and urban activities, termed microbial air pollution (MAP), and natural sources. These include soil, vegetation, and ocean surfaces that have been disturbed by atmospheric turbulence. The airborne concentrations range from nil to great numbers and change as functions of time of day, season, location, and upwind sources. While airborne, they may settle out immediately or be transported great distances. Further, most viable airborne cells can be rendered nonviable due to temperature effects, dehydration or rehydration, UV radiation, and/or air pollution effects. Mathematical microbial survival models that simulate these effects have been developed.

  3. Manual on indoor air quality

    SciTech Connect

    Diamond, R.C.; Grimsrud, D.T.

    1983-12-01

    This reference manual was prepared to assist electric utilities in helping homeowners, builders, and new home buyers to understand a broad range of issues related to indoor air quality. The manual is directed to technically knowledgeable persons employed by utility companies - the customer service or marketing representative, applications engineer, or technician - who may not have specific expertise in indoor air quality issues. In addition to providing monitoring and control techniques, the manual summarizes the link between pollutant concentrations, air exchange, and energy conservation and describes the characteristics and health effects of selected pollutants. Where technical information is too lengthy or complex for inclusion in this volume, reference sources are given. Information for this manual was gathered from technical studies, manufacturers' information, and other materials from professional societies, institutes, and associations. The aim has been to provide objective technical and descriptive information that can be used by utility personnel to make informed decisions about indoor air quality issues.

  4. Urban air quality

    NASA Astrophysics Data System (ADS)

    Fenger, Jes

    Since 1950 the world population has more than doubled, and the global number of cars has increased by a factor of 10. In the same period the fraction of people living in urban areas has increased by a factor of 4. In year 2000 this will amount to nearly half of the world population. About 20 urban regions will each have populations above 10 million people. Seen over longer periods, pollution in major cities tends to increase during the built up phase, they pass through a maximum and are then again reduced, as abatement strategies are developed. In the industrialised western world urban air pollution is in some respects in the last stage with effectively reduced levels of sulphur dioxide and soot. In recent decades however, the increasing traffic has switched the attention to nitrogen oxides, organic compounds and small particles. In some cities photochemical air pollution is an important urban problem, but in the northern part of Europe it is a large-scale phenomenon, with ozone levels in urban streets being normally lower than in rural areas. Cities in Eastern Europe have been (and in many cases still are) heavily polluted. After the recent political upheaval, followed by a temporary recession and a subsequent introduction of new technologies, the situation appears to improve. However, the rising number of private cars is an emerging problem. In most developing countries the rapid urbanisation has so far resulted in uncontrolled growth and deteriorating environment. Air pollution levels are here still rising on many fronts. Apart from being sources of local air pollution, urban activities are significant contributors to transboundary pollution and to the rising global concentrations of greenhouse gasses. Attempts to solve urban problems by introducing cleaner, more energy-efficient technologies will generally have a beneficial impact on these large-scale problems. Attempts based on city planning with a spreading of the activities, on the other hand, may generate

  5. Light extinction by aerosols during summer air pollution

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Fraser, R. S.

    1983-01-01

    In order to utilize satellite measurements of optical thickness over land for estimating aerosol properties during air pollution episodes, the optical thickness was measured from the surface and investigated. Aerosol optical thicknesses have been derived from solar transmission measurements in eight spectral bands within the band lambda 440-870 nm during the summers of 1980 and 1981 near Washington, DC. The optical thicknesses for the eight bands are strongly correlated. It was found that first eigenvalue of the covariance matrix of all observations accounts for 99 percent of the trace of the matrix. Since the measured aerosol optical thickness was closely proportional to the wavelength raised to a power, the aerosol size distribution derived from it is proportional to the diameter (d) raised to a power for the range of diameters between 0.1 to 1.0 micron. This power is insensitive to the total optical thickness. Changes in the aerosol optical thickness depend on several aerosol parameters, but it is difficult to identify the dominant one. The effects of relative humidity and accumulation mode concentration on the optical thickness are analyzed theoretically, and compared with the measurements.

  6. Atmospheric station Křešín u Pacova, Czech Republic - a Central European research infrastructure for studying greenhouse gases, aerosols and air quality

    NASA Astrophysics Data System (ADS)

    Dvorská, A.; Sedlák, P.; Schwarz, J.; Fusek, M.; Hanuš, V.; Vodička, P.; Trusina, J.

    2015-05-01

    Long-lasting research infrastructures covering the research areas of atmospheric chemistry, meteorology and climatology are of highest importance. The Atmospheric Station (AS) Křešín u Pacova, central Czech Republic, is focused on monitoring of the occurence and long-range transport of greenhouse gases, atmospheric aerosols, selected gaseous atmospheric pollutants and basic meteorological characteristics. The AS and its 250 m tall tower was built according to the recommendations of the Integrated Carbon Observation System (ICOS) and cooperates with numerous national and international projects and monitoring programmes. First measurements conducted at ground started in 2012, vertical profile measurements were added in 2013. A seasonal variability with slightly higher autumn and winter concentrations of elemental and organic carbon was revealed. The suitability of the doubly left-censored Weibull distribution for modelling and interpretation of elemental carbon concentrations, which are often lower than instrumental quantification limits, was verified. Initial data analysis also suggests that in summer, the tower top at 250 m is frequently above the nocturnal surface inversions, thus being decoupled from local influences.

  7. Middle East Health and Air Quality Utilizing NASA EOS in the Saharan and Arabian Deserts to Examine Dust Particle Size and Mineralogy of Aerosols

    NASA Technical Reports Server (NTRS)

    Keeton, Tiffany; Barrick, Bradley; Cooksey, Kirstin; Cowart, Kevin; Florence, Victoria; Herdy, Claire; Padgett-Vasquez, Steve; Luvall, Jeffrey; Molthan, Andrew

    2012-01-01

    Ground-based studies conducted in Iraq have revealed the presence of potential human pathogens in airborne dust. According to the Environmental Protection Agency (EPA), airborne particulate matter below 2.5micron (PM2.5) can cause long-term damage to the human respiratory system. NASA fs Earth Observing System (EOS) can be used to determine spectral characteristics of dust particles and dust particle sizes. Comparing dust particle size from the Sahara and Arabian Deserts gives insight into the composition and atmospheric transport characteristics of dust from each desert. With the use of NASA SeaWiFS DeepBlue Aerosol, dust particle sizes were estimated using Angstrom Exponent. Brightness Temperature Difference (BTD) equation was used to determine the area of the dust storm. The Moderate-resolution Imaging Spectroradiometer (MODIS) on Terra satellite was utilized in calculating BTD. Mineral composition of a dust storm that occurred 17 April 2008 near Baghdad was determined using imaging spectrometer data from the JPL Spectral Library and EO-1 Hyperion data. Mineralogy of this dust storm was subsequently compared to that of a dust storm that occurred over the Bodele Depression in the Sahara Desert on 7 June 2003.

  8. Investigation of wintertime cold-air pools and aerosol layers in the Salt Lake Valley using a lidar ceilometer

    NASA Astrophysics Data System (ADS)

    Young, Joseph Swyler

    This thesis investigates the utility of lidar ceilometers, a type of aerosol lidar, in improving the understanding of meteorology and air quality in persistent wintertime stable boundary layers, or cold-air pools, that form in urbanized valley and basin topography. This thesis reviews the scientific literature to survey the present knowledge of persistent cold-air pools, the operating principles of lidar ceilometers, and their demonstrated utility in meteorological investigations. Lidar ceilometer data from the Persistent Cold-Air Pool Study (PCAPS) are then used with meteorological and air quality data from other in situ and remote sensing equipment to investigate cold-air pools that formed in Utah's Salt Lake Valley during the winter of 2010-2011. The lidar ceilometer is shown to accurately measure aerosol layer depth and aerosol loading, when compared to visual observations. A linear relationship is found between low-level lidar backscatter and surface particulate measurements. Convective boundary layer lidar analysis techniques applied to cold-air pool ceilometer profiles can detect useful layer characteristics. Fine-scale waves are observed and analyzed within the aerosol layer, with emphasis on Kelvin-Helmholz waves. Ceilometer aerosol backscatter profiles are analyzed to quantify and describe mixing processes in persistent cold-air pools. Overlays of other remote and in-situ observations are combined with ceilometer particle backscatter to describe specific events during PCAPS. This analysis describes the relationship between the aerosol layer and the valley inversion as well as interactions with large-scale meteorology. The ceilometer observations of hydrometers are used to quantify cloudiness and precipitation during the project, observing that 50% of hours when a PCAP was present had clouds or precipitation below 5 km above ground level (AGL). Then, combining an objective technique for determining hourly aerosol layer depths and correcting this

  9. Co-benefits of air quality and climate change policies on air quality of the Mediterranean

    NASA Astrophysics Data System (ADS)

    Pozzoli, Luca; Mert Gokturk, Ozan; Unal, Alper; Kindap, Tayfun; Janssens-Maenhout, Greet

    2015-04-01

    The Mediterranean basin is one of the regions of the world where significant impacts due to climate changes are predicted to occur in the future. Observations and model simulations are used to provide to the policy makers scientifically based estimates of the necessity to adjust national emission reductions needed to achieve air quality objectives in the context of a changing climate, which is not only driven by GHGs, but also by short lived climate pollutants, such as tropospheric ozone and aerosols. There is an increasing interest and need to design cost-benefit emission reduction strategies, which could improve both regional air quality and global climate change. In this study we used the WRF-CMAQ air quality modelling system to quantify the contribution of anthropogenic emissions to ozone and particulate matter concentrations in Europe and the Eastern Mediterranean and to understand how this contribution could change in different future scenarios. We have investigated four different future scenarios for year 2050 defined during the European Project CIRCE: a "business as usual" scenario (BAU) where no or just actual measures are taken into account; an "air quality" scenario (BAP) which implements the National Emission Ceiling directive 2001/81/EC member states of the European Union (EU-27); a "climate change" scenario (CC) which implements global climate policies decoupled from air pollution policies; and an "integrated air quality and climate policy" scenario (CAP) which explores the co-benefit of global climate and EU-27 air pollution policies. The BAP scenario largely decreases summer ozone concentrations over almost the entire continent, while the CC and CAP scenarios similarly determine lower decreases in summer ozone but extending all over the Mediterranean, the Middle East countries and Russia. Similar patterns are found for winter PM concentrations; BAP scenario improves pollution levels only in the Western EU countries, and the CAP scenario determines

  10. Air-quality-model update

    SciTech Connect

    Penner, J.E.; Walton, J.J.

    1982-01-15

    The Livermore Regional Air Quality Model (LIRAQ) has been updated and improved. This report describes the changes that have been made in chemistry, species treatment, and boundary conditions. The results of smog chamber simulations that were used to verify the chemistry as well as simulations of the entire air quality model for two prototype days in the Bay Area are reported. The results for the prototype day simulations are preliminary due to the need for improvement in meteorology fields, but they show the dependence and sensitivity of high hour ozone to changes in selected boundary and initial conditions.

  11. High air volume to low liquid volume aerosol collector

    DOEpatents

    Masquelier, Donald A.; Milanovich, Fred P.; Willeke, Klaus

    2003-01-01

    A high air volume to low liquid volume aerosol collector. A high volume flow of aerosol particles is drawn into an annular, centripetal slot in a collector which directs the aerosol flow into a small volume of liquid pool contained is a lower center section of the collector. The annular jet of air impinges into the liquid, imbedding initially airborne particles in the liquid. The liquid in the pool continuously circulates in the lower section of the collector by moving to the center line, then upwardly, and through assistance by a rotating deflector plate passes back into the liquid at the outer area adjacent the impinging air jet which passes upwardly through the liquid pool and through a hollow center of the collector, and is discharged via a side outlet opening. Any liquid droplets escaping with the effluent air are captured by a rotating mist eliminator and moved back toward the liquid pool. The collector includes a sensor assembly for determining, controlling, and maintaining the level of the liquid pool, and includes a lower centrally located valve assembly connected to a liquid reservoir and to an analyzer for analyzing the particles which are impinged into the liquid pool.

  12. AEROSOL AND GAS MEASUREMENT

    EPA Science Inventory

    Measurements provide fundamental information for evaluating and managing the impact of aerosols on air quality. Specific measurements of aerosol concentration and their physical and chemical properties are required by different users to meet different user-community needs. Befo...

  13. Indoor Air Quality and Disease

    EPA Science Inventory

    Concern over the quality of indoor (i.e., residential) as well as outdoor (i.e., environmental) air is increasing. Accordingly, owners of companion animals may approach their veterinarian about the potential for airborne irritants, allergens, pollutants, or infectious agents to n...

  14. Indoor Air Quality Management Program.

    ERIC Educational Resources Information Center

    Anne Arundel County Public Schools, Annapolis, MD.

    In an effort to provide Indoor Air Quality (IAQ) management guidance, Anne Arundel County Public Schools was selected by the Maryland State Department of Education to develop a program that could be used by other school systems. A major goal was to produce a handbook that was "user friendly." Hence, its contents are a mix of history, philosophy,…

  15. Cabin air quality: an overview.

    PubMed

    Rayman, Russell B

    2002-03-01

    In recent years, there have been increasing complaints from cockpit crew, cabin crew, and passengers that the cabin air quality of commercial aircraft is deficient. A myriad of complaints including headache, fatigue, fever, and respiratory difficulties among many others have been registered, particularly by flight attendants on long-haul routes. There is also much concern today regarding the transmission of contagious disease inflight, particularly tuberculosis. The unanswered question is whether these complaints are really due to poor cabin air quality or to other factors inherent intlight such as lowered barometric pressure, hypoxia, low humidity, circadian dysynchrony, work/rest cycles, vibration, etc. This paper will review some aspects relevant to cabin air quality such as volatile organic compounds (VOCs), carbon dioxide (CO2), carbon monoxide (CO), ozone (O3), particulates, and microorganisms, as well as the cabin ventilation system, to discern possible causes and effects of illness contracted inflight. The paper will conclude with recommendations on how the issue of cabin air quality may be resolved.

  16. Particle Property Data Quality Flags for the MISR Aerosol Product

    NASA Astrophysics Data System (ADS)

    Gaitley, B. J.; Kahn, R. A.; Garay, M. J.

    2013-12-01

    The MISR instrument aboard the NASA Earth Observing System's Terra satellite has the unique capability to retrieve aerosol properties under favorable conditions. General aerosol type retrieval quality guidelines are provided in the MISR Data Quality Statement and related publications. The retrieved value of aerosol type is more sensitive to scene conditions than aerosol optical depth, and more difficult to validate, as there is very little coincident aerosol type validation data. Here we report on the steps we are taking to provide an aerosol-type data quality flag, to be provided with each individual retrieval result. Due to the lack of validation data for comparison, our main approach is to evaluate the self-consistency of aerosol type retrieval values for regions where particular aerosol types are known to dominate. Some factors affecting aerosol type retrieval quality that can be assessed pre-retrieval are the number of MISR cameras available, the range of scattering angles viewed, and surface conditions such as shallow water or seasonal coastal runoff. Factors that must be assessed post-retrieval include values of retrieved aerosol optical depth and the number and type of mixtures successfully passing the MISR algorithm acceptance criteria. Regional monthly plots with MISR measurements binned at 0.5 degree resolution and color-coded stratification of one or more parameters are the main tools for identifying locations and times where different aerosol types are retrieved. The statistics of individual MISR values such as mid-visible AOD, number and type of mixtures passing, number of cameras used, the range and maximum scattering angles, are studied as joint distributions on a region-by-region basis. From these, a synthesis of the self-consistency and agreement with expectation is made, effectively indicating the quality of the aerosol type constrains to the extent possible, and thresholds for assigning quality flags are assessed. Multiple-month summaries

  17. Laboratory Testing of Aerosol for Enclosure Air Sealing

    SciTech Connect

    Harrington, C.; Modera, M.

    2012-05-01

    Space conditioning energy use can be significantly reduced by addressing uncontrolled infiltration and exfiltration through the envelope of a building. A process for improving the air tightness of a building envelope by sealing shell leaks with an aerosol sealing technology is presented. Both retrofit and new construction applications are possible through applying this process either in attics and crawlspaces or during rough-in stage.

  18. 32 CFR 989.30 - Air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false Air quality. 989.30 Section 989.30 National... ENVIRONMENTAL IMPACT ANALYSIS PROCESS (EIAP) § 989.30 Air quality. Section 176(c) of the Clean Air Act..., Air Quality Compliance. 10 10 See footnote 1 to § 989.1....

  19. 32 CFR 989.30 - Air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Air quality. 989.30 Section 989.30 National... ENVIRONMENTAL IMPACT ANALYSIS PROCESS (EIAP) § 989.30 Air quality. Section 176(c) of the Clean Air Act..., Air Quality Compliance. 10 10 See footnote 1 to § 989.1....

  20. 32 CFR 989.30 - Air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 6 2012-07-01 2012-07-01 false Air quality. 989.30 Section 989.30 National... ENVIRONMENTAL IMPACT ANALYSIS PROCESS (EIAP) § 989.30 Air quality. Section 176(c) of the Clean Air Act..., Air Quality Compliance. 10 10 See footnote 1 to § 989.1....

  1. 32 CFR 989.30 - Air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 6 2014-07-01 2014-07-01 false Air quality. 989.30 Section 989.30 National... ENVIRONMENTAL IMPACT ANALYSIS PROCESS (EIAP) § 989.30 Air quality. Section 176(c) of the Clean Air Act..., Air Quality Compliance. 10 10 See footnote 1 to § 989.1....

  2. In-mask aerosol sampling for powered air purifying respirators

    SciTech Connect

    Liu, B.Y.U.; Sega, K.; Rubow, K.L.; Lenhart, S.W.; Myers, W.R.

    1984-04-01

    A system for sampling aerosols in the facepiece of a powered air purifying respirator has been described. The system consists of a sampling inlet mounted on the respiratory facepiece, a filter cassette and a personal sampling pump. The theoretical and practical considerations leading to the design of the sampling inlet have been discussed and experimental data presented showing the efficiency of the inlet as a function of particle size and sampling flow rate. The in-mask sampling system has been designed for powered air purifying respirators.

  3. Megacities, air quality and climate

    NASA Astrophysics Data System (ADS)

    Baklanov, Alexander; Molina, Luisa T.; Gauss, Michael

    2016-02-01

    The rapid urbanization and growing number of megacities and urban complexes requires new types of research and services that make best use of science and available technology. With an increasing number of humans now living in urban sprawls, there are urgent needs of examining what the rising number of megacities means for air pollution, local climate and the effects these changes have on global climate. Such integrated studies and services should assist cities in facing hazards such as storm surge, flooding, heat waves, and air pollution episodes, especially in changing climates. While important advances have been made, new interdisciplinary research studies are needed to increase our understanding of the interactions between emissions, air quality, and regional and global climates. Studies need to address both basic and applied research and bridge the spatial and temporal scales connecting local emissions and air pollution and local weather, global atmospheric chemistry and climate. This paper reviews the current status of studies of the complex interactions between climate, air quality and megacities, and identifies the main gaps in our current knowledge as well as further research needs in this important field of research.

  4. A smart indoor air quality sensor network

    NASA Astrophysics Data System (ADS)

    Wen, Jin

    2006-03-01

    The indoor air quality (IAQ) has an important impact on public health. Currently, the indoor air pollution, caused by gas, particle, and bio-aerosol pollutants, is considered as the top five environmental risks to public health and has an estimated cost of $2 billion/year due to medical cost and lost productivity. Furthermore, current buildings are especially vulnerable for chemical and biological warfare (CBW) agent contamination because the central air conditioning and ventilation system serve as a nature carrier to spread the released agent from one location to the whole indoor environment within a short time period. To assure the IAQ and safety for either new or existing buildings, real time comprehensive IAQ and CBW measurements are needed. With the development of new sensing technologies, economic and reliable comprehensive IAQ and CBW sensors become promising. However, few studies exist that examine the design and evaluation issues related to IAQ and CBW sensor network. In this paper, relevant research areas including IAQ and CBW sensor development, demand control ventilation, indoor CBW sensor system design, and sensor system design for other areas such as water system protection, fault detection and diagnosis, are reviewed and summarized. Potential research opportunities for IAQ and CBW sensor system design and evaluation are discussed.

  5. Indoor Air Quality in Schools: Clean Air Is Good Business.

    ERIC Educational Resources Information Center

    Guarneiri, Michele A.

    2003-01-01

    Describes the effect of poor indoor air quality (IAQ) on student health, the cost of safeguarding good IAQ, the cause of poor IAQ in schools, how to tell whether a school has an IAQ problem, and how the U.S. Environmental Protection Agency can help schools improve indoor air quality though the use of their free "Indoor Air Quality Tools for…

  6. Air quality in the home

    SciTech Connect

    Whitaker, R.

    1982-03-01

    The average person breathes indoor air 75% or more of the day. Yet existing regulations are based solely on outdoor concentrations. Indoor levels of many contaminants are typically higher than outdoors, and common household items such as gas stoves, paint, cigarettes, bath towels, fireplaces, cleaning chemicals, even glued furniture joints and the walls themselves, can produce significant amounts of regulated substances. Efforts are now under way to create a total-exposure air-quality model that will improve epidemiologic studies of human health. 4 figures.

  7. East Asian Study of Tropospheric Aerosols: An International Regional Experiment (EAST-AIRE): Preliminary Results from 2005

    NASA Astrophysics Data System (ADS)

    Dickerson, R. R.; Li, C.; Li, Z.; Marufu, L. T.; Stehr, J.; Chen, H.; Wang, P.; Wang, Y.; Wen, T.; Xia, X.

    2005-12-01

    In order to gain a basic knowledge of the characteristics of aerosols and gases and an understanding of their climatic effects, a team of scientists from the U.S. and China conducted major field campaigns on the ground and from the air in the spring of 2005, and in addition established long-term and nation-wide observation facilities. Research flights on a small, instrumented aircraft investigated the role of meteorology in lofting pollutants and mineral dust and in large-scale impacts. Ahead of fronts, transport along warm conveyor belts and in convection, often dry convection, lifted trace gases and aerosols to altitudes where stronger winds and longer lifetimes transform these pollutants from local air quality problems to hemispheric atmospheric chemistry problems. Air behind cold fronts often contained high concentrations of mineral dust at altitudes of 3000 m or higher. At the central station in Xianghe (70 km east of Beijing), extensive measurements are made including 1) radiative quantities (direct, diffuse and total SW and LW fluxes) using broadband and narrow radiometers, and spectrometers; 2) cloud properties (cloud fraction and height, optical depth, liquid water path, particle size); 3) aerosol optical quantities (optical depth, scattering and absorbing coefficients, vertical attenuation profiles) using Cimel sun-photometer, Nephelometer, Aethalometers, PSAP; 4) aerosol physical quantities (size distribution, mass and condensation number) using aerosol filter samplers, cascade impactors, particle sizers; 5) aerosol compositions using OC/EC analyzer, aerosol filters and sample analyzers, 6) trace gases O3, NO, NOx, NOy, CO, SO2.

  8. Climate change and air quality: international perspectives and policy implications

    SciTech Connect

    Ronald Prinn; Stephen Dorling

    2005-10-01

    Three major air quality relevant atmospheric constituents that also influence the climate are methane, ozone, and aerosols. Their respective atmospheric lifetimes are roughly 10 years, several days (near surface) to a month (in the free troposphere), and a week. Both O{sub 3} and aerosols are important regional air pollutants in the troposphere. All three constituents also influence the radiative budget of the atmosphere. With the exception of black carbon (BC) aerosols reflect radiation and have a net cooling effect. BC, absorbs solar radiation and warms the atmosphere locally, setting off a readjustment of heat, momentum, clouds, and precipitation patterns that are at least regional in scale. They all have clear international relevance. Interactions between air quality and climate change are highly complex. The Prinn 7 calculations suggest that air pollution policies may have only a small influence, either positive or negative, on global-scale climate change. However, even small militations of climate change can be disproportionately important in economic terms. This occurs because the highest cost climate change mitigation measures, those occurring at the margin, may be avoided. More policy-relevant research needs to be undertaken. This research should include studies of (1) the effects of air pollution policy on overall demand for fossil fuels and individual demands for coal, oil, and gas; (2) the effects of caps on BC (as a regulated air pollutant) on climate; and (3) the effects on ecosystems of changes in deposition rates of acids, nitrates, and sulfates and levels of exposure to SO{sub 2} and NO{sub 2} resulting from air pollution reductions. This article is one of a set of six in this issue of EM devoted to understanding the interactions between climate change and air quality. 12 refs., 1 fig.

  9. Release of Free DNA by Membrane-Impaired Bacterial Aerosols Due to Aerosolization and Air Sampling

    PubMed Central

    Zhen, Huajun; Han, Taewon; Fennell, Donna E.

    2013-01-01

    We report here that stress experienced by bacteria due to aerosolization and air sampling can result in severe membrane impairment, leading to the release of DNA as free molecules. Escherichia coli and Bacillus atrophaeus bacteria were aerosolized and then either collected directly into liquid or collected using other collection media and then transferred into liquid. The amount of DNA released was quantified as the cell membrane damage index (ID), i.e., the number of 16S rRNA gene copies in the supernatant liquid relative to the total number in the bioaerosol sample. During aerosolization by a Collison nebulizer, the ID of E. coli and B. atrophaeus in the nebulizer suspension gradually increased during 60 min of continuous aerosolization. We found that the ID of bacteria during aerosolization was statistically significantly affected by the material of the Collison jar (glass > polycarbonate; P < 0.001) and by the bacterial species (E. coli > B. atrophaeus; P < 0.001). When E. coli was collected for 5 min by filtration, impaction, and impingement, its ID values were within the following ranges: 0.051 to 0.085, 0.16 to 0.37, and 0.068 to 0.23, respectively; when it was collected by electrostatic precipitation, the ID values (0.011 to 0.034) were significantly lower (P < 0.05) than those with other sampling methods. Air samples collected inside an equine facility for 2 h by filtration and impingement exhibited ID values in the range of 0.30 to 0.54. The data indicate that the amount of cell damage during bioaerosol sampling and the resulting release of DNA can be substantial and that this should be taken into account when analyzing bioaerosol samples. PMID:24096426

  10. Aerosol Light Absorption and Scattering Assessments and the Impact of City Size on Air Pollution

    NASA Astrophysics Data System (ADS)

    Paredes-Miranda, Guadalupe

    The general problem of urban pollution and its relation to the city population is examined in this dissertation. A simple model suggests that pollutant concentrations should scale approximately with the square root of city population. This model and its experimental evaluation presented here serve as important guidelines for urban planning and attainment of air quality standards including the limits that air pollution places on city population. The model was evaluated using measurements of air pollution. Optical properties of aerosol pollutants such as light absorption and scattering plus chemical species mass concentrations were measured with a photoacoustic spectrometer, a reciprocal nephelometer, and an aerosol mass spectrometer in Mexico City in the context of the multinational project "Megacity Initiative: Local And Global Research Observations (MILAGRO)" in March 2006. Aerosol light absorption and scattering measurements were also obtained for Reno and Las Vegas, NV USA in December 2008-March 2009 and January-February 2003, respectively. In all three cities, the morning scattering peak occurs a few hours later than the absorption peak due to the formation of secondary photochemically produced aerosols. In particular, for Mexico City we determined the fraction of photochemically generated secondary aerosols to be about 75% of total aerosol mass concentration at its peak near midday. The simple 2-d box model suggests that commonly emitted primary air pollutant (e.g., black carbon) mass concentrations scale approximately as the square root of the urban population. This argument extends to the absorption coefficient, as it is approximately proportional to the black carbon mass concentration. Since urban secondary pollutants form through photochemical reactions involving primary precursors, in linear approximation their mass concentration also should scale with the square root of population. Therefore, the scattering coefficient, a proxy for particulate matter

  11. SPATIAL PREDICTION OF AIR QUALITY DATA

    EPA Science Inventory

    Site-specific air quality monitoring data have been used extensively in both scientific and regulatory programs. As such, these data provide essential information to the public, environmental managers, and the atmospheric research community. Currently, air quality management prac...

  12. Potential Impacts of Saharan Dust on the African Air Quality

    NASA Astrophysics Data System (ADS)

    Ichoku, C. M.; Petrenko, M.; El-Askary, H. M.; Wang, J.; Yang, Z.; Yue, Y.

    2014-12-01

    The largest dust source in the world is the Sahara desert, which occupies most of the northern half of Africa. A recent international modeling experiment conducted under the auspices of the Aerosol Comparisons between Observations and Models (AEROCOM) initiative estimated that the annual dust generation from the Sahara and its peripheries is in the range of 400 to 2200 Tg yr-1. It is estimated that about 240±80 Tg yr-1 of the dust leaves the western shores of Africa on its way across the Atlantic. Therefore, a majority of the dust emitted from and around the Sahara remains and circulates within Africa, potentially affecting the environment, air quality, and human health, among other effects. Given the apparent scarcity of ground-based air-quality monitoring networks in Africa, we are exploring approaches that utilize satellite measurements and regional models to estimate the air-quality impacts of aerosols (particularly those of biomass burning and dust) in northern Hemisphere Africa. Some of the model simulations evaluated using ground-based and satellite observations show that the regional models deliver a high performance in capturing the mixing and transport of biomass-burning (smoke) and dust aerosols. In this presentation, we will share our preliminary results and future perspectives.

  13. 30 CFR 75.321 - Air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Air quality. 75.321 Section 75.321 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.321 Air quality. (a)(1) The air in areas where... air current in these areas shall be sufficient to dilute, render harmless, and carry away...

  14. 30 CFR 75.321 - Air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Air quality. 75.321 Section 75.321 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.321 Air quality. (a)(1) The air in areas where... air current in these areas shall be sufficient to dilute, render harmless, and carry away...

  15. 30 CFR 75.321 - Air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Air quality. 75.321 Section 75.321 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.321 Air quality. (a)(1) The air in areas where... air current in these areas shall be sufficient to dilute, render harmless, and carry away...

  16. 30 CFR 75.321 - Air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Air quality. 75.321 Section 75.321 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.321 Air quality. (a)(1) The air in areas where... air current in these areas shall be sufficient to dilute, render harmless, and carry away...

  17. Workshop on indoor air quality research needs

    SciTech Connect

    Not Available

    1980-01-01

    Workshop participants report on indoor air quality research needs including the monitoring of indoor air quality, report of the instrumentation subgroup of indoor air quality, health effects, and the report of the control technology session. Risk analysis studies addressing indoor environments were also summarized. (DLS)

  18. Indoor air quality and health

    NASA Astrophysics Data System (ADS)

    Jones, A. P.

    During the last two decades there has been increasing concern within the scientific community over the effects of indoor air quality on health. Changes in building design devised to improve energy efficiency have meant that modern homes and offices are frequently more airtight than older structures. Furthermore, advances in construction technology have caused a much greater use of synthetic building materials. Whilst these improvements have led to more comfortable buildings with lower running costs, they also provide indoor environments in which contaminants are readily produced and may build up to much higher concentrations than are found outside. This article reviews our current understanding of the relationship between indoor air pollution and health. Indoor pollutants can emanate from a range of sources. The health impacts from indoor exposure to combustion products from heating, cooking, and the smoking of tobacco are examined. Also discussed are the symptoms associated with pollutants emitted from building materials. Of particular importance might be substances known as volatile organic compounds (VOCs), which arise from sources including paints, varnishes, solvents, and preservatives. Furthermore, if the structure of a building begins to deteriorate, exposure to asbestos may be an important risk factor for the chronic respiratory disease mesothelioma. The health effects of inhaled biological particles can be significant, as a large variety of biological materials are present in indoor environments. Their role in inducing illness through immune mechanisms, infectious processes, and direct toxicity is considered. Outdoor sources can be the main contributors to indoor concentrations of some contaminants. Of particular significance is Radon, the radioactive gas that arises from outside, yet only presents a serious health risk when found inside buildings. Radon and its decay products are now recognised as important indoor pollutants, and their effects are

  19. Uncertainty in Air Quality Modeling.

    NASA Astrophysics Data System (ADS)

    Fox, Douglas G.

    1984-01-01

    Under the direction of the AMS Steering Committee for the EPA Cooperative Agreement on Air Quality Modeling, a small group of scientists convened to consider the question of uncertainty in air quality modeling. Because the group was particularly concerned with the regulatory use of models, its discussion focused on modeling tall stack, point source emissions.The group agreed that air quality model results should be viewed as containing both reducible error and inherent uncertainty. Reducible error results from improper or inadequate meteorological and air quality data inputs, and from inadequacies in the models. Inherent uncertainty results from the basic stochastic nature of the turbulent atmospheric motions that are responsible for transport and diffusion of released materials. Modelers should acknowledge that all their predictions to date contain some associated uncertainty and strive also to quantify uncertainty.How can the uncertainty be quantified? There was no consensus from the group as to precisely how uncertainty should be calculated. One subgroup, which addressed statistical procedures, suggested that uncertainty information could be obtained from comparisons of observations and predictions. Following recommendations from a previous AMS workshop on performance evaluation (Fox. 1981), the subgroup suggested construction of probability distribution functions from the differences between observations and predictions. Further, they recommended that relatively new computer-intensive statistical procedures be considered to improve the quality of uncertainty estimates for the extreme value statistics of interest in regulatory applications.A second subgroup, which addressed the basic nature of uncertainty in a stochastic system, also recommended that uncertainty be quantified by consideration of the differences between observations and predictions. They suggested that the average of the difference squared was appropriate to isolate the inherent uncertainty that

  20. Ground cloud air quality effects

    NASA Technical Reports Server (NTRS)

    Brubaker, K. L.

    1980-01-01

    The effects of the ground cloud associated with launching of a large rocket on air quality are discussed. The ground cloud consists of the exhaust emitted by the rocket during the first 15 to 25 seconds following ignition and liftoff, together with a large quantity of entrained air, cooling water, dust and other debris. Immediately after formation, the ground cloud rises in the air due to the buoyant effect of its high thermal energy content. Eventually, at an altitude typically between 0.7 and 3 km, the cloud stabilizes and is carried along by the prevailing wind at that altitude. For the use of heavy lift launch vehicles small quantities of nitrogen oxides, primarily nitric oxide and nitrogen dioxide, are expected to be produced from a molecular nitrogen impurity in the fuel or liquid oxygen, or from entrainment and heating of ambient air in the hot rocket exhaust. In addition, possible impurities such as sulfur in the fuel would give rise to a corresponding amount of oxidation products such as sulfur dioxide.

  1. Minorities and substandard air quality

    SciTech Connect

    Wernette, D.R.; Nieves, L.A.

    1994-05-01

    Scientists at Argonne National Laboratory have been studying the relative potential for exposure of minority population groups to substandard outdoor air quality. The US Environmental Protection Agency (EPA) has identified areas that have excess levels of ozone, carbon monoxide, sulfur dioxide, nitrogen dioxide, lead, or particulate matter. These areas generally consist of counties covering many square miles, and the degree to which their residents are exposed to air pollution certainly varies. However, the differences in population groups living in these areas can imply differences in potential exposure to pollutants and may suggest directions for research and remedial action. So far, the scientists have examined these differences for African-Americans, Hispanics, and Whites (non-Hispanic).

  2. Potential impact of a US climate policy and air quality regulations on future air quality and climate change

    NASA Astrophysics Data System (ADS)

    Lee, Y. H.; Shindell, D. T.; Faluvegi, G.; Pinder, R. W.

    2015-11-01

    We have investigated how future air quality and climate change are influenced by the US air quality regulations that existed or were proposed in 2013 and a hypothetical climate mitigation policy that reduces 2050 CO2 emissions to be 50 % below 2005 emissions. Using NASA GISS ModelE2, we look at the impacts in year 2030 and 2055. The US energy-sector emissions are from the GLIMPSE project (GEOS-Chem LIDORT Integrated with MARKAL for the Purpose of Scenario Exploration), and other US emissions and the rest of the world emissions are based on the RCP4.5 scenario. The US air quality regulations are projected to have a strong beneficial impact on US air quality and public health in the future but result in positive radiative forcing. Surface PM2.5 is reduced by ~ 2 μg m-3 on average over the US, and surface ozone by ~ 8 ppbv. The improved air quality prevents about 91 400 premature deaths in the US, mainly due to the PM2.5 reduction (~ 74 200 lives saved). The air quality regulations reduces the light-reflecting aerosols (i.e., sulfate and organic matter) more than the light-absorbing species (i.e., black carbon and ozone), leading a strong positive radiative forcing (RF) by both aerosols direct and indirect forcing: total RF is ~ 0.04 W m-2 over the globe; ~ 0.8 W m-2 over the US. Under the hypothetical climate policy, future US energy relies less on coal and thus SO2 emissions are noticeably reduced. This provides air quality co-benefits, but it leads to climate dis-benefits over the US. In 2055, the US mean total RF is +0.22 W m-2 due to positive aerosol direct and indirect forcing, while the global mean total RF is -0.06 W m-2 due to the dominant negative CO2 RF (instantaneous RF). To achieve a regional-scale climate benefit via a climate policy, it is critical (1) to have multi-national efforts to reduce GHGs emissions and (2) to target emission reduction of light-absorbing species (e.g., BC and O3) on top of long-lived species. The latter is very desirable as the

  3. Meteorological determinants of air quality

    NASA Astrophysics Data System (ADS)

    Turoldo, F.; Del Frate, S.; Gallai, I.; Giaiotti, D. B.; Montanari, F.; Stel, F.; Goi, D.

    2010-09-01

    Air quality is the result of complex phenomena, among which the major role is played by human emissions of pollutants. Atmospheric processes act as determinants, e.g., modulating, dumping or amplifying the effects of emissions as an orchestra's director does with musical instruments. In this work, a series of small-scale and meso-scale meteorological determinants of air-quality are presented as they are observed in an area characterized by complex orography (Friuli Venezia Giulia, in the north-eastern side of Italy). In particular, attention is devoted to: i) meso-scale flows favouring the persistence of high concentrations of particulate matter; ii) meso-scale periodic flows (breezes) favouring high values of particulate matter; iii) local-scale thermodynamic behaviour favouring high atmospheric values of nitrogen oxides. The effects of these different classes of determinants are shown through comparisons between anthropic emissions (mainly traffic) and ground-based measurements. The relevance of complex orography (relatively steep relieves near to the sea) is shown for the meso-scale flows and, in particular, for local-scale periodic flows, which favour the increase of high pollutants concentrations mainly in summer, when the breezes regime is particularly relevant. Part of these results have been achieved through the ETS - Alpine Space EU project iMONITRAF!

  4. Thermal conditions and perceived air quality in an air-conditioned auditorium

    NASA Astrophysics Data System (ADS)

    Polednik, Bernard; Guz, Łukasz; Skwarczyński, Mariusz; Dudzińska, Marzenna R.

    2016-07-01

    The study reports measurements of indoor air temperature (T) and relative humidity (RH), perceived air quality (PAQ) and CO2, fine aerosol particle number (PN) and mass (PM1) concentrations in an air conditioned auditorium. The measurements of these air physical parameters have been carried out in the unoccupied auditorium with the air conditioning system switched off (AC off mode) and in the unoccupied and occupied auditorium with the air conditioning system switched off during the night and switched on during the day (AC on/off mode). The average indoor air thermal parameters, CO2 concentration and the PAQ value (in decipols) were elevated, while average PM1 concentration was lower in the AC on/off mode. A statistically significant (p < 0.001) positive correlation has been observed between T and PAQ values and CO2 concentrations (r = 0.66 and r = 0.59, respectively) in that AC mode. A significant negative correlation has been observed between T and PN and PM1 concentrations (r = -0.38 and r = -0.49, respectively). In the AC off mode the above relations between T and the particle concentrations were not that unequivocal. These findings may be of importance as they indicate that in certain AC operation modes the indoor air quality deteriorates along with the variation of the indoor air microclimate and room occupation. This, in turn, may adversely affect the comfort and productivity of the users of air conditioned premises.

  5. Air Quality Criteria for Particulate Matter.

    ERIC Educational Resources Information Center

    National Air Pollution Control Administration (DHEW), Washington, DC.

    To assist states in developing air quality standards, this book offers a review of literature related to atmospheric particulates and the development of criteria for air quality. It not only summarizes the current scientific knowledge of particulate air pollution, but points up the major deficiencies in that knowledge and the need for further…

  6. EPA Pushing Improved Air Quality in Schools.

    ERIC Educational Resources Information Center

    Sack, Joetta L.

    2002-01-01

    Discusses how, in response to the growing problem of poor air quality in schools, the Environmental Protection Agency (EPA) has set new voluntary air-quality guidelines for schools. Addresses common air-related irritants; successful efforts at Guerrero Elementary School in Mesa, Arizona; preventive maintenance; and a sample of the EPA's…

  7. Overview of aerosol properties associated with air masses sampled by the ATR-42 during the EUCAARI campaign (2008)

    NASA Astrophysics Data System (ADS)

    Crumeyrolle, S.; Schwarzenboeck, A.; Roger, J. C.; Sellegri, K.; Burkhart, J. F.; Stohl, A.; Gomes, L.; Quennehen, B.; Roberts, G.; Weigel, R.; Villani, P.; Pichon, J. M.; Bourrianne, T.; Laj, P.

    2013-05-01

    Within the frame of the European Aerosol Cloud Climate and Air Quality Interactions (EUCAARI) project, the Météo-France aircraft ATR-42 performed 22 research flights over central Europe and the North Sea during the intensive observation period in May 2008. For the campaign, the ATR-42 was equipped to study the aerosol physical, chemical, hygroscopic and optical properties, as well as cloud microphysics. For the 22 research flights, retroplume analyses along the flight tracks were performed with FLEXPART in order to classify air masses into five sectors of origin, allowing for a qualitative evaluation of emission influence on the respective air parcel. This study shows that the extensive aerosol parameters (aerosol mass and number concentrations) show vertical decreasing gradients and in some air masses maximum mass concentrations (mainly organics) in an intermediate layer (1-3 km). The observed mass concentrations (in the boundary layer (BL): between 10 and 30 μg m-3; lower free troposphere (LFT): 0.8 and 14 μg m-3) are high especially in comparison with the 2015 European norms for PM2.5 (25 μg m-3) and with previous airborne studies performed over England (Morgan et al., 2009; McMeeking et al., 2012). Particle number size distributions show a larger fraction of particles in the accumulation size range in the LFT compared to BL. The chemical composition of submicron aerosol particles is dominated by organics in the BL, while ammonium sulphate dominates the submicron aerosols in the LFT, especially in the aerosol particles originated from north-eastern Europe (~ 80%), also experiencing nucleation events along the transport. As a consequence, first the particle CCN acting ability, shown by the CCN/CN ratio, and second the average values of the scattering cross sections of optically active particles (i.e. scattering coefficient divided by the optical active particle concentration) are increased in the LFT compared to BL.

  8. Improving Air Quality Forecasts with AURA Observations

    NASA Technical Reports Server (NTRS)

    Newchurch, M. J.; Biazer, A.; Khan, M.; Koshak, W. J.; Nair, U.; Fuller, K.; Wang, L.; Parker, Y.; Williams, R.; Liu, X.

    2008-01-01

    Past studies have identified model initial and boundary conditions as sources of reducible errors in air-quality simulations. In particular, improving the initial condition improves the accuracy of short-term forecasts as it allows for the impact of local emissions to be realized by the model and improving boundary conditions improves long range transport through the model domain, especially in recirculating anticyclones. During the August 2006 period, we use AURA/OMI ozone measurements along with MODIS and CALIPSO aerosol observations to improve the initial and boundary conditions of ozone and Particulate Matter. Assessment of the model by comparison of the control run and satellite assimilation run to the IONS06 network of ozonesonde observations, which comprise the densest ozone sounding campaign ever conducted in North America, to AURA/TES ozone profile measurements, and to the EPA ground network of ozone and PM measurements will show significant improvement in the CMAQ calculations that use AURA initial and boundary conditions. Further analyses of lightning occurrences from ground and satellite observations and AURA/OMI NO2 column abundances will identify the lightning NOx signal evident in OMI measurements and suggest pathways for incorporating the lightning and NO2 data into the CMAQ simulations.

  9. Overview of NASA's Observations for Global Air Quality

    NASA Astrophysics Data System (ADS)

    Kaye, J. A.

    2015-12-01

    Observations of pollutants are central to the study of air quality. Much focus has been placed on local-scale observations that can help specific geographic areas document their air quality issues, plan abatement strategies, and understand potential impacts. In addition, long-range atmospheric transport of pollutants can cause downwind regions to not meet attainment standards. Satellite observations have shed significant light on air quality from local to regional to global scales, especially for pollutants such as ozone, aerosols, carbon monoxide, sulfur dioxide, and nitrogen dioxide. These observations have made use of multiple techniques and in some cases multiple satellite sensors. The satellite observations are complemented by surface observations, as well as atmospheric (in situ) observations typically made as part of focused airborne field campaigns. The synergy between satellite observations and field campaigns has been an important theme for recent and upcoming activities and plans. In this talk, a review of NASA's investments in observations relevant to global air quality will be presented, with examples given for a range of pollutants and measurement approaches covering the last twenty-five years. These investments have helped build national and international collaborations such that the global satellite community is now preparing to deploy a constellation of satellites that together will provide fundamental advances in global observations for air quality.

  10. Use of Air Quality Observations by the National Air Quality Forecast Capability

    NASA Astrophysics Data System (ADS)

    Stajner, I.; McQueen, J.; Lee, P.; Stein, A. F.; Kondragunta, S.; Ruminski, M.; Tong, D.; Pan, L.; Huang, J. P.; Shafran, P.; Huang, H. C.; Dickerson, P.; Upadhayay, S.

    2015-12-01

    The National Air Quality Forecast Capability (NAQFC) operational predictions of ozone and wildfire smoke for the United States (U.S.) and predictions of airborne dust for continental U.S. are available at http://airquality.weather.gov/. NOAA National Centers for Environmental Prediction (NCEP) operational North American Mesoscale (NAM) weather predictions are combined with the Community Multiscale Air Quality (CMAQ) model to produce the ozone predictions and test fine particulate matter (PM2.5) predictions. The Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model provides smoke and dust predictions. Air quality observations constrain emissions used by NAQFC predictions. NAQFC NOx emissions from mobile sources were updated using National Emissions Inventory (NEI) projections for year 2012. These updates were evaluated over large U.S. cities by comparing observed changes in OMI NO2 observations and NOx measured by surface monitors. The rate of decrease in NOx emission projections from year 2005 to year 2012 is in good agreement with the observed changes over the same period. Smoke emissions rely on the fire locations detected from satellite observations obtained from NESDIS Hazard Mapping System (HMS). Dust emissions rely on a climatology of areas with a potential for dust emissions based on MODIS Deep Blue aerosol retrievals. Verification of NAQFC predictions uses AIRNow compilation of surface measurements for ozone and PM2.5. Retrievals of smoke from GOES satellites are used for verification of smoke predictions. Retrievals of dust from MODIS are used for verification of dust predictions. In summary, observations are the basis for the emissions inputs for NAQFC, they are critical for evaluation of performance of NAQFC predictions, and furthermore they are used in real-time testing of bias correction of PM2.5 predictions, as we continue to work on improving modeling and emissions important for representation of PM2.5.

  11. Aerosol analysis for the regional air pollution study. Final report

    SciTech Connect

    Jaklevic, J.M.; Gatti, R.C.; Goulding, F.S.; Loo, B.W.; Thompson, A.C.

    1980-05-01

    The design and operation of an aerosol sampling and analysis program implemented during the 1975 to 1977 St. Louis Regional Air Pollution Study is described. A network of ten samplers were operated at selected sites in the St. Louis area and the total mass and elemental composition of the collected particulates were determined. Sampling periods of 2 to 24 hours were employed. The samplers were capable of collecting aerosol particles in two distinct size ranges corresponding to fine (< 2.4 ..mu..m diameter) and coarse (> 2.4 ..mu..m diameter) particles. This unique feature allowed the separation of the particulate samples into two distinct fractions with differing chemical origins and health effects. The analysis methods were also newly developed for use in the St. Louis RAPS study. Total particulate mass was measured by a beta-particle attenuation method in which a precision of +- 5 ..mu..m/cm/sup 2/ could be obtained in a one minute measurement time. Elemental compositions of the samples were determined using an energy dispersive x-ray fluorescence method in which detectable limits of 5 ng/cm/sup 2/ or less were routinely achieved for elements ranging in atomic number from Al to Pb. The advantages of these analytical methods over more conventional techniques arise from the ability to automate the measurements. During the course of the two year study, a total of more than 35,000 individual samples were processed and a total of 28 concentrations measured for each sample.

  12. Indoor air quality: A psychosocial perspective

    SciTech Connect

    Boxer, P.A. )

    1990-05-01

    The incidence of indoor air quality problems has increased dramatically over the past decade. Investigation of these problems has yielded a definitive cause in only one third of the cases. Psychosocial factors may play a key role in the development and propagation of symptoms attributed to poor indoor air quality. Guidelines for managing indoor air quality problems from the organizational perspective are based upon psychosocial principles and elements of risk perception.

  13. The Economic Value of Air Quality Forecasting

    NASA Astrophysics Data System (ADS)

    Anderson-Sumo, Tasha

    Both long-term and daily air quality forecasts provide an essential component to human health and impact costs. According the American Lung Association, the estimated current annual cost of air pollution related illness in the United States, adjusted for inflation (3% per year), is approximately $152 billion. Many of the risks such as hospital visits and morality are associated with poor air quality days (where the Air Quality Index is greater than 100). Groups such as sensitive groups become more susceptible to the resulting conditions and more accurate forecasts would help to take more appropriate precautions. This research focuses on evaluating the utility of air quality forecasting in terms of its potential impacts by building on air quality forecasting and economical metrics. Our analysis includes data collected during the summertime ozone seasons between 2010 and 2012 from air quality models for the Washington, DC/Baltimore, MD region. The metrics that are relevant to our analysis include: (1) The number of times that a high ozone or particulate matter (PM) episode is correctly forecasted, (2) the number of times that high ozone or PM episode is forecasted when it does not occur and (3) the number of times when the air quality forecast predicts a cleaner air episode when the air was observed to have high ozone or PM. Our collection of data included available air quality model forecasts of ozone and particulate matter data from the U.S. Environmental Protection Agency (EPA)'s AIRNOW as well as observational data of ozone and particulate matter from Clean Air Partners. We evaluated the performance of the air quality forecasts with that of the observational data and found that the forecast models perform well for the Baltimore/Washington region and the time interval observed. We estimate the potential amount for the Baltimore/Washington region accrues to a savings of up to 5,905 lives and 5.9 billion dollars per year. This total assumes perfect compliance with

  14. Lichen recolonization following air quality improvement

    SciTech Connect

    Showman, R.E.

    1981-01-01

    Air quality improvement near a coal-fired power plant led to recolonization of Parmelia caperata (L.) Ach. in a pollution-induced void area. Recolonization was first observed about four years after pollution abatement. Least-affected sites were slowest to recover. After eight years of improved air quality, the distribution of P. caperata has returned to near normal. Lichen biomonitoring is useful not only to detect the effects of poor air quality but to document air quality improvements as well. 5 references, 4 figures.

  15. Aerosol Absorption Near Beijing During EAST-AIRE

    NASA Astrophysics Data System (ADS)

    Yang, M.; Howell, S.; Huebert, B.; Zhuang, J.

    2006-12-01

    To understand the aerosol absorption that had been observed offshore during ACE-Asia, we took a suite of instruments (including a 7 wavelength aethalometer) to a site 70 km ESE of Beijing in March of 2005 to measure the wavelength dependence of aerosol absorption as a part of the EAST-AIRE program. Confidence in filter methods suffers a bit because several corrections are required to estimate ambient absorption from particles on a filter: there is enhancement by multiple scatter from the filter's matrix, shadowing by thick cakes of collected particles, and scattering by co-collected aerosols, to name a few. We encountered mild dust, heavy pollution, relatively clean air, coal-burning chimney plumes, industrial plumes, and biomass burning, often at separate times. The absorption Angstrom exponent was always greater than 1, averaging 1.5: in the UV and violet there is an enhanced absorption over what one would expect of black carbon. If we assume that BC is responsible for all the absorption at 950 nm and that it has an Angstrom coefficient of 1.0 (yielding a specific absorbance of about 9 m2g-1 at 550 nm), the remaining absorption Angstrom exponent in the visible averaged 3.2. However, the 370-950 nm absorption spectrum of the remainder looked very much like the clay and hematite absorption spectra published by Sokolik and Toon, including a striking UV absorption and a characteristic dip around 660 nm (e.g., not a power law shape). This is not surprising, since clay is both a frequent component of dust and is used as a binder in the charcoal briquettes that are widely used in China for heating and cooking. We found single-scatter albedos virtually always less than 0.9, averaging 0.82. In the presence of dust, the SSA increased toward the IR. We also find that the clay spectrum explains virtually all the non-BC absorption, so there must not be much brown carbon present. Our confidence in these on-filter absorption measurements is increased by the fact that we

  16. Air Quality Research and Applications Using AURA OMi Data

    NASA Technical Reports Server (NTRS)

    Bhartia, P.K.; Gleason, J.F.; Torres, O.; Levelt, P.; Liu, X.; Ziemke, J.; Chandra, S.; Krotkov, N.

    2007-01-01

    The Ozone Monitoring Instrument (OMI) on EOS Aura is a new generation of satellite remote sensing instrument designed to measure trace gas and aerosol absorption at the UV and blue wavelengths. These measurements are made globally at urban scale resolution with no inter-orbital gaps that make them potentially very useful for air quality research, such as the determination of the sources and processes that affect global and regional air quality, and to develop applications such as air quality forecast. However, the use of satellite data for such applications is not as straight forward as satellite data have been for stratospheric research. There is a need for close interaction between the satellite product developers, in-situ measurement programs, and the air quality research community to overcome some of the inherent difficulties in interpreting data from satellite-based remote sensing instruments. In this talk we will discuss the challenges and opportunities in using OMI products for air quality research and applications. A key conclusion of this work is that to realize the full potential of OMI measurements it will be necessary to combine OMI data with data from instruments such as MLS, MODIS, AIRS, and CALIPSO that are currently flying in the "A-train" satellite constellation. In addition similar data taken by satellites crossing the earth at different local times than the A-train (e.g., the recently MetOp satellite) would need to be processed in a consistent manner to study diurnal variability, and to capture the effects on air quality of rapidly changing events such as wild fires.

  17. Air Quality Index (AQI) -- A Guide to Air Quality and Your Health

    MedlinePlus

    ... the AQI value, the greater the level of air pollution and the greater the health concern. For example, ... to 50. Air quality is considered satisfactory, and air pollution poses little or no risk. "Moderate" AQI is ...

  18. Introduction to Indoor Air Quality

    MedlinePlus

    ... as conditions caused by outdoor impacts (such as climate change). Many reports and studies indicate that the following ... Air Duct Cleaning Asthma Health, Energy Efficiency and Climate Change Flood Cleanup Home Remodel Indoor airPLUS Mold Radon ...

  19. 78 FR 30829 - Approval and Promulgation of Air Quality Implementation Plans; Illinois; Air Quality Standards...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-23

    ... AGENCY 40 CFR Part 52 Approval and Promulgation of Air Quality Implementation Plans; Illinois; Air... current national ambient air quality standards (NAAQS) for ozone, lead, and particulate matter. EPA is..., Control Strategies Section, Air Programs Branch (AR-18J), U.S. Environmental Protection Agency, 77...

  20. 76 FR 72097 - Air Quality Designations for the 2008 Lead (Pb) National Ambient Air Quality Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-22

    ... Environmental protection, Air pollution control, National parks, Wilderness areas. Dated: November 8, 2011. Lisa... AGENCY 40 CFR Part 81 RIN 2060-AR17 Air Quality Designations for the 2008 Lead (Pb) National Ambient Air... establishes air quality designations for most areas in the United States for the 2008 lead (Pb)...

  1. 40 CFR 52.1929 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.1929 Section 52.1929 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) Regulation for preventing significant deterioration of air... preventing significant deterioration of air quality....

  2. Indoor air quality investigation protocols

    SciTech Connect

    Greene, R.E.; Williams, P.L.

    1996-10-01

    Over the past 10 to 15 years, an increasing number of complaints about discomfort and health effects related to indoor air quality (IAQ) have been reported. The increase in complaints has been accompanied by an increase in requests for IAQ investigations. This study presents an overview of the many IAQ investigation protocols published since 1984. For analysis, the protocols are divided into four categories: solution-oriented, building diagnostics, industrial hygiene, and epidemiology. In general, the protocols begin with general observations, proceed to collect more specific data as indicated, and end with conclusions and recommendations. A generic IAQ protocol is presented that incorporates the common aspects of the various protocols. All of the current protocols place heavy emphasis on the ventilation system during the investigation. A major problem affecting all of the current protocols is the lack of generally accepted IAQ standards. IN addition, the use of questionnaires, occupant interviews, and personal diaries (as well as the point in the investigation at which they are administered) differs among the protocols. Medical evaluations and verification procedures also differ among the protocols.

  3. Particle Property Data Quality Flags for the MISR Aerosol Product

    NASA Astrophysics Data System (ADS)

    Gaitley, B. J.; Kahn, R. A.; Garay, M. J.

    2012-12-01

    The MISR instrument aboard the NASA Earth Observing System's Terra satellite has the unique capability to retrieve aerosol properties under favorable conditions. General aerosol type retrieval quality guidelines are provided in the MISR Data Quality Statement and related publications. Here we report on the steps we are taking to provide an aerosol-type data quality flag, to be provided with each individual retrieval result. Some factors affecting retrieval quality that can be assessed pre-retrieval are the number of cameras available, the range of scattering angles and surface conditions such as shallow water or seasonal coastal runoff. Factors that must be assessed post-retrieval include low values of retrieved optical depth and the number and type of mixtures successfully passing the MISR algorithm acceptance criteria. Regional monthly plots with MISR measurements binned at 0.5 degree resolution with color-coded stratification of one or more parameters is the main method for identifying locations and times where particle properties are retrieved. Individual MISR values such as mid-visible AOD, number and type of mixtures passing, number of cameras used, the range and maximum scattering angles are plotted individually or as joint distributions. Initially, thresholds and conditions are determined for each MISR parameter separately. Finally, MISR parameters are combined for a given month and region, with their thresholds, to show the overall quality of the retrieval for determining particle properties. Multi-month summaries for more than twelve years of MISR data will aid in assessing quality. Seasons and regions that regularly show poorly constrained aerosol type results are identified, as are times and places where particle property information can be used with confidence. This work is performed in part at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration and in part at the NASA

  4. Air quality monitor and acid rain networks

    NASA Technical Reports Server (NTRS)

    Rudolph, H.

    1980-01-01

    The air quality monitor program which consists of two permanent air monitor stations (PAMS's) and four mobile shuttle pollutant air monitor stations (SPAMS's) is evaluated. The PAMS measures SO sub X, NO sub X particulates, CO, O3, and nonmethane hydrocarbons. The SPAMS measures O3, SO2, HCl, and particulates. The collection and analysis of data in the rain monitor program are discussed.

  5. 30 CFR 75.321 - Air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.321 Air quality. (a)(1) The air in areas where..., explosive, noxious, and harmful gases, dusts, smoke, and fumes. (2) The air in areas of bleeder entries...

  6. FORECASTING AIR QUALITY OVER THE UNITED STATES

    EPA Science Inventory

    Increased awareness of national air quality issues on the part of the media and the general public have recently led to more demand for short-term (1-2 day) air quality forecasts for use in assessing potential health impacts (e.g., on children, the elderly, and asthmatics) and po...

  7. 40 CFR 240.205 - Air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Air quality. 240.205 Section 240.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.205 Air quality....

  8. 40 CFR 240.205 - Air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Air quality. 240.205 Section 240.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.205 Air quality....

  9. 40 CFR 240.205 - Air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Air quality. 240.205 Section 240.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.205 Air quality....

  10. 40 CFR 240.205 - Air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Air quality. 240.205 Section 240.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.205 Air quality....

  11. Air Quality Measurements for Science and Policy

    EPA Science Inventory

    Air quality measurements and the methods used to conduct them are vital to advancing our knowledge of the source-to-receptor-to-health effects continuum1-3. This information then forms the basis for evaluating and managing air quality to protect human health and welfa...

  12. Indoor Air Quality: A Guide for Educators.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento.

    Indoor air quality is a major concern for educators involved in the development of new school facilities, or the remodeling and maintenance of existing ones. This guide addresses the issue of air quality, the health concerns involved, and procedures for minimizing the impact of pollutants in the school environment. It defines common indoor air…

  13. 40 CFR 240.205 - Air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Air quality. 240.205 Section 240.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.205 Air quality....

  14. Source Emissions in Multipollutant Air Quality Management

    EPA Science Inventory

    Human activities and natural processes that emit pollutants into the ambient atmosphere are the underlying cause of all air quality problems. In a technical sense, we refer to these activities and processes as pollutant sources. Although air quality management is usually concerne...

  15. Breaking the Mold on Air Quality.

    ERIC Educational Resources Information Center

    NEA Today, 2001

    2001-01-01

    Indoor air quality is a growing problem in aging school buildings. The Environmental Protection Agency (EPA) offers an Indoor Air Quality Tools for Schools kit which is being used at schools nationwide to improve school maintenance. Profiles an aging school in Connecticut in which teachers were becoming ill to illustrate the use of the kit to…

  16. In-forest canopy chemical sinks and regional air quality

    NASA Astrophysics Data System (ADS)

    Fuentes, J. D.; Brune, W. H.; Stockwell, W. R.

    2009-12-01

    In forested landscapes, it is necessary to estimate emissions of biogenic hydrocarbons emitted by vegetation. Such emissions are required to determine the contribution of biogenic hydrocarbons to the formation of oxidants such as ozone and secondary organic aerosols. Depending on forest architecture (e.g., leaf area index) and lifetime of chemical species, substantial biogenic hydrocarbons can react within plant canopies before reaching the surrounding atmosphere. Emission inventories are required for regional air quality models designed to estimate oxidant and aerosol production from biogenic hydrocarbons. Also, emission inventories for air quality models need to account for reductions of biogenic hydrocarbons and increases in their products due to reactions within plant canopies. Therefore, one objective of this presentation is to report and discuss results on the degree of chemical processing for a select group of biogenic hydrocarbon species as a function of forest canopy attributes and prevailing atmospheric turbulence. Chemical processing within plant canopies can appropriately be estimated using one-dimensional models that include detailed photochemical mechanisms, and radiative transfer and atmospheric turbulence theory within plant canopies. Due to computational demands, such detailed canopy models cannot be realistically included in regional models. Thus, a second goal of this research is to develop a simplified algorithm to account for the in-plant canopy chemical reactions leading to reductions in the estimated biogenic hydrocarbon emissions. The purpose of this new algorithm is to include an explicit representation of the biogenic hydrocarbon chemical sinks in regional air quality models. Model outputs will contrast results obtained for cases with and without in-plant canopy chemical processing in an effort to quantify the effect of chemical sinks on regional oxidant formation. Also, the presentation will highlight the effects of in-plant canopy

  17. Fundamentals of air quality systems

    SciTech Connect

    Noll, K.E.

    1999-08-01

    The book uses numerous examples to demonstrate how basic design concepts can be applied to the control of air emissions from industrial sources. It focuses on the design of air pollution control devices for the removal of gases and particles from industrial sources, and provides detailed, specific design methods for each major air pollution control system. Individual chapters provide design methods that include both theory and practice with emphasis on the practical aspect by providing numerous examples that demonstrate how air pollution control devices are designed. Contents include air pollution laws, air pollution control devices; physical properties of air, gas laws, energy concepts, pressure; motion of airborne particles, filter and water drop collection efficiency; fundamentals of particulate emission control; cyclones; fabric filters; wet scrubbers; electrostatic precipitators; control of volatile organic compounds; adsorption; incineration; absorption; control of gaseous emissions from motor vehicles; practice problems (with solutions) for the P.E. examination in environmental engineering. Design applications are featured throughout.

  18. Air Quality Monitoring: Risk-Based Choices

    NASA Technical Reports Server (NTRS)

    James, John T.

    2009-01-01

    Air monitoring is secondary to rigid control of risks to air quality. Air quality monitoring requires us to target the credible residual risks. Constraints on monitoring devices are severe. Must transition from archival to real-time, on-board monitoring. Must provide data to crew in a way that they can interpret findings. Dust management and monitoring may be a major concern for exploration class missions.

  19. Air quality risk assessment and management.

    PubMed

    Chen, Yue; Craig, Lorraine; Krewski, Daniel

    2008-01-01

    This article provides (1) a synthesis of the literature on the linkages between air pollution and human health, (2) an overview of quality management approaches in Canada, the United States, and the European Union (EU), and (3) future directions for air quality research. Numerous studies examining short-term effects of air pollution show significant associations between ambient levels of particulate matter (PM) and other air pollutants and increases in premature mortality and hospitalizations for cardiovascular and respiratory illnesses. Several well-designed epidemiological studies confirmed the adverse long-term effects of PM on both mortality and morbidity. Epidemiological studies also document significant associations between ozone (O3), sulfur (SO2), and nitrogen oxides (NO(x)) and adverse health outcomes; however, the effects of gaseous pollutants are less well documented. Subpopulations that are more susceptible to air pollution include children, the elderly, those with cardiorespiratory disease, and socioeconomically deprived individuals. Canada-wide standards for ambient air concentrations of PM2.5 and O3 were set in 2000, providing air quality targets to be achieved by 2010. In the United States, the Clean Air Act provides the framework for the establishment and review of National Ambient Air Quality Standards for criteria air pollutants and the establishment of emissions standards for hazardous air pollutants. The 1996 European Union's enactment of the Framework Directive for Air Quality established the process for setting Europe-wide limit values for a series of pollutants. The Clean Air for Europe program was established by the European Union to review existing limit values, emission ceilings, and abatement protocols, as set out in the current legislation. These initiatives serve as the legislative framework for air quality management in North America and Europe.

  20. Hydrochloric acid aerosol formation by the interaction of hydrogen chloride with humid air

    NASA Technical Reports Server (NTRS)

    Rhein, R. A.

    1973-01-01

    The conditions in which hydrochloric acid aerosol is predicted by the interaction of hydrogen chloride gas with the water vapor in humid air are analyzed. The liquid gas phase equilibrium for the HCL-H2O system is expressed in terms of relative humidity and hydrogen chloride concentration as parts per million, units commonly used in pollution studies. Presented are the concentration (wt %) of HC1 in the aerosol and the concentration of aerosol (ppm) predicted.

  1. Enhancing indoor air quality –The air filter advantage

    PubMed Central

    Vijayan, Vannan Kandi; Paramesh, Haralappa; Salvi, Sundeep Santosh; Dalal, Alpa Anil Kumar

    2015-01-01

    Air pollution has become the world's single biggest environmental health risk, linked to around 7 million deaths in 2012 according to a recent World Health Organisation (WHO) report. The new data further reveals a stronger link between, indoor and outdoor air pollution exposure and cardiovascular diseases, such as strokes and ischemic heart disease, as well as between air pollution and cancer. The role of air pollution in the development of respiratory diseases, including acute respiratory infections and chronic obstructive pulmonary diseases, is well known. While both indoor and outdoor pollution affect health, recent statistics on the impact of household indoor pollutants (HAP) is alarming. The WHO factsheet on HAP and health states that 3.8 million premature deaths annually - including stroke, ischemic heart disease, chronic obstructive pulmonary disease (COPD) and lung cancer are attributed to exposure to household air pollution. Use of air cleaners and filters are one of the suggested strategies to improve indoor air quality. This review discusses the impact of air pollutants with special focus on indoor air pollutants and the benefits of air filters in improving indoor air quality. PMID:26628762

  2. Enhancing indoor air quality -The air filter advantage.

    PubMed

    Vijayan, Vannan Kandi; Paramesh, Haralappa; Salvi, Sundeep Santosh; Dalal, Alpa Anil Kumar

    2015-01-01

    Air pollution has become the world's single biggest environmental health risk, linked to around 7 million deaths in 2012 according to a recent World Health Organisation (WHO) report. The new data further reveals a stronger link between, indoor and outdoor air pollution exposure and cardiovascular diseases, such as strokes and ischemic heart disease, as well as between air pollution and cancer. The role of air pollution in the development of respiratory diseases, including acute respiratory infections and chronic obstructive pulmonary diseases, is well known. While both indoor and outdoor pollution affect health, recent statistics on the impact of household indoor pollutants (HAP) is alarming. The WHO factsheet on HAP and health states that 3.8 million premature deaths annually - including stroke, ischemic heart disease, chronic obstructive pulmonary disease (COPD) and lung cancer are attributed to exposure to household air pollution. Use of air cleaners and filters are one of the suggested strategies to improve indoor air quality. This review discusses the impact of air pollutants with special focus on indoor air pollutants and the benefits of air filters in improving indoor air quality. PMID:26628762

  3. Monitoring of urban air pollution from MODIS and AERONET Aerosol Optical Thickness (AOT) data

    NASA Astrophysics Data System (ADS)

    Tijani, K.; Chiaradia, M.; Guerriero, L.; Pasquariello, G.; Morea, A.; Nutricato, R.; Preziosa, G.

    2012-12-01

    Air pollution, caused by fuel industries and urban traffic and its environmental impact, are of considerable interest to studies in air quality. In this paper, the monitoring of the air pollution over urban areas in Italy through Aerosol Optical Thickness (AOT) data retrieved from Moderate Resolution Imaging Spectroradiometer (MODIS) measurements is presented. The high spatio-temporal frequency of MODIS AOT products (twice per day at 470nm, 1km full resolution) demonstrates that this satellite can be potentially used to routinely monitor the air pollution over land, especially urban area, which is the main source of aerosol particles. In this work AOT data derived by MODIS from November 2010 to February 2011 (winter period) and from May 2011 to August 2011 (summer period) were compared with AOT measurements from 6 different Aerosol Robotic Network (AERONET) stations over Italy (Bari, Lecce, Roma, Ispra, Potenza, Etna). The statistical analysis shows a good agreement between the ground based AOT measurements and the values retrieved using space based sensors, as shown in Figure 1. For all the stations the mean error is negligible, with a correlation ranging from 0.725 (in the worst case) to 0.96 (see Table 1). Moreover, LANDSAT-panchromatic images were used to discriminate urban and rural areas, based on the typical finger-like projections of urban land uses. The results of this study will be presented and commented. Acknowledgements This work was funded by Apulian Region in the framework of the ECOURB project. (Analisi e Modelli di inquinamento atmosferico e termico per sistemi di ECOlabeling URBano, 2009-2012). Figure 1: Scatter plot between AOT derived from MODIS and AERONET for Lecce City in summer period from May 2011 to August 2011. Y = - 0.023+0.86x (fit) ; Table 1: Statistical Analysis Report on the difference between AOT derived from MODIS and AERONET from May 2011 to August 2011 (summer period) for 6 different Aerosol Robotic Network (AERONET) stations

  4. Exploring the nature of air quality over southwestern Ontario: main findings from the Border Air Quality and Meteorology Study

    NASA Astrophysics Data System (ADS)

    Brook, J. R.; Makar, P. A.; Sills, D. M. L.; Hayden, K. L.; McLaren, R.

    2013-10-01

    This paper serves as an overview and discusses the main findings from the Border Air Quality and Meteorology Study (BAQS-Met) in southwestern Ontario in 2007. This region is dominated by the Great Lakes, shares borders with the United States and consistently experiences the highest ozone (O3) and fine particulate matter concentrations in Canada. The purpose of BAQS-Met was to improve our understanding of how lake-driven meteorology impacts air quality in the region, and to improve models used for forecasting and policy scenarios. Results show that lake breeze occurrence frequencies and inland penetration distances were significantly greater than realized in the past. Due to their effect on local meteorology, the lakes were found to enhance secondary O3 and aerosol formation such that local anthropogenic emissions have their impact closer to the populated source areas than would otherwise occur in the absence of the lakes. Substantial spatial heterogeneity in O3 was observed with local peaks typically 30 ppb above the regional values. Sulfate and secondary organic aerosol (SOA) enhancements were also linked to local emissions being transported in the lake breeze circulations. This study included the first detailed evaluation of regional applications of a high-resolution (2.5 km grid) air quality model in the Great Lakes region. The model showed that maxima in secondary pollutants occur in areas of convergence, in localized updrafts and in distinct pockets over the lake surfaces. These effects are caused by lake circulations interacting with the synoptic flow, with each other or with circulations induced by urban heat islands. Biogenic and anthropogenic emissions were both shown to play a role in the formation of SOA in the region. Detailed particle measurements and multivariate receptor models reveal that while individual particles are internally mixed, they often exist within more complex external mixtures. This makes it difficult to predict aerosol optical

  5. Exploring the nature of air quality over southwestern Ontario: main findings from the border air quality and meteorology study

    NASA Astrophysics Data System (ADS)

    Brook, J. R.; Makar, P. A.; Sills, D. M. L.; Hayden, K. L.; McLaren, R.

    2013-04-01

    This paper serves as an overview and discusses the main findings from the Border Air Quality and Meteorology Study (BAQS-Met) in southwestern Ontario in 2007. This region is dominated by the Great Lakes, shares borders with the United States and consistently experiences the highest ozone (O3) and fine particulate matter in Canada. The purpose of BAQS-Met was to improve our understanding of how lake-driven meteorology impacts air quality in the region, and to improve models used for forecasting and policy scenarios. Results show that lake breeze occurrence frequencies and inland penetration distances were significantly greater than realized in the past. Due to their effect on local meteorology, the lakes were found to enhance secondary O3 and aerosol formation such that local anthropogenic emissions have their impact closer to the populated source areas than would otherwise occur in the absence of the lakes. Substantial spatial heterogeneity in O3 was observed with local peaks typically 30 ppb above the regional values. Sulphate and secondary organic aerosol (SOA) enhancements were also linked to local emissions being transported in the lake breeze circulations. This study included the first detailed evaluation of regional applications of a high resolution (2.5 km grid) air quality model in the Great Lakes region. The model showed that maxima in secondary pollutants occur in areas of convergence, in localized updrafts and in distinct pockets over the lake surfaces. These effects are caused by lake circulations interacting with the synoptic flow, with each other or with circulations induced by urban heat islands. Biogenic and anthropogenic emissions were both shown to play a role in the formation of SOA in the region. Detailed particle measurements and multivariate receptor models reveal that while individual particles are internally mixed, they often exist within more complex external mixtures. This makes it difficult to predict aerosol optical properties and

  6. FRACTIONAL AEROSOL FILTRATION EFFICIENCY OF IN-DUCT VENTILATION AIR CLEANERS

    EPA Science Inventory

    The filtration efficiency of ventilation air cleaners is highly particle-size dependent over the 0.01 to 3 μm diameter size range. Current standardized test methods, which determine only overall efficiencies for ambient aerosol or other test aerosols, provide data of limited util...

  7. Breathing Easy over Air Quality.

    ERIC Educational Resources Information Center

    Greim, Clifton; Turner, William

    1991-01-01

    School systems should test the air in every school building for the presence and level of contaminants such as radon and asbestos and whether the ventilation system is circulating the proper amount of air. Periodic maintenance is required for all mechanical systems. (MLF)

  8. Incident-response monitoring technologies for aircraft cabin air quality

    NASA Astrophysics Data System (ADS)

    Magoha, Paul W.

    Poor air quality in commercial aircraft cabins can be caused by volatile organophosphorus (OP) compounds emitted from the jet engine bleed air system during smoke/fume incidents. Tri-cresyl phosphate (TCP), a common anti-wear additive in turbine engine oils, is an important component in today's global aircraft operations. However, exposure to TCP increases risks of certain adverse health effects. This research analyzed used aircraft cabin air filters for jet engine oil contaminants and designed a jet engine bleed air simulator (BAS) to replicate smoke/fume incidents caused by pyrolysis of jet engine oil. Field emission scanning electron microscopy (FESEM) with X-ray energy dispersive spectroscopy (EDS) and neutron activation analysis (NAA) were used for elemental analysis of filters, and gas chromatography interfaced with mass spectrometry (GC/MS) was used to analyze used filters to determine TCP isomers. The filter analysis study involved 110 used and 90 incident filters. Clean air filter samples exposed to different bleed air conditions simulating cabin air contamination incidents were also analyzed by FESEM/EDS, NAA, and GC/MS. Experiments were conducted on a BAS at various bleed air conditions typical of an operating jet engine so that the effects of temperature and pressure variations on jet engine oil aerosol formation could be determined. The GC/MS analysis of both used and incident filters characterized tri- m-cresyl phosphate (TmCP) and tri-p-cresyl phosphate (TpCP) by a base peak of an m/z = 368, with corresponding retention times of 21.9 and 23.4 minutes. The hydrocarbons in jet oil were characterized in the filters by a base peak pattern of an m/z = 85, 113. Using retention times and hydrocarbon thermal conductivity peak (TCP) pattern obtained from jet engine oil standards, five out of 110 used filters tested had oil markers. Meanwhile 22 out of 77 incident filters tested positive for oil fingerprints. Probit analysis of jet engine oil aerosols obtained

  9. Impact of maritime air mass trajectories on the Western European coast urban aerosol.

    PubMed

    Almeida, S M; Silva, A I; Freitas, M C; Dzung, H M; Caseiro, A; Pio, C A

    2013-01-01

    Lisbon is the largest urban area in the Western European coast. Due to this geographical position the Atlantic Ocean serves as an important source of particles and plays an important role in many atmospheric processes. The main objectives of this study were to (1) perform a chemical characterization of particulate matter (PM2.5) sampled in Lisbon, (2) identify the main sources of particles, (3) determine PM contribution to this urban area, and (4) assess the impact of maritime air mass trajectories on concentration and composition of respirable PM sampled in Lisbon. During 2007, PM2.5 was collected on a daily basis in the center of Lisbon with a Partisol sampler. The exposed Teflon filters were measured by gravimetry and cut into two parts: one for analysis by instrumental neutron activation analysis (INAA) and the other by ion chromatography (IC). Principal component analysis (PCA) and multilinear regression analysis (MLRA) were used to identify possible sources of PM2.5 and determine mass contribution. Five main groups of sources were identified: secondary aerosols, traffic, calcium, soil, and sea. Four-day backtracking trajectories ending in Lisbon at the starting sampling time were calculated using the HYSPLIT model. Results showed that maritime transport scenarios were frequent. These episodes were characterized by a significant decrease of anthropogenic aerosol concentrations and exerted a significant role on air quality in this urban area.

  10. Air quality in China from 1850 to 2050 simulated using the IPCC AR5 emissions inventories

    NASA Astrophysics Data System (ADS)

    Chang, W.; Liao, H.

    2011-12-01

    Understanding the changes in regional air quality is central for air quality planning and for understanding the climatic effects of air pollutants. This study applies a fully coupled global chemistry-aerosol-climate model to investigate the interdecadal changes in air pollutants in China from 1850 to 2050. The model includes a detailed simulation of tropospheric O3-NOx-hydrocarbon chemistry, as well as sulfate, nitrate, ammonium, black carbon (BC), primary organic aerosol (POA), and secondary organic aerosol (SOA). The simulations are performed based on the IPCC AR5 historical emissions inventories and four future scenarios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5). Model results show that the global mean surface-layer PM2.5 aerosol concentration peaked in 1980 with a global mean value of 2.61μg m-3, and then has been decreasing afterwards. A large fraction of the decrease can be explained by the reductions in sulfate aerosol over Europe and North America. The surface-layer PM2.5 concentration in China, however, showed monotonous increase since the preindustrial time. Averaged over eastern China, sulfate aerosol is found to have a relatively stable concentration of 5.5μg m-3 after 1980, whereas the year 2000 concentrations of nitrate, ammonium, BC, POA, and SOA are, respectively, 3.0, 1.6, 1.8, 1.4, and 1.5 times the 1980 values. As a result, the ratio of sulfate to PM2.5 in eastern China decreased from 49% in 1980 to 37% in 2000. These preliminary results indicate that, besides the emission control for SO2, a complex emission reduction strategy targeting other aerosol species is necessary for improving air quality in China.

  11. The importance of aerosol water for air pollution effects on weather and climate

    NASA Astrophysics Data System (ADS)

    Metzger, S.; Lelieveld, J.

    2007-12-01

    We apply a new concept to study air pollution effects on weather and climate, which is based on thermodynamic principles that explain hydration and osmosis - including the required transformation of laboratory based concepts to atmospheric conditions. Under ambient conditions the equilibrium relative humidity (ERH) determines the saturation molality, solute and solvent activities (and activity coefficients), and the aerosol associated water mass, sine the water content is fixed by ERH for a given aerosol concentration and type. As a consequence, aerosol water drives the gas/liquid/solid aerosol partitioning, ambient aerosol size-distributions and directly links aerosol hygroscopic growth into fog, haze and clouds. Various modeling results indicate that a) our new concept is not limited to dilute binary solutions, b) sensitive aerosol properties such as the pH of binary and mixed inorganic/organic salt solutions up to saturation can be computed accurately, and c) that anthropogenic emissions can be directly linked to visibility reduction, cloud formation and climate forcing, if we explicitly account for the aerosol water mass. Our new concept is more explicit than the traditional CCN concept as it abandons the use of ambiguous terms such as "marine" and "continental" aerosols, and refines lumped categories such as mineral dust, biomass burning, sea salt, organic or sulfate aerosols currently used in atmospheric modeling. Despite, our concept is computationally very efficient as it allows solving the whole gas/liquid/solid aerosol partitioning analytically without numerical iterations. It is therefore especially suited for regional high resolution, or global climate applications.

  12. USWRP Workshop on Air Quality Forecasting

    SciTech Connect

    Dabberdt, Walter F.; Carroll, Mary Anne; Appleby, William; Baumgardner, Darrel; Carmichael, Gregory; Davidson, Paula; Doran, J. C.; Dye, Timothy G.; Grimmond, Susan; Middleton, Paulette; Neff, William; Zhang, Yang

    2006-02-01

    There has recently been increased emphasis on air quality forecasting (AQF) and the research and development activities that are required to improve AQF skill and implement an operational AQF capability. In November 2001, the US Weather Research Program (USWRP) charged Prospectus Develop Team 11 with identification of the meteorological research needs for improved air quality forecasting (Dabberdt et al. 2004a). Subsequently, the Interagency Working Group (IWG) of the USWRP tentatively adopted Air Quality as one of its principal scientific foci. In addition, the National Oceanic and Atmospheric Administration (NOAA) and the United States Environmental Protection Agency (EPA) have made substantial progress towards developing an operational air quality forecast system. With these activities as background, the lead scientist of the USWRP requested that a community workshop be conducted to further define and prioritize AQF research needs and opportunities. The results of the workshop would then be used in the development of an Implementation Plan that the IWG would use to prioritize and support research directed at improving air quality knowledge, monitoring and forecasting capabilities, and evaluating new air quality forecast products. The resulting USWRP Air Quality Forecasting Workshop was held April 29 – May 1, 2003, in Houston, Texas. This report summarizes the findings and recommendations.

  13. [Air quality control systems: heating, ventilating, and air conditioning (HVAC)].

    PubMed

    Bellucci Sessa, R; Riccio, G

    2004-01-01

    After a brief illustration of the principal layout schemes of Heating, Ventilating, and Air Conditioning (HVAC), the first part of this paper summarizes the standards, both voluntary and compulsory, regulating HVAC facilities design and installation with regard to the question of Indoor Air Quality (IAQ). The paper then examines the problem of ventilation systems maintenance and the essential hygienistic requirements in whose absence HVAC facilities may become a risk factor for people working or living in the building. Lastly, the paper deals with HVAC design strategies and methods, which aim not only to satisfy comfort and air quality requirements, but also to ensure easy and effective maintenance procedures.

  14. Air ion measurements as a source of information about atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Hõrrak, Urmas; Mirme, Aadu; Salm, Jaan; Tamm, Eduard; Tammet, Hannes

    The mobility spectra of air ions recorded in the course of routine atmospheric electric measurements contain information about atmospheric aerosols. The mobility spectrum of air ions is correlated with the size spectrum of aerosol particles. Two procedures of conversion (and conversion errors) are considered in this paper assuming the steady state of charge distribution. The first procedure uses the fraction model of the aerosol particle size distribution and algebraic solution of the conversion problem. The second procedure uses the parametric KL model of the particle size distribution and the least square fitting of the mobility measurements. The procedures were tested using simultaneous side-by-side measurements of air ion mobilities and aerosol particle size distributions at a rural site during a monthly period. The comparison of results shows a promising agreement between the measured and calculated size spectra in the common size range. A supplementary information about nanometer particles was obtained from air ion measurements.

  15. Potential Impact of a US Climate Policy and Air Quality Regulations on Future Air Quality and Climate Change

    NASA Technical Reports Server (NTRS)

    Lee, Y. H.; Faluvegi, Gregory S.

    2016-01-01

    We have investigated how future air quality and climate change are influenced by the US air quality regulations that existed or were proposed in 2013 and a hypothetical climate mitigation policy that aims to reduce 2050 CO2 emissions to be 50% below 2005 emissions. Using the NASA GISS ModelE2 general circulation model, we look at the impacts for year 2030 and 2055. The US energy-sector emissions are from the GLIMPSE project (GEOS-Chem LIDORT Integrated with MARKAL (MARKet ALlocation) for the Purpose of Scenario Exploration), and other US emissions data sets and the rest of the world emissions data sets are based on the RCP4.5 scenario. The US air quality regulations are projected to have a strong beneficial impact on US air quality and public health in year 2030 and 2055 but result in positive radiative forcing. Under this scenario, no more emission constraints are added after 2020, and the impacts on air quality and climate change are similar between year 2030 and 2055. Surface particulate matter with a diameter smaller than 2.5 micron PM(sub 2:5) is reduced by 2 approximately µg/m(sup -3) on average over the USA, and surface ozone by approximately 8 ppbv. The improved air quality prevents about 91 400 premature deaths in the USA, mainly due to the PM(sub 2:5) reduction approximately (74 200 lives saved). The air quality regulations reduce the light-reflecting aerosols (i.e., sulfate and organic matter) more than the light-absorbing species (i.e., black carbon and ozone), leading to a strong positive radiative forcing (RF) over the USA by both aerosols' direct and indirect forcing: the total RF is approximately 0.04 W m(sup -2) over the globe, and approximately 0.8 W m(sup -2) over the USA. Under the hypothetical climate policy, a future CO2 emissions cut is achieved in part by relying less on coal, and thus SO2 emissions are noticeably reduced. This provides air quality co-benefits, but it could lead to potential climate disbenefits over the USA. In 2055, the US

  16. Potential impact of a US climate policy and air quality regulations on future air quality and climate change

    NASA Astrophysics Data System (ADS)

    Lee, Yunha; Shindell, Drew T.; Faluvegi, Greg; Pinder, Rob W.

    2016-04-01

    We have investigated how future air quality and climate change are influenced by the US air quality regulations that existed or were proposed in 2013 and a hypothetical climate mitigation policy that aims to reduce 2050 CO2 emissions to be 50 % below 2005 emissions. Using the NASA GISS ModelE2 general circulation model, we look at the impacts for year 2030 and 2055. The US energy-sector emissions are from the GLIMPSE project (GEOS-Chem LIDORT Integrated with MARKAL (MARKet ALlocation) for the Purpose of Scenario Exploration), and other US emissions data sets and the rest of the world emissions data sets are based on the RCP4.5 scenario. The US air quality regulations are projected to have a strong beneficial impact on US air quality and public health in year 2030 and 2055 but result in positive radiative forcing. Under this scenario, no more emission constraints are added after 2020, and the impacts on air quality and climate change are similar between year 2030 and 2055. Surface particulate matter with a diameter smaller than 2.5 µm (PM2.5) is reduced by ˜ 2 µg m-3 on average over the USA, and surface ozone by ˜ 8 ppbv. The improved air quality prevents about 91 400 premature deaths in the USA, mainly due to the PM2.5 reduction (˜ 74 200 lives saved). The air quality regulations reduce the light-reflecting aerosols (i.e., sulfate and organic matter) more than the light-absorbing species (i.e., black carbon and ozone), leading to a strong positive radiative forcing (RF) over the USA by both aerosols' direct and indirect forcing: the total RF is ˜ 0.04 W m-2 over the globe, and ˜ 0.8 W m-2 over the USA. Under the hypothetical climate policy, a future CO2 emissions cut is achieved in part by relying less on coal, and thus SO2 emissions are noticeably reduced. This provides air quality co-benefits, but it could lead to potential climate disbenefits over the USA. In 2055, the US mean total RF is +0.22 W m-2 due to positive aerosol direct and indirect forcing

  17. Air Quality Guide for Ozone

    MedlinePlus

    ... is one of our nation’s most common air pollutants. Use the chart below to help reduce your ... human health. Ozone forms when two types of pollutants (VOCs and NOx) react in sunlight. These pollutants ...

  18. Call for improving air quality

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2013-01-01

    The European Environmental Bureau (EEB), a federation of citizen organizations, has called for stricter policies in Europe to protect human health and the environment. "Air pollution emanates from sources all around us, be they cars, industrial plants, shipping, agriculture, or waste. The [European Union] must propose ambitious legislation to address all of these sources if it is to tackle the grave public health consequences of air pollution," EEB secretary general Jeremy Wates said on 8 January.

  19. 77 FR 30087 - Air Quality Designations for the 2008 Ozone National Ambient Air Quality Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-21

    ... Columbia EPA Environmental Protection Agency FR Federal Register NAAQS National Ambient Air Quality... Environmental protection, Air pollution control, National parks, Wilderness areas. Dated: April 30, 2012. Lisa P... for the 2008 Ozone National Ambient Air Quality Standards; Implementation of the 2008 National...

  20. Aerosol single scattering albedo and its contribution to radiative forcing dung EAST- AIRE

    NASA Astrophysics Data System (ADS)

    Lee, K.; Li, Z.

    2007-12-01

    Quantification of aerosol single scattering albedo (SSA) can improve determining aerosol radiative property. Combination technique using MODIS and ground-based Hazemeter measurement data by the East Asian Study of Tropospheric Aerosols: an International Regional Experiment (EAST-AIRE) over China is proposed to retrieve SSA. The accuracy of the retrieval of SSA increases with the aerosol loading and the uncertainties in the SSA retrieval are 0.02~0.03 (AOT=1.0) and up to 0.03~0.05 (AOT=0.5) at 0.47¥ìm, respectively. The comparison of one- year data of retrieved SSA values with those from AERONET inversion product are ~0.03 (RMSD) and ~0.02 (mean bias), respectively. Estimated SSA values were range from 0.89 to 0.93 over the study area. Since SSA is an important factor of aerosol radiative forcing, these will help to understood the study of aerosol climate effects.

  1. Air quality and future energy system planning

    NASA Astrophysics Data System (ADS)

    Sobral Mourao, Zenaida; Konadu, Dennis; Lupton, Rick

    2016-04-01

    Ambient air pollution has been linked to an increasing number of premature deaths throughout the world. Projected increases in demand for food, energy resources and manufactured products will likely contribute to exacerbate air pollution with an increasing impact on human health, agricultural productivity and climate change. Current events such as tampering emissions tests by VW car manufacturers, failure to comply with EU Air Quality directives and WHO guidelines by many EU countries, the problem of smog in Chinese cities and new industrial emissions regulations represent unique challenges but also opportunities for regulators, local authorities and industry. However current models and practices of energy and resource use do not consider ambient air impacts as an integral part of the planing process. Furthermore the analysis of drivers, sources and impacts of air pollution is often fragmented, difficult to understand and lacks effective visualization tools that bring all of these components together. This work aims to develop a model that links impacts of air quality on human health and ecosystems to current and future developments in the energy system, industrial and agricultural activity and patterns of land use. The model will be added to the ForeseerTM tool, which is an integrated resource analysis platform that has been developed at the University of Cambridge initially with funding from BP and more recently through the EPSRC funded Whole Systems Energy Modeling (WholeSEM) project. The basis of the tool is a set of linked physical models for energy, water and land, including the technologies that are used to transform these resources into final services such as housing, food, transport and household goods. The new air quality model will explore different feedback effects between energy, land and atmospheric systems with the overarching goal of supporting better communication about the drivers of air quality and to incorporate concerns about air quality into

  2. Monitoring Air Quality with Leaf Yeasts.

    ERIC Educational Resources Information Center

    Richardson, D. H. S.; And Others

    1985-01-01

    Proposes that leaf yeast serve as quick, inexpensive, and effective techniques for monitoring air quality. Outlines procedures and provides suggestions for data analysis. Includes results from sample school groups who employed this technique. (ML)

  3. Radioactive Aerosols as an Index of Air Pollution in the City of Thessaloniki, Greece

    SciTech Connect

    Ioannidou, A.; Papastefanou, C.

    2010-01-21

    This study summarizes results of an investigation done in order to find out how the radioactive aerosols of {sup 7}Be could serve as indicators of air pollution conditions. Beryllium-7 is a cosmic-ray produced radionuclide with an important fraction of its production to take place in the upper troposphere. Once it is formed is rapidly associated with submicron aerosol particles and participates in the formation and growth of the accumulation mode aerosols, which is a major reservoir of pollutants in the atmosphere. In order to define any influence of AMAD of {sup 7}Be aerosols by air pollution conditions, the aerodynamic size distribution of {sup 7}Be aerosols was determined by collecting samples at different locations in the suburban area of the city of Thessaloniki, including rural areas, industrial areas, high elevations, marine environment and the airport area. The aerodynamic size distribution of {sup 7}Be aerosols in different locations was obtained by using Andersen 1-ACFM cascade impactors and the Activity Median Aerodynamic Diameter (AMAD) was determined. Some dependency of the AMADs on height has been observed, while in near marine environment the {sup 7}Be activity size distribution was dominant in the upper size range of aerosol particles. Low AMADs as low as 0.62 to 0.74 {mu}m of {sup 7}Be aerosols have been observed at locations characterized with relative low pollution, while it is concluded that in the activity size distribution of ambient aerosols, {sup 7}Be changes to larger particle sizes in the presence of pollutants, since low AMADs of {sup 7}Be aerosols have been observed at low polluted locations. Preliminary data of simultaneous measurements of {sup 214}Pb and {sup 212}Pb with gaseous air pollutants CO, NO, NO{sub X}, SO{sub 2} and total suspended particulate matter (TSP) show that radon decay products near the ground could be a useful index of air pollution potential conditions and transport processes in the boundary layer.

  4. Aerosol and Dry Air Entrainment Impacts on Thermally Driven Orographic Clouds and the Development of Precipitation

    NASA Astrophysics Data System (ADS)

    Nugent, A. D.; Watson, C. D.; Thompson, G.; Smith, R. B.

    2014-12-01

    Precipitation generation in a cumulus cloud depends on the nature of available aerosols and the turbulent entrainment of dry air. These two processes were observed in the orographic clouds during the DOMEX (Dominica Experiment) field campaign. On days with thermally driven convection, little precipitation develops and the orographic clouds are composed on average of clouds with 125 cm-3 droplet number concentration and 15 μm cloud droplet diameter. Aerosol number concentrations as high as 325 cm-3 are found in the detrained air above the tropical island of Dominica. The island surface aerosol source and the relatively dry cloud layer are two independent variables that play a role in the composition and development of the observed orographic clouds. We use idealized 3D WRF simulations with the new aerosol-aware Thompson and Eidhammer microphysics scheme to compare with observations. A 1 km high mountain with a constant surface sensible heat flux drives convection with no background wind. Four simulations are performed to explore the parameter space with and without an aerosol source, and with a dry and moist cloud layer: (1) aerosol source / dry, (2) aerosol source / moist, (3) no source / dry, and (4) no source / moist. The aerosol source is composed of an organic-like aerosol with a mean radius of 0.08 μm and a hygroscopicity of 0.6. The aerosol flux comes only from the island surface at a rate of 5 aerosols cm-3 s-1 or 1.5x108 aerosols m-2 s-1. Precipitation efficiency, drying ratio, and microphysical conversion rates of liquid water are computed and tracked, and cloud and rain water mass and number budgets are completed. Comparing the development of orographic clouds and precipitation in the four simulations leads toward an improved understanding of the observations and the relative controls on convection.

  5. Air Quality Science and Regulatory Efforts Require Geostationary Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Pickering, Kenneth E.; Allen, D. J.; Stehr, J. W.

    2006-01-01

    Air quality scientists and regulatory agencies would benefit from the high spatial and temporal resolution trace gas and aerosol data that could be provided by instruments on a geostationary platform. More detailed time-resolved data from a geostationary platform could be used in tracking regional transport and in evaluating mesoscale air quality model performance in terms of photochemical evolution throughout the day. The diurnal cycle of photochemical pollutants is currently missing from the data provided by the current generation of atmospheric chemistry satellites which provide only one measurement per day. Often peak surface ozone mixing ratios are reached much earlier in the day during major regional pollution episodes than during local episodes due to downward mixing of ozone that had been transported above the boundary layer overnight. The regional air quality models often do not simulate this downward mixing well enough and underestimate surface ozone in regional episodes. Having high time-resolution geostationary data will make it possible to determine the magnitude of this lower-and mid-tropospheric transport that contributes to peak eight-hour average ozone and 24-hour average PM2.5 concentrations. We will show ozone and PM(sub 2.5) episodes from the CMAQ model and suggest ways in which geostationary satellite data would improve air quality forecasting. Current regulatory modeling is typically being performed at 12 km horizontal resolution. State and regional air quality regulators in regions with complex topography and/or land-sea breezes are anxious to move to 4-km or finer resolution simulations. Geostationary data at these or finer resolutions will be useful in evaluating such models.

  6. Urban air quality estimation study, phase 1

    NASA Technical Reports Server (NTRS)

    Diamante, J. M.; Englar, T. S., Jr.; Jazwinski, A. H.

    1976-01-01

    Possibilities are explored for applying estimation theory to the analysis, interpretation, and use of air quality measurements in conjunction with simulation models to provide a cost effective method of obtaining reliable air quality estimates for wide urban areas. The physical phenomenology of real atmospheric plumes from elevated localized sources is discussed. A fluctuating plume dispersion model is derived. Individual plume parameter formulations are developed along with associated a priori information. Individual measurement models are developed.

  7. MANAGING INDOOR AIR QUALITY IN THE USA

    EPA Science Inventory

    The paper gives an overview of managing indoor air quality (IAQ) in the U.S. In contrast to outdoor air, which is regulated through various federal and state statutes, there is no unified and comprehensive governmental regulation of IAQ. Therefore, IAQ is managed through variou...

  8. 32 CFR 989.30 - Air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... been implemented by regulation, 40 CFR 93, Subpart B. All EIAP documents must address applicable... 32 National Defense 6 2010-07-01 2010-07-01 false Air quality. 989.30 Section 989.30 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE ENVIRONMENTAL...

  9. Air quality management in the United States

    SciTech Connect

    William Chameides; Daniel Greenbaum; Raymond Wassel; K. John Holmes; Karl Gustavson; Amanda Staudt

    2005-07-01

    In 2004, the National Research Council released Air Quality Management in the United States, a report prepared in response to a congressional request for an independent evaluation of the overall effectiveness of the Clean Air Act. Based on that report, this article summarizes the committee's findings and recommendations. 10 refs., 2 figs.

  10. Improving Regional Air Quality with Wind Energy

    SciTech Connect

    Not Available

    2005-05-01

    This model documentation is designed to assist State and local governments in pursuing wind energy purchases as a control measure under regional air quality plans. It is intended to support efforts to draft State Implementation Plans (SIPs), including wind energy purchases, to ensure compliance with the standard for ground-level ozone established under the Clean Air Act.

  11. The impact of European measures to reduce air pollutants on air quality, human health and climate

    NASA Astrophysics Data System (ADS)

    Turnock, S.; Butt, E. W.; Richardson, T.; Mann, G.; Forster, P.; Haywood, J. M.; Crippa, M.; Janssens-Maenhout, G. G. A.; Johnson, C.; Bellouin, N.; Spracklen, D. V.; Carslaw, K. S.; Reddington, C.

    2015-12-01

    European air quality legislation has reduced emissions of air pollutants across Europe since the 1970s, resulting in improved air quality and benefits to human health but also an unintended impact on regional climate. Here we used a coupled chemistry-climate model and a new policy relevant emission scenario to determine the impact of air pollutant emission reductions over Europe. The emission scenario shows that a combination of technological improvements and end-of-pipe abatement measures in the energy, industrial and road transport sectors reduced European emissions of sulphur dioxide, black carbon and organic carbon by 53%, 59% and 32% respectively. We estimate that these emission reductions decreased European annual mean concentrations of fine particulate matter (PM2.5) by 35%, sulphate by 44%, black carbon (BC) by 56% and particulate organic matter (POM) by 23%. The reduction in PM2.5 concentrations is calculated to have prevented 107,000 (40,000-172,000, 5-95% confidence intervals) premature deaths annually from cardiopulmonary disease and lung cancer across the EU member states. The decrease in aerosol concentrations caused a positive all-sky aerosol radiative forcing at the top of atmosphere over Europe of 2.3±0.06 W m-2 and a positive clear-sky forcing of 1.7±0.05 W m-2. Additionally, the amount of solar radiation incident at the surface over Europe increased by 3.3±0.07 W m-2 under all-sky and by 2.7±0.05 W m-2 under clear-sky conditions. Reductions in BC concentrations caused a 1 Wm-2 reduction in atmospheric absorption. We use an energy budget approximation to show that the aerosol induced radiative changes caused both temperature and precipitation to increase globally and over Europe. Our results show that the implementation of European legislation to reduce the emission of air pollutants has improved air quality and human health over Europe, as well as altered the regional radiative balance and climate.

  12. Air pollution and asthma: clinical studies with sulfuric acid aerosols

    SciTech Connect

    Utell, M.J.; Frampton, M.W.; Morrow, P.E. )

    1991-11-01

    Until recently, acid deposition has been widely considered a serious ecological problem but not a threat to human health. The controlled clinical study is an important approach in linking acidic aerosol inhalation with respiratory effects. Asthmatic patients represent a subpopulation most responsive to sulfuric acid aerosols. In a series of studies with asthmatic volunteers, several factors have been identified that may modulate the intensity of the bronchoconstrictor response to inhaled acidic aerosols. We found (1) enhancement of the bronchoconstrictor response during exercise, (2) the more acidic aerosols provoke the greatest changes in lung function, and (3) mitigation of airway responses during sulfuric acid aerosol inhalation caused by high respiratory ammonia concentrations. Additional factors influencing responsiveness await identification.

  13. ABOVE03, The 2003 AIRS BBAERI Ocean Validation Experiment: AIRS Validation and Aerosols

    NASA Astrophysics Data System (ADS)

    McMillan, W. W.; Hoff, R.; Strow, L. L.; Desouza-Machado, S.; Lightner, K.; McCourt, M. L.; Maddy, E.; Kolb, N.; McCann, K.; Comer, J.; Russo, F.; Rutledge, C. K.

    2003-12-01

    From May 28 to July 9, 2003, a complementary set of instruments was deployed to the United States Coast Guard (USCG) Chesapeake Light lighthouse platform to provide correlative measurements characterizing the atmosphere and sea surface over the ocean for validation of NASA's Atmospheric InfraRed Sounder (AIRS) onboard the Aqua satellite. Located 25 km due east of Virginia Beach, VA, Chesapeake Light offers a relatively convenient site for measurements over the ocean while being far enough offshore for water only AIRS fields of view. In addition to the UMBC Baltimore Bomem Atmospheric Emitted Radiance Interferometer (BBAERI), the UMBC Elastic Lidar Facility (ELF), and Vaisala RS-90 rawinsondes used during ABOVE02, we deployed in situ O3 and CO gas analyzers and during the first three weeks, flew 18 ozonesondes in collaboration with Dr. Mike Newchurch, UAH. A total of 140 Vaisala RS-90 radiosondes were launched covering 61 Aqua and 12 Terra overpasses. Preliminary comparisons of ABOVE03 data products to AIRS observations and retrievals will be presented. Particular attention will be paid to both AIRS and ground-based aerosol observations.

  14. Air Quality Instrumentation. Volume 2.

    ERIC Educational Resources Information Center

    Scales, John W., Ed.

    To insure a wide dissemination of information describing advances in measurement and control techniques, the Instrument Society of America (ISA) has published this monograph of selected papers, the second in a series, from recent ISA symposia dealing with air pollution. Papers range from a discussion of individual pollutant measurements to…

  15. Air Quality Instrumentation. Volume 1.

    ERIC Educational Resources Information Center

    Scales, John W., Ed.

    To insure a wide dissemination of information describing advances in measurement and control techniques, the Instrument Society of America (ISA) has published this monograph of selected papers from recent ISA symposia dealing with air pollution. Papers range from a discussion of some relatively new applications of proven techniques to discussions…

  16. Advection fog formation and aerosols produced by combustion-originated air pollution

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Liaw, G. S.; Vaughan, O. H., Jr.

    1980-01-01

    The way in which pollutants produced by the photochemical reaction of NO(X) and SO(X) affect the quality of the human environment through such phenomena as the formation of advection fog is considered. These pollutants provide the major source of condensation nuclei for the formation of fog in highways, airports and seaports. Results based on the monodisperse, multicomponent aerosol model show that: (1) condensation nuclei can grow and form a dense fog without the air having attained supersaturation; (2) the mass concentration range for NO(X) is one-third that of SO(X); and (3) the greater the mass concentration, the particle concentration, and the radius of condensation nuclei, the denser the fog that is formed.

  17. 40 CFR 52.499 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.499 Section 52.499 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  18. 40 CFR 52.1603 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.1603 Section 52.1603 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  19. 40 CFR 52.432 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.432 Section 52.432 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met... air quality. (b) Regulation for preventing significant deterioration of air quality. The provisions...

  20. 40 CFR 52.632 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.632 Section 52.632 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met... air quality. (b) Regulations for preventing significant deterioration of air quality. The...

  1. 40 CFR 52.2827 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.2827 Section 52.2827 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  2. 40 CFR 52.2676 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.2676 Section 52.2676 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  3. 40 CFR 52.499 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.499 Section 52.499 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  4. 40 CFR 52.499 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.499 Section 52.499 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  5. 40 CFR 52.2827 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.2827 Section 52.2827 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  6. 40 CFR 52.2729 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.2729 Section 52.2729 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  7. 40 CFR 52.499 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.499 Section 52.499 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  8. 40 CFR 52.432 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.432 Section 52.432 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met... air quality. (b) Regulation for preventing significant deterioration of air quality. The provisions...

  9. 40 CFR 52.793 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.793 Section 52.793 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met... air quality. (b) Regulations for preventing significant deterioration of air quality. The...

  10. 40 CFR 52.1884 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.1884 Section 52.1884 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  11. 40 CFR 52.738 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.738 Section 52.738 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met... air quality. (b) Regulations for preventing significant deterioration of air quality. The...

  12. 40 CFR 52.1165 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.1165 Section 52.1165 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulation for preventing significant deterioration of air quality....

  13. 40 CFR 52.2729 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.2729 Section 52.2729 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  14. 40 CFR 52.793 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.793 Section 52.793 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met... air quality. (b) Regulations for preventing significant deterioration of air quality. The...

  15. 40 CFR 52.1884 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.1884 Section 52.1884 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  16. 40 CFR 52.1884 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.1884 Section 52.1884 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  17. 40 CFR 52.1165 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.1165 Section 52.1165 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulation for preventing significant deterioration of air quality....

  18. 40 CFR 52.2497 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.2497 Section 52.2497 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  19. 40 CFR 52.793 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.793 Section 52.793 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met... air quality. (b) Regulations for preventing significant deterioration of air quality. The...

  20. 40 CFR 52.1603 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.1603 Section 52.1603 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  1. 40 CFR 52.1180 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.1180 Section 52.1180 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  2. 40 CFR 52.738 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.738 Section 52.738 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met... air quality. (b) Regulations for preventing significant deterioration of air quality. The...

  3. 40 CFR 52.793 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.793 Section 52.793 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met... air quality. (b) Regulations for preventing significant deterioration of air quality. The...

  4. 40 CFR 52.2676 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.2676 Section 52.2676 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  5. 40 CFR 52.2497 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.2497 Section 52.2497 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  6. 40 CFR 52.632 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.632 Section 52.632 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met... air quality. (b) Regulations for preventing significant deterioration of air quality. The...

  7. 40 CFR 52.2729 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.2729 Section 52.2729 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  8. 40 CFR 52.96 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.96 Section 52.96 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The State of Alaska Department of Environmental Conservation Air Quality... deterioration of air quality. (b) The requirements of sections 160 through 165 of the Clean Air Act are not...

  9. 40 CFR 52.1603 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.1603 Section 52.1603 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  10. 40 CFR 52.2676 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.2676 Section 52.2676 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  11. 40 CFR 52.2497 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.2497 Section 52.2497 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  12. 40 CFR 52.1603 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.1603 Section 52.1603 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  13. 40 CFR 52.2827 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.2827 Section 52.2827 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  14. 40 CFR 52.2779 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.2779 Section 52.2779 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  15. 40 CFR 52.432 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.432 Section 52.432 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met... air quality. (b) Regulation for preventing significant deterioration of air quality. The provisions...

  16. 40 CFR 52.1180 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.1180 Section 52.1180 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  17. 40 CFR 52.2497 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.2497 Section 52.2497 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  18. 40 CFR 52.632 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.632 Section 52.632 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met... air quality. (b) Regulations for preventing significant deterioration of air quality. The...

  19. 40 CFR 52.1180 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.1180 Section 52.1180 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  20. 40 CFR 52.1165 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.1165 Section 52.1165 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulation for preventing significant deterioration of air quality....

  1. 40 CFR 52.2729 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.2729 Section 52.2729 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  2. 40 CFR 52.738 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.738 Section 52.738 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met... air quality. (b) Regulations for preventing significant deterioration of air quality. The...

  3. 40 CFR 52.632 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.632 Section 52.632 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met... air quality. (b) Regulations for preventing significant deterioration of air quality. The...

  4. 40 CFR 52.2497 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.2497 Section 52.2497 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  5. 40 CFR 52.1165 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.1165 Section 52.1165 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulation for preventing significant deterioration of air quality....

  6. 40 CFR 52.2827 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.2827 Section 52.2827 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  7. 40 CFR 52.2729 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.2729 Section 52.2729 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  8. 40 CFR 52.2779 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.2779 Section 52.2779 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  9. 40 CFR 52.1180 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.1180 Section 52.1180 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  10. 40 CFR 52.632 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.632 Section 52.632 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met... air quality. (b) Regulations for preventing significant deterioration of air quality. The...

  11. 40 CFR 52.1603 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.1603 Section 52.1603 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  12. 40 CFR 52.738 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.738 Section 52.738 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met... air quality. (b) Regulations for preventing significant deterioration of air quality. The...

  13. 40 CFR 52.2676 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.2676 Section 52.2676 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  14. 40 CFR 52.2779 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.2779 Section 52.2779 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  15. 40 CFR 52.1165 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.1165 Section 52.1165 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulation for preventing significant deterioration of air quality....

  16. 40 CFR 52.1180 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.1180 Section 52.1180 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  17. 40 CFR 52.2779 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.2779 Section 52.2779 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  18. 40 CFR 52.2676 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.2676 Section 52.2676 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  19. 40 CFR 52.738 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.738 Section 52.738 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met... air quality. (b) Regulations for preventing significant deterioration of air quality. The...

  20. 40 CFR 52.2827 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.2827 Section 52.2827 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  1. 40 CFR 52.1884 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.1884 Section 52.1884 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  2. 40 CFR 52.499 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.499 Section 52.499 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  3. 40 CFR 52.1689 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.1689 Section 52.1689 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  4. 40 CFR 52.2779 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.2779 Section 52.2779 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  5. 40 CFR 52.1884 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.1884 Section 52.1884 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality....

  6. SAMIRA - SAtellite based Monitoring Initiative for Regional Air quality

    NASA Astrophysics Data System (ADS)

    Schneider, Philipp; Stebel, Kerstin; Ajtai, Nicolae; Diamandi, Andrei; Horalek, Jan; Nicolae, Doina; Stachlewska, Iwona; Zehner, Claus

    2016-04-01

    Here, we present a new ESA-funded project entitled Satellite based Monitoring Initiative for Regional Air quality (SAMIRA), which aims at improving regional and local air quality monitoring through synergetic use of data from present and upcoming satellites, traditionally used in situ air quality monitoring networks and output from chemical transport models. Through collaborative efforts in four countries, namely Romania, Poland, the Czech Republic and Norway, all with existing air quality problems, SAMIRA intends to support the involved institutions and associated users in their national monitoring and reporting mandates as well as to generate novel research in this area. Despite considerable improvements in the past decades, Europe is still far from achieving levels of air quality that do not pose unacceptable hazards to humans and the environment. Main concerns in Europe are exceedances of particulate matter (PM), ground-level ozone, benzo(a)pyrene (BaP) and nitrogen dioxide (NO2). While overall sulfur dioxide (SO2) emissions have decreased in recent years, regional concentrations can still be high in some areas. The objectives of SAMIRA are to improve algorithms for the retrieval of hourly aerosol optical depth (AOD) maps from SEVIRI, and to develop robust methods for deriving column- and near-surface PM maps for the study area by combining satellite AOD with information from regional models. The benefit to existing monitoring networks (in situ, models, satellite) by combining these datasets using data fusion methods will be tested for satellite-based NO2, SO2, and PM/AOD. Furthermore, SAMIRA will test and apply techniques for downscaling air quality-related EO products to a spatial resolution that is more in line with what is generally required for studying urban and regional scale air quality. This will be demonstrated for a set of study sites that include the capitals of the four countries and the highly polluted areas along the border of Poland and the

  7. Episode simulation of Asian dust storms with an air quality modeling system

    NASA Astrophysics Data System (ADS)

    Ge, Cui; Zhang, Meigen; Han, Zhiwei; Liu, Yanju

    2011-05-01

    A dust deflation module was developed and coupled with the air quality modeling system RAMS-CMAQ to simultaneously treat all the major tropospheric aerosols (i.e., organic and black carbons, sulfate, nitrate, ammonia, soil dust, and sea salt). Then the coupled system was applied to East Asia to simulate Asian dust aerosol generation, transport and dry/wet removal processes during 14-25 March 2002 when two strong dust storms occurred consecutively. To evaluate model performance and to analyze the observed features of dust aerosols over the East Asian region, model results were compared to concentrations of suspended particulate matter of 10 µm or less (PM10; 1-h intervals) at four remote Japanese stations and daily air pollution index (API) values for PM10 at four large Chinese cities. The modeled values were generally in good agreement with observed data, and the model reasonably reproduced two dust storm outbreaks and generally predicted the dust onset and cessation times at each observation site. In addition, hourly averaged values of aerosol optical thickness (AOT) were calculated and compared with observations at four Aerosol Robotic Network (AERONET) stations to assess the model's capability of estimating dust aerosol column burden. Analysis shows that modeled and observed AOT values were generally comparable and that the contribution of dust aerosols to AOT was significant only with regard to their source regions and their transport paths.

  8. Cabin air quality. Aerospace Medical Association.

    PubMed

    Thibeault, C

    1997-01-01

    Cabin Air Quality has generated considerable public and workers' concern and controversy in the last few years. To clarify the situation, AsMA requested the Passenger Health Subcommittee of the Air Transport Medicine Committee to review the situation and prepare a position statement. After identifying the various sources of confusion, we review the scientifically accepted facts in the different elements involved in Cabin Air Quality: pressurization, ventilation, contaminants, humidity and temperature. At the same time, we identify areas that need more research and make recommendations accordingly.

  9. Dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls, fatty acids and benzoic acid in PM2.5 aerosol collected during CAREBeijing-2007: an effect of traffic restriction on air quality

    NASA Astrophysics Data System (ADS)

    Ho, K. F.; Huang, R.-J.; Kawamura, K.; Tachibana, E.; Lee, S. C.; Ho, S. S. H.; Zhu, T.; Tian, L.

    2014-06-01

    Thirty water-soluble organic species, including dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls, fatty acids, and benzoic acid were determined as well as organic carbon (OC), elemental carbon (EC) and water-soluble organic carbon (WSOC) in PM2.5 samples collected during the Campaign of Air Quality Research in Beijing 2007 (CAREBeijing-2007) in the urban and suburban areas of Beijing. The objective of this study is to identify the influence of traffic emissions and regional transport to the atmosphere in Beijing during summer. PM2.5 samples collected with or without traffic restriction in Beijing are selected to evaluate the effectiveness of local traffic restriction measure on air pollution reduction. The average concentrations of the total quantified bifunctional organic compounds (TQBOC), total fatty acids and benzoic acid during the entire sampling period were 1184 ± 241 ng m-3, 597 ± 159 ng m-3 and 1496 ± 511ng m-3 in PKU, and 1050 ± 303 ng m-3, 475 ± 114 ng m-3 and 1278 ± 372 ng m-3 in Yufa. Oxalic acid (C2) was found as the most abundant dicarboxylic acid at PKU and Yufa, followed by phthalic acid (Ph). A strong even carbon number predominance with the highest level at palmitic acid (C16:0), followed by stearic acid (C18:0) was found for fatty acids. According to the back trajectories modeling results, the air masses were found to originate mainly from northeast, passing over southeast or south of Beijing (heavily populated, urbanized and industrialized areas), during heavier pollution events, whereas they are mainly from north or northwest sector (mountain areas without serious anthropogenic pollution sources) during cleaner events. The data with wind only from the same sector (minimizing the difference from regional contribution) but with and without traffic restriction in Beijing were analyzed to evaluate the effectiveness of local traffic restriction measure on the reduction of local air pollution in Beijing. The results suggested that the

  10. Dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls, fatty acids and benzoic acid in PM2.5 aerosol collected during CAREBeijing-2007: an effect of traffic restriction on air quality

    NASA Astrophysics Data System (ADS)

    Ho, K. F.; Huang, R.-J.; Kawamura, K.; Tachibana, E.; Lee, S. C.; Ho, S. S. H.; Zhu, T.; Tian, L.

    2015-03-01

    Thirty water-soluble organic species, including dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls, fatty acids and benzoic acid were determined as well as organic carbon (OC), elemental carbon (EC) and water-soluble organic carbon (WSOC) in PM2.5 samples collected during the Campaign of Air Quality Research in Beijing 2007 (CAREBeijing-2007) in the urban and suburban areas of Beijing. The objective of this study is to identify the influence of traffic emissions and regional transport to the atmosphere in Beijing during summer. PM2.5 samples collected with or without traffic restriction in Beijing are selected to evaluate the effectiveness of local traffic restriction measures on air pollution reduction. The average concentrations of the total quantified bifunctional organic compounds (TQBOCs), total fatty acids and benzoic acid during the entire sampling period were 1184±241, 597±159 and 1496±511 ng m-3 in Peking University (PKU), and 1050±303, 475±114 and 1278±372 ng m-3 in Yufa, Beijing. Oxalic acid (C2) was found as the most abundant dicarboxylic acid at PKU and Yufa followed by phthalic acid (Ph). A strong even carbon number predominance with the highest level at stearic acid (C18:0), followed by palmitic acid (C16:0) was found for fatty acids. According to the back trajectories modeling results, the air masses were found to originate mainly from the northeast, passing over the southeast or south of Beijing (heavily populated, urbanized and industrialized areas), during heavier pollution events, whereas they are mainly from the north or northwest sector (mountain areas without serious anthropogenic pollution sources) during less pollution events. The data with wind only from the same sector (minimizing the difference from regional contribution) but with and without traffic restriction in Beijing were analyzed to evaluate the effectiveness of local traffic restriction measures on the reduction of local air pollution in Beijing. The results suggested

  11. Photochemical age of air pollutants, ozone, and secondary organic aerosol in transboundary air observed on Fukue Island, Nagasaki, Japan

    NASA Astrophysics Data System (ADS)

    Irei, Satoshi; Takami, Akinori; Sadanaga, Yasuhiro; Nozoe, Susumu; Yonemura, Seiichiro; Bandow, Hiroshi; Yokouchi, Yoko

    2016-04-01

    To better understand the secondary air pollution in transboundary air over westernmost Japan, ground-based field measurements of the chemical composition of fine particulate matter ( ≤ 1 µm), mixing ratios of trace gas species (CO, O3, NOx, NOy, i-pentane, toluene, and ethyne), and meteorological elements were conducted with a suite of instrumentation. The CO mixing ratio dependence on wind direction showed that there was no significant influence from primary emission sources near the monitoring site, indicating long- and/or mid-range transport of the measured chemical species. Despite the considerably different atmospheric lifetimes of NOy and CO, these mixing ratios were correlated (r2 = 0.67). The photochemical age of the pollutants, t[OH] (the reaction time × the mean concentration of OH radical during the atmospheric transport), was calculated from both the NOx / NOy concentration ratio (NOx / NOy clock) and the toluene / ethyne concentration ratio (hydrocarbon clock). It was found that the toluene / ethyne concentration ratio was significantly influenced by dilution with background air containing 0.16 ppbv of ethyne, causing significant bias in the estimation of t[OH]. In contrast, the influence of the reaction of NOx with O3, a potentially biasing reaction channel on [NOx] / [NOy], was small. The t[OH] values obtained with the NOx / NOy clock ranged from 2.9 × 105 to 1.3 × 108 h molecule cm-3 and were compared with the fractional contribution of the m/z 44 signal to the total signal in the organic aerosol mass spectra (f44, a quantitative oxidation indicator of carboxylic acids) and O3 mixing ratio. The comparison of t[OH] with f44 showed evidence for a systematic increase of f44 as t[OH] increased, an indication of secondary organic aerosol (SOA) formation. To a first approximation, the f44 increase rate was (1.05 ± 0.03) × 10-9 × [OH] h-1, which is comparable to the background-corrected increase rate observed during the New England Air Quality

  12. There's Something in the Air: Indoor Air Quality in Schools.

    ERIC Educational Resources Information Center

    Schmidt, Edward A.

    1994-01-01

    Part 1 of this article, the first in a three-part series of articles that discuss indoor air quality (IAQ) issues affecting schools, provides a general overview of IAQ and discusses the three major health problems associated with IAQ: sick building syndrome, building-related illness, and multiple chemical sensitivity. (MLF)

  13. Progress Toward a Global, EOS-Era Aerosol Air Mass Type Climatology

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2012-01-01

    The MISR and MODIS instruments aboard the NASA Earth Observing System's Terra Satellite have been collecting data containing information about the state of Earth's atmosphere and surface for over eleven years. Data from these instruments have been used to develop a global, monthly climatology of aerosol amount that is widely used as a constraint on climate models, including those used for the 2007 IPCC assessment report. The next frontier in assessing aerosol radiative forcing of climate is aerosol type, and in particular, the absorption properties of major aerosol air masses. This presentation will focus on the prospects for constraining aerosol type globally, and the steps we are taking to apply a combination of satellite and suborbital data to this challenge.

  14. The biofiltration of indoor air: implications for air quality.

    PubMed

    Darlington, A; Chan, M; Malloch, D; Pilger, C; Dixon, M A

    2000-03-01

    An alternative method of maintaining indoor air quality may be through the biofiltration of air recirculating within the structure rather than the traditional approach of ventilation. This approach is currently being investigated. Prior to its acceptance for dealing with volatile organic compounds (VOCs) and CO2, efforts were made to determine whether the incorporation of this amount of biomass into the indoor space can have an (negative) impact on indoor air quality. A relatively large ecologically complex biofilter composed of a ca. 10 m2 bioscrubber, 30 m2 of plantings and a 3,500 litre aquarium were established in a 160 m2 'airtight' room in a recently constructed office building in downtown Toronto. This space maintained ca. 0.2 air changes per hour (ACH) compared to the 15 to 20 ACH (with a 30% refresh rate) of other spaces in the same building. Air quality parameters of concern were total VOCs (TVOCs), formaldehyde and aerial spore counts. TVOC and formaldehyde levels in the biofilter room were the same or significantly less than other spaces in the building despite a much slower refresh rate. Aerial spore levels were slightly higher than other indoor spaces but were well within reported values for 'healthy' indoor spaces. Levels appeared to be dependent on horticultural management practices within the space. Most genera of fungal spores present were common indoors and the other genera were associated with living or dead plant material or soil. From these results, the incorporation of a large amount of biomass associated with indoor biofilters does not in itself lower indoor air quality.

  15. Air Quality Study Using Satellites - Current Capability and Future Plans

    NASA Technical Reports Server (NTRS)

    Bhartia, Pawan K.; Joiner, Joanna; Gleason, James; Liu, Xiong; Torres, Omar; Krotkov, Nickolay; Ziemke, Jerry; Chandra, Sushil

    2008-01-01

    Satellite instruments have had great success in monitoring the stratospheric ozone and in understanding the processes that control its daily to decadal scale variations. This field is now reaching its zenith with a number of satellite instruments from the US, Europe and Canada capping several decades of active research in this field. The primary public policy imperative of this research was to make reliable prediction of increases in biologically active surface UV radiation due to human activity. By contrast retrieval from satellite data of atmospheric constituents and photo-chemically active radiation that affect air quality is a new and growing field that is presenting us with unique challenges in measurement and data interpretation. A key distinction compared to stratospheric sensors is the greatly enhanced role of clouds, aerosols, and surfaces (CAS) in determining the quality and quantity of useful data that is available for air quality research. In our presentation we will use data from several sensors that are currently flying on the A-train satellite constellation, including OMI, MODIS, CLOUDSAT, and CALIPSO, to highlight that CAS can have both positive and negative effects on the information content of satellite measurements. This is in sharp contrast to other fields of remote sensing where CAS are usually considered an interference except in those cases when they are the primary subject of study. Our analysis has revealed that in the reflected wavelengths one often sees much further down into the atmosphere, through most cirrus, than one does in the emitted wavelengths. The lower level clouds provide a nice background against which one can track long-range transport of trace gases and aerosols. In addition, differences in trace gas columns estimated over cloudy and adjacent clear pixels can be used to measure boundary layer trace gases. However, in order to take full advantage of these features it will be necessary to greatly advance our understanding of

  16. Identification of aerosol types over an urban site based on air-mass trajectory classification

    NASA Astrophysics Data System (ADS)

    Pawar, G. V.; Devara, P. C. S.; Aher, G. R.

    2015-10-01

    Columnar aerosol properties retrieved from MICROTOPS II Sun Photometer measurements during 2010-2013 over Pune (18°32‧N; 73°49‧E, 559 m amsl), a tropical urban station in India, are analyzed to identify aerosol types in the atmospheric column. Identification/classification is carried out on the basis of dominant airflow patterns, and the method of discrimination of aerosol types on the basis of relation between aerosol optical depth (AOD500 nm) and Ångström exponent (AE, α). Five potential advection pathways viz., NW/N, SW/S, N, SE/E and L have been identified over the observing site by employing the NOAA-HYSPLIT air mass back trajectory analysis. Based on AE against AOD500 nm scatter plot and advection pathways followed five major aerosol types viz., continental average (CA), marine continental average (MCA), urban/industrial and biomass burning (UB), desert dust (DD) and indeterminate or mixed type (MT) have been identified. In winter, sector SE/E, a representative of air masses traversed over Bay of Bengal and Eastern continental Indian region has relatively small AOD (τpλ = 0.43 ± 0.13) and high AE (α = 1.19 ± 0.15). These values imply the presence of accumulation/sub-micron size anthropogenic aerosols. During pre-monsoon, aerosols from the NW/N sector have high AOD (τpλ = 0.61 ± 0.21), and low AE (α = 0.54 ± 0.14) indicating an increase in the loading of coarse-mode particles over Pune. Dominance of UB type in winter season for all the years (i.e. 2010-2013) may be attributed to both local/transported aerosols. During pre-monsoon seasons, MT is the dominant aerosol type followed by UB and DD, while the background aerosols are insignificant.

  17. Improving ammonia emissions in air quality modelling for France

    NASA Astrophysics Data System (ADS)

    Hamaoui-Laguel, Lynda; Meleux, Frédérik; Beekmann, Matthias; Bessagnet, Bertrand; Génermont, Sophie; Cellier, Pierre; Létinois, Laurent

    2014-08-01

    We have implemented a new module to improve the representation of ammonia emissions from agricultural activities in France with the objective to evaluate the impact of such emissions on the formation of particulate matter modelled with the air quality model CHIMERE. A novel method has been set up for the part of ammonia emissions originating from mineral fertilizer spreading. They are calculated using the one dimensional 1D mechanistic model “VOLT'AIR” which has been coupled with data on agricultural practices, meteorology and soil properties obtained at high spatial resolution (cantonal level). These emissions display high spatiotemporal variations depending on soil pH, rates and dates of fertilization and meteorological variables, especially soil temperature. The emissions from other agricultural sources (animal housing, manure storage and organic manure spreading) are calculated using the national spatialised inventory (INS) recently developed in France. The comparison of the total ammonia emissions estimated with the new approach VOLT'AIR_INS with the standard emissions provided by EMEP (European Monitoring and Evaluation Programme) used currently in the CHIMERE model shows significant differences in the spatiotemporal distributions. The implementation of new ammonia emissions in the CHIMERE model has a limited impact on ammonium nitrate aerosol concentrations which only increase at most by 10% on the average for the considered spring period but this impact can be more significant for specific pollution episodes. The comparison of modelled PM10 (particulate matter with aerodynamic diameter smaller than 10 μm) and ammonium nitrate aerosol with observations shows that the use of the new ammonia emission method slightly improves the spatiotemporal correlation in certain regions and reduces the negative bias on average by 1 μg m-3. The formation of ammonium nitrate aerosol depends not only on ammonia concentrations but also on nitric acid availability, which

  18. 76 FR 76048 - Air Quality Designations for the 2008 Lead (Pb) National Ambient Air Quality Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-06

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 81 RIN 2060-AR17 Air Quality Designations for the 2008 Lead (Pb) National Ambient Air Quality Standards Correction In rule document 2011-29460 appearing on pages 72097-72120 in the issues...

  19. Indoor air quality in Brazilian universities.

    PubMed

    Jurado, Sonia R; Bankoff, Antônia D P; Sanchez, Andrea

    2014-07-11

    This study evaluated the indoor air quality in Brazilian universities by comparing thirty air-conditioned (AC) (n = 15) and naturally ventilated (NV) (n = 15) classrooms. The parameters of interest were indoor carbon dioxide (CO2), temperature, relative humidity (RH), wind speed, viable mold, and airborne dust levels. The NV rooms had larger concentration of mold than the AC rooms (1001.30 ± 125.16 and 367.00 ± 88.13 cfu/m3, respectively). The average indoor airborne dust concentration exceeded the Brazilian standards (<80 µg/m3) in both NV and AC classrooms. The levels of CO2 in the AC rooms were significantly different from the NV rooms (1433.62 ± 252.80 and 520.12 ± 37.25 ppm, respectively). The indoor air quality in Brazilian university classrooms affects the health of students. Therefore, indoor air pollution needs to be considered as an important public health problem.

  20. 40 CFR 52.683 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.683 Section 52.683 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The State of Idaho Rules for Control of Air Pollution in Idaho, specifically... the Clean Air Act for preventing significant deterioration of air quality. (b) The requirements...

  1. 40 CFR 52.683 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.683 Section 52.683 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The State of Idaho Rules for Control of Air Pollution in Idaho, specifically... Air Act for preventing significant deterioration of air quality. (b) The requirements of sections...

  2. 40 CFR 52.683 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.683 Section 52.683 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The State of Idaho Rules for Control of Air Pollution in Idaho, specifically... the Clean Air Act for preventing significant deterioration of air quality. (b) The requirements...

  3. 40 CFR 52.683 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.683 Section 52.683 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The State of Idaho Rules for Control of Air Pollution in Idaho, specifically... the Clean Air Act for preventing significant deterioration of air quality. (b) The requirements...

  4. 30 CFR 250.302 - Definitions concerning air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Definitions concerning air quality. 250.302... Definitions concerning air quality. For purposes of §§ 250.303 and 250.304 of this part: Air pollutant means..., pursuant to section 109 of the Clean Air Act, national primary or secondary ambient air quality...

  5. OMI tropospheric NO2 air mass factors over South America: effects of biomass burning aerosols

    NASA Astrophysics Data System (ADS)

    Castellanos, P.; Boersma, K. F.; Torres, O.; de Haan, J. F.

    2015-03-01

    Biomass burning is an important and uncertain source of aerosols and NOx (NO + NO2) to the atmosphere. OMI observations of tropospheric NO2 are essential for characterizing this emissions source, but inaccuracies in the retrieval of NO2 tropospheric columns due to the radiative effects of aerosols, especially light-absorbing carbonaceous aerosols, are not well understood. It has been shown that the O2-O2 effective cloud fraction and pressure retrieval is sensitive to aerosol optical and physical properties, including aerosol optical depth (AOD). Aerosols implicitly influence the tropospheric air mass factor (AMF) calculations used in the NO2 retrieval through the effective cloud parameters used in the independent pixel approximation. In this work, we explicitly account for the effects of biomass burning aerosols in the tropospheric NO2 AMF calculation by including collocated aerosol extinction vertical profile observations from the CALIOP instrument, and aerosol optical depth (AOD) and single scattering albedo (SSA) retrieved by the OMI near-UV aerosol algorithm (OMAERUV) in the DISAMAR radiative transfer model for cloud-free scenes. Tropospheric AMFs calculated with DISAMAR were benchmarked against AMFs reported in the Dutch OMI NO2 (DOMINO) retrieval; the mean and standard deviation (SD) of the difference was 0.6 ± 8%. Averaged over three successive South American biomass burning seasons (2006-2008), the spatial correlation in the 500 nm AOD retrieved by OMI and the 532 nm AOD retrieved by CALIOP was 0.6, and 72% of the daily OMAERUV AOD observations were within 0.3 of the CALIOP observations. Overall, tropospheric AMFs calculated with observed aerosol parameters were on average 10% higher than AMFs calculated with effective cloud parameters. For effective cloud radiance fractions less than 30%, or effective cloud pressures greater than 800 hPa, the difference between tropospheric AMFs based on implicit and explicit aerosol parameters is on average 6 and 3

  6. What is IAQ. [Indoor Air Quality (IAQ)

    SciTech Connect

    Huff, G.

    1992-01-01

    Does indoor air quality (IAQ) affect you The answer is an emphatic YES Problems affecting indoor air quality can range from a stinky rest room to Sick Building Syndrome. IAQ goes beyond avoiding odors through sufficient ventilation. Many health issues are also involved. IAQ problems are generally complex with no single source causing them. Rather, they result from a combination of several sources that require an organized, but flexible, plan of attack. The purpose of this paper is to define the terms associated with the subject of IAQ, provide some history on the subject, and finally describe my experiences with the continuing process of assessing and remediating problems associated with poor indoor air quality in a new laboratory building.

  7. Commissioning to avoid indoor air quality problems

    SciTech Connect

    Sterling, E.M.; Collett, C.W. ); Turner, S. ); Downing, C.C. )

    1992-10-01

    This paper reports on indoor air quality (IAQ) which has become a pervasive problem plaguing the building industry worldwide. Poor IAQ in commercial and office buildings is primarily related to new building technology, new materials and equipment and energy management operating systems. Occupants of buildings with air quality problems suffer from a common series of symptoms. As early as 1982, ASHRAE, realizing the significance of the problem, produced an IAQ position statement that identified strategies for solving IAQ problems. Many of those strategies have now been implemented, including Standard 62-1989, Ventilation for Acceptable Air Quality; Standard 90.1, Energy Efficient Design of New Buildings Except Low-Rise Residential Buildings; the 100 series of energy standards; and Guideline 1, Guideline for Commissioning of HVAC Systems.

  8. Developing Interoperable Air Quality Community Portals

    NASA Astrophysics Data System (ADS)

    Falke, S. R.; Husar, R. B.; Yang, C. P.; Robinson, E. M.; Fialkowski, W. E.

    2009-04-01

    Web portals are intended to provide consolidated discovery, filtering and aggregation of content from multiple, distributed web sources targeted at particular user communities. This paper presents a standards-based information architectural approach to developing portals aimed at air quality community collaboration in data access and analysis. An important characteristic of the approach is to advance beyond the present stand-alone design of most portals to achieve interoperability with other portals and information sources. We show how using metadata standards, web services, RSS feeds and other Web 2.0 technologies, such as Yahoo! Pipes and del.icio.us, helps increase interoperability among portals. The approach is illustrated within the context of the GEOSS Architecture Implementation Pilot where an air quality community portal is being developed to provide a user interface between the portals and clearinghouse of the GEOSS Common Infrastructure and the air quality community catalog of metadata and data services.

  9. Emerging Latin American air quality regulation

    SciTech Connect

    Hosmer, A.W.; Vitale, E.M.; Guerrero, C.R.; Solorzano-Vincent, L.

    1998-12-31

    Latin America is the most urbanized region in the developing world. In recent years, significant economic growth has resulted in population migration from rural areas to urban centers, as well as in a substantial rise in the standard of living within the Region. These changes have impacted the air quality of Latin American countries as increased numbers of industrial facilities and motor vehicles release pollutants into the air. With the advent of new free trade agreements such as MERCOSUR and NAFTA, economic activity and associated pollutant levels can only be expected to continue to expand in the future. In order to address growing air pollution problems, many Latin America countries including Argentina, Brazil, Chile, Columbia, Costa Rica, and Mexico have passed, or will soon pass, new legislation to develop and strengthen their environmental frameworks with respect to air quality. As a first step toward understanding the impacts that this increased environmental regulation will have, this paper will examine the regulatory systems in six Latin American countries with respect to ambient air quality and for each of these countries: review a short history of the air quality problems within the country; outline the legal and institutional framework including key laws and implementing institutions; summarize in brief the current status of the country in terms of program development and implementation; and identify projected future trends. In addition, the paper will briefly review the international treaties that have bearing on Latin American air quality. Finally, the paper will conclude by identifying and exploring emerging trends in individual countries and the region as a whole.

  10. Formation and growth of indoor air aerosol particles as a result of D-limonene oxidation

    NASA Astrophysics Data System (ADS)

    Vartiainen, E.; Kulmala, M.; Ruuskanen, T. M.; Taipale, R.; Rinne, J.; Vehkamäki, H.

    Oxidation of D-limonene, which is a common monoterpene, can lead to new aerosol particle formation in indoor environments. Thus, products containing D-limonene, such as citrus fruits, air refresheners, household cleaning agents, and waxes, can act as indoor air aerosol particle sources. We released D-limonene into the room air by peeling oranges and measured the concentration of aerosol particles of three different size ranges. In addition, we measured the concentration of D-limonene, the oxidant, and the concentration of ozone, the oxidizing gas. Based on the measurements we calculated the growth rate of the small aerosol particles, which were 3-10 nm in diameter, to be about 6300nmh-1, and the losses of the aerosol particles that were due to the coagulation and condensation processes. From these, we further approximated the concentration of the condensable vapour and its source rate and then calculated the formation rate of the small aerosol particles. For the final result, we calculated the nucleation rate and the maximum number of molecules in a critical cluster. The nucleation rate was in the order of 105cm-3s-1 and the number of molecules in a critical-sized cluster became 1.2. The results were in agreement with the activation theory.

  11. PRIMARY AND SECONDARY ORGANIC AEROSOLS OVER THE UNITED STATES: ESTIMATES ON THE BASIS OF OBSERVED ORGANIC CARBON (OC) AND ELEMENTAL CARBON (EC), AND AIR QUALITY MODELED PRIMARY (OC/EC) RATIOS

    EPA Science Inventory

    The temporal and spatial distributions of primary and secondary organic carbon aerosols (OC) over the continental US during June 15 to August 31, 1999, were estimated by using observational OC and elemental carbon (EC) data from Interagency Monitoring of Protected Visual Environm...

  12. 40 CFR 52.931 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.931 Section 52.931 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) Regulations for preventing significant deterioration of air quality. The..., the Kentucky Division for Air Quality has determined that the application complies with the...

  13. 40 CFR 52.2528 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.2528 Section 52.2528 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of Sections 160 through 165 of the Clean Air... Quality Deterioration. (b) Regulations for Preventing Significant Deterioration of Air Quality,...

  14. 40 CFR 52.931 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.931 Section 52.931 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) Regulations for preventing significant deterioration of air quality. The..., the Kentucky Division for Air Quality has determined that the application complies with the...

  15. 40 CFR 52.2528 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.2528 Section 52.2528 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of Sections 160 through 165 of the Clean Air... Quality Deterioration. (b) Regulations for Preventing Significant Deterioration of Air Quality,...

  16. 40 CFR 52.2451 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.2451 Section 52.2451 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... Quality Deterioration. (b) Regulations for preventing significant deterioration of air quality....

  17. 40 CFR 52.2528 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.2528 Section 52.2528 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of Sections 160 through 165 of the Clean Air... Quality Deterioration. (b) Regulations for Preventing Significant Deterioration of Air Quality,...

  18. 40 CFR 51.320 - Annual air quality data report.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 2 2012-07-01 2012-07-01 false Annual air quality data report. 51.320... REQUIREMENTS FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS Reports Air Quality Data Reporting § 51.320 Annual air quality data report. The requirements for reporting air quality data...

  19. 40 CFR 52.2528 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.2528 Section 52.2528 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of Sections 160 through 165 of the Clean Air... Quality Deterioration. (b) Regulations for Preventing Significant Deterioration of Air Quality,...

  20. 40 CFR 52.2451 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.2451 Section 52.2451 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... Quality Deterioration. (b) Regulations for preventing significant deterioration of air quality....

  1. 40 CFR 52.931 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.931 Section 52.931 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) Regulations for preventing significant deterioration of air quality. The..., the Kentucky Division for Air Quality has determined that the application complies with the...

  2. 40 CFR 52.931 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.931 Section 52.931 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) Regulations for preventing significant deterioration of air quality. The..., the Kentucky Division for Air Quality has determined that the application complies with the...

  3. 40 CFR 52.931 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.931 Section 52.931 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) Regulations for preventing significant deterioration of air quality. The..., the Kentucky Division for Air Quality has determined that the application complies with the...

  4. 40 CFR 52.2451 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.2451 Section 52.2451 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... Quality Deterioration. (b) Regulations for preventing significant deterioration of air quality....

  5. 40 CFR 52.2451 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.2451 Section 52.2451 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... Quality Deterioration. (b) Regulations for preventing significant deterioration of air quality....

  6. 40 CFR 52.2451 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.2451 Section 52.2451 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... Quality Deterioration. (b) Regulations for preventing significant deterioration of air quality....

  7. 40 CFR 51.320 - Annual air quality data report.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 2 2013-07-01 2013-07-01 false Annual air quality data report. 51.320... REQUIREMENTS FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS Reports Air Quality Data Reporting § 51.320 Annual air quality data report. The requirements for reporting air quality data...

  8. 40 CFR 51.320 - Annual air quality data report.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 2 2014-07-01 2014-07-01 false Annual air quality data report. 51.320... REQUIREMENTS FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS Reports Air Quality Data Reporting § 51.320 Annual air quality data report. The requirements for reporting air quality data...

  9. 40 CFR 51.320 - Annual air quality data report.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false Annual air quality data report. 51.320... REQUIREMENTS FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS Reports Air Quality Data Reporting § 51.320 Annual air quality data report. The requirements for reporting air quality data...

  10. 40 CFR 51.320 - Annual air quality data report.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 2 2011-07-01 2011-07-01 false Annual air quality data report. 51.320... REQUIREMENTS FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS Reports Air Quality Data Reporting § 51.320 Annual air quality data report. The requirements for reporting air quality data...

  11. Investigation of infiltration and indoor air quality

    SciTech Connect

    Not Available

    1990-03-01

    A multitask study was performed in the State of New York to provide information for guiding home energy conservation programs while maintaining acceptable indoor air quality. During the study, the statistical distribution of radon concentrations inside 2,400 homes was determined. The relationships among radon levels, house characteristics, and sources were also investigated. The direct impact that two specific air infiltration reduction measures--caulking and weatherstripping of windows and doors, and installation of storm windows and storm doors--have on house air leakage was investigated in 60 homes. The effect of house age on the impact of weatherization was also evaluated. Indoor and outdoor measurements of NO{sub 2}, CO, SO{sub 2}, and respirable suspended particulates (RSP) were made for 400 homes to determine the effect of combustion sources on indoor air quality and to characterize the statistical distribution of the concentrations. Finally, the combustion source data were combined with the information on air infiltration reduction measures to estimate the potential impact of these measures on indoor air quality.

  12. Indoor Air Quality: Is Increased Ventilation the Answer?

    ERIC Educational Resources Information Center

    Hansen, Shirley

    1989-01-01

    Explains how indoor air quality is affected by pollutants in the air and also by temperature, humidity, and ventilation. Increased ventilation alone seldom solves the "sick building syndrome." Lists ways to improve indoor air quality and optimize energy efficiency. (MLF)

  13. New Methods for Air Quality Model Evaluation with Satellite Data

    NASA Astrophysics Data System (ADS)

    Holloway, T.; Harkey, M.

    2015-12-01

    Despite major advances in the ability of satellites to detect gases and aerosols in the atmosphere, there remains significant, untapped potential to apply space-based data to air quality regulatory applications. Here, we showcase research findings geared toward increasing the relevance of satellite data to support operational air quality management, focused on model evaluation. Particular emphasis is given to nitrogen dioxide (NO2) and formaldehyde (HCHO) from the Ozone Monitoring Instrument aboard the NASA Aura satellite, and evaluation of simulations from the EPA Community Multiscale Air Quality (CMAQ) model. This work is part of the NASA Air Quality Applied Sciences Team (AQAST), and is motivated by ongoing dialog with state and federal air quality management agencies. We present the response of satellite-derived NO2 to meteorological conditions, satellite-derived HCHO:NO2 ratios as an indicator of ozone production regime, and the ability of models to capture these sensitivities over the continental U.S. In the case of NO2-weather sensitivities, we find boundary layer height, wind speed, temperature, and relative humidity to be the most important variables in determining near-surface NO2 variability. CMAQ agreed with relationships observed in satellite data, as well as in ground-based data, over most regions. However, we find that the southwest U.S. is a problem area for CMAQ, where modeled NO2 responses to insolation, boundary layer height, and other variables are at odds with the observations. Our analyses utilize a software developed by our team, the Wisconsin Horizontal Interpolation Program for Satellites (WHIPS): a free, open-source program designed to make satellite-derived air quality data more usable. WHIPS interpolates level 2 satellite retrievals onto a user-defined fixed grid, in effect creating custom-gridded level 3 satellite product. Currently, WHIPS can process the following data products: OMI NO2 (NASA retrieval); OMI NO2 (KNMI retrieval); OMI

  14. A novel, fuzzy-based air quality index (FAQI) for air quality assessment

    NASA Astrophysics Data System (ADS)

    Sowlat, Mohammad Hossein; Gharibi, Hamed; Yunesian, Masud; Tayefeh Mahmoudi, Maryam; Lotfi, Saeedeh

    2011-04-01

    The ever increasing level of air pollution in most areas of the world has led to development of a variety of air quality indices for estimation of health effects of air pollution, though the indices have their own limitations such as high levels of subjectivity. Present study, therefore, aimed at developing a novel, fuzzy-based air quality index (FAQI ) to handle such limitations. The index developed by present study is based on fuzzy logic that is considered as one of the most common computational methods of artificial intelligence. In addition to criteria air pollutants (i.e. CO, SO 2, PM 10, O 3, NO 2), benzene, toluene, ethylbenzene, xylene, and 1,3-butadiene were also taken into account in the index proposed, because of their considerable health effects. Different weighting factors were then assigned to each pollutant according to its priority. Trapezoidal membership functions were employed for classifications and the final index consisted of 72 inference rules. To assess the performance of the index, a case study was carried out employing air quality data at five different sampling stations in Tehran, Iran, from January 2008 to December 2009, results of which were then compared to the results obtained from USEPA air quality index (AQI). According to the results from present study, fuzzy-based air quality index is a comprehensive tool for classification of air quality and tends to produce accurate results. Therefore, it can be considered useful, reliable, and suitable for consideration by local authorities in air quality assessment and management schemes. Fuzzy-based air quality index (FAQI).

  15. Evaluation of Air Pollution Applications of AERONET and MODIS Aerosol Column Optical Depth by Comparison with In Situ Measurements of Aerosol Light Scattering and Absorption for Reno, NV, USA

    NASA Astrophysics Data System (ADS)

    Loria Salazar, S.; Arnott, W. P.; Moosmuller, H.; Colucci, D.

    2012-12-01

    Reno, Nevada, USA is subject to typical urban aerosol, wind-blown dust, and occasional biomass burning smoke from anthropogenic and natural fires. Reno has complex air flow at levels relevant for aerosol transport. At times recirculating mountain and urban flow arrives from the Sierra Nevada, San Francisco, CA and Sacramento, CA. The urban plumes are further modified by biogenic forest emissions and secondary aerosol formation during transport over the Sierra Nevada Mountains to Reno. This complicates the use of MODIS aerosol optical depth (AOD) for air quality measurements in Reno. Our laboratory at the University of Nevada Reno has collocated multispectral photoacoustic instruments and reciprocal nephelometers to measure light absorption and light scattering coefficients as well as an AERONET operated CIMEL CE-318 ground-based sunphotometer. Preliminary measurements from August 2011 indicate substantially larger Cimel AOD than could be accounted for by use of the in situ aerosol extinction measurements combined with mixing height estimate. This poster presents new results comparing AERONET AOD and single scattering albedo and MODIS AOD with in situ measurements for summer and fall 2012, along with extensive back trajectory analysis, to evaluate conditions when satellite measurement may be useful for air pollution applications in Reno.

  16. The AirQuality SenseBox

    NASA Astrophysics Data System (ADS)

    Demuth, Dustin; Nuest, Daniel; Bröring, Arne; Pebesma, Edzer

    2013-04-01

    In the past year, a group of open hardware enthusiasts and citizen scientists had large success in the crowd-funding of an open hardware-based sensor platform for air quality monitoring, called the Air Quality Egg. Via the kickstarter platform, the group was able to collect triple the amount of money than needed to fulfill their goals. Data generated by the Air Quality Egg is pushed to the data logging platform cosm.com, which makes the devices a part of the Internet of Things. The project aims at increasing the participation of citizens in the collection of data, the development of sensors, the operation of sensor stations, and, as data on cosm is publicly available, the sharing, visualization and analysis of data. Air Quality Eggs can measure NO2 and CO concentrations, as well as relative humidity and temperature. The chosen sensors are low-cost and have limited precision and accurracy. The Air Quality Egg consists of a stationary outdoor and a stationary indoor unit. Each outdoor unit will wirelessly transmit air quality measurements to the indoor unit, which forwards the data to cosm. Most recent versions of the Air Quality Egg allow a rough calibration of the gas sensors and on-the-fly conversion from raw sensor readings (impedance) to meaningful air quality data expressed in units of parts per billion. Data generated by these low-cost platforms are not intended to replace well-calibrated official monitoring stations, but rather augment the density of the total monitoring network with citizen sensors. To improve the usability of the Air Quality Egg, we present a new and more advanced concept, called the AirQuality SenseBox. We made the outdoor platform more autonomous and location-aware by adding solarpanels and rechargeable batteries as a power source. The AirQuality SenseBox knows its own position from a GPS device attached to the platform. As a mobile sensor platform, it can for instance be attached to vehicles. A low-cost and low-power wireless chipset

  17. Uncertainty in Regional Air Quality Modeling

    NASA Astrophysics Data System (ADS)

    Digar, Antara

    Effective pollution mitigation is the key to successful air quality management. Although states invest millions of dollars to predict future air quality, the regulatory modeling and analysis process to inform pollution control strategy remains uncertain. Traditionally deterministic ‘bright-line’ tests are applied to evaluate the sufficiency of a control strategy to attain an air quality standard. A critical part of regulatory attainment demonstration is the prediction of future pollutant levels using photochemical air quality models. However, because models are uncertain, they yield a false sense of precision that pollutant response to emission controls is perfectly known and may eventually mislead the selection of control policies. These uncertainties in turn affect the health impact assessment of air pollution control strategies. This thesis explores beyond the conventional practice of deterministic attainment demonstration and presents novel approaches to yield probabilistic representations of pollutant response to emission controls by accounting for uncertainties in regional air quality planning. Computationally-efficient methods are developed and validated to characterize uncertainty in the prediction of secondary pollutant (ozone and particulate matter) sensitivities to precursor emissions in the presence of uncertainties in model assumptions and input parameters. We also introduce impact factors that enable identification of model inputs and scenarios that strongly influence pollutant concentrations and sensitivity to precursor emissions. We demonstrate how these probabilistic approaches could be applied to determine the likelihood that any control measure will yield regulatory attainment, or could be extended to evaluate probabilistic health benefits of emission controls, considering uncertainties in both air quality models and epidemiological concentration-response relationships. Finally, ground-level observations for pollutant (ozone) and precursor

  18. High-efficiency particulate air filter test stand and aerosol generator for particle loading studies.

    PubMed

    Arunkumar, R; Hogancamp, Kristina U; Parsons, Michael S; Rogers, Donna M; Norton, Olin P; Nagel, Brian A; Alderman, Steven L; Waggoner, Charles A

    2007-08-01

    This manuscript describes the design, characterization, and operational range of a test stand and high-output aerosol generator developed to evaluate the performance of 30 x 30 x 29 cm(3) nuclear grade high-efficiency particulate air (HEPA) filters under variable, highly controlled conditions. The test stand system is operable at volumetric flow rates ranging from 1.5 to 12 standard m(3)/min. Relative humidity levels are controllable from 5%-90% and the temperature of the aerosol stream is variable from ambient to 150 degrees C. Test aerosols are produced through spray drying source material solutions that are introduced into a heated stainless steel evaporation chamber through an air-atomizing nozzle. Regulation of the particle size distribution of the aerosol challenge is achieved by varying source solution concentrations and through the use of a postgeneration cyclone. The aerosol generation system is unique in that it facilitates the testing of standard HEPA filters at and beyond rated media velocities by consistently providing, into a nominal flow of 7 standard m(3)/min, high mass concentrations (approximately 25 mg/m(3)) of dry aerosol streams having count mean diameters centered near the most penetrating particle size for HEPA filters (120-160 nm). Aerosol streams that have been generated and characterized include those derived from various concentrations of KCl, NaCl, and sucrose solutions. Additionally, a water insoluble aerosol stream in which the solid component is predominantly iron (III) has been produced. Multiple ports are available on the test stand for making simultaneous aerosol measurements upstream and downstream of the test filter. Types of filter performance related studies that can be performed using this test stand system include filter lifetime studies, filtering efficiency testing, media velocity testing, evaluations under high mass loading and high humidity conditions, and determination of the downstream particle size distributions.

  19. High-efficiency particulate air filter test stand and aerosol generator for particle loading studies.

    PubMed

    Arunkumar, R; Hogancamp, Kristina U; Parsons, Michael S; Rogers, Donna M; Norton, Olin P; Nagel, Brian A; Alderman, Steven L; Waggoner, Charles A

    2007-08-01

    This manuscript describes the design, characterization, and operational range of a test stand and high-output aerosol generator developed to evaluate the performance of 30 x 30 x 29 cm(3) nuclear grade high-efficiency particulate air (HEPA) filters under variable, highly controlled conditions. The test stand system is operable at volumetric flow rates ranging from 1.5 to 12 standard m(3)/min. Relative humidity levels are controllable from 5%-90% and the temperature of the aerosol stream is variable from ambient to 150 degrees C. Test aerosols are produced through spray drying source material solutions that are introduced into a heated stainless steel evaporation chamber through an air-atomizing nozzle. Regulation of the particle size distribution of the aerosol challenge is achieved by varying source solution concentrations and through the use of a postgeneration cyclone. The aerosol generation system is unique in that it facilitates the testing of standard HEPA filters at and beyond rated media velocities by consistently providing, into a nominal flow of 7 standard m(3)/min, high mass concentrations (approximately 25 mg/m(3)) of dry aerosol streams having count mean diameters centered near the most penetrating particle size for HEPA filters (120-160 nm). Aerosol streams that have been generated and characterized include those derived from various concentrations of KCl, NaCl, and sucrose solutions. Additionally, a water insoluble aerosol stream in which the solid component is predominantly iron (III) has been produced. Multiple ports are available on the test stand for making simultaneous aerosol measurements upstream and downstream of the test filter. Types of filter performance related studies that can be performed using this test stand system include filter lifetime studies, filtering efficiency testing, media velocity testing, evaluations under high mass loading and high humidity conditions, and determination of the downstream particle size distributions. PMID

  20. High-efficiency particulate air filter test stand and aerosol generator for particle loading studies

    NASA Astrophysics Data System (ADS)

    Arunkumar, R.; Hogancamp, Kristina U.; Parsons, Michael S.; Rogers, Donna M.; Norton, Olin P.; Nagel, Brian A.; Alderman, Steven L.; Waggoner, Charles A.

    2007-08-01

    This manuscript describes the design, characterization, and operational range of a test stand and high-output aerosol generator developed to evaluate the performance of 30×30×29cm3 nuclear grade high-efficiency particulate air (HEPA) filters under variable, highly controlled conditions. The test stand system is operable at volumetric flow rates ranging from 1.5to12standardm3/min. Relative humidity levels are controllable from 5%-90% and the temperature of the aerosol stream is variable from ambient to 150°C. Test aerosols are produced through spray drying source material solutions that are introduced into a heated stainless steel evaporation chamber through an air-atomizing nozzle. Regulation of the particle size distribution of the aerosol challenge is achieved by varying source solution concentrations and through the use of a postgeneration cyclone. The aerosol generation system is unique in that it facilitates the testing of standard HEPA filters at and beyond rated media velocities by consistently providing, into a nominal flow of 7standardm3/min, high mass concentrations (˜25mg/m3) of dry aerosol streams having count mean diameters centered near the most penetrating particle size for HEPA filters (120-160nm). Aerosol streams that have been generated and characterized include those derived from various concentrations of KCl, NaCl, and sucrose solutions. Additionally, a water insoluble aerosol stream in which the solid component is predominantly iron (III) has been produced. Multiple ports are available on the test stand for making simultaneous aerosol measurements upstream and downstream of the test filter. Types of filter performance related studies that can be performed using this test stand system include filter lifetime studies, filtering efficiency testing, media velocity testing, evaluations under high mass loading and high humidity conditions, and determination of the downstream particle size distributions.

  1. Indoor air quality investigation on commercial aircraft.

    PubMed

    Lee, S C; Poon, C S; Li, X D; Luk, F

    1999-09-01

    Sixteen flights had been investigated for indoor air quality (IAQ) on Cathay Pacific aircraft from June 1996 to August 1997. In general, the air quality on Cathay Pacific aircraft was within relevant air quality standards because the average age of aircraft was less than 2 years. Carbon dioxide (CO2) levels on all flights measured were below the Federal Aviation Administration (FAA) standard (30,000 ppm). The CO2 level was substantially higher during boarding and de-boarding than cruise due to low fresh air supply. Humidity on the aircraft was low, especially for long-haul flights. Minimum humidity during cruise was below the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) minimum humidity standard (20%). The average temperature was within a comfortable temperature range of 23 +/- 2 degrees C. The vertical temperature profile on aircraft was uniform and below the International Standard Organization (ISO) standard. Carbon monoxide levels were below the FAA standard (50 ppm). Trace amount of ozone detected ranged from undetectable to 90 ppb, which was below the FAA standard. Particulate level was low for most non-smoking flights, but peaks were observed during boarding and de-boarding. The average particulate level in smoking flights (138 micrograms/m3) was higher than non-smoking flights (7.6 micrograms/m3). The impact on IAQ by switching from low-mode to high-mode ventilation showed a reduction in CO2 levels, temperature, and relative humidity.

  2. Global Aerosol Observations

    Atmospheric Science Data Center

    2013-04-19

    ... atmosphere, directly influencing global climate and human health. Ground-based networks that accurately measure column aerosol amount and ... being used to improve Air Quality Models and for regional health studies. To assess the human-health impact of chronic aerosol exposure, ...

  3. Evaluation of anthropogenic influence on thermodynamics, gas and aerosol composition of city air

    NASA Astrophysics Data System (ADS)

    Uzhegova, Nina; Belan, Boris; Antokhin, Pavel; Zhidovkhin, Evgenii; Ivlev, Georgii; Kozlov, Artem; Fofonov, Aleksandr

    2010-05-01

    In the last 40-50 years there is a global tendency of urbanisation, which is a consequence of most countries' economical development. Concurrently, the issue of environment's ecological state has become critical. Urban air pollution is among the most important ecological problems nowadays. World Health Organization (WHO) points out certain "classical" polluting agents: carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO2), sulphur dioxide (SO2), troposphere ozone (O3) (studied here), as well as lead, carbon dioxide (CO2), aldehydes, soot, benzpyrene and dredges (including dust, haze and smoke) [1]. An evaluation of antropogenic component's weight in the thermodynamical conditions and gas and aerosol composition of a city's atmosphere (by the example of Tomsk) is given in this paper. Tomsk is located at the South of West Siberia and is the administrative center of Tomsk region. The city's area is equal to 294,6 km2. Its population is 512.6 thousands of people. The overall number of registered motor vehicles in the city in 2008 was 131 700. That is, every fourth city inhabitant has a personal car. From 2002 to 2008 the number of motor vehicles in Tomsk has increased by 25 thousands units [2]. This increase consists mostly of passenger cars. There is also a positive trend in fuel consumtion by the city's industries and motor vehicles - from 2004 to 2007 it has increased by 10%. Such a quick rate of transport quantity's increase in the city provides reason to suggest an unfavorable ecological situation in Tomsk. For this study we have used the AKV-2 mobile station designed by the SB RAS Institute of Atmospheric Optics. The station's equipment provides the following measurements [3]: air temperature and humidity; aerosol disperse composition in 15 channels with a particle size range of 0.3-20 µm by use of the Grimm-1.108 aerosol spectrometer; NO, NO2, O3, SO2, CO, CO2 concentration. This paper describes a single experiment conducted in Tomsk. Date of

  4. Study on particulate matter air pollution in Beijing with MODIS aerosol level 2 products

    NASA Astrophysics Data System (ADS)

    Mao, Jietai; Li, Chengcai; Lau, Alexis K.

    2004-09-01

    In the run-up to the 2008 Olympic Games in Beijing, Chinese government officials at both the central and municipal levels are keenly aware that they must transform Beijing into a world-class city. According to the Beijing Municipal Environmental Protection Bureau (BJEPB) to improve its air quality some actions are adopting, including taking steps to increase the forested area surrounding the city preventing dust storms, reducing the automotive vehicles, moving polluting factories now inside the fourth ring road ringing the inner city to locations outside of the fourth ring road, and switching the fuel of public buses and taxis from diesel to natural gas, etc. Will they eliminate most serious environmental problems in Beijing? MODIS aerosol products are helping us to answer this kind of questions. A long-term validation has been finished by sun-photometer observations, and the results proved the relative error of MODIS level 2 products was slightly larger than the estimation of Chu et al. (2002) from the results in most AERONET sites. However, the comparison between the products and moisture-corrected air pollution index (API) data, which were daily released to public by EPB, showed a high correlation coefficient. An air pollution episode in 2003 was investigated by the usage of satellite products. Our conclusion for the air pollution control strategy in Beijing is that only reducing the pollution sources from inner city can't fully solve the pollution problems in Beijing and the regional transports from the nearby southern provinces are contributing a lot to the pollution situation in Beijing.

  5. INDOOR AIR QUALITY MODELING (CHAPTER 58)

    EPA Science Inventory

    The chapter discussses indoor air quality (IAQ) modeling. Such modeling provides a way to investigate many IAQ problems without the expense of large field experiments. Where experiments are planned, IAQ models can be used to help design experiments by providing information on exp...

  6. Managing Indoor Air Quality in Schools.

    ERIC Educational Resources Information Center

    Woolums, Jennifer

    This publication examines the causes and effects of poor indoor air quality and provides information for reducing exposure to indoor contaminants in schools. It discusses the various indoor pollutants found in schools, including dust, chemical agents, gases, and volatile organic compounds; where they are found in schools; and their health effects…

  7. Indoor Air Quality Basics for Schools.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Radiation and Indoor Air.

    This fact sheet details important information on Indoor Air Quality (IAQ) in school buildings, problems associated with IAQ, and various prevention and problem-solving strategies. Most people spend 90 percent of their time indoors, therefore the Environmental Protection Agency ranks IAQ in the top four environmental risks to the public. The…

  8. The Bottom Line For Air Quality.

    ERIC Educational Resources Information Center

    Ellis, Tom

    2000-01-01

    Discusses how the right type of flooring can help schools reduce indoor-air-quality problems. Using vinyl composition flooring to handle moisture and reduce fungi growth is examined as are the benefits of vinyl cushion tufted textile flooring for cost effectiveness, learning environment improvement, installation, and effectiveness in emergencies.…

  9. Shuttle applications in tropospheric air quality observations

    NASA Technical Reports Server (NTRS)

    Friedman, E.; Gupta, J.; Carmichael, J.

    1978-01-01

    The role which might be played by the space shuttle in obtaining data which describes the air quality of the north-eastern United States was investigated. The data requirements of users, a model for statistical interpretation of the observations, the influence of orbit parameters on the spatial and temporal sampling and an example of application of the the model were considered.

  10. Integration of air and water quality issues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The environmental sustainability of dairy farms is dependent upon a number of air and water quality issues. Atmospheric emissions include hazardous compounds such as ammonia and hydrogen sulfide along with greenhouse gases and their implications with global climate change. Runoff of sediment, phosph...

  11. OPTICAL REMOTE SENSING FOR AIR QUALITY MONITORING

    EPA Science Inventory

    The paper outlines recent developments in using optical remote sensing (ORS) instruments for air quality monitoring both for gaseous pollutants and airborne particulate matter (PM). The U.S. Environmental Protection Agency (EPA) has been using open-path Fourier transform infrared...

  12. AIR POLLUTION EFFECTS ON SEMEN QUALITY

    EPA Science Inventory

    The potential impact of exposure to periods of high air pollution on male reproductive health was examined within the framework of an international project conducted in the Czech Republic. Semen quality was evaluated in young men (age 18) living in the Teplice District who are ex...

  13. Indoor Air Quality Guidelines for Pennsylvania Schools.

    ERIC Educational Resources Information Center

    Zimmerman, Robert S., Jr.

    This report provides information and practical guidance on how to prevent indoor air quality (IAQ) problems in schools, and it describes how to implement a practical plan of action using a minimal amount of resources. It includes general guidelines to prevent or help resolve IAQ problems, guidelines on specific indoor contaminants, recommendations…

  14. Quality, compatibility, and synergy analyses of global aerosol products derived from the advanced very high resolution radiometer and Total Ozone Mapping Spectrometer

    NASA Astrophysics Data System (ADS)

    Jeong, Myeong-Jae; Li, Zhanqing

    2005-05-01

    A number of global aerosol products of varying quality, strengths, and weaknesses have been generated. Presented here are synthetic analyses with regard to the quality, compatibility, and synergy of two long-term global (1983-2000) aerosol products derived from the advanced very high resolution radiometer (AVHRR) and the Total Ozone Mapping Spectrometer (TOMS). Four essential aerosol parameters, namely, aerosol optical thickness (AOT) from AVHRR under the Global Aerosol Climatology Project (GACP), TOMS AOT, Ångström exponent (AE) from AVHRR, and TOMS aerosol index (AI) are analyzed together with various ancillary data sets on meteorological fields, ocean color, and ground-based AOT measurements. While the two satellite products reveal some common features, significant discrepancies exist. Reflectances measured at ultraviolet and visible wavelengths from the two sensors are incompatible in terms of the magnitude of AE computed from AOT derived from the two channels. The spatial distributions of the aerosol products from AVHRR and TOMS are complimentary in revealing different aspects of aerosol characteristics. In-depth analyses were carried out over several regions under the influence of different types of aerosols such as biomass burning, dust, sea salt, air pollution, and their mixtures. A classification algorithm was developed to identify dominant types of aerosols around the globe using aerosol products from the two instruments. Aerosol type information is used to develop and apply relationships between the AVHRR AOT and the TOMS AOT. The latter was used to extend the AOT at 0.55 μm over land around the globe. Comparisons of monthly mean AOTs with AERONET monthly mean AOTs showed a general agreement to within an estimated error range of ±0.08 ± 0.20τ. Finally, a comparison between the estimated AOT with Moderate Resolution Imaging Spectroradiometer (MODIS) AOT over land showed good agreement in terms of magnitude and seasonality, suggesting a means of

  15. Equivalence in Ventilation and Indoor Air Quality

    SciTech Connect

    Sherman, Max; Walker, Iain; Logue, Jennifer

    2011-08-01

    We ventilate buildings to provide acceptable indoor air quality (IAQ). Ventilation standards (such as American Society of Heating, Refrigerating, and Air-Conditioning Enginners [ASHRAE] Standard 62) specify minimum ventilation rates without taking into account the impact of those rates on IAQ. Innovative ventilation management is often a desirable element of reducing energy consumption or improving IAQ or comfort. Variable ventilation is one innovative strategy. To use variable ventilation in a way that meets standards, it is necessary to have a method for determining equivalence in terms of either ventilation or indoor air quality. This study develops methods to calculate either equivalent ventilation or equivalent IAQ. We demonstrate that equivalent ventilation can be used as the basis for dynamic ventilation control, reducing peak load and infiltration of outdoor contaminants. We also show that equivalent IAQ could allow some contaminants to exceed current standards if other contaminants are more stringently controlled.

  16. Sensor selection for outdoor air quality monitoring

    NASA Astrophysics Data System (ADS)

    Dorsey, K. L.; Herr, John R.; Pisano, A. P.

    2014-06-01

    Gas chemical monitoring for next-generation robotics applications such as fire fighting, explosive gas detection, ubiquitous urban monitoring, and mine safety require high performance, reliable sensors. In this work, we discuss the performance requirements of fixed-location, mobile vehicle, and personal sensor nodes for outdoor air quality sensing. We characterize and compare the performance of a miniature commercial electrochemical and a metal oxide gas sensor and discuss their suitability for environmental monitoring applications. Metal oxide sensors are highly cross-sensitive to factors that affect chemical adsorption (e.g., air speed, pressure) and require careful enclosure design or compensation methods. In contrast, electrochemical sensors are less susceptible to environmental variations, have very low power consumption, and are well matched for mobile air quality monitoring.

  17. Air Quality at a Ranch Site in the Western Part of the Eagle Ford shale

    NASA Astrophysics Data System (ADS)

    Roest, G. S.; Schade, G. W.; Brooks, S. D.; Zenker, J.

    2015-12-01

    The booming unconventional oil and gas industry in the Eagle Ford shale in southern Texas continues to grow. Modeling studies of the air quality impacts of the Eagle Ford rely on emission inventories that may underestimate emissions from such operations, and air quality monitoring in the area remains limited. We conducted an air quality study on a ranch in Dimmit County, Texas, which was ranked 6th in Texas for natural gas production and 10th in Texas for oil production as of April 2015. An automated GC-FID was used to measure the concentration of hydrocarbons (C3 - C14), with concurrent measurements of CO, CO2, H2O, O3, NO/NOx. In addition, the concentration and sizing of aerosols ranging from 0.6 to 20 µm aerodynamic diameter were measured with a GRIMM aerosol spectrometer (GRIMM 1.108), and meteorological variables including wind speed, direction, temperature, relative humidity, precipitation, and insolation were recorded. We report on local air quality and changes during the process as observed during the measurement campaign. Local drilling on the ranch began in May 2015 and production started in June 2015, at a site approximately 5 km southeast of the air quality trailer. Local air quality showed typically low, near background abundances of CO and NOx early during the campaign, and more frequent local NOx plumes during the drilling and production phases. Aerosol mass measurements were also relatively low and well within attainment of NAAQS particulate matter standards. We assess OH radical reactivity of individual and/or groups of VOCs using observed concentrations and their reaction rate coefficient with OH, the dominant VOC sink in the troposphere.

  18. Fog Induced Aerosol Modification Observed by AERONET, Including Occurrences During Major Air Pollution Events

    NASA Astrophysics Data System (ADS)

    Eck, T. F.; Holben, B. N.; Reid, J. S.; Giles, D. M.; Rivas, M.; Singh, R. P.; Tripathi, S. N.; Bruegge, C. J.; Li, Z.; Platnick, S. E.; Arnold, T.; Ferrare, R. A.; Hostetler, C. A.; Burton, S. P.; Kim, J.; Kim, Y. J.; Sinyuk, A.; Dubovik, O.; Arola, A. T.; Schafer, J.; Artaxo, P.; Smirnov, A.; Chen, H.; Goloub, P.

    2014-12-01

    The modification of aerosol optical properties due to interaction with fog is examined from measurements made by sun/sky radiometers at several AERONET sites. Retrieved total column volume size distributions for cases identified as aerosol modified by fog often show very a large 'middle mode' submicron radius (~0.4 to 0.5 microns), which is typically seen as a component of a bimodal sub-micron distribution. These middle mode sized particles are often called cloud-processed or residual aerosol. This bimodal accumulation mode distribution may be due to one mode (the larger one) from fog-processed aerosol and the other from interstitial aerosol, or possibly from two different aerosol species (differing chemical composition) with differing hygroscopic growth factors. The size of the fine mode particles from AERONET retrieved for these cases exceeds the size of sub-micron sized particles retrieved for nearly all other aerosol types, suggesting significant modification of aerosols within the fog or cloud environment. In-situ measured aerosol size distributions made during other fog events are compared to the AERONET retrievals, and show close agreement in the residual mode particle size. Almucantar retrievals are analyzed from the Kanpur site in the Indo-Gangetic Plain in India (fog in January), Beijing (fog in winter), Fresno, CA in the San Joaquin Valley (fog in winter), South Korea (Yellow Sea fog in spring), Arica on the northern coast of Chile (stratocumulus), and several other sites with aerosol observations made after fog dissipated. Additionally, several major air pollution events are discussed where extremely high aerosol concentrations were measured at the surface and during which fog also occurred, resulting in the detection very large fine mode aerosols (residual mode) from AERONET retrievals in some of these events. Low wind speeds that occurred during these events were conducive to both pollutant accumulation and also fog formation. The presence of fog then

  19. Fog Induced Aerosol Modification Observed by AERONET, Including Occurrences During Major Air Pollution Events

    NASA Astrophysics Data System (ADS)

    Eck, T. F.; Holben, B. N.; Reid, J. S.; Giles, D. M.; Rivas, M.; Singh, R. P.; Tripathi, S. N.; Bruegge, C. J.; Li, Z.; Platnick, S. E.; Arnold, T.; Ferrare, R. A.; Hostetler, C. A.; Burton, S. P.; Kim, J.; Kim, Y. J.; Sinyuk, A.; Dubovik, O.; Arola, A. T.; Schafer, J.; Artaxo, P.; Smirnov, A.; Chen, H.; Goloub, P.

    2015-12-01

    The modification of aerosol optical properties due to interaction with fog is examined from measurements made by sun/sky radiometers at several AERONET sites. Retrieved total column volume size distributions for cases identified as aerosol modified by fog often show very a large 'middle mode' submicron radius (~0.4 to 0.5 microns), which is typically seen as a component of a bimodal sub-micron distribution. These middle mode sized particles are often called cloud-processed or residual aerosol. This bimodal accumulation mode distribution may be due to one mode (the larger one) from fog-processed aerosol and the other from interstitial aerosol, or possibly from two different aerosol species (differing chemical composition) with differing hygroscopic growth factors. The size of the fine mode particles from AERONET retrieved for these cases exceeds the size of sub-micron sized particles retrieved for nearly all other aerosol types, suggesting significant modification of aerosols within the fog or cloud environment. In-situ measured aerosol size distributions made during other fog events are compared to the AERONET retrievals, and show close agreement in the residual mode particle size. Almucantar retrievals are analyzed from the Kanpur site in the Indo-Gangetic Plain in India (fog in January), Beijing (fog in winter), Fresno, CA in the San Joaquin Valley (fog in winter), South Korea (Yellow Sea fog in spring), Arica on the northern coast of Chile (stratocumulus), and several other sites with aerosol observations made after fog dissipated. Additionally, several major air pollution events are discussed where extremely high aerosol concentrations were measured at the surface and during which fog also occurred, resulting in the detection very large fine mode aerosols (residual mode) from AERONET retrievals in some of these events. Low wind speeds that occurred during these events were conducive to both pollutant accumulation and also fog formation. The presence of fog then

  20. 40 CFR 52.432 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Significant deterioration of air quality. 52.432 Section 52.432 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) (b) Regulation for preventing significant deterioration of air quality....

  1. 40 CFR 52.2303 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.2303 Section 52.2303 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The plan submitted by Texas is approved as meeting the requirements of part C, Clean Air Act for preventing significant deterioration of air quality. The...

  2. 40 CFR 52.1485 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.1485 Section 52.1485 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... include approvable procedures for preventing the significant deterioration of air quality. (b)...

  3. 40 CFR 52.833 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.833 Section 52.833 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are met... for preventing significant deterioration of air quality. The provisions of § 52.21 except paragraph...

  4. 40 CFR 52.2303 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.2303 Section 52.2303 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The plan submitted by Texas is approved as meeting the requirements of part C, Clean Air Act for preventing significant deterioration of air quality. The...

  5. 40 CFR 52.1987 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.1987 Section 52.1987 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (d) The requirements of sections 160 through 165 of the Clean Air... Quality rules identified in paragraph (a) of this section, and the Lane Regional Air Pollution...

  6. 40 CFR 52.833 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.833 Section 52.833 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are met... for preventing significant deterioration of air quality. The provisions of § 52.21 except paragraph...

  7. 40 CFR 52.833 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.833 Section 52.833 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are met... for preventing significant deterioration of air quality. The provisions of § 52.21 except paragraph...

  8. 40 CFR 52.1485 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.1485 Section 52.1485 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... include approvable procedures for preventing the significant deterioration of air quality. (b)...

  9. 40 CFR 52.833 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.833 Section 52.833 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are met... for preventing significant deterioration of air quality. The provisions of § 52.21 except paragraph...

  10. 40 CFR 52.1485 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.1485 Section 52.1485 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... include approvable procedures for preventing the significant deterioration of air quality. (b)...

  11. 40 CFR 52.1485 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.1485 Section 52.1485 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... include approvable procedures for preventing the significant deterioration of air quality. (b)...

  12. 40 CFR 52.833 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.833 Section 52.833 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are met... for preventing significant deterioration of air quality. The provisions of § 52.21 except paragraph...

  13. 40 CFR 52.683 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.683 Section 52.683 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The State of Idaho Rules for Control of Air Pollution in Idaho, specifically... quality. (b) The requirements of sections 160 through 165 of the Clean Air Act are not met for...

  14. Satellite remote sensing of particulate matter and air quality assessment over global cities

    NASA Astrophysics Data System (ADS)

    Gupta, Pawan; Christopher, Sundar A.; Wang, Jun; Gehrig, Robert; Lee, Yc; Kumar, Naresh

    Using 1 year of aerosol optical thickness (AOT) retrievals from the MODerate resolution Imaging Spectro-radiometer (MODIS) on board NASA's Terra and Aqua satellite along with ground measurements of PM 2.5 mass concentration, we assess particulate matter air quality over different locations across the global urban areas spread over 26 locations in Sydney, Delhi, Hong Kong, New York City and Switzerland. An empirical relationship between AOT and PM 2.5 mass is obtained and results show that there is an excellent correlation between the bin-averaged daily mean satellite and ground-based values with a linear correlation coefficient of 0.96. Using meteorological and other ancillary datasets, we assess the effects of wind speed, cloud cover, and mixing height (MH) on particulate matter (PM) air quality and conclude that these data are necessary to further apply satellite data for air quality research. Our study clearly demonstrates that satellite-derived AOT is a good surrogate for monitoring PM air quality over the earth. However, our analysis shows that the PM 2.5-AOT relationship strongly depends on aerosol concentrations, ambient relative humidity (RH), fractional cloud cover and height of the mixing layer. Highest correlation between MODIS AOT and PM 2.5 mass is found under clear sky conditions with less than 40-50% RH and when atmospheric MH ranges from 100 to 200 m. Future remote sensing sensors such as Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) that have the capability to provide vertical distribution of aerosols will further enhance our ability to monitor and forecast air pollution. This study is among the first to examine the relationship between satellite and ground measurements over several global locations.

  15. 3D-AQS: a three-dimensional air quality system

    NASA Astrophysics Data System (ADS)

    Hoff, Raymond M.; Engel-Cox, Jill A.; Dimmick, Fred; Szykman, James J.; Johns, Brad; Kondragunta, Shobha; Rogers, Raymond; McCann, Kevin; Chu, D. Allen; Torres, Omar; Prados, Ana; Al-Saadi, Jassim; Kittaka, Chieko; Boothe, Vickie; Ackerman, Steve; Wimmers, Anthony

    2006-08-01

    In 2006, we began a three-year project funded by the NASA Integrated Decisions Support program to develop a three-dimensional air quality system (3D-AQS). The focus of 3D-AQS is on the integration of aerosol-related NASA Earth Science Data into key air quality decision support systems used for air quality management, forecasting, and public health tracking. These will include the U.S. Environmental Protection Agency (EPA)'s Air Quality System/AirQuest and AIRNow, Infusing satellite Data into Environmental Applications (IDEA) product, U.S. Air Quality weblog (Smog Blog) and the Regional East Atmospheric Lidar Mesonet (REALM). The project will result in greater accessibility of satellite and lidar datasets that, when used in conjunction with the ground-based particulate matter monitors, will enable monitoring across horizontal and vertical dimensions. Monitoring in multiple dimensions will enhance the air quality community's ability to monitor and forecast the geospatial extent and transboundary transport of air pollutants, particularly fine particulate matter. This paper describes the concept of this multisensor system and gives current examples of the types of products that will result from it.

  16. [Aerosol optical properties during different air-pollution episodes over Beijing].

    PubMed

    Shi, Chan-Zhen; Yu, Xing-Na; Zhou, Bin; Xiang, Lei; Nie, Hao-Hao

    2013-11-01

    Based on the 2005-2011 data from Aerosol Robotic Network (AERONET), this study conducted analysis on aerosol optical properties over Beijing during different air-pollution episodes (biomass burning, CNY firework, dust storm). The aerosol optical depth (AOD) showed notable increases in the air-pollution episodes while the AOD (at 440 nm) during dust storm was 4. 91, 4. 07 and 2.65 times higher as background, biomass burning and firework aerosols. AOD along with Angstrom exponent (alpha) can be used to determine the aerosol types. The dust aerosol had the highest AOD and the lowest alpha. The alpha value of firework (1.09) was smaller than biomass burning (1.21) and background (1.27), indicating that coarse particles were dominant in the former type. Higher AOD of burnings (than background) can be attributed to the optical extinction capability of black carbon aerosol. The single scattering albedo (SSA) was insensitive to wavelength. The SSA value of dust (0.934) was higher than background (0.878), biomass burning (0.921) and firework (0.905). Additionally, the extremely large SSA of burnings here maybe was caused by the aging smoke, hygroscopic growth and so on. The peak radius of aerosol volume size distributions were 0.1-0.2 microm and 2.24 -3.85 microm in clear and polluted conditions. The value of volume concentration ratio between coarse and fine particles was in the order of clear background (1.04), biomass burning (1.10), CNY firework (1.91) and dust storm (4.96) episode. PMID:24455916

  17. [Aerosol optical properties during different air-pollution episodes over Beijing].

    PubMed

    Shi, Chan-Zhen; Yu, Xing-Na; Zhou, Bin; Xiang, Lei; Nie, Hao-Hao

    2013-11-01

    Based on the 2005-2011 data from Aerosol Robotic Network (AERONET), this study conducted analysis on aerosol optical properties over Beijing during different air-pollution episodes (biomass burning, CNY firework, dust storm). The aerosol optical depth (AOD) showed notable increases in the air-pollution episodes while the AOD (at 440 nm) during dust storm was 4. 91, 4. 07 and 2.65 times higher as background, biomass burning and firework aerosols. AOD along with Angstrom exponent (alpha) can be used to determine the aerosol types. The dust aerosol had the highest AOD and the lowest alpha. The alpha value of firework (1.09) was smaller than biomass burning (1.21) and background (1.27), indicating that coarse particles were dominant in the former type. Higher AOD of burnings (than background) can be attributed to the optical extinction capability of black carbon aerosol. The single scattering albedo (SSA) was insensitive to wavelength. The SSA value of dust (0.934) was higher than background (0.878), biomass burning (0.921) and firework (0.905). Additionally, the extremely large SSA of burnings here maybe was caused by the aging smoke, hygroscopic growth and so on. The peak radius of aerosol volume size distributions were 0.1-0.2 microm and 2.24 -3.85 microm in clear and polluted conditions. The value of volume concentration ratio between coarse and fine particles was in the order of clear background (1.04), biomass burning (1.10), CNY firework (1.91) and dust storm (4.96) episode.

  18. Profile and Remote Sensing Observation Datasets (Trace Gases and Aerosols) for Regional- Scale Model Evaluation under the Air Quality Model Evaluation International Initiative (AQMEII)- North American and European Perspectives

    EPA Science Inventory

    While the vast majority of operational air-pollution networks across the world are designed to measure relevant metrics at the surface, the air pollution problem is a three-dimensional phenomenon. The lack of adequate observations aloft to routinely characterize the nature of ai...

  19. LASE Measurements of Water Vapor, Aerosol, and Cloud Distributions in Saharan Air Layers and Tropical Disturbances

    NASA Technical Reports Server (NTRS)

    Ismail, Syed; Ferrare, Richard A.; Browell, Edward V.; Kooi, Susan A.; Dunion, Jason P.; Heymsfield, Gerry; Notari, Anthony; Butler, Carolyn F.; Burton, Sharon; Fenn, Marta; Krishnamurti, T. N.; Chen, Gao; Anderson, Bruce

    2010-01-01

    LASE (Lidar Atmospheric Sensing Experiment) on-board the NASA DC-8 measured high resolution profiles of water vapor and aerosols, and cloud distributions in 14 flights over the eastern North Atlantic during the NAMMA (NASA African Monsoon Multidisciplinary Analyses) field experiment. These measurements were used to study African easterly waves (AEWs), tropical cyclones (TCs), and the Saharan Air Layer(s) (SAL). Interactions between the SAL and tropical air were observed during the early stages of the TC development. These LASE measurements represent the first simultaneous water vapor and aerosol lidar measurements to study the SAL and its impact on AEWs and TCs. Examples of profile measurements of aerosol scattering ratios, aerosol extinction coefficients, aerosol optical thickness, water vapor mixing ratios, RH, and temperature are presented to illustrate their characteristics in SAL, convection, and clear air regions. LASE data suggest that the SAL suppresses low-altitude convection at the convection-SAL interface region. Mid-level convection associated with the AEW and transport are likely responsible for high water vapor content observed in the southern regions of the SAL on August 20, 2008. This interaction is responsible for the transfer of about 7 x 10(exp 15) J latent heat energy within a day to the SAL. Measurements of lidar extinction-to-backscatter ratios in the range 36+/-5 to 45+/-5 are within the range of measurements from other lidar measurements of dust. LASE aerosol extinction and water vapor profiles are validated by comparison with onboard in situ aerosol measurements and GPS dropsonde water vapor soundings, respectively.

  20. Indoor air quality and health in schools*

    PubMed Central

    Ferreira, Ana Maria da Conceição; Cardoso, Massano

    2014-01-01

    Objective: To determine whether indoor air quality in schools is associated with the prevalence of allergic and respiratory diseases in children. Methods: We evaluated 1,019 students at 51 elementary schools in the city of Coimbra, Portugal. We applied a questionnaire that included questions regarding the demographic, social, and behavioral characteristics of students, as well as the presence of smoking in the family. We also evaluated the indoor air quality in the schools. Results: In the indoor air of the schools evaluated, we identified mean concentrations of carbon dioxide (CO2) above the maximum reference value, especially during the fall and winter. The CO2 concentration was sometimes as high as 1,942 ppm, implying a considerable health risk for the children. The most prevalent symptoms and respiratory diseases identified in the children were sneezing, rales, wheezing, rhinitis, and asthma. Other signs and symptoms, such as poor concentration, cough, headache, and irritation of mucous membranes, were identified. Lack of concentration was associated with CO2 concentrations above the maximum recommended level in indoor air (p = 0.002). There were no other significant associations. Conclusions: Most of the schools evaluated presented with reasonable air quality and thermal comfort. However, the concentrations of various pollutants, especially CO2, suggest the need for corrective interventions, such as reducing air pollutant sources and improving ventilation. There was a statistically significant association between lack of concentration in the children and exposure to high levels of CO2. The overall low level of pollution in the city of Coimbra might explain the lack of other significant associations. PMID:25029649

  1. Fire Influences on Atmospheric Composition, Air Quality, and Climate

    NASA Technical Reports Server (NTRS)

    Voulgarakis, Apostolos; Field, Robert D.

    2015-01-01

    Fires impact atmospheric composition through their emissions, which range from long-lived gases to short-lived gases and aerosols. Effects are typically larger in the tropics and boreal regions but can also be substantial in highly populated areas in the northern mid-latitudes. In all regions, fire can impact air quality and health. Similarly, its effect on large-scale atmospheric processes, including regional and global atmospheric chemistry and climate forcing, can be substantial, but this remains largely unexplored. The impacts are primarily realised in the boundary layer and lower free troposphere but can also be noticeable in upper troposphere/lower stratosphere (UT/LS) region, for the most intense fires. In this review, we summarise the recent literature on findings related to fire impact on atmospheric composition, air quality and climate. We explore both observational and modelling approaches and present information on key regions and on the globe as a whole. We also discuss the current and future directions in this area of research, focusing on the major advances in emission estimates, the emerging efforts to include fire as a component in Earth system modelling and the use of modelling to assess health impacts of fire emissions.

  2. Thermally-driven advections of aerosol-rich air masses to an Alpine valley: Theoretical considerations and experimental evidences

    NASA Astrophysics Data System (ADS)

    Diémoz, Henri; Magri, Tiziana; Pession, Giordano; Zublena, Manuela; Campanelli, Monica; Gobbi, Gian Paolo; Barnaba, Francesca; Di Liberto, Luca; Dionisi, Davide

    2016-04-01

    A CHM-15k laser radar (lidar) was installed in April 2015 at the solar observatory of the Environmental Protection Agency (ARPA) of the Aosta Valley (Northern Italy, 45.74N, 7.36E, 560 m a.s.l.). The instrument operates at 1064 nm, is capable of mapping the vertical profile of aerosols and clouds up to the tropopause and is part of the Alice-net ceilometers network (www.alice-net.eu). The site is in a large Alpine valley floor, in a semi-rural context. Among the most interesting cases observed in the first months of operation, several days characterised by weak synoptic circulation and well-developed, thermally-driven up-valley winds are accompanied by the appearance of a thick aerosol layer in the afternoon. The phenomenon is frequent in Spring and Summer and is likely to be related to easterly airmass advections from polluted sites (e.g., the Po basin) rather than to local emissions. To test this hypothesis, the following method was adopted. First, some case studies were selected and the respective meteorological fields were analysed based on both observations at ground and the high-resolution output of the nonhydrostatic limited-area atmospheric prediction model maintained by the COnsortium for Small-scale MOdelling (COSMO) over the complex orography of the domain. Then, to evaluate the dynamics of the aerosol diffusion in the valley, the chemical transport 2D/3D eulerian Flexible Air quality Regional Model (FARM) was run. Finally, the three-dimensional output of the model was compared to the vertically-resolved aerosol field derived from the lidar-ceilometer soundings. The effects of up-slope winds, and the resulting subsidence along the main axis of the valley, is hypothesised to break up the aerosol layer close to the ground in the middle of the day and to drag the residual layer down into the mixing layer. The measurements by a co-located sun/sky photometer operating in the framework of the EuroSkyRad (ESR) network were additionally analysed to detect any

  3. Improvements to the OMI Near-uv Aerosol Algorithm Using A-train CALIOP and AIRS Observations

    NASA Technical Reports Server (NTRS)

    Torres, O.; Ahn, C.; Zhong, C.

    2014-01-01

    The height of desert dust and carbonaceous aerosols layers and, to a lesser extent, the difficulty in assessing the predominant size mode of these absorbing aerosol types, are sources of uncertainty in the retrieval of aerosol properties from near UV satellite observations. The availability of independent, near-simultaneous measurements of aerosol layer height, and aerosol-type related parameters derived from observations by other A-train sensors, makes possible the direct use of these parameters as input to the OMI (Ozone Monitoring Instrument) near UV retrieval algorithm. A monthly climatology of aerosol layer height derived from observations by the CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) sensor, and real-time AIRS (Atmospheric Infrared Sounder) CO observations are used in an upgraded version of the OMI near UV aerosol algorithm. AIRS CO measurements are used as a reliable tracer of carbonaceous aerosols, which allows the identification of smoke layers in areas and times of the year where the dust-smoke differentiation is difficult in the near-UV. The use of CO measurements also enables the identification of elevated levels of boundary layer pollution undetectable by near UV observations alone. In this paper we discuss the combined use of OMI, CALIOP and AIRS observations for the characterization of aerosol properties, and show a significant improvement in OMI aerosol retrieval capabilities.

  4. Achieving indoor air quality through contaminant control

    SciTech Connect

    Katzel, J.

    1995-07-10

    Federal laws outlining industry`s responsibilities in creating a healthy, hazard-free workspace are well known. OSHA`s laws on interior air pollution establish threshold limit values (TLVs) and permissible exposure limits (PELs) for more than 500 potentially hazardous substances found in manufacturing operations. Until now, OSHA has promulgated regulations only for the manufacturing environment. However, its recently-proposed indoor air quality (IAQ) ruling, if implemented, will apply to all workspaces. It regulates IAQ, including environmental tobacco smoke, and requires employers to write and implement IAQ compliance plans.

  5. 40 CFR 52.1987 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.1987 Section 52.1987 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The Oregon Department of Environmental Quality rules for the prevention of significant deterioration of air quality (provisions of OAR Chapter 340, Divisions 200,...

  6. 40 CFR 51.115 - Air quality data and projections.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 2 2013-07-01 2013-07-01 false Air quality data and projections. 51... quality data and projections. (a) Each plan must contain a summary of data showing existing air quality. (b) Each plan must: (1) Contain a summary of air quality concentrations expected to result...

  7. 40 CFR 52.1987 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.1987 Section 52.1987 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The Oregon Department of Environmental Quality rules for the prevention of significant deterioration of air quality (provisions of OAR Chapter 340, Divisions 200,...

  8. 40 CFR 52.1987 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.1987 Section 52.1987 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The Oregon Department of Environmental Quality rules for the prevention of significant deterioration of air quality (provisions of OAR Chapter 340, Divisions 200,...

  9. 40 CFR 52.1987 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.1987 Section 52.1987 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The Oregon Department of Environmental Quality rules for the prevention of significant deterioration of air quality (provisions of OAR chapter 340, Divisions 200,...

  10. 40 CFR 51.115 - Air quality data and projections.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 2 2012-07-01 2012-07-01 false Air quality data and projections. 51... quality data and projections. (a) Each plan must contain a summary of data showing existing air quality. (b) Each plan must: (1) Contain a summary of air quality concentrations expected to result...

  11. 40 CFR 51.115 - Air quality data and projections.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 2 2011-07-01 2011-07-01 false Air quality data and projections. 51... quality data and projections. (a) Each plan must contain a summary of data showing existing air quality. (b) Each plan must: (1) Contain a summary of air quality concentrations expected to result...

  12. 40 CFR 51.115 - Air quality data and projections.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false Air quality data and projections. 51... quality data and projections. (a) Each plan must contain a summary of data showing existing air quality. (b) Each plan must: (1) Contain a summary of air quality concentrations expected to result...

  13. Rural southeast Texas air quality measurements during the 2006 Texas Air Quality Study.

    PubMed

    Schade, Gunnar W; Khan, Siraj; Park, Changhyoun; Boedeker, Ian

    2011-10-01

    The authors conducted air quality measurements of the criteria pollutants carbon monoxide, nitrogen oxides, and ozone together with meteorological measurements at a park site southeast of College Station, TX, during the 2006 Texas Air Quality Study II (TexAQS). Ozone, a primary focus of the measurements, was above 80 ppb during 3 days and above 75 ppb during additional 8 days in summer 2006, suggestive of possible violations of the ozone National Ambient Air Quality Standard (NAAQS) in this area. In concordance with other air quality measurements during the TexAQS II, elevated ozone mixing ratios coincided with northerly flows during days after cold front passages. Ozone background during these days was as high as 80 ppb, whereas southerly air flows generally provided for an ozone background lower than 40 ppb. Back trajectory analysis shows that local ozone mixing ratios can also be strongly affected by the Houston urban pollution plume, leading to late afternoon ozone increases of as high as 50 ppb above background under favorable transport conditions. The trajectory analysis also shows that ozone background increases steadily the longer a southern air mass resides over Texas after entering from the Gulf of Mexico. In light of these and other TexAQS findings, it appears that ozone air quality is affected throughout east Texas by both long-range and regional ozone transport, and that improvements therefore will require at least a regionally oriented instead of the current locally oriented ozone precursor reduction policies.

  14. ATTENUATION OF SOLAR UV RADIATION BY AEROSOLS DURING AIR POLLUTION EPISODES

    EPA Science Inventory

    Increase in the amount of solar UV radiation reaching the surface due to decrease in stratospheric ozone continues to be a major concern (WMO, 1998). However, recent studies show that absorption and smattering by aerosols during air pollution episode decreases the amount of radi...

  15. Quality screening for air quality monitoring data in China.

    PubMed

    Liu, Jianzheng; Li, Weifeng; Li, Jie

    2016-09-01

    Particulate matter data obtained from the national air quality monitoring network in China has become an essential and critical data source for many current and forthcoming studies as well as the formulation and implementation of air pollution regulatory policies on particulate matter (PM2.5 and PM10). However, the quality control of this data is dubitable and can affect many future studies and policies. This study identifies and elucidates two significant quality control issues with the data. They are PM2.5 levels exceeding concurrent co-located PM10 levels and the registration of same concentrations for consecutive hours at some stations. Future studies utilizing particulate matter data need to acknowledge and address these issues to ensure accurate and reliable results.

  16. Quality screening for air quality monitoring data in China.

    PubMed

    Liu, Jianzheng; Li, Weifeng; Li, Jie

    2016-09-01

    Particulate matter data obtained from the national air quality monitoring network in China has become an essential and critical data source for many current and forthcoming studies as well as the formulation and implementation of air pollution regulatory policies on particulate matter (PM2.5 and PM10). However, the quality control of this data is dubitable and can affect many future studies and policies. This study identifies and elucidates two significant quality control issues with the data. They are PM2.5 levels exceeding concurrent co-located PM10 levels and the registration of same concentrations for consecutive hours at some stations. Future studies utilizing particulate matter data need to acknowledge and address these issues to ensure accurate and reliable results. PMID:27376986

  17. Air quality in Moscow megacity: basic level and extreme cases

    NASA Astrophysics Data System (ADS)

    Pankratova, N.; Skorokhod, A.; Moiseenko, K.

    2012-04-01

    Moscow is one of the largest megacities in the world. Total annual emissions of polluting substances into the atmosphere in Moscow is likely to be about 2,0 mln. t. More than 90% of pollutants are emitted by traffic. Problem of air quality assessment is very urgent for Moscow both to alarm population and to compare with other world megacities. To study contemporary structure of atmospheric pollution over Moscow megacity data on air composition (including CO, NO, NO2, O3, CH4, CO2, SO2, NMHC, aerosol) obtained since 2002 has been analyzed. The monitoring site is located at Moscow State University meteorological observatory on South-West of Moscow. All observations are provided by A.M. Obukhov Institute of Atmospheric Physics RAS. Due to these continuous measurements typical (basic) level of pollution as well as extreme cases have been studied. The relationship between O3, NOx and VOCs were analyzed as well. Due to weather conditions (cyclonic regime is dominated) concentrations of pollutants usually do not reach dangerous levels but sometimes they are high. The case of abnormal hot and dry weather in the summer of 2010 was investigated. Many Russians were suffering from the record-breaking heat and the worst drought in 40 years. The heat was caused by very intensive and stable blocking anticyclone that established in Moscow since June, 18 till August, 18. Anticyclone of such strength has been never observed before. During 33 days in succession surface air temperature exceeded 30°C. During these 2 months troposphere over ETR was almost closed for western winds. Hot weather led to numerous forest and peat fires (about 29,000 cases) with total covered area about 12,000 km2. One of aftermaths was significant change of atmospheric composition. Many cities and settlements were covered by dense haze from fires. Evident presence of high amount of aerosol in the ambient air caused anxiety and application of safeguards. Meanwhile, less obvious increase of concentrations of

  18. [Aircraft cabin air quality: exposure to ozone].

    PubMed

    Uva, António De Sousa

    2002-01-01

    Ozone is the principal component involved in photochemical pollution of the air. As an irritant of the respiratory system, its effects on the health of those exposed to it are characterised essentially by coughing, shortness of breath, chest pain or tightness and alterations to the pulmonary mechanical function. Additionally, a higher frequency and severity of asthmatic exacerbation and the occurrence of eye irritation are linked to environmental exposure to O3. In the early 1960s the first studies on the exposure to O3 in aircraft cabins appeared, prompted by the occurrence of clinical complaints of irritation of the respiratory tract in crewmembers and passengers. The symptoms had hitherto been attributed to the action of other factors, such as the ventilation system and low level of humidity in the air. An updating is done by author of some factors related to the quality of air inside aircraft cabins, namely the exposure to ozone in crewmembers and passengers.

  19. Building ventilation and indoor air quality

    SciTech Connect

    Hollowell, C.D.; Berk, J.V.; Boegel, M.L.; Miksch, R.R.; Nazaroff, W.W.; Traynor, G.W.

    1980-01-01

    Rising energy prices, among other factors, have generated an incentive to reduce ventilation rates and thereby reduce the cost of heating and cooling buildings. Reduced infiltration and ventilation in buildings may significantly increase exposure to indoor contaminants and perhaps have adverse effects on occupant health and comfort. Four indoor air contaminants - carbon monoxide and nitrogen dioxide from gas appliances; formaldehyde from particleboard, plywood, urea-formaldehyde foam insulation, and gas appliances; and radon from building materials, soil, and ground water - are currently receiving considerable attention in the context of potential health risks associated with reduced infiltration and ventilation rates. These air contaminants in conventional and energy efficient buildings were measured and analyzed with a view to assessing their potential health risks and various control strategies capable of lowering pollutant concentrations. Preliminary findings suggest that further intensive studies are needed in order to develop criteria for maintaining acceptable indoor air quality without compromising energy efficiency.

  20. South coast air quality management district

    SciTech Connect

    Not Available

    1989-03-01

    The first of several state-of-the-art sampling instruments to monitor acid fog in the South Coast Air Basin on an on-going basis has been in stalled in Rubidoux by the South Coast Air Quality Management District. The automated equipment, called the Caltech Active Strand Collector (CASC), is part of a long-term acid fog monitoring program developed by AQMD. The collecting process involves drawing a fog-laden air sample into the collector where fog droplets strike a series of teflon strands and run down to a collection trough. The sample is then sent to AQMD's laboratory to determine acidity and chemical composition. The monitoring equipment will be moved to Pomona later this winter, and to Crestline in the spring. Following this initial evaluation period, additional CASC units will be sited in the region.

  1. Altitude characteristics of selected air quality analyzers

    NASA Technical Reports Server (NTRS)

    White, J. H.; Strong, R.; Tommerdahl, J. B.

    1979-01-01

    The effects of altitude (pressure) on the operation and sensitivity of various air quality analyzers frequently flown on aircraft were analyzed. Two ozone analyzers were studied at altitudes from 600 to 7500 m and a nitrogen oxides chemiluminescence detector and a sulfur dioxide flame photometric detector were studied at altitudes from 600 to 3000 m. Calibration curves for altitude corrections to the sensitivity of the instruments are presented along with discussion of observed instrument behavior.

  2. Land use information and air quality planning

    USGS Publications Warehouse

    Reed, Wallace E.; Lewis, John E.

    1975-01-01

    The pilot national land use information system developed by the U.S. Geological Survey in the Central Atlantic Regional Ecological Test Site project has provided an improved technique for estimating emissions, diffusion, and impact patterns of sulfur dioxide (SO2) and particulate matter. Implementation of plans to control air quality requires land use information, which, until this time, has been inadequate. The pilot system, however, provided data for updating information on the sources of point and area emissions of SO2 and particulate matter affecting the Norfolk-Portsmouth area of Virginia for the 1971-72 winter (Dec.-Jan.-Feb.) and the annual 1972 period, and for a future annual period 1985. This emission information is used as input to the Air Quality Display Model of the Environmental Protection Agency to obtain diffusion and impact patterns for the three periods previously mentioned. The results are: (1) During the 1971-72 winter, estimated S02 amounts over an area with a SW-NE axis in the central section of Norfolk exceeded both primary and secondary levels; (2) future annual levels of SO2, estimated by anticipated residential development and point-source changes, are not expected to cause serious deterioration of the region's present air quality; and (3) for the 1971-72 winter and annual 1972 period the diffusion results showed that both primary and secondary standards for particulate matter are regularly exceeded in central Norfolk and Portsmouth. In addition, on the basis of current control programs, the 1985 levels of particulate matter are expected to exceed the presently established secondary air quality standards through central Norfolk and Portsmouth and in certain areas of Virginia Beach.

  3. Indoor Air Quality in Brazilian Universities

    PubMed Central

    Jurado, Sonia R.; Bankoff, Antônia D. P.; Sanchez, Andrea

    2014-01-01

    This study evaluated the indoor air quality in Brazilian universities by comparing thirty air-conditioned (AC) (n = 15) and naturally ventilated (NV) (n = 15) classrooms. The parameters of interest were indoor carbon dioxide (CO2), temperature, relative humidity (RH), wind speed, viable mold, and airborne dust levels. The NV rooms had larger concentration of mold than the AC rooms (1001.30 ± 125.16 and 367.00 ± 88.13 cfu/m3, respectively). The average indoor airborne dust concentration exceeded the Brazilian standards (<80 μg/m3) in both NV and AC classrooms. The levels of CO2 in the AC rooms were significantly different from the NV rooms (1433.62 ± 252.80 and 520.12 ± 37.25 ppm, respectively). The indoor air quality in Brazilian university classrooms affects the health of students. Therefore, indoor air pollution needs to be considered as an important public health problem. PMID:25019268

  4. Urban Air Quality Forecasting in Canada

    NASA Astrophysics Data System (ADS)

    Pavlovic, Radenko; Menard, Sylvain; Cousineau, Sophie; Stroud, Craig; Moran, Michael

    2016-04-01

    Environment and Climate Change Canada has been providing air quality (AQ) forecasts for major Canadian urban centers since 2001. Over this period, the Canadian AQ Forecast Program has expanded and evolved. It currently uses the Regional Air Quality Deterministic Prediction System (RAQDPS) modelling framework. At the heart of the RAQDPS is the GEM-MACH model, an on-line coupled meteorology‒chemistry model configured for a North American domain with 10 km horizontal grid spacing and 80 vertical levels. A statistical post-processing model (UMOS-AQ) is then applied to the RAQDPS hourly forecasts for locations with AQ monitors to reduce point forecast bias and error. These outputs provide the primary guidance from which operational meteorologists disseminate Air Quality Health Index (AQHI) forecasts to the public for major urban centres across Canada. During the 2015 summer Pan Am and Parapan Am Games, which were held in Ontario, Canada, an experimental version of the RAQDPS at 2.5 km horizontal grid spacing was run for a domain over the greater Toronto area. Currently, there is ongoing research to develop and assess AQ systems run at 1 km resolution. This presentation will show analyses of operational AQ forecast performance for several pollutants over the last few years in major Canadian urban centres such as Toronto, Montreal, Vancouver, Ottawa, and Calgary. Trends in observed pollution along with short- and long-term development plans for urban AQ forecasting will also be presented.

  5. Airborne Measurements of Trace Gases and Aerosols in Northern China: EAST-AIRE IOP 2005

    NASA Astrophysics Data System (ADS)

    Li, C.; Dickerson, R. R.; Li, Z.; Stehr, J. W.; Chen, H.; Marufu, L. T.

    2005-12-01

    To characterize the emission, transport and removal of pollutants and aerosols emitted from East Asia, a US-China joint field campaign was conducted from February to April in China under the EAST-AIRE project. Surface and airborne measurements of trace gases and aerosols were made at different locations in northern China. In early April, eight research flights were conducted around Shenyang, an industrialized city with a population of about 6 million, 600 km northeast of Beijing. Parameters measured include SO2, CO, O3, aerosol size distribution, aerosol scattering and absorption coefficients. During 4 of the 8 flights, the research aircraft made spirals over two suburban locations (~50 km south and north of the downtown area of Shenyang) to determine the detailed vertical distribution of trace gases and aerosols. Various weather patterns were encountered, allowing an examination of the roles of atmospheric circulation in transporting local pollutants to much larger areas. For example, the flights made ahead of the cold front showed fairly high concentrations of pollutants above the planetary boundary layer, probably lifted by the upward motion associated with the approaching cold fronts. On the other hand, much lower pollutant levels were found for the flights made behind the cold front. Also observed in one cold-sector flight is a level (~3000 m) with enhanced aerosol scattering but almost undetectable SO2. Back trajectory analysis using NOAA-HYSPLIT model suggests possible dust transport from source regions.

  6. Influenza virus survival in aerosols and estimates of viable virus loss resulting from aerosolization and air-sampling.

    PubMed

    Brown, J R; Tang, J W; Pankhurst, L; Klein, N; Gant, V; Lai, K M; McCauley, J; Breuer, J

    2015-11-01

    Using a Collison nebulizer, aerosols of influenza (A/Udorn/307/72 H3N2) were generated within a controlled experimental chamber, from known starting virus concentrations. Air samples collected after variable suspension times were tested quantitatively using both plaque and polymerase chain reaction assays, to compare the proportion of viable virus against the amount of detectable viral RNA. These experiments showed that whereas influenza RNA copies were well preserved, the number of viable viruses decreased by a factor of 10(4)-10(5). This suggests that air-sampling studies for assessing infection control risks that detect only influenza RNA may greatly overestimate the amount of viable virus available to cause infection.

  7. Analysis of air quality management with emphasis on transportation sources

    NASA Technical Reports Server (NTRS)

    English, T. D.; Divita, E.; Lees, L.

    1980-01-01

    The current environment and practices of air quality management were examined for three regions: Denver, Phoenix, and the South Coast Air Basin of California. These regions were chosen because the majority of their air pollution emissions are related to mobile sources. The impact of auto exhaust on the air quality management process is characterized and assessed. An examination of the uncertainties in air pollutant measurements, emission inventories, meteorological parameters, atmospheric chemistry, and air quality simulation models is performed. The implications of these uncertainties to current air quality management practices is discussed. A set of corrective actions are recommended to reduce these uncertainties.

  8. Aerosol and Cloud Radiative Forcing in China: Preliminary Results from the EAST-AIRE

    NASA Astrophysics Data System (ADS)

    Li, Z.; Cribb, M.; Xia, X.; Chen, H.; Wang, P.

    2005-12-01

    East Asia, and China in particular, is a region that can provide crucial and unique information concerning natural and anthropogenic aerosols and their impact on fundamental climate issues. Until very recently, few observational studies were conducted in this region of heavy aerosol loading and unique properties. The East Asian Study of Tropospheric Aerosols: an International Regional Experiment (EAST-AIRE) is an attempt to more fully characterize the physical, optical and chemical properties of these aerosols in different parts of China. Currently, three ground observation stations have been established under the aegis of this experiment. They include Xianghe (70 km southeast of Beijing), Liaozhong (50 km west of Shenyang), and Tai Lake (central to three mega-cities Shanghai, Hangzhou and Nanjing). Measurements have been taken continuously over different periods of time. The measurements include radiative quantities (for example, longwave and shortwave broadband and narrowband irradiances, etc.), the sky condition from a total sky imager, and aerosol quantities such as optical depth and single-scattering albedo. A preliminary analysis of the data with regards to the aerosol radiative forcing at the top of the atmosphere and at the surface will be presented. Critical to this analysis is the identification of clear skies, which is problematic in this region due to the ubiquitous presence of aerosol in the atmosphere. Another challenge is the discrimination between haze and cloud. The synergy of multiple data sources from the ground and from satellite is shown to help in identifying sky condition so that aerosol and cloud forcing can be determined.

  9. Office Building Occupant's Guide to Indoor Air Quality

    MedlinePlus

    ... building ventilation systems; moisture and humidity; and occupant perceptions and susceptibilities. In addition, there are many other factors that affect comfort or perception of indoor air quality. Controlling indoor air quality ...

  10. Prediction Models are Basis for Rational Air Quality Control

    ERIC Educational Resources Information Center

    Daniels, Anders; Bach, Wilfrid

    1973-01-01

    An air quality control scheme employing meteorological diffusion, time averaging and frequency, and cost-benefit models is discussed. The methods outlined provide a constant feedback system for air quality control. Flow charts and maps are included. (BL)

  11. New Zealand traffic and local air quality.

    PubMed

    Irving, Paul; Moncrieff, Ian

    2004-12-01

    Since 1996 the New Zealand Ministry of Transport (MOT) has been investigating the effects of road transport on local air quality. The outcome has been the government's Vehicle Fleet Emissions Control Strategy (VFECS). This is a programme of measures designed to assist with the improvement in local air quality, and especially in the appropriate management of transport sector emissions. Key to the VFECS has been the development of tools to assess and predict the contribution of vehicle emissions to local air pollution, in a given urban situation. Determining how vehicles behave as an emissions source, and more importantly, how the combined traffic flows contribute to the total emissions within a given airshed location was an important element of the programme. The actual emissions output of a vehicle is more than that determined by a certified emission standard, at the point of manufacture. It is the engine technology's general performance capability, in conjunction with the local driving conditions, that determines its actual emissions output. As vehicles are a mobile emissions source, to understand the effect of vehicle technology, it is necessary to work with the average fleet performance, or "fleet-weighted average emissions rate". This is the unit measure of performance of the general traffic flow that could be passing through a given road corridor or network, as an average, over time. The flow composition can be representative of the national fleet population, but also may feature particular vehicle types in a given locality, thereby have a different emissions 'signature'. A summary of the range of work that has been completed as part of the VFECS programme is provided. The NZ Vehicle Fleet Emissions Model and the derived data set available in the NZ Traffic Emission Rates provide a significant step forward in the consistent analysis of practical, sustainable vehicle emissions policy and air-quality management in New Zealand.

  12. Air quality and human performance. Chapter 16

    SciTech Connect

    Pandolf, K.B.

    1987-09-01

    The various air pollutants have been classified as primary or secondary pollutants. Primary pollutants are emitted directly to the environment from their source and include carbon monoxide, sulfur oxides, nitrogen oxides, and primary particulates. Secondary pollutants develop from interactions of primary pollutants and include ozone, peroxyacetyl nitrate, and certain aerosols. Carbon monoxide does not appear to cause decrements in submaximal exercise performance in healthy individuals; however, cardiovascularly-impaired individuals appear to be at significant risk during submaximal exercise even at low carboxyhemoglobin levels. Maximal exercise performance for healthy individuals seems to be altered by breathing carbon monoxide with the critical concentration being 4.3% carboxyhemoglobin. The threshold level of sulfur dioxide which effects submaximal exercise performance in healthy individuals is between 1.0 and 3.0 ppm while asthmatic individuals and possibly others with pulmonary hyperactivity are affected at a lower threshold concentration between 0.20 and 0.50 ppm. Several studies suggest that healthy and asthmatic individuals may adapt to sulfur but, unfortunately, no research has investigated adaptation to this pollutant during physical exercise. While no studies have been reported which evaluate maximal exercise performance, nitrogen dioxide exposure does not appear to adversely affect submaximal exercise performance in healthy individuals. The physiological performance effects of breathing primary particulates have not been directly evaluated during exercise in man. Ozone exposure does not appear to limit submaximal exercise performance at light to moderate exercise intensities.

  13. 40 CFR 52.382 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Significant deterioration of air quality. 52.382 Section 52.382 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not...

  14. 40 CFR 52.1436 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Significant deterioration of air quality. 52.1436 Section 52.1436 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. The requirements of sections 160 through 165 of the Clean Air...

  15. 40 CFR 52.1436 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 4 2012-07-01 2012-07-01 false Significant deterioration of air quality. 52.1436 Section 52.1436 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. The requirements of sections 160 through 165 of the Clean Air...

  16. 40 CFR 52.343 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.343 Section 52.343 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met for the following categories of sources for preventing the significant deterioration of air...

  17. 40 CFR 52.884 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Significant deterioration of air quality. 52.884 Section 52.884 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of section 160 through 165 of the Clean Air Act, as...

  18. 40 CFR 52.382 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Significant deterioration of air quality. 52.382 Section 52.382 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not...

  19. 40 CFR 52.382 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Significant deterioration of air quality. 52.382 Section 52.382 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not...

  20. 40 CFR 52.884 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Significant deterioration of air quality. 52.884 Section 52.884 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of section 160 through 165 of the Clean Air Act, as...

  1. 40 CFR 52.382 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Significant deterioration of air quality. 52.382 Section 52.382 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not...

  2. 40 CFR 52.1436 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 4 2013-07-01 2013-07-01 false Significant deterioration of air quality. 52.1436 Section 52.1436 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. The requirements of sections 160 through 165 of the Clean Air...

  3. 40 CFR 52.382 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Significant deterioration of air quality. 52.382 Section 52.382 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not...

  4. 40 CFR 52.1436 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 4 2014-07-01 2014-07-01 false Significant deterioration of air quality. 52.1436 Section 52.1436 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. The requirements of sections 160 through 165 of the Clean Air...

  5. 40 CFR 52.884 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Significant deterioration of air quality. 52.884 Section 52.884 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of section 160 through 165 of the Clean Air Act, as...

  6. 40 CFR 52.1436 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Significant deterioration of air quality. 52.1436 Section 52.1436 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. The requirements of sections 160 through 165 of the Clean Air...

  7. 40 CFR 52.343 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.343 Section 52.343 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met for the following categories of sources for preventing the significant deterioration of air...

  8. 40 CFR 52.884 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Significant deterioration of air quality. 52.884 Section 52.884 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of section 160 through 165 of the Clean Air Act, as...

  9. 40 CFR 52.884 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Significant deterioration of air quality. 52.884 Section 52.884 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of section 160 through 165 of the Clean Air Act, as...

  10. 40 CFR 52.343 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.343 Section 52.343 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met for the following categories of sources for preventing the significant deterioration of air...

  11. Parent's Guide to School Indoor Air Quality. Revised

    ERIC Educational Resources Information Center

    Healthy Schools Network, Inc., 2012

    2012-01-01

    Air pollution is air pollution, indoors or out. Good indoor air quality (IAQ) contributes to a favorable learning environment for students, protects health, and supports the productivity of school personnel. In schools in poor repair, leaky roofs and crumbling walls have caused additional indoor air quality problems, including contamination with…

  12. Air Quality and Indoor Environmental Exposures: Clinical Impacts

    EPA Science Inventory

    Indoor air quality (IAQ) is a term which refers to the air quality within and around buildings and homes as it relates to the health and comfort of the occupants. Many ambient (outdoor) air pollutants readily permeate indoor spaces. Because indoor air can be considerably more pol...

  13. Applications of the three-dimensional air quality system to western U.S. air quality: IDEA, smog blog, smog stories, airquest, and the remote sensing information gateway.

    PubMed

    Hoff, Raymond; Zhang, Hai; Jordan, Nikisa; Prados, Ana; Engel-Cox, Jill; Huff, Amy; Weber, Stephanie; Zell, Erica; Kondragunta, Shobha; Szykman, James; Johns, Brad; Dimmick, Fred; Wimmers, Anthony; Al-Saadi, Jay; Kittaka, Chieko

    2009-08-01

    A system has been developed to combine remote sensing and ground-based measurements of aerosol concentration and aerosol light scattering parameters into a three-dimensional view of the atmosphere over the United States. Utilizing passive and active remote sensors from space and the ground, the system provides tools to visualize particulate air pollution in near real time and archive the results for retrospective analyses. The main components of the system (Infusing satellite Data into Environmental Applications [IDEA], the U.S. Air Quality Weblog [Smog Blog], Smog Stories, U.S. Environmental Protection Agency's AIRQuest decision support system, and the Remote Sensing Information Gateway [RSIG]) are described, and the relationship of how data move from one system to another is outlined. To provide examples of how the results can be used to analyze specific pollution episodes, three events (two fires and one wintertime low planetary boundary layer haze) are discussed. Not all tools are useful at all times, and the limitations, including the sparsity of some data, the interference caused by overlying clouds, etc., are shown. Nevertheless, multiple sources of data help a state, local, or regional air quality analyst construct a more thorough picture of a daily air pollution situation than what one would obtain with only surface-based sensors.

  14. LOCAL AIR: Local Aerosol monitoring combining in-situ and Remote Sensing observations

    NASA Astrophysics Data System (ADS)

    Mona, Lucia; Caggiano, Rosa; Donvito, Angelo; Giannini, Vincenzo; Papagiannopoulos, Nikolaos; Sarli, Valentina; Trippetta, Serena

    2015-04-01

    local sources, which in the troposphere, where there are aerosols transported over long distances by the phenomena of atmospheric circulation. The purpose of the LOCAL AIR project is the development of a methodology for using synergistic data at different resolutions (ground measurements, remote sensing from ground and satellite) as an effective tool for the characterization of tropospheric aerosols on a local scale. The backbone of the project is the long-term ground-based measurements collected at CIAO (CNR-IMAA Atmospheric Observatory) plus the CALIPSO observations.. The location of the plethora of instruments and measurements of atmospheric interest available at CNR-IMAA makes it a sample site not only for the realization of the methodology, but also allows a feasibility study of this method in the absence of some by analysis of the measures considered in the scaling down of the algorithm developed. It will be evaluated the applicability and reliability of the algorithm implemented for the characterization of the aerosol content to the ground in other places of special interest. Acknowledgments: LOCAL AIR is supported by PO FSE Basilicata 2007-2013 Azione n. 45/AP/05/2013/REG - CUP: G53G13000300009.

  15. Implications for air quality and the impact of financial and economic crisis in South Spain: Geochemical evolution of atmospheric aerosol in the ceramic region of Bailén

    NASA Astrophysics Data System (ADS)

    Sánchez de la Campa, A. M.; de la Rosa, J. D.

    2014-12-01

    A temporal series study of atmospheric aerosol was performed over the last ten years (2003-2012) in an urban background monitoring station with ceramic industrial influence, in Bailén, SE Spain. Temporal trends of major and minor chemical components of PM10 for a long term data series were investigated, showing that PM10 concentrations have been steadily decreasing over almost a decade, with a statistical significance. Measurements indicate a reduction of elements and components related to the industrial activity of brick-ceramic production (V, Cd, Rb, La, Cr, Ni, As, Pb and SO42-). Conversely, Cu levels define an increasing trend from the beginning of the study period but with the highest step trend since 2011-2012, coinciding with the beginning of the financial and economic crisis in 2008. A similar time evolution pattern of Cu and OC, EC, and K levels may be a tracer of domestic local combustion source, and a new biomass burning source has been identified. Chemical composition of olive tree logs suggest as the combustion of wood with high concentration of Cu can imply an increase of Cu concentration in the atmospheric particles compared with other sources such as traffic.

  16. 40 CFR 52.2682 - Air quality surveillance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 5 2013-07-01 2013-07-01 false Air quality surveillance. 52.2682... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Guam § 52.2682 Air quality... Pollution Control Standards and Regulations” (buffer zones—air quality sampling) are not in conformance...

  17. 40 CFR 52.1280 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.1280 Section 52.1280 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) All applications and other information required pursuant to § 52... Address: Mississippi Department of Environmental Quality, Office of Pollution Control, Air Division,...

  18. 40 CFR 52.2233 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.2233 Section 52.2233 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a)(1) Paragraph 1200-3-9-.01(4)-(0)-2. of Tennessee's regulations... requesting innovative technology waivers which would significantly impact air quality in adjacent states....

  19. 40 CFR 52.1634 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.1634 Section 52.1634 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The plan submitted by the Governor of New Mexico on February 21... adopted by the NMEID on March 9, 1990), Air Quality Control Regulation 707—Permits, Prevention...

  20. 40 CFR 52.2178 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.2178 Section 52.2178 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The South Dakota plan, as submitted, is approved as meeting the... on Indian reservations; (b) Regulations for preventing significant deterioration of air quality....

  1. 40 CFR 52.1280 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.1280 Section 52.1280 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) All applications and other information required pursuant to § 52... Address: Mississippi Department of Environmental Quality, Office of Pollution Control, Air Division,...

  2. 40 CFR 51.190 - Ambient air quality monitoring requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 2 2014-07-01 2014-07-01 false Ambient air quality monitoring... PROGRAMS REQUIREMENTS FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS Ambient Air Quality Surveillance § 51.190 Ambient air quality monitoring requirements. The requirements for monitoring ambient...

  3. 40 CFR 52.2922 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.2922 Section 52.2922 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Northern Mariana Islands § 52.2922 Significant deterioration of air quality. (a) The requirements of... procedures for preventing the significant deterioration of air quality. (b) Regulations for...

  4. 40 CFR 51.190 - Ambient air quality monitoring requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 2 2011-07-01 2011-07-01 false Ambient air quality monitoring... PROGRAMS REQUIREMENTS FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS Ambient Air Quality Surveillance § 51.190 Ambient air quality monitoring requirements. The requirements for monitoring ambient...

  5. 40 CFR 52.2682 - Air quality surveillance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Air quality surveillance. 52.2682... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Guam § 52.2682 Air quality... Pollution Control Standards and Regulations” (buffer zones—air quality sampling) are not in conformance...

  6. 40 CFR 52.1116 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... deterioration of air quality. (b) The following provisions of 40 CFR 52.21 are hereby incorporated and made a... quality. 52.1116 Section 52.1116 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean...

  7. 40 CFR 52.1778 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.1778 Section 52.1778 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a)-(b) (c) All applications and other information required pursuant... Air Quality, 1641 Mail Service Center, Raleigh, North Carolina 27699-1641 or local agencies,...

  8. 40 CFR 52.2682 - Air quality surveillance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 5 2012-07-01 2012-07-01 false Air quality surveillance. 52.2682... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Guam § 52.2682 Air quality... Pollution Control Standards and Regulations” (buffer zones—air quality sampling) are not in conformance...

  9. 40 CFR 52.2682 - Air quality surveillance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 5 2014-07-01 2014-07-01 false Air quality surveillance. 52.2682... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Guam § 52.2682 Air quality... Pollution Control Standards and Regulations” (buffer zones—air quality sampling) are not in conformance...

  10. 40 CFR 52.1116 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... deterioration of air quality. (b) The following provisions of 40 CFR 52.21 are hereby incorporated and made a... quality. 52.1116 Section 52.1116 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean...

  11. 40 CFR 52.2178 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.2178 Section 52.2178 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The South Dakota plan, as submitted, is approved as meeting the... on Indian reservations; (b) Regulations for preventing significant deterioration of air quality....

  12. 40 CFR 52.1634 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.1634 Section 52.1634 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The plan submitted by the Governor of New Mexico on February 21... adopted by the NMEID on March 9, 1990), Air Quality Control Regulation 707—Permits, Prevention...

  13. 40 CFR 52.346 - Air quality monitoring requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Air Quality Monitoring plan as identified at 40 CFR 52.320 (c)(17). The revisions updated the plan to bring it into conformance with the Federal requirements for air quality monitoring as found in 40 CFR... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Air quality monitoring requirements....

  14. 40 CFR 52.2233 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.2233 Section 52.2233 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a)(1) Paragraph 1200-3-9-.01(4)-(0)-2. of Tennessee's regulations... requesting innovative technology waivers which would significantly impact air quality in adjacent states....

  15. 40 CFR 51.190 - Ambient air quality monitoring requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false Ambient air quality monitoring... PROGRAMS REQUIREMENTS FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS Ambient Air Quality Surveillance § 51.190 Ambient air quality monitoring requirements. The requirements for monitoring ambient...

  16. 40 CFR 52.2233 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.2233 Section 52.2233 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a)(1) Paragraph 1200-3-9-.01(4)-(0)-2. of Tennessee's regulations... requesting innovative technology waivers which would significantly impact air quality in adjacent states....

  17. 40 CFR 52.1634 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.1634 Section 52.1634 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The plan submitted by the Governor of New Mexico on February 21... adopted by the NMEID on March 9, 1990), Air Quality Control Regulation 707—Permits, Prevention...

  18. 40 CFR 52.986 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.986 Section 52.986 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The plan submitted by the Governor of Louisiana on August 14, 1984 (as adopted... preventing significant deterioration of air quality. (b) The requirements of sections 160 through 165 of...

  19. 40 CFR 51.190 - Ambient air quality monitoring requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 2 2013-07-01 2013-07-01 false Ambient air quality monitoring... PROGRAMS REQUIREMENTS FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS Ambient Air Quality Surveillance § 51.190 Ambient air quality monitoring requirements. The requirements for monitoring ambient...

  20. 40 CFR 52.14 - State ambient air quality standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 3 2013-07-01 2013-07-01 false State ambient air quality standards. 52.14 Section 52.14 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... quality standards. Any ambient air quality standard submitted with a plan which is less stringent than...