Science.gov

Sample records for aerosol backscatter coefficients

  1. [Obtaining aerosol backscattering coefficient using pure rotational Raman-Mie scattering spectrum].

    PubMed

    Rong, Wei; Chen, Si-Ying; Zhang, Yin-Chao; Chen, He; Guo, Pan

    2012-11-01

    Both the traditional Klett and Fernald methods used to obtain atmospheric aerosol backscattering coefficient require the hypothesis of relationship between the extinction coefficient and backscattering coefficient, and this will bring error. According to the theory that the pure rotational Raman backscattering coefficient is only related to atmospheric temperature and pressure, a new method is presented for inverting aerosol backscattering coefficient, which needed the intensity of elastic scattering and rotational Raman combined with atmospheric temperature and pressure obtained with the sounding balloons in this article. This method can not only eliminate the errors of the traditional Klett and Fernald methods caused by the hypothesis, but also avoid the error caused by the correction of the overlap. Finally, the aerosol backscattering coefficient was acquired by using this method and the data obtained via the Raman-Mie scattering Lidar of our lab. And the result was compared with that of Klett and Fernald. PMID:23387171

  2. Wavelength dependence of aerosol backscatter coefficients obtained by multiple wavelength Lidar measurements

    NASA Technical Reports Server (NTRS)

    Sasano, Y.; Browell, E. V.

    1986-01-01

    Aerosols are often classified into several general types according to their origins and composition, such as maritime, continental, and stratospheric aerosols, and these aerosol types generally have different characteristics in chemical and physical properties. The present study aims at demonstrating the potential for distinguishing these aerosol types by the wavelength dependence of their backscatter coefficients obtained from quantitative analyses of multiple wavelength lidar signals. Data from the NASA Airborne Differential Abosrption lidar (DIAL) S ystems, which can measure aerosol backscatter profiles at wavelenghts of 300, 600, and 1064 nm and ozone profiles of backscatter coefficients for these three wavelength were derived from the observations of aerosols of different types. Observations were performed over the Atlantic Ocean, the Southwestern United States, and French Guyana.

  3. Intercomparison of Remote and Flight Level Measured Aerosol Backscatter Coefficient During GLOBE 2 Pacific Survey Mission

    NASA Technical Reports Server (NTRS)

    Cutten, D. R.; Spinhime, J. D.; Menzies, R. T.; Bowdle, D. A.; Srivastava, V.; Pueschel, R. F.; Clarke, A. D.; Rothermel, J.

    1998-01-01

    Aerosol backscatter coefficient data are examined from two local flights undertaken during NASA's GLObal Backscatter Experiment (GLOBE) in May - June, 1990. During each of these two flights the aircraft traversed different altitudes within a region of the atmosphere defined by the same set of latitude and longitude coordinates. This provides an ideal opportunity to allow flight level measured or modeled aerosol backscafter to be compared with pulsed lidar aerosol backscafter data that were obtained at these same altitudes either earlier or later than the flight level measurements. Aerosol backscafter comparisons were made at 1.06-, 9.11- and 9.25-mm wavelengths, using data from three lidar systems and two aerosol optical counters. The best agreement between all sensor's was found in the altitude region below 7 km where backscafter values were moderately high at all three wavelengths. Above this altitude the pulsed lidar backscafter data at 1.06- and 9.25-mm wavelengths were higher than the flight level data obtained from the CW lidar or derived from the optical counters. Possible reasons are offered to explain this discrepancy. During the Japan local flight, microphysics analysis revealed: (1) evidence of a strong advected seasalt aerosol plume from the marine boundary layer, and (2) where backscatter was low, the large lidar sampling volume included many large particles which were of different chemical composition to the small particle category sampled by the particle counters.

  4. Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients.

    PubMed

    Esselborn, Michael; Wirth, Martin; Fix, Andreas; Tesche, Matthias; Ehret, Gerhard

    2008-01-20

    An airborne high spectral resolution lidar (HSRL) based on an iodine absorption filter and a high-power frequency-doubled Nd:YAG laser has been developed to measure backscatter and extinction coefficients of aerosols and clouds. The instrument was operated aboard the Falcon 20 research aircraft of the German Aerospace Center (DLR) during the Saharan Mineral Dust Experiment in May-June 2006 to measure optical properties of Saharan dust. A detailed description of the lidar system, the analysis of its data products, and measurements of backscatter and extinction coefficients of Saharan dust are presented. The system errors are discussed and airborne HSRL results are compared to ground-based Raman lidar and sunphotometer measurements.

  5. Vertical distribution of near-ground aerosol backscattering coefficient measured by a CCD side-scattering lidar

    NASA Astrophysics Data System (ADS)

    Tao, Zongming; Liu, Dong; Ma, Xiaomin; Shi, Bo; Shan, Huihui; Zhao, Ming; Xie, Chenbo; Wang, Yingjian

    2015-09-01

    The near-ground aerosols have the most impact on the human beings. Its fine spatial and temporal distribution, with which the environmental and meteorological departments concern themselves most, has not been elaborated very well due to the unavailable measurement tools. We present the continuous observations of the vertical profile of near-ground aerosol backscattering coefficients by employing our self-developed side-scattering lidar system based on charge-coupled device camera. During the experimental period from April 2013 to August 2014, four catalogs of aerosol backscattering coefficient profiles are found in the near ground. The continuous measurement is revealed by the contour plots measured during the whole night. These experimental results indicate that the aerosol backscattering coefficients in near ground are inhomogeneous and vary with altitude and time, which are very useful for the model researchers to study the regional air pollution and its climate impact.

  6. Aerosol backscatter studies supporting LAWS

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry

    1989-01-01

    Optimized Royal Signals and Radar Establishment (RSRE), Laser True Airspeed System (LATAS) algorithm for low backscatter conditions was developed. The algorithm converts backscatter intensity measurements from focused continuous-wave (CW) airborne Doppler lidar into backscatter coefficients. The performance of optimized algorithm under marginal backscatter signal conditions was evaluated. The 10.6 micron CO2 aerosol backscatter climatologies were statistically analyzed. Climatologies reveal clean background aerosol mode near 10(exp -10)/kg/sq m/sr (mixing ratio units) through middle and upper troposhere, convective mode associated with planetary boundary layer convective activity, and stratospheric mode associated with volcanically-generated aerosols. Properties of clean background mode are critical to design and simulation studies of Laser Atmospheric Wind Sounder (LAWS), a MSFC facility Instrument on the Earth Observing System (Eos). Previous intercomparisons suggested correlation between aerosol backscatter at CO2 wavelength and water vapor. Field measurements of backscatter profiles with MSFC ground-based Doppler lidar system (GBDLS) were initiated in late FY-88 to coincide with independent program of local rawinsonde releases and overflights by Multi-spectral Atmospheric Mapping Sensor (MAMS), a multi-channel infrared radiometer capable of measuring horizontal and vertical moisture distributions. Design and performance simulation studies for LAWS would benefit from the existence of a relationship between backscatter and water vapor.

  7. Studying the vertical aerosol extinction coefficient by comparing in situ airborne data and elastic backscatter lidar

    NASA Astrophysics Data System (ADS)

    Rosati, Bernadette; Herrmann, Erik; Bucci, Silvia; Fierli, Federico; Cairo, Francesco; Gysel, Martin; Tillmann, Ralf; Größ, Johannes; Gobbi, Gian Paolo; Di Liberto, Luca; Di Donfrancesco, Guido; Wiedensohler, Alfred; Weingartner, Ernest; Virtanen, Annele; Mentel, Thomas F.; Baltensperger, Urs

    2016-04-01

    Vertical profiles of aerosol particle optical properties were explored in a case study near the San Pietro Capofiume (SPC) ground station during the PEGASOS Po Valley campaign in the summer of 2012. A Zeppelin NT airship was employed to investigate the effect of the dynamics of the planetary boundary layer at altitudes between ˜ 50 and 800 m above ground. Determined properties included the aerosol particle size distribution, the hygroscopic growth factor, the effective index of refraction and the light absorption coefficient. The first three parameters were used to retrieve the light scattering coefficient. Simultaneously, direct measurements of both the scattering and absorption coefficient were carried out at the SPC ground station. Additionally, a single wavelength polarization diversity elastic lidar system provided estimates of aerosol extinction coefficients using the Klett method to accomplish the inversion of the signal, for a vertically resolved comparison between in situ and remote-sensing results. Note, however, that the comparison was for the most part done in the altitude range where the overlap function is incomplete and accordingly uncertainties are larger. First, the airborne results at low altitudes were validated with the ground measurements. Agreement within approximately ±25 and ±20 % was found for the dry scattering and absorption coefficient, respectively. The single scattering albedo, ranged between 0.83 and 0.95, indicating the importance of the absorbing particles in the Po Valley region. A clear layering of the atmosphere was observed during the beginning of the flight (until ˜ 10:00 LT - local time) before the mixing layer (ML) was fully developed. Highest extinction coefficients were found at low altitudes, in the new ML, while values in the residual layer, which could be probed at the beginning of the flight at elevated altitudes, were lower. At the end of the flight (after ˜ 12:00 LT) the ML was fully developed, resulting in

  8. Quasi-analytical determination of noise-induced error limits in lidar retrieval of aerosol backscatter coefficient by the elastic, two-component algorithm.

    PubMed

    Sicard, Michaël; Comerón, Adolfo; Rocadenbosch, Francisco; Rodríguez, Alejandro; Muñoz, Constantino

    2009-01-10

    The elastic, two-component algorithm is the most common inversion method for retrieving the aerosol backscatter coefficient from ground- or space-based backscatter lidar systems. A quasi-analytical formulation of the statistical error associated to the aerosol backscatter coefficient caused by the use of real, noise-corrupted lidar signals in the two-component algorithm is presented. The error expression depends on the signal-to-noise ratio along the inversion path and takes into account "instantaneous" effects, the effect of the signal-to-noise ratio at the range where the aerosol backscatter coefficient is being computed, as well as "memory" effects, namely, both the effect of the signal-to-noise ratio in the cell where the inversion is started and the cumulative effect of the noise between that cell and the actual cell where the aerosol backscatter coefficient is evaluated. An example is shown to illustrate how the "instantaneous" effect is reduced when averaging the noise-contaminated signal over a number of cells around the range where the inversion is started.

  9. Use of Lidar Derived Optical Extinction and Backscattering Coefficients Near Cloud Base to Explore Aerosol-Cloud Interactions

    NASA Astrophysics Data System (ADS)

    Han, Zaw; Wu, Yonhgua; Gross, Barry; Moshary, Fred

    2016-06-01

    Combination of microwave radiometer (MWR) and mutlifilter rotating shadowband radiometer (MFRSR) measurement data together with SBDART radiative transfer model to compute cloud optical depth (COD) and cloud droplet effective radius (Reff). Quantify the first aerosol indirect effect using calculated Reff and aerosol extinction from Raman lidar measurement in urban coastal region. Illustrate comparison between ground-based and satellite retrievals. Demonstrate relationship between surface aerosol (PM2.5) loading and Reff. We also explain the sensitivity of aerosol-cloud-index (ACI) depend on the aerosol layer from cloud base height. Potential used of less noisy elastic backscattering to calculate the ACI instead of using Raman extinction. We also present comparison of elastic backscattering and Raman extinction correlation to Reff.

  10. Extracting electron backscattering coefficients from backscattered electron micrographs

    SciTech Connect

    Zupanic, F.

    2010-12-15

    Electron backscattering micrographs possess the so-called Z-contrast, carrying information about the chemical compositions of phases present in microstructures. The intensity at a particular point in the backscattered electron micrograph is proportional to the signal detected at a corresponding point in the scan raster, which is, in turn, proportional to the electron backscattering coefficient of a phase at that point. This article introduces a simple method for extracting the electron backscattering coefficients of phases present in the microstructure, from the backscattered electron micrographs. This method is able to convert the micrograph's greyscale to the backscattering-coefficient-scale. The prerequisite involves the known backscattering coefficients for two phases in the micrograph. In this way, backscattering coefficients of other phases can be determined. The method is unable to determine the chemical compositions of phases or the presence of an element only from analysing the backscattered electron micrograph. Nevertheless, this method was found to be very powerful when combined with energy dispersive spectroscopy, and the calculations of backscattering coefficients. - Research Highlights: {yields}A simple method for extracting the electron backscattering coefficients {yields}The prerequisite is known backscattering coefficients for two phases {yields}The information is complementary to the EDS-results. {yields}This method is especially useful when a phase contains a light element (H, Li, Be, and B)

  11. Quantitative Ultrasound Imaging Using Acoustic Backscatter Coefficients.

    NASA Astrophysics Data System (ADS)

    Boote, Evan Jeffery

    Current clinical ultrasound scanners render images which have brightness levels related to the degree of backscattered energy from the tissue being imaged. These images offer the interpreter a qualitative impression of the scattering characteristics of the tissue being examined, but due to the complex factors which affect the amplitude and character of the echoed acoustic energy, it is difficult to make quantitative assessments of scattering nature of the tissue, and thus, difficult to make precise diagnosis when subtle disease effects are present. In this dissertation, a method of data reduction for determining acoustic backscatter coefficients is adapted for use in forming quantitative ultrasound images of this parameter. In these images, the brightness level of an individual pixel corresponds to the backscatter coefficient determined for the spatial position represented by that pixel. The data reduction method utilized rigorously accounts for extraneous factors which affect the scattered echo waveform and has been demonstrated to accurately determine backscatter coefficients under a wide range of conditions. The algorithms and procedures used to form backscatter coefficient images are described. These were tested using tissue-mimicking phantoms which have regions of varying scattering levels. Another phantom has a fat-mimicking layer for testing these techniques under more clinically relevant conditions. Backscatter coefficient images were also formed of in vitro human liver tissue. A clinical ultrasound scanner has been adapted for use as a backscatter coefficient imaging platform. The digital interface between the scanner and the computer used for data reduction are described. Initial tests, using phantoms are presented. A study of backscatter coefficient imaging of in vivo liver was performed using several normal, healthy human subjects.

  12. Lidar backscattering measurements of background stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Remsberg, E. E.; Northam, G. B.; Butler, C. F.

    1979-01-01

    A comparative lidar-dustsonde experiment was conducted in San Angelo, Texas, in May 1974 in order to estimate the uncertainties in stratospheric-aerosol backscatter for the NASA Langley 48-inch lidar system. The lidar calibration and data-analysis procedures are discussed. Results from the Texas experiment indicate random and systematic uncertainties of 35 and 63 percent, respectively, in backscatter from a background stratospheric-aerosol layer at 20 km.

  13. Multiwavelength Comparison of Modeled and Measured Remote Tropospheric Aerosol Backscatter Over Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Cutten, D. R.; Pueschel, R. F.; Srivastava, V.; Clarke, A. D.; Rothermel, J.; Spinhirne, J. D.; Menzies, R. T.

    1996-01-01

    Aerosol concentrations and size distributions in the middle and upper troposphere over the remote Pacific Ocean were measured with a forward scattering spectrometer probe (FSSP) on the NASA DC-8 aircraft during NASA's Global Backscatter Experiment (GLOBE) in May-June 1990. The FSSP size channels were recalibrated based on refractive index estimates from flight-level aerosol volatility measurements with a collocated laser optical particle counter (LOPC). The recalibrated FSSP size distributions were averaged over 100-s intervals, fitted with lo-normal distributions and used to calculate aerosol backscatter coefficients at selected wavelengths. The FSSP-derived backscatter estimates were averaged over 300-s intervals to reduce large random fluctuations. The smoothed FSSP aerosol backscatter coefficients were then compared with LOPC-derived backscatter values and with backscatter measured at or near flight level from four lidar systems operating at 0.53, 1.06, 9.11, 9.25, and 10.59 micrometers. Agreement between FSSP-derived and lidar-measured backscatter was generally best at flight level in homogeneous aerosol fields and at high backscatter values. FSSP data often underestimated low backscatter values especially at the longer wavelengths due to poor counting statistics for larger particles (greater than 0.8 micrometers diameter) that usually dominate aerosol backscatter at these wavelengths. FSSP data also underestimated backscatter at shorter wavelengths when particles smaller than the FSSP lower cutoff diameter (0.35 micrometers) made significant contributions to the total backscatter.

  14. Retrieval of stratospheric aerosol size distributions and integral properties from simulated lidar backscatter measurements.

    PubMed

    Yue, G K

    2000-10-20

    A new approach for retrieving aerosol properties from extinction spectra is extended to retrieve aerosol properties from lidar backscatter measurements. In this method it is assumed that aerosol properties are expressed as a linear combination of backscatters at three or fewer wavelengths commonly used in lidar measurements. The coefficients in the weighted linear combination are obtained by minimization of the retrieval error averaged for a set of testing size distributions. The formulas can be used easily by investigators to retrieve aerosol properties from lidar backscatter measurements such as the Lidar In-Space Technology Experiment and Pathfinder Instruments for Clouds and Aerosols Spaceborne Observations.

  15. Modeling canopy reflectance and microwave backscattering coefficient

    NASA Technical Reports Server (NTRS)

    Goel, N. S.

    1985-01-01

    Various approaches to model canopy reflectance (CR) in the visible/infrared region and backscattering coefficient (BSC) in the microwave region are compared and contrasted. It is noted that BSC can be related to CR in the source direction (the 'hot spot' direction). By assuming a frequency dependent leaf reflectance and transmittance it is shown that the observed dependence of BSC on leaf area index, leaf angle distribution, angle of incidence, soil moisture content, and frequency can be simulated by a CR model. Thus both BSC and CR can, in principle, be calculated using a single model which has essentially the same parameters as many CR models do.

  16. Backscatter coefficient estimation using tapers with gaps.

    PubMed

    Luchies, Adam C; Oelze, Michael L

    2015-04-01

    When using the backscatter coefficient (BSC) to estimate quantitative ultrasound parameters such as the effective scatterer diameter (ESD) and the effective acoustic concentration (EAC), it is necessary to assume that the interrogated medium contains diffuse scatterers. Structures that invalidate this assumption can affect the estimated BSC parameters in terms of increased bias and variance and decrease performance when classifying disease. In this work, a method was developed to mitigate the effects of echoes from structures that invalidate the assumption of diffuse scattering, while preserving as much signal as possible for obtaining diffuse scatterer property estimates. Backscattered signal sections that contained nondiffuse signals were identified and a windowing technique was used to provide BSC estimates for diffuse echoes only. Experiments from physical phantoms were used to evaluate the effectiveness of the proposed BSC estimation methods. Tradeoffs associated with effective mitigation of specular scatterers and bias and variance introduced into the estimates were quantified. Analysis of the results suggested that discrete prolate spheroidal (PR) tapers with gaps provided the best performance for minimizing BSC error. Specifically, the mean square error for BSC between measured and theoretical had an average value of approximately 1.0 and 0.2 when using a Hanning taper and PR taper respectively, with six gaps. The BSC error due to amplitude bias was smallest for PR (Nω = 1) tapers. The BSC error due to shape bias was smallest for PR (Nω = 4) tapers. These results suggest using different taper types for estimating ESD versus EAC.

  17. Atmospheric aerosol and molecular backscatter imaging effects on direct detection LADAR

    NASA Astrophysics Data System (ADS)

    Youmans, Douglas G.

    2015-05-01

    Backscatter from atmospheric aerosols and molecular nitrogen and oxygen causes "clutter" noise in direct detection ladar applications operating within the atmosphere. The backscatter clutter is more pronounced in multiple pulse, high PRF ladars where pulse-averaging is used to increase operating range. As more and more pulses are added to the wavetrain the backscatter increases. We analyze the imaging of a transmitted Gaussian laser-mode multi-pulse wave-train scatteried off of aerosols and molecules at the focal plane including angular-slew rate resulting from optical tracking, angular lead-angle, and bistatic-optics spatial separation. The defocused backscatter images, from those pulses closest to the receiver, are analyzed using a simple geometrical optics approximation. Methods for estimating the aerosol number density versus altitude and the volume backscatter coefficient of the aerosols are also discussed.

  18. Aerosol backscatter lidar calibration and data interpretation

    NASA Technical Reports Server (NTRS)

    Kavaya, M. J.; Menzies, R. T.

    1984-01-01

    A treatment of the various factors involved in lidar data acquisition and analysis is presented. This treatment highlights sources of fundamental, systematic, modeling, and calibration errors that may affect the accurate interpretation and calibration of lidar aerosol backscatter data. The discussion primarily pertains to ground based, pulsed CO2 lidars that probe the troposphere and are calibrated using large, hard calibration targets. However, a large part of the analysis is relevant to other types of lidar systems such as lidars operating at other wavelengths; continuous wave (CW) lidars; lidars operating in other regions of the atmosphere; lidars measuring nonaerosol elastic or inelastic backscatter; airborne or Earth-orbiting lidar platforms; and lidars employing combinations of the above characteristics.

  19. Particle scattering, backscattering, and absorption coefficients: An in situ closure and sensitivity study

    NASA Astrophysics Data System (ADS)

    Wex, Heike; Neusüß, Christian; Wendisch, Manfred; Stratmann, Frank; Koziar, Christian; Keil, Andreas; Wiedensohler, Alfred; Ebert, Martin

    2002-11-01

    Comparisons between measured and calculated aerosol scattering, backscattering, and absorption coefficients were made based on in situ, ground-based measurements during the Melpitz INTensive (MINT) and Lindenberg Aerosol Characterization Experiment 1998 (LACE 98) field studies. Furthermore, airborne measurements made with the same type of instruments are reviewed and compared with the ground-based measurements. Agreement between measured and calculated values is on the order of ±20% for scattering and backscattering coefficients. A sensitivity analysis showed a large influence on the calculated particle scattering and backscattering coefficients resulting from sizing uncertainties in the measured number size distributions. Measured absorption coefficients were significantly smaller than the corresponding calculated values. The largest uncertainty for the calculated absorption coefficients resulted from the size-dependent fraction of elemental carbon (EC) of the aerosol. A correction for the measured fractions of EC could significantly improve the agreement between measured and calculated absorption coefficients. The overall uncertainty of the calculated values was investigated with a Monte Carlo method by simultaneously and randomly varying the input parameters of the calculations, where the variation of each parameter was bounded by its uncertainty. The measurements were mostly found to be within the range of uncertainties of the calculations, with uncertainties for the calculated scattering and backscattering coefficients of about ±20% and for the absorption coefficients of about ±30%. Thus, to increase the accuracy of calculated scattering, backscattering, and absorption coefficients, it is crucial to further reduce the error in particle number size distribution measurement techniques. In addition, further improvement of the techniques for measuring absorption coefficients and further investigation of the measurement of the fraction of EC of the aerosol is

  20. Vertical Resolved Dust Mass Concentration and Backscatter Coefficient Retrieval of Asian Dust Plume Using Quartz Raman Channel in Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Noh, Young M.; Mueller, Detlef; Shin, Sungkyun

    2016-06-01

    In this work, we present a method for estimating vertical resolved mass concentration of dust immersed in Asian dust plume using Raman scattering of quartz (silicon dioxide, silica). During the Asian dust period of March 15, 16, and 21 in 2010, Raman lidar measurements detected the presence of quartz, and successfully showed the vertical profiles of the quartz backscatter coefficient. Since the Raman backscatter coefficient was connected with the Raman backscatter differential cross section and the number density of quartz molecules, the mass concentration of quartz in the atmosphere can be estimated from the quartz backscatter coefficient. The weight percentage from 40 to 70 % for quartz in the Asian dust was estimated from references. The vertical resolved mass concentration of dust was estimated by quartz mass concentration and weight percentage. We also present a retrieval method to obtain dust backscatter coefficient from the mixed Asian dust and pollutant layer. OPAC (Optical Properties of Aerosol and Clouds) simulations were conducted to calculate dust backscatter coefficient. The retrieved dust mass concentration was used as an input parameter for the OPAC calculations. These approaches in the study will be useful for characterizing the quartz dominated in the atmospheric aerosols and estimating vertical resolved mass concentration of dust. It will be especially applicable for optically distinguishing the dust and non-dust aerosols in studies on the mixing state of Asian dust plume. Additionally, the presented method combined with satellite observations is enable qualitative and quantitative monitoring for Asian dust.

  1. Laser remote sensing of tropospheric aerosol over Southern Ireland using a backscatter Raman LIDAR

    NASA Astrophysics Data System (ADS)

    Ruth, Albert A.; Acheson, Karen; Apituley, Arnoud; Chaikovsky, Anatoli; Nicolae, Doina; Ortiz-Amezcua, Pablo; Stoyanov, Dimitar; Trickl, Thomas

    2016-04-01

    Raman backscatter coefficients, extinction coefficients and lidar ratios were measured with a ground based Raman lidar system at University College Cork, Ireland, during the periods of July 2012 - August 2012, April 2013 - December 2013 and March 2014 - May 2014. Statistical analysis of these parameters in this time provided information about seasonal effects of Raman backscatter coefficients and the altitude of the top of the planetary boundary layer. The mean of the altitude of the top of the planetary boundary layer over these time periods is 950 ± 302 m. The values are larger in summer, 1206 ± 367 m, than in winter, 735 m. The altitude of the top of the planetary boundary layer measured at Cork is lower than most EARLINET stations. Raman backscatter coefficients above and altitude of 2 km are highest in summer and spring where the values are greater than 0.28 Mm‑1 sr‑1. Winter values of Raman backscatter coefficient are less than 0.06 Mm‑1 sr‑1. These seasonal effects are consistent with most EARLINET stations. Large aerosol loads were detected in July 2013 due to a Canadian forest fire event. HYSPLIT air-mass back trajectory models were used to trace the origin of the detected aerosol layers. The aerosol forecast model, MACC, was used to further investigate and verify the propagation of the smoke. The Lidar ratio values and Klett and Raman backscatter coefficients at Cork, for the 4th July, the 7th to 9th of July and the 11th July were compared with observations at Cabauw, Minsk, Granada, Bucharest, Sofia and Garmisch. Lidar ratio values for the smoke detected at Cork were determined to be between 33 sr and 62 sr. The poster will discuss the seasonal changes of Raman backscatter coefficients and the altitude of the top of the planetary boundary layer at Cork. An investigation of a Canadian forest fire event measured at Cork will be compared with other data from the EARLINET database.

  2. Laser remote sensing of tropospheric aerosol over Southern Ireland using a backscatter Raman LIDAR

    NASA Astrophysics Data System (ADS)

    Ruth, Albert A.; Acheson, Karen; Apituley, Arnoud; Chaikovsky, Anatoli; Nicolae, Doina; Ortiz-Amezcua, Pablo; Stoyanov, Dimitar; Trickl, Thomas

    2016-04-01

    Raman backscatter coefficients, extinction coefficients and lidar ratios were measured with a ground based Raman lidar system at University College Cork, Ireland, during the periods of July 2012 - August 2012, April 2013 - December 2013 and March 2014 - May 2014. Statistical analysis of these parameters in this time provided information about seasonal effects of Raman backscatter coefficients and the altitude of the top of the planetary boundary layer. The mean of the altitude of the top of the planetary boundary layer over these time periods is 950 ± 302 m. The values are larger in summer, 1206 ± 367 m, than in winter, 735 m. The altitude of the top of the planetary boundary layer measured at Cork is lower than most EARLINET stations. Raman backscatter coefficients above and altitude of 2 km are highest in summer and spring where the values are greater than 0.28 Mm-1 sr-1. Winter values of Raman backscatter coefficient are less than 0.06 Mm-1 sr-1. These seasonal effects are consistent with most EARLINET stations. Large aerosol loads were detected in July 2013 due to a Canadian forest fire event. HYSPLIT air-mass back trajectory models were used to trace the origin of the detected aerosol layers. The aerosol forecast model, MACC, was used to further investigate and verify the propagation of the smoke. The Lidar ratio values and Klett and Raman backscatter coefficients at Cork, for the 4th July, the 7th to 9th of July and the 11th July were compared with observations at Cabauw, Minsk, Granada, Bucharest, Sofia and Garmisch. Lidar ratio values for the smoke detected at Cork were determined to be between 33 sr and 62 sr. The poster will discuss the seasonal changes of Raman backscatter coefficients and the altitude of the top of the planetary boundary layer at Cork. An investigation of a Canadian forest fire event measured at Cork will be compared with other data from the EARLINET database.

  3. Aerosol Lidar for the Relative Backscatter Amplification Measurements

    NASA Astrophysics Data System (ADS)

    Razenkov, Igor A.; Banakh, Victor A.; Nadeev, Alexander I.

    2016-06-01

    Backscatter amplification presents only in a turbulent atmosphere, when the laser beam is propagates twice through the same inhomogeneities. We proposed technical solution to detect backscatter amplification. An aerosol micro pulse lidar with a beam expansion via receiving telescope was built to study this effect. Our system allows simultaneous detection of two returns from the same scattering volume: exactly on the axis of the laser beam and off the axis.

  4. Backscatter measurements of aerosolized CB simulants with a frequency agile CO2 lidar

    NASA Astrophysics Data System (ADS)

    Vanderbeek, Richard; Gurton, Kristan

    2004-02-01

    A novel windowless chamber was developed to allow aerosol backscatter measurements with a frequency-agile CO2 lidar. The chamber utilizes curtains of air to contain the cloud, thus preventing the inevitable backscatter off of conventional windows from corrupting the desired measurements. This feature is critical because the CO2 lidar has a long (1 μs) pulse and the backscatter off the window cannot be temporally separated from the backscatter off the aerosol in the chamber. The chamber was designed for testing with a variety of CB simulants and interferents in both vapor and aerosol form and has been successfully shown to contain a cloud of known size, concentration, and particle size distribution for 10-15 minutes. This paper shows the results using Arizona road dust that was screened by the manufacturer into 0-3 μm and 5-10 μm particle size distributions. The measurements clearly show the effect of size distribution on the infrared backscatter coefficients as well as the dynamic nature of the size distribution for a population of aerosols. The test methodology and experimental results are presented.

  5. Evolution of the Pinatubo volcanic aerosol column above Pasadena, California observed with a mid-infrared backscatter lidar

    NASA Technical Reports Server (NTRS)

    Tratt, David M.; Menzies, Robert T.

    1995-01-01

    The evolution of the volcanic debris plume originating from the June 1991 eruption of Mt. Pinatubo has been monitored since its genesis using a ground-based backscatter lidar facility sited at the Jet Propulsion Laboratory (JPL). Both absolute and relative pre- and post-Pinatubo backscatter observations are in accord with Mie scattering projections based on measured aerosol particle size distributions reported in the literature. The post-Pinatubo column-integrated backscatter coefficient peaked approximately 400 days after the eruption, and the observed upper boundary of the aerosol column subsided at a rate of approximately 200 m/mon.

  6. Effects of vegetation canopy on the radar backscattering coefficient

    NASA Technical Reports Server (NTRS)

    Mo, T.; Blanchard, B. J.; Schmugge, T. J.

    1983-01-01

    Airborne L- and C-band scatterometer data, taken over both vegetation-covered and bare fields, were systematically analyzed and theoretically reproduced, using a recently developed model for calculating radar backscattering coefficients of rough soil surfaces. The results show that the model can reproduce the observed angular variations of radar backscattering coefficient quite well via a least-squares fit method. Best fits to the data provide estimates of the statistical properties of the surface roughness, which is characterized by two parameters: the standard deviation of surface height, and the surface correlation length. In addition, the processes of vegetation attenuation and volume scattering require two canopy parameters, the canopy optical thickness and a volume scattering factor. Canopy parameter values for individual vegetation types, including alfalfa, milo and corn, were also determined from the best-fit results. The uncertainties in the scatterometer data were also explored.

  7. Reference Phantom Method for Acoustic Backscatter Coefficient and Attenuation Coefficient Measurements.

    NASA Astrophysics Data System (ADS)

    Yao, Linxin

    1990-08-01

    In previous work in our laboratory accurate backscatter coefficient measurements were obtained with a data reduction method that explicitly accounts for experimental factors involved in recording echo data. An alternative, relative processing method for determining the backscatter coefficient and the attenuation coefficient is presented here. This method involves comparison of echo data from a sample with data recorded from a reference phantom whose backscatter and attenuation coefficients are known. The ratio of the signals cancels depth-dependent instrumentation factors. This saves the efforts of beam profile computation and various calibrations. The attenuation coefficient and backscatter coefficient of the sample are found from these ratios and the known acoustic properties of the reference phantom. This method is tested using tissue-mimicking phantoms with known scattering and attenuation properties. Various experiments have been done using clinical scanners with different transducers to compute attenuation coefficients and backscatter coefficients, and to make quantitative images. This method has been found to be accurate for media containing Rayleigh scatterers, as well as samples containing intermediate-size scatterers. Accuracy was maintained over different frequency bands and for a wide range of transducer-to-ROI distances. Measurements were done in vivo for human livers, kidneys and dog myocardium. The results have shown that the reference phantom method simplifies the measurement procedure as well as keeps the accuracy, and therefore is practical clinically. Statistical uncertainties propagated in the data reduction have been analyzed in detail. Formulae are deduced to predict statistical errors in the attenuation and backscatter coefficients measured with the reference phantom method. Spatial correlations of the echo signals are also considered. A 2-dimensional lateral correlation matrix is introduced to compute the number of effective independent

  8. Relating the radar backscattering coefficient to leaf-area index

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T. (Principal Investigator); Allen, C.; Eger, G.; Kanemasu, E.

    1983-01-01

    The relationship between the radar backscattering coefficient of a vegetation canopy, sigma(0) sub can, and the canopy's leaf area index (LAI) is examined. The relationship is established through the development of a model for corn and sorghum and another for wheat. Both models are extensions of the cloud model of Attema and Ulaby (1978). Analysis of experimental data measured at 8.6, 13.0, 17.0, and 35.6 GHz indicates that most of the temporal variations of sigma(0) sub can can be accounted for through variations in green LAI alone, if the latter is greater than 0.5.

  9. Relating the microwave backscattering coefficient to leaf area index

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Allen, C. T.; Eger, G., III; Kanemasu, E.

    1984-01-01

    This paper examines the relationship between the microwave backscattering coefficient of a vegetation canopy, sigma (can, 0) and the canopy's leaf area index (LAI). The relationship is established through the development of one model for corn and sorghum and another for wheat. Both models are extensions of the cloud model of Attema and Ulaby (1978). Analysis of experimental data measured at 8.6, 13.0, 17.0, and 35.6 GHz indicates that most of the temporal variations of sigma (can, 0) can be accounted for through variations in green LAI alone, if the latter is greater than 0.5.

  10. Comparison of Modeled Backscatter using Measured Aerosol Microphysics with Focused CW Lidar Data over Pacific

    NASA Technical Reports Server (NTRS)

    Srivastava, Vandana; Clarke, Antony D.; Jarzembski, Maurice A.; Rothermel, Jeffry

    1997-01-01

    During NASA's GLObal Backscatter Experiment (GLOBE) II flight mission over the Pacific Ocean in May-June 1990, extensive aerosol backscatter data sets from two continuous wave, focused CO2 Doppler lidars and an aerosol microphysics data set from a laser optical particle counter (LOPC) were obtained. Changes in aerosol loading in various air masses with associated changes in chemical composition, from sulfuric acid and sulfates to dustlike crustal material, significantly affected aerosol backscatter, causing variation of about 3 to 4 orders of magnitude. Some of the significant backscatter features encountered in different air masses were the low backscatter in subtropical air with even lower values in the tropics near the Intertropical Convergence Zone (ITCZ), highly variable backscatter in the ITCZ, mid-tropospheric aerosol backscatter background mode, and high backscatter in an Asian dust plume off the Japanese coast. Differences in aerosol composition and backscatter for northern and southern hemisphere also were observed. Using the LOPC measurements of physical and chemical aerosol properties, we determined the complex refractive index from three different aerosol mixture models to calculate backscatter. These values provided a well-defined envelope of modeled backscatter for various atmospheric conditions, giving good agreement with the lidar data over a horizontal sampling of approximately 18000 km in the mid-troposphere.

  11. Backscattering measurements of atmospheric aerosols at CO2 laser wavelengths: implications of aerosol spectral structure on differential-absorption lidar retrievals of molecular species.

    PubMed

    Ben-David, A

    1999-04-20

    The volume backscattering coefficients of atmospheric aerosol were measured with a tunable CO2 lidar system at various wavelengths in Utah (a desert environment) along a horizontal path a few meters above the ground. In deducing the aerosol backscattering, a deconvolution (to remove the smearing effect of the long CO2 lidar pulse and the lidar limited bandwidth) and a constrained-slope method were employed. The spectral shape beta(lambda) was similar for all the 13 measurements during a 3-day period. A mean aerosol backscattering-wavelength dependence beta(lambda) was computed from the measurements and used to estimate the error Delta(CL) (concentration-path-length product) in differential-absorption lidar measurements for various gases caused by the systematic aerosol differential backscattering and the error that is due to fluctuations in the aerosol backscattering. The water-vapor concentration-path-length product CL and the average concentration C = /L for a path length L computed from the range-resolved lidar measurements is consistently in good agreement with the water-vapor concentration measured by a meteorological station. However, I was unable to deduce, reliably, the range-resolved water-vapor concentration C(r), which is the derivative of the range-dependent product CL, because of the effect of residual noise caused mainly by errors in the deconvolved lidar measurements.

  12. Potential of lidar backscatter data to estimate solar aerosol radiative forcing

    NASA Astrophysics Data System (ADS)

    Wendisch, Manfred; Müller, Detlef; Mattis, Ina; Ansmann, Albert

    2006-02-01

    The potential to estimate solar aerosol radiative forcing (SARF) in cloudless conditions from backscatter data measured by widespread standard lidar has been investigated. For this purpose 132 days of sophisticated ground-based Raman lidar observations (profiles of particle extinction and backscatter coefficients at 532 nm wavelength) collected during two campaigns [the European Aerosol Research Lidar Network (EARLINET) and the Indian Ocean Experiment (INDOEX)] were analyzed. Particle extinction profiles were used as input for radiative transfer simulations with which to calculate the SARF, which then was plotted as a function of the column (i.e., height-integrated) particle backscatter coefficient (betac). A close correlation between the SARF and betac was found. SARF-betac parameterizations in the form of polynomial fits were derived that exhibit an estimated uncertainty of +/-(10-30)%. These parameterizations can be utilized to analyze data of upcoming lidar satellite missions and for other purposes. The EARLINET-based parameterizations can be applied to lidar measurements at mostly continental, highly industrialized sites with limited maritime influence (Europe, North America), whereas the INDOEX parameterizations rather can be employed in polluted maritime locations, e.g., coastal regions of south and east Asia.

  13. Potential of lidar backscatter data to estimate solar aerosol radiative forcing.

    PubMed

    Wendisch, Manfred; Müller, Detlef; Mattis, Ina; Ansmann, Albert

    2006-02-01

    The potential to estimate solar aerosol radiative forcing (SARF) in cloudless conditions from backscatter data measured by widespread standard lidar has been investigated. For this purpose 132 days of sophisticated ground-based Raman lidar observations (profiles of particle extinction and backscatter coefficients at 532 nm wavelength) collected during two campaigns [the European Aerosol Research Lidar Network (EARLINET) and the Indian Ocean Experiment (INDOEX)] were analyzed. Particle extinction profiles were used as input for radiative transfer simulations with which to calculate the SARF, which then was plotted as a function of the column (i.e., height-integrated) particle backscatter coefficient (beta(c)). A close correlation between the SARF and beta(c) was found. SARF-beta(c) parameterizations in the form of polynomial fits were derived that exhibit an estimated uncertainty of +/-(10-30)%. These parameterizations can be utilized to analyze data of upcoming lidar satellite missions and for other purposes. The EARLINET-based parameterizations can be applied to lidar measurements at mostly continental, highly industrialized sites with limited maritime influence (Europe, North America), whereas the INDOEX parameterizations rather can be employed in polluted maritime locations, e.g., coastal regions of south and east Asia.

  14. Intercomparison of Pulsed Lidar Data with Flight Level CW Lidar Data and Modeled Backscatter from Measured Aerosol Microphysics Near Japan and Hawaii

    NASA Technical Reports Server (NTRS)

    Cutten, D. R.; Spinhirne, J. D.; Menzies, R. T.; Bowdle, D. A.; Srivastava, V.; Pueschel, R. F.; Clarke, A. D.; Rothermel, J.

    1998-01-01

    Aerosol backscatter coefficient data were examined from two nights near Japan and Hawaii undertaken during NASA's Global Backscatter Experiment (GLOBE) in May-June 1990. During each of these two nights the aircraft traversed different altitudes within a region of the atmosphere defined by the same set of latitude and longitude coordinates. This provided an ideal opportunity to allow flight level focused continuous wave (CW) lidar backscatter measured at 9.11-micron wavelength and modeled aerosol backscatter from two aerosol optical counters to be compared with pulsed lidar aerosol backscatter data at 1.06- and 9.25-micron wavelengths. The best agreement between all sensors was found in the altitude region below 7 km, where backscatter values were moderately high at all three wavelengths. Above this altitude the pulsed lidar backscatter data at 1.06- and 9.25-micron wavelengths were higher than the flight level data obtained from the CW lidar or derived from the optical counters, suggesting sample volume effects were responsible for this. Aerosol microphysics analysis of data near Japan revealed a strong sea-salt aerosol plume extending upward from the marine boundary layer. On the basis of sample volume differences, it was found that large particles were of different composition compared with the small particles for low backscatter conditions.

  15. Aerosol size distribution, composition, and CO2 backscatter

    NASA Astrophysics Data System (ADS)

    Clarke, Antony D.; Porter, John N.

    1991-03-01

    The aerosol size distribution, composition, and CO2 backscatter at 10.6 microns (beta-CO2) were measured continuosly at the Mauna Loa Observatory (Hawaii) during January-March and November-December, 1988 periods to compare the characteristics of periods associated with appreciable Asian dust transport to that site (January-March) with those of periods characterized by low-dust condition. The aerosol size distribution in the range 0.15 micron to 7.6 microns was measured at temperatures of 40, 150, and 340 C to differentiate between volatile and nonvolatile aerosols. Large ranges of variability was found in measurements of aerosol size distribution during both periods, but the average distributions were similar for both the high-dust and the low-dust periods. However, values for beta-CO2 were more elevated (by about six times) during periods associated with active Asian dust transport to the observatory site than during the low-dust periods.

  16. Ozone and Aerosol Retrieval from Backscattered Ultraviolet Radiation

    NASA Technical Reports Server (NTRS)

    Bhartia, Pawan K.

    2004-01-01

    In this presentation we will discuss the techniques to estimate total column ozone and aerosol absorption optical depth from the measurements of backscattered ultraviolet (buv) radiation. The total ozone algorithm has been used to create a unique record of the ozone layer, spanning more than 3 decades, from a series of instruments (BUV, SBUV, TOMS, SBUV/2) flown on NASA, NOAA, Japanese and Russian satellites. We will discuss how this algorithm can be considered a generalization of the well-known Dobson/Brewer technique that has been used to process data from ground-based instruments for many decades, and how it differs from the DOAS techniques that have been used to estimate vertical column densities of a host of trace gases from data collected by GOME and SCIAMACHY instruments. The BUV aerosol algorithm is most suitable for the detection of UV absorbing aerosols (smoke, desert dust, volcanic ash) and is the only technique that can detect aerosols embedded in clouds. This algorithm has been used to create a quarter century record of aerosol absorption optical depth using the BUV data collected by a series of TOMS instruments. We will also discuss how the data from the OM1 instrument launched on July 15,2004 will be combined with data from MODIS and CALIPSO lidar data to enhance the accuracy and information content of satellite-derived aerosol measurements. The OM1 and MODIS instruments are currently flying on EOS Aura and EOS Aqua satellites respectively, part of a constellation of satellites called the "A-train". The CALIPSO satellite is expected to join this constellation in mid 2005.

  17. Use of rotational Raman measurements in multiwavelength aerosol lidar for evaluation of particle backscattering and extinction

    NASA Astrophysics Data System (ADS)

    Veselovskii, I.; Whiteman, D. N.; Korenskiy, M.; Suvorina, A.; Pérez-Ramírez, D.

    2015-10-01

    Vibrational Raman scattering from nitrogen is commonly used in aerosol lidars for evaluation of particle backscattering (β) and extinction (α) coefficients. However, at mid-visible wavelengths, particularly in the daytime, previous measurements have possessed low signal-to-noise ratio. Also, vibrational scattering is characterized by a significant frequency shift of the Raman component, so for the calculation of α and β information about the extinction Ångström exponent is needed. Simulation results presented in this study demonstrate that ambiguity in the choice of Ångström exponent can be the a significant source of uncertainty in the calculation of backscattering coefficients when optically thick aerosol layers are considered. Both of these issues are addressed by the use of pure-rotational Raman (RR) scattering, which is characterized by a higher cross section compared to nitrogen vibrational scattering, and by a much smaller frequency shift, which essentially removes the sensitivity to changes in the Ångström exponent. We describe a practical implementation of rotational Raman measurements in an existing Mie-Raman lidar to obtain aerosol extinction and backscattering at 532 nm. A 2.3 nm width interference filter was used to select a spectral range characterized by low temperature sensitivity within the anti-Stokes branch of the RR spectrum. Simulations demonstrate that the temperature dependence of the scattering cross section does not exceed 1.5 % in the 230-300 K range, making correction for this dependence quite easy. With this upgrade, the NASA GSFC multiwavelength Raman lidar has demonstrated useful α532 measurements and was used for regular observations. Examples of lidar measurements and inversion of optical data to the particle microphysics are given.

  18. Tissue characterization by imaging the local frequency dependent relative backscatter coefficient

    NASA Astrophysics Data System (ADS)

    Jenderka, Klaus V.; Gaertner, Tilio; Cobet, Ulrich; Zacharias, Mario; Heynemann, Hans

    2000-04-01

    Conventional B-scan systems only use the amplitude information of the backscattered signals for imaging. By imaging the local frequency dependent relative backscatter coefficient it is possible to improve the image contrast and to reduce system effects. Based on spectral analysis of rf echo signals, a procedure was developed to correct for system specific effects and to determine the relative backscatter coefficient. A new image with improved contrast results from grayscale or color coding of the frequency components of the relative backscatter coefficient. The method was applied to in vivo measurements of human prostate and transplanted kidney. For cancerous prostate tissue the relative backscatter coefficient is about 8 dB lower than for normal tissue regions. The results of the investigations on kidneys show no correlation to the current function of the organ. Certainly the different course of the frequency dependence of the relative backscatter coefficient of renal cortex and calices regions allows a contrast improvement. The method provides a system independent imaging procedure with improved image contrast for tissues with different scattering behavior and slightly reduced spatial resolution. Imaging the relative backscatter coefficient will not substitute the conventional B-mode image, but it is a useful tool providing additional information about the tissue state.

  19. Aerosol Angstrom Absorption Coefficient Comparisons during MILAGRO.

    NASA Astrophysics Data System (ADS)

    Marley, N. A.; Marchany-Rivera, A.; Kelley, K. L.; Mangu, A.; Gaffney, J. S.

    2007-12-01

    aerosol Angstrom absorption exponents by linear regression over the entire UV-visible spectral range. These results are compared to results obtained from the absorbance measurements obtained in the field. The differences in calculated Angstrom absorption exponents between the field and laboratory measurements are attributed partly to the differences in time resolution of the sample collection resulting in heavier particle pileup on the filter surface of the 12-hour samples. Some differences in calculated results can also be attributed to the presence of narrow band absorbers below 400 nm that do not fall in the wavelengths covered by the 7 wavelengths of the aethalometer. 1. Marley, N.A., J.S. Gaffney, J.C. Baird, C.A. Blazer, P.J. Drayton, and J.E. Frederick, "The determination of scattering and absorption coefficients of size-fractionated aerosols for radiative transfer calculations." Aerosol Sci. Technol., 34, 535-549, (2001). This work was conducted as part of the Department of Energy's Atmospheric Science Program as part of the Megacity Aerosol Experiment - Mexico City during MILAGRO. This research was supported by the Office of Science (BER), U.S. Department of Energy Grant No. DE-FG02-07ER64329. We also wish to thank Mexican Scientists and students for their assistance from the Instituto Mexicano de Petroleo (IMP) and CENICA.

  20. Theory of CW lidar aerosol backscatter measurements and development of a 2.1 microns solid-state pulsed laser radar for aerosol backscatter profiling

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Henderson, Sammy W.; Frehlich, R. G.

    1991-01-01

    The performance and calibration of a focused, continuous wave, coherent detection CO2 lidar operated for the measurement of atmospheric backscatter coefficient, B(m), was examined. This instrument functions by transmitting infrared (10 micron) light into the atmosphere and collecting the light which is scattered in the rearward direction. Two distinct modes of operation were considered. In volume mode, the scattered light energy from many aerosols is detected simultaneously, whereas in the single particle mode (SPM), the scattered light energy from a single aerosol is detected. The analysis considered possible sources of error for each of these two cases, and also considered the conditions where each technique would have superior performance. The analysis showed that, within reasonable assumptions, the value of B(m) could be accurately measured by either the VM or the SPM method. The understanding of the theory developed during the analysis was also applied to a pulsed CO2 lidar. Preliminary results of field testing of a solid state 2 micron lidar using a CW oscillator is included.

  1. Vertical Aerosol Backscatter Variability from an Airborne Focused Continuous Wave CO2 Lidar

    NASA Technical Reports Server (NTRS)

    Jarzembski, Maurice A.; Srivastava, Vandana; Rothermel, Jeffry

    1998-01-01

    Atmospheric aerosol backscatter measurements using a continuous wave focused Doppler lidar at 9.1 micron wavelength were obtained over western North America and the Pacific Ocean during 13 - 26 September, 1995 as part of National Aeronautics and Space Administration's (NASA) Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) mission on board the NASA DC8 aircraft. Backscatter variability was measured for approximately 52 flight hours, covering equivalent horizontal distance of approximately 25,000 km in the troposphere. Quasi-vertical backscatter profiles were also obtained during various ascents and descents which ranged between approximately 0.1 to 12.0 km altitude. Aerosol haze layers were encountered at different altitudes. Similarities and differences for aerosol loading over land and over ocean were observed. A mid-tropospheric aerosol backscatter background mode was found with modal value approximately 1O(exp -10)/m/sr, consistent with previous airborne and ground-based datasets.

  2. Relationship of Light Scattering at an Angle in the Backward Direction to the Backscattering Coefficient

    NASA Astrophysics Data System (ADS)

    Boss, Emmanuel; Pegau, W. Scott

    2001-10-01

    We revisit the problem of computing the backscattering coefficient based on the measurement of scattering at one angle in the back direction. Our approach uses theory and new observations of the volume scattering function (VSF) to evaluate the choice of angle used to estimate bb . We add to previous studies by explicitly treating the molecular backscattering of water (bbw ) and its contribution to the VSF shape and to bb . We find that there are two reasons for the tight correlation between observed scattering near 120 and the backscattering coefficient reported by Oishi [Appl. Opt. 29, 4658, (1990) , namely, that (1) the shape] of the VSF of particles (normalized to the backscattering) does not vary much near that angle for particle assemblages of differing optical properties and size, and (2) the ratio of the VSF to the backscattering is not sensitive to the contribution by water near this angle. We provide a method to correct for the water contribution to backscattering when single-angle measurements are used in the back direction (for angles spanning from near 90 to 160 ) that should provide improved estimates of the backscattering coefficient.

  3. Phase function, backscatter, extinction, and absorption for standard radiation atmosphere and El Chichon aerosol models at visible and near-infrared wavelengths

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.; Suttles, J. T.; Lecroy, S. R.

    1985-01-01

    Tabular values of phase function, Legendre polynominal coefficients, 180 deg backscatter, and extinction cross section are given for eight wavelengths in the atmospheric windows between 0.4 and 2.2 microns. Also included are single scattering albedo, asymmetry factor, and refractive indices. These values are based on Mie theory calculations for the standard rediation atmospheres (continental, maritime, urban, unperturbed stratospheric, volcanic, upper atmospheric, soot, oceanic, dust, and water-soluble) assest measured volcanic aerosols at several time intervals following the El Chichon eruption. Comparisons of extinction to 180 deg backscatter for different aerosol models are presented and related to lidar data.

  4. On the Feasibility of Studying Shortwave Aerosol Radiative Forcing of Climate Using Dual-Wavelength Aerosol Backscatter Lidar

    NASA Technical Reports Server (NTRS)

    Redemann, Jens; Russell, Philip B.; Winker, David M.; McCormick, M. Patrick; Hipskind, R. Stephen (Technical Monitor)

    2000-01-01

    The current low confidence in the estimates of aerosol-induced perturbations of Earth's radiation balance is caused by the highly non-uniform compositional, spatial and temporal distributions of tropospheric aerosols on a global scale owing to their heterogeneous sources and short lifetimes. Nevertheless, recent studies have shown that the inclusion of aerosol effects in climate model calculations can improve agreement with observed spatial and temporal temperature distributions. In light of the short lifetimes of aerosols, determination of their global distribution with space-borne sensors seems to be a necessary approach. Until recently, satellite measurements of tropospheric aerosols have been approximate and did not provide the full set of information required to determine their radiative effects. With the advent of active aerosol remote sensing from space (e.g., PICASSO-CENA), the applicability fo lidar-derived aerosol 180 deg -backscatter data to radiative flux calculations and hence studies of aerosol effects on climate needs to be investigated.

  5. Estimation of the extinction coefficient of clouds from multiwavelength lidar backscatter measurements.

    PubMed

    Derr, V E

    1980-07-15

    Lidar remote sensing of clouds provides direct measurement of the radar backscatter coefficient but not the extinction coefficient, which is needed for any calculations involving optical depth. The relationship between these quantities for single spheres is very complicated but becomes simpler for poly-dispersions or illumination by radiation with a broad spectrum. The accuracy of estimating the extinction coefficient from measured radar backscatter coefficients of thin clouds is examined for single- and multiple-wavelength lidar systems. The stability of the ratio of the coefficients is examined for radii between 1 and 100 microm for a poly-dispersion of 5-microm width. The results show that the extinction coefficients of a broad selection of thin clouds may be obtained from lidar measurements with errors of ~15% by visible and near visible lidar systems. Multiple lidar wavelengths permit a reduction of the error to ~9%.

  6. Raman Lidar Measurements of the Aerosol Extinction-to-Backscatter Ratio Over the Southern Great Plains

    SciTech Connect

    Ferrare, Richard; Turner, David D.; Brasseur, L. H.; Feltz, W. F.; Dubovik, O.; Tooman, Tim P.

    2001-09-16

    We derive profiles of the aerosol extinction-to-backscatter ratio, Sa, at 355 nm using aerosol extinction and backscatter profiles measured during 1998 and 1999 by the operational Raman lidar at the Department of Energy Atmospheric Radiation Measurement program Southern Great Plains site in north central Oklahoma. Data from this Raman/Rayleigh-Mie lidar, which measures Raman scattering from nitrogen as well as the combined molecular (Rayleigh) and aerosol (Mie) scattering at the laser wavelength, are used to derive aerosol extinction and backscattering independently as a function of altitude. Because this lidar operates at 355 nm, where molecular backscattering is comparable with aerosol backscattering, Sa retrievals are generally limited to conditions where the aerosol extinction at 355 nm is > 0.03 km-1. The mean value of Sa at 355 nm derived for this period was 60 sr with a standard deviation of 12 sr. Sa was generally about 5-10 sr higher during high aerosol optical thickness (AOT) (> 0.3) conditions than during low AOT (< 0.1). A similar increase in Sa was found when the relative humidity increased from 30 to 80%. Large (> 15%) variations in the vertical profile of Sa occurred about 30% of the time, which implies significant variability in the vertical distribution of aerosol size distribution, shape, and/or composition often occurs. The Raman lidar measurements of Sa were compared with estimates of particle size and refractive index derived from an algorithm that uses ground-based Sun photometer measurements of Sun and sky radiance. For 17 cases of coincident Raman lidar and Sun and sky radiance measurements, Sa was linearly correlated with the aerosol fine mode effective radius and the volume ratio of fine/coarse particles.

  7. Application of neural network to remote sensing of soil moisture using theoretical polarimetric backscattering coefficients

    NASA Technical Reports Server (NTRS)

    Wang, L.; Shin, R. T.; Kong, J. A.; Yueh, S. H.

    1993-01-01

    This paper investigates the potential application of neural network to inversion of soil moisture using polarimetric remote sensing data. The neural network used for the inversion of soil parameters is multi-layer perceptron trained with the back-propagation algorithm. The training data include the polarimetric backscattering coefficients obtained from theoretical surface scattering models together with an assumed nominal range of soil parameters which are comprised of the soil permittivity and surface roughness parameters. Soil permittivity is calculated from the soil moisture and the assumed soil texture based on an empirical formula at C-, L-, and P-bands. The rough surface parameters for the soil surface, which is described by the Gaussian random process, are the root-mean-square (rms) height and correlation length. For the rough surface scattering, small perturbation method is used for the L-band frequency, and Kirchhoff approximation is used for the C-band frequency to obtain the corresponding backscattering coefficients. During the training, the backscattering coefficients are the inputs to the neural net and the output from the net are compared with the desired soil parameters to adjust the interconnecting weights. The process is repeated for each input-output data entry and then for the entire training data until convergence is reached. After training, the backscattering coefficients are applied to the trained neural net to retrieve the soil parameters which are compared with the desired soil parameters to verify the effectiveness of this technique. Several cases are examined. First, for simplicity, the correlation length and rms height of the soil surface are fixed while soil moisture is varied. Soil moisture obtained using the neural networks with either L-band or C-band backscattering coefficients for the HH and VV polarizations as inputs is in good agreement with the desired soil moisture. The neural net output matches the desired output for the soil

  8. Selection Algorithm for the CALIPSO Lidar Aerosol Extinction-to-Backscatter Ratio

    NASA Technical Reports Server (NTRS)

    Omar, Ali H.; Winker, David M.; Vaughan, Mark A.

    2006-01-01

    The extinction-to-backscatter ratio (S(sub a)) is an important parameter used in the determination of the aerosol extinction and subsequently the optical depth from lidar backscatter measurements. We outline the algorithm used to determine Sa for the Cloud and Aerosol Lidar and Infrared Pathfinder Spaceborne Observations (CALIPSO) lidar. S(sub a) for the CALIPSO lidar will either be selected from a look-up table or calculated using the lidar measurements depending on the characteristics of aerosol layer. Whenever suitable lofted layers are encountered, S(sub a) is computed directly from the integrated backscatter and transmittance. In all other cases, the CALIPSO observables: the depolarization ratio, delta, the layer integrated attenuated backscatter, beta, and the mean layer total attenuated color ratio, gamma, together with the surface type, are used to aid in aerosol typing. Once the type is identified, a look-up-table developed primarily from worldwide observations, is used to determine the S(sub a) value. The CALIPSO aerosol models include desert dust, biomass burning, background, polluted continental, polluted dust, and marine aerosols.

  9. Improving the detection of wind fields from LIDAR aerosol backscatter using feature extraction

    NASA Astrophysics Data System (ADS)

    Bickel, Brady R.; Rotthoff, Eric R.; Walters, Gage S.; Kane, Timothy J.; Mayor, Shane D.

    2016-04-01

    The tracking of winds and atmospheric features has many applications, from predicting and analyzing weather patterns in the upper and lower atmosphere to monitoring air movement from pig and chicken farms. Doppler LIDAR systems exist to quantify the underlying wind speeds, but cost of these systems can sometimes be relatively high, and processing limitations exist. The alternative is using an incoherent LIDAR system to analyze aerosol backscatter. Improving the detection and analysis of wind information from aerosol backscatter LIDAR systems will allow for the adoption of these relatively low cost instruments in environments where the size, complexity, and cost of other options are prohibitive. Using data from a simple aerosol backscatter LIDAR system, we attempt to extend the processing capabilities by calculating wind vectors through image correlation techniques to improve the detection of wind features.

  10. Raman lidar measurements of aerosol extinction and backscattering 1. Methods and comparisons

    SciTech Connect

    Ferrare, R.A.; Melfi, S.H.; Whiteman, D.N.; Evans, K.D.

    1998-08-01

    This paper examines the aerosol backscattering and extinction profiles measured at night by the NASA Goddard Space Flight Center Scanning Raman Lidar (SRL) during the remote cloud sensing (RCS) intensive operations period (IOP) at the Department of Energy Atmospheric Radiation Measurement (ARM) southern Great Plains (SGP) site in April 1994. These lidar data are used to derive aerosol profiles for altitudes between 0.015 and 5 km. Since this lidar detects Raman scattering from nitrogen and oxygen molecules as well as the elastic scattering from molecules and aerosols, it measures both aerosol backscattering and extinction simultaneously. The aerosol extinction/backscattering ratio varied between approximately 30 sr and 75 sr at 351 nm. Aerosol optical thicknesses derived by integrating the lidar profiles of aerosol extinction measured at night between 0.1 and 5 km are found to be about 10{endash}40{percent} lower than those measured by a Sun photometer during the day. This difference is attributed to the contribution by stratospheric aerosols not included in the lidar estimates as well as to diurnal differences in aerosol properties and concentrations. Aerosol profiles close to the surface were acquired by pointing the lidar nearly horizontally. Measurements of aerosol scattering from a tower-mounted nephelometer are found to be 40{percent} lower than lidar measurements of aerosol extinction over a wide range of relative humidities even after accounting for the difference in wavelengths. The reasons for this difference are not clear but may be due to the inability of the nephelometer to accurately measure scattering by large particles. {copyright} 1998 American Geophysical Union

  11. Raman Lidar Measurements of Aerosol Extinction and Backscattering. Report 1; Methods and Comparisons

    NASA Technical Reports Server (NTRS)

    Ferrare, R. A.; Melfi, S. H.; Whiteman, D. N.; Evans, K. D.; Leifer, R.

    1998-01-01

    This paper examines the aerosol backscattering and extinction profiles measured at night by the NASA Goddard Space Flight Center Scanning Raman Lidar (SRL) during the remote cloud sensing (RCS) intensive operations period (IOP) at the Department of Energy Atmospheric Radiation Measurement (ARM) southern Great Plains (SGP) site in April 1994. These lidar data are used to derive aerosol profiles for altitudes between 0.0 1 5 and 5 km. Since this lidar detects Raman scattering from nitrogen and oxygen molecules as well as the elastic scattering from molecules and aerosols, it measures both aerosol backscattering and extinction simultaneously. The aerosol extinction/backscattering ratio varied between approximately 30 sr and 75 sr at 351 nm. Aerosol optical thicknesses derived by integrating the lidar profiles of aerosol extinction measured at night between 0. I and 5 km are found to be about 10-40% lower than those measured by a Sun photometer during the day. This difference is attributed to the contribution by stratospheric aerosols not included in the lidar estimates as well as to diurnal differences in aerosol properties and concentrations. Aerosol profiles close to the surface were acquired by pointing the lidar nearly horizontally. Measurements of aerosol scattering from a tower-mounted nephelometer are found to be 40% lower than lidar measurements of aerosol extinction over a wide range of relative humidities even after accounting for the difference in wavelengths. The reasons for this difference are not clear but may be due to the inability of the nephelometer to accurately measure scattering by large particles.

  12. Feasibility of inter-comparing airborne and spaceborne obsevations of radar backscattering coefficients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive (SMAP) mission will provide global soil moisture products that will facilitate new science and application areas. The SMAP mission, scheduled for launch in November 2014, will offer synthetic aperture radar (SAR) measurements of backscattering coefficients for the re...

  13. Comparison of Aerosol Backscatter and Extinction Profiles Based on the Earlinet Database and the Single Calculus Chain for Thessaloniki Greece (2001-2014)

    NASA Astrophysics Data System (ADS)

    Voudouri, K.; Siomos, N.; Giannakaki, E.; Amiridis, V.; d'Amico, G.; Balis, D. S.

    2016-06-01

    Aerosol backscatter and extinction coefficient profiles derived by the Single Calculus Chain (SCC) algorithm, which was developed within the European Aerosol Research Lidar Network (EARLINET) are compared with profiles derived by the operational inversion algorithm of Thessaloniki. Measurements performed during the period 2001-2014, that have already been uploaded in the EARLINET database, are considered in this study. The objective of this study is to verify, for the case of Thessaloniki, the consistency of the climatology of the aerosol profiles based on SCC and the EARLINET database data respectively. In this paper we show example comparisons for each lidar product submitted in the official database.

  14. Aerosol speckle effects on atmospheric pulsed lidar backscattered signals

    NASA Technical Reports Server (NTRS)

    Murty, S. R.

    1989-01-01

    Lidar systems using atmospheric aerosols as targets exhibit return signal amplitude and power fluctuations which indicate speckle effects. The effects of refractive turbulence along the path on the aerosol speckle field propagation and on the decorrelation time are studied for coherent pulsed lidar systems.

  15. Aerosol Backscatter and Extinction Retrieval from Airborne Coherent Doppler Wind Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Chouza, F.; Reitebuch, O.; Groß, S.; Rahm, S.; Freudenthaler, V.; Toledano, C.; Weinzierl, B.

    2016-06-01

    A novel method for coherent Doppler wind lidars (DWLs) calibration is shown in this work. Concurrent measurements of a ground based aerosol lidar operating at 532 nm and an airborne DWL at 2 μm are used in combination with sun photometer measurements for the retrieval of backscatter and extinction profiles. The presented method was successfully applied to the measurements obtained during the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE: http://www.pa.op.dlr.de/saltrace), which aimed to characterize the Saharan dust long range transport between Africa and the Caribbean.

  16. Multi-wavelength profiles of aerosol backscatter over Lauder, New Zealand, 24 November 1992

    NASA Technical Reports Server (NTRS)

    Mckenzie, R. L.; Rosen, J. M.; Kjome, N. T.; Mcgee, T. J.; Gross, M. R.; Singh, U. N.; Ferrare, R. F.; Kimvilakani, P.; Uchino, O.; Nagai, T.

    1994-01-01

    Simultaneous profiles of aerosol backscatter ratio were measured over Lauder, New Zealand (45 deg S, 170 deg E) on the night of November 24, 1992. Instrumentation comprised two complementary lidar systems and a backscattersonde, to give measurements at wavelengths 351, 490, 532, and 940 nm. The data from the lidars and the backscattersonde were self-consistent, enabling the wavelength dependence of aerosol backscatter to be determined as a function of altitude. This wavelength-dependence is a useful parameter in radiative transfer calculations. In the stratosphere, the average wavelength exponent between 351 and 940 nm was -1.23 +/- 0.1, which was in good agreement with values derived from measured physical properties of aerosols.

  17. Vertically-resolved profiles of mass concentrations and particle backscatter coefficients of Asian dust plumes derived from lidar observations of silicon dioxide.

    PubMed

    Noh, Youngmin; Müller, Detlef; Shin, Sung-Kyun; Shin, Dongho; Kim, Young J

    2016-01-01

    This study presents a method to retrieve vertically-resolved profiles of dust mass concentrations by analyzing Raman lidar signals of silicon dioxide (quartz) at 546nm. The observed particle plumes consisted of mixtures of East Asian dust with anthropogenic pollution. Our method for the first time allows for extracting the contribution of the aerosol component "pure dust" contained in the aerosol type "polluted dust". We also propose a method that uses OPAC (Optical Properties of Aerosols and Clouds) and the mass concentrations profiles of dust in order to derive profiles of backscatter coefficients of pure dust in mixed dust/pollution plumes. The mass concentration of silicon dioxide (quartz) in the atmosphere can be estimated from the backscatter coefficient of quartz. The mass concentration of dust is estimated by the weight percentage (38-77%) of mineral quartz in Asian dust. The retrieved dust mass concentrations are classified into water soluble, nucleation, accumulation, mineral-transported and coarse mode according to OPAC. The mass mixing ratio of 0.018, 0.033, 0.747, 0.130 and 0.072, respectively, is used. Dust extinction coefficients at 550nm were calculated by using OPAC and prescribed number concentrations for each of the 5 components. Dust backscatter coefficients were calculated from the dust extinction coefficients on the basis of a lidar ratio of 45±3sr at 532nm. We present results of quartz-Raman measurements carried out on the campus of the Gwangju Institute of Science and Technology (35.10°N, 126.53°E) on 15, 16, and 21 March 2010.

  18. Ozone and Aerosol Retrieval from Backscattered Ultraviolet Radiation

    NASA Technical Reports Server (NTRS)

    Bhartia, Pawan K.

    2012-01-01

    In this presentation we will discuss the techniques to estimate total column ozone and aerosol absorption optical depth from the measurements of back scattered ultraviolet (buv) radiation. The total ozone algorithm has been used to create a unique record of the ozone layer, spanning more than 3 decades, from a series of instruments (BUV, SBUV, TOMS, SBUV/2) flown on NASA, NOAA, Japanese and Russian satellites. We will discuss how this algorithm can be considered a generalization of the well-known Dobson/Brewer technique that has been used to process data from ground-based instruments for many decades, and how it differs from the DOAS techniques that have been used to estimate vertical column densities of a host of trace gases from data collected by GOME and SCIAMACHY instruments. The buv aerosol algorithm is most suitable for the detection of UV absorbing aerosols (smoke, desert dust, volcanic ash) and is the only technique that can detect aerosols embedded in clouds. This algorithm has been used to create a quarter century record of aerosol absorption optical depth using the buv data collected by a series of TOMS instruments. We will also discuss how the data from the OMI instrument launched on July 15, 2004 will be combined with data from MODIS and CALIPSO lidar data to enhance the accuracy and information content of satellite-derived aerosol measurements. The OMI and MODIS instruments are currently flying on EOS Aura and EOS Aqua satellites respectively, part of a constellation of satellites called the "A-train".

  19. Seasat over-land scatterometer data. I - Global overview of the Ku-band backscatter coefficients

    NASA Technical Reports Server (NTRS)

    Kennett, Rosemary G.; Li, Fuk K.

    1989-01-01

    Statistics on the backscatter coefficient sigma(0) from the Ku-band Seasat-A Satellite Scatterometer (SASS) collected over the world's land surfaces are presented. This spaceborne scatterometer provided data on sigma(0) between latitudes 80 deg S and 80 deg N at incidence angles up to 70 deg. The global statistics of vertical (V) and horizontal (H) polarization backscatter coefficients for 10 deg bands in latitude are presented for incidence angles between 20 deg and 70 deg and compared with the Skylab and ground spectrometer results. Global images of the time-averaged V polarization sigma(0) at a 45 deg incidence angle and its dependence on the incidence angle are presented and compared to a generalized map of the terrain type. Global images of the differences between the V and H polarization backscatter coefficients are presented and discussed. The most inhomogeneous region, which contains the deserts of North Africa and the Arabian Peninsula, is studied in greater detail and compared with the terrain type.

  20. Backscatter laser depolarization studies of simulated stratospheric aerosols - Crystallized sulfuric acid droplets

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Zhao, Hongjie; Yu, Bing-Kun

    1989-01-01

    The optical depolarizing properties of simulated stratospheric aerosols were studied in laboratory laser (0.633 micrometer) backscattering experiments for application to polarization lidar observations. Clouds composed of sulfuric acid solution droplets, some treated with ammonia gas, were observed during evaporation. The results indicate that the formation of minute ammonium sulfate particles from the evaporation of acid droplets produces linear depolarization ratios of beta equivalent to 0.02, but beta equivalent to 0.10 to 0.15 are generated from aged acid cloud aerosols and acid droplet crystalization effects following the introduction of ammonia gas into the chamber. It is concluded that partially crystallized sulfuric acid droplets are a likely candidate for explaining the lidar beta equivalent to 0.10 values that have been observed in the lower stratosphere in the absence of the relatively strong backscattering from homogeneous sulfuric acid droplet (beta equivalent to 0) or ice crystal (beta equivalent to 0.5) clouds.

  1. Backscatter laser depolarization studies of simulated stratospheric aerosols: crystallized sulfuric acid droplets.

    PubMed

    Sassen, K; Zhao, H; Yu, B K

    1989-08-01

    The optical depolarizing properties of simulated stratospheric aerosols were studied in laboratory laser (0.633 microm) backscattering experiments for application to polarization lidar observations. Clouds composed of sulfuric acid solution droplets, some treated with ammonia gas, were observed during evaporation. The results indicate that the formation of minute ammonium sulfate particles from the evaporation of acid droplets produces linear depolarization ratios of delta approximately 0.02, but delta approximately 0.10-0.15 are generated from acid droplet crystallization effects associated with recycled aerosols and the introduction of ammonia gas into the chamber. It is concluded that partially crystallized sulfuric acid droplets are a likely candidate for explaining the lidar delta approximately 0.10 values that have been observed in the lower stratosphere in the absence of the relatively strong backscattering from homogeneous sulfuric acid droplet (delta approximately 0) or ice crystal (delta approximately 0.5) clouds.

  2. Backscatter laser depolarization studies of simulated stratospheric aerosols: Crystallized sulfuric acid droplets

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Zhao, Hongjie; Yu, Bing-Kun

    1988-01-01

    The optical depolarizing properties of simulated stratospheric aerosols were studied in laboratory laser (0.633 micrometer) backscattering experiments for application to polarization lidar observations. Clouds composed of sulfuric acid solution droplets, some treated with ammonia gas, were observed during evaporation. The results indicate that the formation of minute ammonium sulfate particles from the evaporation of acid droplets produces linear depolarization ratios of beta equivalent to 0.02, but beta equivalent to 0.10 to 0.15 are generated from aged acid cloud aerosols and acid droplet crystallization effects following the introduction of ammonia gas into the chamber. It is concluded that partially crystallized sulfuric acid droplets are a likely candidate for explaining the lidar beta equivalent to 0.10 values that have been observed in the lower stratosphere in the absence of the relatively strong backscattering from homogeneous sulfuric acid droplet (beta equivalent to 0) or ice crystal (beta equivalent to 0.5) clouds.

  3. A tunable coherent CO2 lidar for measurements of atmospheric aerosol backscatter and attenuation

    NASA Technical Reports Server (NTRS)

    Menzies, R. T.

    1983-01-01

    A coherent laser radar system using a grating-tunable, injection-locked TEA-CO2 transmitter is being used to measure the altitude dependence of atmospheric aerosol backscatter and attenuation at a variety of CO2 laser wavelengths in the 9-11 micron region. Injection control of the TEA-CO2 laser allows one to obtain Single-Longitudinal-Mode (SLM) pulses which will follow the frequency of the injected radiation if the TEA laser cavity length is adjusted so that a cavity resonance is in proximity with the injected signal frequency, and if various additional conditions are satisfied. Requirements for generation of SLM pulses in this manner from a TEA CO2 laser with an unstable resonator cavity will be discussed. Procedures used for quantitative range-gated measurements of aerosol backscatter and attenuation will also be discussed.

  4. Determination of the particulate extinction-coefficient profile and the column-integrated lidar ratios using the backscatter-coefficient and optical-depth profiles.

    PubMed

    Kovalev, Vladimir A; Hao, Wei Min; Wold, Cyle

    2007-12-20

    A new method is considered that can be used for inverting data obtained from a combined elastic-inelastic lidar or a high spectral resolution lidar operating in a one-directional mode, or an elastic lidar operating in a multiangle mode. The particulate extinction coefficient is retrieved from the simultaneously measured profiles of the particulate backscatter coefficient and the particulate optical depth. The stepwise profile of the column-integrated lidar ratio is found that provides best matching of the initial (inverted) profile of the optical depth to that obtained by the inversion of the backscatter-coefficient profile. The retrieval of the extinction coefficient is made without using numerical differentiation. The method reduces the level of random noise in the retrieved extinction coefficient to the level of noise in the inverted backscatter coefficient. Examples of simulated and experimental data are presented.

  5. Study of MPLNET-Derived Aerosol Climatology over Kanpur, India, and Validation of CALIPSO Level 2 Version 3 Backscatter and Extinction Products

    NASA Technical Reports Server (NTRS)

    Misra, Amit; Tripathi, S. N.; Kaul, D. S.; Welton, Ellsworth J.

    2012-01-01

    The level 2 aerosol backscatter and extinction profiles from the NASA Micropulse Lidar Network (MPLNET) at Kanpur, India, have been studied from May 2009 to September 2010. Monthly averaged extinction profiles from MPLNET shows high extinction values near the surface during October March. Higher extinction values at altitudes of 24 km are observed from April to June, a period marked by frequent dust episodes. Version 3 level 2 Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) aerosol profile products have been compared with corresponding data from MPLNET over Kanpur for the above-mentioned period. Out of the available backscatter profiles, the16 profiles used in this study have time differences less than 3 h and distances less than 130 km. Among these profiles, four cases show good comparison above 400 m with R2 greater than 0.7. Comparison with AERONET data shows that the aerosol type is properly identified by the CALIOP algorithm. Cloud contamination is a possible source of error in the remaining cases of poor comparison. Another source of error is the improper backscatter-to-extinction ratio, which further affects the accuracy of extinction coefficient retrieval.

  6. Variability of aerosol and spectral lidar and backscatter and extinction ratios of key aerosol types derived from selected Aerosol Robotic Network locations

    NASA Astrophysics Data System (ADS)

    Cattrall, Christopher; Reagan, John; Thome, Kurt; Dubovik, Oleg

    2005-05-01

    The lidar (extinction-to-backscatter) ratios at 0.55 and 1.02 μm and the spectral lidar, extinction, and backscatter ratios of climatically relevant aerosol species are computed on the basis of selected retrievals of aerosol properties from 26 Aerosol Robotic Network (AERONET) sites across the globe. The values, obtained indirectly from sky radiance and solar transmittance measurements, agree very well with values from direct observations. Low mean values of the lidar ratio, Sa, at 0.55 μm for maritime (27 sr) aerosols and desert dust (42 sr) are clearly distinguishable from biomass burning (60 sr) and urban/industrial pollution (71 sr). The effects of nonsphericity of mineral dust are shown, demonstrating that particle shape must be taken into account in any spaceborne lidar inversion scheme. A new aerosol model representing pollution over Southeast Asia is introduced since lidar (58 sr), color lidar, and extinction ratios in this region are distinct from those over other urban/industrial centers, owing to a greater number of large particles relative to fine particles. This discrimination promises improved estimates of regional climate forcing by aerosols containing black carbon and is expected to be of utility to climate modeling and remote sensing communities. The observed variability of the lidar parameters, combined with current validated aerosol data products from Moderate Resolution Imaging Spectroradiometer (MODIS), will afford improved accuracy in the inversion of spaceborne lidar data over both land and ocean.

  7. Size segregated light absorption coefficient of the atmospheric aerosol

    NASA Astrophysics Data System (ADS)

    Horvath, H.

    The light absorption coefficient of atmospheric aerosols in the visible can be determined by depositing the particles on a filter and measuring its "transmission" in a special optical arrangement. With an impactor with rotating impaction plates producing a homogeneous deposit, it is possible to extend this technique to size segregated aerosol samples. A simultaneous determination of the mass size distribution is possible. Test measurements with black carbon aerosol have shown the feasibility of this method. Samples of the atmospheric aerosol have been taken in and near Vienna, in Naples and near Bologna. The light absorption of the aerosol is always highest for particle diameters between 0.1 and 0.2 μm. Only in the humid environment of the Po valley it had a slightly larger peak size, whereas the size of the nonabsorbing particles increased considerably. The light absorption of the atmospheric aerosol is always higher in an urban environment. 'The mass absorption coefficient of the aerosol at all four locations was very similar, and completely different from values which could be. expected using effective refractive indices which are frequently used in models. Using the data measured in this work two alternate models for the effective refractive index and black carbon content of the aerosol are suggested: (a) a size-dependent refractive index, where the imaginary part varies from -0.25 for particles smaller than 30 nm to - 0.003 for particles larger than 2 μm; this could especially be applied if an internal mixing of the aerosol is to be expected, or (2) a size-dependent fraction of elemental carbon in the case of external mixing with 43% of carbon particles for sizes below 30 nm decreasing to 10% for sizes up to 0.4 μm.

  8. Characteristics of CALIOP attenuated backscatter noise: implication for cloud/aerosol detection

    NASA Astrophysics Data System (ADS)

    Wu, D. L.; Chae, J. H.; Lambert, A.; Zhang, F. F.

    2011-03-01

    A research algorithm is developed for noise evaluation and feature detection of the CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) Level 1 (L1) backscatter data with an emphasis on cloud/aerosol features in the upper troposphere and lower stratosphere (UT/LS). CALIOP measurement noise of the version v2.01 and v2.02 L1 backscatter data aggregated to (5 km) horizontal resolution is analyzed with two approaches in this study. One is to compare the observed and modeled molecular scatter profiles by scaling the modeled profile (with a fitted scaling factor α) to the observed clear-sky backscatter profiles. This scaling α value is sensitive to errors in the calibrated backscatter and the atmospheric model used. Most of the nighttime 532-nm α values are close to unity, as expected, but an abrupt drop occurred in October 2008 in the daytime 532-nm α, which is likely indicative of a problem in the v2.02 daytime calibrated data. The 1064-nm night α is generally close to 2 while its day α is ~3. The other approach to evaluate the lidar measurement noise is to use the calibrated lidar backscatter data at altitudes above 19 km. With this method, the 532-nm and 1064-nm measurement noises are analyzed and characterized individually for each profile in terms of the mean (μ) and standard deviation (σ), showing larger σ values in general over landmasses or bright surfaces during day and in radiation-hard regions during night. A significant increasing trend is evident in the nighttime 1064-nm σ, which is likely responsible for the increasing difference between the feature occurrence frequencies (532-nm vs. 1064-nm) derived from this study. For feature detection with the research algorithm, we apply a σ-based method to the aggregated L1 data. The derived morphology of feature occurrence frequency is in general agreement with that obtained from the Level 2 (L2) 05 km_CLAY+05 km_ALAY products at 5 km horizontal resolution. Finally, a normalized probability density

  9. On the non-closure of particle backscattering coefficient in oligotrophic oceans.

    PubMed

    Lee, ZhongPing; Huot, Yannick

    2014-11-17

    Many studies have consistently found that the particle backscattering coefficient (bbp) in oligotrophic oceans estimated from remote-sensing reflectance (Rrs) using semi-analytical algorithms is higher than that from in situ measurements. This overestimation can be as high as ~300% for some oligotrophic ocean regions. Various sources potentially responsible for this discrepancy are examined. Further, after applying an empirical algorithm to correct the impact from Raman scattering, it is found that bbp from analytical inversion of Rrs is in good agreement with that from in situ measurements, and that a closure is achieved. PMID:25402161

  10. Assessing Performance of P-Band Backscattering Coefficients and TSAR in Hemi-Boreal Forest AGB Estimation

    NASA Astrophysics Data System (ADS)

    Li, Wenmei; Chen, Erxue; Li, Zengyuan; Feng, Qi

    2014-11-01

    To assess performance of P-band backscattering coefficients and TSAR for hemi-boreal forest AGB estimation, airborne P-band repeat-path Pol-InSAR data collected by ESAR in Ramingstorp test site during March and May 2007 are applied. The correlation coefficient (R) between P-band backscattering coefficients and in-situ biomass reaches 0.87 for HH polarization. Meanwhile, the R between P-band backscattering power at specific height and in-situ biomass are higher in VV polarization than that in HH and HV polarization. And R between P-band backscattering power and in-situ biomass reaches 0.70 at 5m and 10m height in VV polarization.

  11. CART and GSFC raman lidar measurements of atmospheric aerosol backscattering and extinction profiles for EOS validation and ARM radiation studies

    NASA Technical Reports Server (NTRS)

    Ferrare, R. A.; Turner, D. D.; Melfi, S. H.; Whiteman, D. N.; Schwenner, G.; Evans, K. D.; Goldsmith, J. E. M.; Tooman, T.

    1998-01-01

    The aerosol retrieval algorithms used by the Moderate-Resolution Imaging Spectroradiometer (MODIS) and Multi-Angle Imaging SpectroRadiometer (MISR) sensors on the Earth Observing Satellite (EOS) AM-1 platform operate by comparing measured radiances with tabulated radiances that have been computed for specific aerosol models. These aerosol models are based almost entirely on surface and/or column averaged measurements and so may not accurately represent the ambient aerosol properties. Therefore, to validate these EOS algorithms and to determine the effects of aerosols on the clear-sky radiative flux, we have begun to evaluate the vertical variability of ambient aerosol properties using the aerosol backscattering and extinction profiles measured by the Cloud and Radiation Testbed (CART) and NASA Goddard Space Flight Center (GSFC) Raman Lidars. Using the procedures developed for the GSFC Scanning Raman Lidar (SRL), we have developed and have begun to implement algorithms for the CART Raman Lidar to routinely provide profiles of aerosol extinction and backscattering during both nighttime and ,daytime operations. Aerosol backscattering and extinction profiles are computed for both lidar systems using data acquired during the 1996 and 1997 Water Vapor Intensive Operating Periods (IOPs). By integrating these aerosol extinction profiles, we derive measurements of aerosol optical thickness and compare these with coincident sun photometer measurements. We also use these measurements to measure the aerosol extinction/backscatter ratio S(sub a) (i.e. 'lidar ratio'). Furthermore, we use the simultaneous water vapor measurements acquired by these Raman lidars to investigate the effects of water vapor on aerosol optical properties.

  12. Measurements of the absorption coefficient of stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Ogren, J. A.; Ahlquist, N. C.; Clarke, A. D.; Charlson, R. J.

    1981-01-01

    The absorption coefficients of stratospheric aerosols are measured using a variation on the integrating plate method. The technique is based on the decrease in the transparency of a substrate when an absorbing aerosol is deposited on it. A Lambert scatterer is placed behind the substrate to integrate forward scattered light and minimize the effect of scattering on the measurement. The low pressure in the stratosphere is used for the direct impaction of particles onto a narrow strip of opal glass. The eight samples collected had a median value of 4 x 10 to the -9th m with an uncertainty of + or - 5 x 10 to the -9th m. If this absorption is due to graphitic carbon, then its concentration is estimated at about 0.4 ng/cu m, or about 0.25% of the total aerosol mass concentration. Estimates of the aerosol scattering coefficients based on satellite extinction inversions result in an aerosol single-scattering albedo in the range of 0.96-1.0.

  13. Optical properties of different aerosol types: seven years of combined Raman- elastic backscatter lidar measurements in Thessaloniki, Greece

    NASA Astrophysics Data System (ADS)

    Giannakaki, E.; Balis, D. S.; Amiridis, V.; Zerefos, C.

    2009-11-01

    We present our combined Raman/elastic backscatter lidar observations which were carried out at the EARLINET station of Thessaloniki, Greece, during the period 2001-2007. The largest optical depths are observed for Saharan dust and smoke aerosol loads. For "local" and "continental polluted" aerosols the measurements indicate moderate aerosol loads. However, measurements associated with the "local" path show lower values of free tropospheric contribution (37% versus 46% for "continental polluted") and thus, enhanced aerosol load within the Planetary Boundary Layer. The lowest value of aerosol optical depth is observed for "continental clean" aerosols. The largest lidar ratios, of the order of 70 sr are found for biomass burning aerosols. A significant and distinct correlation between lidar ratio and backscatter related Ångström exponent values was estimated for well defined aerosol categories, which provides a statistical measure of the lidar ratio's dependency on aerosol-size, which is a useful tool for elastic lidar systems. Scatter plot between lidar ratio values and Ångström exponent values for "local" and "continental polluted" aerosols does not show a significant correlation, with a large variation in both parameters possibly due to variable absorption characteristics of these aerosols. Finally for "clean continental" aerosols we found constantly low lidar ratios almost independent of size.

  14. Contributions of dust and smoke to aerosol extinction coefficient

    NASA Astrophysics Data System (ADS)

    Kavouras, I. G.; Xu, J.; Etyemezian, V.; Dubois, D.; Green, M.; Pitchford, M.

    2006-12-01

    Estimating scattering and absorption of light by atmospheric particles is critical for evaluating effects on regional and global climate. The magnitude of the interaction between aerosol and light is strongly related to the aerosol chemical composition among other factors. Dust and smoke are major sources of atmospheric aerosol, especially in the western United States. The importance of those sources has increased in recent decades due to the extensive man-made disturbance of natural ecosystems and land management practices. The objectives of this study were to specifically estimate the impact of dust and smoke on aerosol extinction coefficient measured in the Class I areas of the western states and identify the major causes of dust and types of smoke by using: (i) positive matrix factorization (PMF) to apportion ambient aerosols by source type; (ii) air mass backward trajectory analyses; (iii) land use/soil properties and; (iv) wildlife/prescribed fire data. The study included sites from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network located in western United States. For days with the worst reconstructed light extinction when dust was the major component, contributions from transcontinental transport from Asia, windblown dust from local sources and regional transport from upwind sources were identified. Based on the analysis for days with smoke being the major component of aerosol visibility extinction, the contributions of the following types of fires were determined: (a) wildfires near the site ("hot" emissions); (b) wildfires upwind of the site (aged smoke); (c) agricultural burn emissions; (d) rangeland fires.

  15. An optical model for deriving the spectral particulate backscattering coefficients in clear and turbid coastal waters

    NASA Astrophysics Data System (ADS)

    Tiwari, S. P.; Shanmugam, P.

    2013-02-01

    An optical model is developed based on the diffuse attenuation coefficient (Kd) to estimate particulate backscattering coefficients bbp(λ) in clear and turbid coastal waters. A large in-situ data set is used to establish robust relationships between bbp(530) and bbp(555) and Kd(490) using an efficient nonlinear least square method which uses the Trust-Region algorithm with Bisquare weights scheme to adjust the coefficients. These relationships are obtained with good correlation coefficients (R2 = 0.786 and 0.790), low Root Mean Square Error (RMSE = 0.00076 and 0.00072) and 95% confidence bounds. The new model is tested with two independent data sets such as the NOMAD SeaWiFS Match-ups and OOXIX IOP algorithm workshop evaluation data set (Version 2.0w APLHA). Results show that the new model makes good retrievals of bbp at all key wavelengths (from 412-683 nm), with statistically significant improvements over other inversion models. Thus, the new model has the potential to improve our knowledge of particulate matters and their optical variability in both clear and turbid coastal waters.

  16. An optical model for deriving the spectral particulate backscattering coefficients in oceanic waters

    NASA Astrophysics Data System (ADS)

    Tiwari, S. P.; Shanmugam, P.

    2013-11-01

    An optical model is developed based on the diffuse attenuation coefficient (Kd) to estimate particulate backscattering coefficients bbp(λ) in oceanic waters. A large in situ data set is used to establish robust relationships between bbp(530) and bbp(555) and Kd(490) using an efficient nonlinear least-square method which uses the trust region algorithm with Bisquare weights scheme to adjust the coefficients. These relationships are obtained with good correlation coefficients (R2 = 0.786 and 0.790), low root mean square error (RMSE = 0.00076 and 0.00072) and 95% confidence bounds. The new model is tested with three independent data sets: the NOMAD SeaWiFS Match ups, OOXIX IOP algorithm workshop evaluation data set (Version 2.0w APLHA), and IOCCG simulated data set. Results show that the new model makes good retrievals of bbp at all key wavelengths (from 412-683 nm), with statistically significant improvements over other inversion models. Thus, the new model has the potential to improve our present knowledge of particulate matter and their optical variability in oceanic waters.

  17. Characteristics of CALIOP attenuated backscatter noise: implication for cloud/aerosol detection

    NASA Astrophysics Data System (ADS)

    Wu, D. L.; Chae, J. H.; Lambert, A.; Zhang, F. F.

    2010-07-01

    To study cloud/aerosol features in the upper troposphere and lower stratosphere (UT/LS) with the NASA's A-Train sensors, a research algorithm is developed for a re-gridded CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) Level 1 (L1) backscatter dataset. This paper provides a detailed analysis of the measurement noise of this re-gridded dataset in order to compare the lidar measurements with other collocated measurements (e.g., CloudSat, Microwave Limb Sounder). The re-gridded dataset has a manageable data volume for multi-year analysis. It has a fixed (5 km) horizontal resolution, and the measurement error is derived empirically from the background-corrected backscatter profile on a profile-by-profile basis. The 532-nm and 1064-nm measurement noises, determined from the data at altitudes above 19 km, are analyzed and characterized in terms of the mean (μ), standard deviation (σ), and normalized probability density function (PDF). These noises show a larger variance over landmasses and bright surfaces during day, and in regions with enhanced flux of energetic particles during night, where the instrument's ability for feature detection is slightly degraded. An increasing trend in the nighttime 1064-nm σ appears to be significant, which likely causes the increasing differences in cloud occurrence frequency between the 532-nm and 1064-nm channels. Most of the CALIOP backscatter noise distributions exhibit a Gaussian-like behavior but the nighttime 532-nm perpendicular measurements show multi-Gaussian characteristics. We apply σ - based thresholds to detect cloud/aerosol features in the UT/LS from the subset L1 data. The observed morphology is similar to that from the Level 2 (L2) 05km_CLAY+05km_ALAY product, but the occurrence frequency obtained in this study is slightly lower than the L2 product due to differences in spatial averaging and detection threshold. In the case where the measurement noises of two data sets are different, the normalized PDF has

  18. Variations of temporal, spectral and angular radar backscattering coefficient of vegetation

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.

    1977-01-01

    Results of an experimental program is reviewed which over the past five years has succeeded in documenting the variations of the radar backscattering coefficient of a variety of crop types as a function of time, signal frequency (1-18 GHz), angular range (nadir to 80 deg) and polarization (HH, VV and HV). The systems were the microwave active spectrometers (MAS); one MAS system covers the 1-8 GHz band and the other system covers the 8-18 GHz band. Each MAS system was mounted on a mobile truck-mounted boom and was operated by a computer controller. To date, these two systems have acquired over 3 million data points from agricultural crops, bare ground and trees.

  19. Two-wavelength backscattering lidar for stand off detection of aerosols

    NASA Astrophysics Data System (ADS)

    Mierczyk, Zygmunt; Zygmunt, Marek; Gawlikowski, Andrzej; Gietka, Andrzej; Kaszczuk, Miroslawa; Knysak, Piotr; Mlodzianko, Andrzej; Muzal, Michal; Piotrowski, Wiesław; Wojtanowski, Jacek

    2008-10-01

    Following article presents LIDAR for stand off detection of aerosols which was constructed in Institute of Optoelectronics in Military University of Technology. LIDAR is a DISC type system (DIfferential SCattering) and is based on analysis of backscattering signal for two wavelengths (λ1 = 1064 nm and λ2 = 532 nm) - the first and the second harmonic of Nd:YAG laser. Optical receiving system is consisted of aspherical mirror lens, two additional mirrors and a system of interference filters. In detection system of LIDAR a silicon avalanche photodiode and two different amplifiers were used. Whole system is mounted on a specialized platform designed for possibility of LIDAR scanning movements. LIDAR is computer controlled. The compiled software enables regulation of the scanning platform work, gain control, and control of data processing and acquisition system. In the article main functional elements of LIDAR are shown and typical parameters of system work and construction are presented. One presented also first results of research with use of LIDAR. The aim of research was to detect and characterize scattering aerosol, both natural and anthropogenic one. For analyses of natural aerosols, cumulus cloud was used. For analyses of anthropogenic aerosols one used three various pyrotechnic mixtures (DM11, M2, M16) which generate smoke of different parameters. All scattering centers were firstly well described and theoretical analyses were conducted. Results of LIDAR research were compared with theoretical analyses and general conclusions concerning correctness of LIDAR work and its application were drawn.

  20. Extinction-to-Backscatter Ratios of Lofted Aerosol Layers Observed During the First Three Months of CALIPSO Measurements

    NASA Technical Reports Server (NTRS)

    Omar, Ali H.; Vaughan, Mark A.; Liu, Zhaoyan; Hu, Yongxiang; Reagan, John A.; Winker, David M.

    2007-01-01

    Case studies from the first three months of the Cloud and Aerosol Lidar and Infrared Pathfinder Spaceborne Observations (CALIPSO) measurements of lofted aerosol layers are analyzed using transmittance [Young, 1995] and two-wavelength algorithms [Vaughan et al., 2004] to determine the aerosol extinction-to-backscatter ratios at 532 and 1064 nm. The transmittance method requires clear air below the layer so that the transmittance through the layer can be determined. Suitable scenes are selected from the browse images and clear air below features is identified by low 532 nm backscatter signal and confirmed by low depolarization and color ratios. The transmittance and two-wavelength techniques are applied to a number of lofted layers and the extinction-to-backscatter ratios are compared with values obtained from the CALIPSO aerosol models [Omar et al., 2004]. The results obtained from these studies are used to adjust the aerosol models and develop observations based extinction-to-backscatter ratio look-up tables and phase functions. Values obtained by these techniques are compared to Sa determinations using other independent methods with a goal of developing probability distribution functions of aerosol type-specific extinction to backscatter ratios. In particular, the results are compared to values determined directly by the High Spectral Resolution Lidar (HSRL) during the CALIPSO CloudSat Validation Experiments (CCVEX) and Sa determined by the application of the two-wavelength lidar Constrained Ratio Aerosol Model-fit (CRAM) retrieval approach [Cattrall et al., 2005; Reagan et al., 2004] to the HSRL data. The results are also compared to values derived using the empirical relationship between the multiple-scattering fraction and the linear depolarization ratio by using Monte Carlo simulations of water clouds [Hu et al., 2006].

  1. Diel variability of the beam attenuation and backscattering coefficients in the northwestern Mediterranean Sea (BOUSSOLE site)

    NASA Astrophysics Data System (ADS)

    Kheireddine, Malika; Antoine, David

    2014-08-01

    The diel variability of the particulate beam attenuation coefficient, cp, and of the particulate backscattering coefficient, bbp, were investigated during five seasonal cycles at an oceanic site in the northwestern Mediterranean Sea, covering contrasting physical and trophic situations. We observed a diel cycle in cp and bbp, related to changes in phytoplankton properties (i.e., size and refractive index) induced by the accumulation of carbon within phytoplankton cells associated with photosynthetic processes, during the winter mixing of the water column, the development of the spring phytoplankton bloom, its decline, and during the summer oligotrophy. The relative amplitude of the cp diel variability was much larger during the spring bloom (20-50%) than during other seasons (10-20%), whereas that of bbp is steadily around 20% and does not show significant seasonal variability. The minimal cp and bbp occurred at sunrise and are synchronized, whereas maximum bbp values are often reached 3-6 h before those for cp (except during bloom conditions), which occur near sunset. These different amplitudes and timing are tentatively explained using Mie computations, which allow discerning the respective roles of changes in the particle size distribution and refractive index. The differences observed here in the diel cycles of cp and bbp show that they cannot be used interchangeably to determine the daily increase of the particle pool. This result has implications on the feasibility to determine net community production from the bbp diel changes, when only bbp is measured in situ or available from ocean color observations.

  2. Backscatter factors and mass energy-absorption coefficient ratios for diagnostic radiology dosimetry.

    PubMed

    Benmakhlouf, Hamza; Bouchard, Hugo; Fransson, Annette; Andreo, Pedro

    2011-11-21

    Backscatter factors, B, and mass energy-absorption coefficient ratios, (μ(en)/ρ)(w, air), for the determination of the surface dose in diagnostic radiology were calculated using Monte Carlo simulations. The main purpose was to extend the range of available data to qualities used in modern x-ray techniques, particularly for interventional radiology. A comprehensive database for mono-energetic photons between 4 and 150 keV and different field sizes was created for a 15 cm thick water phantom. Backscattered spectra were calculated with the PENELOPE Monte Carlo system, scoring track-length fluence differential in energy with negligible statistical uncertainty; using the Monte Carlo computed spectra, B factors and (μ(en)/ρ)(w, air) were then calculated numerically for each energy. Weighted averaging procedures were subsequently used to convolve incident clinical spectra with mono-energetic data. The method was benchmarked against full Monte Carlo calculations of incident clinical spectra obtaining differences within 0.3-0.6%. The technique used enables the calculation of B and (μ(en)/ρ)(w, air) for any incident spectrum without further time-consuming Monte Carlo simulations. The adequacy of the extended dosimetry data to a broader range of clinical qualities than those currently available, while keeping consistency with existing data, was confirmed through detailed comparisons. Mono-energetic and spectra-averaged values were compared with published data, including those in ICRU Report 74 and IAEA TRS-457, finding average differences of 0.6%. Results are provided in comprehensive tables appropriated for clinical use. Additional qualities can easily be calculated using a designed GUI interface in conjunction with software to generate incident photon spectra.

  3. Simultaneous measurements of particle backscattering and extinction coefficients and wind velocity by lidar with a Mach-Zehnder interferometer: principle of operation and performance assessment.

    PubMed

    Bruneau, Didier; Pelon, Jacques

    2003-02-20

    The development of remote-sensing instruments that can be used to monitor several parameters at the same time is important for the study of complex processes such as those that control climate and environment. In this paper the performance of a new concept of lidar receiver that allows for the direct measurement of aerosol and cloud optical properties simultaneously with wind velocity is investigated. This receiver uses a Mach-Zehnder interferometer. Two different configurations, either with four photometric output channels or with fringe imaging on a multichannel detector, are studied. Analytical expressions of the statistical errors are given under the assumption of Gaussian signal spectra. It is shown that similar accuracies can be achieved for both configurations. Performance modeling of the retrieval of semitransparent cloud optical scattering properties and wind velocity was done at different operation wavelengths for a Nd:YAG laser source. Results for such a lidar system onboard an aircraft flying at an altitude of 12 km show that for semitransparent clouds the best results were obtained at 355 nm, with relative standard deviations of 0.5% and 5% for the backscatter and extinction coefficients, respectively, together with a velocity accuracy of 0.2 ms(-1). The accuracy of optical properties retrieved for boundary layer aerosols are comparable, whereas the velocity accuracy is decreased to 1 ms(-1). Finally, an extrapolation to a large 355-nm spaceborne lidar shows accuracies in the range from 2.5% to 5% for the backscatter coefficient and from 10% to 15% for the extinction coefficient together with a vertical wind speed accuracy of better than 0.5 ms(-1) for semitransparent clouds and boundary layer, with a vertical resolution of 500 m and a 100 shot averaging.

  4. Multiple-Scattering Influence on Extinction-and Backscatter-Coefficient Measurements with Raman and High-Spectral-Resolution Lidars.

    PubMed

    Wandinger, U

    1998-01-20

    A formalism describing the influence of multiple scattering on cloud measurements with Raman and high-spectral-resolution lidars is presented. Model calculations including both particulate and molecular scattering processes are performed to describe the general effects of multiple scattering on both particulate and molecular lidar backscatter signals. It is found that, for typical measurement geometries of ground-based lidars, as many as five scattering orders contribute significantly to the backscattered light. The relative intensity of multiple-scattered light is generally larger in signals backscattered from molecules than in signals backscattered from particles. The multiple-scattering formalism is applied to measurements of water and ice clouds taken with a Raman lidar. Multiple-scattering errors of measured extinction coefficients are typically of the order of 50% at the bases of both water and ice clouds and decrease with increasing penetration depth to below 20%. In contrast, the multiple-scattering errors of backscatter coefficients are negligible in ice clouds and below 20% in water clouds.

  5. Relationships between optical extinction, backscatter and aerosol surface and volume in the stratosphere following the eruption of Mt. Pinatubo

    SciTech Connect

    Brock, C.A.; Jonsson, H.H.; Wilson, J.C. ); Dye, J.E.; Baumgardner, D.; Borrmann, S.; Pitts, M.C.; Osborn, M.T.; DeCoursey, R.J.; Woods, D.C.

    1993-11-19

    The eruption of the Mt. Pinatubo volcano in the Philippines in June 1991 has resulted in increases in the surface and mass concentrations of aerosol particles in the lower stratosphere. Airborne measurements made at midlatitudes between 15 and 21 km from August 1991 to March 1992 show that, prior to December 1991, the Pinatubo aerosol cloud varied widely in microphysical properties such as size distribution, number, surface and volume concentration and was also spatially variable. Aerosol surface area concentration was found to be highly correlated to extinction at visible and near-infrared wavelengths throughout the measurement period. Similarly, backscatter at common lidar wavelengths was a good predictor of aerosol volume concentrations. These results support the use of satellite extinction measurements to estimate aerosol surface and of lidar measurements to estimate aerosol volume or mass if temporal changes in the relationships between the variables are considered. 23 refs., 3 figs., 1 tab.

  6. Analysis of DIAL/HSRL aerosol backscatter and extinction profiles during the SEAC4RS campaign with an aerosol assimilation system

    NASA Astrophysics Data System (ADS)

    Weaver, C. J.; da Silva, A. M., Jr.; Colarco, P. R.; Randles, C. A.

    2015-12-01

    We retrieve aerosol concentrations and optical information from vertical profiles of airborne 532 nm extinction and 532 and 1064 nm backscatter measurements made during the SEAC4RS summer 2013 campaign. The observations are from the High Spectral Resolution Lidar (HSRL) Airborne Differential Absorption Lidar (DIAL) on board the NASA DC-8. Instead of retrieving information about aerosol microphysical properties such as indexes of refraction, we seek information more directly applicable to an aerosol transport model - in our case the Goddard Chemistry Aerosol Radiation and Transport (GOCART) module used in the GEOS-5 Earth modeling system. A joint atmosphere/aerosol mini-reanalysis was performed for the SEAC4RS period using GEOS-5. The meteorological reanalysis followed the MERRA-2 atmospheric reanalysis protocol, and aerosol information from MODIS, MISR, and AERONET provided a constraint on the simulated aerosol optical depth (i.e., total column loading of aerosols). We focus on the simulated concentrations of 10 relevant aerosol species simulated by the GOCART module: dust, sulfate, and organic and black carbon. Our first retrieval algorithm starts with the SEAC4RS mini-reanalysis and adjusts the concentration of each GOCART aerosol species so that differences between the observed and simulated backscatter and extinction measurements are minimized. In this case, too often we are unable to simulate the observations by simple adjustment of the aerosol concentrations. A second retrieval approach adjusts both the aerosol concentrations and the optical parameters (i.e., assigned mass extinction efficiency) associated with each GOCART species. We present results from DC-8 flights over smoke from forest fires over the western US using both retrieval approaches. Finally, we compare our retrieved quantities with in-situ observations of aerosol absorption, scattering, and mass concentrations at flight altitude.

  7. Characteristics of L-band backscatter coefficients of rubber plantation and their seasonal dynamics

    NASA Astrophysics Data System (ADS)

    Trisasongko, Bambang H.; Panuju, Dyah R.

    2015-09-01

    As one of primary land uses in Indonesia, rubber plantation requires frequent, wide-scale monitoring. Due to the nature of tropical region, optical sensors are often inapplicable and therefore Synthetic Aperture Radar (SAR) plays a role. Dual-polarized SAR data have been a definitive imaging mode since fully polarimetric mode consumes higher energy. In this paper, characteristics of returning SAR signals from young rubber stands are investigated in terms of different polarization and time of acquisition. The research shows that strong ground attenuation is observed in very young plantation, which is similar to amplified Bragg scattering in rice field. Seasonal defoliation is also evident at this age, possibly due to limited root depth which reduces ability to obtain moisture in lower solum. Temporal change of canopy cover is detectable by HV polarization, which has been known sensitive to canopy structure. This research suggests that seasonal variation of HV backscatter coefficients may affect biophysical estimation, and therefore time of acquisition needs to be considered carefully.

  8. A Parameterized Inversion Model for Soil Moisture and Biomass from Polarimetric Backscattering Coefficients

    NASA Technical Reports Server (NTRS)

    Truong-Loi, My-Linh; Saatchi, Sassan; Jaruwatanadilok, Sermsak

    2012-01-01

    A semi-empirical algorithm for the retrieval of soil moisture, root mean square (RMS) height and biomass from polarimetric SAR data is explained and analyzed in this paper. The algorithm is a simplification of the distorted Born model. It takes into account the physical scattering phenomenon and has three major components: volume, double-bounce and surface. This simplified model uses the three backscattering coefficients ( sigma HH, sigma HV and sigma vv) at low-frequency (P-band). The inversion process uses the Levenberg-Marquardt non-linear least-squares method to estimate the structural parameters. The estimation process is entirely explained in this paper, from initialization of the unknowns to retrievals. A sensitivity analysis is also done where the initial values in the inversion process are varying randomly. The results show that the inversion process is not really sensitive to initial values and a major part of the retrievals has a root-mean-square error lower than 5% for soil moisture, 24 Mg/ha for biomass and 0.49 cm for roughness, considering a soil moisture of 40%, roughness equal to 3cm and biomass varying from 0 to 500 Mg/ha with a mean of 161 Mg/ha

  9. Laser-based air data system for aircraft control using Raman and elastic backscatter for the measurement of temperature, density, pressure, moisture, and particle backscatter coefficient.

    PubMed

    Fraczek, Michael; Behrendt, Andreas; Schmitt, Nikolaus

    2012-01-10

    Flight safety in all weather conditions demands exact and reliable determination of flight-critical air parameters. Air speed, temperature, density, and pressure are essential for aircraft control. Conventional air data systems can be impacted by probe failure caused by mechanical damage from hail, volcanic ash, and icing. While optical air speed measurement methods have been discussed elsewhere, in this paper, a new concept for optically measuring the air temperature, density, pressure, moisture, and particle backscatter is presented, being independent on assumptions on the atmospheric state and eliminating the drawbacks of conventional aircraft probes by providing a different measurement principle. The concept is based on a laser emitting laser pulses into the atmosphere through a window and detecting the signals backscattered from a fixed region just outside the disturbed area of the fuselage flows. With four receiver channels, different spectral portions of the backscattered light are extracted. The measurement principle of air temperature and density is based on extracting two signals out of the rotational Raman (RR) backscatter signal of air molecules. For measuring the water vapor mixing ratio-and thus the density of the moist air-a water vapor Raman channel is included. The fourth channel serves to detect the elastic backscatter signal, which is essential for extending the measurements into clouds. This channel contributes to the detection of aerosols, which is interesting for developing a future volcanic ash warning system for aircraft. Detailed and realistic optimization and performance calculations have been performed based on the parameters of a first prototype of such a measurement system. The impact and correction of systematic error sources, such as solar background at daytime and elastic signal cross talk appearing in optically dense clouds, have been investigated. The results of the simulations show the high potential of the proposed system for

  10. Laser-based air data system for aircraft control using Raman and elastic backscatter for the measurement of temperature, density, pressure, moisture, and particle backscatter coefficient.

    PubMed

    Fraczek, Michael; Behrendt, Andreas; Schmitt, Nikolaus

    2012-01-10

    Flight safety in all weather conditions demands exact and reliable determination of flight-critical air parameters. Air speed, temperature, density, and pressure are essential for aircraft control. Conventional air data systems can be impacted by probe failure caused by mechanical damage from hail, volcanic ash, and icing. While optical air speed measurement methods have been discussed elsewhere, in this paper, a new concept for optically measuring the air temperature, density, pressure, moisture, and particle backscatter is presented, being independent on assumptions on the atmospheric state and eliminating the drawbacks of conventional aircraft probes by providing a different measurement principle. The concept is based on a laser emitting laser pulses into the atmosphere through a window and detecting the signals backscattered from a fixed region just outside the disturbed area of the fuselage flows. With four receiver channels, different spectral portions of the backscattered light are extracted. The measurement principle of air temperature and density is based on extracting two signals out of the rotational Raman (RR) backscatter signal of air molecules. For measuring the water vapor mixing ratio-and thus the density of the moist air-a water vapor Raman channel is included. The fourth channel serves to detect the elastic backscatter signal, which is essential for extending the measurements into clouds. This channel contributes to the detection of aerosols, which is interesting for developing a future volcanic ash warning system for aircraft. Detailed and realistic optimization and performance calculations have been performed based on the parameters of a first prototype of such a measurement system. The impact and correction of systematic error sources, such as solar background at daytime and elastic signal cross talk appearing in optically dense clouds, have been investigated. The results of the simulations show the high potential of the proposed system for

  11. Analysis of the performance of a coherent pulsed fiber lidar for aerosol backscatter applications.

    PubMed

    Pearson, Guy N; Roberts, P John; Eacock, Justin R; Harris, Michael

    2002-10-20

    The antenna and the Doppler estimation characteristics of a coherent pulsed lidar intended for short-range aerosol backscatter applications have been analyzed. The system used fiber-optic interconnects and operated at a wavelength of 1.548 microm. The range dependence of the signal for various bistatic and monostatic antenna configurations has been determined. The system operated in a low-pulse-energy, high-pulse-repetition-rate mode, and the Doppler estimates from the return signal were achieved with a multipulse accumulation procedure. The expected performance of the accumulation in this low-photocount regime was compared with the data obtained from the system, and a reasonable level of agreement was demonstrated. PMID:12396197

  12. Aerosol measurements over the Pacific Ocean in support of the IR aerosol backscatter program

    NASA Technical Reports Server (NTRS)

    Prospero, Joseph M.; Savoie, Dennis L.

    1995-01-01

    The major efforts under NASA contract NAG8-841 included: (1) final analyses of the samples collected during the first GLOBE survey flight that occurred in November 1989 and collections and analysis of aerosol samples during the second GLOBE survey flight in May and June 1990. During the first GLOBE survey flight, daily samples were collected at four stations (Midway, Rarotonga, American Samoa, and Norfolk Island) throughout the month of November 1989. Weekly samples were collected at Shemya, Alaska, and at Karamea, New Zealand. During the second GLOBE survey flight, daily samples were collected at Midway, Oahu, American Samoa, Rarotonga, and Norfolk Island; weekly samples were collected at Shemya. These samples were all analyzed for sodium (sea-salt), chloride, nitrate, sulfate, and methanesulfonate at the University of Miami and for aluminum at the University of Rhode Island (under a subcontract). (2) Samples continued to be collected on a weekly basis at all stations during the periods between and after the survey flights. These weekly samples were also analyzed at the University of Miami for the suite of water-soluble species. (3) In August 1990, the results obtained from the above studies were submitted to the appropriate personnel at NASA Marshall Space Flight Center to become part of the GLOBE data base for comparison with data from instruments used aboard the aircraft. In addition, the data will be compared with data previously obtained at these stations as part of the Sea-Air Exchange (SEAREX) Program. This comparison will provide valuable information on the representativeness of the periods in terms of the longer term aerosol climatology over the Pacific Ocean. (4) Several publications have been written using data from this grant. The data will continue to be used in the future as part of a continuing investigation of the long-term trends and interannual variations in aerosol species concentrations over the Pacific Ocean.

  13. Application of HARLIE Measurements in Mesoscale Studies: Measurements of Aerosol Backscatter and Winds During A Gust Front

    NASA Technical Reports Server (NTRS)

    Demoz, Belay; Miller, David; Schwemmer, Geary; Starr, David OC (Technical Monitor)

    2001-01-01

    Lidar atmospheric systems have required large telescope for receiving atmospheric backscatter signals. Thus, the relative complexity in size and ease of operation has limited their wider use in the atmospheric science and meteorology community. The Holographic Airborne Rotating Lidar Instrument Experiment (HARLIE) uses a scanning holographic receiver and demonstrates that these issues can be overcome. HARLIE participated at the DOE-ARM Southern Great Plains site (CART) during the Water Vapor Intensive Operation Period (WVIOP2000) held September-October 2000. It provided exceptional high temporal and spatial resolution measurements of aerosol and cloud backscatter in three dimensions. HARLIE recorded over 110 hours of data were recorded on 16 days between 17 September and 6 October 2000. Placed in a ground-based trailer for upward looking scanning measurements of clouds and aerosols, HARLIE provided a unique record of time-resolved atmospheric backscatter at 1-micron wavelength. The conical scanning lidar measures atmospheric backscatter on the surface of an inverted 90 degree (full angle) cone up to an altitude of 20 km, 360-degree scans having spatial resolutions of 20 meters in the vertical and 1 degree in azimuth were obtained every 36 seconds during the daily, operating period. In this study we present highlights of HARLIE-based measurements of the boundary layer and cloud parameters as well as atmospheric wind vectors where there is sufficiently resolved structure in the backscatter. In particular we present data and discussions from a bore-front case observed on 23 September 2000.

  14. Review of Quantitative Ultrasound: Envelope Statistics and Backscatter Coefficient Imaging and Contributions to Diagnostic Ultrasound.

    PubMed

    Oelze, Michael L; Mamou, Jonathan

    2016-02-01

    Conventional medical imaging technologies, including ultrasound, have continued to improve over the years. For example, in oncology, medical imaging is characterized by high sensitivity, i.e., the ability to detect anomalous tissue features, but the ability to classify these tissue features from images often lacks specificity. As a result, a large number of biopsies of tissues with suspicious image findings are performed each year with a vast majority of these biopsies resulting in a negative finding. To improve specificity of cancer imaging, quantitative imaging techniques can play an important role. Conventional ultrasound B-mode imaging is mainly qualitative in nature. However, quantitative ultrasound (QUS) imaging can provide specific numbers related to tissue features that can increase the specificity of image findings leading to improvements in diagnostic ultrasound. QUS imaging can encompass a wide variety of techniques including spectral-based parameterization, elastography, shear wave imaging, flow estimation, and envelope statistics. Currently, spectral-based parameterization and envelope statistics are not available on most conventional clinical ultrasound machines. However, in recent years, QUS techniques involving spectral-based parameterization and envelope statistics have demonstrated success in many applications, providing additional diagnostic capabilities. Spectral-based techniques include the estimation of the backscatter coefficient (BSC), estimation of attenuation, and estimation of scatterer properties such as the correlation length associated with an effective scatterer diameter (ESD) and the effective acoustic concentration (EAC) of scatterers. Envelope statistics include the estimation of the number density of scatterers and quantification of coherent to incoherent signals produced from the tissue. Challenges for clinical application include correctly accounting for attenuation effects and transmission losses and implementation of QUS on

  15. Comparison of aerosol backscatter and wind field estimates from the REAL and the SAMPLE

    NASA Astrophysics Data System (ADS)

    Mayor, Shane D.; Dérian, Pierre; Mauzey, Christopher F.; Spuler, Scott M.; Ponsardin, Patrick; Pruitt, Jeff; Ramsey, Darrell; Higdon, Noah S.

    2015-09-01

    Although operating at the same near-infrared 1.5- m wavelength, the Raman-shifted Eye-safe Aerosol Lidar (REAL) and the Scanning Aerosol Micro-Pulse Lidar-Eye-safe (SAMPLE) are very different in how they generate and detect laser radiation. We present results from an experiment where the REAL and the SAMPLE were operated side-by-side in Chico, California, in March of 2015. During the non-continuous, eleven day test period, the SAMPLE instrument was operated at maximum pulse repetition frequency (15 kHz) and integrated over the interpulse period of the REAL (0.1 s). Operation at the high pulse repetition frequency resulted in second trip echoes which contaminated portions of the data. The performance of the SAMPLE instrument varied with background brightness--as expected with a photon counting receiver|--yet showed equal or larger backscatter intensity signal to noise ratio throughout the intercomparison experiment. We show that a modest low-pass filter or smooth applied to the REAL raw waveforms (that have 5x higher range resolution) results in significant increases in raw signal-to-noise ratio and image signal-to-noise ratio--a measure of coherent aerosol feature content in the images resulting from the scans. Examples of wind fields and time series of wind estimates from both systems are presented. We conclude by reviewing the advantages and disadvantages of each system and sketch a plan for future research and development activities to optimize the design of future systems.

  16. Retrieve the soil moisture from radar backscattering coefficient using ALOS/PALSAR polarization (HH/VV) data

    NASA Astrophysics Data System (ADS)

    Buho, Hoshino; Ruichen, Jia; Nawata, Hiroshi; Abdelaziz, Karamalla; Yoda, Kiyotsugu; Abdel, Babiker

    Mesquite (Prosopis spp) are ever green leguminous trees or shrubs. These species are native to North and South America. They were introduced to Sudan in 1917 from South Africa and Egypt and planted in Khartoum state in central Sudan (Broun and Massey, 1929). Mesquite was originally favored as sand dunes stabilizer and as fodder for livestock. However, sparse stands will often form impenetrable thickets formations that hinder movement of humans and animals. Many infestations are along waterways, both natural and constructed, however, plants can grow also well in drier areas away from water sites. Even in natural rangelands it is an aggressive competitor and can quickly invade upland country. Mesquite thickets can out-compete other vegetation, interfere with mustering and block access to watering places. The sharp thorns can injure animals and puncture vehicle tyres. Seeds can stay dormant for years, and therefore seedlings can re-appear in areas that have been previously cleared. The main objective of Remote Sensing Method for Mesquite Control (RSMMC) is to identify pattern and extend of mesquite spread along spatial and temporal variations using remote sensing means, as main part of mesquite control. Estimation of soil moisture by inversion of SAR data can be performed using physical or semi-empirical approaches. The physical approach uses backscattering models that are capable of reproducing the radar backscattering coefficient from the sensor configuration (wavelength, polarization, and incidence angle) and soil parameters (soil moisture and surface roughness for bare soils). This study adopted calculation of PALSAR L-band radar backscattering coefficient (dB), to estimate soil moisture distribution area based on TDR soil moisture ground measurement data. To retrieve soil moisture (mv) from a single radar configuration, it is necessary to establish a relationship between the radar backscattering coefficient (dB) and soil moisture (mv) measurement.

  17. Remote Sensing of Aerosol Backscatter and Earth Surface Targets By Use of An Airborne Focused Continuous Wave CO2 Doppler Lidar Over Western North America

    NASA Technical Reports Server (NTRS)

    Jarzembski, Maurice A.; Srivastava, Vandana; Goodman, H. Michael (Technical Monitor)

    2000-01-01

    Airborne lidar systems are used to determine wind velocity and to measure aerosol or cloud backscatter variability. Atmospheric aerosols, being affected by local and regional sources, show tremendous variability. Continuous wave (cw) lidar can obtain detailed aerosol loading with unprecedented high resolution (3 sec) and sensitivity (1 mg/cubic meter) as was done during the 1995 NASA Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) mission over western North America and the Pacific Ocean. Backscatter variability was measured at a 9.1 micron wavelength cw focused CO2 Doppler lidar for approximately 52 flight hours, covering an equivalent horizontal distance of approximately 30,000 km in the troposphere. Some quasi-vertical backscatter profiles were also obtained during various ascents and descents at altitudes that ranged from approximately 0.1 to 12 km. Similarities and differences for aerosol loading over land and ocean were observed. Mid-tropospheric aerosol backscatter background mode was approximately 6 x 10(exp -11)/ms/r, consistent with previous lidar datasets. While these atmospheric measurements were made, the lidar also retrieved a distinct backscatter signal from the Earth's surface from the unfocused part of the focused cw lidar beam during aircraft rolls. Atmospheric backscatter can be highly variable both spatially and temporally, whereas, Earth-surface backscatter is relatively much less variant and can be quite predictable. Therefore, routine atmospheric backscatter measurements by an airborne lidar also give Earth surface backscatter which can allow for investigating the Earth terrain. In the case where the Earth's surface backscatter is coming from a well-known and fairly uniform region, then it can potentially offer lidar calibration opportunities during flight. These Earth surface measurements over varying Californian terrain during the mission were compared with laboratory backscatter measurements using the same lidar of various

  18. An Aerosol Extinction-to-Backscatter Ratio Database Derived from the NASA Micro-Pulse Lidar Network: Applications for Space-based Lidar Observations

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Campbell, James R.; Spinhime, James D.; Berkoff, Timothy A.; Holben, Brent; Tsay, Si-Chee; Bucholtz, Anthony

    2004-01-01

    Backscatter lidar signals are a function of both backscatter and extinction. Hence, these lidar observations alone cannot separate the two quantities. The aerosol extinction-to-backscatter ratio, S, is the key parameter required to accurately retrieve extinction and optical depth from backscatter lidar observations of aerosol layers. S is commonly defined as 4*pi divided by the product of the single scatter albedo and the phase function at 180-degree scattering angle. Values of S for different aerosol types are not well known, and are even more difficult to determine when aerosols become mixed. Here we present a new lidar-sunphotometer S database derived from Observations of the NASA Micro-Pulse Lidar Network (MPLNET). MPLNET is a growing worldwide network of eye-safe backscatter lidars co-located with sunphotometers in the NASA Aerosol Robotic Network (AERONET). Values of S for different aerosol species and geographic regions will be presented. A framework for constructing an S look-up table will be shown. Look-up tables of S are needed to calculate aerosol extinction and optical depth from space-based lidar observations in the absence of co-located AOD data. Applications for using the new S look-up table to reprocess aerosol products from NASA's Geoscience Laser Altimeter System (GLAS) will be discussed.

  19. Monitoring spatial and temporal variations of the rice backscatter coefficient (σ0) at different phenological stages in Sungai Burong and Sawah Sempadan, Kuala Selangor.

    NASA Astrophysics Data System (ADS)

    Aishah Mohd Rasit, Siti; Shariff, Abdul Rashid Mohammed; Razak, Janatul Aziera Abdul; Ghani, Aisyah Afiqah Abdul; Fikri Abdullah, Ahmad; Wayayok, Aimrun

    2016-06-01

    Monitoring rice growth and yield estimation using optical remote sensing data constitutes a big challenge largely due to cloud conditions that are typical of tropical regions. Using Radar remote sensing data helps because it overcomes the cloud issue and distinguishes the behaviour of the radar backscattering of rice crops specifically. This study indicated the temporal change of rice backscatter (σ°) at two different growth stages using HH polarimetric Radarsat-2. The aims of this study are: (1) to identify crop with different life spans based on the backscatter coefficient's values from a single polarisation for understanding the backscatter characteristic of rice over the entire growth cycle, and (2) to understand the advantages and limitations using the RADARSAT-2, C band with HH polarisation. The values of backscattering coefficients have been related to the Malaysia rice crop calendar to get the information of the growth status. The result shows strong backscatter coefficient values on the 21st of May that referred to the reproductive-maturity of rice in the Sawah Sempadan area, and out of season for the Sungai Burong area. While for the August 1st imagery, the result shows weak backscatter values which refers to early vegetative and vegetative-reproductive. The values of backscattering coefficient are found to be much less for early vegetation compare to mature rice crop. In this paper, we have also performed a classification of a rice field using Landsat 8 OLI.

  20. Absolute backscatter coefficient estimates of tissue-mimicking phantoms in the 5–50 MHz frequency range

    PubMed Central

    McCormick, Matthew M.; Madsen, Ernest L.; Deaner, Meagan E.; Varghese, Tomy

    2011-01-01

    Absolute backscatter coefficients in tissue-mimicking phantoms were experimentally determined in the 5–50 MHz frequency range using a broadband technique. A focused broadband transducer from a commercial research system, the VisualSonics Vevo 770, was used with two tissue-mimicking phantoms. The phantoms differed regarding the thin layers covering their surfaces to prevent desiccation and regarding glass bead concentrations and diameter distributions. Ultrasound scanning of these phantoms was performed through the thin layer. To avoid signal saturation, the power spectra obtained from the backscattered radio frequency signals were calibrated by using the signal from a liquid planar reflector, a water-brominated hydrocarbon interface with acoustic impedance close to that of water. Experimental values of absolute backscatter coefficients were compared with those predicted by the Faran scattering model over the frequency range 5–50 MHz. The mean percent difference and standard deviation was 54% ± 45% for the phantom with a mean glass bead diameter of 5.40 μm and was 47% ± 28% for the phantom with 5.16 μm mean diameter beads. PMID:21877789

  1. Toward a Combined SAGE II-HALOE Aerosol Climatology: An Evaluation of HALOE Version 19 Stratospheric Aerosol Extinction Coefficient Observations

    NASA Technical Reports Server (NTRS)

    Thomason, L. W.

    2012-01-01

    Herein, the Halogen Occultation Experiment (HALOE) aerosol extinction coefficient data is evaluated in the low aerosol loading period after 1996 as the first necessary step in a process that will eventually allow the production of a combined HALOE/SAGE II (Stratospheric Aerosol and Gas Experiment) aerosol climatology of derived aerosol products including surface area density. Based on these analyses, it is demonstrated that HALOE's 3.46 microns is of good quality above 19 km and suitable for scientific applications above that altitude. However, it is increasingly suspect at lower altitudes and should not be used below 17 km under any circumstances after 1996. The 3.40 microns is biased by about 10% throughout the lower stratosphere due to the failure to clear NO2 but otherwise appears to be a high quality product down to 15 km. The 2.45 and 5.26 micron aerosol extinction coefficient measurements are clearly biased and should not be used for scientific applications after the most intense parts of the Pinatubo period. Many of the issues in the aerosol data appear to be related to either the failure to clear some interfering gas species or doing so poorly. For instance, it is clear that the 3.40micronaerosol extinction coefficient measurements can be improved through the inclusion of an NO2 correction and could, in fact, end up as the highest quality overall HALOE aerosol extinction coefficient measurement. It also appears that the 2.45 and 5.26 micron channels may be improved by updating the Upper Atmosphere Pilot Database which is used as a resource for the removal of gas species otherwise not available from direct HALOE measurements. Finally, a simple model to demonstrate the promise of mixed visible/infrared aerosol extinction coefficient ensembles for the retrieval of bulk aerosol properties demonstrates that a combined HALOE/SAGE II aerosol climatology is feasible and may represent a substantial improvement over independently derived data sets.

  2. An analysis of the characteristics of aerosol light scattering coefficients at Seoul and Baengnyeongdo

    NASA Astrophysics Data System (ADS)

    Kim, B.; Eun, S.; Seo, W.; Park, J.; Ahn, J.; Moon, K.

    2013-12-01

    Aerosols in the atmosphere can scatter and absorb solar radiation and their spatial/temporal distributions are highly inhomogeneous due to short lifetimes (about a few weeks or less). Through scattering and absorption of solar radiation, aerosols directly affect visibility and climate through the modification of the Earth's energy budget (Charlson et al., 1992; Yan, 2007; Wang, 2012). This study investigates long-term trends and characteristics of aerosol light scattering coefficient at Seoul and Baengnyeongdo, 100 km upstream of Seoul, in Korea. Aerosol scattering coefficients were measured continuously with nephelometers. The analysis period is limited to one year of 2011. For the relationship analysis of extinction coefficients (σext) to visibility and aerosol optical depth, σsp observed at 3 p.m. have been used with help of aerosol absorption coefficients (σap) in order to remove its dependence upon relative humidity (RH), and also those of rainy period have been excluded. As expected, σext estimated are inversely proportional to visibility observation by eye. Aerosol extinction coefficients have been vertically integrated with an assumption of nearly well-mixed within an e-folding height to determine aerosol optical depth (τa), and compared with those retrieved from sunphotometer. The results show a reasonable agreement in spite of an inherent difference of each definition. We expect these findings would help to eventually understand aerosol radiative forcing and its effect on the regional climate change around Korea.

  3. Vertical variability of aerosol backscatter from an airborne-focused continuous-wave CO2 lidar at 9.1-microm wavelength.

    PubMed

    Jarzembski, M A; Srivastava, V; Rothermel, J

    1999-02-20

    Atmospheric aerosol backscatter measurements taken with a continuous-wave focused Doppler lidar at 9.1-microm wavelength were obtained over western North America and the Pacific Ocean from 13 to 26 September 1995 as part of a NASA airborne mission. Backscatter variability was measured for approximately 52 flight hours, covering an equivalent horizontal distance of approximately 30,000 km in the troposphere. Some quasi-vertical backscatter profiles were also obtained during various ascents and descents at altitudes that ranged from approximately 0.1 to 12 km. Similarities and differences for aerosol loading over land and ocean were observed. A midtropospheric aerosol backscatter background mode near 3 x 10(-11) to 1 x 10(-10) m(-1) sr(-1) was obtained, which is consistent with those of previous airborne and ground-based data sets. PMID:18305690

  4. First results from the aerosol lidar and backscatter sonde intercomparison campaign STRAIT'1997 at table mountain facility during February-March 1997

    NASA Technical Reports Server (NTRS)

    Beyerle, G.; Gross, M. R.; Haner, D. A.; Kjome, N. T.; McDermid, I. S.; McGee, T. J.; Rosen, J. M.; Schaefer, H. - J.; Schrems, O.

    1998-01-01

    First results of an intercomparison measurement campaign between three aerosol lidar instruments and in-situ backscatter sondes performed at Table Mountain Facility (34.4 deg N, 117.7 deg E, 2280 m asl) in February-March 1997 are presented. During the campaign a total of 414 hours of lidar data were acquired by the Aerosol-Temperature-Lidar (ATL, Goddard Space Flight Center) the Mobile-aerosol-Raman-Lidar (MARL, Alfred Wegener Institute), and the TMF-Aerosol-Lidar (TAL, Jet Propulsion Laboratory), and four backscatter sondes were launched. From the data set altitude profiles of backscatter ratio and volume depolarization of stratospheric background aerosols at altitudes between 15 and 25 km and optically thin high-altitude cirrus clouds at altitudes below 13 km are derived. On the basis of a sulfuric acid aerosol model color ratio profiles obtained from two wavelength lidar data are compared to the corresponding profiles derived from the sonde observations. We find an excellent agreement between the in-situ and ATL lidar data with respect to backscatter and color ratio. Cirrus clouds were present on 16 of 26 nights during the campaign. Lidar observations with 17 minute temporal and 120-300 m spatial resolution indicate high spatial and temporal variability of the cirrus layers. Qualitative agreement is found between concurrent lidar measurements of backscatter ratio and volume depolarization.

  5. Monte Carlo simulations of coherent backscatter for identification of the optical coefficients of biological tissues in vivo

    NASA Astrophysics Data System (ADS)

    Eddowes, M. H.; Mills, T. N.; Delpy, D. T.

    1995-05-01

    A Monte Carlo model of light backscattered from turbid media has been used to simulate the effects of weak localization in biological tissues. A validation technique is used that implies that for the scattering and absorption coefficients and for refractive index mismatches found in tissues, the Monte Carlo method is likely to provide more accurate results than the methods previously used. The model also has the ability to simulate the effects of various illumination profiles and other laboratory-imposed conditions. A curve-fitting routine has been developed that might be used to extract the optical coefficients from the angular intensity profiles seen in experiments on turbid biological tissues, data that could be obtained in vivo.

  6. Multi-wavelength measurements of aerosol optical absorption coefficients using a photoacoustic spectrometer

    NASA Astrophysics Data System (ADS)

    Liu, Qiang; Huang, Hong-Hua; Wang, Yao; Wang, Gui-Shi; Cao, Zhen-Song; Liu, Kun; Chen, Wei-Dong; Gao, Xiao-Ming

    2014-06-01

    The atmospheric aerosol absorption capacity is a critical parameter determining its direct and indirect effects on climate. Accurate measurement is highly desired for the study of the radiative budget of the Earth. A multi-wavelength (405 nm, 532 nm, 780 nm) aerosol absorption meter based on photoacoustic spectroscopy (PAS) invovling a single cylindrical acoustic resonator is developed for measuring the aerosol optical absorption coefficients (OACs). A sensitivity of 1.3 Mm-1 (at 532 nm) is demonstrated. The aerosol absorption meter is successfully tested through measuring the OACs of atmospheric nigrosin and ambient aerosols in the suburbs of Hefei city. The absorption cross section and absorption Ångström exponent (AAE) for ambient aerosol are determined for characterizing the component of the ambient aerosol.

  7. Variability of the relationship between the particulate backscattering coefficient and the volume scattering function measured at fixed angles

    NASA Astrophysics Data System (ADS)

    Chami, M.; Marken, E.; Stamnes, J. J.; Khomenko, G.; Korotaev, G.

    2006-05-01

    The particulate backscattering coefficient bbp is an inherent optical property that plays a central role in studies of ocean color remote sensing. Because of practical difficulties associated with measurements of the volume scattering function (VSF) over the whole backward hemisphere, bbp is currently derived using fixed-angle backscattering sensors and applying a conversion factor for particulate backscattering, referred to as χp. The underlying assumptions of the fixed-angle approach are as follows: (1) in the green band, χp is fairly constant in the angular range 100°-150° and (2) for a fixed scattering angle, χp is wavelength-independent. In this study we investigated the variability of χp based on spectral measurements of the full VSF, both in situ and for algal culture in the laboratory. The in situ data used in our study were acquired in a coastal environment outside of phytoplankton blooms, whereas the laboratory data were representative for phytoplankton bloom conditions in oceanic waters. At 555 nm, χp was found to vary significantly in the angular range 100°-130°, and at 140°, χp was found to be weakly variable in nonblooming waters only. The spectral variability of χp was studied for the first time, and the spectral slopes of χp, measured in situ, were found to vary within ±6%. Under the assumption that χp(140°) is wavelength-independent, the induced error in the estimates of bbp was found to be lower than 10%. The algal culture showed a much higher spectral variability in χp(±20%), which induced an error in the estimates of bbp up to ±25.8%.

  8. Dynamic changes of integrated backscatter, attenuation coefficient and bubble activities during high-intensity focused ultrasound (HIFU) treatment.

    PubMed

    Zhang, Siyuan; Wan, Mingxi; Zhong, Hui; Xu, Cheng; Liao, Zhenzhong; Liu, Huanqing; Wang, Supin

    2009-11-01

    This paper simultaneously investigated the transient characteristics of integrated backscatter (IBS), attenuation coefficient and bubble activities as time traces before, during and after HIFU treatment, with different HIFU parameters (acoustic power and duty cycle) in both transparent tissue-mimicking phantoms and freshly excised bovine livers. These dynamic changes of acoustic parameters and bubble activities were correlated with the visualization of lesion development selected from photos, conventional B-mode ultrasound images and differential IBS images over the whole procedure of HIFU treatment. Two-dimensional radiofrequency (RF) data were acquired by a modified diagnostic ultrasound scanner to estimate the changes of mean IBS and attenuation coefficient averaged in the lesion region, and to construct the differential IBS images and B-mode ultrasound images simultaneously. Bubble activities over the whole procedure of HIFU treatment were investigated by the passive cavitation detection (PCD) method and the changes in subharmonic and broadband noise were correlated with the transient characteristics of IBS and attenuation coefficient. When HIFU was switched on, IBS and attenuation coefficient increased with the appearance of bubble clouds in the B-mode and differential IBS image. At the same time, the level of subharmonic and broadband noise rose abruptly. Then, there was an initial decrease in the attenuation coefficient, followed by an increase when at lower HIFU power. As the lesion appeared, IBS and attenuation coefficient both increased rapidly to a value twice that of normal. Then the changes in IBS and attenuation coefficient showed more complex patterns, but still showed a slower trend of increases with lesion development. Violent bubble activities were visible in the gel and were evident as strongly echogenic regions in the differential IBS images and B-mode images simultaneously. This was detected by a dramatic high level of subharmonic and broadband

  9. Dynamic changes of integrated backscatter, attenuation coefficient and bubble activities during high-intensity focused ultrasound (HIFU) treatment.

    PubMed

    Zhang, Siyuan; Wan, Mingxi; Zhong, Hui; Xu, Cheng; Liao, Zhenzhong; Liu, Huanqing; Wang, Supin

    2009-11-01

    This paper simultaneously investigated the transient characteristics of integrated backscatter (IBS), attenuation coefficient and bubble activities as time traces before, during and after HIFU treatment, with different HIFU parameters (acoustic power and duty cycle) in both transparent tissue-mimicking phantoms and freshly excised bovine livers. These dynamic changes of acoustic parameters and bubble activities were correlated with the visualization of lesion development selected from photos, conventional B-mode ultrasound images and differential IBS images over the whole procedure of HIFU treatment. Two-dimensional radiofrequency (RF) data were acquired by a modified diagnostic ultrasound scanner to estimate the changes of mean IBS and attenuation coefficient averaged in the lesion region, and to construct the differential IBS images and B-mode ultrasound images simultaneously. Bubble activities over the whole procedure of HIFU treatment were investigated by the passive cavitation detection (PCD) method and the changes in subharmonic and broadband noise were correlated with the transient characteristics of IBS and attenuation coefficient. When HIFU was switched on, IBS and attenuation coefficient increased with the appearance of bubble clouds in the B-mode and differential IBS image. At the same time, the level of subharmonic and broadband noise rose abruptly. Then, there was an initial decrease in the attenuation coefficient, followed by an increase when at lower HIFU power. As the lesion appeared, IBS and attenuation coefficient both increased rapidly to a value twice that of normal. Then the changes in IBS and attenuation coefficient showed more complex patterns, but still showed a slower trend of increases with lesion development. Violent bubble activities were visible in the gel and were evident as strongly echogenic regions in the differential IBS images and B-mode images simultaneously. This was detected by a dramatic high level of subharmonic and broadband

  10. THE MASS ACCOMMODATION COEFFICIENT OF AMMONIUM NITRATE AEROSOL. (R823514)

    EPA Science Inventory

    The mass transfer rate of pure ammonium nitrate between the aerosol and gas phases was
    quantified experimentally by the use of the tandem differential mobility analyzer/scanning mobility
    particle sizer (TDMA/SMPS) technique. Ammonium nitrate particles 80-220 nm in diameter<...

  11. In-cell measurements of smoke backscattering coefficients using a CO2 laser system for application to lidar-dial forest fire detection

    NASA Astrophysics Data System (ADS)

    Bellecci, Carlo; Gaudio, Pasquale; Gelfusa, Michela; Lo Feudo, Teresa; Murari, Andrea; Richetta, Maria; de Leo, Leonerdo

    2010-12-01

    In the lidar-dial method, the amount of the water vapor present in the smoke of the vegetable fuel is detected to reduce the number of false alarms. We report the measurements of the smoke backscattering coefficients for the CO2 laser lines 10R20 and 10R18 as determined in an absorption cell for two different vegetable fuels (eucalyptus and conifer). These experimental backscattering coefficients enable us to determine the error to be associated to the water vapor measurements when the traditional first-order approximation is assumed. We find that this first-order approximation is valid for combustion rates as low as 100 g/s.

  12. Statistical Estimation of the Atmospheric Aerosol Absorption Coefficient Based on the Data of Optical Measurements

    SciTech Connect

    Uzhegov, V.N.; Kozlov, V.S.; Panchenko, M.V.; Pkhalagov, Yu.A.; Pol'kin, V.V.; Terpugova, S.A.; Shmargunov, V.P.; Yausheva, E.P.

    2005-03-18

    The problem of the choice of the aerosol optical constants and, in particular, imaginary part of the refractive index of particles in visible and infrared (IR) wavelength ranges is very important for calculation of the global albedo of the atmosphere in climatic models. The available models of the aerosol optical constants obtained for the prescribed chemical composition of particles (see, for example, Ivlev et al. 1973; Ivlev 1982; Volz 1972), often are far from real aerosol. It is shown in (Krekov et al. 1982) that model estimates of the optical characteristics of the atmosphere depending on the correctness of real and imaginary parts of the aerosol complex refractive index can differ by some hundreds percent. It is known that the aerosol extinction coefficient {alpha}({lambda}) obtained from measurements on a long horizontal path can be represented as {alpha}({lambda})={sigma}({lambda})+{beta}({lambda}), where {sigma} is the directed light scattering coefficient, and {beta} is the aerosol absorption coefficient. The coefficient {sigma}({lambda}) is measured by means of a nephelometer. Seemingly, if measure the values {alpha}({lambda}) and {sigma}({lambda}), it is easy to determine the value {beta}({lambda}). However, in practice it is almost impossible for a number of reasons. Firstly, the real values {alpha}({lambda}) and {sigma}({lambda}) are very close to each other, and the estimate of the parameter {beta}({lambda}) is concealed by the errors of measurements. Secondly, the aerosol optical characteristics on the long path and in the local volume of nephelometer can be different, that also leads to the errors in estimating {beta}({lambda}). Besides, there are serious difficulties in performing spectral measurements of {sigma}({lambda}) in infrared wavelength range. Taking into account these circumstances, in this paper we consider the statistical technique, which makes it possible to estimate the absorption coefficient of real aerosol on the basis of analysis

  13. Retrievals of atmospheric CO2 from simulated space-borne measurements of backscattered near-infrared sunlight: accounting for aerosol effects.

    PubMed

    Butz, André; Hasekamp, Otto P; Frankenberg, Christian; Aben, Ilse

    2009-06-20

    Retrievals of atmospheric carbon dioxide (CO2) from space-borne measurements of backscattered near-infrared sunlight are hampered by aerosol and cirrus cloud scattering effects. We propose a retrieval approach that allows for the retrieval of a few effective aerosol parameters simultaneously with the CO2 total column by parameterizing particle amount, height distribution, and microphysical properties. Two implementations of the proposed method covering different spectral bands are tested for an ensemble of simulated nadir observations for aerosol (and cirrus) loaded scenes over low- and mid-latitudinal land surfaces. The residual aerosol-induced CO(2) errors are mostly below 1% up to aerosol optical thickness 0.5. The proposed methods also perform convincing for scenes where cirrus clouds of optical thickness 0.1 overlay the aerosol.

  14. Reactive Uptake Coefficients for NO_3 on Squalane and Squalene Aerosol

    NASA Astrophysics Data System (ADS)

    Lee, L.; Wooldridge, P. J.; Nah, T.; Wilson, K. R.; Cohen, R. C.

    2011-12-01

    Chemical mechanisms leading to production and loss of organic aerosol do not adequately explain ambient observations. Although there has been considerable progress in thinking about production there is less known about chemical reactions that occur on, or within, organic aerosol. Here we focus on understanding mechanisms that will help to understand the potential for NO_3 chemistry to affect aerosol composition. The uptake coefficient for NO_3 reacting with squalane aerosol was measured in a flow tube reactor to be 1.4e-3, independent of the extent of oxidation. In contrast, the uptake coefficient for squalene aerosol increased as the extent of oxidation increased from 0.18 on fresh particles up to 0.82 on particles with a mean oxidation estimated at 2.5 reactions with NO_3. Analysis of aerosol composition using VUV ionization coupled to aerosol mass spectrometry allows direct detection of squalene molecules with as many as 3 NO_3 subunits and also allows detection of polymers containing 2 squalene subunits. The photoionization threshold of squalene-derived products increases with successive addition of NO_3 units. The observations also indicate a well-mixed liquid condensed phase exists even at the highest degree of oxidation.

  15. Measurements of the HO2 uptake coefficients onto single component organic aerosols.

    PubMed

    Lakey, P S J; George, I J; Whalley, L K; Baeza-Romero, M T; Heard, D E

    2015-04-21

    Measurements of HO2 uptake coefficients (γ) were made onto a variety of organic aerosols derived from glutaric acid, glyoxal, malonic acid, stearic acid, oleic acid, squalene, monoethanol amine sulfate, monomethyl amine sulfate, and two sources of humic acid, for an initial HO2 concentration of 1 × 10(9) molecules cm(-3), room temperature and at atmospheric pressure. Values in the range of γ < 0.004 to γ = 0.008 ± 0.004 were measured for all of the aerosols apart from the aerosols from the two sources of humic acid. For humic acid aerosols, uptake coefficients in the range of γ = 0.007 ± 0.002 to γ = 0.09 ± 0.03 were measured. Elevated concentrations of copper (16 ± 1 and 380 ± 20 ppb) and iron (600 ± 30 and 51 000 ± 3000 ppb) ions were measured in the humic acid atomizer solutions compared to the other organics that can explain the higher uptake values measured. A strong dependence upon relative humidity was also observed for uptake onto humic acid, with larger uptake coefficients seen at higher humidities. Possible hypotheses for the humidity dependence include the changing liquid water content of the aerosol, a change in the mass accommodation coefficient or in the Henry's law constant. PMID:25811311

  16. Implementation of Rotational Raman Channel in Multiwavelength Aerosol Lidar to Improve Measurements of Particle Extinction and Backscattering at 532 NM

    NASA Astrophysics Data System (ADS)

    Veselovskii, Igor; Whiteman, David N.; Korenskiy, Michael; Suvorina, A.; Perez-Ramirez, Daniel

    2016-06-01

    We describe a practical implementation of rotational Raman (RR) measurements in an existing Mie-Raman lidar to obtain measurements of aerosol extinction and backscattering at 532 nm. A 2.3 nm width interference filter was used to select a spectral range characterized by low temperature sensitivity within the anti-Stokes branch of the RR spectrum. Simulations demonstrate that the temperature dependence of the scattering cross section does not exceed 1.0% in the 230-300K range making accurate correction for this dependence quite easy. With this upgrade, the NASA/GSFC multiwavelength Raman lidar has demonstrated useful α532 measurements and was used for regular observations. Examples of lidar measurements and inversion of optical data to the particle microphysics will be given in presentation.

  17. Chemical and size effects of hygroscopic aerosols on light scattering coefficients

    NASA Astrophysics Data System (ADS)

    Tang, Ignatius N.

    1996-08-01

    The extensive thermodynamic and optical properties recently reported [Tang and Munkelwitz, 1994a] for sulfate and nitrate solution droplets are incorporated into a visibility model for computing light scattering by hygroscopic aerosols. The following aerosol systems are considered: NH4HSO4, (NH4)2SO4, (NH4)3H(SO4), NaHSO4, Na2SO4, NH4NO3, and NaNO3. In addition, H2SO4 and NaCl are included to represent freshly formed sulfate and background sea-salt aerosols, respectively. Scattering coefficients, based on 1 μg dry salt per cubic meter of air, are calculated as a function of relative humidity for aerosols of various chemical compositions and lognormal size distributions. For a given size distribution the light scattered by aerosol particles per unit dry-salt mass concentration is only weakly dependent on chemical constituents of the hygroscopic sulfate and nitrate aerosols. Sulfuric acid and sodium chloride aerosols, however, are exceptions and scatter light more efficiently than all other inorganic salt aerosols considered in this study. Both internal and external mixtures exhibit similar light-scattering properties. Thus for common sulfate and nitrate aerosols, since the chemical effect is outweighed by the size effect, it follows that observed light scattering by the ambient aerosol can be approximated, within practical measurement uncertainties, by assuming the aerosol being an external mixture. This has a definite advantage for either visibility degradation or climatic impact modeling calculations, because relevant data are now available for external mixtures but only very scarce for internal mixtures.

  18. Correlations Between Remotely-Sensed Particle Backscattering Coefficients and Terrestrial Sediment Discharge at the Kaoping River Shelf and Canyon System

    NASA Astrophysics Data System (ADS)

    Chang, C.; Liu, C.; Wen, C.

    2008-12-01

    Because of high concentrated rainstorms, unsettled geology, and frequent earthquakes, high fluctuated terrestrial sediment load was delivered to the Kaoping River shelf and canyon (KPRSC), affecting the biogeochemical systems of both coastal waters and the deep-ocean. The image taken by Sea-viewing Wide Field-of-view Sensor (SeaWiFS) was used to obtain the particle backscattering coefficient (bbp) map as a multi-temporal and multi-spatial tracer to quantify the effect of the terrestrial sediment discharge. The SeaWiFS mission period included the Chi-Chi earthquake (September 21, 1999) and the extremely high and low flow conditions of Kaoping River (KPR). During the study period of October 1997 to November 2006, the pattern and intensity of the monthly bbp maps are significantly correlated to the sediment load in the aerial range of KPRSC; this became much clear when the contribution of phytoplankton was removed from the bbp maps. The relationship between bbp and sediment load analyzed before and after the Chi-Chi earthquake exhibits different patterns that are related to possible triggers of terrestrial sediment. Based on 111 bbp maps of KPRSC, regression models are developed to estimate the monthly sediment load discharged from KPR.

  19. Measurement of the emission rate of an aerosol source--comparison of aerosol and gas transport coefficients.

    PubMed

    Bémer, D; Callé, S; Godinot, S; Régnier, R; Dessagne, J M

    2000-12-01

    A measuring method of the emission rate of an atmospheric pollutant source, based on the use of a tracer gas (helium) and developed in the case of a gaseous source, was tested for an aerosol source. The influence of both particle sedimentation and wall depositions was studied. The transport coefficients of the tracer gas and of alumina particles of various particle sizes (MMAD from 8 to 36 microns) were measured on a vertical axis close to the source, in a 71 m3 room swept by a piston flow. The measurements clearly demonstrated the predominant influence of sedimentation in the case of particles with aerodynamic diameters greater than 10 microns. Particle wall deposition was determined by measuring the gas and particle concentration decay in the ventilated room. To do this, a new tracing method using a fluorescent aerosol was developed. The measured aerosol deposition rates are much higher than those calculated from the formula of Corner for a cubical volume. Aerosol sedimentation and wall deposition are two phenomena limiting the use of a tracer gas to measure the aerosol emission rate. The chemical substances and materials used in work premises are likely to be released into the atmosphere and lead to the formation of pollutants. These emissions stem from either physical or chemical processes (evaporation of a solvent) or from mechanical processes (dispersion of oil droplets at the source of mists).

  20. Comparison of vertical aerosol extinction coefficients from in-situ and LIDAR measurements

    NASA Astrophysics Data System (ADS)

    Rosati, B.; Herrmann, E.; Bucci, S.; Fierli, F.; Cairo, F.; Gysel, M.; Tillmann, R.; Größ, J.; Gobbi, G. P.; Di Liberto, L.; Di Donfrancesco, G.; Wiedensohler, A.; Weingartner, E.; Virtanen, A.; Mentel, T. F.; Baltensperger, U.

    2015-07-01

    Vertical profiles of aerosol optical properties were explored in a case study near the San Pietro Capofiume (SPC) ground station during the PEGASOS Po Valley campaign in the summer of 2012. A Zeppelin NT airship was employed to investigate the effect of the dynamics of the planetary boundary layer at altitudes between ~ 50-800 m above ground. Determined properties included the aerosol size distribution, the hygroscopic growth factor, the effective index of refraction and the light absorption coefficient. The first three parameters were used to retrieve the light scattering coefficient. Simultaneously, direct measurements of both the scattering and absorption coefficient were carried out at the SPC ground station. Additionally, a LIDAR system provided aerosol extinction coefficients for a vertically resolved comparison between in-situ and remote sensing results. First, the airborne results at low altitudes were validated with the ground measurements. Agreement within approximately ±25 and ±20% was found for the dry scattering and absorption coefficient, respectively. The single scattering albedo, ranged between 0.83 to 0.95, indicating the importance of the absorbing particles in the Po Valley region. A clear layering of the atmosphere was observed during the beginning of the flight (until ~ 10 local time) before the mixed layer (ML) was fully developed. Highest extinction coefficients were found at low altitudes, in the new ML, while values in the residual layer, which could be probed at the beginning of the flight at elevated altitudes, were lower. At the end of the flight (after ~ 12 local time) the ML was fully developed, resulting in constant extinction coefficients at all altitudes measured on the Zeppelin NT. LIDAR results captured these dynamic features well and good agreement was found for the extinction coefficients compared to the in-situ results, using fixed LIDAR ratios (LR) between 30 and 70 sr for the altitudes probed with the Zeppelin. These LR are

  1. Inference of the aerosol Angstrom coefficient from SAGE short-wavelength data. [Stratospheric Aerosol and Gas Experiment

    NASA Technical Reports Server (NTRS)

    Lenoble, J.; Pruvost, P.

    1983-01-01

    SAGE four-channel transmission profiles are inverted to retrieve the extinction profiles from which the aerosol Angstrom coefficient alpha is obtained. The procedure allows one to check the influence of the NO2 absorption profile, which is small below 25 km. The results compare well with those obtained by a completely different procedure at NASA Langley Research Center, and the main features of the alpha profiles seem to be significant, even considering the rather large error bars. The relation between the retrieved Angstrom coefficient, the particle effective radius and the asymmetry factor is considered.

  2. Scanning Backscatter Lidar Observations for Characterizing 4-D Cloud and Aerosol Fields to Improve Radiative Transfer Parameterizations

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.; Miller, David O.

    2005-01-01

    Clouds have a powerful influence on atmospheric radiative transfer and hence are crucial to understanding and interpreting the exchange of radiation between the Earth's surface, the atmosphere, and space. Because clouds are highly variable in space, time and physical makeup, it is important to be able to observe them in three dimensions (3-D) with sufficient resolution that the data can be used to generate and validate parameterizations of cloud fields at the resolution scale of global climate models (GCMs). Simulation of photon transport in three dimensionally inhomogeneous cloud fields show that spatial inhomogeneities tend to decrease cloud reflection and absorption and increase direct and diffuse transmission, Therefore it is an important task to characterize cloud spatial structures in three dimensions on the scale of GCM grid elements. In order to validate cloud parameterizations that represent the ensemble, or mean and variance of cloud properties within a GCM grid element, measurements of the parameters must be obtained on a much finer scale so that the statistics on those measurements are truly representative. High spatial sampling resolution is required, on the order of 1 km or less. Since the radiation fields respond almost instantaneously to changes in the cloud field, and clouds changes occur on scales of seconds and less when viewed on scales of approximately 100m, the temporal resolution of cloud properties should be measured and characterized on second time scales. GCM time steps are typically on the order of an hour, but in order to obtain sufficient statistical representations of cloud properties in the parameterizations that are used as model inputs, averaged values of cloud properties should be calculated on time scales on the order of 10-100 s. The Holographic Airborne Rotating Lidar Instrument Experiment (HARLIE) provides exceptional temporal (100 ms) and spatial (30 m) resolution measurements of aerosol and cloud backscatter in three

  3. Ångström coefficient as a tracer of the continental aerosols

    NASA Astrophysics Data System (ADS)

    Kusmierczyk-Michulec, Jolanta; Van Eijk, Alexander M. J.

    2007-09-01

    The variation of the extinction coefficient with wavelength can be presented as a power law function with a constant (related to the power factor) known as the Ångström coefficient. When the particle size distribution is dominated by small particles, usually associated with pollution, the Ångström coefficients are high; in clear conditions they are usually low. Long residence time of air masses over land and in particular the passage over large urban areas cause high concentrations of fine particles and thus high values of the Ångström coefficients. The opposite effect can be observed over water. The longer the time that the air masses spent over water the more evident is a change in the aerosol size distribution caused by the deposition of continental aerosols. As a result of this process the measured Ångström coefficient values become much smaller. Therefore this parameter is a good tracer for the concentration of aerosols originated over land. The relation between the Ångström coefficient and TOS (time over sea) is demonstrated on three data sets. The first data set includes measurements collected at the Irish Atlantic coast in 1994 and 1995, the second one, data collected within the Rough Evaporation Duct (RED) experiment that took place off Oahu, Hawaii in 2001. The third one represents data collected at the Baltic Sea during cruises in 1997and 1998.

  4. [Development of a photoacoustic spectroscopy system for the measurement of absorption coefficient of atmospheric aerosols].

    PubMed

    Liu, Qiang; Niu, Ming-Sheng; Wang, Gui-Shi; Cao, Zhen-Song; Liu, Kun; Chen, Wei-Dong; Gao, Xiao-Ming

    2013-07-01

    In the present paper, the authors focus on the effect of the resonance frequency shift due to the changes in temperature and humidity on the PA signal, present several methods to control the noise derived form gas flow and vibration from the sampling pump. Based on the efforts mentioned above, a detection limit of 1.4 x 10(-8) W x cm(-1) x Hz(-1/2) was achieved for the measurement of atmospheric aerosols absorption coefficient. During the experiments, the PA cell was calibrated with the absorption of standard NO2 gas at 532 nm and the atmospheric aerosols were measured continuously. The measurement results show that the PAS is suitable for the real-time measurement of the absorption coefficient of atmospheric aerosols in their natural suspended state. PMID:24059163

  5. Inter-Comparison of ILAS-II Version 1.4 Aerosol Extinction Coefficient at 780 nm with SAGE II, SAGE III, and POAM III Aerosol Data

    NASA Technical Reports Server (NTRS)

    Saitoh, Naoko; Hayashida, S.; Sugita, T.; Nakajima, H.; Yokota, T.; Hayashi, M.; Shiraishi, K.; Kanzawa, H.; Ejiri, M. K.; Irie, H.; Tanaka, T.; Terao, Y.; Kobayashi, H.; Sasano, Y.; Bevilacqua, R.; Randall, C.; Thomason, L.; Taha, G.

    2006-01-01

    The Improved Limb Atmospheric Spectrometer (ILAS) II on board the Advanced Earth Observing Satellite (ADEOS) II observed stratospheric aerosol in visible/near-infrared/infrared spectra over high latitudes in the Northern and Southern Hemispheres. Observations were taken intermittently from January to March, and continuously from April through October, 2003. We assessed the data quality of ILAS-II version 1.4 aerosol extinction coefficients at 780 nm from comparisons with the Stratospheric Aerosol and Gas Experiment (SAGE) II, SAGE III, and the Polar Ozone and Aerosol Measurement (POAM) III aerosol data. At heights below 20 km in the Northern Hemisphere, aerosol extinction coefficients from ILAS-II agreed with those from SAGE II and SAGE III within 10%, and with those from POAM III within 15%. From 20 to 26 km, ILAS-II aerosol extinction coefficients were smaller than extinction coefficients from the other sensors; differences between ILAS-II and SAGE II ranged from 10% at 20 km to 34% at 26 km. ILAS-II aerosol extinction coefficients from 20 to 25 km in February over the Southern Hemisphere had a negative bias (12-66%) relative to SAGE II aerosol data. The bias increased with increasing altitude. Comparisons between ILAS-II and POAM III aerosol extinction coefficients from January to May in the Southern Hemisphere (defined as the non-Polar Stratospheric Cloud (PSC) season ) yielded qualitatively similar results. From June to October (defined as the PSC season ), aerosol extinction coefficients from ILAS-II were smaller than those from POAM III above 17 km, as in the case of the non-PSC season; however, ILAS-II and POAM III aerosol data were within 15% of each other from 12 to 17 km.

  6. Modeling Secondary Organic Aerosols over Europe: Impact of Activity Coefficients and Viscosity

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Sartelet, K.; Couvidat, F.

    2014-12-01

    Semi-volatile organic species (SVOC) can condense on suspended particulate materials (PM) in the atmosphere. The modeling of condensation/evaporation of SVOC often assumes that gas-phase and particle-phase concentrations are at equilibrium. However, recent studies show that secondary organic aerosols (SOA) may not be accurately represented by an equilibrium approach between the gas and particle phases, because organic aerosols in the particle phase may be very viscous. The condensation in the viscous liquid phase is limited by the diffusion from the surface of PM to its core. Using a surrogate approach to represent SVOC, depending on the user's choice, the secondary organic aerosol processor (SOAP) may assume equilibrium or model dynamically the condensation/evaporation between the gas and particle phases to take into account the viscosity of organic aerosols. The model is implemented in the three-dimensional chemistry-transport model of POLYPHEMUS. In SOAP, activity coefficients for organic mixtures can be computed using UNIFAC for short-range interactions between molecules and AIOMFAC to also take into account the effect of inorganic species on activity coefficients. Simulations over Europe are performed and POLYPHEMUS/SOAP is compared to POLYPHEMUS/H2O, which was previously used to model SOA using the equilibrium approach with activity coefficients from UNIFAC. Impacts of the dynamic approach on modeling SOA over Europe are evaluated. The concentrations of SOA using the dynamic approach are compared with those using the equilibrium approach. The increase of computational cost is also evaluated.

  7. Identification of aerosol composition from multi-wavelength lidar measurements

    NASA Technical Reports Server (NTRS)

    Wood, S. A.

    1984-01-01

    This paper seeks to develop the potential of lidar for the identification of the chemical composition of atmospheric aerosols. Available numerical computations suggest that aerosols can be identified by the wavelength dependence of aerosol optical properties. Since lidar can derive the volume backscatter coefficient as a function of wavelength, a multi-wavelength lidar system may be able to provide valuable information on the composition of aerosols. This research theoretically investigates the volume backscatter coefficients for the aerosol classes, sea-salts, and sulfates, as a function of wavelength. The results show that these aerosol compositions can be characterized and identified by their backscatter wavelength dependence. A method to utilize multi-wavelength lidar measurements to discriminate between compositionally different thin aerosol layers is discussed.

  8. Aerosol backscatter measurements at 10. 6 micrometers with airborne and ground-based CO sub 2 Doppler lidars over the Colorado high plains. 1. Lidar intercomparison

    SciTech Connect

    Bowdle, D.A. ); Rothermel, J. ); Vaughan, J.M.; Brown, D.W. ); Post, M.J. )

    1991-03-20

    An airborne continuous wave (CW) focused CO{sub 2} Doppler lidar and a ground-based pulsed CO{sub 2} Doppler lidar were used to obtain seven pairs of comparative measurements of tropospheric aerosol backscatter profiles at 10.6 {mu}m wavelength, near Denver, Colorado, during a 20-day period in July 1982. In regions of uniform backscatter the two lidars show good agreement, with differences usually less than {approximately}50% near 8-km altitude and less than a factor of 2 or 3 elsewhere but with the pulsed lidar often lower than the CW lidar. Near sharp backscatter gradients the two lidars show poorer agreement, with the pulsed lidar usually higher than the CW lidar. Most discrepancies arise from a combination of atmospheric factors and instrument factors, particularly small-scale areal and temporal backscatter heterogeneity above the planetary boundary layer, unusual large-scale vertical backscatter structure in the upper troposphere and lower stratosphere, and differences in the spatial resolution, detection threshold, and noise estimation for the two lidars.

  9. A New Method for Multicomponent Activity Coefficients of Electrolytes in Aqueous Atmospheric Aerosols

    SciTech Connect

    Zaveri, Rahul A.; Easter, Richard C.; Wexler, Anthony S.

    2005-01-21

    Three-dimensional models of atmospheric inorganic aerosols need an accurate yet computationally efficient parameterization of activity coefficients of various electrolytes in multicomponent aqueous solutions. This paper describes the development and application of a new mixing rule for calculating activity coefficients of electrolytes typically found in atmospheric aerosol systems containing H+, NH4+, Na+, Ca2+ SO42-, HSO4-, NO3-, and Cl- ions. The new mixing rule, called MTEM (Multicomponent Taylor Expansion Model), estimates the mean activity coefficient of an electrolyte in a multicomponent solution based on its values in binary solutions of all the electrolytes present in the mixture at the solution water activity aw, assuming aw is equal to the ambient relative humidity. The aerosol water content is calculated using the Zdanovskii-Stokes-Robinson method. For self-consistency, most of the MTEM and Zdanovskii-Stokes-Robinson parameters are derived using the comprehensive Pitzer-Simonson-Clegg model at 298.15 K. MTEM is evaluated for several multicomponent systems representing various continental and marine aerosols, and is contrasted against the mixing rule of Kusik and Meissner and the newer approach of Metzger et al. [2002]. Predictions of MTEM are found to be generally within a factor of 0.8 to 1.25 of the comprehensive Pitzer-Simonson-Clegg model, and are shown to be significantly more accurate than predictions of the other two methods. MTEM also yields a non-iterative solution of the bisulfate ion dissociation in sulfate-rich systems – a major computational advantage over other iterative methods. CPU time requirements of MTEM relative to other methods for sulfate-poor and sulfate-rich systems are also discussed.

  10. Statistical Characteristics of Aerosol Extinction Coefficient Profile in East Asia from CALIPSO

    NASA Astrophysics Data System (ADS)

    Sun, Xuejin; Zhou, Junhao; Zhou, Yongbo

    2016-06-01

    Aerosol extinction coefficient profile (ECP) is important in radiative transfer modeling, however, knowledge of ECP in some area has not been clearly recognized. To get a full understanding of statistical characteristics of ECP in three Asian regions: the Mongolian Plateau, the North China Plain and the Yellow Sea, CALIPSO aerosol product in 2012 is processed by conventional statistical methods. Orbit averaged ECP turns out to be mainly exponential and Gaussian patterns. Curve fitting shows that the two ECP patterns account for more than 50 percent of all the samples, especially in the Yellow Sea where the frequency of occurrence even reaches over 80 percent. Parameters determining fitting curves are provided consequently. To be specific, Gaussian pattern is the main ECP distribution in the Mongolian Plateau and the Yellow Sea, and exponential pattern predominates in the North China Plain. Besides, aerosol scale height reaches its maximum in summer and in the Mongolian Plateau. Meanwhile, the uplifting and deposition of dust during transportation are potentially explanations to the occurrence of Gaussian ECP. The results have certain representativeness, and contribute to reducing uncertainties of aerosol model in relevant researches.

  11. Analysis of the Dielectric Constant of Saline-Alkali Soils and the Effect on Radar Backscattering Coefficient: A Case Study of Soda Alkaline Saline Soils in Western Jilin Province Using RADARSAT-2 Data

    PubMed Central

    Li, Yang-yang; Zhao, Kai; Ren, Jian-hua; Ding, Yan-ling; Wu, Li-li

    2014-01-01

    Soil salinity is a global problem, especially in developing countries, which affects the environment and productivity of agriculture areas. Salt has a significant effect on the complex dielectric constant of wet soil. However, there is no suitable model to describe the variation in the backscattering coefficient due to changes in soil salinity content. The purpose of this paper is to use backscattering models to understand behaviors of the backscattering coefficient in saline soils based on the analysis of its dielectric constant. The effects of moisture and salinity on the dielectric constant by combined Dobson mixing model and seawater dielectric constant model are analyzed, and the backscattering coefficient is then simulated using the AIEM. Simultaneously, laboratory measurements were performed on ground samples. The frequency effect of the laboratory results was not the same as the simulated results. The frequency dependence of the ionic conductivity of an electrolyte solution is influenced by the ion's components. Finally, the simulated backscattering coefficients measured from the dielectric constant with the AIEM were analyzed using the extracted backscattering coefficient from the RADARSAT-2 image. The results show that RADARSAT-2 is potentially able to measure soil salinity; however, the mixed pixel problem needs to be more thoroughly considered. PMID:25101317

  12. Analysis of the Dielectric constant of saline-alkali soils and the effect on radar backscattering coefficient: a case study of soda alkaline saline soils in Western Jilin Province using RADARSAT-2 data.

    PubMed

    Li, Yang-yang; Zhao, Kai; Ren, Jian-hua; Ding, Yan-ling; Wu, Li-li

    2014-01-01

    Soil salinity is a global problem, especially in developing countries, which affects the environment and productivity of agriculture areas. Salt has a significant effect on the complex dielectric constant of wet soil. However, there is no suitable model to describe the variation in the backscattering coefficient due to changes in soil salinity content. The purpose of this paper is to use backscattering models to understand behaviors of the backscattering coefficient in saline soils based on the analysis of its dielectric constant. The effects of moisture and salinity on the dielectric constant by combined Dobson mixing model and seawater dielectric constant model are analyzed, and the backscattering coefficient is then simulated using the AIEM. Simultaneously, laboratory measurements were performed on ground samples. The frequency effect of the laboratory results was not the same as the simulated results. The frequency dependence of the ionic conductivity of an electrolyte solution is influenced by the ion's components. Finally, the simulated backscattering coefficients measured from the dielectric constant with the AIEM were analyzed using the extracted backscattering coefficient from the RADARSAT-2 image. The results show that RADARSAT-2 is potentially able to measure soil salinity; however, the mixed pixel problem needs to be more thoroughly considered.

  13. Atmospheric aerosols: Their Optical Properties and Effects (supplement)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A digest of technical papers is presented. Topics include aerosol size distribution from spectral attenuation with scattering measurements; comparison of extinction and backscattering coefficients for measured and analytic stratospheric aerosol size distributions; using hybrid methods to solve problems in radiative transfer and in multiple scattering; blue moon phenomena; absorption refractive index of aerosols in the Denver pollution cloud; a two dimensional stratospheric model of the dispersion of aerosols from the Fuego volcanic eruption; the variation of the aerosol volume to light scattering coefficient; spectrophone in situ measurements of the absorption of visible light by aerosols; a reassessment of the Krakatoa volcanic turbidity, and multiple scattering in the sky radiance.

  14. Light scattering characteristics of various aerosol types derived from multiple wavelength lidar observations

    NASA Technical Reports Server (NTRS)

    Sasano, Yasuhiro; Browell, Edward V.

    1989-01-01

    The present study demonstrates the potential of a multiple-wavelength lidar for discriminating between several aerosol types on the basis of the wavelength dependence of the aerosol backscatter coefficient. The two-component lidar equation was solved under the assumption of similarity in the derived profiles of backscatter coefficients for each wavelength. It is shown that a three-wavelength lidar system operating at 300, 600, and 1064nm can provide unique information for discriminating between various aerosol types (continental, maritime, Saharan-dust, stratospheric aerosols in a tropopause fold event, and tropical forest aerosols). Mie calculations were made using in situ aerosol data and aerosol models to compare with the lidar results. The disagreement between the theoretical and empirical results in some cases was substantial. These differences may be partly due to uncertainties in the lidar data analysis and aerosol characteristics and also due to the conventional assumption of aerosol sphericity for the aerosol Mie calculations.

  15. AN INTERCOMPARISON CF THE INTEGRATING PLATE AND THE LASER TRANSMISSION METHODS FOR DETERMINATION OF AEROSOL ABSORPTION COEFFICIENTS

    SciTech Connect

    Sadler, M.; Charlson, R.J.; Rosen, H.; Novakov, T.

    1980-07-01

    The absorption coefficients determined by the integrating plate method and the laser transmission method are found to be comparable and highly correlated. Furthermore, a high correlation is found between these absorption coefficients and the carbon content of the aerosol in urbanized regions.

  16. A Multi-Band Analytical Algorithm for Deriving Absorption and Backscattering Coefficients from Remote-Sensing Reflectance of Optically Deep Waters

    NASA Technical Reports Server (NTRS)

    Lee, Zhong-Ping; Carder, Kendall L.

    2001-01-01

    A multi-band analytical (MBA) algorithm is developed to retrieve absorption and backscattering coefficients for optically deep waters, which can be applied to data from past and current satellite sensors, as well as data from hyperspectral sensors. This MBA algorithm applies a remote-sensing reflectance model derived from the Radiative Transfer Equation, and values of absorption and backscattering coefficients are analytically calculated from values of remote-sensing reflectance. There are only limited empirical relationships involved in the algorithm, which implies that this MBA algorithm could be applied to a wide dynamic range of waters. Applying the algorithm to a simulated non-"Case 1" data set, which has no relation to the development of the algorithm, the percentage error for the total absorption coefficient at 440 nm a (sub 440) is approximately 12% for a range of 0.012 - 2.1 per meter (approximately 6% for a (sub 440) less than approximately 0.3 per meter), while a traditional band-ratio approach returns a percentage error of approximately 30%. Applying it to a field data set ranging from 0.025 to 2.0 per meter, the result for a (sub 440) is very close to that using a full spectrum optimization technique (9.6% difference). Compared to the optimization approach, the MBA algorithm cuts the computation time dramatically with only a small sacrifice in accuracy, making it suitable for processing large data sets such as satellite images. Significant improvements over empirical algorithms have also been achieved in retrieving the optical properties of optically deep waters.

  17. A neural network-based method for merging ocean color and Argo data to extend surface bio-optical properties to depth: Retrieval of the particulate backscattering coefficient

    NASA Astrophysics Data System (ADS)

    Sauzède, R.; Claustre, H.; Uitz, J.; Jamet, C.; Dall'Olmo, G.; D'Ortenzio, F.; Gentili, B.; Poteau, A.; Schmechtig, C.

    2016-04-01

    The present study proposes a novel method that merges satellite ocean color bio-optical products with Argo temperature-salinity profiles to infer the vertical distribution of the particulate backscattering coefficient (bbp). This neural network-based method (SOCA-BBP for Satellite Ocean-Color merged with Argo data to infer the vertical distribution of the Particulate Backscattering coefficient) uses three main input components: (1) satellite-based surface estimates of bbp and chlorophyll a concentration matched up in space and time with (2) depth-resolved physical properties derived from temperature-salinity profiles measured by Argo profiling floats and (3) the day of the year of the considered satellite-Argo matchup. The neural network is trained and validated using a database including 4725 simultaneous profiles of temperature-salinity and bio-optical properties collected by Bio-Argo floats, with concomitant satellite-derived products. The Bio-Argo profiles are representative of the global open-ocean in terms of oceanographic conditions, making the proposed method applicable to most open-ocean environments. SOCA-BBP is validated using 20% of the entire database (global error of 21%). We present additional validation results based on two other independent data sets acquired (1) by four Bio-Argo floats deployed in major oceanic basins, not represented in the database used to train the method; and (2) during an AMT (Atlantic Meridional Transect) field cruise in 2009. These validation tests based on two fully independent data sets indicate the robustness of the predicted vertical distribution of bbp. To illustrate the potential of the method, we merged monthly climatological Argo profiles with ocean color products to produce a depth-resolved climatology of bbp for the global ocean.

  18. Influence of Humidity on the Aerosol Scattering Coefficient and Its Effect on the Upwelling Radiance During ACE-2

    NASA Technical Reports Server (NTRS)

    Gasso, B. S.; Hegg, D. A.; Covert, D. S.; Collins, D.; Noone, K.; Oestroem, E.; Schmid, B.; Russell, P. B.; Livingston, J. M.; Durkee, P. A.; Jonsson, H.

    2000-01-01

    Aerosol scattering coefficients (sigma(sub sp)) have been measured over the ocean at different relative humidities (RH) as a function of attitude in the region surrounding the Canary Islands during the Second Aerosol Characterization Experiment (ACE-2) in June and July 1997. The data were collected by the University of Washington passive humidigraph (UWPH) mounted on the Pelican research aircraft. Concurrently, particle size distributions absorption coefficients and aerosol optical depth were measured throughout 17 flights. A parameterization of sigma(sub sp) as a function of RH was utilized to assess the impact of aerosol hydration on the upwelling radiance (normalized to the solar constant and cosine of zenith angle). The top of the atmosphere radiance signal was simulated at wavelengths corresponding to visible and near-infrared bands or the EOS-AM ("Terra") detectors, MODIS and MISR. The UWPH measured (sigma(sub sp)) at 2 RHs, one below and the other above ambient conditions. Ambient (sigma(sub sp)) was obtained by interpolation of these 2 measurements. The data were stratified in terms of 3 types of aerosols: Saharan dust, clean marine (marine boundary layer background) and polluted marine aerosols (i.e., 2- or 1-day old polluted aerosols advected from Europe). An empirical relation for the dependence of (sigma(sub sp)) on RH, defined by (sigma(sub sp))(RH) = k. ((1 - RH/100)(exp -gamma), was used with the hygroscopic exponent gamma derived from the data. The following gamma values were obtained for the 3 aerosol types: gamma(dust) = 0.23 +/- 0.05, gamma(clean marine) = 0.69 +/- 0.06 and gamma(polluted marine) = 0.57 + 0.06. Based on the measured (gamma)(s), the above equation was utilized to derive aerosol models with different hygroscopicities. The satellite simulation signal code 6S was used to compute the upwelling radiance corresponding to each of those aerosol models at several ambient humidities. For the pre-launch estimated precision of the sensors and

  19. Influence of Humidity On the Aerosol Scattering Coefficient and Its Effect on the Upwelling Radiance During ACE-2

    NASA Technical Reports Server (NTRS)

    Gasso, S.; Hegg, D. A.; Covert, D. S.; Collins, D.; Noone, K. J.; Oestroem, E.; Schmid, B.; Russell, P. B.; Livingston, J. M.; Durkee, P. A.

    2000-01-01

    Aerosol scattering coefficients (sigma(sub sp)) have been measured over the ocean at different relative humidities (RH) as a function of altitude in the region surrounding the Canary Islands during the Second Aerosol Characterization Experiment (ACE-2) in June and July 1997. The data were collected by the University of Washington passive humidigraph (UWPH) mounted on the Pelican research aircraft. Concurrently, particle size distributions, absorption coefficients and aerosol optical depth were measured throughout 17 flights. A parameterization of sigma(sub sp) as a function of RH was utilized to assess the impact of aerosol hydration on the upwelling radiance (normalized to the solar constant and cosine of zenith angle). The top of the atmosphere radiance signal was simulated at wavelengths corresponding to visible and near-infrared bands of the EOS (Earth Observing System) AM-1 (Terra) detectors, MODIS (Moderate Resolution Imaging Spectroradiometer) and MISR (Multi-angle Imaging Spectroradiometer). The UWPH measured sigma(sub sp) at two RHs, one below and the other above ambient conditions. Ambient sigma(sub sp) was obtained by interpolation of these two measurements. The data were stratified in terms of three types of aerosols: Saharan dust, clean marine (marine boundary layer background) and polluted marine aerosols (i.e., two- or one-day old polluted aerosols advected from Europe). An empirical relation for the dependence of sigma(sub sp) on RH, defined by sigma(sub sp)(RH) = k.(1 - RH/100)(sup gamma), was used with the hygroscopic exponent gamma derived from the data. The following gamma values were obtained for the 3 aerosol types: gamma(dust) = 0.23 +/- 0.05, gamma(clean marine) = 0.69 +/- 0.06 and gamma(polluted marine) = 0.57 +/- 0.06. Based on the measured gammas, the above equation was utilized to derive aerosol models with different hygroscopicities. The satellite simulation signal code 6S was used to compute the upwelling radiance corresponding to each

  20. Absorption coefficient of urban aerosol in Nanjing, west Yangtze River Delta, China

    NASA Astrophysics Data System (ADS)

    Zhuang, B. L.; Wang, T. J.; Liu, J.; Ma, Y.; Yin, C. Q.; Li, S.; Xie, M.; Han, Y.; Zhu, J. L.; Yang, X. Q.; Fu, C. B.

    2015-12-01

    Absorbing aerosols can significantly modulate short-wave solar radiation in the atmosphere, affecting regional and global climate. The aerosol absorption coefficient (AAC) is an indicator that assesses the impact of absorbing aerosols on radiative forcing. In this study, the near-surface AAC and absorption Ångström exponent (AAE) in the urban area of Nanjing, China, are characterized on the basis of measurements in 2012 and 2013 using the seven-channel Aethalometer (model AE-31, Magee Scientific, USA). The AAC is estimated with direct and indirect corrections, which result in consistent temporal variations and magnitudes of AAC at 532 nm. The mean AAC at 532 nm is about 43.23 ± 28.13 M m-1 in the urban area of Nanjing, which is much lower than that in Pearl River Delta and the same as in rural areas (Lin'an) in Yangtze River Delta. The AAC in the urban area of Nanjing shows strong seasonality (diurnal variations); it is high in cold seasons (at rush hour) and low in summer (in the afternoon). It also shows synoptic and quasi-2-week cycles in response to weather systems. Its frequency distribution follows a typical log-normal pattern. The 532 nm AAC ranging from 15 to 65 M m-1 dominates, accounting for more than 72 % of the total data samples in the entire study period. Frequent high pollution episodes, such as those observed in June 2012 and in winter 2013, greatly enhanced AAC and altered its temporal variations and frequency distributions. These episodes are mostly due to local emissions and regional pollution. Air masses flowing from northern China to Nanjing can sometimes be highly polluted and lead to high AAC at the site. AAE at 660/470 nm from the Schmid correction (Schmid et al., 2006) is about 1.56, which might be more reasonable than from the Weingartner correction (Weingartner et al., 2003). Low AAEs mainly occur in summer, likely due to high relative humidity (RH) in the season. AAC increases with increasing AAE at a fixed aerosol loading. The RH

  1. Absorption Coefficient, Molecular Composition, and Photodegradation of Different Types of Brown Carbon Aerosols

    NASA Astrophysics Data System (ADS)

    Lee, H. J.; Aiona, P. K.; Nizkorodov, S.; Laskin, J.; Laskin, A.

    2014-12-01

    Atmospheric aerosols that absorb solar radiation have a direct effect on climate. Brown carbon (BrC) represents the type of carbonaceous aerosols characterized by large absorption coefficients in the near-UV range of the spectrum. BrC can be either directly emitted into the atmosphere from combustion sources, or be formed in the atmosphere through multi-phase reactions, such as aging of secondary organic aerosols (SOA) mediated by ammonium sulfate (AS). Under the conditions of exposure to solar radiation, both primary and secondary BrC can potentially change their molecular composition and optical properties as a result of photodegradation of chromophoric compounds. This presentation will discuss the molecular level composition, the absorption and fluorescence spectra, and the mechanism of photodegradation among several representative types of BrC. The primary BrC samples include aerosol produced by smoldering wood combustion. The secondary BrC samples include AS aged products of chamber-generated SOA, products of reaction between methylglyoxal and AS, and SOA produced by the hogh-NOx photooxdiation of aromatic compounds, such as naphthalene. This presentation will also include preliminary data on the absorption and fluorescence spectra of photo-degraded bioaerosols. In all cases, absorption spectra of extracted bulk samples are measured during irradiation by a known flux of UV or visible light. The molecular level composition of the fresh and photobleached samples are characterized by high-resolution electrospray ionization mass spectrometry (HR-ESI-MS). Photobleaching of BrC is found to occur over a range of atmospherically relevant time scales. In many cases, the molecular level composition of photobleached BrC exhibits only subtle changes suggesting that the optical and fluorescence properties of BrC are controlled by a few compounds present in low quantities. The observed fluorescence from non-biological BrC indicates potential issues in using fluorescence

  2. Effect of hygroscopic growth on the aerosol light-scattering coefficient: A review of measurements, techniques and error sources

    NASA Astrophysics Data System (ADS)

    Titos, G.; Cazorla, A.; Zieger, P.; Andrews, E.; Lyamani, H.; Granados-Muñoz, M. J.; Olmo, F. J.; Alados-Arboledas, L.

    2016-09-01

    Knowledge of the scattering enhancement factor, f(RH), is important for an accurate description of direct aerosol radiative forcing. This factor is defined as the ratio between the scattering coefficient at enhanced relative humidity, RH, to a reference (dry) scattering coefficient. Here, we review the different experimental designs used to measure the scattering coefficient at dry and humidified conditions as well as the procedures followed to analyze the measurements. Several empirical parameterizations for the relationship between f(RH) and RH have been proposed in the literature. These parameterizations have been reviewed and tested using experimental data representative of different hygroscopic growth behavior and a new parameterization is presented. The potential sources of error in f(RH) are discussed. A Monte Carlo method is used to investigate the overall measurement uncertainty, which is found to be around 20-40% for moderately hygroscopic aerosols. The main factors contributing to this uncertainty are the uncertainty in RH measurement, the dry reference state and the nephelometer uncertainty. A literature survey of nephelometry-based f(RH) measurements is presented as a function of aerosol type. In general, the highest f(RH) values were measured in clean marine environments, with pollution having a major influence on f(RH). Dust aerosol tended to have the lowest reported hygroscopicity of any of the aerosol types studied. Major open questions and suggestions for future research priorities are outlined.

  3. Raman Lidar Measurements of Aerosol Extinction and Backscattering. Report 2; Derivation of Aerosol Real Refractive Index, Single-Scattering Albedo, and Humidification Factor using Raman Lidar and Aircraft Size Distribution

    NASA Technical Reports Server (NTRS)

    Ferrare, R. A.; Melfi, S. H.; Whiteman, D. N.; Evans, K. D.; Poellot, M.; Kaufman, Y. J.

    1998-01-01

    Aerosol backscattering and extinction profiles measured by the NASA Goddard Space Flight Center Scanning Raman Lidar (SRL) during the remote cloud sensing (RCS) intensive operations period (IOP) at the Department of Energy Atmospheric Radiation Measurement (ARM) southern Great Plains (SGP) site during two nights in April 1994 are discussed. These profiles are shown to be consistent with the simultaneous aerosol size distribution measurements made by a PCASP (Passive Cavity Aerosol Spectrometer Probe) optical particle counter flown on the University of North Dakota Citation aircraft. We describe a technique which uses both lidar and PCASP measurements to derive the dependence of particle size on relative humidity, the aerosol real refractive index n, and estimate the effective single-scattering albedo Omega(sub 0). Values of n ranged between 1.4-1.5 (dry) and 1.37-1.47 (wet); Omega(sub 0) varied between 0.7 and 1.0. The single-scattering albedo derived from this technique is sensitive to the manner in which absorbing particles are represented in the aerosol mixture; representing the absorbing particles as an internal mixture rather than the external mixture assumed here results in generally higher values of Omega(sub 0). The lidar measurements indicate that the change in particle size with relative humidity as measured by the PCASP can be represented in the form discussed by Hattel with the exponent gamma = 0.3 + or - 0.05. The variations in aerosol optical and physical characteristics captured in the lidar and aircraft size distribution measurements are discussed in the context of the meteorological conditions observed during the experiment.

  4. Raman lidar measurements of aerosol extinction and backscattering 2. Derivation of aerosol real refractive index, single-scattering albedo, and humidification factor using Raman lidar and aircraft size distribution measurements

    SciTech Connect

    Ferrare, R.A.; Melfi, S.H.; Whiteman, D.N.; Kaufman, Y.J.; Evans, K.D.

    1998-08-01

    Aerosol backscattering and extinction profiles measured by the NASA Goddard Space Flight Center Scanning Raman Lidar (SRL) during the remote cloud sensing (RCS) intensive operations period (IOP) at the Department of Energy Atmospheric Radiation Measurement (ARM) southern Great Plains (SGP) site during two nights in April 1994 are discussed. These profiles are shown to be consistent with the simultaneous aerosol size distribution measurements made by a PCASP (Passive Cavity Aerosol Spectrometer Probe) optical particle counter flown on the University of North Dakota Citation aircraft. We describe a technique which uses both lidar and PCASP measurements to derive the dependence of particle size on relative humidity, the aerosol real refractive index {ital n}, and estimate the effective single-scattering albedo {omega}{sub 0}. Values of {ital n} ranged between 1.4{endash}1.5 (dry) and 1.37{endash}1.47 (wet); {omega}{sub 0} varied between 0.7 and 1.0. The single-scattering albedo derived from this technique is sensitive to the manner in which absorbing particles are represented in the aerosol mixture; representing the absorbing particles as an internal mixture rather than the external mixture assumed here results in generally higher values of {omega}{sub 0}. The lidar measurements indicate that the change in particle size with relative humidity as measured by the PCASP can be represented in the form discussed by {ital Hanel} [1976] with the exponent {gamma}=0.3{plus_minus}0.05. The variations in aerosol optical and physical characteristics captured in the lidar and aircraft size distribution measurements are discussed in the context of the meteorological conditions observed during the experiment. {copyright} 1998 American Geophysical Union

  5. Evaluating Nighttime CALIOP 0.532 micron Aerosol Optical Depth and Extinction Coefficient Retrievals

    NASA Technical Reports Server (NTRS)

    Campbell, J. R.; Tackett, J. L.; Reid, J. S.; Zhang, J.; Curtis, C. A.; Hyer, E. J.; Sessions, W. R.; Westphal, D. L.; Prospero, J. M.; Welton, E. J.; Omar, A. H.; Vaughan, M. A.; Winker, D. M.

    2012-01-01

    NASA Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) Version 3.01 5-km nighttime 0.532 micron aerosol optical depth (AOD) datasets from 2007 are screened, averaged and evaluated at 1 deg X 1 deg resolution versus corresponding/co-incident 0.550 micron AOD derived using the US Navy Aerosol Analysis and Prediction System (NAAPS), featuring two-dimensional variational assimilation of quality-assured NASA Moderate Resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging Spectroradiometer (MISR) AOD. In the absence of sunlight, since passive radiometric AOD retrievals rely overwhelmingly on scattered radiances, the model represents one of the few practical global estimates available from which to attempt such a validation. Daytime comparisons, though, provide useful context. Regional-mean CALIOP vertical profiles of night/day 0.532 micron extinction coefficient are compared with 0.523/0.532 micron ground-based lidar measurements to investigate representativeness and diurnal variability. In this analysis, mean nighttime CALIOP AOD are mostly lower than daytime (0.121 vs. 0.126 for all aggregated data points, and 0.099 vs. 0.102 when averaged globally per normalised 1 deg. X 1 deg. bin), though the relationship is reversed over land and coastal regions when the data are averaged per normalised bin (0.134/0.108 vs. 0140/0.112, respectively). Offsets assessed within single bins alone approach +/- 20 %. CALIOP AOD, both day and night, are higher than NAAPS over land (0.137 vs. 0.124) and equal over water (0.082 vs. 0.083) when averaged globally per normalised bin. However, for all data points inclusive, NAAPS exceeds CALIOP over land, coast and ocean, both day and night. Again, differences assessed within single bins approach 50% in extreme cases. Correlation between CALIOP and NAAPS AOD is comparable during both day and night. Higher correlation is found nearest the equator, both as a function of sample size and relative signal magnitudes inherent at

  6. Ceilometer calibration for retrieval of aerosol optical properties

    NASA Astrophysics Data System (ADS)

    Jin, Yoshitaka; Kai, Kenji; Kawai, Kei; Nagai, Tomohiro; Sakai, Tetsu; Yamazaki, Akihiro; Uchiyama, Akihiro; Batdorj, Dashdondog; Sugimoto, Nobuo; Nishizawa, Tomoaki

    2015-03-01

    Ceilometers are durable compact backscatter lidars widely used to detect cloud base height. They are also useful for measuring aerosols. We introduced a ceilometer (CL51) for observing dust in a source region in Mongolia. For retrieving aerosol profiles with a backscatter lidar, the molecular backscatter signal in the aerosol free heights or system constant of the lidar is required. Although the system constant of the ceilometer is calibrated by the manufacturer, it is not necessarily accurate enough for the aerosol retrieval. We determined a correction factor, which is defined as the ratio of true attenuated backscattering coefficient to the measured attenuated backscattering coefficient, for the CL51 ceilometer using a dual-wavelength Mie-scattering lidar in Tsukuba, Japan before moving the ceilometer to Dalanzadgad, Mongolia. The correction factor determined by minimizing the difference between the ceilometer and lidar backscattering coefficients was approximately 1.2±0.1. Applying the correction to the CL51 signals, the aerosol optical depth (AOD) agreed well with the sky-radiometer AOD during the observation period (13-17 February 2013) in Tsukuba (9 ×10-3 of mean square error). After moving the ceilometer to Dalanzadgad, however, the AOD observed with the CL51 (calibrated by the correction factor determined in Tsukuba) was approximately 60% of the AErosol RObotic NETwork (AERONET) sun photometer AOD. The possible causes of the lower AOD results are as follows: (1) the limited height range of extinction integration (< 3 km); (2) change in the correction factor during the ceilometer transportation or with the window contamination in Mongolia. In both cases, on-site calibrations by dual-wavelength lidar are needed. As an alternative method, we showed that the backward inversion method was useful for retrieving extinction coefficients if the AOD was larger than 1.5. This retrieval method does not require the system constant and molecular backscatter signals

  7. Can we better use existing and emerging computing hardware to embed activity coefficient predictions in complex atmospheric aerosol models?

    NASA Astrophysics Data System (ADS)

    Topping, David; Alibay, Irfan; Ruske, Simon; Hindriksen, Vincent; Noisternig, Michael

    2016-04-01

    To predict the evolving concentration, chemical composition and ability of aerosol particles to act as cloud droplets, we rely on numerical modeling. Mechanistic models attempt to account for the movement of compounds between the gaseous and condensed phases at a molecular level. This 'bottom up' approach is designed to increase our fundamental understanding. However, such models rely on predicting the properties of molecules and subsequent mixtures. For partitioning between the gaseous and condensed phases this includes: saturation vapour pressures; Henrys law coefficients; activity coefficients; diffusion coefficients and reaction rates. Current gas phase chemical mechanisms predict the existence of potentially millions of individual species. Within a dynamic ensemble model, this can often be used as justification for neglecting computationally expensive process descriptions. Indeed, on whether we can quantify the true sensitivity to uncertainties in molecular properties, even at the single aerosol particle level it has been impossible to embed fully coupled representations of process level knowledge with all possible compounds, typically relying on heavily parameterised descriptions. Relying on emerging numerical frameworks, and designed for the changing landscape of high-performance computing (HPC), in this study we show that comprehensive microphysical models from single particle to larger scales can be developed to encompass a complete state-of-the-art knowledge of aerosol chemical and process diversity. We focus specifically on the ability to capture activity coefficients in liquid solutions using the UNIFAC method, profiling traditional coding strategies and those that exploit emerging hardware.

  8. Latitudinal and altitudinal variation of size distribution of stratospheric aerosols inferred from SAGE aerosol extinction coefficient measurements at two wavelengths

    NASA Technical Reports Server (NTRS)

    Yue, G. K.; Deepak, A.

    1984-01-01

    A method of retrieving aerosol size distribution from the measured extinction of solar radiation at wavelengths of 0.45 microns and 1.0 microns has recently been proposed. This method is utilized to obtain latitudinal and altitudinal variations of size distributions of stratospheric aerosols from the Stratospheric Aerosol and Gas Experiment data for March 1979. Small particles are found in the lower stratosphere of the tropical region, and large particles are found at higher altitudes and latitudes in both hemispheres. Results of this study are consistent with the suggestion that the upper troposphere in tropical regions is a source of condensation nuclei in the stratosphere, and they become mature as they move to higher altitudes and latitude.

  9. Characterization of the bio-optical anomaly and diurnal variability of particulate matter, as seen from scattering and backscattering coefficients, in ultra-oligotrophic eddies of the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Loisel, H.; Vantrepotte, V.; Norkvist, K.; Mériaux, X.; Kheireddine, M.; Ras, J.; Pujo-Pay, M.; Combet, Y.; Leblanc, K.; Dall'Olmo, G.; Mauriac, R.; Dessailly, D.; Moutin, T.

    2011-11-01

    The variability of inherent optical properties is investigated in the ultra-oligotrophic waters of the Mediterranean Sea sampled during the BOUM experiment performed during early summer 2008. Bio-optical relationships found for ultra-oligotrophic waters of the three anticyclonic gyres sampled significantly depart from the mean standard relationships provided for the global ocean, confirming the peculiar character of these Mediterranean waters. These optical anomalies are diversely related to the specific biological and environmental conditions occurring in the studied ecosystem. Specifically, the surface specific phytoplankton absorption coefficient exhibits values lower than those expected from the general relationships mainly in relation with a high contribution of relatively large sized phytoplankton. Conversely, the particulate backscattering coefficient, bbp, values are much higher than the mean standard values for a given chlorophyll-a concentration, TChl-a. This feature can presumably be related to the relevant influence of highly refractive submicrometer particles of Saharan origin in the surface layer of the water column. The present measurements also show that the Mediterranean Sea is greener than TChl-a alone indicates, as already stressed in previous studies. This color anomaly is partly explained by the estimated colored dissolved organic matter and submicrometer particles absorption coefficients, and to a greater extent by the high bbp/TChl-a values assuming that these particles backscatter light similarly in the green and blue parts of the visible spectrum. The diel variation of both the particulate matter attenuation and backscattering coefficients were also investigated specifically. Despite some differences in the timing and the magnitude of the daily oscillations found for these optical parameters, potential for the backscattering coefficient daily oscillation to be used, similarly to that for the attenuation coefficient, as a proxy for

  10. Characterization of the bio-optical anomaly and diurnal variability of the particulate matter, as seen from the scattering and backscattering coefficients, in ultra-oligotrophic eddies of the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Loisel, H.; Vantrepotte, V.; Norkvist, K.; Mériaux, X.; Kheireddine, M.; Ras, J.; Pujo-Pay, M.; Combet, Y.; Leblanc, K.; Mauriac, R.; Dessailly, D.; Moutin, T.

    2011-08-01

    The variability of the inherent optical properties is investigated in the ultra-oligotrophic waters of the Mediterranean Sea sampled during the BOUM experiment performed during the early summer 2008. Bio-optical relationships found for the ultra-oligotrophic waters of the three anticyclonic gyres sampled significantly depart from the mean standard relationships provided for the global ocean, confirming the particular character of these Mediterranean waters. These optical anomalies are diversely related to the specific biological and environmental conditions occurring in the studied ecosystem. Specifically, the surface specific phytoplankton absorption coefficient exhibits values lower than those expected from the general relationships mainly in relation with a high contribution of relatively large sized phytoplankton. Conversely, the particulate backscattering coefficient, bbp, values are much higher than the mean standard values for a given chlorophyll-a concentration, TChl-a. This feature can presumably be related to the relevant influence of highly refractive submicrometer particles of Saharan origin in the surface layer of the water column. The present measurements also show that the Mediterranean Sea is greener than TChl-a alone indicates, as already stressed in previous studies. This color anomaly is partly explained by the estimated colored dissolved organic matter and submicrometer particles absorption coefficients, and to a greater extent by the high bbp/TChl-a values assuming that these particles backscatter light similarly in the green and blue parts of the visible spectrum. The diel variation of both the particulate matter attenuation and backscattering coefficients were also investigated specifically. Despite some differences in the timing and the magnitude of the daily oscillations found for these optical parameters, potential for the backscattering coefficient daily oscillation to be used, similarly to that for the attenuation coefficient, as a proxy

  11. A Lidar and Backscatter Sonde Aerosol Measurement Campaign at Table Mountain During February-March 1997: Observations of Stratospheric Background Aerosols and Cirrus Clouds

    NASA Technical Reports Server (NTRS)

    Beyerle, G.; Gross, M.; Haner, D.; Kjome, N.; McDermid, I.; McGee, T.; Rosen, J.; Schafer, H. J.; Schrems, O.

    1999-01-01

    Altitude profiles of backscater ratio of the stratospheric background aerosol layer at altitudes between 15 and 25 km and high-altitude cirrus clouds at altitudes below 13 km are analyzed and discussed. Cirrus clouds were present on 16 of the 26 campaign nights.

  12. CALIOP near-real-time backscatter products compared to EARLINET data

    NASA Astrophysics Data System (ADS)

    Grigas, T.; Hervo, M.; Gimmestad, G.; Forrister, H.; Schneider, P.; Preißler, J.; Tarrason, L.; O'Dowd, C.

    2015-03-01

    The expedited near-real-time Level 1.5 Cloud-Aerosol Lidar (Light Detection and Ranging) with Orthogonal Polarization (CALIOP) products were evaluated against data from the ground-based European Aerosol Research Lidar Network (EARLINET). Over a period of three years, lidar data from 48 CALIOP overpasses with ground tracks within a 100 km distance from an operating EARLINET station were deemed suitable for analysis and they included a valid aerosol classification type (e.g. dust, polluted dust, clean marine, clean continental, polluted continental, mixed and/or smoke/biomass burning). For the complete dataset comprising both PBL and FT data, the correlation coefficient was 0.86, and when separated into separate layers, the PBL and FT correlation coefficients were 0.6 and 0.85 respectively. The presence of FT layers with high attenuated backscatter led to poor agreement in PBL backscatter profiles between the CALIOP and EARLINET measurements and prompted a further analysis filtering out such cases. However, the correlation coefficient value for the complete dataset decreased marginally from 0.86 to 0.84 while the PBL coefficient increased from 0.6 up to 0.65 and the FT coefficient also decreased from 0.85 to 0.79. For specific aerosol types, the correlation coefficient between CALIOP backscatter profiles and ground-based lidar data ranged from 0.37 for polluted continental aerosol in the planetary boundary layer (PBL) to 0.57 for dust in the free troposphere (FT). The results suggest different levels of agreement based on the location of the dominant aerosol layer and the aerosol type.

  13. Organic aerosol molecular composition and gas-particle partitioning coefficients at a Mediterranean site (Corsica).

    PubMed

    Rossignol, Stéphanie; Couvidat, Florian; Rio, Caroline; Fable, Sébastien; Grignion, Guillaume; Savelli; Pailly, Olivier; Leoz-Garziandia, Eva; Doussin, Jean-Francois; Chiappini, Laura

    2016-02-01

    Molecular speciation of atmospheric organic matter was investigated during a short summer field campaign performed in a citrus fruit field in northern Corsica (June 2011). Aimed at assessing the performance on the field of newly developed analytical protocols, this work focuses on the molecular composition of both gas and particulate phases and provides an insight into partitioning behavior of the semi-volatile oxygenated fraction. Limonene ozonolysis tracers were specifically searched for, according to gas chromatography-mass spectrometry (GC-MS) data previously recorded for smog chamber experiments. A screening of other oxygenated species present in the field atmosphere was also performed. About sixty polar molecules were positively or tentatively identified in gas and/or particle phases. These molecules comprise a wide range of branched and linear, mono and di-carbonyls (C3-C7), mono and di-carboxylic acids (C3-C18), and compounds bearing up to three functionalities. Among these compounds, some can be specifically attributed to limonene oxidation and others can be related to α- or β-pinene oxidation. This provides an original snapshot of the organic matter composition at a Mediterranean site in summer. Furthermore, for compounds identified and quantified in both gaseous and particulate phases, an experimental gas/particle partitioning coefficient was determined. Several volatile products, which are not expected in the particulate phase assuming thermodynamic equilibrium, were nonetheless present in significant concentrations. Hypotheses are proposed to explain these observations, such as the possible aerosol viscosity that could hinder the theoretical equilibrium to be rapidly reached.

  14. Organic aerosol molecular composition and gas-particle partitioning coefficients at a Mediterranean site (Corsica).

    PubMed

    Rossignol, Stéphanie; Couvidat, Florian; Rio, Caroline; Fable, Sébastien; Grignion, Guillaume; Savelli; Pailly, Olivier; Leoz-Garziandia, Eva; Doussin, Jean-Francois; Chiappini, Laura

    2016-02-01

    Molecular speciation of atmospheric organic matter was investigated during a short summer field campaign performed in a citrus fruit field in northern Corsica (June 2011). Aimed at assessing the performance on the field of newly developed analytical protocols, this work focuses on the molecular composition of both gas and particulate phases and provides an insight into partitioning behavior of the semi-volatile oxygenated fraction. Limonene ozonolysis tracers were specifically searched for, according to gas chromatography-mass spectrometry (GC-MS) data previously recorded for smog chamber experiments. A screening of other oxygenated species present in the field atmosphere was also performed. About sixty polar molecules were positively or tentatively identified in gas and/or particle phases. These molecules comprise a wide range of branched and linear, mono and di-carbonyls (C3-C7), mono and di-carboxylic acids (C3-C18), and compounds bearing up to three functionalities. Among these compounds, some can be specifically attributed to limonene oxidation and others can be related to α- or β-pinene oxidation. This provides an original snapshot of the organic matter composition at a Mediterranean site in summer. Furthermore, for compounds identified and quantified in both gaseous and particulate phases, an experimental gas/particle partitioning coefficient was determined. Several volatile products, which are not expected in the particulate phase assuming thermodynamic equilibrium, were nonetheless present in significant concentrations. Hypotheses are proposed to explain these observations, such as the possible aerosol viscosity that could hinder the theoretical equilibrium to be rapidly reached. PMID:26969549

  15. New Examination of the Traditional Raman Lidar Technique II: Evaluating the Ratios for Water Vapor and Aerosols

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.

    2003-01-01

    In a companion paper, the temperature dependence of Raman scattering and its influence on the Raman and Rayleigh-Mie lidar equations was examined. New forms of the lidar equation were developed to account for this temperature sensitivity. Here those results are used to derive the temperature dependent forms of the equations for the water vapor mixing ratio, aerosol scattering ratio, aerosol backscatter coefficient, and extinction to backscatter ratio (Sa). The error equations are developed, the influence of differential transmission is studied and different laser sources are considered in the analysis. The results indicate that the temperature functions become significant when using narrowband detection. Errors of 5% and more can be introduced in the water vapor mixing ratio calculation at high altitudes and errors larger than 10% are possible for calculations of aerosol scattering ratio and thus aerosol backscatter coefficient and extinction to backscatter ratio.

  16. New Examination of the Traditional Raman Lidar Technique II: Temperature Dependence Aerosol Scattering Ratio and Water Vapor Mixing Ratio Equations

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Abshire, James B. (Technical Monitor)

    2002-01-01

    In a companion paper, the temperature dependence of Raman scattering and its influence on the Raman water vapor signal and the lidar equations was examined. New forms of the lidar equation were developed to account for this temperature sensitivity. Here we use those results to derive the temperature dependent forms of the equations for the aerosol scattering ratio, aerosol backscatter coefficient, extinction to backscatter ratio and water vapor mixing ratio. Pertinent analysis examples are presented to illustrate each calculation.

  17. Iterative method for the inversion of multiwavelength lidar signals to determine aerosol size distribution.

    PubMed

    Rajeev, K; Parameswaran, K

    1998-07-20

    Two iterative methods of inverting lidar backscatter signals to determine altitude profiles of aerosol extinction and altitude-resolved aerosol size distribution (ASD) are presented. The first method is for inverting two-wavelength lidar signals in which the shape of the ASD is assumed to be of power-law type, and the second method is for inverting multiwavelength lidar signals without assuming any a priori analytical form of ASD. An arbitrary value of the aerosol extinction-to-backscatter ratio (S(1)) is assumed initially to invert the lidar signals, and the ASD determined by use of the spectral dependence of the retrieved aerosol extinction coefficients is used to improve the value of S(1) iteratively. The methods are tested for different forms of altitude-dependent ASD's by use of simulated lidar-backscatter-signal profiles. The effect of random noise on the lidar backscatter signals is also studied.

  18. Particle backscatter and extinction profiling with the spaceborne high-spectral-resolution Doppler lidar ALADIN: methodology and simulations.

    PubMed

    Ansmann, Albert; Wandinger, Ulla; Le Rille, Olivier; Lajas, Dulce; Straume, Anne Grete

    2007-09-10

    The European Space Agency will launch the Atmospheric Laser Doppler Instrument (ALADIN) for global wind profile observations in the near future. The potential of ALADIN to measure the optical properties of aerosol and cirrus, as well, is investigated based on simulations. A comprehensive data analysis scheme is developed that includes (a) the correction of Doppler-shifted particle backscatter interference in the molecular backscatter channels (cross-talk effect), (b) a procedure that allows us to check the quality of the cross-talk correction, and (c) the procedures for the independent retrieval of profiles of the volume extinction and backscatter coefficients of particles considering the height-dependent ALADIN signal resolution. The error analysis shows that the particle backscatter and extinction coefficients, and the corresponding extinction-to-backscatter ratio (lidar ratio), can be obtained with an overall (systematic+statistical) error of 10%-15%, 15%-30%, and 20%-35%, respectively, in tropospheric aerosol and dust layers with extinction values from 50 to 200 Mm(-1); 700-shot averaging (50 km horizontal resolution) is required. Vertical signal resolution is 500 m in the lower troposphere and 1000 m in the free troposphere. In cirrus characterized by extinction coefficients of 200 Mm(-1) and an optical depth of >0.2, backscatter coefficients, optical depth, and column lidar ratios can be obtained with 25%-35% relative uncertainty and a horizontal resolution of 10 km (140 shots). In the stratosphere, only the backscatter coefficient of aerosol layers and polar stratospheric clouds can be retrieved with an acceptable uncertainty of 15%-30%. Vertical resolution is 2000 m.

  19. A Multi-Instrument Approach for Characterizing the Vertical Structure of Aerosol Properties: Case Studies in the Pacific Basin Troposphere

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Turco, R. P.; Pueschel, R. F.; Fenn, M. A.; Browell, E. V.; Grant, W. B.

    1998-01-01

    During February/March 1994, a series of aircraft-based aerosol measurements were carried out in the Pacific Basin troposphere using a differential absorption lidar system deployed by NASA Langley, and optical spectrometer probes and a wire-impactor system operated by NASA Ames. A modified Klett inversion algorithm was applied to extract altitude profiles of aerosol backscattering from the IR lidar signal. The algorithm that we have designed for this purpose utilizes the in situ aerosol measurements to normalize the lidar profile at the aircraft altitude and to supply the lidar ratio as a function of height. The lidar-derived aerosol backscattering coefficients were then compared to the backscattering coefficients calculated from the in situ measurements. During several local aircraft descents, we found good agreement between the remote lidar and in situ results for the absolute value of the aerosol backscattering coefficient and its altitude variation only when we allowed for several layers with different aerosol refractive indices. The agreement validates our lidar calibration method and provides an indication of the variation in aerosol refractive index as a function of altitude. Two of the three case studies performed in this paper reveal layers of anthropogenic aerosols transported long distances into the Pacific Basin troposphere. A third case implies the existence of a layer of dustlike aerosol particles in the lower troposphere, most likely of Asian origin.

  20. A multi-instrument approach for characterizing the vertical structure of aerosol properties: Case studies in the Pacific Basin troposphere

    NASA Astrophysics Data System (ADS)

    Redemann, J.; Turco, R. P.; Pueschel, R. F.; Fenn, M. A.; Browell, E. V.; Grant, W. B.

    1998-09-01

    During February/March 1994, a series of aircraft-based aerosol measurements were carried out in the Pacific Basin troposphere using a differential absorption lidar system deployed by NASA Langley, and optical spectrometer probes and a wire-impactor system operated by NASA Ames. A modified Klett inversion algorithm was applied to extract altitude profiles of aerosol backscattering from the IR lidar signal. The algorithm that we have designed for this purpose utilizes the in situ aerosol measurements to normalize the lidar profile at the aircraft altitude and to supply the lidar ratio as a function of height. The lidar-derived aerosol backscattering coefficients were then compared to the backscattering coefficients calculated from the in situ measurements. During several local aircraft descents, we found good agreement between the remote lidar and in situ results for the absolute value of the aerosol backscattering coefficient and its altitude variation only when we allowed for several layers with different aerosol refractive indices. The agreement validates our lidar calibration method and provides an indication of the variation in aerosol refractive index as a function of altitude. Two of the three case studies performed in this paper reveal layers of anthropogenic aerosols transported long distances into the Pacific Basin troposphere. A third case implies the existence of a layer of dustlike aerosol particles in the lower troposphere, most likely of Asian origin.

  1. Coefficients of an analytical aerosol forcing equation determined with a Monte-Carlo radiation model

    NASA Astrophysics Data System (ADS)

    Hassan, Taufiq; Moosmüller, H.; Chung, Chul E.

    2015-10-01

    Simple analytical equations for global-average direct aerosol radiative forcing are useful to quickly estimate aerosol forcing changes as function of key atmosphere, surface and aerosol parameters. The surface and atmosphere parameters in these analytical equations are the globally uniform atmospheric transmittance and surface albedo, and have so far been estimated from simplified observations under untested assumptions. In the present study, we take the state-of-the-art analytical equation and write the aerosol forcing as a linear function of the single scattering albedo (SSA) and replace the average upscatter fraction with the asymmetry parameter (ASY). Then we determine the surface and atmosphere parameter values of this equation using the output from the global MACR (Monte-Carlo Aerosol Cloud Radiation) model, as well as testing the validity of the equation. The MACR model incorporated spatio-temporally varying observations for surface albedo, cloud optical depth, water vapor, stratosphere column ozone, etc., instead of assuming as in the analytical equation that the atmosphere and surface parameters are globally uniform, and should thus be viewed as providing realistic radiation simulations. The modified analytical equation needs globally uniform aerosol parameters that consist of AOD (Aerosol Optical Depth), SSA, and ASY. The MACR model is run here with the same globally uniform aerosol parameters. The MACR model is also run without cloud to test the cloud effect. In both cloudy and cloud-free runs, the equation fits in the model output well whether SSA or ASY varies. This means the equation is an excellent approximation for the atmospheric radiation. On the other hand, the determined parameter values are somewhat realistic for the cloud-free runs but unrealistic for the cloudy runs. The global atmospheric transmittance, one of the determined parameters, is found to be around 0.74 in case of the cloud-free conditions and around 1.03 with cloud. The surface

  2. Light scattering characteristics of various aerosol types derived from multiple wavelength lidar observations.

    PubMed

    Sasano, Y; Browell, E V

    1989-05-01

    The present study demonstrates the potential of a multiple wavelength lidar for discriminating between several aerosol types such as maritime, continental, stratospheric, and desert aerosols on the basis of wavelength dependence of the aerosol backscatter coefficient. In the analysis of lidar signals, the two-component lidar equation was solved under the assumption of similarity in the derived profiles of backscatter coefficients for each wavelength, and this made it possible to reduce the uncertainty in the extinction/backscatter ratio, which is a key parameter in the lidar solution. It is shown that a three-wavelength lidar system operating at 300, 600, and 1064 nm can provide unique information for discriminating between various aerosol types such as continental, maritime, Saharan dust, stratospheric aerosols in a tropopause fold event, and tropical forest aerosols. Measurement error estimation was also made through numerical simulations. Mie calculations were made using in situ aerosol data and aerosol models to compare with the lidar results. There was disagreement between the theoretical and empirical results, which in some cases was substantial. These differences may be partly due to uncertainties in the lidar data analysis and aerosol characteristics and also due to the conventional assumption of aerosol sphericity for the aerosol Mie calculations. PMID:20548724

  3. [Dual-wavelength Mie lidar observations of tropospheric aerosols].

    PubMed

    Chi, Ru-Li; Wu, De-Cheng; Liu, Bo; Zhou, Jun

    2009-06-01

    A new dual-wavelength Mie lidar (DWL) is introduced. The DWL can be used to monitor the optical properties of tropospheric aerosol at 532 and 1 064 nm wavelength and their spatial and temporal variations, and to research aerosol size distribution with altitude. This lidar adopted four channels to receive the far and near range backscattering signal at 532 and 1 064 nm wavelength respectively. In order to enhance the capability of daytime measurement, the system employed a narrow band interference filter to separate the main backscattering signal of lidar return, including Mie backscattering signal and Rayleigh backscattering signal from the total backscattering signal including non-elastic scattering signal and solar spectrum, by cooperating with an iris to depress the majority of sky background noise. Overall structure and specifications of the lidar, as well as data processing method, were described. The lidar system has been operated in Hefei (117. 16 degrees E, 31.90 degrees N). The profile of extinction coefficient of tropospheric aerosol and its temporal-spatial distribution were obtained. Angstrom exponent and optical depth of aerosol were also discussed. The observational results have shown that this lidar works well both during the day and at night and has the ability to measure the tropospheric aerosols and to manifest the temporal and spatial distributions of the aerosols with high precision.

  4. Aerosol Products from The Future Space Lidar AEOLUS

    NASA Astrophysics Data System (ADS)

    Martinet, Pauline; Dabas, Alain; Lever, Vincent; Flamant, Pierre; Huber, Dorit

    2016-06-01

    Ready for launch by the end of 2016, the Doppler lidar mission AEOLUS from the European Space Agency (ESA) will be the first High-Spectral Resolution Lidar (HSRL) in space. Operating in the UV, it implements two detection channels for aerosol and molecular backscatter. The system is primarily designed for the measurement of winds, but the HSRL capability enables the measurement of the particulate backscatter and extinction coefficients without any a priori assumption on the aerosol type. The level-2A (L2A) processor has been developed for these measurements and tested with synthetic data. The results show good aerosol backscatter profiles can be retrieved. Extinction coefficients are reasonable but do not reach the quality of backscatter coefficients. A precise, full, radiometric calibration of the lidar is required. A major limitation of the system is a single polarization component of the light is detected leading to an underestimation of backscatter coefficients when the atmospheric particles are depolarizing. The vertical resolution goes from 250 meters in the lowest part of the atmosphere, to 2 km in the lower stratosphere. The maximum altitude can reach above 20km. The basic horizontal averaging is 90km. Averaging on shorter distances (down to a few km) are possible but require a sufficient signal to noise ratio.

  5. Demonstration of the Applicability of Novel Photoacoustic Aerosol Monitor for Optical Absorption Coefficient Determination. Laboratory and Field Test.

    NASA Astrophysics Data System (ADS)

    Ajtai, T.; Schnaiter, M.; Linke, C.; Vragel, M.; Filep, Á.; Fődi, L.; Motika, G.; Bozóki, Z.; Szabó, G.

    2009-04-01

    Despite of its importance, the possibilities to determine the direct radiative forcing by atmospheric aerosols is very limited due to lack of the reliable on-line instruments. Therefore there is an increasing concern for novel methods promising more accurate and reliable results in this field. The accuracy and reliability of the available on-line instruments like SP2 (Single Particle Soot Photometer), MAAP (Multi Angle Absorption Photometer), are limited by the weakness of the spectral resolution or the sampling artefact of filter matrix during the light attenuation measurement on the deposited filter. These methods neither suitable for direct determination of the light absorption by aerosols nor dispose the capability of the source apportionment. In this work we present a novel photoacoustic based instrument for direct light absorption measurements in the atmosphere and demonstrate the suitability of that both in laboratory and field circumstances. We have developed a novel Multi Wavelength PhotoAcoustic System (WaSul-MuWaPas) based on the diode laser pumped, high repetition rate, Q-switched Nd:YAG laser and its frequency converted harmonics for direct determination of light absorption by aerosols. This instrument has designed to make in situ measurements at four different wavelengths simultaneously from the NIR to the UV wavelength range (1064nm, 532nm, 355nm, 266nm). The Wasul-MuWaPas measures directly the optical absorption coefficient on airborne particles, not belong to the integrated plate type technique (filter-free operation), operating at wide wavelength range (source apportionment possibilities), due to the possibilities of the wavelength independent cell constant determination the measurement method is absolute. Because of these the Wasul-MuWaPas system may become one of the best candidate for absorption measurements of various atmospheric aerosols such as black carbon, mineral dust, and secondary organic and inorganic aerosols as well as for source

  6. [Characterization and reconstruction of aerosol light scattering coefficient at Chengdu during biomass burning and dust storm period in spring].

    PubMed

    Yue, Jian-Hua; Tao, Jun; Lin, Ze-Jian; Zhu, Li-Hua; Cao, Jun-Ji; Luo, Lei

    2012-07-01

    Aerosol samples for PM2.5 were collected from 19 April to 17 May in 2009 at Chengdu. The concentrations of organic carbon, element carbon, water-solubility ions, crustal elements and levoglucosan of all particle samples were determined by thermal/ optical carbon analyzer,ion chromatography, X-ray fluorescence spectrometer and high performance anion exchange chromatography, respectively. In-situ scattering coefficients (b(sp)) and meteorological parameters for this period were also conducted. Ambient scattering coefficients were reconstructed by IMPROVE formula and compared with measured scattering coefficients. The results showed that the average mass concentration of PM2.5 and measured b(sp) were 133.2 microg x m(-3) and 530 Mm(-1), respectively. Levoglucosan and crustal elements were good traces for biomass burning and dust storm events, respectively. The calculated b'sp was 504 Mm(-1) during campaigning period. The major contributors to scattering coefficients included: (NH4)2SO4 (26%), NH4NO3 (15%), OM (53%), FS (4%) and CM (2%), respectively. The calculated b'sp was 575 Mm(-1) and the dominant species were FS (17%) and CM (21%) during dust storm period (DS). The calculated b'sp was 635 Mm(-1) and OM contributed 62% during biomass burning (BB) period. PMID:23002585

  7. Observations of relative humidity effects on aerosol light scattering in the Yangtze River Delta of China

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Sun, J. Y.; Shen, X. J.; Zhang, Y. M.; Che, H.; Ma, Q. L.; Zhang, Y. W.; Zhang, X. Y.; Ogren, J. A.

    2015-07-01

    Scattering of solar radiation by aerosol particles is highly dependent on relative humidity (RH) as hygroscopic particles take up water with increasing RH. To achieve a better understanding of the effect of aerosol hygroscopic growth on light scattering properties and radiative forcing, the aerosol scattering coefficients at RH in the range of 40 to ~ 90 % were measured using a humidified nephelometer system in the Yangtze River Delta of China in March 2013. In addition, the aerosol size distribution and chemical composition were measured. During the observation period, the mean and standard deviation (SD) of enhancement factors at RH = 85 % for the scattering coefficient (f(85 %)), backscattering coefficient (fb(85 %)), and hemispheric backscatter fraction (fβ(85 %)) were 1.58 ± 0.12, 1.25 ± 0.07, and 0.79 ± 0.04, respectively, i.e., aerosol scattering coefficient and backscattering coefficient increased by 58 and 25 % as the RH increased from 40 to 85 %. Concurrently, the aerosol hemispheric backscatter fraction decreased by 21 %. The relative amount of organic matter (OM) or inorganics in PM1 was found to be a main factor determining the magnitude of f(RH). The highest values of f(RH) corresponded to the aerosols with a small fraction of OM, and vice versa. The relative amount of NO3- in fine particles was strongly correlated with f(85 %), which suggests that NO3- played a vital role in aerosol hygroscopic growth during this study. The mass fraction of nitrate also had a close relationship to the curvature of the humidograms; higher mass fractions of nitrate were associated with humidograms that had the least curvature. Aerosol hygroscopic growth caused a 47 % increase in the calculated aerosol direct radiative forcing at 85 % RH, compared to the forcing at 40 % RH.

  8. Measurements of the HO2 uptake coefficient onto aqueous salt and organic aerosols and interpretation using the kinetic multi-layer model of aerosol surface and bulk chemistry (KM-SUB)

    NASA Astrophysics Data System (ADS)

    Matthews, P. S. J.; Berkemeier, T.; George, I. J.; Whalley, L. K.; Moon, D. R.; Ammann, M.; Baeza-Romero, M. T.; Poeschl, U.; Shiraiwa, M.; Heard, D. E.

    2014-12-01

    HO2 is closely coupled with OH which is responsible for the majority of the oxidation in the troposphere. Therefore, it is important to be able to accurately predict OH and HO2 concentrations. However, many studies have reported a large discrepancy between HO2 radical concentrations measured during field campaigns and predicted by constrained box models using detailed chemical mechanisms (1,2). However, there have been very few laboratory studies (3,4) on HO2 uptake by aerosols and the rates and mechanism is still uncertain. The HO2 uptake coefficients were measured for deliquesced ammonium nitrate and sodium chloride aerosols and copper doped sucrose aerosols. The measurements were performed using an aerosol flow tube coupled to a Fluorescence Assay by Gas Expansion (FAGE) detector. By either placing the HO2 injector in set positions and varying the aerosol concentration or by moving it along the flow tube at given aerosol concentrations, uptake coefficients could be measured. The aerosols were generated using an atomiser and the total aerosol surface area was measured using a SMPS. Larger uptake coefficients were measured at shorter times and lower HO2 concentrations for aqueous salt aerosols. The time dependence was able to be modelled by the KM-SUB model (5) as the HO2 concentration decreases along the flow tube and the HO2 uptake mechanism is known to be a second order reaction. Measurements have shown that at higher HO2 concentrations there was also more H2O2 exiting the injector which could convert back to HO2 if trace amounts of metals are present within the aerosol via Fenton reactions. Preliminary results have shown that the inclusion of a Fenton-like reaction within the KM-SUB model has the potential to explain the apparent HO2 concentration dependence. Finally, the KM-SUB model has been used to demonstrate that the increase in uptake coefficient observed when increasing the relative humidity for copper doped sucrose aerosols could be explained by an

  9. Retrievals of Extensive and Intensive Aerosol Parameters from Vertical Profiles of Extinction Coefficient Acquired by the MAESTRO Occultation Spectrometer: Case Study of Sarychev Volcano Plumes

    NASA Astrophysics Data System (ADS)

    Saha, A.; O'Neill, N. T.; McElroy, C. T.; Sioris, C.; Zou, J.

    2011-12-01

    The Canadian MAESTRO (Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) instrument aboard the SCISAT-1 Satellite is an aerosol profiling occultation device that is part of the ACE (Atmospheric Chemistry Experiment) mission. This spectrometer produces spectra of aerosol extinction profiles above the upper troposphere. The extinction coefficient spectra permit the discrimination of sub-micron (fine mode) and super-micron (coarse mode) contributions and, in principle, the retrieval of fine mode effective radius. Retrievals applied to lower stratospheric and upper tropospheric aerosol plumes resulting from the eruption of the Sarychev-peak volcano in June of 2009 are presented. Preliminary results indicate that the fine and coarse mode discrimination and the particle sizing capability are coherent with available information on Sarychev aerosols.

  10. Extinction coefficient (1 micrometer) properties of high-altitude clouds from solar occultation measurements (1985-1990): Evidence of volcanic aerosol effect

    NASA Technical Reports Server (NTRS)

    Wang, Pi-Huan; Minnis, Patrick; Yue, Glenn K.

    1995-01-01

    The properties of the 1-micrometer volume extinction coefficient of two geographically different high-altitude cloud systems have been examined for the posteruption period (1985-1990) of the April 1982 El Chichon volcanic event with emphasis on the effect of volcanic aerosols on clouds. These two high-altitude cloud systems are the tropical clouds in the tropopause region observed by the Stratospheric Aerosol and Gas Experiment (SAGE) 2 and the polar stratospheric clouds (PSCs) sighted by the Stratospheric Aerosol Measurement (SAM) 2. The results indicate that volcanic aerosols alter the frequency distributions of these high-altitude clouds in such a manner that the occurrence of clouds having high extinction coefficients (6 x 10(exp -3) - 2 x 10(exp -2)/km) is suppressed, while that of clouds having low extinction coefficients (2 x 10(exp -3) - 6 x 10(exp -2)/km) is enhanced. This influence of the volcanic aerosols appears to be opposite to the increase in the extinction coefficient of optically thick clouds observed by the Earth Radiation Budget Experiment (ERBE) during the initial posteruption period of the June 1991 Pinatubo eruption. A plausible explanation of this difference, based on the Mie theory, is presented. As a consequence of the Mie theory, the effective radius of most, if not all, of the high-altitude clouds, measured by the SAGE series of satellite instruments must be less than about 0.8 micrometers. This mean cloud particle size implied by the satellite extinction-coefficient data at a single wavelength (1 micrometer) is further substantiated by the particle size analysis based on cloud extinction coefficient at two wavelengths (0.525 and 1.02 micrometers) obtained by the SAGE 2 observations. Most of the radiation measured by ERBE is reflected by cloud systems comprised of particles having effective radii much greater than 1 micrometer. A reduction in the effective radius of these clouds due to volcanic aerosols is expected to increase their

  11. Measuring Uptake Coefficients and Henry's Law Constants of Gas-Phase Species with Models for Secondary Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Fairhurst, M. C.; Waring-Kidd, C.; Ezell, M. J.; Finlayson-Pitts, B. J.

    2014-12-01

    Volatile organic compounds (VOC) are oxidized in the atmosphere and their products contribute to secondary organic aerosol (SOA) formation. These particles have been shown to have effects on visibility, climate, and human health. Current models typically under-predict SOA concentrations from field measurements. Underestimation of these concentrations could be a result of how models treat particle growth. It is often assumed that particles grow via instantaneous thermal equilibrium partitioning between liquid particles and gas-phase species. Recent work has shown that growth may be better represented by irreversible, kinetically limited uptake of gas-phase species onto more viscous, tar-like SOA. However, uptake coefficients for these processes are not known. The goal of this project is to measure uptake coefficients and solubilities for different gases onto models serving as proxies for SOA and determine how they vary based on the chemical composition of the gas and the condensed phase. Experiments were conducted using two approaches: attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy and a flow system coupled to a mass spectrometer. The ATR crystal was coated with the SOA proxy and the gas-phase species introduced via a custom flow system. Uptake of the gas-phase species was characterized by measuring the intensity of characteristic IR bands as a function of time, from which a Henry's law constant and initial estimate of uptake coefficients could be obtained. Uptake coefficients were also measured in a flow system where the walls of the flow tube were coated with the SOA proxy and gas-phase species introduced via a moveable inlet. Uptake coefficients were derived from the decay in gas-phase species measured by mass spectrometry. The results of this work will establish a structure-interaction relationship for uptake of gases into SOA that can be implemented into regional and global models.

  12. Use of ceilometers for aerosol profile measurements: a comment from AD-Net

    NASA Astrophysics Data System (ADS)

    Jin, Yoshitaka; Kai, Kenji; Kawai, Kei; Sugimoto, Nobuo; Nishizawa, Tomoaki; Matsui, Ichiro; Shimizu, Atsushi; Batdorj, Dashdondog

    2014-11-01

    Ceilometer instruments are simple backscatter lidar systems and are usually set in airports for detecting the base of clouds. The instrument can also measure aerosol vertical distribution. Since ceilometers barely detect the molecular backscatter signals, retrieval of aerosol optical properties is an issue. This study investigates applicability of ceilometers to retrieval of optical properties. We make an idealized signal profile with the lidar ratio of 50 sr and calculate the retrieval errors caused by 30% errors of lidar ratio. In the forward inversion, useable (small error) optical properties are backscattering coefficients and the retrieval errors are less than 15% if the aerosol optical depth (AOD) is less than 0.2. The initial backscattering coefficients must be determined from other instruments (e.g., multi-wavelength lidar). Whereas in the backward inversion, if the AOD of idealized signals is larger than 1.5, extinction coefficients converge to the true value (within 5% errors), regardless of lidar ratios and initial conditions. Since there is no need for the system constant or molecular backscatter in this method, ceilometers can be an effective tool for retrieving extinction coefficients of dense aerosols in East Asia.

  13. Field calibration of multi-scattering correction factor for aethalometer aerosol absorption coefficient during CAPMEX Campaign, 2008

    NASA Astrophysics Data System (ADS)

    Kim, J. H.; Kim, S. W.; Yoon, S. C.; Park, R.; Ogren, J. A.

    2014-12-01

    Filter-based instrument, such as aethalometer, is being widely used to measure equivalent black carbon(EBC) mass concentration and aerosol absorption coefficient(AAC). However, many other previous studies have poited that AAC and its aerosol absorption angstrom exponent(AAE) are strongly affected by the multi-scattering correction factor(C) when we retrieve AAC from aethalometer EBC mass concentration measurement(Weingartner et al., 2003; Arnott et al., 2005; Schmid et al., 2006; Coen et al., 2010). We determined the C value using the method given in Weingartner et al. (2003) by comparing 7-wavelngth aethalometer (AE-31, Magee sci.) to 3-wavelength Photo-Acoustic Soot Spectrometer (PASS-3, DMT) at Gosan climate observatory, Korea(GCO) during Cheju ABC plume-asian monsoon experiment(CAPMEX) campaign(August and September, 2008). In this study, C was estimated to be 4.04 ± 1.68 at 532 nm and AAC retrieved with this value was decreased as approximately 100% as than that retrieved with soot case value from Weingartner et al (2003). We compared the AAC determined from aethalomter measurements to that from collocated Continuous Light Absorption Photometer (CLAP) measurements from January 2012 to December 2013 at GCO and found good agreement in both AAC and AAE. This result suggests the determination of site-specific C is crucially needed when we calculate AAC from aethalometer measurements.

  14. CALIOP near-real-time backscatter products compared to EARLINET data

    NASA Astrophysics Data System (ADS)

    Grigas, T.; Hervo, M.; Gimmestad, G.; Forrister, H.; Schneider, P.; Preißler, J.; Tarrason, L.; O'Dowd, C.

    2015-11-01

    The expedited near-real-time Level 1.5 Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) version 3 products were evaluated against data from the ground-based European Aerosol Research Lidar Network (EARLINET). The statistical framework and results of the three-year evaluation of 48 CALIOP overpasses with ground tracks within a 100 km distance from operating EARLINET stations are presented and include analysis for the following CALIOP classifications of aerosol type: dust, polluted dust, clean marine, clean continental, polluted continental, mixed and/or smoke/biomass burning. For the complete data set comprising both the planetary boundary layer (PBL) and the free troposphere (FT) data, the correlation coefficient (R) was 0.86. When the analysis was conducted separately for the PBL and FT, the correlation coefficients were R = 0.6 and R = 0.85, respectively. From analysis of selected specific cases, it was initially thought that the presence of FT layers, with high attenuated backscatter, led to poor agreement of the PBL backscatter profiles between the CALIOP and EARLINET and prompted a further analysis to filter out such cases; however, removal of these layers did not improve the agreement as R reduced marginally from R = 0.86 to R = 0.84 for the combined PBL and FT analysis, increased marginally from R = 0.6 up to R = 0.65 for the PBL on its own, and decreased marginally from R = 0.85 to R = 0.79 for the FT analysis on its own. This suggests considerable variability, across the data set, in the spatial distribution of the aerosol over spatial scales of 100 km or less around some EARLINET stations rather than influence from elevated FT layers. For specific aerosol types, the correlation coefficient between CALIOP backscatter profiles and the EARLINET data ranged from R = 0.37 for polluted continental aerosol in the PBL to R = 0.57 for dust in the FT.

  15. CALIPSO Observations of Volcanic Aerosol in the Stratosphere

    NASA Technical Reports Server (NTRS)

    Thomason, Larry W.; Pitts, Michael C.

    2008-01-01

    In the stratosphere, the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) has observed the presence of aerosol plumes associated with the eruptions several volcanoes including Montserrat (May 2006), Chaiten (May 2008), and Kasatochi (August 2008). While the dense ash plumes from these eruptions dissipate relatively quickly, CALIPSO continued to detect an enhanced aerosol layer from the Montserrat eruption from the initial observations in June 2006 well into 2008. Solar occultation missions were uniquely capable of monitoring stratospheric aerosol. However, since the end of long-lived instruments like the Stratospheric Aerosol and Gas Experiment (SAGE II), there has been no clear space-based successor instrument. A number of active instruments, some employing new techniques, are being evaluated as candidate sources of stratospheric aerosol data. Herein, we examine suitability of the CALIPSO 532-nm aerosol backscatter coefficient measurements.

  16. Atmospheric aerosol characterization during Saharan dust outbreaks at Naples EARLINET station

    NASA Astrophysics Data System (ADS)

    Pisani, Gianluca; Armenante, Mario; Boselli, Antonella; Frontoso, Maria Grazia; Spinelli, Nicola; Wang, Xuan

    2007-10-01

    The optical properties and the spatial distribution of the tropospheric aerosols over Naples under Saharan dust outbreaks conditions have been studied by means of lidar measurements performed between May 2000 and August 2003 in the frame of the EARLINET project. Climatological analysis of sand plume has been done by comparing normal and dust affected conditions. Results in terms of backscattering and extinction coefficient as well as their integrated quantities show that the aerosol load from the ground level up to 2 Km during Saharan dust transport events is almost the same of normal conditions. This is probably due to the relevant widespread of local aerosol sources, such as vehicular traffic, industrial activities, etc. Nevertheless, when sand outbreaks occur, the extinction to backscattering ratio, i.e. the lidar ratio, clearly shows that the aerosol type in the lowest atmospheric layer changes. Moreover, Saharan dust transport events strong increase both integrated backscatter and optical dept above 2 km.

  17. Infrared backscattering

    NASA Technical Reports Server (NTRS)

    Bohren, Craig F.; Nevitt, Timothy J.; Singham, Shermila Brito

    1989-01-01

    All particles in the atmosphere are not spherical. Moreover, the scattering properties of randomly oriented nonspherical particles are not equivalent to those of spherical particles no matter how the term equivalent is defined. This is especially true for scattering in the backward direction and at the infrared wavelengths at which some atmospheric particles have strong absorption bands. Thus calculations based on Mie theory of infrared backscattering by dry or insoluble atmospheric particles are suspect. To support this assertion, it was noted that peaks in laboratory-measured infrared backscattering spectra show appreciable shifts compared with those calculated using Mie theory. One example is ammonium sulfate. Some success was had in modeling backscattering spectra of ammonium sulfate particles using a simple statistical theory called the continuous distribution of ellipsoids (CDE) theory. In this theory, the scattering properties of an ensemble are calculated. Recently a modified version of this theory was applied to measured spectra of scattering by kaolin particles. The particles were platelike, so the probability distribution of ellipsoidal shapes was chosen to reflect this. As with ammonium sulfate, the wavelength of measured peak backscattering is shifted longward of that predicted by Mie theory.

  18. Atmospheric Backscatter Model Development for CO Sub 2 Wavelengths

    NASA Technical Reports Server (NTRS)

    Deepak, A.; Kent, G.; Yue, G. K.

    1982-01-01

    The results of investigations into the problems of modeling atmospheric backscatter from aerosols, in the lowest 20 km of the atmosphere, at CO2 wavelengths are presented, along with a summary of the relevant aerosol characteristics and their variability, and a discussion of the measurement techniques and errors involved. The different methods of calculating the aerosol backscattering function, both from measured aerosol characteristics and from optical measurements made at other wavelengths, are discussed in detail, and limits are placed on the accuracy of these methods. The effects of changing atmospheric humidity and temperature on the backscatter are analyzed and related to the actual atmosphere. Finally, the results of modeling CO2 backscatter in the atmosphere are presented and the variation with height and geographic location discussed, and limits placed on the magnitude of the backscattering function. Conclusions regarding modeling techniques and modeled atmospheric backscatter values are presented in tabular form.

  19. Utilizing The Synergy of Airborne Backscatter Lidar and In-Situ Measurements for Evaluating CALIPSO

    NASA Astrophysics Data System (ADS)

    Tsekeri, Alexandra; Amiridis, Vassilis; Marenco, Franco; Marinou, Eleni; Rosenberg, Phil; Solomos, Stavros; Trembath, Jamie; Allan, James; Bacak, Asan; Nenes, Athanasios

    2016-06-01

    Airborne campaigns dedicated to satellite validation are crucial for the effective global aerosol monitoring. CALIPSO is currently the only active remote sensing satellite mission, acquiring the vertical profiles of the aerosol backscatter and extinction coefficients. Here we present a method for CALIPSO evaluation from combining lidar and in-situ airborne measurements. The limitations of the method have to do mainly with the in-situ instrumentation capabilities and the hydration modelling. We also discuss the future implementation of our method in the ICE-D campaign (Cape Verde, August 2015).

  20. Light Scattering by Aerosols Over the Remote Ocean: Clear-Sky Point and Column Radiative Closure Studies

    NASA Astrophysics Data System (ADS)

    Fridlind, A. M.; Jacobson, M. Z.

    2001-12-01

    Field data gathered by ship and aircraft during leg 2 of the First Aerosol Characterization Experiment (ACE 1) were used to study clear-sky radiative closure over the remote Southern Ocean. Closure was evaluated by comparing observations with modeled values of: (i) aerosol light scattering coefficients in the marine boundary layer and free troposphere, (ii) total aerosol optical depth, and (iii) total solar radiation at the ocean surface. Point modeling using the ship data benefited from an existing study of closure on the ship, expanding the number of data points considered in that study from 22 to 887. Point and column modeling using the aircraft data provide the first such studies to date. Aerosol light scattering coefficients were calculated from size-distributed measurements of aerosol chemical composition and number concentration, and were compared with observations at three wavelengths (450, 550, and 700 nm) on both ship and aircraft. Point closure on the ship could be achieved at all wavelengths for both total and hemispheric backscattering coefficients if the model accounted for experimental uncertainties in aerosol chemistry, nephelometer nonidealities, and the likely nonsphericity of dried sea salt aerosols. Point closure on the aircraft could be achieved at most wavelengths for total scattering coefficients, but could not be achieved at any wavelengths for hemispheric backscattering coefficients. Deviations between predicted and observed backscattering coefficients on the aircraft were widely scattered rather than biased, indicating that a low signal to noise ratio in observed backscattering coefficients was the likely cause for lack of closure. Aerosol optical depth and solar radiation at the ocean surface were calculated for the two days with clear-sky periods when the aircraft measured aerosol profiles near the ship. Input gas and meteorological data were the observed profiles of ozone, water vapor, temperature, and pressure from the surface to

  1. Sensitivity of Particle Extinction and Backscattering Calculation from Mie-Raman Lidar Measurements to the Choice of Ångström Exponent

    NASA Astrophysics Data System (ADS)

    Suvorina, Anastasia; Veselovskii, Igor; Whiteman, David N.; Korenskiy, Michael

    2016-06-01

    Vibrational Raman scattering from nitrogen is commonly used in Mie-Raman lidars for evaluation of particle backscattering (β) and extinction (α) coefficients. However, vibrational scattering is characterized by significant frequency shift of the Raman component, so for the calculation of α and β the assumption about the extinction Ångström exponent is needed. Simulation results presented in this study demonstrate that ambiguity in the choice of this exponent can be the significant source of uncertainty in the calculation of backscattering coefficients when optically thick aerosol layers are considered. Examples of lidar measurements and optical data calculated for different values of Ångström exponent are given.

  2. Retrieval of Aerosol Parameters from Continuous H24 Lidar-Ceilometer Measurements

    NASA Astrophysics Data System (ADS)

    Dionisi, D.; Barnaba, F.; Costabile, F.; Di Liberto, L.; Gobbi, G. P.; Wille, H.

    2016-06-01

    Ceilometer technology is increasingly applied to the monitoring and the characterization of tropospheric aerosols. In this work, a method to estimate some key aerosol parameters (extinction coefficient, surface area concentration and volume concentration) from ceilometer measurements is presented. A numerical model has been set up to derive a mean functional relationships between backscatter and the above mentioned parameters based on a large set of simulated aerosol optical properties. A good agreement was found between the modeled backscatter and extinction coefficients and the ones measured by the EARLINET Raman lidars. The developed methodology has then been applied to the measurements acquired by a prototype Polarization Lidar-Ceilometer (PLC). This PLC instrument was developed within the EC- LIFE+ project "DIAPASON" as an upgrade of the commercial, single-channel Jenoptik CHM15k system. The PLC run continuously (h24) close to Rome (Italy) for a whole year (2013-2014). Retrievals of the aerosol backscatter coefficient at 1064 nm and of the relevant aerosol properties were performed using the proposed methodology. This information, coupled to some key aerosol type identification made possible by the depolarization channel, allowed a year-round characterization of the aerosol field at this site. Examples are given to show how this technology coupled to appropriate data inversion methods is potentially useful in the operational monitoring of parameters of air quality and meteorological interest.

  3. The impact of aerosol hygroscopic growth on the single-scattering albedo and its application on the NO2 photolysis rate coefficient

    NASA Astrophysics Data System (ADS)

    Tao, Jiangchuan; Zhao, Chunsheng

    2016-04-01

    Hygroscopic growth of aerosol particles can significantly affect their single-scattering albedo (ω), and consequently alters the aerosol effect on tropospheric photochemistry. In this study, the impact of aerosol hygroscopic growth on ω and its application to the NO2 photolysis rate coefficient (JNO2) are investigated for a typical aerosol particle population in the North China Plain (NCP). The variations of aerosol optical properties with relative humidity (RH) are calculated using a Mie theory aerosol optical model, on the basis of field measurements of number-size distribution and hygroscopic growth factor (at RH values above 90 %) from the 2009 HaChi (Haze in China) project. Results demonstrate that ambient ω has pronouncedly different diurnal patterns from ω measured at dry state, and is highly sensitive to the ambient RHs. Ambient ω in the NCP can be described by a dry state ω value of 0.863, increasing with the RH following a characteristic RH dependence curve. A Monte Carlo simulation shows that the uncertainty ofω from the propagation of uncertainties in the input parameters decreases from 0.03 (at dry state) to 0.015 (RHs > 90 %). The impact of hygroscopic growth on ω is further applied in the calculation of the radiative transfer process. Hygroscopic growth of the studied aerosol particle population generally inhibits the photolysis of NO2 at the ground level, whereas accelerates it above the moist planetary boundary layer. Compared with dry state, the calculated JNO2 at RH of 98 % at the height of 1 km increases by 30.4 %, because of the enhancement of ultraviolet radiation by the humidified scattering-dominant aerosol particles. The increase of JNO2 due to the aerosol hygroscopic growth above the upper boundary layer may affect the tropospheric photochemical processes and this needs to be taken into account in the atmospheric chemical models.

  4. Evaluating the Use of MODIS AOD for Air Quality Determination by Comparison with the Vertical Distribution of Aerosol Light Scattering Coefficient Obtained with a Balloon-Borne Nephelometer

    NASA Astrophysics Data System (ADS)

    Sumlin, B.; Arnott, W. P.; Moosmuller, H.

    2012-12-01

    The MODIS instruments aboard the Aqua and Terra satellites provide aerosol optical depth information for the entire Earth on a daily basis. Ideally, satellite measurements should correlate with ground-based measurements in order to be useful for air quality applications. Reno, Nevada, USA is a high desert city situated in the Great Basin. Its unique geography and proximity to urban and biomass burning aerosol sources make it an ideal candidate for aerosol research. In August 2011, the Reno Aerosol Characterization Experiment measured atmospheric aerosols with a ground-based Cimel CE-318 sun-photometer and in situ photoacoustic instrumentation to quantify aerosol concentrations at the surface and in the column. However, the results of these measurements indicated the existence of a more complex system of aerosol mixing above the atmospheric boundary layer than previously thought. In order to validate these measurements, an autonomous suite of instrumentation has been developed. This device is carried aloft by a weather balloon and utilizes a reciprocal nephelometer to obtain a high-resolution profile of the vertical distribution of aerosol light scattering coefficient, as well as instrumentation to record atmospheric variables such as temperature, pressure, relative humidity, and dew point. Position, course, speed, and altitude are logged with an onboard GPS module and correlated with atmospheric and aerosol measurements. Presented is the design and development of this new instrument, its comparison with proven laboratory instruments, data gathered from flights during August-November 2012, and its comparison to ground-based measurements and satellite data from the MODIS instruments.

  5. Aerosol characteristics in the UTLS region: A satellite-based study over north India

    NASA Astrophysics Data System (ADS)

    Srivastava, A. K.; Misra, A.; Kanawade, Vijay P.; Devara, P. C. S.

    2016-01-01

    Vertical profiles of aerosol backscatter coefficient and depolarization ratio, obtained from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite, were studied in the upper troposphere and lower stratosphere (UTLS) region over North India (21-30° N and 72-90° E), covering the highly polluted Indo-Gangetic Plain (IGP) for one-year period from December 2011 to November 2012. An enhanced aerosol layer was observed between 15 and 18 km altitude, in the vicinity of tropopause, with a broad layer depth of about 2 km. The aerosol layer showed strong seasonal, monthly as well as day and night time variability, with a peak value of backscatter coefficient during monsoon season (˜5.54 × 10-3 sr-1 in September). The corresponding depolarization ratio indicates anisotropic (non-spherical) nature of particles. The aerosol layer was found to be highly linked with the variability in tropopause height, showing a positive correlation between tropopause height and the height of maximum backscatter coefficient (correlation coefficient of 0.8). However, it was found to be negatively correlated with the integrated backscatter coefficient (IBC), with a correlation coefficient of 0.3. We further analyzed outgoing long-wave radiation (OLR) data during the study period to investigate the link between the observed enhanced aerosol layer in the UTLS region and prevailing deep convective activities over the study region. Low values of OLR during monsoon (about 214 W m-2) indicate the occurrence of deep convection over this region, which may cause a large-scale circulation-driven vertical transport of boundary-layer pollution into the atmosphere of UTLS region. Results may have potential implications for better understanding and assessing the chemical and radiative impacts of these aerosols in the tropical UTLS region.

  6. A stratospheric aerosol increase during 1981, observed by lidar over mid-Europe

    NASA Astrophysics Data System (ADS)

    Reiter, R.; Jaeger, H.; Carnuth, W.; Funk, W.

    1982-04-01

    Lidar observations of variations in the aerosol layer due to the eruptions of Mt. St. Helens and the volcano Alaid in the Kurile Islands are reported and compared. One year after the Mt. St. Helens activity the backscattering coefficient had reduced to within 10% of the values observed in the pre-eruption period. Observed peaks were found to be moving upward, eventually forming a broad aerosol layer at 15-17 km height in July, 1981. The Alaid plume moved west to east and was determined to be the cause of aerosol disturbances up to the 20 km level. Data is presented of the time variation of the aerosol quantities and the time variation of the space resolved integral backscattering. Additional data has shown that both the Mt. St. Helens and the Alaid eruptions caused only one-third the aerosol perturbations as the Fuego eruption of 1974.

  7. Dependence of aerosol scattering coefficients on relative humidity observed at two coastal sites on the East China Sea: Comparison to remote observations and influence of chemical composition

    NASA Astrophysics Data System (ADS)

    Kanaya, Y.; Taketani, F.; Irie, H.; Komazaki, Y.; Takashima, H.; Xiaole, P.; Takami, A.; Wang, Z.

    2011-12-01

    We employed an integrating nephelometer equipped with a humidifier (where the relative humidity (RH) was scanned between 40 and 90%) to measure the aerosol scattering coefficients and their dependence on RH at Fukue Island (32.75N, 128.68E), west of Japan, in May 2009 and at Rudong, Jiangsu, China (32.26N, 121.37E) in May/June 2010, aiming at better characterization of optical properties of the regional-scale aerosol pollution over East Asia. The two coastal sites are located east and west of the East China Sea and are separated by about 700 km. The observed scattering coefficients are normalized by the concurrently measured PM2.5 mass concentrations and thereby behaviors of the mass scattering coefficients are discussed. At Fukue, the mass scattering coefficients under the ambient RH conditions were >1.5 times higher than those observed under the dry condition (RH = 40%), suggesting that the RH effect was crucial in determining optical properties under ambient conditions. The coefficients under the ambient RH conditions, rather than the dry values, agreed better with the extinction coefficients determined by MAX-DOAS (Multi-Axis Differential Optical Absorption Spectroscopy) technique based on remote measurements of O4 optical depths. The single-scattering albedo (SSA), estimated in combination to the absorption coefficients determined by a MAAP (Multi-Angle Absorption Photometer) instrument, had similar average values (~0.95) at the two sites. The SSA values at the two sites were commonly lowered (to below 0.90) when the air traveled from the North China Plain region. At Fukue, the RH dependence was found to be weakened when the organics/sulfate ratio increased (as observed by an Aerodyne Aerosol Mass Spectrometer), while such influence of chemical composition was less clear at Rudong, possibly masked by large temporal variations in the particle size distributions.

  8. Aerosol Optical Properties Measured Onboard the Ronald H. Brown During ACE Asia as a Function of Aerosol Chemical Composition and Source Region

    NASA Technical Reports Server (NTRS)

    Quinn, P. K.; Coffman, D. J.; Bates, T. S.; Welton, E. J.; Covert, D. S.; Miller, T. L.; Johnson, J. E.; Maria, S.; Russell, L.; Arimoto, R.

    2004-01-01

    During the ACE Asia intensive field campaign conducted in the spring of 2001 aerosol properties were measured onboard the R/V Ronald H. Brown to study the effects of the Asian aerosol on atmospheric chemistry and climate in downwind regions. Aerosol properties measured in the marine boundary layer included chemical composition; number size distribution; and light scattering, hemispheric backscattering, and absorption coefficients. In addition, optical depth and vertical profiles of aerosol 180 deg backscatter were measured. Aerosol within the ACE Asia study region was found to be a complex mixture resulting from marine, pollution, volcanic, and dust sources. Presented here as a function of air mass source region are the mass fractions of the dominant aerosol chemical components, the fraction of the scattering measured at the surface due to each component, mass scattering efficiencies of the individual components, aerosol scattering and absorption coefficients, single scattering albedo, Angstrom exponents, optical depth, and vertical profiles of aerosol extinction. All results except aerosol optical depth and the vertical profiles of aerosol extinction are reported at a relative humidity of 55 +/- 5%. An over-determined data set was collected so that measured and calculated aerosol properties could be compared, internal consistency in the data set could be assessed, and sources of uncertainty could be identified. By taking into account non-sphericity of the dust aerosol, calculated and measured aerosol mass and scattering coefficients agreed within overall experimental uncertainties. Differences between measured and calculated aerosol absorption coefficients were not within reasonable uncertainty limits, however, and may indicate the inability of Mie theory and the assumption of internally mixed homogeneous spheres to predict absorption by the ACE Asia aerosol. Mass scattering efficiencies of non-sea salt sulfate aerosol, sea salt, submicron particulate organic

  9. Measurement of tropospheric aerosol in São Paulo area using a new upgraded Raman LIDAR system

    NASA Astrophysics Data System (ADS)

    Landulfo, Eduardo; Rodrigues, Patrícia F.; da Silva Lopes, Fábio Juliano; Bourayou, Riad

    2012-11-01

    Elastic backscatter LIDAR systems have been used to determine aerosol profile concentration in several areas such as weather, pollution and air quality monitoring. In order to determine the aerosol extinction and backscattering profiles, the Klett inversion method is largely used, but this method suffers from lack of information since there are two unknown variables to be determined using only one measured LIDAR signal, and assumption of the LIDAR ratio (the relation between the extinction and backscattering coefficients) is needed. When a Raman LIDAR system is used, the inelastic backscattering signal is affected by aerosol extinction but not by aerosol backscatter, which allows this LIDAR to uniquely determine extinction and backscattering coefficients without any assumptions or any collocated instruments. The MSP-LIDAR system, set-up in a highly dense suburban area in the city of São Paulo, has been upgraded to a Raman LIDAR, and in its actual 6-channel configuration allows it to monitor elastic backscatter at 355 and 532 nm together with nitrogen and water vapor Raman backscatters at 387nm and 608 nm and 408nm and 660 nm, respectively. Thus, the measurements of aerosol backscattering, extinction coefficients and water vapor mixing ratio in the Planetary Boundary Layer (PBL) are becoming available. The system will provide the important meteorological parameters such as Aerosol Optical Depth (AOD) and will be used for the study of aerosol variations in lower troposphere over the city of São Paulo, air quality monitoring and for estimation of humidity impact on the aerosol optical properties, without any a priori assumption. This study will present the first results obtained with this upgraded LIDAR system, demonstrating the high quality of obtained aerosol and water vapor data. For that purpose, we compared the data obtained with the new MSP-Raman LIDAR with a mobile Raman LIDAR collocated at the Center for Lasers and Applications, Nuclear and Energy Research

  10. Lidar Observations of Arctic Aerosols and Clouds in the Free Troposphere for More than Fifteen Months over Svalbard

    NASA Astrophysics Data System (ADS)

    Shibata, T.; Shiraishi, K.; Iwasaki, S.; Shiobara, M.; Takano, T.

    2015-12-01

    The information on spatial distributions and microphysical properties of aerosols and clouds is crucial for the studies on their direct and indirect impacts on Arctic climate. Observations of tropospheric aerosols and clouds by Mie/depolarization lidar have been made for more than a year at Ny-Ålesund (79◌N, 12◌E) since March 2014 by using a pulsed Nd:YAG laser and its wavelengths of 1064 nm and 532 nm. The backscattering coefficients at these two wavelengths, and depolarization ratio at 532nm of aerosols and clouds are obtained by the lidar observations. Figures show the results of aerosols for more than a year. Fig. 1 shows the mean backscattering coefficient of aerosols (BSC) at 532 nm, and Fig. 2 shows mean particle depolarization ratio of aerosols (PDR) at 532 nm in 1 km intervals (0.4 km for the lowest height interval) to 5 km in altitude since March 2014 to May 2015. There is a maximum in backscattering coefficient at spring as indicated by previous studies on Arctic aerosols. In addition, there is another maximum at autumn in depolarization ratio and in color ratio, or the ratio of BSC at 1064 nm to BSC at 532 nm.

  11. Lidar network observations of tropospheric aerosols

    NASA Astrophysics Data System (ADS)

    Sugimoto, Nobuo; Matsui, Ichiro; Shimizu, Atsushi; Nishizawa, Tomoaki; Hara, Yukari; Xie, Chenbo; Uno, Itsushi; Yumimoto, Keiya; Wang, Zifa; Yoon, Soon-Chang

    2008-12-01

    Observations of tropospheric aerosols (mineral dust, air-pollution aerosols, etc.) and clouds are being conducted using a network of two-wavelength (1064nm, 532nm) polarization (532nm) lidars in the East Asian region. Currently, the lidars are operated continuously at 23 locations in Japan, Korea, China, Mongolia and Thailand. A real-time data processing system was developed for the network, and the data products such as the attenuated backscatter coefficients and the estimated extinction coefficients for non-spherical and spherical aerosols are generated automatically for online network stations. The data are used in the real-time monitoring of Asian dust as well as in the studies of regional air pollution and climate change.

  12. Lidar measurements of atmospheric backscattering amplification

    NASA Astrophysics Data System (ADS)

    Banakh, V. A.; Razenkov, I. A.

    2016-02-01

    Results of long-term continuous measurements of the atmospheric backscattering amplification coefficient on a 2-km-long near-ground path with the use of a two-channel micropulse lidar based on a waveguide laser are presented. It is shown that the backscattering amplification coefficient has a pronounced daily variation. In the night and in the afternoon, atmospheric backscattering amplification is maximal and the amplification coefficient can exceed 2. The amplification is low or absent in morning and evening hours at neutral temperature stratification in the near-ground layer of the atmosphere. The backscattering amplification coefficient increases with an increase in the structure constant of the air refracting index and variance of the image jitter of the illumination spot created by the probing laser beam on the wall of a 2-km-distant building.

  13. Aerosol and Cloud Interaction Observed From High Spectral Resolution Lidar Data

    NASA Technical Reports Server (NTRS)

    Su, Wenying; Schuster, Gregory L.; Loeb, Norman G.; Rogers, Raymond R.; Ferrare, Richard A.; Hostetler, Chris A.; Hair, Johnathan W.; Obland, Michael D.

    2008-01-01

    Recent studies utilizing satellite retrievals have shown a strong correlation between aerosol optical depth (AOD) and cloud cover. However, these retrievals from passive sensors are subject to many limitations, including cloud adjacency (or 3D) effects, possible cloud contamination, uncertainty in the AOD retrieval. Some of these limitations do not exist in High Spectral Resolution Lidar (HSRL) observations; for instance, HSRL observations are not a ected by cloud adjacency effects, are less prone to cloud contamination, and offer accurate aerosol property measurements (backscatter coefficient, extinction coefficient, lidar ratio, backscatter Angstrom exponent,and aerosol optical depth) at a neospatial resolution (less than 100 m) in the vicinity of clouds. Hence, the HSRL provides an important dataset for studying aerosol and cloud interaction. In this study, we statistically analyze aircraft-based HSRL profiles according to their distance from the nearest cloud, assuring that all profile comparisons are subject to the same large-scale meteorological conditions. Our results indicate that AODs from HSRL are about 17% higher in the proximity of clouds (approximately 100 m) than far away from clouds (4.5 km), which is much smaller than the reported cloud 3D effect on AOD retrievals. The backscatter and extinction coefficients also systematically increase in the vicinity of clouds, which can be explained by aerosol swelling in the high relative humidity (RH) environment and/or aerosol growth through in cloud processing (albeit not conclusively). On the other hand, we do not observe a systematic trend in lidar ratio; we hypothesize that this is caused by the opposite effects of aerosol swelling and aerosol in-cloud processing on the lidar ratio. Finally, the observed backscatter Angstrom exponent (BAE) does not show a consistent trend because of the complicated relationship between BAE and RH. We demonstrate that BAE should not be used as a surrogate for Angstrom

  14. Experimental determination of the partitioning coefficient and volatility of important BVOC oxidation products using the Aerosol Collection Module (ACM) coupled to a PTR-ToF-MS

    NASA Astrophysics Data System (ADS)

    Gkatzelis, G.; Hohaus, T.; Tillmann, R.; Schmitt, S. H.; Yu, Z.; Schlag, P.; Wegener, R.; Kaminski, M.; Kiendler-Scharr, A.

    2015-12-01

    Atmospheric aerosol can alter the Earth's radiative budget and global climate but can also affect human health. A dominant contributor to the submicrometer particulate matter (PM) is organic aerosol (OA). OA can be either directly emitted through e.g. combustion processes (primary OA) or formed through the oxidation of organic gases (secondary organic aerosol, SOA). A detailed understanding of SOA formation is of importance as it constitutes a major contribution to the total OA. The partitioning between the gas and particle phase as well as the volatility of individual components of SOA is yet poorly understood adding uncertainties and thus complicating climate modelling. In this work, a new experimental methodology was used for compound-specific analysis of organic aerosol. The Aerosol Collection Module (ACM) is a newly developed instrument that deploys an aerodynamic lens to separate the gas and particle phase of an aerosol. The particle phase is directed to a cooled sampling surface. After collection particles are thermally desorbed and transferred to a detector for further analysis. In the present work, the ACM was coupled to a Proton Transfer Reaction-Time of Flight-Mass Spectrometer (PTR-ToF-MS) to detect and quantify organic compounds partitioning between the gas and particle phase. This experimental approach was used in a set of experiments at the atmosphere simulation chamber SAPHIR to investigate SOA formation. Ozone oxidation with subsequent photochemical aging of β-pinene, limonene and real plant emissions from Pinus sylvestris (Scots pine) were studied. Simultaneous measurement of the gas and particle phase using the ACM-PTR-ToF-MS allows to report partitioning coefficients of important BVOC oxidation products. Additionally, volatility trends and changes of the SOA with photochemical aging are investigated and compared for all systems studied.

  15. Aerosol profiling by calibrated ceilometer data

    NASA Astrophysics Data System (ADS)

    Geiß, Alexander; Wiegner, Matthias

    2015-04-01

    Recently, networks of automated single-wavelength backscatter lidars ("ceilometers") were implemented, primarily by weather services. As a consequence, the potential of ceilometers to quantitatively determine the spatiotemporal distribution of atmospheric aerosols was investigated, to derive mixing layer heights for air quality studies and to assess optical properties. The main issues are the limited signal-to-noise ratio and the inherent problems of the calibration. We have studied several approaches for calibrating ceilometers, based on different numerical solutions and on auxiliary data of different remote sensing techniques. As a result, the backscatter coefficient can be determined with a relative accuracy of typically 10% and a time resolution in the order of 5 minutes. This parameter is used to estimate the mixing layer height by applying different techniques of averaging and pattern recognition. In this context, it is assumed that aerosols are a good tracer for the thermodynamic stratification of the troposphere. Our algorithm is fully automated and was tested for several commercially available ceilometers. For this purpose, a simplified version for non-calibrated ceilometers, based on the so called range corrected signal, was additionally developed. We used data of the CHM15k-x ceilometer (manufactured by Jenoptik) from more than 5 years of continuous operation by the LMU-MIM in Munich (Germany) to establish climatologies of mixing layer heights (MLH), cloud cover, cloud heights and vertical profiles of the backscatter coefficient. Among others, the mean diurnal cycle and the interannual variability of the MLH for different months were determined. Ceilometer derived MLH were also used to validate different parameterization of chemistry transport models and to validate forecasts of the dispersion of aerosol layers. For the latter applications backscatter coefficients are required. That means, a calibration of the ceilometers is mandatory.

  16. Intercomparison of aerosol extinction profiles retrieved from MAX-DOAS measurements

    NASA Astrophysics Data System (ADS)

    Frieß, U.; Klein Baltink, H.; Beirle, S.; Clémer, K.; Hendrick, F.; Henzing, B.; Irie, H.; de Leeuw, G.; Li, A.; Moerman, M. M.; van Roozendael, M.; Shaiganfar, R.; Wagner, T.; Wang, Y.; Xie, P.; Yilmaz, S.; Zieger, P.

    2016-07-01

    A first direct intercomparison of aerosol vertical profiles from Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) observations, performed during the Cabauw Intercomparison Campaign of Nitrogen Dioxide measuring Instruments (CINDI) in summer 2009, is presented. Five out of 14 participants of the CINDI campaign reported aerosol extinction profiles and aerosol optical thickness (AOT) as deduced from observations of differential slant column densities of the oxygen collision complex (O4) at different elevation angles. Aerosol extinction vertical profiles and AOT are compared to backscatter profiles from a ceilometer instrument and to sun photometer measurements, respectively. Furthermore, the near-surface aerosol extinction coefficient is compared to in situ measurements of a humidity-controlled nephelometer and dry aerosol absorption measurements. The participants of this intercomparison exercise use different approaches for the retrieval of aerosol information, including the retrieval of the full vertical profile using optimal estimation and a parametrised approach with a prescribed profile shape. Despite these large conceptual differences, and also differences in the wavelength of the observed O4 absorption band, good agreement in terms of the vertical structure of aerosols within the boundary layer is achieved between the aerosol extinction profiles retrieved by the different groups and the backscatter profiles observed by the ceilometer instrument. AOTs from MAX-DOAS and sun photometer show a good correlation (R>0.8), but all participants systematically underestimate the AOT. Substantial differences between the near-surface aerosol extinction from MAX-DOAS and from the humidified nephelometer remain largely unresolved.

  17. Using Airborne High Spectral Resolution Lidar Data to Evaluate Combined Active Plus Passive Retrievals of Aerosol Extinction Profiles

    NASA Technical Reports Server (NTRS)

    Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Kittaka, C.; Vaughn, M. A.; Remer, L. A.

    2010-01-01

    We derive aerosol extinction profiles from airborne and space-based lidar backscatter signals by constraining the retrieval with column aerosol optical thickness (AOT), with no need to rely on assumptions about aerosol type or lidar ratio. The backscatter data were acquired by the NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL) and by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite. The HSRL also simultaneously measures aerosol extinction coefficients independently using the high spectral resolution lidar technique, thereby providing an ideal data set for evaluating the retrieval. We retrieve aerosol extinction profiles from both HSRL and CALIOP attenuated backscatter data constrained with HSRL, Moderate-Resolution Imaging Spectroradiometer (MODIS), and Multiangle Imaging Spectroradiometer column AOT. The resulting profiles are compared with the aerosol extinction measured by HSRL. Retrievals are limited to cases where the column aerosol thickness is greater than 0.2 over land and 0.15 over water. In the case of large AOT, the results using the Aqua MODIS constraint over water are poorer than Aqua MODIS over land or Terra MODIS. The poorer results relate to an apparent bias in Aqua MODIS AOT over water observed in August 2007. This apparent bias is still under investigation. Finally, aerosol extinction coefficients are derived from CALIPSO backscatter data using AOT from Aqua MODIS for 28 profiles over land and 9 over water. They agree with coincident measurements by the airborne HSRL to within +/-0.016/km +/- 20% for at least two-thirds of land points and within +/-0.028/km +/- 20% for at least two-thirds of ocean points.

  18. Aerosol absorption coefficient and Equivalent Black Carbon by parallel operation of AE31 and AE33 aethalometers at the Zeppelin station, Ny Ålesund, Svalbard

    NASA Astrophysics Data System (ADS)

    Eleftheriadis, Konstantinos; Kalogridis, Athina-Cerise; Vratolis, Sterios; Fiebig, Markus

    2016-04-01

    Light absorbing carbon in atmospheric aerosol plays a critical role in radiative forcing and climate change. Despite the long term measurements across the Arctic, comparing data obtained by a variety of methods across stations requires caution. A method for extracting the aerosol absorption coefficient from data obtained over the decades by filter based instrument is still under development. An IASOA Aerosol working group has been initiated to address this and other cross-site aerosol comparison opportunities. Continuous ambient measurements of EBC/light attenuation by means of a Magee Sci. AE-31 aethalometer operating at the Zeppelinfjellet station (474 m asl; 78°54'N, 11°53'E), Ny Ålesund, Svalbard, have been available since 2001 (Eleftheriadis et al, 2009), while a new aethalometer model (AE33, Drinovec et al, 2014) has been installed to operate in parallel from the same inlet since June 2015. Measurements are recorded by a Labview routine collecting all available parameters reported by the two instrument via RS232 protocol. Data are reported at 1 and 10 minute intervals as averages for EBC (μg m-3) and aerosol absorption coefficients (Mm-1) by means of routine designed to report Near Real Time NRT data at the EBAS WDCA database (ebas.nilu.no) Results for the first 6 month period are reported here in an attempt to evaluate comparative performance of the two instruments in terms of their response with respect to the variable aerosol load of light absorbing carbon during the warm and cold seasons found in the high arctic. The application of available conversion schemes for obtaining the absorption coefficient by the two instruments is found to demonstrate a marked difference in their output. During clean periods of low aerosol load (EBC < 30 ng m-3), the two instruments display a better agreement with regression slope for the 880 nm signal between the two at ~ 0.9 compared to a slope at ~ 0.6 during the period of higher absorbing carbon loads (400< EBC<30 ng m

  19. Particle backscatter, extinction, and lidar ratio profiling with Raman lidar in south and north China

    SciTech Connect

    Tesche, Matthias; Ansmann, Albert; Mueller, Detlef; Althausen, Dietrich; Engelmann, Ronny; Hu Min; Zhang Yuanghang

    2007-09-01

    Aerosol Raman lidar observations of profiles of the particle extinction and backscatter coefficients and the respective extinction-to-backscatter ratio (lidar ratio) were performed under highly polluted conditions in the Pearl River Delta (PRD) in southern China in October 2004 and at Beijing during a clear period with moderately polluted to background aerosol conditions in January 2005. The anthropogenic haze in the PRD is characterized by volume light-extinction coefficients of particles ranging from approximately 200 to800 Mm-1 and lidar ratios mostly between 40 and 55 sr (average of47{+-}6 sr). Almost clean air masses were observed throughout the measurements of the Beijing campaign. These air masses originated from arid desert-steppe-like regions (greater Gobi area).Extinction values usually varied between 100 and300 Mm-1, and the lidar ratios were considerably lower (compared with PRD values) with values mostly from 30 to 45 sr (average of38{+-}7 sr). Gobi dust partly influenced the observations. Unexpectedly low lidar ratios of approximately 25 sr were found for a case of background aerosol with a low optical depth of 0.05. The low lidar ratios are consistent with Mie-scattering calculations applied to ground-based observations of particle size distributions.

  20. Comparison of Aerosol Classification From Airborne High Spectral Resolution Lidar and the CALIPSO Vertical Feature Mask

    NASA Technical Reports Server (NTRS)

    Burton, Sharon P.; Ferrare, Rich A.; Omar, Ali H.; Vaughan, Mark A.; Rogers, Raymond R.; Hostetler, Chris a.; Hair, Johnathan W.; Obland, Michael D.; Butler, Carolyn F.; Cook, Anthony L.; Harper, David B.

    2012-01-01

    Knowledge of aerosol composition and vertical distribution is crucial for assessing the impact of aerosols on climate. In addition, aerosol classification is a key input to CALIOP aerosol retrievals, since CALIOP requires an inference of the lidar ratio in order to estimate the effects of aerosol extinction and backscattering. In contrast, the NASA airborne HSRL-1 directly measures both aerosol extinction and backscatter, and therefore the lidar ratio (extinction-to-backscatter ratio). Four aerosol intensive properties from HSRL-1 are combined to infer aerosol type. Aerosol classification results from HSRL-1 are used here to validate the CALIOP aerosol type inferences.

  1. An Accuracy Assessment of the CALIOP/CALIPSO Version 2/Version 3 Daytime Aerosol Extinction Product Based on a Detailed Multi-Sensor, Multi-Platform Case Study

    NASA Technical Reports Server (NTRS)

    Kacenelenbogen, M.; Vaughan, M. A.; Redemann, J.; Hoff, R. M.; Rogers, R. R.; Ferrare, R. A.; Russell, P. B.; Hostetler, C. A.; Hair, J. W.; Holben, B. N.

    2011-01-01

    The Cloud Aerosol LIdar with Orthogonal Polarization (CALIOP), on board the CALIPSO platform, has measured profiles of total attenuated backscatter coefficient (level 1 products) since June 2006. CALIOP s level 2 products, such as the aerosol backscatter and extinction coefficient profiles, are retrieved using a complex succession of automated algorithms. The goal of this study is to help identify potential shortcomings in the CALIOP version 2 level 2 aerosol extinction product and to illustrate some of the motivation for the changes that have been introduced in the next version of CALIOP data (version 3, released in June 2010). To help illustrate the potential factors contributing to the uncertainty of the CALIOP aerosol extinction retrieval, we focus on a one-day, multi-instrument, multiplatform comparison study during the CALIPSO and Twilight Zone (CATZ) validation campaign on 4 August 2007. On that day, we observe a consistency in the Aerosol Optical Depth (AOD) values recorded by four different instruments (i.e. spaceborne MODerate Imaging Spectroradiometer, MODIS: 0.67 and POLarization and Directionality of Earth s Reflectances, POLDER: 0.58, airborne High Spectral Resolution Lidar, HSRL: 0.52 and ground-based AErosol RObotic NETwork, AERONET: 0.48 to 0.73) while CALIOP AOD is a factor of two lower (0.32 at 532 nm). This case study illustrates the following potential sources of uncertainty in the CALIOP AOD: (i) CALIOP s low signal-to-noise ratio (SNR) leading to the misclassification and/or lack of aerosol layer identification, especially close to the Earth s surface; (ii) the cloud contamination of CALIOP version 2 aerosol backscatter and extinction profiles; (iii) potentially erroneous assumptions of the aerosol extinction-to-backscatter ratio (Sa) used in CALIOP s extinction retrievals; and (iv) calibration coefficient biases in the CALIOP daytime attenuated backscatter coefficient profiles. The use of version 3 CALIOP extinction retrieval for our case

  2. Accuracy Remote-Sensing of Aerosol Spatial Distribution in the Lower Troposphere by Twin Scanning Lidars

    NASA Astrophysics Data System (ADS)

    Gao, F.; Hua, D.; Li, Y.; Li, W.; Wang, L.

    2015-12-01

    Aerosols in the lower troposphere play an important role in the absorption and scattering of atmospheric radiation, the forming of precipitation and the circulation of chemistry. Due to the influence of solar heating at the surface, the aerosol distribution is inhomogeneous and variation with time. Lidar is proven to be a powerful tool in the application of remote sensing of atmospheric properties (Klett 1981). However, the existing of overlap function in lidar equation limits the fine detection of aerosol optical properties in the lower troposphere by vertical measurement, either by Raman lidar (Whiteman 2003) or by high spectral resolution lidar (Imaki 2005). Although the multi-angle method can succeed the aerosol measurement from the ground, the homogeneous atmospheric is needed (Pahlow 2004). Aiming to detect the inhomogeneous aerosols in the lower troposphere and to retrieve the aerosol extinction and backscatter coefficients in the lidar equation, a novel method for accuracy remote-sensing of aerosol properties based on twin scanning lidars has been proposed. In order to realize the fine detection of the aerosol spatial distribution from the ground to the height of interest of atmosphere, the scanning lidar is utilized as the remote sensing tool combined with the cross scanning by the twin systems, which makes the exact solutions of those two unknown parameters retrievable. Figure shows the detection method for aerosol spatial distribution using twin scanning lidars. As two lidar equations are provided simultaneously, the aerosol extinction and backscatter coefficients are retrievable. Moreover, by selecting the transmitting laser wavelength, the presented method can realize the fine detection of aerosol at any spectrum, even the theoretical and technical analysis of the aerosol characteristics by applying multi-spectra.

  3. Estimation of black carbon content for biomass burning aerosols from multi-channel Raman lidar data

    NASA Astrophysics Data System (ADS)

    Talianu, Camelia; Marmureanu, Luminita; Nicolae, Doina

    2015-04-01

    Biomass burning due to natural processes (forest fires) or anthropical activities (agriculture, thermal power stations, domestic heating) is an important source of aerosols with a high content of carbon components (black carbon and organic carbon). Multi-channel Raman lidars provide information on the spectral dependence of the backscatter and extinction coefficients, embedding information on the black carbon content. Aerosols with a high content of black carbon have large extinction coefficients and small backscatter coefficients (strong absorption), while aerosols with high content of organic carbon have large backscatter coefficients (weak absorption). This paper presents a method based on radiative calculations to estimate the black carbon content of biomass burning aerosols from 3b+2a+1d lidar signals. Data is collected at Magurele, Romania, at the cross-road of air masses coming from Ukraine, Russia and Greece, where burning events are frequent during both cold and hot seasons. Aerosols are transported in the free troposphere, generally in the 2-4 km altitude range, and reaches the lidar location after 2-3 days. Optical data are collected between 2011-2012 by a multi-channel Raman lidar and follows the quality assurance program of EARLINET. Radiative calculations are made with libRadTran, an open source radiative model developed by ESA. Validation of the retrievals is made by comparison to a co-located C-ToF Aerosol Mass Spectrometer. Keywords: Lidar, aerosols, biomass burning, radiative model, black carbon Acknowledgment: This work has been supported by grants of the Romanian National Authority for Scientific Research, Programme for Research- Space Technology and Advanced Research - STAR, project no. 39/2012 - SIAFIM, and by Romanian Partnerships in priority areas PNII implemented with MEN-UEFISCDI support, project no. 309/2014 - MOBBE

  4. Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis

    NASA Astrophysics Data System (ADS)

    Buchard, V.; da Silva, A. M.; Colarco, P. R.; Darmenov, A.; Randles, C. A.; Govindaraju, R.; Torres, O.; Campbell, J.; Spurr, R.

    2015-05-01

    A radiative transfer interface has been developed to simulate the UV aerosol index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and aerosol absorption optical depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the AErosol RObotic NETwork (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model-produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the southern African and South American biomass burning regions indicates that revising the spectrally dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons

  5. Study of aerosol hygroscopic events over the Cabauw experimental site for atmospheric research (CESAR) using the multi-wavelength Raman lidar Caeli

    NASA Astrophysics Data System (ADS)

    Fernández, A. J.; Apituley, A.; Veselovskii, I.; Suvorina, A.; Henzing, J.; Pujadas, M.; Artíñano, B.

    2015-11-01

    This article presents a study of aerosol optical and microphysical properties under different relative humidity (RH) but well mixed layer conditions using optical and microphysical aerosol properties from multi-wavelength (MW) Raman lidar and in-situ aerosol observations collected at the Cabauw Experimental Site for Atmospheric Research (CESAR). Two hygroscopic events are described through 3 backscatter (β) and 2 extinction (α) coefficients which in turn provide intensive parameters such as the backscatter-related Ångström exponent (åβ) and the lidar ratio (LR). Along with it, profiles of RH were inferred from Raman lidar observations and therefore, as a result of varying humidity conditions, a shift on the aerosol optical properties can be described. Thus, it is observed that as RH increases, aerosols uptake water vapour, augment their size and consequently the åβ diminishes whereas the LR increases. The enhancement factor based on the backscatter coefficient at 532 nm, which characterizes the aerosol from hygroscopic standpoint, is also estimated. Finally, microphysical properties that are necessary for aerosol radiative forcing estimates - such as volume, effective radii, refractive index and size distribution, all vertically resolved - are retrieved using the inversion with regularization. Using this method, two hygroscopic events are described in detail.

  6. Signal Processing and Calibration of Continuous-Wave Focused CO2 Doppler Lidars for Atmospheric Backscatter Measurement

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Chambers, Diana M.; Jarzembski, Maurice A.; Srivastava, Vandana; Bowdle, David A.; Jones, William D.

    1996-01-01

    Two continuous-wave(CW)focused C02 Doppler lidars (9.1 and 10.6 micrometers) were developed for airborne in situ aerosol backscatter measurements. The complex path of reliably calibrating these systems, with different signal processors, for accurate derivation of atmospheric backscatter coefficients is documented. Lidar calibration for absolute backscatter measurement for both lidars is based on range response over the lidar sample volume, not solely at focus. Both lidars were calibrated with a new technique using well-characterized aerosols as radiometric standard targets and related to conventional hard-target calibration. A digital signal processor (DSP), a surface acoustic and spectrum analyzer and manually tuned spectrum analyzer signal analyzers were used. The DSP signals were analyzed with an innovative method of correcting for systematic noise fluctuation; the noise statistics exhibit the chi-square distribution predicted by theory. System parametric studies and detailed calibration improved the accuracy of conversion from the measured signal-to-noise ratio to absolute backscatter. The minimum backscatter sensitivity is approximately 3 x 10(exp -12)/m/sr at 9.1 micrometers and approximately 9 x 10(exp -12)/m/sr at 10.6 micrometers. Sample measurements are shown for a flight over the remote Pacific Ocean in 1990 as part of the NASA Global Backscatter Experiment (GLOBE) survey missions, the first time to our knowledge that 9.1-10.6 micrometer lidar intercomparisons were made. Measurements at 9.1 micrometers, a potential wavelength for space-based lidar remote-sensing applications, are to our knowledge the first based on the rare isotope C-12 O(2)-18 gas.

  7. Analyses of scattering characteristics of chosen anthropogenic aerosols

    NASA Astrophysics Data System (ADS)

    Kaszczuk, Miroslawa; Mierczyk, Zygmunt; Muzal, Michal

    2008-10-01

    In the work, analyses of scattering profile of chosen anthropogenic aerosols for two wavelengths (λ1 = 1064 nm and λ2 = 532 nm) were made. As an example of anthropogenic aerosol three different pyrotechnic mixtures (DM11, M2, M16) were taken. Main parameters of smoke particles were firstly analyzed and well described, taking particle shape and size into special consideration. Shape of particles was analyzed on the basis of SEM pictures, and particle size was measured. Participation of particles in each fixed fraction characterized by range of sizes was analyzed and parameters of smoke particles of characteristic sizes and function describing aerosol size distribution (ASD) were determinated. Analyses of scattering profiles were carried out on the basis of both model of scattering on spherical and nonspherical particles. In the case of spherical particles Rayleigh-Mie model was used and for nonspherical particles analyses firstly model of spheroids was used, and then Rayleigh-Mie one. For each characteristic particle one calculated value of four parameters (effective scattering cross section σSCA, effective backscattering cross section σBSCA, scattering efficiency QSCA, backscattering efficiency QBSCA) and value of backscattering coefficient β for whole particles population. Obtained results were compared with the same parameters calculated for natural aerosol (cirrus cloud).

  8. Optical properties of Southern Hemisphere aerosols: Report of the joint CSIRO/NASA study

    NASA Technical Reports Server (NTRS)

    Gras, John L.; Platt, C. Martin; Huffaker, R. Milton; Jones, William D.; Kavaya, Michael J.; Gras, John L.

    1988-01-01

    This study was made in support of the LAWS and GLOBE programs, which aim to design a suitable Doppler lidar system for measuring global winds from a satellite. Observations were taken from 5 deg S to 45 deg S along and off the E and SE Australian coast, thus obtaining representative samples over a large latitude range. Observations were made between 0 and 6 km altitude of aerosol physical and chemical properties in situ from the CSIRO F-27 aircraft; of lidar backscatter coefficients at 10.6 micron wavelength from the F-27 aircraft; of lidar backscatter profiles at 0.694 microns at Sale, SE Australia; and of lidar backscatter profiles at 0.532 microns at Cowley Beach, NE Australia. Both calculations and observations in the free troposphere gave a backscatter coefficient of 1-2 x 10 to the -11/m/sr at 10.6 microns, although the accuracies of the instruments were marginal at this level. Equivalent figures were 2-8 x 10 to the -9/m/sr (aerosol) and 9 x 10 to the -9 to 2 x 10 to the -8/m/sr (lidar) at 0.694 microns wavelength at Sale; and 3.7 x 10 to the -9/m/sr (aerosol) and 10 to the -8 to 10 to the -7/m/sr (lidar) at 0.532 microns wavelength at Cowley Beach. The measured backscatter coefficients at 0.694 and 0.532 microns were consistently higher than the values calculated from aerosol size distributions by factors of typically 2 to 10.

  9. Satellite and correlative measurements of the stratospheric aerosol. I An optical model for data conversions

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Livingston, J. M.; Swissler, T. J.; Mccormick, M. P.; Chu, W. P.; Pepin, T. J.

    1981-01-01

    A description is presented of an empirically based model of stratospheric aerosol optical properties (size distributions and refractive indices) and their variations. The need for such a model arose in the data validation and archival programs for two satellite sensors, SAM II and SAGE. These programs require the ability to convert measurements of a given aerosol macroproperty (e.g., volume extinction coefficient, volume backscatter coefficient, particle number or mass per unit volume) to best estimates of other aerosol macroproperties, and to assess quantitatively the uncertainties in the conversion process. The described model provides the information on size distributions, refractive indices and their variations necessary for these tasks, and also defines a procedure for combining the model information with empirical data in a way that facilitates automatic data processing. Although the model was developed for use in the satellite validation and archival programs, it also has proven useful in other studies of stratospheric aerosol.

  10. Aerosol profiling using the ceilometer network of the German Meteorological Service

    NASA Astrophysics Data System (ADS)

    Flentje, H.; Heese, B.; Reichardt, J.; Thomas, W.

    2010-08-01

    The German Meteorological Service (DWD) operates about 52 lidar ceilometers within its synoptic observations network, covering Germany. These affordable low-power lidar systems provide spatially and temporally high resolved aerosol backscatter profiles which can operationally provide quasi 3-D distributions of particle backscatter intensity. Intentionally designed for cloud height detection, recent significant improvements allow following the development of the boundary layer and to detect denser particle plumes in the free tropospere like volcanic ash, Saharan dust or fire smoke. Thus the network builds a powerful aerosol plume alerting and tracking system. If auxiliary aerosol information is available, the particle backscatter coefficient, the extinction coefficient and even particle mass concentrations may be estimated, with however large uncertainties. Therefore, large synergistic benefit is achieved if the ceilometers are linked to existing lidar networks like EARLINET or integrated into WMO's envisioined Global Aerosol Lidar Observation Network GALION. To this end, we demonstrate the potential and limitations of ceilometer networks by means of three representative aerosol episodes over Europe, namely Sahara dust, Mediterranean fire smoke and, more detailed, the Icelandic Eyjafjoll volcano eruption from mid April 2010 onwards. The DWD (Jenoptik CHM15k) lidar ceilometer network tracked the Eyjafjoll ash layers over Germany and roughly estimated peak extinction coefficients and mass concentrations on 17 April of 4-6(± 2) 10-4 m-1 and 500-750(± 300) μg/m-3, respectively, based on co-located aerosol optical depth, nephelometer (scattering coefficient) and particle mass concentration measurements. Though large, the uncertainties are small enough to let the network suit for example as aviation advisory tool, indicating whether the legal flight ban threshold of presently 2 mg/m3 is imminent to be exceeded.

  11. C-band backscattering from corn canopies

    NASA Technical Reports Server (NTRS)

    Daughtry, C. S. T.; Ranson, K. J.; Biehl, L. L.

    1991-01-01

    A frequency-modulatad continuous-wave C-band (4.8 GHz) scatterometer was mounted on an aerial lift truck, and backscatter coefficients of corn (Zea mays L.) were acquired as functions of polarizations, view angles, and row directions. As phytomass and green-leaf area index increased, the backscatter also increased. Near anthesis, when the canopies were fully developed, the major scattering elements were located in the upper 1 m of the 2.8 m tall canopy and little backscatter was measured below that level for view angles of 30 deg or greater. C-band backscatter data could provide information to monitor tillage operations at small view zenith angles and vegetation at large view zenith angles.

  12. Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar.

    PubMed

    Ansmann, A; Wandinger, U; Riebesell, M; Weitkamp, C; Michaelis, W

    1992-11-20

    Height profiles of the extinction and the backscatter coefficients in cirrus clouds are determined independently from elastic- and inelastic- (Raman) backscatter signals. An extended error analysis is given. Examples covering the measured range of extinction-to-backscatter ratios (lidar ratios) in ice clouds are presented. Lidar ratios between 5 and 15 sr are usually found. A strong variation between 2 and 20 sr can be observed within one cloud profile. Particle extinction coefficients determined from inelastic-backscatter signals and from elastic-backscatter signals by using the Klett method are compared. The Klett solution of the extinction profile can be highly erroneous if the lidar ratio varies along the measuring range. On the other hand, simple backscatter lidars can provide reliable information about the cloud optical depth and the mean cloud lidar ratio.

  13. Systematic Relationships among Background SE U.S. Aerosol Optical, Micro-physical, and Chemical Properties-Development of an Optically-based Aerosol Characterization

    NASA Astrophysics Data System (ADS)

    Sherman, J. P.; Link, M. F.; Zhou, Y.

    2014-12-01

    Remote sensing-based retrievals of aerosol composition require known or assumed relationships between aerosol optical properties and types. Most optically-based aerosol classification schemes apply some combination of the spectral dependence of aerosol light scattering and absorption-using the absorption and either scattering or extinction Angstrom exponents (AAE, SAE and EAE), along with single-scattering albedo (SSA). These schemes can differentiate between such aerosol types as dust, biomass burning, and urban/industrial but no such studies have been conducted in the SE U.S., where a large fraction of the background aerosol is a variable mixture of biogenic SOA, sulfates, and black carbon. In addition, AERONET retrievals of SSA are often highly uncertain due to low AOD in the region during most months. The high-elevation, semi-rural AppalAIR facility at Appalachian State University in Boone, NC (1090m ASL, 36.210N, 81.690W) is home to the only co-located NOAA-ESRL and AERONET monitoring sites in the eastern U.S. Aerosol chemistry measured at AppalAIR is representative of the background SE U.S (Link et al. 2014) Dried aerosol light absorption and dried and humidified aerosol light scattering and hemispheric backscattering at 3 visible wavelengths and 2 particle size cuts (sub-1μm and sub-10μm) are measured continuously. Measurements of size-resolved, non-refractory sub-1μm aerosol composition were made by a co-located AMS during the 2012-2013 summers and 2013 winter. Systematic relationships among aerosol optical, microphysical, and chemical properties were developed to better understand aerosol sources and processes and for use in higher-dimension aerosol classification schemes. The hygroscopic dependence of visible light scattering is sensitive to the ratio of sulfate to organic aerosol(OA), as are SSA and AAE. SAE is a less sensitive indicator of fine-mode aerosol size than hemispheric backscatter fraction (b) and is more sensitive to fine-mode aerosol

  14. Dynamic coherent backscattering mirror

    PubMed Central

    Xu, M.

    2016-01-01

    The phase of multiply scattered light has recently attracted considerable interest. Coherent backscattering is a striking phenomenon of multiple scattered light in which the coherence of light survives multiple scattering in a random medium and is observable in the direction space as an enhancement of the intensity of backscattered light within a cone around the retroreflection direction. Reciprocity also leads to enhancement of backscattering light in the spatial space. The random medium behaves as a reciprocity mirror which robustly converts a diverging incident beam into a converging backscattering one focusing at a conjugate spot in space. Here we first analyze theoretically this coherent backscattering mirror (CBM) phenomenon and then demonstrate the capability of CBM compensating and correcting both static and dynamic phase distortions occurring along the optical path. CBM may offer novel approaches for high speed dynamic phase corrections in optical systems and find applications in sensing and navigation. PMID:26937296

  15. Continuous and automatic measurement of atmospheric structures and aerosols optical properties with R-Man510 nitrogen Raman lidar

    NASA Astrophysics Data System (ADS)

    Royer, P.; Renaudier, M.; Sauvage, L.; Boquet, M.; Thobois, L.; Bizard, A.

    2012-04-01

    A new compact and light nitrogen Raman lidar (R-Man510) has recently been developed by Leosphere company. This UV-lidar system is based on a low energy diode pumped Nd:YAG laser at 355 nm and has been developed to be operated unmanly for the meteorological and airport needs. Measurements are typically performed with a vertical resolution between 15 and 60 m and a temporal resolution between 30 seconds (for elastic channel) and 10 minutes (for Raman channel). The elastic channel of the lidar is used to automatically detect up to 9 atmospheric structures (Plantery Boundary Layer height, aerosol and cloud layers) in quasi real-time. Aerosols are classified in 6 types (pollution aerosols, desert dusts, volcanic ashes, marine aerosols, biomass burning and no aerosols) considering informations on depolarization ratio determined with the two cross-polarized elastic channels and on aerosols optical properties (extinction-to-backscatter ratio, aerosol backscatter and extinction coefficients) determined thanks to the nitrogen Raman channel at 387 nm. Aerosols optical properties can then been used for the assessment of mass concentrations which is crucial in case of hypothetical volcanic eruption. We will present the first results obtained with this new commercial lidar system. Daytime and nighttime performances of the system will be analyzed and compared with simulations from an instrumental model.

  16. Potentialities and Limits of ICESAT-2 Observation for Atmospheric Aerosol Investigation

    NASA Astrophysics Data System (ADS)

    Mona, L.; Amodeo, A.; D'Amico, G.

    2016-06-01

    ICESat-2(Ice, Cloud, and land Elevation Satellite-2), slated for launch in 2017, will continue the important observations of ice-sheet elevation change, sea-ice freeboard, and vegetation canopy height begun by ICESat in 2003. Among the other potential applications, ICESat-2 could provide some information about atmospheric aerosol over Polar Regions thanks to the lidar instrument. In this context, it is essential to demonstrate the ICESat-2 capability of providing vertical profiles of the aerosol backscatter coefficient and to define its potentialities and limits. First results of this investigation are reported and will be presented at the conference.

  17. Atmospheric aerosol monitoring by an elastic Scheimpflug lidar system.

    PubMed

    Mei, Liang; Brydegaard, Mikkel

    2015-11-30

    This work demonstrates a new approach - Scheimpflug lidar - for atmospheric aerosol monitoring. The atmospheric backscattering echo of a high-power continuous-wave laser diode is received by a Newtonian telescope and recorded by a tilted imaging sensor satisfying the Scheimpflug condition. The principles as well as the lidar equation are discussed in details. A Scheimpflug lidar system operating at around 808 nm is developed and employed for continuous atmospheric aerosol monitoring at daytime. Localized emission, atmospheric variation, as well as the changes of cloud height are observed from the recorded lidar signals. The extinction coefficient is retrieved according to the slope method for a homogeneous atmosphere. This work opens up new possibilities of using a compact and robust Scheimpflug lidar system for atmospheric aerosol remote sensing.

  18. Atmospheric aerosol monitoring by an elastic Scheimpflug lidar system.

    PubMed

    Mei, Liang; Brydegaard, Mikkel

    2015-11-30

    This work demonstrates a new approach - Scheimpflug lidar - for atmospheric aerosol monitoring. The atmospheric backscattering echo of a high-power continuous-wave laser diode is received by a Newtonian telescope and recorded by a tilted imaging sensor satisfying the Scheimpflug condition. The principles as well as the lidar equation are discussed in details. A Scheimpflug lidar system operating at around 808 nm is developed and employed for continuous atmospheric aerosol monitoring at daytime. Localized emission, atmospheric variation, as well as the changes of cloud height are observed from the recorded lidar signals. The extinction coefficient is retrieved according to the slope method for a homogeneous atmosphere. This work opens up new possibilities of using a compact and robust Scheimpflug lidar system for atmospheric aerosol remote sensing. PMID:26698808

  19. Coupling Satellite and Ground-Based Instruments to Map Climate Forcing by Anthropogenic Aerosols

    NASA Technical Reports Server (NTRS)

    Charlson, Robert J.; Anderson, Theodore L.; Hostetler, Chris (Technical Monitor)

    2000-01-01

    Climate forcing by anthropogenic aerosols is a significant but highly uncertain factor in global climate change. Only satellites can offer the global coverage essential to reducing this uncertainty; however, satellite measurements must be coupled with correlative, in situ measurements both to constrain the aerosol optical properties required in satellite retrieval algorithms and to provide chemical identification of aerosol sources. This grant funded the first two years of a three-year project which seeks to develop methodologies for combining spaceborne lidar with in-situ aerosol data sets to improve estimates of direct aerosol climate forcing. Progress under this two-year grant consisted in the development and deployment of a new in-situ capability for measuring aerosol 180' backscatter and the extinction-to-backscatter ratio. This new measurement capacity allows definitive lidar/in-situ comparisons and improves our ability to interpret lidar data in terms of climatically relevant quantities such as the extinction coefficient and optical depth. Measurements were made along the coast of Washington State, in Central Illinois, over the Indian Ocean, and in the Central Pacific. Thus, this research, combined with previous measurements by others, is rapidly building toward a global data set of extinction-to-backscatter ratio for key aerosol types. Such information will be critical to interpreting lidar data from the upcoming PICASSO-CENA, or P-C, satellite mission. Another aspect of this project is to investigate innovative ways to couple the lidar-satellite signal with targeted in-situ measurements toward a direct determination of aerosol forcing. This aspect is progressing in collaboration with NASA Langley's P-C lidar simulator and radiative transfer modeling by the University of Lille, France.

  20. Coupling Satellite and Ground-Based Instruments to Map Climate Forcing by Anthropogenic Aerosol

    NASA Technical Reports Server (NTRS)

    Charlson, Robert J.; Anderson, Theodore L.; Hostetler, Chris (Technical Monitor)

    2000-01-01

    Climate forcing by anthropogenic aerosols is a significant but highly uncertain factor in global climate change. Only satellites can offer the global coverage essential to reducing this uncertainty; however, satellite measurements must be coupled with correlative, in situ measurements both to constrain the aerosol optical properties required in satellite retrieval algorithms and to provide chemical identification of aerosol sources. This grant funded the third year of a three-year project which seeks to develop methodologies for combining spaceborne lidar with in-situ aerosol data sets to improve estimates of direct aerosol climate forcing. Progress under this one-year grant consisted in analysis and publication of field studies using a new in-situ capability for measuring aerosol 180 deg backscatter and the extinction-to-backscatter ratio. This new measurement capacity allows definitive lidar/in-situ comparisons and improves our ability to interpret lidar data in terms of climatically relevant quantities such as the extinction coefficient and optical depth. Analyzed data consisted of measurements made along the coast of Washington State, in Central Illinois, over the Indian Ocean, and in the Central Pacific. Thus, this research, combined with previous measurements by others, is rapidly building toward a global data set of extinction-to-backscatter ratio for key aerosol types. Such information will be critical to interpreting lidar data from the upcoming PICASSO-CENA, or P-C, satellite mission. Another aspect of this project is to investigate innovative ways to couple the lidar-satellite signal with target in-situ measurements toward a direct determination of aerosol forcing. This aspect is progressing in collaboration with NASA Langley's P-C lidar simulator.

  1. Preliminary results of the Vega 1 and Vega 2 optical investigation of aerosol in the atmosphere of Venus at 30-60 KM

    NASA Technical Reports Server (NTRS)

    Moshkin, B. Y.; Moroz, V. I.; Gnedykh, V. I.; Grigoryev, A. V.

    1986-01-01

    Aerosol concentration profiles were measured by an aerosol spectrometer above the landing sites of the Vega 1 and Vega 2 landers. Approximately the same altitude zones were found as in previous experiments: a three-layered basic cloud cover, an intermediate zone and subcloud haze. There were significant quantitative differences in the concentrations of particles, however, and especially in the spectra of their dimensions. Nightglow was found in the troposphere of Venus at a wavelength of about 1 micron. The backscatter coefficient and the extinction coefficient change very little between 32 and 63 km. Large numbers of submicron particles apparently exist in the atmosphere above the landing sites.

  2. New algorithm to derive the microphysical properties of the aerosols from lidar measurements using OPAC aerosol classification schemes

    NASA Astrophysics Data System (ADS)

    Talianu, Camelia; Labzovskii, Lev; Toanca, Florica

    2014-05-01

    This paper presents a new method to retrieve the aerosol complex refractive index and effective radius from multiwavelength lidar data, using an integrated model-measurement approach. In the model, aerosols are assumed to be a non-spherical ensemble of internally mixed components, with variable proportions. OPAC classification schemes and basic components are used to calculate the microphysical properties, which are then fed into the T-matrix calculation code to generate the corresponding optical parameters. Aerosol intensive parameters (lidar ratios, extinction and backscatter Angstrom coefficients, and linear particle depolarization ratios) are computed at the altitude of the aerosol layers determined from lidar measurements, and iteratively compared to the values obtained by simulation for a certain aerosol type, for which the critical component's proportion in the overall mixture is varied. Microphysical inversion based on the Truncated Singular Value Decomposition (TSVD) algorithm is performed for selected cases of spherical aerosols, and comparative results of the two methods are shown. Keywords: Lidar, aerosols, Data inversion, Optical parameters, Complex Refractive Index Acknowledgments: This work has been supported by grants of the Romanian National Authority for Scientific Research, Programme for Research- Space Technology and Advanced Research - STAR, project numbers 38/2012 - CAPESA and 55/2013 - CARESSE, and by the European Community's FP7-INFRASTRUCTURES-2010-1 under grant no. 262254 - ACTRIS and by the European Community's FP7-PEOPLE-2011-ITN under grant no. 289923 - ITARS

  3. Lidar observations of high-altitude aerosol layers (cirrus clouds)

    NASA Astrophysics Data System (ADS)

    Deleva, Atanaska D.; Grigorov, Ivan V.

    2013-03-01

    Aerosols, clouds and aerosol-cloud interactions are recognized as the key factors influencing the climate. Clouds are the primary modulators of the Earth's radiative budget. This paper focuses on the detection of high-altitude aerosol layers in the troposphere over mid-latitude lidar station in Sofia, Bulgaria. They are situated in the height-region 6 km÷16 km, with thickness in the range 0.2 km÷5 km and have varying optical characteristics. On the basis of the general utilized classification of the Cirrus clouds, high values of the calculated atmospheric backscatter coefficient and Angströmexponent estimation results we conclude that the registered strongly scattered aerosol layers are Cirrus clouds. Lidar measurements are performed with an aerosol lidar, equipped with Nd:YAG laser at wavelengths 532 nm and 1064 nm. Mainly, lidar data are presented in terms of vertical atmospheric backscatter coefficient profiles. We also include 2Dcolormap in height-time coordinates build on the basis of so called range corrected signals. It shows in general changes of the aerosol stratification over the lidar station during the measurement period. We employed HYSPLIT backward trajectories and DREAM forecasts to analyze the lidar profile outlines and characterize the events during which Cirrus cloud samples were observed. So was remarked that most of the results were obtained during Saharan dust long-way transport over the city of Sofia. Reported experimental examples are extracted from regular lidar investigations of the atmosphere within the frame of European project EARLINET.

  4. Spectra of particulate backscattering in natural waters.

    PubMed

    Gordon, Howard R; Lewis, Marlon R; McLean, Scott D; Twardowski, Michael S; Freeman, Scott A; Voss, Kenneth J; Boynton, G Chris

    2009-08-31

    Hyperspectral profiles of downwelling irradiance and upwelling radiance in natural waters (oligotrophic and mesotrophic) are combined with inverse radiative transfer to obtain high resolution spectra of the absorption coefficient (a) and the backscattering coefficient (b(b)) of the water and its constituents. The absorption coefficient at the mesotrophic station clearly shows spectral absorption features attributable to several phytoplankton pigments (Chlorophyll a, b, c, and Carotenoids). The backscattering shows only weak spectral features and can be well represented by a power-law variation with wavelength (lambda): b(b) approximately lambda(-n), where n is a constant between 0.4 and 1.0. However, the weak spectral features in b(b)b suggest that it is depressed in spectral regions of strong particle absorption. The applicability of the present inverse radiative transfer algorithm, which omits the influence of Raman scattering, is limited to lambda < 490 nm in oligotrophic waters and lambda < 575 nm in mesotrophic waters. PMID:19724619

  5. Spectra of Particulate Backscattering in Natural Waters

    NASA Technical Reports Server (NTRS)

    Gordon, Howard, R.; Lewis, Marlon R.; McLean, Scott D.; Twardowski, Michael S.; Freeman, Scott A.; Voss, Kenneth J.; Boynton, Chris G.

    2009-01-01

    Hyperspectral profiles of downwelling irradiance and upwelling radiance in natural waters (oligotrophic and mesotrophic) are combined with inverse radiative transfer to obtain high resolution spectra of the absorption coefficient (a) and the backscattering coefficient (bb) of the water and its constituents. The absorption coefficient at the mesotrophic station clearly shows spectral absorption features attributable to several phytoplankton pigments (Chlorophyll a, b, c, and Carotenoids). The backscattering shows only weak spectral features and can be well represented by a power-law variation with wavelength (lambda): b(sub b) approx. Lambda(sup -n), where n is a constant between 0.4 and 1.0. However, the weak spectral features in b(sub b), suggest that it is depressed in spectral regions of strong particle absorption. The applicability of the present inverse radiative transfer algorithm, which omits the influence of Raman scattering, is limited to lambda < 490 nm in oligotrophic waters and lambda < 575 nm in mesotrophic waters.

  6. Vertical distribution of aerosol optical properties based on aircraft measurements over the Loess Plateau in China.

    PubMed

    Li, Junxia; Liu, Xingang; Yuan, Liang; Yin, Yan; Li, Zhanqing; Li, Peiren; Ren, Gang; Jin, Lijun; Li, Runjun; Dong, Zipeng; Li, Yiyu; Yang, Junmei

    2015-08-01

    Vertical distributions of aerosol optical properties based on aircraft measurements over the Loess Plateau were measured for the first time during a summertime aircraft campaign, 2013 in Shanxi, China. Data from four flights were analyzed. The vertical distributions of aerosol optical properties including aerosol scattering coefficients (σsc), absorption coefficients (σab), Angström exponent (α), single scattering albedo (ω), backscattering ratio (βsc), aerosol mass scattering proficiency (Qsc) and aerosol surface scattering proficiency (Qsc(')) were obtained. The mean statistical values of σsc were 77.45 Mm(-1) (at 450 nm), 50.72 Mm(-1) (at 550n m), and 32.02 Mm(-1) (at 700 nm). The mean value of σab was 7.62 Mm(-1) (at 550 nm). The mean values of α, βsc and ω were 1.93, 0.15, and 0.91, respectively. Aerosol concentration decreased with altitude. Most effective diameters (ED) of aerosols were less than 0.8 μm. The vertical profiles of σsc,, α, βsc, Qsc and Qsc(') showed that the aerosol scattering properties at lower levels contributed the most to the total aerosol radiative forcing. Both α and βsc had relatively large values, suggesting that most aerosols in the observational region were small particles. The mean values of σsc, α, βsc, Qsc, Qsc('), σab and ω at different height ranges showed that most of the parameters decreased with altitude. The forty-eight hour backward trajectories of air masses during the observation days indicated that the majority of aerosols in the lower level contributed the most to the total aerosol loading, and most of these particles originated from local or regional pollution emissions.

  7. Vertical distribution of agriculture crop residue burning aerosol observed by space-borne lidar CALIOP - A case study over the Indo-Gangetic Basin (IGB)

    NASA Astrophysics Data System (ADS)

    Mishra, A. K.; Shibata, T.

    2011-12-01

    Agriculture crop residue burning is one of the important sources of trace gas emissions and aerosol loading over the Indo-Gangetic Basin (IGB). It is also one of the main causes for dense atmospheric brown clouds (ABCs) formation over South Asian region. Present study deals with spatial and vertical variability of aerosol optical and microphysical properties during the crop residue burning season (October and November) over the IGB. MODIS (MODerate resolution Imaging Spectroradiometer) fire location data and MODIS AOD data confirms the crop residue burning activities over irrigated cropland of the IGB during October and November, 2009. Large values (> 0.7) of MODIS AOD (aerosol optical depth) and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) backscatter (>0.006 km-1 sr-1 below 1.0 km altitude) are suggesting enhanced atmospheric pollution associated with agriculture crop residue burning. The increase in tropospheric columnar NO2 and surface CO concentration during October and November also emphasized the significant contribution of crop residue burning activities in enhanced anthropogenic pollution over the IGB. Vertical distribution of backscatter coefficients showed trapping of biomass (crop residues) burning aerosol within boundary layer. Spatial variation of aerosol backscatter and AOD showed large value above north-west part of IGB, major area of crop residue burning activities. The results of this study will be very useful in quantification of optical properties of atmospheric brown clouds and its effect on climate.

  8. Backscattering by very small particles in coastal waters

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaodong; Gray, Deric J.

    2015-10-01

    The volume scattering and backscattering by very small particles (VSPs) of sizes <0.2 µm in four coastal waters in U.S. (Chesapeake Bay, Monterey Bay, Mobile Bay, and the LEO-15 site) were estimated by inverting the measured volume scattering functions (VSFs) at 532 nm. The measured VSFs are consistent with concurrent measurements of total scattering coefficients by the ac-meters and angular scattering at 100, 125, and 150° by the ECO-VSF sensor and at 140° by the HydroScat-6 sensor. The inferred backscattering coefficients by the VSPs correlate strongly with the absorption coefficients measured for the colored dissolved organic matter, indicating that the dissolved portion of particles do scatter light. In the coastal waters that we studied, the backscattering by VSPs dominate over larger particles (of sizes >0.2 µm), accounting for 40-80% of total backscattering at 532 nm, while only account for <5% of total scattering.

  9. Lidar measurements of backscatter amplification in a surface atmosphere

    NASA Astrophysics Data System (ADS)

    Banakh, Victor A.; Razenkov, Igor A.

    2015-11-01

    The results of long-term continuous measurements of the atmospheric backscattering amplification on an atmospheric surface path 2 km long with a two-channel micropulse lidar based on waveguide laser are presented. It is shown that the backscatter amplification coefficient has the pronounced diurnal behavior. In the day and night time, the atmospheric backscattering amplification is maximal and the amplification coefficient can exceed two. The amplification is low or absent in the morning and evening hours at the neutral temperature stratification in the atmospheric surface layer. The backscattering amplification coefficient increases with an increase of the structure constant of the refractive index of air, as well as with an increase of random wander of optical image of the probing laser beam spot at the distance 2 km from the lidar.

  10. Lidar measurements of stratospheric aerosols over Menlo Park, California, October 1972 - March 1974

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Viezee, W.; Hake, R. D.

    1974-01-01

    During an 18-month period, 30 nighttime observations of stratospheric aerosols were made using a ground based ruby lidar located near the Pacific coast of central California (37.5 deg. N, 122.2 deg. W). Vertical profiles of the lidar scattering ratio and the particulate backscattering coefficient were obtained by reference to a layer of assumed negligible particulate content. An aerosol layer centered near 21 km was clearly evident in all observations, but its magnitude and vertical distribution varied considerably throughout the observation period. A reduction of particulate backscattering in the 23- to 30-km layer during late January 1973 appears to have been associated with the sudden stratospheric warming which occurred at that time.

  11. Lidar observations of stratospheric aerosol over Mauna Loa Observatory, 1974 - 1981

    NASA Astrophysics Data System (ADS)

    Deluisi, J.; Defoor, T.; Coulson, K.; Fernald, F.; Thorne, K.

    1984-08-01

    One hundred seventy-three lidar profiles obtained during the year 1974 to 1981, inclusively are presented. Backscattering ratios are displayed in graphical form for 1-km intervals. Aerosol backscattering cross section, Rayleigh backscattering cross section, backscattering ratio and integrated optical depth are tabulated, also for 1-km intervals. The data reduction computer program is included.

  12. Development the EarthCARE aerosol classification scheme

    NASA Astrophysics Data System (ADS)

    Wandinger, Ulla; Baars, Holger; Hünerbein, Anja; Donovan, Dave; van Zadelhoff, Gerd-Jan; Fischer, Jürgen; von Bismarck, Jonas; Eisinger, Michael; Lajas, Dulce; Wehr, Tobias

    2015-04-01

    The Earth Clouds, Aerosols and Radiation Explorer (EarthCARE) mission is a joint ESA/JAXA mission planned to be launched in 2018. The multi-sensor platform carries a cloud-profiling radar (CPR), a high-spectral-resolution cloud/aerosol lidar (ATLID), a cloud/aerosol multi-spectral imager (MSI), and a three-view broad-band radiometer (BBR). Three out of the four instruments (ATLID, MSI, and BBR) will be able to sense the global aerosol distribution and contribute to the overarching EarthCARE goals of sensor synergy and radiation closure with respect to aerosols. The high-spectral-resolution lidar ATLID obtains profiles of particle extinction and backscatter coefficients, lidar ratio, and linear depolarization ratio as well as the aerosol optical thickness (AOT) at 355 nm. MSI provides AOT at 670 nm (over land and ocean) and 865 nm (over ocean). Next to these primary observables the aerosol type is one of the required products to be derived from both lidar stand-alone and ATLID-MSI synergistic retrievals. ATLID measurements of the aerosol intensive properties (lidar ratio, depolarization ratio) and ATLID-MSI observations of the spectral AOT will provide the basic input for aerosol-type determination. Aerosol typing is needed for the quantification of anthropogenic versus natural aerosol loadings of the atmosphere, the investigation of aerosol-cloud interaction, assimilation purposes, and the validation of atmospheric transport models which carry components like dust, sea salt, smoke and pollution. Furthermore, aerosol classification is a prerequisite for the estimation of direct aerosol radiative forcing and radiative closure studies. With an appropriate underlying microphysical particle description, the categorization of aerosol observations into predefined aerosol types allows us to infer information needed for the calculation of shortwave radiative effects, such as mean particle size, single-scattering albedo, and spectral conversion factors. In order to ensure

  13. Lidar data assimilation for improved analyses of volcanic aerosol events

    NASA Astrophysics Data System (ADS)

    Lange, Anne Caroline; Elbern, Hendrik

    2014-05-01

    Observations of hazardous events with release of aerosols are hardly analyzable by today's data assimilation algorithms, without producing an attenuating bias. Skillful forecasts of unexpected aerosol events are essential for human health and to prevent an exposure of infirm persons and aircraft with possibly catastrophic outcome. Typical cases include mineral dust outbreaks, mostly from large desert regions, wild fires, and sea salt uplifts, while the focus aims for volcanic eruptions. In general, numerical chemistry and aerosol transport models cannot simulate such events without manual adjustments. The concept of data assimilation is able to correct the analysis, as long it is operationally implemented in the model system. Though, the tangent-linear approximation, which describes a substantial precondition for today's cutting edge data assimilation algorithms, is not valid during unexpected aerosol events. As part of the European COPERNICUS (earth observation) project MACC II and the national ESKP (Earth System Knowledge Platform) initiative, we developed a module that enables the assimilation of aerosol lidar observations, even during unforeseeable incidences of extreme emissions of particulate matter. Thereby, the influence of the background information has to be reduced adequately. Advanced lidar instruments comprise on the one hand the aspect of radiative transfer within the atmosphere and on the other hand they can deliver a detailed quantification of the detected aerosols. For the assimilation of maximal exploited lidar data, an appropriate lidar observation operator is constructed, compatible with the EURAD-IM (European Air Pollution and Dispersion - Inverse Model) system. The observation operator is able to map the modeled chemical and physical state on lidar attenuated backscatter, transmission, aerosol optical depth, as well as on the extinction and backscatter coefficients. Further, it has the ability to process the observed discrepancies with lidar

  14. Measurements of Stratospheric Pinatubo Aerosol Extinction Profiles by a Raman Lidar

    NASA Technical Reports Server (NTRS)

    Abo, Makoto; Nagasawa, Chikao

    1992-01-01

    The Raman lidar has been used for remote measurements of water vapor, ozone and atmospheric temperature in the lower troposphere because the Raman cross section is three orders smaller than the Rayleigh cross section. We estimated the extinction coefficients of the Pinatubo volcanic aerosol in the stratosphere using a Raman lidar. If the precise aerosol extinction coefficients are derived, the backscatter coefficient of a Mie scattering lidar will be more accurately estimated. The Raman lidar has performed to measure density profiles of some species using Raman scattering. Here we used a frequency-doubled Nd:YAG laser for transmitter and received nitrogen vibrational Q-branch Raman scattering signal. Ansmann et al. (1990) derived tropospherical aerosol extinction profiles with a Raman lidar. We think that this method can apply to dense stratospheric aerosols such as Pinatubo volcanic aerosols. As dense aerosols are now accumulated in the stratosphere by Pinatubo volcanic eruption, the error of Ramen lidar signal regarding the fluctuation of air density can be ignored.

  15. Light scattering and absorption properties of aerosol particles in the urban environment of Granada, Spain

    NASA Astrophysics Data System (ADS)

    Lyamani, H.; Olmo, F. J.; Alados-Arboledas, L.

    Surface measurements of optical and physical aerosol properties were made at an urban site, Granada (Spain) (37.18°N, 3.58°W, 680 m a.s.l), during winter 2005-2006. Measurements included the aerosol scattering, σsca, and backscattering coefficients, σbsca, at three wavelengths (450, 550 and 700 nm) measured at low relative humidity (RH<50%) by an integrating nephelometer, the absorption coefficient at 670 nm, σabs, measured with a multi-angle absorption photometer, and aerosol size distribution in the 0.5-20 μm aerodynamic diameter range registered by an aerodynamic aerosol sizer (APS-3321, TSI). The hourly average of σsca (550 nm) ranged from 2 to 424 M m -1 with an average value of 84±62 M m -1 (±S.D.). The Angstrom exponent presented an average value of 1.8±0.3, suggesting a large fraction of fine particles at the site, an observation confirmed by aerosol size distribution measurements. The hourly average of σabs (670 nm) ranged from 1.7 to 120.5 M m -1 with an average value of 28±20 M m -1. The results indicate that the aerosol absorption coefficient in Granada was relatively large. The largest σsca value was associated with air masses that passed over heavily polluted European areas and local stagnation conditions. High absorbing aerosol level was obtained during dust transport from North Africa probably due to the presence of hematite. Based on the measured scattering and absorption coefficients, a very low average value of the single scattering albedo of 0.66±0.11 at 670 nm was calculated, suggesting that urban aerosols in this region contain a large fraction of absorbing material. A clear diurnal pattern was observed in scattering and absorption coefficients and particle concentrations with two local maxima occurring in early morning and late evening. This behavior can be explained in terms of local conditions that control the particle sources associated with traffic and upward mixing of the aerosol during the daytime development of a

  16. Atmospheric aerosol characterization combining multi-wavelength Raman lidar and MAX-DOAS measurements in Gwanjgu

    NASA Astrophysics Data System (ADS)

    Chong, Jihyo; Shin, Dong Ho; Kim, Kwang Chul; Lee, Kwon-Ho; Shin, Sungkyun; Noh, Young M.; Müller, Detlef; Kim, Young J.

    2011-11-01

    Integrated approach has been adopted at the ADvanced Environmental Research Center (ADEMRC), Gwangju Institute of Science and Technology (GIST), Korea for effective monitoring of atmospheric aerosol. Various active and passive optical remote sensing techniques such as multi-wavelength (3β+2α+1δ) Raman LIDAR, sun-photometry, MAX-DOAS, and satellite retrieval have been utilized. This integrated monitoring system approach combined with in-situ surface measurement is to allow better characterization of physical and optical properties of atmospheric aerosol. Information on the vertical distribution and microphysical properties of atmospheric aerosol is important for understanding its transport characteristics as well as radiative effect. The GIST multi-wavelength (3β + 2α+1δ) Raman lidar system can measure vertical profiles of optical properties of atmospheric aerosols such as extinction coefficients at 355 and 532nm, particle backscatter coefficients at 355, 532 and 1064 nm, and depolarization ratio at 532nm. The incomplete overlap between the telescope field-of-view and beam divergence of the transmitting laser significantly affects lidar measurement, resulting in higher uncertainty near the surface where atmospheric aerosols of interest are concentrated. Differential Optical Absorption Spectroscopy (DOAS) technique is applied as a complementary tool for the detection of atmospheric aerosols near the surface. The passive Multi-Axis DOAS (MAX-DOAS) technique uses scattered sunlight as a light source from several viewing directions. Recently developed aerosol retrieval algorithm based on O4 slant column densities (SCDs) measured at UV and visible wavelengths has been utilized to derive aerosol information (e.g., aerosol optical depth (AOD) and aerosol extinction coefficients (AECs)) in the lower troposphere. The aerosol extinction coefficient at 356 nm was retrieved for the 0-1 and 1-2 km layers based on the MAX-DOAS measurements using the retrieval algorithm

  17. Stratospheric aerosol acidity, density, and refractive index deduced from SAGE 2 and NMC temperature data

    NASA Technical Reports Server (NTRS)

    Yue, G. K.; Poole, L. R.; Wang, P.-H.; Chiou, E. W.

    1994-01-01

    Water vapor concentrations obtained by the Stratospheric Aerosol and Gas Experiment 2 (SAGE 2) and collocated temperatures provided by the National Meteorological Center (NMC) from 1986 to 1990 are used to deduce seasonally and zonally averaged acidity, density, and refractive index of stratospheric aerosols. It is found that the weight percentage of sulfuric acid in the aerosols increases from about 60 just above the tropopause to about 86 at 35 km. The density increases from about 1.55 to 1.85 g/cu cm between the same altitude limits. Some seasonal variations of composition and density are evident at high latitudes. The refractive indices at 1.02, 0.694, and 0.532 micrometers increase, respectively, from about 1.425, 1.430, and 1.435 just above the tropopause to about 1.445, 1.455, and 1.458 at altitudes above 27 km, depending on the season and latitude. The aerosol properties presented can be used in models to study the effectiveness of heterogeneous chemistry, the mass loading of stratospheric aerosols, and the extinction and backscatter of aerosols at different wavelengths. Computed aerosol surface areas, rate coefficients for the heterogeneous reaction ClONO2 + H2O yields HOCl + HNO3 and aerosol mass concentrations before and after the Pinatubo eruption in June 1991 are shown as sample applications.

  18. Comparison of radar backscatter from Antarctic and Arctic sea ice

    NASA Technical Reports Server (NTRS)

    Hosseinmostafa, R.; Lytle, V.

    1992-01-01

    Two ship-based step-frequency radars, one at C-band (5.3 GHz) and one at Ku-band (13.9 GHz), measured backscatter from ice in the Weddell Sea. Most of the backscatter data were from first-year (FY) and second-year (SY) ice at the ice stations where the ship was stationary and detailed snow and ice characterizations were performed. The presence of a slush layer at the snow-ice interface masks the distinction between FY and SY ice in the Weddell Sea, whereas in the Arctic the separation is quite distinct. The effect of snow-covered ice on backscattering coefficients (sigma0) from the Weddell Sea region indicates that surface scattering is the dominant factor. Measured sigma0 values were compared with Kirchhoff and regression-analysis models. The Weibull power-density function was used to fit the measured backscattering coefficients at 45 deg.

  19. Retrieving the height of smoke and dust aerosols by synergistic use of VIIRS, OMPS, and CALIOP observations

    NASA Astrophysics Data System (ADS)

    Lee, Jaehwa; Hsu, N. Christina; Bettenhausen, Corey; Sayer, Andrew M.; Seftor, Colin J.; Jeong, Myeong-Jae

    2015-08-01

    This study extends the application of the previously developed Aerosol Single-scattering albedo and layer Height Estimation (ASHE) algorithm, which was originally applied to smoke aerosols only, to both smoke and dust aerosols by including nonspherical dust properties in the retrieval process. The main purpose of the algorithm is to derive aerosol height information over wide areas using aerosol products from multiple satellite sensors simultaneously: aerosol optical depth (AOD) and Ångström exponent from the Visible Infrared Imaging Radiometer Suite (VIIRS), UV aerosol index from the Ozone Mapping and Profiler Suite (OMPS), and total backscatter coefficient profile from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). The case studies suggest that the ASHE algorithm performs well for both smoke and dust aerosols, showing root-mean-square error of the retrieved aerosol height as compared to CALIOP observations from 0.58 to 1.31 km and mean bias from -0.70 to 1.13 km. In addition, the algorithm shows the ability to retrieve single-scattering albedo to within 0.03 of Aerosol Robotic Network inversion data for moderate to thick aerosol loadings (AOD of ~1.0). For typical single-layered aerosol cases, the estimated uncertainty in the retrieved height ranges from 1.20 to 1.80 km over land and from 1.15 to 1.58 km over ocean when favorable conditions are met. Larger errors are observed for multilayered aerosol events, due to the limited sensitivities of the passive sensors to such cases.

  20. CNR-IMAA lidar systems for aerosol, clouds, and water vapour study

    NASA Astrophysics Data System (ADS)

    Pappalardo, G.; Amodeo, A.; Boselli, A.; Cornacchia, C.; D'Amico, G.; Madonna, F.; Mona, L.; Pandolfi, M.

    2005-10-01

    At CNR-IMAA located in Tito Scalo (40°36'N, 15°44'E, 760 m a.s.l.), two lidar systems are systematically operational: the first is devoted to tropospheric aerosol characterization, in the framework of EARLINET, and the second performs water vapour measurements. The aerosol lidar system provides independent measurements of aerosol extinction and backscatter coefficient at 355 nm and at 532 nm, aerosol backscatter profiles at 1064 nm and particles depolarization ratio at 532 nm. The Raman lidar for the water vapor allows the vertical profiling of the water vapour mixing ratio with high spatial and temporal resolution up to the tropopause. The system has been calibrated by means of intensive measurement campaign of simultaneous and co-located radiosonde launches. CNR-IMAA is also provided with a DIAL mobile system for pollutants 3-dimensional spatial distribution. Besides these lidar systems, the CNR-IMAA ground based facility for Earth Observation includes ancillary instruments: a radiosounding system for PTU, ozone and wind measurements; a Sun photometer operative since December 2004 in the framework of AERONET; a 12 channels microwave radiometer for continuous measurements of temperature, relative humidity and water vapor, operative since February 2004; a ceilometer for continuous cloud cover monitoring. Lidar systems together with these ancillary instruments make the CNR-IMAA a heavily instrumented experimental site for integrated observations of aerosols, clouds and water vapor to be used for climatological studies and for the validation of satellite data.

  1. Polarization lidar returns from aerosols and thin clouds: a framework for the analysis.

    PubMed

    Gobbi, G P

    1998-08-20

    Relationships for the interpretation of polarization lidar observations of aerosols and thin clouds are presented. They allow for the separation of contributions to backscatter from solid and liquid phases by the use of either the classical backscatter and depolarization ratio parameters or the particulate cross-polarized backscatter cross sections. It is shown that different aerosol phases can be better separated by use of the latter coordinates. Emphasis is placed on the study of composition and phase properties of polar stratospheric aerosols.

  2. Development of ATLID-MSI synergy for retrieving the vertical profiles of aerosol components

    NASA Astrophysics Data System (ADS)

    Kudo, R.; Nishizawa, T.; Higurashi, A.; Sugimoto, N.; Oikawa, E.

    2014-12-01

    EarthCARE is an earth observation satellite and will be launched in 2016. Using its two sensors, ATLID (High spectral resolution lidar) and MSI (Multi-spectral imager), we are developing the synergy algorithm to retrieve the vertical profiles of extinction coefficients at 355 nm of four aerosol components (Water-soluble, black carbon, dust, and sea-salt particles), and the column mean of mode radii of water-soluble and dust particles. The ATLID data are extinction coefficient, backscatter coefficient, and depolarization ratio for total aerosols at 355 nm. The MSI data are radiances at 670 and 865 nm. The dry volume concentrations of four aerosol components at each altitude and the mode radii of water-soluble and dust particles in the column are simultaneously optimized to ATLID and MSI data by the gauss newton method. After the optimization, the vertical profiles of the extinction coefficient at 355 nm of four aerosol components are obtained. The size distributions of four aerosol components are assumed to be a lognormal distribution. The refractive indices of four aerosol components are given from previously observational studies. The humidity growth is considered for water-soluble and sea-salt particles. The volume concentration and the mode radius of the sea-salt particle are parameterized using the surface wind speed on the ocean. We assumed that the shape of the water-soluble, black carbon, and sea-salt particles are spherical, and the shape of the dust particle is spheroidal. We tested the algorithm using the ATLID and MSI data simulated using clean, dust-transported, and smoke-transported aerosols. The extinction coefficients of each component at 355 nm are retrieved well. The mode radius of water-soluble and dust particles were somehow overestimated.

  3. Comparison of temperature and humidity profiles with elastic-backscatter lidar data

    SciTech Connect

    Soriano, C. |; Buttler, W.T.; Baldasano, J.M.

    1995-04-01

    This contribution analyzes elastic-backscatter lidar data and temperature and humidity profiles from radiosondes acquired in Barcelona in July 1992. Elastic-backscatter lidar data reveal the distribution of aerosols within the volume of atmosphere scanned. By comparing this information with temperature and humidity profiles of the atmosphere at a similar time, we are able to asses de relationship among aerosol distribution and atmospheric stability or water content, respectively. Comparisons have shown how lidar`s revealed layers of aerosols correspond to atmospheric layers with different stability condition and water content.

  4. 2014 iAREA campaign on aerosol in Spitsbergen - Part 2: Optical properties from Raman-lidar and in-situ observations at Ny-Ålesund

    NASA Astrophysics Data System (ADS)

    Ritter, C.; Neuber, R.; Schulz, Alexander; Markowicz, K. M.; Stachlewska, I. S.; Lisok, J.; Makuch, P.; Pakszys, P.; Markuszewski, P.; Rozwadowska, A.; Petelski, T.; Zielinski, T.; Becagli, S.; Traversi, R.; Udisti, R.; Gausa, M.

    2016-09-01

    In this work multi wavelength Raman lidar data from Ny-Ålesund, Spitsbergen have been analysed for the spring 2014 Arctic haze season, as part of the iAREA campaign. Typical values and probability distributions for aerosol backscatter, extinction and depolarisation, the lidar ratio and the color ratio for 4 different altitude intervals within the troposphere are given. These quantities and their dependencies are analysed and the frequency of altitude-dependent observed aerosol events are given. A comparison with ground-based size distribution and chemical composition is performed. Hence the aim of this paper is to provide typical and statistically meaningful properties of Arctic aerosol, which may be used in climate models or to constrain the radiative forcing. We have found that the 2014 season was only moderately polluted with Arctic haze and that sea salt and sulphate were the most dominant aerosol species. Moreover the drying of an aerosol layer after cloud disintegration has been observed. Hardly any clear temporal evolution over the 4 week data set on Arctic haze is obvious with the exception of the extinction coefficient and the lidar ratio, which significantly decreased below 2 km altitude by end April. In altitudes between 2 and 5 km the haze season lasted longer and the aerosol properties were generally more homogeneous than closer to the surface. Above 5 km only few particles were found. The variability of the lidar ratio is discussed. It was found that knowledge of the aerosol's size and shape does not determine the lidar ratio. Contrary to shape and lidar ratio, there is a clear correlation between size and backscatter: larger particles show a higher backscatter coefficient.

  5. 2014 iAREA campaign on aerosol in Spitsbergen - Part 2: Optical properties from Raman-lidar and in-situ observations at Ny-Ålesund

    NASA Astrophysics Data System (ADS)

    Ritter, C.; Neuber, R.; Schulz, Alexander; Markowicz, K. M.; Stachlewska, I. S.; Lisok, J.; Makuch, P.; Pakszys, P.; Markuszewski, P.; Rozwadowska, A.; Petelski, T.; Zielinski, T.; Becagli, S.; Traversi, R.; Udisti, R.; Gausa, M.

    2016-09-01

    In this work multi wavelength Raman lidar data from Ny-Ålesund, Spitsbergen have been analysed for the spring 2014 Arctic haze season, as part of the iAREA campaign. Typical values and probability distributions for aerosol backscatter, extinction and depolarisation, the lidar ratio and the color ratio for 4 different altitude intervals within the troposphere are given. These quantities and their dependencies are analysed and the frequency of altitude-dependent observed aerosol events are given. A comparison with ground-based size distribution and chemical composition is performed. Hence the aim of this paper is to provide typical and statistically meaningful properties of Arctic aerosol, which may be used in climate models or to constrain the radiative forcing. We have found that the 2014 season was only moderately polluted with Arctic haze and that sea salt and sulphate were the most dominant aerosol species. Moreover the drying of an aerosol layer after cloud disintegration has been observed. Hardly any clear temporal evolution over the 4 week data set on Arctic haze is obvious with the exception of the extinction coefficient and the lidar ratio, which significantly decreased below 2 km altitude by end April. In altitudes between 2 and 5 km the haze season lasted longer and the aerosol properties were generally more homogeneous than closer to the surface. Above 5 km only few particles were found. The variability of the lidar ratio is discussed. It was found that knowledge of the aerosol's size and shape does not determine the lidar ratio. Contrary to shape and lidar ratio, there is a clear correlation between size and backscatter: larger particles show a higher backscatter coefficient.

  6. THERMAL NEUTRON BACKSCATTER IMAGING.

    SciTech Connect

    VANIER,P.; FORMAN,L.; HUNTER,S.; HARRIS,E.; SMITH,G.

    2004-10-16

    Objects of various shapes, with some appreciable hydrogen content, were exposed to fast neutrons from a pulsed D-T generator, resulting in a partially-moderated spectrum of backscattered neutrons. The thermal component of the backscatter was used to form images of the objects by means of a coded aperture thermal neutron imaging system. Timing signals from the neutron generator were used to gate the detection system so as to record only events consistent with thermal neutrons traveling the distance between the target and the detector. It was shown that this time-of-flight method provided a significant improvement in image contrast compared to counting all events detected by the position-sensitive {sup 3}He proportional chamber used in the imager. The technique may have application in the detection and shape-determination of land mines, particularly non-metallic types.

  7. Radar backscatter modelling

    NASA Technical Reports Server (NTRS)

    Schaber, G. G.; Kozak, R. C.; Gurule, R. L.

    1984-01-01

    The terrain analysis software package was restructured and documentation was added. A program was written to test Johnson Space Center's four band scatterometer data for spurious signals data. A catalog of terrain roughness statistics and calibrated four frequency multipolarization scatterometer data is being published to support the maintenance of Death Valley as a radar backscatter calibration test site for all future airborne and spacecraft missions. Test pits were dug through sand covered terrains in the Eastern Sahara to define the depth and character of subsurface interfaces responsible for either backscatter or specular response in SIR-A imagery. Blocky sandstone bedrock surfaces at about 1 m depth were responsible for the brightest SIR-A returns. Irregular very dense CaCO3 cemented sand interfaces were responsible for intermediate grey tones. Ancient river valleys had the weakest response. Reexamination of SEASAT l-band imagery of U.S. deserts continues.

  8. Aerosol Layering Characterization Near the Gobi Desert by a Double Polarization Lidar System

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Boselli, A.; Sannino, A.; Song, C.; Spinelli, N.; Wang, X.

    2016-06-01

    In order to carry out 4-D (space and time) analysis of the atmospheric aerosol distribution and to make a characterization of their properties and time evolution, a transportable multi-wavelength, Elastic/Raman scanning lidar system with angular scanning capability has been realized. The system uses a diode pumped Nd:YAG laser source, specifically designed for this device, and a receiving systems able to detect elastic signals at 355, 532 and 1064 nm and Raman signals at 386, 407 and 607 nm. It also allows to perform aerosol depolarization measurements at both 355nm and 532nm. A first measurement campaign has been carried out in Dunhuang, North-West of China, in the region of the Gobi desert with the aims to study and characterize desert dust at source. Optical properties of aerosol layers developing in the atmosphere have been analyzed and lidar data are discussed in terms of profiles of aerosol backscatter coefficient at 355nm, 532nm, aerosol extinction coefficient at 355nm, aerosol depolarization ratio at 355nm and 532nm and water vapor mixing ratio. Depolarization ratio measured simultaneously at two wavelengths allowed also to study its dependence on the wavelength.

  9. Development of global model for atmospheric backscatter at CO2 wavelengths

    NASA Technical Reports Server (NTRS)

    Kent, G. S.; Wang, P. H.; Farrukh, U.; Deepak, A.; Patterson, E. M.

    1985-01-01

    The improvement of an understanding of the variation of the aerosol backscattering at 10.6 micron within the free troposphere and the development model to describe this was undertaken. The analysis combines theoretical modeling with the results contained within three independent data sets. The data sets are obtained by the SAGE I/SAM II satellite experiments, the GAMETAG flight series and by direct backscatter measurements. The theoretical work includes use of a bimodal, two component aerosol model, and the study of the microphysical and associated optical changes occurring within an aerosol plume. A consistent picture is obtained, which describes the variation of the aerosol backscattering function in the free troposphere with altitude, latitude, and season. Most data are available and greatest consistency is found inside the Northern Hemisphere.

  10. Development of a global model for atmospheric backscatter at CO2 wavelengths

    NASA Technical Reports Server (NTRS)

    Kent, G. S.; Wang, P. H.; Farrukh, U.; Deepak, A.; Patterson, E. M.

    1986-01-01

    The variation of the aerosol backscattering at 10.6 micrometers within the free troposphere was investigated and a model to describe this variation was developed. The analysis combines theoretical modeling with the results contained within three independent data sets. The data sets used were obtained by the SAGE I/SAM II satellite experiments, the GAMETAG flight series, and by direct backscatter measurements. The theoretical work includes use of a bimodal, two component aerosol model, and the study of the microphysical and associated optical changes occurring within an aerosol plume. A consistent picture is obtained that describes the variation of the aerosol backscattering function in the free troposphere with altitude, latitude, and season.

  11. Ultrasonic Backscattering from Suspended Erythrocytes: Dependence on Frequency and Size.

    NASA Astrophysics Data System (ADS)

    Kuo, Ihyuan

    The ultrasonic scattering properties of blood have been intensively investigated since the echo signal from red blood cells carries abundant diagnostic information for the study of blood flow and blood properties in the vessels. Recently, ultrasound of frequency higher than 20 MHz has been implemented in intravascular imaging to obtain better images of the vessel wall. In this research measurements were extended to 30 MHz to better understand the effect of blood on the operation of these intravascular devices. The experimentally measured backscatter of saline suspended porcine erythrocytes for frequency up to 30 MHz agrees very well with the theoretical analysis which indicate that Rayleigh scattering is still valid below this frequency. The analysis utilize the T-matrix method to calculate the backscattering cross section of an erythrocyte modeled as a fluid sphere, disk, and biconcave disk. Measurements on the backscattering coefficients of porcine, bovine, and lamb erythrocytes reveal that the backscatter has a square dependence on cell volume. The cell size dependent backscatter is also analyzed via a continuum approach. It is found that the echo intensity of high frequency ultrasound suffers greatly from the attenuation. The dilemma may be solved by using a spherically focused transducer. An analysis of the focused beam reflected from a perfect planar reflector leads to the modification of the standard substitution method for the backscatter measurement since the "image source" theory is found to be inappropriate for the focused beam. Reflection of the focused beam near the focal point is described based on Huygens' principle. Experimental and theoretical results indicate that the backscatter is dependent upon the position of the scatterer and the geometry of the transducer if a focused beam is used. Since ultrasound velocity information is needed for scattering measurements, an innovative method for measuring the acoustic speed and the attenuation coefficient

  12. Investigation of wintertime cold-air pools and aerosol layers in the Salt Lake Valley using a lidar ceilometer

    NASA Astrophysics Data System (ADS)

    Young, Joseph Swyler

    subjectively during periods with low clouds or precipitation, a time series of aerosol depths was obtained. The mean depth of the surface-based aerosol layer during PCAP events was 1861 m MSL with a standard deviation of 135 m. The aerosol layer depth, given the approximate 1300 m altitude of the valley floor, is thus about 550 m, about 46% of the basin depth. The aerosol layer is present during much of the winter and is removed only during strong or prolonged precipitation periods or when surface winds are strong. Nocturnal fogs that formed near the end of high-stability PCAP episodes had a limited effect on aerosol layer depth. Aerosol layer depth was relatively invariant during the winter and during the persistent cold-air pools, while PM10 concentrations at the valley floor varied with bulk atmospheric stability associated primarily with passage of large-scale high- and low-pressure weather systems. PM10 concentrations also increased with cold-air pool duration. Mean aerosol loading in the surface-based aerosol layer, as determined from ceilometer backscatter coefficients, showed weaker variations than those of surface PM10 concentrations, suggesting that ineffective vertical mixing and aerosol layering are present in the cold-air pools. This is supported by higher time-resolution backscatter data, and it distinguishes the persistent cold-air pools from well-mixed convective boundary layers where ground-based air pollution concentrations are closely related to time-dependent convective boundary layer/aerosol depths. These results are discussed along with recommendations for future explorations of the ceilometer and cold-air pool topics.

  13. [Seasonal variations in the vertical distribution of aerosols during dry haze periods in regions around Shanghai].

    PubMed

    Xu, Ting-Ting; Qing, Yan; Geng, Fu-Hai; Chen, Yong-Hang; Zhang, Hua; Liu, Qiong; Ma, Xiao-Jun

    2012-07-01

    Based on the onboard lidar data from CALIPSO satellite of National Aeronautics and Space Administration (NASA) from January 2007 to November 2010, the vertical distribution of optical and micro-physical properties of aerosols around Shanghai during the haze periods when relative humidity less than 80% were revealed by analyzing the parameters of 532 nm total attenuated backscatter coefficient, volume depolarization ratio and total attenuated color ratio. The results showed that during dry haze periods, the scattering ability of lower troposphere (0-2 km) was the highest and the main constituents were regular aerosols. The scattering ability of the upper troposphere (8-10 km) was the lowest and the proportion of irregular aerosols was the highest among the five altitude layers. In addition, the scattering ability of the altitude range (2-8 km) was lower than that of the lower troposphere, and the scattering ability and irregularity of aerosols at different altitude levels within the range were close to each other. Fine particle aerosols were the dominant aerosols in altitude range of 0-10 km. To be noted, the proportion of fine particles decreased with increasing altitude within the altitude range of 2-8 km. The proportion of large and irregular aerosols were higher in spring, whereas the proportion of fine and regular aerosols were higher in summer. According to the analysis of a dry haze episode on May 7th, 2007, it was found that a mass of aerosols mainly distributed within the altitude range of 0-1.5 km and partially within the altitude range of 4.0-5.5 km. The HYSPLIT model was applied to analyze the sources of aerosols in the episode, and the results indicated that the dry haze was mainly caused not only by local emissions but also by the dust aerosols transported from Mongolia, the northwest and north of China by the airflow.

  14. Summer-winter differences in the relationships among background southeastern U.S. aerosol optical, micro-physical, and chemical properties

    NASA Astrophysics Data System (ADS)

    Sherman, J. P.; Link, M.; Zhou, Y.

    2015-12-01

    Relationships among aerosol optical, micro-physical, and chemical properties are useful for evaluating regional climate models, developing satellite-based aerosol retrievals, and understanding aerosol sources and processes. Since aerosol loading and optical properties vary primarily on seasonal scales in the southeastern U.S., it is important that such studies be carried out over multiple seasons but few (if any) such multi-season studies have been conducted in the region. The high-elevation, semi-rural AppalAIR facility at Appalachian State University in Boone, NC (1080m ASL, 36.210N, 81.690W) is home to the only co-located NOAA-ESRL and AERONET monitoring sites in the eastern U.S. Measurements of size-resolved, non-refractory sub-1μm aerosol composition were also made by a co-located AMS during the 2012-2013 summers and 2013 winter. Systematic relationships among aerosol optical, microphysical, and chemical properties were developed to better understand aerosol sources and processes and for use in higher-dimension aerosol classification schemes. Some of the major findings will be presented. Higher values of lower tropospheric aerosol light scattering coefficient at 550nm (a proxy for aerosol loading) are associated with higher single-scattering albedo (SSA) and lower hemispheric backscatter fraction (b) during both summer and winter. Absorption Angstrom exponent (AAE) is typically well under 1 during summer and near 1.3-1.4 during winter. Lowest summer AAE values coincide with large, highly-reflective particles and higher aerosol light scattering coefficient but summer AAE is only weakly anti-correlated with organic and sulfate mass concentrations. Winter AAE is consistent with a mixture of elemental carbon and light-absorbing organic carbon, possibly influenced by regional residential wood-burning during winter. The hygroscopic dependence of visible light scattering is sensitive to sulfate and organic aerosol mass fractions during both summer and winter

  15. Modeling of aerosol properties related to direct climate forcing

    NASA Astrophysics Data System (ADS)

    Koloutsou-Vakakis, Sotiria; Rood, Mark J.; Nenes, Athanasios; Pilinis, Christodoulos

    1998-07-01

    A long-term local experiment was designed with the purpose to accurately quantify aerosol parameters needed in order to estimate aerosol climate forcing at an anthropogenically perturbed continental site. Total light-scattering σλ,sp and backscattering σλ,bsp coefficients at wavelength λ, the hygroscopic growth factors with respect to scattering, ƒ(RH)λ,s, and the backscatter ratio bλ are the parameters considered in the paper. Reference and controlled relative humidity nephelometry measurements were taken at a ground level field sampling station, located near Bondville Illinois (40°03'12″N, W 88°22'19″W). Aerosol particle chemical composition and mass particle size distributions were also measured. The target parameters were also estimated from models. The modeling approach involved a two-step process. In the first step, aerosol properties were parameterized with an approach that made use of a modified thermodynamic equilibrium model, published laboratory measurements of single hygroscopic particle properties, and empirical mixing rules. In the second step, the parameterized aerosol properties were used as inputs into a code that calculate σλ,sp and σλ,bsp as functions of λ, RH, particle size, and composition. Comparison between the measured and the modeled results showed that depending on the assumptions, the differences between the modeled and observed results were within 5 to 28% for ƒ(RH)λ,s and within 22-35% for bλ at low RH and 0-20% for bλ at high RH. The temporal variation of the particle size distribution, the equilibrium state of the particles, and the hygroscopicity of the material characterized as residual were the major factors limiting the predictive ability of the models.

  16. Effect of particle settling on lidar profiles of long-range transported Saharan aerosols

    NASA Astrophysics Data System (ADS)

    Gasteiger, Josef; Groß, Silke

    2016-04-01

    A large amount of desert aerosol is transported in the Saharan Air Layer (SAL) westwards from Africa over the Atlantic Ocean. Lidar profiles of transported Saharan aerosol may contain some information about the vertically-resolved aerosol microphysics that could be used to characterize processes that affected the measured aerosol during transport. We present modelled lidar profiles of long-range transported Saharan aerosol assuming that initially the SAL is well-mixed and that there is no vertical mixing of air within the SAL as soon as it reaches the Atlantic. We consider Stokes gravitational settling of aerosol particles over the ocean. The lidar profiles are calculated using optical models for irregularly-shaped mineral dust particles assuming settling-induced particle removal as function of distance from the SAL top. Within the SAL we find a decrease of both the backscatter coefficients and the linear depolarization ratios with decreasing distance from the SAL top. For example, the linear depolarization ratio at a wavelength of 532nm decreases from 0.289 at 1000m to 0.256 at 200m and 0.215 at 100m below SAL top. We compare the modelled backscatter coefficients and linear depolarization ratios to ground-based lidar measurements performed during the SALTRACE field campaign in Barbados (Caribbean) and find agreement within the estimated uncertainties. We discuss the uncertainties of our modeling approach in our presentation. Assumed mineral dust particle shapes, assumed particle mixture properties, and assumptions about processes in the SAL over the continent and the ocean are important aspects to be considered. Uncertainties are relevant for the potential of lidar measurements of transported Saharan dust to learn something about processes occuring in the SAL during long-range transport. We also compare our modeling results to modeling results previously published in the literature.

  17. Characterizing the Vertical Distribution of Aerosols Over the ARM SGP Site

    SciTech Connect

    Richard Ferrare, Connor Flynn, David Turner

    2009-05-05

    . Analysis of the aerosol and water vapor data collected by the Raman lidar during the 2003 Aerosol IOP indicated that the sensitivity of the lidar was significantly lower than when the lidar was initially deployed. A detailed analysis after the IOP of the long-term dataset demonstrated that the lidar began degrading in early 2002, and that it lost approximately a factor of 4 in sensitivity between 2002 and 2004. We participated in the development of the remediation plan for the system to restore its initial performance. We conducted this refurbishment and upgrade from May- September 2004. This remediation lead to an increase in the signal-to-noise ratio of 10 and 30 for the Raman lidar's water vapor mixing ratio and aerosol backscatter coefficient data, respectively as compared to the signal strengths when the system was first deployed. The DOE ARM Aerosol Lidar Validation Experiment (ALIVE), which was conducted during September 2005, evaluated the impact of these modifications and upgrades on the SGP Raman lidar measurements of aerosol extinction and optical thickness. The CARL modifications significantly improved the accuracy and temporal resolution of the aerosol measurements. Aerosol extinction profiles measured by the Raman lidar were also used to evaluate aerosol extinction profiles and aerosol optical thickness (AOT) simulated by aerosol models as part of the Aerosol module inter-Comparison in global models (AEROCOM) (http://nansen.ipsl.jussieu.fr/AEROCOM/aerocomhome.html) project. There was a wide range in how the models represent the aerosol extinction profiles over the ARM SGP site, even though the average annual AOT represented by the various models and measured by CARL and the Sun photometer were in general agreement, at least within the standard deviations of the averages. There were considerable differences in the average vertical distributions among the models, even among models that had similar average aerosol optical thickness. Deviations between mean

  18. Evolution of stratospheric sulfate aerosol from the 1991 Pinatubo eruption: Roles of aerosol microphysical processes

    NASA Astrophysics Data System (ADS)

    Sekiya, T.; Sudo, K.; Nagai, T.

    2016-03-01

    This study investigates the role of aerosol microphysics in stratospheric sulfate aerosol changes after the 1991 Mount Pinatubo eruption using an atmospheric general circulation model that is coupled interactively with a chemistry module and a modal aerosol microphysical module with three modes. Our model can reproduce the global mean stratospheric aerosol optical depth (SAOD) observed by the Stratospheric Aerosol and Gas Experiment (SAGE) II during June 1991 to January 1993. The model underestimates the observed SAOD before the eruption and after January 1993. The model also underestimates the integrated backscatter coefficient observed by ground-based lidar at Tsukuba, Naha, and Lauder. The modeled effective radius becomes larger (about 0.5 μm) and agrees with the balloon-borne measurements at Laramie, Wyoming (41°N, 105°W). We further investigate effects of the inclusion of evaporation along with the condensation processes and the inclusion of van der Waals and viscous forces in the coagulation processes. The inclusion of evaporation along with the condensation processes reduces the global mean effective radius by up to 0.04 μm and increases the global burden of stratospheric sulfate aerosols (about 15% in late 1993). The inclusion of van der Waals and viscous forces in the coagulation processes increases the global mean effective radius by up to 0.06-0.07 μm and decreases the global burden (15-30% in late 1993). The effects of van der Waals and viscous forces differ between two schemes. However, we do not conclude which simulation is superior because all simulations fall within error bars.

  19. Regional aerosol properties: Comparisons of boundary layer measurements from ACE 1, ACE 2, Aerosols99, INDOEX, ACE Asia, TARFOX, and NEAQS

    NASA Astrophysics Data System (ADS)

    Quinn, Patricia K.; Bates, Timothy S.

    2005-07-01

    Means and variability of aerosol chemical composition and optical properties are compared for the first and second Aerosol Characterization Experiments (ACE 1 and ACE 2), a cruise across the Atlantic (Aerosols99), the Indian Ocean Experiment (INDOEX), the Asian Aerosol Characterization Experiment (ACE Asia), the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX), and the New England Air Quality Study (NEAQS). These experiments were focused either on the remote marine atmosphere (ACE 1) or areas downwind of continental aerosol source regions including western Europe, North America, Africa, India, and Asia. Presented here are size-segregated concentrations of aerosol mass, sea salt, non-sea-salt (nss) SO4=, NH4+, NO3-, dust, organic carbon (OC), elemental carbon (EC), and nss K+, as well as mass ratios that are commonly used to identify aerosol sources and to assess aerosol processing (Cl- to Na+, OC to nss SO4=, EC to total carbon (TC), EC to nss SO4=, nss K+ to EC, Fe to Al, and Si to Al). Optical properties that are compared include size-segregated scattering, backscattering, and absorption coefficients, and single-scattering albedo at 550 nm. Size-segregated mass scattering and mass absorption efficiencies for the total aerosol and mass extinction efficiencies for the dominant chemical components also are compared. In addition, we present the contribution to light extinction by the dominant chemical components for each region. All data are based on shipboard measurements performed at a relative humidity of 55 ± 5%. Scattering coefficients and single-scattering albedos also are reported at ambient relative humidity (RH) using published values of f(RH). Finally, aerosol optical depths from each region are compared. Identical sampling protocols were used in all experiments in order to eliminate sampling biases and to make the data directly comparable. Major findings include (1) nss SO4= makes up only 16 to 46% of the submicron aerosol mass

  20. Preliminary Lidar Experiment to Study the Backscatter Amplification

    NASA Astrophysics Data System (ADS)

    Razenkov, Igor A.; Banakh, Victor A.

    2016-06-01

    Long-term continuous measurements for detection relative backscatter amplification on a horizontal path of 2 km long are performed by using a specific micro pulse lidar. The laser beam path is limited by a solid obstacle. The lidar is located next to an ultrasonic anemometer that measures 3D wind velocity and temperature; the laser spot on the obstacle is observed by using a telephoto lens. The results showed that the backscatter amplification has a clear diurnal variation. Moreover, the backscatter amplification was completely absent in the morning and evening under neutral stratification in the atmospheric surface layer. At night and in the daytime there was a significant increase of the backscatter amplification coefficient.

  1. Aerosol/Cloud Measurements Using Coherent Wind Doppler Lidars

    NASA Astrophysics Data System (ADS)

    Royer, Philippe; Boquet, Matthieu; Cariou, Jean-Pierre; Sauvage, Laurent; Parmentier, Rémy

    2016-06-01

    The accurate localization and characterization of aerosol and cloud layers is crucial for climate studies (aerosol indirect effect), meteorology (Planetary Boundary Layer PBL height), site monitoring (industrial emissions, mining,…) and natural hazards (thunderstorms, volcanic eruptions). LEOSPHERE has recently developed aerosol/cloud detection and characterization on WINDCUBE long range Coherent Wind Doppler Lidars (CWDL). These new features combine wind and backscatter intensity informations (Carrier-to-Noise Ratio CNR) in order to detect (aerosol/cloud base and top, PBL height) and to characterize atmospheric structures (attenuated backscatter, depolarization ratio). For each aerosol/cloud functionality the method is described, limitations are discussed and examples are given to illustrate the performances.

  2. Infrared lidar observations of stratospheric aerosols.

    PubMed

    Forrister, H N; Roberts, D W; Mercer, A J; Gimmestad, G G

    2014-06-01

    We observed the stratospheric aerosol layer at 34° north latitude with a photon-counting 1574 nm lidar on three occasions in 2011. During all of the observations, we also operated a nearby 523.5 nm micropulse lidar and acquired National Weather Service upper air data. We analyzed the lidar data to find scattering ratio profiles and the integrated aerosol backscatter at both wavelengths and then calculated the color ratio and wavelength exponent for lidar backscattering from the stratospheric aerosols. The visible-light integrated backscatter values of the layer were in the range 2.8-3.5×10⁻⁴ sr⁻¹ and the infrared integrated backscatter values ranged from 2.4 to 3.7×10⁻⁵  sr⁻¹. The wavelength exponent was determined to be 1.9±0.2.

  3. The depolarization - attenuated backscatter relation: CALIPSO lidar measurements vs. theory.

    PubMed

    Hu, Yongxiang; Vaughan, Mark; Liu, Zhaoyan; Lin, Bing; Yang, Ping; Flittner, David; Hunt, Bill; Kuehn, Ralph; Huang, Jiangping; Wu, Dong; Rodier, Sharon; Powell, Kathy; Trepte, Charles; Winker, David

    2007-04-30

    Using measurements obtained by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite, relationships between layer-integrated depolarization ratio (delta) and layer-integrated attenuated backscatter (gamma) are established for moderately thick clouds of both ice and water. A new and simple form of the delta-gamma relation for spherical particles, developed from Monte Carlo simulations and suitable for both water clouds and spherical aerosol particles, is found to agree well with the observations. A high-backscatter, low-depolarization delta-gamma relationship observed for some ice clouds is shown to result primarily from horizontally oriented plates and implies a preferential lidar ratio - depolarization ratio relation in nature for ice cloud particles containing plates.

  4. Assessing spaceborne lidar detection and characterization of aerosols near clouds using coincident airborne lidar and other measurements

    NASA Astrophysics Data System (ADS)

    Kacenelenbogen, M. S.; Redemann, J.; Russell, P. B.; Vaughan, M.; Omar, A. H.; Burton, S. P.; Rogers, R.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.

    2011-12-01

    The objectives are to 1) evaluate potential shortcomings in the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aerosol height detection concerning specific biomass burning smoke events informed by airborne High Spectral Resolution Lidar (HSRL) in different cloud environments and 2) study the lidar-derived atmospheric parameters in the vicinity of clouds for the cases where smoke is within or above clouds. In the case of light absorbing aerosols like biomass burning smoke, studies show that the greater the cloud cover below the aerosols, the more likely the aerosols are to heat the planet. An accurate aerosol height assumption is also crucial to a correct retrieval of aerosol chemical composition from passive space-based measurements (through the Single Scattering Albedo (SSA) and aerosol absorption coefficient, as exemplified by aerosol retrievals using the passive Ozone Monitoring Instrument (OMI)). Strong smoke events are recognized as very difficult to quantify from space using passive (MODIS, OMI etc...) or active (CALIOP) satellite sensors for different reasons. This study is performed through (i) the selection of smoke events with coincident CALIOP and airborne HSRL aerosol observations, with smoke presence determined according to the HSRL aerosol classification data, (ii) the order of such events by range of HSRL aerosol optical depth, total color ratio and depolarization ratio (the latter two informing on the size and shape of the particles) and the evaluation of CALIOP's detection, classification and retrieval performance for each event, (iii) the study of the HSRL (or CALIOP when available) atmospheric parameters (total color ratio, volume depolarization ratio, mean attenuated backscatter) in the vicinity of clouds for each smoke event.

  5. Demonstration of Aerosol Property Profiling by Multi-wavelength Lidar Under Varying Relative Humidity Conditions

    NASA Technical Reports Server (NTRS)

    Whiteman, D.N.; Veselovskii, I.; Kolgotin, A.; Korenskii, M.; Andrews, E.

    2008-01-01

    The feasibility of using a multi-wavelength Mie-Raman lidar based on a tripled Nd:YAG laser for profiling aerosol physical parameters in the planetary boundary layer (PBL) under varying conditions of relative humidity (RH) is studied. The lidar quantifies three aerosol backscattering and two extinction coefficients and from these optical data the particle parameters such as concentration, size and complex refractive index are retrieved through inversion with regularization. The column-integrated, lidar-derived parameters are compared with results from the AERONET sun photometer. The lidar and sun photometer agree well in the characterization of the fine mode parameters, however the lidar shows less sensitivity to coarse mode. The lidar results reveal a strong dependence of particle properties on RH. The height regions with enhanced RH are characterized by an increase of backscattering and extinction coefficient and a decrease in the Angstrom exponent coinciding with an increase in the particle size. We present data selection techniques useful for selecting cases that can support the calculation of hygroscopic growth parameters using lidar. Hygroscopic growth factors calculated using these techniques agree with expectations despite the lack of co-located radiosonde data. Despite this limitation, the results demonstrate the potential of multi-wavelength Raman lidar technique for study of aerosol humidification process.

  6. High Spectral Resolution Lidar and MPLNET Micro Pulse Lidar Aerosol Optical Property Retrieval Intercomparison During the 2012 7-SEAS Field Campaign at Singapore

    NASA Technical Reports Server (NTRS)

    Lolli, Simone; Welton, Ellsworth J.; Campbell, James R.; Eloranta, Edwin; Holben, Brent N.; Chew, Boon Ning; Salinas, Santo V.

    2014-01-01

    From August 2012 to February 2013 a High Resolution Spectral Lidar (HSRL; 532 nm) was deployed at that National University of Singapore near a NASA Micro Pulse Lidar NETwork (MPLNET; 527 nm) site. A primary objective of the MPLNET lidar project is the production and dissemination of reliable Level 1 measurements and Level 2 retrieval products. This paper characterizes and quantifies error in Level 2 aerosol optical property retrievals conducted through inversion techniques that derive backscattering and extinction coefficients from MPLNET elastic single-wavelength datasets. MPLNET Level 2 retrievals for aerosol optical depth and extinction/backscatter coefficient profiles are compared with corresponding HSRL datasets, for which the instrument collects direct measurements of each using a unique optical configuration that segregates aerosol and cloud backscattered signal from molecular signal. The intercomparison is performed, and error matrices reported, for lower (0-5km) and the upper (>5km) troposphere, respectively, to distinguish uncertainties observed within and above the MPLNET instrument optical overlap regime.

  7. Aerosol optical properties and mixing state of black carbon in the Pearl River Delta, China

    NASA Astrophysics Data System (ADS)

    Tan, Haobo; Liu, Li; Fan, Shaojia; Li, Fei; Yin, Yan; Cai, Mingfu; Chan, P. W.

    2016-04-01

    Aerosols contribute the largest uncertainty to the total radiative forcing estimate, and black carbon (BC) that absorbs solar radiation plays an important role in the Earth's energy budget. This study analysed the aerosol optical properties from 22 February to 18 March 2014 at the China Meteorological Administration Atmospheric Watch Network (CAWNET) station in the Pearl River Delta (PRD), China. The representative values of dry-state particle scattering coefficient (σsp), hemispheric backscattering coefficient (σhbsp), absorption coefficient (σabsp), extinction coefficient (σep), hemispheric backscattering fraction (HBF), single scattering albedo (SSA), as well as scattering Ångström exponent (α) were presented. A comparison between a polluted day and a clean day shows that the aerosol optical properties depend on particle number size distribution, weather conditions and evolution of the mixing layer. To investigate the mixing state of BC at the surface, an optical closure study of HBF between measurements and calculations based on a modified Mie model was employed for dry particles. The result shows that the mixing state of BC might be between the external mixture and the core-shell mixture. The average retrieved ratio of the externally mixed BC to the total BC mass concentration (rext-BC) was 0.58 ± 0.12, and the diurnal pattern of rext-BC can be found. Furthermore, considering that non-light-absorbing particles measured by a Volatility-Tandem Differential Mobility Analyser (V-TDMA) exist independently with core-shell and homogenously internally mixed BC particles, the calculated optical properties were just slightly different from those based on the assumption that BC exist in each particle. This would help understand the influence of the BC mixing state on aerosol optical properties and radiation budget in the PRD.

  8. 32 Years of Stratospheric Aerosol Measurements at Garmisch-Partenkirchen (1976-2008)

    NASA Astrophysics Data System (ADS)

    Trickl, T.; Giehl, H.; Jäger, H.; Scheel, H. E.

    2009-04-01

    In 1973, a powerful backscatter lidar was installed at Garmisch-Partenkirchen (Germany) and has almost continually delivered backscatter coefficients of the stratospheric aerosol since 1976. The lidar was first operated with a ruby laser (694 nm), since 1990 with a frequency-doubled Nd:YAG laser (532) nm. A 0.52-m-diameter Cassegrain telescope collects the backscattered light. The time series is dominated by signals from the particles injected into the stratosphere by major volcanic eruptions, in particular those of El Chichon (Mexico, 1982) and Mt. Pinatubo (Philippines, 1991). The volcanic aerosol disappears within about five years, the removal from the stratosphere being modulated by the phase of the quasi-biennial oscillation [Jäger, 2005]. During the long-lasting background period since the late 1990s the stratospheric backscatter coefficients have reached a level even below that observed in the late 1970s. This suggests that the predicted potential influence of the strongly growing air traffic on the stratospheric aerosol loading is very low. Some correlation may be found with strong forest fires [Fromm et al., 2008]. Therefore, we plan to intensify investigations on the impact of the increasing number of fires on the stratospheric background aerosol. An interesting temporary aerosol event was observed in December 2006. Up to 30 km the stratosphere was loaded with aerosols for a few days. No volcanic eruption or wild fires could be identified during the two months preceding these observations. Since very cold temperatures prevailed, we tentatively suggest the presence of a vertically highly extended polar stratospheric cloud as the most likely explanation. This interpretation is further supported by the rather short period during which this observation could be made, and its confinement to Central Europe where the lowest stratospheric temperatures were reported. More work is needed to harden this conclusion. References: H. Jäger, J. Geophys. Res. 110 (2005

  9. Retrievals of Profiles of Fine And Coarse Aerosols Using Lidar And Radiometric Space Measurements

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram; Tanre, Didier; Leon, Jean-Francois; Pelon, Jacques; Lau, William K. M. (Technical Monitor)

    2002-01-01

    In couple of years we expect the launch of the CALIPSO lidar spaceborne mission designed to observe aerosols and clouds. CALIPSO will collect profiles of the lidar attenuated backscattering coefficients in two spectral wavelengths (0.53 and 1.06 microns). Observations are provided along the track of the satellite around the globe from pole to pole. The attenuated backscattering coefficients are sensitive to the vertical distribution of aerosol particles, their shape and size. However the information is insufficient to be mapped into unique aerosol physical properties and vertical distribution. Infinite number of physical solutions can reconstruct the same two wavelength backscattered profile measured from space. CALIPSO will fly in formation with the Aqua satellite and the MODIS spectro-radiometer on board. Spectral radiances measured by MODIS in six channels between 0.55 and 2.13 microns simultaneously with the CALIPSO observations can constrain the solutions and resolve this ambiguity, albeit under some assumptions. In this paper we describe the inversion method and apply it to aircraft lidar and MODIS data collected over a dust storm off the coast of West Africa during the SHADE experiment. It is shown that the product of the single scattering albedo, omega, and the phase function, P, for backscattering can be retrieved from the synergism between measurements avoiding a priori hypotheses required for inverting lidar measurements alone. The resultant value of (omega)P(180 deg.) = 0.016/sr are significantly different from what is expected using Mie theory, but are in good agreement with recent results obtained from lidar observations of dust episodes. The inversion is robust in the presence of noise of 10% and 20% in the lidar signal in the 0.53 and 1.06 pm channels respectively. Calibration errors of the lidar of 5 to 10% can cause an error in optical thickness of 20 to 40% respectively in the tested cases. The lidar calibration errors cause degradation in the

  10. Analysis of lidar backscatter profiles in optically thin clouds.

    PubMed

    Young, S A

    1995-10-20

    The solution of the lidar equation for profiles of backscatter and extinction in optically thin clouds is constrained by values of the cloud transmittance determined from the elastically scattered lidar signals below and above the cloud. The method is extended to those cases in which an aerosol layer lies below or above the cloud layer. Examples are given in both cases. An analytical expression for the average lidar ratio in the cloud is derived for those cases in which molecular scattering is significant.

  11. Quantitative retrieval of aerosol optical properties by means of ceilometers

    NASA Astrophysics Data System (ADS)

    Wiegner, Matthias; Gasteiger, Josef; Geiß, Alexander

    2016-04-01

    In the last few years extended networks of ceilometers have been established by several national weather services. Based on improvements of the hardware performance of these single-wavelength backscatter lidars and their 24/7 availability they are increasingly used to monitor mixing layer heights and to derive profiles of the particle backscatter profile. As a consequence they are used for a wide range of applications including the dispersion of volcanic ash plumes, validation of chemistry transport models and air quality studies. In this context the development of automated schemes to detect aerosol layers and to identify the mixing layer are essential, in particular as the latter is often used as a proxy for air quality. Of equal importance is the calibration of ceilometer signals as a pre-requisite to derive quantitative optical properties. Recently, it has been emphasized that the majority of ceilometers are influenced by water vapor absorption as they operate in the spectral range of 905 - 910 nm. If this effect is ignored, errors of the aerosol backscatter coefficient can be as large as 50%, depending on the atmospheric water vapor content and the emitted wavelength spectrum. As a consequence, any other derived quantity, e.g. the extinction coefficient or mass concentration, would suffer from a significant uncertainty in addition to the inherent errors of the inversion of the lidar equation itself. This can be crucial when ceilometer derived profiles shall be used to validate transport models. In this presentation, the methodology proposed by Wiegner and Gasteiger (2015) to correct for water vapor absorption is introduced and discussed.

  12. The effects of changes in loblolly pine biomass and soil moisture on ERS-1 SAR backscatter

    SciTech Connect

    Wang, Y.; Melack, J.M.; Davis, F.W. . Center for Remote Sensing and Environmental Optics); Kasischke, E.S.; Christensen, N.L. Jr. . School of the Environment)

    1994-07-01

    For young loblolly pine stands at Duke Forest (North Carolina, USA), when the ground was wet, the observed ERS-1 SAR backscatter from short-grass fields of 0.05 kg/m[sup 2] biomass was [ge] the backscatter from the stands, and there was no significant correlation between the backscatter and biomass. Under dry soil conditions, the backscatter increased about 2--3 dB as the biomass increased from 0.05 kg/m[sup 2] to about 0.5--1.5 kg/m[sup 2], and the backscatter may be saturated near a 0.5--1.5 kg/m[sup 2] biomass level. The correlation coefficient between the backscatter and biomass was r[sup 2] = 0.46. When the Santa Barbara microwave canopy backscatter model was applied to simulate the ERS-1 SAR backscatter from the stands over dry ground, modeled and observed backscatter had similar trends with increasing biomass. For these stands, sensitivity analyses using the model showed that as the surface-soil moisture increased, the major contributor to the total backscatter was changed from canopy volume scattering to surface backscatter between 0.4 kg/m[sup 2] and about 1 kg/m[sup 2]. Signal saturating at low standing biomass and high sensitivity to soil moisture conditions limit the value of a short-wave (C-band) and steep local incidence angle (23[degree]) microwave sensor such as the ERS-1 SAR for forest monitoring.

  13. Aerosol pattern correlation techniques of wind measurement

    NASA Technical Reports Server (NTRS)

    Eloranta, Edwin W.

    1985-01-01

    This paper reviews the current status of lidar image correlation techniques of remote wind measurement. It also examines the potential use of satellite borne lidar global wind measurements using this approach. Lidar systems can easily detect spatial variations in the volume scattering cross section of naturally occurring aerosols. Lidar derived RHI, PPI and range-time displays of aerosol backscatter have been extensively employed in the study of atmospheric structure. Descriptions of this type of data can be obtained in many references including Kunkel et al. (1977), Kunkel et al. (1980), Boers et al. (1984), Uthe et al. (1980), Melfi et al. (1985) and Browell et al. (1983). It is likely that the first space-borne lidars for atmospheric studies will observe aerosol backscatter to measure parameters such as boundary layer depth and cloud height. This paper examines the potential application of these relatively simple aerosol backscatter lidars to global wind measurements.

  14. Coupling aerosol optics to the MATCH (v5.5.0) chemical transport model and the SALSA (v1) aerosol microphysics module

    NASA Astrophysics Data System (ADS)

    Andersson, Emma; Kahnert, Michael

    2016-05-01

    A new aerosol-optics model is implemented in which realistic morphologies and mixing states are assumed, especially for black carbon particles. The model includes both external and internal mixing of all chemical species, it treats externally mixed black carbon as fractal aggregates, and it accounts for inhomogeneous internal mixing of black carbon by use of a novel "core-grey-shell" model. Simulated results of aerosol optical properties, such as aerosol optical depth, backscattering coefficients and the Ångström exponent, as well as radiative fluxes are computed with the new optics model and compared with results from an older optics-model version that treats all particles as externally mixed homogeneous spheres. The results show that using a more detailed description of particle morphology and mixing state impacts the aerosol optical properties to a degree of the same order of magnitude as the effects of aerosol-microphysical processes. For instance, the aerosol optical depth computed for two cases in 2007 shows a relative difference between the two optics models that varies over the European region between -28 and 18 %, while the differences caused by the inclusion or omission of the aerosol-microphysical processes range from -50 to 37 %. This is an important finding, suggesting that a simple optics model coupled to a chemical transport model can introduce considerable errors affecting radiative fluxes in chemistry-climate models, compromising comparisons of model results with remote sensing observations of aerosols, and impeding the assimilation of satellite products for aerosols into chemical-transport models.

  15. SAGE II aerosol correlative observations - Profile measurements

    NASA Technical Reports Server (NTRS)

    Osborn, M. T.; Rosen, J. M.; Mccormick, M. P.; Wang, Pi-Huan; Livinfston, J. M.

    1989-01-01

    Profiles of the aerosol extinction measurements from the Stratospheric Aerosol and Gas Experiment (SAGE) II are compared with profiles from five correlative experiments between November 1984 and July 1986. The correlative profiles were derived from six-channel dustsonde measurements and two-wavelength lidar backscatter data. The correlation between the dustsonde- and lidar-derived measurements and the SAGE II data is good, validating the SAGE II lower stratospheric aerosol extinction measurements.

  16. 35 yr of stratospheric aerosol measurements at Garmisch-Partenkirchen: from Fuego to Eyjafjallajökull, and beyond

    NASA Astrophysics Data System (ADS)

    Trickl, T.; Giehl, H.; Jäger, H.; Vogelmann, H.

    2013-05-01

    Lidar measurements at Garmisch-Partenkirchen (Germany) have almost continually delivered backscatter coefficients of stratospheric aerosol since 1976. The time series is dominated by signals from the particles injected into or formed in the stratosphere due to major volcanic eruptions, in particular those of El Chichon (Mexico, 1982) and Mt Pinatubo (Philippines, 1991). Here, we focus more on the long-lasting background period since the late 1990s and 2006, in view of processes maintaining a residual lower-stratospheric aerosol layer in absence of major eruptions, as well as the period of moderate volcanic impact afterwards. During the long background period the stratospheric backscatter coefficients reached a level even below that observed in the late 1970s. This suggests that the predicted potential influence of the strongly growing air traffic on the stratospheric aerosol loading is very low. Some correlation may be found with single strong forest-fire events, but the average influence of biomass burning seems to be quite limited. No positive trend in background aerosol can be resolved over a period as long as that observed by lidar at Mauna Loa. We conclude that the increase of our integrated backscatter coefficients starting in 2008 is mostly due to volcanic eruptions with explosivity index 4, penetrating strongly into the stratosphere. Most of them occurred in the mid-latitudes. A key observation for judging the role of eruptions just reaching the tropopause region was that of the plume from the Icelandic volcano Eyjafjallajökull above Garmisch-Partenkirchen (April 2010) due to the proximity of that source. The top altitude of the ash above the volcano was reported just as 9.3 km, but the lidar measurements revealed enhanced stratospheric aerosol up to 14.3 km. Our analysis suggests for two or three of the four measurement days the presence of a stratospheric contribution from Iceland related to quasi-horizontal transport, differing from the strong descent

  17. Aerosol and Water Vapor Raman Lidar System at CEILAP, Buenos Aires, Argentina. Case Study: November 07, 2006.

    NASA Astrophysics Data System (ADS)

    Otero, Lidia Ana; Ristori, Pablo Roberto; Quel, Eduardo Jaime

    2008-04-01

    A multiwavelength backscatter LIDAR (Light Detection And Ranging) was developed and operates at Centro de Investigaciones en Láseres y Aplicaciones, CEILAP (CITEFA-CONICET), (34.5 S and 58.5 W) to study the atmospheric properties such as the aerosol optical parameters, the boundary layer evolution, and the water vapor vertical distribution. The emission system is based on a Nd:YAG laser emitting at the fundamental, second and third harmonic wavelengths. The reception unit was upgraded to collect the atmospheric elastic and nitrogen Raman backscatters from the second and third harmonic wavelength and the water vapor Raman backscatter from the third harmonic wavelength. The information from all these channels give us enough information to derive the vertical distribution of the total to molecular backscatter, the backscatter to extinction ratio (lidar ratio) and the Ångström coefficient. In addition, water vapor mixing ratio profile is also measured by using the Raman water vapor and nitrogen channels (408 and 387 nm).

  18. The Influence of Light Absorbing Aerosols on the Radiation Balance Over Central Greenland

    NASA Astrophysics Data System (ADS)

    Strellis, B.; Bergin, M. H.; Sokolik, I. N.; Dibb, J. E.; Sheridan, P. J.; Ogren, J. A.

    2011-12-01

    The Arctic region has proven to be more responsive to recent changes in climate than other parts of the Earth. A key component of the Arctic climate is the Greenland Ice Sheet, which has the potential to dramatically influence both sea level, depending on the amount of melting that occurs, and climate, through shifts in the regional radiation balance. Light absorbing aerosols from biomass burning, fossil fuel combustion, and dust sources can potentially have a significant impact on the radiation balance of the ice sheet, although at this time we lack the key measurements needed to accurately quantify aerosol forcing over the ice sheet. For this reason a field study was conducted at Summit, Greenland, from May-July of 2012. Our efforts included real-time measurements of aerosol physical and optical properties including size distribution, multi-wavelength scattering (σsp) and backscattering (σbsp) coefficients, and multi-wavelength absorption coefficient (σap), as well as measurements of wavelength dependent aerosol optical depth and spectral snow albedo. The measurements serve as inputs to a radiative transfer model to estimate the direct aerosol radiative forcing at both the surface and top of the atmosphere. Preliminary results indicate that the direct aerosol radiative forcing is often several Wm-2 and is at times greater than 10 Wm-2. The aerosol chemical composition (major ions, elements, and organic and elemental carbon compounds) was also determined through filter sampling and will be discussed in terms of the sources of light absorbing aerosols over central Greenland.

  19. Mediterranean aerosol typing by integrating three-wavelength lidar and sun photometer measurements.

    PubMed

    Perrone, M R; Burlizzi, P

    2016-07-01

    Backscatter lidar measurements at 355, 532, and 1064 nm combined with aerosol optical thicknesses (AOTs) from sun photometer measurements collocated in space and time were used to retrieve the vertical profiles of intensive and extensive aerosol parameters. Then, the vertical profiles of the Ångström coefficients for different wavelength pairs (Å(λ1, λ2, z)), the color ratio (CR(z)), the fine mode fraction (η(z)) at 532 nm, and the fine modal radius (R f (z)), which represent aerosol characteristic properties independent from the aerosol load, were used for typing the aerosol over the Central Mediterranean. The ability of the Ångström coefficients to identify the main aerosol types affecting the Central Mediterranean with the support of the backward trajectory analysis was first demonstrated. Three main aerosol types, which were designed as continental-polluted (CP), marine-polluted (MP), and desert-polluted (DP), were identified. We found that both the variability range and the vertical profile structure of the tested aerosol intensive parameters varied with the aerosol type. The variability range and the altitude dependence of the aerosol extinction coefficients at 355, 532, and 1064 nm, respectively, also varied with the identified aerosol types even if they are extensive aerosol parameters. DP, MP, and CP aerosols were characterized by the Å(532, 1064 nm) mean values ± 1 standard deviation equal to 0.5 ± 0.2, 1.1 ± 0.2, 1.6 ± 0.2, respectively. η(%) mean values ± 1SD were equal to 50 ± 10, 73 ± 7, and 86 ± 6 for DP, MP, and CP aerosols, respectively. The R f and CR mean values ± 1SD were equal to 0.16 ± 0.05 μm and 1.3 ± 0.3, respectively, for DP aerosols; to 0.12 ± 0.03 μm and 1.8 ± 0.4, respectively, for MP aerosols; and to 0.11 ± 0.02 μm and 1.7 ± 0.4, respectively, for CP aerosols. CP and DP aerosols were on average responsible for greater AOT and LR values, but

  20. Effects of soil and canopy characteristics on microwave backscattering of vegetation

    NASA Technical Reports Server (NTRS)

    Daughtry, C. S. T.; Ranson, K. J.

    1991-01-01

    A frequency modulated continuous wave C-band (4.8 GHz) scatterometer was mounted on an aerial lift truck and backscatter coefficients of corn were acquired as functions of polarizations, view angles, and row directions. As phytomass and green leaf area index increased, the backscatter also increased. Near anthesis when the canopies were fully developed, the major scattering elements were located in the upper 1 m of the 2.8 m tall canopy and little backscatter was measured below that level. C-band backscatter data could provide information to monitor vegetation at large view zenith angles.

  1. Effect of CALIPSO Cloud Aerosol Discrimination (CAD) Confidence Levels on Observations of Aerosol Properties near Clouds

    NASA Technical Reports Server (NTRS)

    Yang, Weidong; Marshak, Alexander; Varnai, Tamas; Liu, Zhaoyan

    2012-01-01

    CALIPSO aerosol backscatter enhancement in the transition zone between clouds and clear sky areas is revisited with particular attention to effects of data selection based on the confidence level of cloud-aerosol discrimination (CAD). The results show that backscatter behavior in the transition zone strongly depends on the CAD confidence level. Higher confidence level data has a flatter backscatter far away from clouds and a much sharper increase near clouds (within 4 km), thus a smaller transition zone. For high confidence level data it is shown that the overall backscatter enhancement is more pronounced for small clear-air segments and horizontally larger clouds. The results suggest that data selection based on CAD reduces the possible effects of cloud contamination when studying aerosol properties in the vicinity of clouds.

  2. Aerosol characterization with lidar methods

    NASA Astrophysics Data System (ADS)

    Sugimoto, Nobuo; Nishizawa, Tomoaki; Shimizu, Atsushi; Matsui, Ichiro

    2014-08-01

    Aerosol component analysis methods for characterizing aerosols were developed for various types of lidars including polarization-sensitive Mie scattering lidars, multi-wavelength Raman scattering lidars, and multi-wavelength highspectral- resolution lidars. From the multi-parameter lidar data, the extinction coefficients for four aerosol components can be derived. The microphysical parameters such as single scattering albedo and effective radius can be also estimated from the derived aerosol component distributions.

  3. Relating multifrequency radar backscattering to forest biomass: Modeling and AIRSAR measurement

    NASA Technical Reports Server (NTRS)

    Sun, Guo-Qing; Ranson, K. Jon

    1992-01-01

    During the last several years, significant efforts in microwave remote sensing were devoted to relating forest parameters to radar backscattering coefficients. These and other studies showed that in most cases, the longer wavelength (i.e. P band) and cross-polarization (HV) backscattering had higher sensitivity and better correlation to forest biomass. This research examines this relationship in a northern forest area through both backscatter modeling and synthetic aperture radar (SAR) data analysis. The field measurements were used to estimate stand biomass from forest weight tables. The backscatter model described by Sun et al. was modified to simulate the backscattering coefficients with respect to stand biomass. The average number of trees per square meter or radar resolution cell, and the average tree height or diameter breast height (dbh) in the forest stand are the driving parameters of the model. The rest of the soil surface, orientation, and size distributions of leaves and branches, remain unchanged in the simulations.

  4. Aerosol vertical distribution, optical properties and transport over Corsica (western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Léon, J.-F.; Augustin, P.; Mallet, M.; Bourrianne, T.; Pont, V.; Dulac, F.; Fourmentin, M.; Lambert, D.; Sauvage, B.

    2015-03-01

    This paper presents the aerosol vertical distribution observed in the western Mediterranean between February and April 2011 and between February 2012 and August 2013. An elastic backscattering lidar was continuously operated at a coastal site in the northern part of Corsica Island (Cap Corse) for a total of more than 14 000 h of observations. The aerosol extinction coefficient retrieved from cloud-free lidar profiles are analyzed along with the SEVIRI satellite aerosol optical depth (AOD). The SEVIRI AOD was used to constrain the retrieval of the aerosol extinction profiles from the lidar range-corrected signal and to detect the presence of dust or pollution aerosols. The daily average AOD at 550 nm is 0.16 (±0.09) and ranges between 0.05 and 0.80. A seasonal cycle is observed with minima in winter and maxima in spring-summer. High AOD days (above 0.3 at 550 nm) represent less than 10% of the totality of daily observations and correspond to the large scale advection of desert dust from Northern Africa or pollution aerosols from Europe. The respective origin of the air masses is confirmed using FLEXPART simulations in the backward mode. Dust events are characterized by a large turbid layer between 2 and 5 km height while pollution events show a lower vertical development with a thick layer below 3 km in altitude. However low level dust transport is also reported during spring while aerosol pollution layer between 2 and 4 km height has been also observed. We report an effective lidar ratio at 355 nm for pollution aerosols 68 (±13) Sr while it is 63 (±18) Sr for dust. The daily mean AOD at 355 nm for dust events is 0.61 (±0.14) and 0.71 (±0.16) for pollution aerosols events.

  5. Aerosol remote sensing in polar regions

    SciTech Connect

    Tomasi, Claudio; Kokhanovsky, Alexander A.; Lupi, Angelo; Ritter, Christoph; Smirnov, Alexander; O'Neill, Norman T.; Stone, Robert S.; Holben, Brent N.; Nyeki, Stephan; Mazzola, Mauro; Lanconelli, Christian; Vitale, Vito; Stebel, Kerstin; Aaltonen, Veijo; de Leeuw, Gerrit; Rodriguez, Edith; Herber, Andreas B.; Radionov, Vladimir F.; Zielinski, Tymon; Petelski, Tomasz; Sakerin, Sergey M.; Kabanov, Dmitry M.; Xue, Yong; Mei, Linlu; Istomina, Larysa; Wagener, Richard; McArthur, Bruce; Sobolewski, Piotr S.; Kivi, Rigel; Courcoux, Yann; Larouche, Pierre; Broccardo, Stephen; Piketh, Stuart J.

    2015-01-01

    Multi-year sets of ground-based sun-photometer measurements conducted at 12 Arctic sites and 9 Antarctic sites were examined to determine daily mean values of aerosol optical thickness τ(λ) at visible and near-infrared wavelengths, from which best-fit values of Ångström's exponent α were calculated. Analysing these data, the monthly mean values of τ(0.50 μm) and α and the relative frequency histograms of the daily mean values of both parameters were determined for winter–spring and summer–autumn in the Arctic and for austral summer in Antarctica. The Arctic and Antarctic covariance plots of the seasonal median values of α versus τ(0.50 μm) showed: (i) a considerable increase in τ(0.50 μm) for the Arctic aerosol from summer to winter–spring, without marked changes in α; and (ii) a marked increase in τ(0.50 μm) passing from the Antarctic Plateau to coastal sites, whereas α decreased considerably due to the larger fraction of sea-salt aerosol. Good agreement was found when comparing ground-based sun-photometer measurements of τ(λ) and α at Arctic and Antarctic coastal sites with Microtops measurements conducted during numerous AERONET/MAN cruises from 2006 to 2013 in three Arctic Ocean sectors and in coastal and off-shore regions of the Southern Atlantic, Pacific, and Indian Oceans, and the Antarctic Peninsula. Lidar measurements were also examined to characterise vertical profiles of the aerosol backscattering coefficient measured throughout the year at Ny-Ålesund. Satellite-based MODIS, MISR, and AATSR retrievals of τ(λ) over large parts of the oceanic polar regions during spring and summer were in close agreement with ship-borne and coastal ground-based sun-photometer measurements. An overview of the chemical composition of mode particles is also presented, based on in-situ measurements at Arctic and Antarctic sites. Fourteen log-normal aerosol number size-distributions were defined to represent the average features of nuclei

  6. Aerosol remote sensing in polar regions

    DOE PAGES

    Tomasi, Claudio; Kokhanovsky, Alexander A.; Lupi, Angelo; Ritter, Christoph; Smirnov, Alexander; O'Neill, Norman T.; Stone, Robert S.; Holben, Brent N.; Nyeki, Stephan; Wehrli, Christoph; et al

    2015-01-01

    Multi-year sets of ground-based sun-photometer measurements conducted at 12 Arctic sites and 9 Antarctic sites were examined to determine daily mean values of aerosol optical thickness τ(λ) at visible and near-infrared wavelengths, from which best-fit values of Ångström's exponent α were calculated. Analysing these data, the monthly mean values of τ(0.50 μm) and α and the relative frequency histograms of the daily mean values of both parameters were determined for winter–spring and summer–autumn in the Arctic and for austral summer in Antarctica. The Arctic and Antarctic covariance plots of the seasonal median values of α versus τ(0.50 μm) showed: (i)more » a considerable increase in τ(0.50 μm) for the Arctic aerosol from summer to winter–spring, without marked changes in α; and (ii) a marked increase in τ(0.50 μm) passing from the Antarctic Plateau to coastal sites, whereas α decreased considerably due to the larger fraction of sea-salt aerosol. Good agreement was found when comparing ground-based sun-photometer measurements of τ(λ) and α at Arctic and Antarctic coastal sites with Microtops measurements conducted during numerous AERONET/MAN cruises from 2006 to 2013 in three Arctic Ocean sectors and in coastal and off-shore regions of the Southern Atlantic, Pacific, and Indian Oceans, and the Antarctic Peninsula. Lidar measurements were also examined to characterise vertical profiles of the aerosol backscattering coefficient measured throughout the year at Ny-Ålesund. Satellite-based MODIS, MISR, and AATSR retrievals of τ(λ) over large parts of the oceanic polar regions during spring and summer were in close agreement with ship-borne and coastal ground-based sun-photometer measurements. An overview of the chemical composition of mode particles is also presented, based on in-situ measurements at Arctic and Antarctic sites. Fourteen log-normal aerosol number size-distributions were defined to represent the average features of nuclei

  7. Aerosol Remote Sensing in Polar Regions

    NASA Technical Reports Server (NTRS)

    Tomasi, Claudio; Kokhanovsky, Alexander A.; Lupi, Angelo; Ritter, Christoph; Smirnov, Alexander; O'Neill, Norman T.; Stone, Robert S.; Holben, Brent N.; Nyeki, Stephan; Wehrli, Christoph

    2014-01-01

    Multi-year sets of ground-based sun-photometer measurements conducted at 12 Arctic sites and 9 Antarctic sites were examined to determine daily mean values of aerosol optical thickness tau(lambda) at visible and near-infrared wavelengths, from which best-fit values of Ångström's exponent alpha were calculated. Analyzing these data, the monthly mean values of tau(0.50 micrometers) and alpha and the relative frequency histograms of the daily mean values of both parameters were determined for winter-spring and summer-autumn in the Arctic and for austral summer in Antarctica. The Arctic and Antarctic covariance plots of the seasonal median values of alpha versus tau(0.50 micrometers) showed: (i) a considerable increase in tau(0.50 micrometers) for the Arctic aerosol from summer to winter-spring, without marked changes in alpha; and (ii) a marked increase in tau(0.50 micrometer) passing from the Antarctic Plateau to coastal sites, whereas alpha decreased considerably due to the larger fraction of sea-salt aerosol. Good agreement was found when comparing ground-based sun-photometer measurements of tau(lambda) and alpha at Arctic and Antarctic coastal sites with Microtops measurements conducted during numerous AERONET/MAN cruises from 2006 to 2013 in three Arctic Ocean sectors and in coastal and off-shore regions of the Southern Atlantic, Pacific, and Indian Oceans, and the Antarctic Peninsula. Lidar measurements were also examined to characterize vertical profiles of the aerosol backscattering coefficient measured throughout the year at Ny-Ålesund. Satellite-based MODIS, MISR, and AATSR retrievals of tau(lambda) over large parts of the oceanic polar regions during spring and summer were in close agreement with ship-borne and coastal ground-based sun-photometer measurements. An overview of the chemical composition of mode particles is also presented, based on in-situ measurements at Arctic and Antarctic sites. Fourteen log-normal aerosol number size-distributions were

  8. The backscattering and extinction of visible and infrared radiation by selected major cloud models.

    PubMed

    Carrier, L W; Cato, G A; von Essen, K J

    1967-07-01

    Volume backscattering functions and optical extinction coefficients are computed for eight suggested major cloud models using the Mie theory for optical wavelengths of 0.488 micro, 0.694 micro, 1.06 micro, 4.0 micro, and 10.6 micro. Results show that there is no clear advantage of one wavelength over another for improving cloud transmission; however, backscattering is significantly reduced at the longer wavelengths. Variations in the optical properties of clouds are also discussed and calculations summarized to indicate the effects of cloud thickness, inhomogeneity, and geographical location on the backscatter function and extinction coefficient.

  9. Multiwavelength In-Situ Aerosol Scattering and Absorption During the NEAQS-ITCT 2004 Field Campaign: Aerosol Classification, Case Studies, and Data Interpretation

    NASA Astrophysics Data System (ADS)

    Sierau, B.; Covert, D.; Coffman, D.; Quinn, P.; Bates, T.

    2005-12-01

    In-situ, three wavelength measurements of aerosol scattering and absorption of the New York and Boston urban pollution outflow were carried out aboard the NOAA research vessel Ronald H. Brown during the NEAQS-ITCT 2004 (New England Air Quality Study-Intercontinental Transport and Chemical Transformation Study) field campaign during July 2004 in the Gulf of Maine. Aerosol scattering, backscattering and absorption-coefficients were measured using integrating nephelometers and multiwavelength, filter-based absorption photometers (PSAPs) at ~55-60% RH (nephelometers). Two data sets were collected, one for particles with diameters dp<10μm and one for particles <1μm. The purpose of the latter was to focus on the largely pollution related accumulation mode and to minimize the uncertainty due to highly variable near-surface sea salt aerosol. Combining the aerosol scattering and absorption coefficients σsp and σap yields the derived, intensive parameters, single-scattering albedo, ω=σsp/(σsp+σap), Ångström exponents, å, for σsp, and σap, the hemispheric backscattering ratio, and the fine mode fraction of the aerosol, FMF =σsp(dp<1μm)/σsp(dp<10μm). These are key parameters in estimating aerosol direct radiative forcing and they provide constraints on model building and closure studies with physical and chemical aerosol properties. They are important for relating in-situ optical properties to those sensed remotely, e.g., optical depth from ground- or aircraft-based sun photometry or optical depth from satellite, and to the FMF retrieved from satellite data. The measured and derived data will be classified based on a trajectory analysis of the sampled air masses to identify distinct aerosol populations and sources. Case studies describing the aging of pollution plumes are calculated and analyzed in context of other measurements and the prevailing meteorology and the upwind sources. The obtained relationship between in-situ Ångström and FMF will be compared

  10. Experimental Determination of Dual-Wavelength Mie Lidar Geometric form Factor Combining Side-Scatter and Back-Scatter Signals

    NASA Astrophysics Data System (ADS)

    Wang, Zhenzhu; Tao, Zongming; Liu, Dong; Xie, Chenbo; Wang, Yingjian

    2016-06-01

    In theory, lidar overlap factor can be derived from the difference between the particle backscatter coefficient retrieved from lidar elastic signal without overlap correction and the actual particle backscatter coefficient, which can be obtained by other measured techniques. The side-scatter signal using a CCD camera is testified to be a powerful tool to detect the particle backscatter coefficient in near ground layer during night time. In experiment, by combining side-scatter and backscatter signals the geometric form factor for vertically-pointing Mie lidar in 532 nm channel is determined successfully, which is corrected by an iteration algorithm combining the retrieved particle backscatter coefficient using CCD sidescatter method and Fernald method. In this study, the method will be expanded to 1064 nm channel in dual-wavelength Mie lidar during routine campaigns. The experimental results in different atmosphere conditions demonstrated that the method present in this study is available in practice.

  11. Tropospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Buseck, P. R.; Schwartz, S. E.

    2003-12-01

    m, PM10=1.1 μg m-3; estimated coefficient of light scattering by particulate matter, σep, at 570 nm=12 Mm-1). (b) High aerosol concentration (PM2.5=43.9 μg m-3; PM10=83.4 μg m-3; estimated σep at 570 nm=245 Mm-1) (reproduced by permission of National Park Service, 2002). Although comprising only a small fraction of the mass of Earth's atmosphere, aerosol particles are highly important constituents of the atmosphere. Special interest has focused on aerosols in the troposphere, the lowest part of the atmosphere, extending from the land or ocean surface typically to ˜8 km at high latitudes, ˜12 km in mid-latitudes, and ˜16 km at low latitudes. That interest arises in large part because of the importance of aerosol particles in geophysical processes, human health impairment through inhalation, environmental effects through deposition, visibility degradation, and influences on atmospheric radiation and climate.Anthropogenic aerosols are thought to exert a substantial influence on Earth's climate, and the need to quantify this influence has sparked much of the current interest in and research on tropospheric aerosols. The principal mechanisms by which aerosols influence the Earth radiation budget are scattering and absorbing solar radiation (the so-called "direct effects") and modifying clouds and precipitation, thereby affecting both radiation and hydrology (the so-called "indirect effects"). Light scattering by aerosols increases the brightness of the planet, producing a cooling influence. Light-absorbing aerosols such as black carbon exert a warming influence. Aerosols increase the reflectivity of clouds, another cooling influence. These radiative influences are quantified as forcings, where a forcing is a perturbation to the energy balance of the atmosphere-Earth system, expressed in units of watts per square meter, W m-2. A warming influence is denoted a positive forcing, and a cooling influence, negative. The radiative direct and indirect forcings by

  12. Relationship between the fraction of backscattered light and the asymmetry parameter

    NASA Astrophysics Data System (ADS)

    Horvath, Helmuth

    2015-04-01

    The fraction of backscattered light is defined as the ratio of the integral of the volume scattering function over the backward half solid angle divided by the integral of the volume scattering function over the full solid angle. It can be measured with an integrating nephelometer. On the other hand the asymmetry parameter is the integral over the full solid angle of the volume scattering function weighted with the cosine of the scattering angle divided by the integral of the volume scattering function. To determine the asymmetry parameter the measurement of the angular dependence of the volume scattering function is needed, which can be obtained e.g. with a polar nephelometer. The asymmetry parameter is an important input parameter for radiative transfer calculations in order to obtain information of effects of the atmospheric aerosol effects (climate, screening, visibility, and others). Unfortunately measurements of the asymmetry parameter of the atmospheric aerosol are scarce. It is obvious, that a relation between the asymmetry parameter and the backscattered fraction should exist: the smaller the backscattered fraction, the more asymmetric the scattering, thus the larger the asymmetry parameter. A large set of 6500 angular scattering data have been obtained at various locations of the world: Vienna (Austria), Kyoto (Japan), Granada (Spain) and Palencia (Spain). The aerosols in these locations were considerably different, ranging from continental, urban, maritime, to desert dust. The volume scattering function has been measured between 5° and 175° , the values for 0° to 5° and 175° to 180° have been obtained by extrapolation of the shape of the curve, thus the whole range of scattering angles was available for calculating the backscattered fraction and the asymmetry parameter of the aerosol. PIC A summary of all data is shown in figure 1. The majority of the data points suggest an unanimous relation between backscattering and asymmetry parameter. The

  13. Aerosol and cloud typing with an automated 24/7 aerosol lidar

    NASA Astrophysics Data System (ADS)

    Baars, Holger; Seifert, Patric; Wandinger, Ulla

    2015-04-01

    Modern sophisticated multi-wavelength Raman polarization lidars have the ability to measure autonomous and unattended in 24/7 mode. These aerosol lidars can deliver backscatter, extinction, and depolarization profiles of the atmosphere which can be used for a target categorization, i.e. the determination of different aerosol and cloud types. However, to derive the optical particle properties a calibration of the lidar signals in the free atmosphere, where only Rayleigh scattering occurs, is needed. This calibration is usually done manually case by case and thus prohibits automatic data analysis and particle typing. To overcome this limitation, the mobile EARLINET lidar PollyXT of TROPOS was deployed continuously without changes in the instrumental setup during two field campaigns in the framework of the German HD(CP)2 project to obtain temporally stable lidar signals. The temporal stability together with the high performance and good characterization of the lidar lead to the possibility of an absolute lidar calibration. The corresponding calibration constant was derived in two ways: first by using manually Raman and Klett retrievals for selected periods and second by using the aerosol optical depth (AOD) from co-located AERONET sun photometer measurements. The derived calibration constants show a high temporal stability and a good agreement between both methods and thus allowed the continuous calibration of the lidar and the retrieval of the attenuated backscatter coefficient at three wavelengths. In addition, the calibrated volume depolarization ratio, obtained following EARLINET recommendations, is continuously available. After correction for the molecular contribution, these four quantities were used for an aerosol and cloud typing in terms of particle size and shape. The final categorization leads to 11 categories, e.g. clean atmosphere, small spherical particles, large non-spherical particles, water droplets, ice crystals and corresponding mixtures. In this

  14. Extinction-to-Backscatter Ratios of Saharan Dust Layers Derived from In-Situ Measurements and CALIPSO Overflights During NAMMA

    NASA Technical Reports Server (NTRS)

    Omar, Ali H.; Liu, Zhaoyan; Vaughan, Mark A.; Hu, Yongxiang; Ismail, Syed; Powell, Kathleen A.; Winker, David M.; Trepte, Charles R.; Anderson, Bruce E.

    2010-01-01

    We determine the aerosol extinction-to-backscatter (Sa) ratios of dust using airborne in-situ measurements of microphysical properties, and CALIPSO observations during the NASA African Monsoon Multidisciplinary Analyses (NAMMA). The NAMMA field experiment was conducted from Sal, Cape Verde during Aug-Sept 2006. Using CALIPSO measurements of the attenuated backscatter of lofted Saharan dust layers, we apply the transmittance technique to estimate dust Sa ratios at 532 nm and a 2-color method to determine the corresponding 1064 nm Sa. Using this method, we found dust Sa ratios of 39.8 plus or minus 1.4 sr and 51.8 plus or minus 3.6 sr at 532 nm and 1064 nm, respectively. Secondly, Sa ratios at both wavelengths is independently calculated using size distributions measured aboard the NASA DC-8 and estimates of Saharan dust complex refractive indices applied in a T-Matrix scheme. We found Sa ratios of 39.1 plus or minus 3.5 sr and 50.0 plus or minus 4 sr at 532 nm and 1064 nm, respectively, using the T-Matrix calculations applied to measured size spectra. Finally, in situ measurements of the total scattering (550 nm) and absorption coefficients (532 nm) are used to generate an extinction profile that is used to constrain the CALIPSO 532 nm extinction profile.

  15. Quantitative broadband ultrasonic backscatter - An approach to nondestructive evaluation in acoustically inhomogeneous materials

    NASA Technical Reports Server (NTRS)

    Odonnell, M.; Miller, J. G.

    1981-01-01

    The use of a broadband backscatter technique to obtain the frequency dependence of the longitudinal-wave ultrasonic backscatter coefficient from a collection of scatterers in a solid is investigated. Measurements of the backscatter coefficient were obtained over the range of ultrasonic wave vector magnitude-glass sphere radius product between 0.1 and 3.0 from model systems consisting of dilute suspensions of randomly distributed crown glass spheres in hardened polyester resin. The results of these measurements were in good agreement with theoretical prediction. Consequently, broadband measurements of the ultrasonic backscatter coefficient may represent a useful approach toward characterizing the physical properties of scatterers in intrinsically inhomogeneous materials such as composites, metals, and ceramics, and may represent an approach toward nondestructive evaluation of these materials.

  16. Lidar Measurements of the Vertical Distribution of Aerosol Optical and Physical Properties over Central Asia

    DOE PAGES

    Chen, Boris B.; Sverdlik, Leonid G.; Imashev, Sanjar A.; Solomon, Paul A.; Lantz, Jeffrey; Schauer, James J.; Shafer, Martin M.; Artamonova, Maria S.; Carmichael, Gregory R.

    2013-01-01

    The vertical structure of aerosol optical and physical properties was measured by Lidar in Eastern Kyrgyzstan, Central Asia, from June 2008 to May 2009. Lidar measurements were supplemented with surface-based measurements of PM 2.5 and PM 10 mass and chemical composition in both size fractions. Dust transported into the region is common, being detected 33% of the time. The maximum frequency occurred in the spring of 2009. Dust transported to Central Asia comes from regional sources, for example, Taklimakan desert and Aral Sea basin, and from long-range transport, for example, deserts of Arabia, Northeast Africa, Iran, and Pakistan. Regionalmore » sources are characterized by pollution transport with maximum values of coarse particles within the planetary boundary layer, aerosol optical thickness, extinction coefficient, integral coefficient of aerosol backscatter, and minimum values of the Ångström exponent. Pollution associated with air masses transported over long distances has different characteristics during autumn, winter, and spring. During winter, dust emissions were low resulting in high values of the Ångström exponent (about 0.51) and the fine particle mass fraction (64%). Dust storms were more frequent during spring with an increase in coarse dust particles in comparison to winter. The aerosol vertical profiles can be used to lower uncertainty in estimating radiative forcing.« less

  17. Criteria of backscattering in chiral one-way photonic crystals

    NASA Astrophysics Data System (ADS)

    Cheng, Pi-Ju; Chang, Shu-Wei

    2016-03-01

    Optical isolators are important devices in photonic circuits. To reduce the unwanted reflection in a robust manner, several setups have been realized using nonreciprocal schemes. In this study, we show that the propagating modes in a strongly-guided chiral photonic crystal (no breaking of the reciprocity) are not backscattering-immune even though they are indeed insensitive to many types of scatters. Without the protection from the nonreciprocity, the backscattering occurs under certain circumstances. We present a perturbative method to calculate the backscattering of chiral photonic crystals in the presence of chiral/achiral scatters. The model is, essentially, a simplified analogy to the first-order Born approximation. Under reasonable assumptions based on the behaviors of chiral photonic modes, we obtained the expression of reflection coefficients which provides criteria for the prominent backscattering in such chiral structures. Numerical examinations using the finite-element method were also performed and the results agree well with the theoretical prediction. From both our theory and numerical calculations, we find that the amount of backscattering critically depends on the symmetry of scatter cross sections. Strong reflection takes place when the azimuthal Fourier components of scatter cross sections have an order l of 2. Chiral scatters without these Fourier components would not efficiently reflect the chiral photonic modes. In addition, for these chiral propagating modes, disturbances at the most significant parts of field profiles do not necessarily result in the most effective backscattering. The observation also reveals what types of scatters or defects should be avoided in one-way applications of chiral structures in order to minimize the backscattering.

  18. Laboratory Experiments and Instrument Intercomparison Studies of Carbonaceous Aerosol Particles

    SciTech Connect

    Davidovits, Paul

    2015-10-20

    Aerosols containing black carbon (and some specific types of organic particulate matter) directly absorb incoming light, heating the atmosphere. In addition, all aerosol particles backscatter solar light, leading to a net-cooling effect. Indirect effects involve hydrophilic aerosols, which serve as cloud condensation nuclei (CCN) that affect cloud cover and cloud stability, impacting both atmospheric radiation balance and precipitation patterns. At night, all clouds produce local warming, but overall clouds exert a net-cooling effect on the Earth. The effect of aerosol radiative forcing on climate may be as large as that of the greenhouse gases, but predominantly opposite in sign and much more uncertain. The uncertainties in the representation of aerosol interactions in climate models makes it problematic to use model projections to guide energy policy. The objective of our program is to reduce the uncertainties in the aerosol radiative forcing in the two areas highlighted in the ASR Science and Program Plan. That is, (1) addressing the direct effect by correlating particle chemistry and morphology with particle optical properties (i.e. absorption, scattering, extinction), and (2) addressing the indirect effect by correlating particle hygroscopicity and CCN activity with particle size, chemistry, and morphology. In this connection we are systematically studying particle formation, oxidation, and the effects of particle coating. The work is specifically focused on carbonaceous particles where the uncertainties in the climate relevant properties are the highest. The ongoing work consists of laboratory experiments and related instrument inter-comparison studies both coordinated with field and modeling studies, with the aim of providing reliable data to represent aerosol processes in climate models. The work is performed in the aerosol laboratory at Boston College. At the center of our laboratory setup are two main sources for the production of aerosol particles: (a

  19. Combining angular response classification and backscatter imagery segmentation for benthic biological habitat mapping

    NASA Astrophysics Data System (ADS)

    Che Hasan, Rozaimi; Ierodiaconou, Daniel; Laurenson, Laurie

    2012-01-01

    Backscatter information from multibeam echosounders (MBES) have been shown to contain useful information for the characterisation of benthic habitats. Compared to backscatter imagery, angular response of backscatter has shown advantages for feature discrimination. However its low spatial resolution inhibits the generation of fine scale habitat maps. In this study, angular backscatter response was combined with image segmentation of backscatter imagery to characterise benthic biological habitats in Discovery Bay Marine National Park, Victoria, Australia. Angular response of backscatter data from a Reson Seabat 8101 MBES (240 kHz) was integrated with georeferenced underwater video observations for constructing training data. To produce benthic habitat maps, decision tree supervised classification results were combined with mean shift image segmentation for class assignment. The results from mean angular response characteristics show effects of incidence angle at the outer angle for invertebrates (INV) and mixed red and invertebrates (MRI) classes, whilst mixed brown algae (MB) and mixed brown algae and invertebrates (MBI) showed similar responses independent from incidence angle. Automatic segmentation processing produce over segmented results but showed good discrimination between heterogeneous regions. Accuracy assessment from habitat maps produced overall accuracies of 79.6% (Kappa coefficient = 0.66) and 80.2% (Kappa coefficient = 0.67) for biota and substratum classifications respectively. MRI and MBI produced the lowest average accuracy while INV the highest. The ability to combine angular response and backscatter imagery provides an alternative approach for investigating biological information from acoustic backscatter data.

  20. Ultrasonic backscatter from cancellous bone: the apparent backscatter transfer function.

    PubMed

    Hoffmeister, Brent K; Mcpherson, Joseph A; Smathers, Morgan R; Spinolo, P Luke; Sellers, Mark E

    2015-12-01

    Ultrasonic backscatter techniques are being developed to detect changes in cancellous bone caused by osteoporosis. Many techniques are based on measurements of the apparent backscatter transfer function (ABTF), which represents the backscattered power from bone corrected for the frequency response of the measurement system. The ABTF is determined from a portion of the backscatter signal selected by an analysis gate of width τw delayed by an amount τd from the start of the signal. The goal of this study was to characterize the ABTF for a wide range of gate delays (1 μs ≤ τd ≤ 6 μs) and gate widths (1 μs ≤ τw ≤ 6 μs). Measurements were performed on 29 specimens of human cancellous bone in the frequency range 1.5 to 6.0 MHz using a broadband 5-MHz transducer. The ABTF was found to be an approximately linear function of frequency for most choices of τd and τw. Changes in τd and τw caused the frequency-averaged ABTF [quantified by apparent integrated backscatter (AIB)] and the frequency dependence of the ABTF [quantified by frequency slope of apparent backscatter (FSAB)] to change by as much as 24.6 dB and 6.7 dB/MHz, respectively. τd strongly influenced the measured values of AIB and FSAB and the correlation of AIB with bone density (-0.95 ≤ R ≤ +0.68). The correlation of FSAB with bone density was influenced less strongly by τd (-0.97 ≤ R ≤ -0.87). τw had a weaker influence than τd on the measured values of AIB and FSAB and the correlation of these parameters with bone density.

  1. Aerosol abundances and optical characteristics in the pacific basin free troposphere

    NASA Astrophysics Data System (ADS)

    Pueschel, R. F.; Livingston, J. M.; Ferry, G. V.; DeFelice, T. E.

    During NASA's Global Backscatter Experiment (GLOBE) mission flights in November 1989 and May 1990, a DC-8 research aircraft probed the Pacific Basin free troposphere for about 90 flight hours in each month between +72 and -62 degrees latitude, +130 and -120 degrees longitude, and up to 39,000 feet pressure altitudes. Aerosols were sampled continuously in situ by optical particle counters to measure concentration and particle size, and during 48 10-min intervals during each mission by wire impactors for concentration, size, composition, phase and shape analyses. The optical particle counters cover a particle diameter range between 0.3 and 20 μm; wire impactors extend the range down to 0.03 μm. Results of particle number, size, shape, together with the assumption of a refractive index corresponding to (NH 4) 2SO 4 to account for the prevalence of aerosol sulfur, were utilized in a Mie algorithm to calculate aerosol extinction and backscatter for a range of wavelengths (0.385 < λ < 10.64 μm). Computations for 22 randomly selected size distributions yield coefficients of extinction E0.525=(2.03±1.20) × 10 -4 km -1 and backscatter β0.525=(6.45±3.49) × 10 -6 km -1 sr -1 in the visible, and E10.64=(8.13±6.47) × 10 -6 km -1 and β10.64=(9.98±10.69) × 10 -8 km -1 sr -1 in the infra-red, respectively. Large particles ( D > 0.3 μm) contribute two-thirds to the total extinction in the visible (λ=0.525 μm), and almost 100% in the infra-red (λ= 10.64 μm). These results have been used to define an IR optical aerosol climatology of the Pacific Basin free troposphere, from which it follows that the infra-red backscatter coefficient at λ=9.25 μm wavelength fluctuates between 5.0 × 10 -10 and 2.0 × 10 -7 km -1 sr -1 with a modal value 2.0 × 10 -8 km -1 sr -1.

  2. Lidar for multiple backscattering and depolarization observations.

    PubMed

    Allen, R J; Platt, C M

    1977-12-01

    A lidar system that can measure multiple scattering and depolarization in the atmosphere is being used to study the climatic effects of cirrus clouds and to perform other investigations. The lidar system and its novel aspects are described in this paper. The influence of multiple scattering on noise, signal, and SNR is considered. Special receiver field stops incorporated for multiple scattering measurements, use of low voltage to control the photomultiplier tube gain, and a precision power/energy monitor are described. A technique for aligning transmitter and receiver axes and measuring transmitter beamwidth is presented. The multiple-scattered components of backscattered light are determined by inserting a center-blocked field stop to restrict the receiver field of view to the region outside of the diverging transmitted beam. Typical returns with and without the opaque field stop indicate the amplitude of multiple scattering from cirrus clouds and prove the feasibility of this technique. The depolarization ratio delta and backscatter coefficients from an altostratus cloud illustrate the potential of these quantities for the study of cloud structure and phase.

  3. 3D Backscatter Imaging System

    NASA Technical Reports Server (NTRS)

    Turner, D. Clark (Inventor); Whitaker, Ross (Inventor)

    2016-01-01

    Systems and methods for imaging an object using backscattered radiation are described. The imaging system comprises both a radiation source for irradiating an object that is rotationally movable about the object, and a detector for detecting backscattered radiation from the object that can be disposed on substantially the same side of the object as the source and which can be rotationally movable about the object. The detector can be separated into multiple detector segments with each segment having a single line of sight projection through the object and so detects radiation along that line of sight. Thus, each detector segment can isolate the desired component of the backscattered radiation. By moving independently of each other about the object, the source and detector can collect multiple images of the object at different angles of rotation and generate a three dimensional reconstruction of the object. Other embodiments are described.

  4. Lidar beams in opposite directions for quality assessment of Cloud-Aerosol Lidar with Orthogonal Polarization spaceborne measurements.

    PubMed

    Cuesta, Juan; Flamant, Pierre H

    2010-04-20

    We present the "lidar beams in opposite directions" (LIBOD) technique and applications for quality assessment of spaceborne observations made by Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation satellite. LIBOD is applicable to standard total backscatter lidar because it does not require a priori knowledge of the particle extinction-to-backscatter ratio. In this paper, we present (i) an objective assessment of the lidar signal quality and representativity of correlative ground-based lidar and CALIOP measurements only using normalized range-corrected lidar signals and (ii) a numerical filtering and optimization technique for reducing the spurious oscillations induced by noisy signal differentiation as needed for retrieval of particle extinction coefficients and extinction-to-backscatter ratio profiles. Numerical simulations and Monte Carlo tests are conducted for assessing the performance of the LIBOD technique. The applications are illustrated with examples of actual correlative 532 nm lidar profiles from CALIOP and a ground-based lidar deployed in Tamanrasset in the heart of Sahara in 2006 and near Strasbourg, France, in 2007.

  5. Aerosol and gamma background measurements at Basic Environmental Observatory Moussala

    NASA Astrophysics Data System (ADS)

    Angelov, Christo; Arsov, Todor; Penev, Ilia; Nikolova, Nina; Kalapov, Ivo; Georgiev, Stefan

    2016-03-01

    Trans boundary and local pollution, global climate changes and cosmic rays are the main areas of research performed at the regional Global Atmospheric Watch (GAW) station Moussala BEO (2925 m a.s.l., 42°10'45'' N, 23°35'07'' E). Real time measurements and observations are performed in the field of atmospheric chemistry and physics. Complex information about the aerosol is obtained by using a threewavelength integrating Nephelometer for measuring the scattering and backscattering coefficients, a continuous light absorption photometer and a scanning mobile particle sizer. The system for measuring radioactivity and heavy metals in aerosols allows us to monitor a large scale radioactive aerosol transport. The measurements of the gamma background and the gamma-rays spectrum in the air near Moussala peak are carried out in real time. The HYSPLIT back trajectory model is used to determine the origin of the data registered. DREAM code calculations [2] are used to forecast the air mass trajectory. The information obtained combined with a full set of corresponding meteorological parameters is transmitted via a high frequency radio telecommunication system to the Internet.

  6. Comparison of Aerosol Optical and Microphysical Retrievals from HSRL-2 and in-Situ Measurements During DISCOVER-AQ 2013 (California and Texas)

    NASA Astrophysics Data System (ADS)

    Sawamura, Patricia; Müller, Detlef; Burton, Sharon; Chemyakin, Eduard; Hostetler, Chris; Ferrare, Richard; Kolgotin, Alexei; Ziemba, Luke; Beyersdorf, Andreas; Anderson, Bruce

    2016-06-01

    The combination of backscatter coefficients measured at 355, 532 and 1064 nm and extinction coefficients at 355 and 532 nm (i.e. 3β+2α) can be used to retrieve profiles of optical and microphysical properties of aerosols, such as effective radius, total volume concentration and total number concentration. NASA LaRC HSRL-2 is an airborne multi-wavelength high spectral resolution lidar in operation that provides the full 3β+2α dataset. HSRL-2 was deployed during DISCOVER-AQ along with other airborne and ground-based instruments that also measured many aerosol parameters in close proximity to the HSRL-2 system, allowing us to evaluate the performance of an automated and unsupervised retrieval algorithm that has been recently developed. We present the results from California (Jan/Feb 2013) and Texas (Sep 2013) DISCOVER-AQ.

  7. The dependence of ultrasonic backscatter on trabecular thickness in human calcaneus: theoretical and experimental results.

    PubMed

    Wear, Keith A; Laib, Andres

    2003-08-01

    Trabecular thickness within cancellous bone is an important determinant of osteoporotic fracture risk. Noninvasive assessment of trabecular thickness potentially could yield useful diagnostic information. Faran's theory of elastic scattering from a cylindrical object immersed in a fluid has been used to predict the dependence of ultrasonic backscatter on trabecular thickness. The theory predicts that, in the range of morphological and material properties expected for trabecular bone, the backscatter coefficient at 500 kHz should be approximately proportional to trabecular thickness to the power of 2.9. Experimental measurements of backscatter coefficient were performed on 43 human calcaneus samples in vitro. Mean trabecular thicknesses on the 43 samples were assessed using micro computed tomography (CT). A power law fit to the data showed that the backscatter coefficient empirically varied as trabecular thickness to the 2.8 power. The 95% confidence interval for this exponent was 1.7 to 3.9. The square of the correlation coefficient for the linear regression to the log transformed data was 0.40. This suggests that 40% of variations in backscatter may be attributed to variations in trabecular thickness. These results reinforce previous studies that offered validation for the Faran cylinder model for prediction of scattering properties of cancellous bone, and provide added evidence for the potential diagnostic utility of the backscatter measurement. PMID:12952089

  8. Radiative Effects of Aerosols

    NASA Technical Reports Server (NTRS)

    Valero, Francisco P. J.

    1996-01-01

    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, two descents in cloud-free regions allowed comparison of the change in aerosol optical depth as determined by an onboard total-direct-diffuse radiometer (TDDR) to the change calculated from measured size-resolved aerosol microphysics and chemistry. Both profiles included a pollution haze from Europe but the second also included the effect of a Saharan dust layer above the haze. The separate contributions of supermicrometer (coarse) and submicrometer (fine) aerosol were determined and thermal analysis of the pollution haze indicated that the fine aerosol was composed primarily of a sulfate/water mixture with a refractory soot-like core. The soot core increased the calculated extinction by about 10% in the most polluted drier layer relative to a pure sulfate aerosol but had significantly less effect at higher humidities. A 3 km descent through a boundary layer air mass dominated by pollutant aerosol with relative humidities (RH) 10-77% yielded a close agreement between the measured and calculated aerosol optical depths (550 nm) of 0.160 (+/- 0.07) and 0. 157 (+/- 0.034) respectively. During descent the aerosol mass scattering coefficient per unit sulfate mass varied from about 5 to 16 m(exp 2)/g and primarily dependent upon ambient RH. However, the total scattering coefficient per total fine mass was far less variable at about 4+/- 0.7 m(exp 2)/g. A subsequent descent through a Saharan dust layer located above the pollution aerosol layer revealed that both layers contributed similarly to aerosol optical depth. The scattering per unit mass of the coarse aged dust was estimated at 1.1 +/- 0.2 m(exp 2)/g. The large difference (50%) in measured and calculated optical depth for the dust layer exceeded measurements.

  9. Mie lidar observations of lower tropospheric aerosols and clouds.

    PubMed

    Veerabuthiran, S; Razdan, A K; Jindal, M K; Dubey, D K; Sharma, R C

    2011-12-15

    Mie lidar system is developed at Laser Science and Technology Centre, Delhi (28.38°N, 77.12°E) by using minimal number of commercially available off-the-shelf components. Neodymium Yttrium Aluminum Garnet (Nd:YAG) laser operating at 1064nm with variable pulse energies between 25 and 400 mJ with 10 Hz repetition rate and 7ns pulse duration is used as a transmitter and off-axis CASSEGRAIN telescope with 100mm diameter as a receiver. Silicon avalanche photodiode (Si-APD) module with built-in preamplifier and front-end optics is used as detector. This system has been developed for the studies of lower tropospheric aerosols and clouds. Some experiments have been conducted using this set up and preliminary results are discussed. The characteristics of backscattered signals for various transmitter pulse energies are also studied. Atmospheric aerosol extinction coefficient values are calculated using Klett lidar inversion algorithm. The extinction coefficient, in general, falls with range in the lower troposphere and the values lie typically in the range 7.5×10(-5) m(-1) to 1.12×10(-4) m(-1) in the absence of any cloud whereas this value shoots maximum up to 1.267×10(-3) m(-1) (peak extinction) in the presence of clouds.

  10. Measuring Ultrasonic Backscatter in the Presence of Nonlinear Propagation

    NASA Astrophysics Data System (ADS)

    Stiles, Timothy; Guerrero, Quinton

    2011-11-01

    A goal of medical ultrasound is the formation of quantitative ultrasound images in which contrast is determined by acoustic or physical properties of tissue rather than relative echo amplitude. Such images could greatly enhance early detection of many diseases, including breast cancer and liver cirrhosis. Accurate determination of the ultrasonic backscatter coefficient from patients remains a difficult task. One reason for this difficulty is the inherent nonlinear propagation of ultrasound at high intensities used for medical imaging. The backscatter coefficient from several tissue-mimicking samples were measured using the planar reflector method. In this method, the power spectrum from a sample is compared to the power spectrum of an optically flat sample of quartz. The results should be independent of incident pressure amplitude. Results demonstrate that backscatter coefficients can vary by more than an order of magnitude when ultrasound pressure varies from 0.1 MPa to 1.5 MPa at 5.0 MHz. A new method that incorporates nonlinear propagation is proposed to explain these discrepancies.

  11. Second order distorted born approximation for backscattering from a layer of discrete random medium

    NASA Technical Reports Server (NTRS)

    Lang, Roger H.; Saatchi, Sasan S.

    1993-01-01

    In recent years there has been increasing interest in scattering and depolarization characteristics of the vegetation canopies. Scattering models applied to the microwave remote sensing of vegetation canopies showed that multiple scattering effects can be important in simulating the backscattering coefficients correctly. In particular, in most applications, the cross-polarized backscattering coefficients are often underestimated by single scattering models. Recently, there have been concerted efforts to include the second order terms in the radiative transfer models of vegetation canopies in order to account for multiple scattering within the canopy. The coherent wave theory approach is extended to include multiple scattering effects to predict the coherent and incoherent backscattering contributions from a layer of vegetation canopy. The problem is initially formulated in terms of the exact equation for the correlation function of the field, i.e., the Bethe-Salpeter equation. Using fractional volume as a small parameter, a Foldy type approximation is made to obtain a more manageable correlation equation. This equation is iterated to obtain first and second order solutions. The iteration procedure assumes the variance of the field fluctuations are small compared to the coherent intensity. This assumption proved to be particularly successful in computing backscattering coefficients. First and second order backscattering coefficients are calculated from the iterants of the correlation equation. It is shown that the first order coefficients are the same as the distorted Born results used previously by the authors. These results contained enhancement terms in the direct-reflected contributions. The important contributions to second order backscattering are examined and interpreted in terms of scattering diagrams. Examples of situations in which second order backscattering coefficients are important are given.

  12. Aerosol in the Pacific troposphere

    NASA Technical Reports Server (NTRS)

    Clarke, Antony D.

    1989-01-01

    The use of near real-time optical techniques is emphasized for the measurement of mid-tropospheric aerosol over the Central Pacific. The primary focus is on measurement of the aerosol size distribution over the range of particle diameters from 0.15 to 5.0 microns that are essential for modeling CO2 backscatter values in support of the laser atmospheric wind sounder (LAWS) program. The measurement system employs a LAS-X (Laser Aerosol Spectrometer-PMS, Boulder, CO) with a custom 256 channel pulse height analyzer and software for detailed measurement and analysis of aerosol size distributions. A thermal preheater system (Thermo Optic Aerosol Descriminator (TOAD) conditions the aerosol in a manner that allows the discrimination of the size distribution of individual aerosol components such as sulfuric acid, sulfates and refractory species. This allows assessment of the relative contribution of each component to the BCO2 signal. This is necessary since the different components have different sources, exhibit independent variability and provide different BCO2 signals for a given mass and particle size. Field activities involve experiments designed to examine both temporal and spatial variability of these aerosol components from ground based and aircraft platforms.

  13. [Characteristics and Parameterization for Atmospheric Extinction Coefficient in Beijing].

    PubMed

    Chen, Yi-na; Zhao, Pu-sheng; He, Di; Dong, Fan; Zhao, Xiu-juan; Zhang, Xiao-ling

    2015-10-01

    In order to study the characteristics of atmospheric extinction coefficient in Beijing, systematic measurements had been carried out for atmospheric visibility, PM2.5 concentration, scattering coefficient, black carbon, reactive gases, and meteorological parameters from 2013 to 2014. Based on these data, we compared some published fitting schemes of aerosol light scattering enhancement factor [ f(RH)], and discussed the characteristics and the key influence factors for atmospheric extinction coefficient. Then a set of parameterization models of atmospheric extinction coefficient for different seasons and different polluted levels had been established. The results showed that aerosol scattering accounted for more than 94% of total light extinction. In the summer and autumn, the aerosol hygroscopic growth caused by high relative humidity had increased the aerosol scattering coefficient by 70 to 80 percent. The parameterization models could reflect the influencing mechanism of aerosol and relative humidity upon ambient light extinction, and describe the seasonal variations of aerosol light extinction ability. PMID:26841588

  14. [Characteristics and Parameterization for Atmospheric Extinction Coefficient in Beijing].

    PubMed

    Chen, Yi-na; Zhao, Pu-sheng; He, Di; Dong, Fan; Zhao, Xiu-juan; Zhang, Xiao-ling

    2015-10-01

    In order to study the characteristics of atmospheric extinction coefficient in Beijing, systematic measurements had been carried out for atmospheric visibility, PM2.5 concentration, scattering coefficient, black carbon, reactive gases, and meteorological parameters from 2013 to 2014. Based on these data, we compared some published fitting schemes of aerosol light scattering enhancement factor [ f(RH)], and discussed the characteristics and the key influence factors for atmospheric extinction coefficient. Then a set of parameterization models of atmospheric extinction coefficient for different seasons and different polluted levels had been established. The results showed that aerosol scattering accounted for more than 94% of total light extinction. In the summer and autumn, the aerosol hygroscopic growth caused by high relative humidity had increased the aerosol scattering coefficient by 70 to 80 percent. The parameterization models could reflect the influencing mechanism of aerosol and relative humidity upon ambient light extinction, and describe the seasonal variations of aerosol light extinction ability.

  15. Backscattering amplification of laser radiation in a medium with fluctuations of the imaginary part of permittivity

    SciTech Connect

    Almaev, R Kh; Suvorov, A A

    2001-04-30

    The effect of backscattering amplification of laser radiation with respect to the radiation intensity reflected from an ordinary mirror in a medium with fluctuations of the real (refractive index) and the imaginary (absorption or amplification coefficient) parts of the permittivity is considered. Formulas for the backscattering amplification coefficient and the variance of the intensity fluctuations of the reflected wave propagating in a random dissipative (amplifying) medium are derived. Asymptotic expressions derived for the saturation region of intensity fluctuations take into account the effect of fluctuations of the refractive index and absorption (amplification) coefficient, as well as their correlation. The contribution of fluctuations of the complex permittivity parts and the characteristic spatial scale of the problem to the backscattering amplification coefficient is analysed. It is shown that for uncorrelated fluctuations of the real and imaginary parts of the permittivity of a random medium, the backscattering amplification coefficient in the region of strong fluctuations is larger than in a transparent random medium. It is also found that the correlation of pulsations of the real and imaginary parts of the permittivity suppresses the backscattering amplification effect in an absorbing medium and increases this effect in an amplifying medium. (laser applications and other topics in quantum electronics)

  16. LASE Measurements of Water Vapor, Aerosol, and Cloud Distributions in Saharan Air Layers and Tropical Disturbances

    NASA Technical Reports Server (NTRS)

    Ismail, Syed; Ferrare, Richard A.; Browell, Edward V.; Kooi, Susan A.; Dunion, Jason P.; Heymsfield, Gerry; Notari, Anthony; Butler, Carolyn F.; Burton, Sharon; Fenn, Marta; Krishnamurti, T. N.; Chen, Gao; Anderson, Bruce

    2010-01-01

    LASE (Lidar Atmospheric Sensing Experiment) on-board the NASA DC-8 measured high resolution profiles of water vapor and aerosols, and cloud distributions in 14 flights over the eastern North Atlantic during the NAMMA (NASA African Monsoon Multidisciplinary Analyses) field experiment. These measurements were used to study African easterly waves (AEWs), tropical cyclones (TCs), and the Saharan Air Layer(s) (SAL). Interactions between the SAL and tropical air were observed during the early stages of the TC development. These LASE measurements represent the first simultaneous water vapor and aerosol lidar measurements to study the SAL and its impact on AEWs and TCs. Examples of profile measurements of aerosol scattering ratios, aerosol extinction coefficients, aerosol optical thickness, water vapor mixing ratios, RH, and temperature are presented to illustrate their characteristics in SAL, convection, and clear air regions. LASE data suggest that the SAL suppresses low-altitude convection at the convection-SAL interface region. Mid-level convection associated with the AEW and transport are likely responsible for high water vapor content observed in the southern regions of the SAL on August 20, 2008. This interaction is responsible for the transfer of about 7 x 10(exp 15) J latent heat energy within a day to the SAL. Measurements of lidar extinction-to-backscatter ratios in the range 36+/-5 to 45+/-5 are within the range of measurements from other lidar measurements of dust. LASE aerosol extinction and water vapor profiles are validated by comparison with onboard in situ aerosol measurements and GPS dropsonde water vapor soundings, respectively.

  17. Long-term Observation of Aerosol Optical Properties at the SORPES station in Nanjing, China

    NASA Astrophysics Data System (ADS)

    Shen, Yicheng; Ding, Aijun; Virkkula, Aki; Wang, Jiaping; Chi, Xuguang; Qi, Ximeng; Liu, Qiang; Zheng, Longfei; Xie, Yuning

    2016-04-01

    Atmospheric aerosols influence the earth's radiation budget by scattering and absorbing solar radiation and contribute substantial uncertainty in the estimation of climate forcing. Thorough and comprehensive measurements on different parameters including absorption and scattering coefficient, wavelength dependence and angular dependence along with their daily and seasonal variation help to understand the influence of aerosol on radiation. 2-years continuous measurement of aerosol optical properties has been conducted from June 2013 to May 2015 at the Station for Observing Regional Process of Earth System (SORPES) station, which is a regional background station located in downwind direction of Yangtze River Delta (YRD) urban agglomeration in China. A 7-wavelenths aethalometer and a 3-wavelenths nephelometer were used to measure absorption and scattering coefficient, and also other parameters like single scattering albedo (SSA), absorption angstrom Exponent (AAE), scattering angstrom exponent (SAE) and back-scattering refraction. In addtion, simultaneous measurements on chemical composition and particle size distribution were performed so as to investigate the dependencies of aerosol optical properties on chemical composition and size distribution. To get further insight on the influencing factors, Lagrangian particle dispersion modeling (LPDM) was employed for source identification in this study. The averages of absorption coefficient, scattering coefficient and SSA are 26.0±18.7 Mm-1, 426±327 Mm-1 , 0.936±0.3 at 520nm respectively for whole period. SAE between 450 and 635nm is 1.299±0.34 and have strong negative correlation with particle Surface Mean Diameter (SMD). AAE between 370 and 950nm is 1.043±0.15 for whole period but growth to more than 1.6 in all identified Biomass Burning (BB) events.

  18. Observations of Smoke Aerosol from Biomass Burning in Mexico: Effect of Particle Aging on Radiative Forcing and Remote Sensing

    NASA Technical Reports Server (NTRS)

    Remer, Lorraine A.; Bruintjes, Roelof; Holben, Brent N.; Christopher, Sundar

    1999-01-01

    We take advantage of the May 1998 biomass burning event in Southern Mexico to test the global applicability of a smoke aerosol size model developed from data observed in South America. The Mexican event is an unique opportunity to observe well-aged, residual smoke. Observations of smoke aerosol size distribution made from vertical profiles of airborne in situ measurements show an inverse relationship between concentration and particle size that suggests the aging process continues more than a week after the smoke is separated from its fire sources. The ground-based radiometer retrievals show that the column-averaged, aged, Mexican smoke particles are larger (diameter = 0.28 - 0.33 micrometers) than the mean smoke particles in South America (diameter = 0.22 - 0.30 micrometers). However, the difference (delta - 0.06 micrometer) translates into differences in backscattering coefficient of only 4-7% and an increase of direct radiative forcing of only 10%.

  19. Extinction-to-Backscatter Ratios of Saharan Dust Layers Derived from In-Situ Measurements and CALIPSO Overflights During NAMMA

    NASA Technical Reports Server (NTRS)

    Omar, Ali H.; Liu, Zhaoyan; Vaughan, Mark A.; Thornhill, Kenneth L., II; Kittaka, Chieko; Ismail, Syed; Chen, Gao; Powell, Kathleen A.; Winker, David M.; Trepte, Charles R.; Trepte, Charles R.; Winstead, Edward L.; Anderson, Bruce E.

    2010-01-01

    We determine the extinction-to-backscatter (Sa) ratios of dust using (1) airborne in-situ measurements of microphysical properties, (2) modeling studies, and (3) the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) observations recorded during the NASA African Monsoon Multidisciplinary Analyses (NAMMA) field experiment conducted from Sal, Cape Verde during Aug-Sept 2006. Using CALIPSO measurements of the attenuated backscatter of lofted Saharan dust layers, we apply the transmittance technique to estimate dust Sa ratios at 532 nm and a 2-color method to determine the corresponding 1064 nm Sa. This method yielded dust Sa ratios of 39.8 plus or minus 1.4 sr and 51.8 plus or minus 3.6 sr at 532 nm and 1064 nm, respectively. Secondly, Sa at both wavelengths is independently calculated using size distributions measured aboard the NASA DC-8 and estimates of Saharan dust complex refractive indices applied in a T-Matrix scheme. We found Sa ratios of 39.1 plus or minus 3.5 sr and 50.0 plus or minus 4 sr at 532 nm and 1064 nm, respectively, using the T-Matrix calculations applied to measured size spectra. Finally, in situ measurements of the total scattering (550 nm) and absorption coefficients (532 nm) are used to generate an extinction profile that is used to constrain the CALIPSO 532 nm extinction profile and thus generate a stratified 532 nm Sa. This method yielded an Sa ratio at 532 nm of 35.7 sr in the dust layer and 25 sr in the marine boundary layer consistent with a predominantly seasalt aerosol near the ocean surface. Combinatorial simulations using noisy size spectra and refractive indices were used to estimate the mean and uncertainty (one standard deviation) of these Sa ratios. These simulations produced a mean (plus or minus uncertainty) of 39.4 (plus or minus 5.9) sr and 56.5 (plus or minus 16.5) sr at 532 nm and 1064 nm, respectively, corresponding to percent uncertainties of 15% and 29%. These results will provide a measurements

  20. Rayleigh-backscattering doppler broadening correction for differential absorption lidar

    NASA Astrophysics Data System (ADS)

    Fan, Lanlan; Zhang, Yinchao; Chen, Siying; Guo, Pan; Chen, He

    2015-11-01

    The spectral broadening by Rayleigh backscattering can cause large changes in water vapor echo signals, causing errors when the water vapor concentration is inversed by differential absorption lidar (DIAL). A correction algorithm is proposed to revise the errors due to the effect of laser spectral broadening. The relative errors of water vapor are calculated in cases of different aerosol distribution and temperature changes before and after correction. The results show that measurement errors due to the Doppler broadening are more than 5% before correction and a 2% measurement error after corrected for the case of a smooth, background aerosol distribution. However, due to the high aerosol gradients and strong temperature inversion, errors can be up to 40% and 10% with no corrections for this effect, respectively. The relative errors can reduce to less than 2% after correction. Hence, the correction algorithm for Rayleigh Doppler broadening can improve detection accuracy in H2O DIAL measurements especially when it is applied to high aerosol concentration or strong temperature inversion.

  1. Backscatter measurements for NIF ignition targets (invited)

    SciTech Connect

    Moody, J. D.; Datte, P.; Krauter, K.; Bond, E.; Michel, P. A.; Glenzer, S. H.; Divol, L.; Suter, L.; Meezan, N.; MacGowan, B. J.; Hibbard, R.; London, R.; Kilkenny, J.; Wallace, R.; Knittel, K.; Frieders, G.; Golick, B.; Ross, G.; Widmann, K.; Jackson, J.; and others

    2010-10-15

    Backscattered light via laser-plasma instabilities has been measured in early NIF hohlraum experiments on two beam quads using a suite of detectors. A full aperture backscatter system and near backscatter imager (NBI) instrument separately measure the stimulated Brillouin and stimulated Raman scattered light. Both instruments work in conjunction to determine the total backscattered power to an accuracy of {approx}15%. In order to achieve the power accuracy we have added time-resolution to the NBI for the first time. This capability provides a temporally resolved spatial image of the backscatter which can be viewed as a movie.

  2. Backscatter measurements for NIF ignition targets (invited).

    PubMed

    Moody, J D; Datte, P; Krauter, K; Bond, E; Michel, P A; Glenzer, S H; Divol, L; Niemann, C; Suter, L; Meezan, N; MacGowan, B J; Hibbard, R; London, R; Kilkenny, J; Wallace, R; Kline, J L; Knittel, K; Frieders, G; Golick, B; Ross, G; Widmann, K; Jackson, J; Vernon, S; Clancy, T

    2010-10-01

    Backscattered light via laser-plasma instabilities has been measured in early NIF hohlraum experiments on two beam quads using a suite of detectors. A full aperture backscatter system and near backscatter imager (NBI) instrument separately measure the stimulated Brillouin and stimulated Raman scattered light. Both instruments work in conjunction to determine the total backscattered power to an accuracy of ∼15%. In order to achieve the power accuracy we have added time-resolution to the NBI for the first time. This capability provides a temporally resolved spatial image of the backscatter which can be viewed as a movie.

  3. Backscatter absorption gas imaging system

    DOEpatents

    McRae, T.G. Jr.

    A video imaging system for detecting hazardous gas leaks. Visual displays of invisible gas clouds are produced by radiation augmentation of the field of view of an imaging device by radiation corresponding to an absorption line of the gas to be detected. The field of view of an imager is irradiated by a laser. The imager receives both backscattered laser light and background radiation. When a detectable gas is present, the backscattered laser light is highly attenuated, producing a region of contrast or shadow on the image. A flying spot imaging system is utilized to synchronously irradiate and scan the area to lower laser power requirements. The imager signal is processed to produce a video display.

  4. Backscatter absorption gas imaging system

    DOEpatents

    McRae, Jr., Thomas G.

    1985-01-01

    A video imaging system for detecting hazardous gas leaks. Visual displays of invisible gas clouds are produced by radiation augmentation of the field of view of an imaging device by radiation corresponding to an absorption line of the gas to be detected. The field of view of an imager is irradiated by a laser. The imager receives both backscattered laser light and background radiation. When a detectable gas is present, the backscattered laser light is highly attenuated, producing a region of contrast or shadow on the image. A flying spot imaging system is utilized to synchronously irradiate and scan the area to lower laser power requirements. The imager signal is processed to produce a video display.

  5. Electromagnetic backscattering by corner reflectors

    NASA Technical Reports Server (NTRS)

    Balanis, C. A.; Griesser, T.

    1986-01-01

    The Geometrical Theory of Diffraction (GTD), which supplements Geometric Optics (GO), and the Physical Theory of Diffraction (PTD), which supplements Physical Optics (PO), are used to predict the backscatter cross sections of dihedral corner reflectors which have right, obtuse, or acute included angles. These theories allow individual backscattering mechanisms of the dihedral corner reflectors to be identified and provide good agreement with experimental results in the azimuthal plane. The advantages and disadvantages of the geometrical and physical theories are discussed in terms of their accuracy, usefulness, and complexity. Numerous comparisons of analytical results with experimental data are presented. While physical optics alone is more accurate and more useful than geometrical optics alone, the combination of geometrical optics and geometrical diffraction seems to out perform physical optics and physical diffraction when compared with experimental data, especially for acute angle dihedral corner reflectors.

  6. Ceilometer Aerosol Profiling versus Raman Lidar in the Frame of Interact Campaign of Actris

    NASA Astrophysics Data System (ADS)

    Madonna, F.; Amato, F.; Rosoldi, M.; Vande Hey, J.; Pappalardo, G.

    2016-06-01

    In this paper, multi-wavelength Raman lidar measurements are used to investigate the capability of ceilometers to provide reliable information about atmospheric aerosol properties through the INTERACT (INTERcomparison of Aerosol and Cloud Tracking) campaign carried out at the CNR-IMAA Atmospheric Observatory (760 m a.s.l., 40.60 N, 15.72 E), in the framework of ACTRIS (Aerosol Clouds Trace gases Research InfraStructure) FP7 project. This work is the first time that three different commercial ceilometers with an advanced Raman lidar are compared over a period of six month. The comparison of the attenuated backscatter coefficient profiles from a multi-wavelength Raman lidar and three ceilometers (CHM15k, CS135s, CT25K) reveals differences due to the expected discrepancy in the SNR but also due to effect of changes in the ambient temperature on the stability of ceilometer calibration over short and mid-term. Technological improvements of ceilometers towards their operational use in the monitoring of the atmospheric aerosol in the low and free troposphere are likely needed.

  7. Mobile multi-wavelength polarization Raman lidar for water vapor, cloud and aerosol measurement.

    PubMed

    Wu, Songhua; Song, Xiaoquan; Liu, Bingyi; Dai, Guangyao; Liu, Jintao; Zhang, Kailin; Qin, Shengguang; Hua, Dengxin; Gao, Fei; Liu, Liping

    2015-12-28

    Aiming at the detection of atmospheric water vapor mixing ratio, depolarization ratio, backscatter coefficient, extinction coefficient and cloud information, the Water vapor, Cloud and Aerosol Lidar (WACAL) is developed by the lidar group at Ocean University of China. The lidar consists of transmitter, receiver, data acquisition and auxiliary system. For the measurement of various atmospheric physical properties, three channels including Raman channel, polarization channel and infrared channel are integrated in WACAL. The integration and working principle of these channels are introduced in details. The optical setup, the housekeeping of the system and the data retrieval routines are also presented. After the completion of the construction of the lidar, the WACAL system was installed in Ocean University of China (36.165°N, 120.5°E), Qingdao for the measurement of atmosphere during 2013 and 2014. The measurement principles and some case studies corresponding to various atmospheric physical properties are provided. Finally, the result of one continuous measurement example operated on 13 June 2014 is presented. The WACAL can measure the aerosol and cloud optical properties as well as the water vapor mixing ratio. It is useful for studying the direct and indirect effects of the aerosol on the climate change.

  8. Comparison of the aerosol optical properties and size distribution retrieved by sun photometer with in situ measurements at midlatitude

    NASA Astrophysics Data System (ADS)

    Chauvigné, Aurélien; Sellegri, Karine; Hervo, Maxime; Montoux, Nadège; Freville, Patrick; Goloub, Philippe

    2016-09-01

    Aerosols influence the Earth radiative budget through scattering and absorption of solar radiation. Several methods are used to investigate aerosol properties and thus quantify their direct and indirect impacts on climate. At the Puy de Dôme station, continuous high-altitude near-surface in situ measurements and low-altitude ground-based remote sensing atmospheric column measurements give the opportunity to compare the aerosol extinction measured with both methods over a 1-year period. To our knowledge, it is the first time that such a comparison is realised with continuous measurements of a high-altitude site during a long-term period. This comparison addresses to which extent near-surface in situ measurements are representative of the whole atmospheric column, the aerosol mixing layer (ML) or the free troposphere (FT). In particular, the impact of multi-aerosol layers events detected using lidar backscatter profiles is analysed. A good correlation between in situ aerosol extinction coefficient and aerosol optical depth (AOD) measured by the Aerosol Robotic Network (AERONET) sun photometer is observed with a correlation coefficient around 0.80, indicating that the in situ measurements station is representative of the overall atmospheric column. After filtering for multilayer cases and correcting for each layer optical contribution (ML and FT), the atmospheric structure seems to be the main factor influencing the comparison between the two measurement techniques. When the site lies in the ML, the in situ extinction represents 45 % of the sun photometer ML extinction while when the site lies within the FT, the in situ extinction is more than 2 times higher than the FT sun photometer extinction. Moreover, the assumption of a decreasing linear vertical aerosol profile in the whole atmosphere has been tested, significantly improving the instrumental agreement. Remote sensing retrievals of the aerosol particle size distributions (PSDs) from the sun photometer

  9. GAS-PARTICLE PARTITIONING OF SEMI-VOLATILE ORGANICS ON ORGANIC AEROSOLS USING A PREDICTIVE ACTIVITY COEFFICIENT MODEL: ANALYSIS OF THE EFFECTS OF PARAMETER CHOICES ON MODEL PERFORMANCE. (R826771)

    EPA Science Inventory

    The partitioning of a diverse set of semivolatile organic compounds (SOCs) on a variety of organic aerosols was studied using smog chamber experimental data. Existing data on the partitioning of SOCs on aerosols from wood combustion, diesel combustion, and the Hydrogen bonding at the aerosol interface

    SciTech Connect

    Zhang, J.X.; Aiello, D.; Aker, P.M. )

    1995-01-12

    Morphology-dependent stimulated Raman scattering (MDSRS) has been used to monitor the degree of hydrogen bonding in water aerosols generated by a vibrating orifice aerosol generator (VOAG). The results show that aerosols created by a VOAG suffer extensive structural disruption and that the disruption is most pronounced at the aerosol surface. Laboratory aerosols prepared in this way do not appropriately mimic those found in the atmosphere, and the mass accommodation coefficients measured using such aerosols should not be used in global climate modeling calculations. 25 refs., 10 figs.

  10. Ice clouds and Asian dust studied with lidar measurements of particle extinction-to-backscatter ratio, particle depolarization, and water-vapor mixing ratio over Tsukuba.

    PubMed

    Sakai, Tetsu; Nagai, Tomohiro; Nakazato, Masahisa; Mano, Yuzo; Matsumura, Takatsugu

    2003-12-20

    The tropospheric particle extinction-to-backscatter ratio, the depolarization ratio, and the water-vapor mixing ratio were measured by use of a Raman lidar and a polarization lidar during the Asian dust seasons in 2001 and 2002 in Tsukuba, Japan. The apparent (not corrected for multiple-scattering effects) extinction-to-backscatter ratios (Sp) showed a dependence on the relative humidity with respect to ice (RHice) obtained from the lidar-derived water-vapor mixing ratio and radiosonde-derived temperature; they were mostly higher than 30 sr in dry air (RHice < 50%), whereas they were mostly lower than 30 sr in ice-supersaturated air (RHice > or = 100%), where the apparent extinction coefficients were larger than 0.036 km(-1). Both regions showed mean particle depolarization ratios of 20%-22%. Comparisons with theoretical calculations and the previous experiments suggest that the observed dependence of Sp on RHice is attributed to the difference in the predominant particles: nonspherical aerosols (mainly the Asian dust) in dry air and cloud particles in ice-supersaturated air. PMID:14717284

  11. Ice clouds and Asian dust studied with lidar measurements of particle extinction-to-backscatter ratio, particle depolarization, and water-vapor mixing ratio over Tsukuba.

    PubMed

    Sakai, Tetsu; Nagai, Tomohiro; Nakazato, Masahisa; Mano, Yuzo; Matsumura, Takatsugu

    2003-12-20

    The tropospheric particle extinction-to-backscatter ratio, the depolarization ratio, and the water-vapor mixing ratio were measured by use of a Raman lidar and a polarization lidar during the Asian dust seasons in 2001 and 2002 in Tsukuba, Japan. The apparent (not corrected for multiple-scattering effects) extinction-to-backscatter ratios (Sp) showed a dependence on the relative humidity with respect to ice (RHice) obtained from the lidar-derived water-vapor mixing ratio and radiosonde-derived temperature; they were mostly higher than 30 sr in dry air (RHice < 50%), whereas they were mostly lower than 30 sr in ice-supersaturated air (RHice > or = 100%), where the apparent extinction coefficients were larger than 0.036 km(-1). Both regions showed mean particle depolarization ratios of 20%-22%. Comparisons with theoretical calculations and the previous experiments suggest that the observed dependence of Sp on RHice is attributed to the difference in the predominant particles: nonspherical aerosols (mainly the Asian dust) in dry air and cloud particles in ice-supersaturated air.

  12. A comparative study of RADAR Ka-band backscatter

    NASA Astrophysics Data System (ADS)

    Mapelli, D.; Pierdicca, N.; Guerriero, L.; Ferrazzoli, Paolo; Calleja, Eduardo; Rommen, B.; Giudici, D.; Monti Guarnieri, A.

    2014-10-01

    Ka-band RADAR frequency range has not yet been used for Synthetic Aperture Radar (SAR) from space so far, although this technology may lead to important applications for the next generation of SAR space sensors. Therefore, feasibility studies regarding a Ka-band SAR instrument have been started [1][2], for the next generation of SAR space sensors. In spite of this, the lack of trusted references on backscatter at Ka-band revealed to be the main limitation for the investigation of the potentialities of this technology. In the framework of the ESA project "Ka-band SAR backscatter analysis in support of future applications", this paper is aimed at the study of wave interaction at Ka-band for a wide range of targets in order to define a set of well calibrated and reliable Ka-band backscatter coefficients for different kinds of targets. We propose several examples of backscatter data resulting from a critical survey of available datasets at Ka-band, focusing on the most interesting cases and addressing both correspondences and differences. The reliability of the results will be assessed via a preliminary comparison with ElectroMagnetic (EM) theoretical models. Furthermore, in support of future technological applications, we have designed a prototypal software acting as a "library" of earth surface radar response. In our intention, the output of the study shall contribute to answer to the need of a trustworthy Ka-Band backscatter reference. It will be of great value for future technological applications, such as support to instrument analysis, design and requirements' definition (e.g.: Signal to Noise Ratio, Noise Equivalent Sigma Zero).

  13. Optical backscattering properties of the "clearest" natural waters

    NASA Astrophysics Data System (ADS)

    Twardowski, M. S.; Claustre, H.; Freeman, S. A.; Stramski, D.; Huot, Y.

    2007-11-01

    During the BIOSOPE field campaign October-December 2004, measurements of inherent optical properties from the surface to 500 m depth were made with a ship profiler at stations covering over 8000 km through the Southeast Pacific Ocean. Data from a ~3000 km section containing the very clearest waters in the central gyre are reported here. The total volume scattering function at 117°, βt(117°), was measured with a WET Labs ECO-BB3 sensor at 462, 532, and 650 nm with estimated uncertainties of 2×10-5, 5×10-6, and 2×10-6 m-1 sr-1, respectively. These values were approximately 6%, 3%, and 3% of the volume scattering by pure seawater at their respective wavelengths. From a methodological perspective, there were several results: - distributions were resolvable even though some of the values from the central gyre were an order of magnitude lower than the lowest previous measurements in the literature; - Direct in-situ measurements of instrument dark offsets were necessary to accurately resolve backscattering at these low levels; - accurate pure seawater backscattering values are critical in determining particulate backscattering coefficients in the open ocean (not only in these very clear waters); the pure water scattering values determined by Buiteveld et al. (1994) with a [1+0.3S/37] adjustment for salinity based on Morel (1974) appear to be the most accurate estimates, with aggregate accuracies as low as a few percent; and - closure was demonstrated with subsurface reflectance measurements reported by Morel et al. (2007) within instrument precisions, a useful factor in validating the backscattering measurements. This methodology enabled several observations with respect to the hydrography and the use of backscattering as a biogeochemical proxy: -The clearest waters sampled were found at depths between 300 and 350 m, from 23.5° S, 118° W to 26° S, 114° W, where total backscattering at 650 nm was not distinguishable from pure seawater; -Distributions of

  14. Optical backscattering properties of the "clearest" natural waters

    NASA Astrophysics Data System (ADS)

    Twardowski, M. S.; Claustre, H.; Freeman, S. A.; Stramski, D.; Huot, Y.

    2007-07-01

    During the BIOSOPE field campaign October-December 2004, measurements of inherent optical properties from the surface to 500 m depth were made with a ship profiler at stations covering over ~8000 km through the Southeast Pacific Ocean. Data from a ~3000 km section containing the very clearest waters in the central gyre are reported here. The total volume scattering function at 117°, βt(117°), was measured with a WET Labs ECO-BB3 sensor at 462, 532, and 650 nm with estimated uncertainties of 2×10-5, 5×10-6, and 2×10-6 m-1 sr-1, respectively. These values were approximately 6%, 3%, and 3% of the scattering by pure seawater at their respective wavelengths. From a methodological perspective, there were several results: - bbp distributions were resolvable even though some of the values from the central gyre were an order of magnitude lower than the lowest previous measurements in the literature; - Direct in-situ measurements of instrument dark offsets were necessary to accurately resolve backscattering at these low levels; - accurate pure seawater backscattering values are critical in determining particulate backscattering coefficients in the open ocean (not only in these very clear waters); the pure water scattering values determined by Buiteveld et al. (1994) with a [1 + 0.3S/37] adjustment for salinity based on Morel (1974) appear to be the most accurate estimates, with aggregate accuracies as low as a few percent; and - closure was demonstrated with subsurface reflectance measurements reported by Morel et al. (2007) within instrument precisions, a useful factor in validating the backscattering measurements. This methodology enabled several observations with respect to the hydrography and the use of backscattering as a biogeochemical proxy: - The clearest waters sampled were found at depths between 300 and 350 m, from 23.5° S, 118° W to 26° S, 114° W, where total backscattering at 650 nm was not distinguishable from pure seawater; - Distributions of

  15. Study on lidar received backscattering signals using Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Yang, Kecheng; Ma, Yong; Lin, Jinzhang

    2003-05-01

    In this paper, an improved semi-analytic Monte Carlo method is used to simulate the lidar received backscattering signals. The H-G function is used to approximate the scattering phase function of seawater, from which we can derive the scattering angle directly, and a modified H-G function is used to calculate the probability of the photons received by the receiver at each scattering point, which greatly improves the accuracy of the simulation. The simulation result shows that the different parameters of air-sea system of lidar, such as lidar"s field of view, attenuation coefficient and single scattering albedo of seawater, greatly influence the lidar received backscattering signal waveform. Multiple scattering is studied to explain these phenomena.

  16. Measurement of backscattering from sea with an airborne radar at L band

    NASA Astrophysics Data System (ADS)

    Luo, Xianyun; Zhang, Zhongzhi; Yin, Zhiying; Sun, Fang; Kang, Shifeng; Wang, Laibu; Yu, Yunchao; Wen, Fangru

    1998-08-01

    Measurements of electromagnetic backscattering from sea surface at L band have been done with airborne side-looking radar system. Several flights are made for various sea states. Coherent radar data ta HH polarization and some truth data such as wave height, wind velocity and direction, temperature of sea water are recorded. Corner reflectors and active backscattering coefficient can be derived from the radar data and the cinematic data. The result presented in this paper include scattering coefficient and statistical analysis of radar echo with typical probability distribution functions such as Rayleigh, Weibull, Log-normal and K distribution.

  17. Multi-temporal RADARSAT-1 and ERS backscattering signatures of coastal wetlands in southeastern louisiana

    USGS Publications Warehouse

    Kwoun, Oh-Ig; Lu, Zhiming

    2009-01-01

    Using multi-temporal European Remote-sensing Satellites (BBS-1/-2) and Canadian Radar Satellite (RADARSAT-i) synthetic aperture radar (sar) data over the Louisiana coastal zone, we characterize seasonal variations of radar backscattering according to vegetation type. Our main findings are as follows. First, ERS-1/-2 and RADARSAT-i require careful radiometric calibration to perform multi-temporal backscattering analysis for wetland mapping. We use SAR backscattering signals from cities for the relative calibration. Second, using seasonally averaged backscattering coefficients from ERS-1/-2 and RADARSAT-i, we can differentiate most forests (bottomland and swamp forests) and marshes (freshwater, intermediate, brackish, and saline marshes) in coastal wetlands. The student t-test results support the usefulness of season-averaged backscatter data for classification. Third, combining SAR backscattering coefficients and an optical-sensor-based normalized difference vegetation index can provide further insight into vegetation type and enhance the separation between forests and marshes. Our study demonstrates that sar can provide necessary information to characterize coastal wetlands and monitor their changes. ?? 2009 American Society for Photogrammetry and Remote Sensing.

  18. Ceilometer aerosol profiling versus Raman lidar in the frame of the INTERACT campaign of ACTRIS

    NASA Astrophysics Data System (ADS)

    Madonna, F.; Amato, F.; Vande Hey, J.; Pappalardo, G.

    2015-05-01

    Despite their differences from more advanced and more powerful lidars, the low construction and operation cost of ceilometers (originally designed for cloud base height monitoring) has fostered their use for the quantitative study of aerosol properties. The large number of ceilometers available worldwide represents a strong motivation to investigate both the extent to which they can be used to fill in the geographical gaps between advanced lidar stations and also how their continuous data flow can be linked to existing networks of the more advanced lidars, like EARLINET (European Aerosol Research Lidar Network). In this paper, multi-wavelength Raman lidar measurements are used to investigate the capability of ceilometers to provide reliable information about atmospheric aerosol properties through the INTERACT (INTERcomparison of Aerosol and Cloud Tracking) campaign carried out at the CNR-IMAA Atmospheric Observatory (760 m a.s.l., 40.60° N, 15.72° E), in the framework of the ACTRIS (Aerosol Clouds Trace gases Research InfraStructure) FP7 project. This work is the first time that three different commercial ceilometers with an advanced Raman lidar are compared over a period of 6 months. The comparison of the attenuated backscatter coefficient profiles from a multi-wavelength Raman lidar and three ceilometers (CHM15k, CS135s, CT25K) reveals differences due to the expected discrepancy in the signal to noise ratio (SNR) but also due to changes in the ambient temperature on the short and mid-term stability of ceilometer calibration. Therefore, technological improvements are needed to move ceilometers towards operational use in the monitoring of atmospheric aerosols in the low and free troposphere.

  19. Surface tensions, viscosities, and diffusion constants in mixed component single aerosol particles

    NASA Astrophysics Data System (ADS)

    Bzdek, Bryan; Marshall, Frances; Song, Young-Chul; Haddrell, Allen; Reid, Jonathan

    2016-04-01

    Surface tension and viscosity are important aerosol properties but are challenging to measure on individual particles owing to their small size and mass. Aerosol viscosity impacts semivolatile partitioning from the aerosol phase, molecular diffusion in the bulk of the particle, and reaction kinetics. Aerosol surface tension impacts how particles activate to serve as cloud condensation nuclei. Knowledge of these properties and how they change under different conditions hinders accurate modelling of aerosol physical state and atmospheric impacts. We present measurements made using holographic optical tweezers to directly determine the viscosity and surface tension of optically trapped droplets containing ~1-4 picolitres of material (corresponding to radii of ~5-10 micrometres). Two droplets are captured in the experimental setup, equilibrated to a relative humidity, and coalesced through manipulation of the relative trap positions. The moment of coalescence is captured using camera imaging as well as from elastically backscattered light connected to an oscilloscope. For lower viscosity droplets, the relaxation in droplet shape to a sphere follows the form of a damped oscillator and gives the surface tension and viscosity. For high viscosity droplets, the relaxation results in a slow merging of the two droplets to form a sphere and the timescale of that process permits determination of viscosity. We show that droplet viscosity and surface tension can be quantitatively determined to within <10% of the expected value for low viscosity droplets and to better than 1 order of magnitude for high viscosity droplets. Examples illustrating how properties such as surface tension can change in response to environmental conditions will be discussed. Finally, a study of the relationship between viscosity, diffusion constants, vapour pressures, and reactive uptake coefficients for a mixed component aerosol undergoing oxidation and volatilisation will be discussed.

  1. Extinction coefficient determination using target reflectance measurements.

    PubMed

    Smith, R B; Carswell, A L; Ulitsky, A; Houston, J D

    1989-10-01

    Laboratory measurements are reported for optical extinction at a wavelength of 1.06 microm in water droplet clouds. The extinction coefficient, sigma(T), is determined using the two-way attenuation of a target reflected signal and comparing it to the extinction coefficient sigma determined by a single-pass transmission measurement. As well as solid targets, layers of the clouds have been used as a reflector by employing a selective chopping method to provide range-resolved backscattering information and replicate in the laboratory a lidar configu-ration. It is found that multiple scattering can lead to substantial differences between sigma(T) and sigma and that these differences depend upon the properties of the scattering medium and the target as well as on the field of view of the backscatter receiver used for the reflectance measurements. By keeping the field of view very small, the two methods of measuring the extinction coefficient give the same values.

  2. Aerosol Observing System (AOS) Handbook

    SciTech Connect

    Jefferson, A

    2011-01-17

    The Aerosol Observing System (AOS) is a suite of in situ surface measurements of aerosol optical and cloud-forming properties. The instruments measure aerosol properties that influence the earth’s radiative balance. The primary optical measurements are those of the aerosol scattering and absorption coefficients as a function of particle size and radiation wavelength and cloud condensation nuclei (CCN) measurements as a function of percent supersaturation. Additional measurements include those of the particle number concentration and scattering hygroscopic growth. Aerosol optical measurements are useful for calculating parameters used in radiative forcing calculations such as the aerosol single-scattering albedo, asymmetry parameter, mass scattering efficiency, and hygroscopic growth. CCN measurements are important in cloud microphysical models to predict droplet formation.

  3. Ice cloud backscatter study and comparison with CALIPSO and MODIS satellite data.

    PubMed

    Ding, Jiachen; Yang, Ping; Holz, Robert E; Platnick, Steven; Meyer, Kerry G; Vaughan, Mark A; Hu, Yongxiang; King, Michael D

    2016-01-11

    An invariant imbedding T-matrix (II-TM) method is used to calculate the single-scattering properties of 8-column aggregate ice crystals. The II-TM based backscatter values are compared with those calculated by the improved geometric-optics method (IGOM) to refine the backscattering properties of the ice cloud radiative model used in the MODIS Collection 6 cloud optical property product. The integrated attenuated backscatter-to-cloud optical depth (IAB-ICOD) relation is derived from simulations using a CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite) lidar simulator based on a Monte Carlo radiative transfer model. By comparing the simulation results and co-located CALIPSO and MODIS (Moderate Resolution Imaging Spectroradiometer) observations, the non-uniform zonal distribution of ice clouds over ocean is characterized in terms of a mixture of smooth and rough ice particles. The percentage of the smooth particles is approximately 6% and 9% for tropical and midlatitude ice clouds, respectively.

  4. Development of a global backscatter model for NASA's laser atmospheric wind sounder

    NASA Technical Reports Server (NTRS)

    Bowdle, David; Collins, Laurie; Mach, Douglas; Mcnider, Richard; Song, Aaron

    1992-01-01

    During the Contract Period April 1, 1989, to September 30, 1992, the Earth Systems Science Laboratory (ESSL) in the Research Institute at the University of Alabama in Huntsville (UAH) conducted a program of basic research on atmospheric backscatter characteristics, leading to the development of a global backscatter model. The ESSL research effort was carried out in conjunction with the Earth System Observing Branch (ES43) at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, as part of NASA Contract NAS8-37585 under the Atmospheric Dynamics Program at NASA Headquarters. This research provided important inputs to NASA's GLObal Backscatter Experiment (GLOBE) program, especially in the understanding of global aerosol life cycles, and to NASA's Doppler Lidar research program, especially the development program for their prospective space-based Laser Atmospheric Wind Sounder (LAWS).

  5. HAB detection based on absorption and backscattering properties of phytoplankton

    NASA Astrophysics Data System (ADS)

    Lei, Hui; Pan, Delu; Bai, Yan; Chen, Xiaoyan; Zhou, Yan; Zhu, Qiankun

    2011-11-01

    The coastal area of East China Sea (ECS) suffers from the harmful algal blooms (HAB) frequently every year in the warm season. The most common causative phytoplankton algal species of HAB in the ECS in recent years are Prorocentrum donghaiense (dinoflagellates), Karenia mikimotoi (dinoflagellates which could produce hemolytic and ichthyotoxins) and Skeletonema costatum (diatom). The discrimination between the dinoflagellates and diatom HAB through ocean color remote sensing approach can add the knowledge of HAB events in ECS and help to the precaution. A series of in-situ measurement consisted of absorption coefficient, total scattering and particulate backscattering coefficient was conducted in the southern coast of Zhejiang Province in May 2009, and the estuary of Changjiang River in August 2009 and December 2010, which encountered two HAB events and a moderate bloom. The Inherent Optical Properties (IOPs) of the bloom waters have significant difference between phytoplankton species in absorption and backscattering properties. The chlorophyll a specific absorption coefficient (a*phy(λ)) for the bloom patches (chlorophyll a concentration >6mg m-3) differ greatly from the adjacent normal seawater, with the a*phy(λ) of bloom water lower than 0.03 m2 mg-1 while the a*phy(λ) of the adjacent normal seawater is much higher (even up to 0.06 m2 mg-1). Meanwhile, the backscattering coefficients at 6 wavebands (420, 442, 470, 510, 590 and 700nm) are also remarkably lower for bloom waters (<0.01 m-1) than the normal seawater (> 0.02 m-1). The backscattering coefficient ratio (Rbp(λ)) is much lower for diatom bloom waters than for dinoflagellates types (0.01079 vs. 0.01227). A discrimination model based on IOPs is established, and several typical dinoflagellates and diatom bloom events including Prorocentrum donghaiense, Karenia mikimotoi and Skeletonema costatum in the ECS are picked out for testing with the MODIS-L2 and L3 ocean color remote sensing products from NASA

  6. Using Airborne High Spectral Resolution Lidar Data to Evaluate Combined Active Plus Passive Retrievals of Aerosol Extinction Profiles

    NASA Technical Reports Server (NTRS)

    Burton, S. P.; Ferrare, R. A.; Kittaka, C.; Hostetler, C. A.; Hair, J. W.; Obland, M. D.; Rogers, R. R.; Cook, A. L.; Haper, D. B.

    2008-01-01

    Aerosol extinction profiles are derived from backscatter data by constraining the retrieval with column aerosol optical thickness (AOT), for example from coincident MODIS observations and without reliance on a priori assumptions about aerosol type or optical properties. The backscatter data were acquired with the NASA Langley High Spectral Resolution Lidar (HSRL). The HSRL also simultaneously measures extinction independently, thereby providing an ideal data set for evaluating the constrained retrieval of extinction from backscatter. We will show constrained extinction retrievals using various sources of column AOT, and examine comparisons with the HSRL extinction measurements and with a similar retrieval using data from the CALIOP lidar on the CALIPSO satellite.

  7. Comparison of Aerosol Classification from Airborne High Spectral Resolution Lidar and the CALIPSO Vertical Feature Mask

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Ferrare, R. A.; Omar, A. H.; Hostetler, C. A.; Hair, J. W.; Rogers, R.; Obland, M. D.; Butler, C. F.; Cook, A. L.; Harper, D. B.

    2012-12-01

    The NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidar (HSRL-1) on the NASA B200 aircraft has acquired large datasets of aerosol extinction (532nm), backscatter (532 and 1064nm), and depolarization (532 and 1064nm) profiles during 349 science flights in 19 field missions across North America since 2006. The extinction-to-backscatter ratio ("lidar ratio"), aerosol depolarization ratios, and backscatter color ratio measurements from HSRL-1 are scale-invariant parameters that depend on aerosol type but not concentration. These four aerosol intensive parameters are combined to qualitatively classify HSRL aerosol measurements into eight separate composition types. The classification methodology uses models formed from "training cases" with known aerosol type. The remaining measurements are then compared with these models using the Mahalanobis distance. Aerosol products from the CALIPSO satellite include aerosol type information as well, which is used as input to the CALIPSO aerosol retrieval. CALIPSO aerosol types are inferred using a mix of aerosol loading-dependent parameters, estimated aerosol depolarization, and location, altitude, and surface type information. The HSRL instrument flies beneath the CALIPSO satellite orbit track, presenting the opportunity for comparisons between the HSRL aerosol typing and the CALIPSO Vertical Feature Mask Aerosol Subtype product, giving insight into the performance of the CALIPSO aerosol type algorithm. We find that the aerosol classification from the two instruments frequently agree for marine aerosols and pure dust, and somewhat less frequently for pollution and smoke. In addition, the comparison suggests that the CALIPSO polluted dust type is overly inclusive, encompassing cases of dust combined with marine aerosol as well as cases without much evidence of dust. Qualitative classification of aerosol type combined with quantitative profile measurements of aerosol backscatter and extinction has many useful

  8. Recommendations for processing atmospheric attenuated backscatter profiles from Vaisala CL31 ceilometers

    NASA Astrophysics Data System (ADS)

    Kotthaus, Simone; O'Connor, Ewan; Münkel, Christoph; Charlton-Perez, Cristina; Haeffelin, Martial; Gabey, Andrew M.; Grimmond, C. Sue B.

    2016-08-01

    Ceilometer lidars are used for cloud base height detection, to probe aerosol layers in the atmosphere (e.g. detection of elevated layers of Saharan dust or volcanic ash), and to examine boundary layer dynamics. Sensor optics and acquisition algorithms can strongly influence the observed attenuated backscatter profiles; therefore, physical interpretation of the profiles requires careful application of corrections. This study addresses the widely deployed Vaisala CL31 ceilometer. Attenuated backscatter profiles are studied to evaluate the impact of both the hardware generation and firmware version. In response to this work and discussion within the CL31/TOPROF user community (TOPROF, European COST Action aiming to harmonise ground-based remote sensing networks across Europe), Vaisala released new firmware (versions 1.72 and 2.03) for the CL31 sensors. These firmware versions are tested against previous versions, showing that several artificial features introduced by the data processing have been removed. Hence, it is recommended to use this recent firmware for analysing attenuated backscatter profiles. To allow for consistent processing of historic data, correction procedures have been developed that account for artefacts detected in data collected with older firmware. Furthermore, a procedure is proposed to determine and account for the instrument-related background signal from electronic and optical components. This is necessary for using attenuated backscatter observations from any CL31 ceilometer. Recommendations are made for the processing of attenuated backscatter observed with Vaisala CL31 sensors, including the estimation of noise which is not provided in the standard CL31 output. After taking these aspects into account, attenuated backscatter profiles from Vaisala CL31 ceilometers are considered capable of providing valuable information for a range of applications including atmospheric boundary layer studies, detection of elevated aerosol layers, and model

  9. On Backscatter in Ocean Dynamics

    NASA Astrophysics Data System (ADS)

    Nadiga, Balasubramanya

    2010-05-01

    Downgradient mixing of potential-voriticity and its variants are commonly employed to model the effects of unresolved geostrophic turbulence on resolved scales. This is motivated by the (inviscid and unforced) particle-wise conservation of potential-vorticity and the mean forward or down-scale cascade of potential enstrophy in geostrophic turubulence. By examining the statistical distribution of the transfer of potential enstrophy from mean or filtered motions to eddy or sub-filter motions, we find that the mean forward cascade results from the forward-scatter being only slightly greater than the backscatter. Downgradient mixing ideas, do not recognize such equitable mean-eddy or large scale-small scale interactions and consequently model only the mean effect of forward cascade. Consequently, we consider two alternate approaches to modeling backscatter---one based on the Large Eddy Simulation approach and the other based on regularization approach. We demonstrate the equivalence of the two approaches in a certain limit and present results that use the new parameterizations.

  10. A self-directing elastic backscatter lidar system for debris cloud tracking and characterization

    SciTech Connect

    Clark, D.A.; Dighe, K.A.; Tunnell, T.W.

    1996-06-01

    An elastic backscatter lidar that utilizes the lidar signal itself to direct the system towards fast moving isolated aerosol clouds has been developed. However, detecting and tracking invisible transient effluents from unknown locations, though conceptually straightforward, has still remained experimentally challenging. Accurate cloud volume, cloud density distribution, and track information have been obtained on small, fast moving, subvisible debris clouds resulting from above ground tests in which conventional explosives were detonated.

  11. Comparison of Aerosol Optical and Microphysical Retrievals from HSRL-2, AERONET, and In-situ Measurements During DISCOVER-AQ 2013 (California and Texas)

    NASA Astrophysics Data System (ADS)

    Sawamura, P.; Mueller, D.; Chemyakin, E.; Ferrare, R. A.; Hostetler, C. A.; Scarino, A. J.; Burton, S. P.; Hair, J. W.; Rogers, R. R.; Berkoff, T.; Cook, A. L.; Harper, D. B.; Seaman, S. T.

    2014-12-01

    The second-generation NASA airborne High Spectral Resolution Lidar (HSRL-2) is the first airborne multiwavelength HSRL system to provide 3β + 2α datasets (i.e. backscatter coefficient at 355, 532, and 1064 nm and extinction coefficient at 355 and 532 nm) which are used in an unsupervised and automated inversion algorithm to retrieve optical and microphysical properties of aerosols. HSRL-2 was deployed onboard NASA Langley King Air on the DISCOVER-AQ (Deriving Information on Surface Conditions from Column and VERtically Resolved Observations Relevant to Air Quality) field mission over San Joaquin Valley, California between January and February 2013 and over Houston, Texas in September 2013. Vertical profiles of aerosol optical properties, hygroscopicity, and size distributions were obtained from in-situ instruments onboard the NASA Langley P-3B over a number of DRAGON (Distributed Regional Aerosol Gridded Observation Network) AERONET ground stations. As HSRL-2 flew over those same ground stations, measurements and retrievals of optical depth, and microphysical aerosol properties were obtained by all three platforms. We will present the results of this intercomparison and discuss the challenges inherent to such comparisons.

  12. Cloud-Aerosol Interactions: Retrieving Aerosol Ångström Exponents from Calipso Measurements of Opaque Water Clouds

    NASA Astrophysics Data System (ADS)

    Vaughan, Mark; Liu, Zhaoyan; Hu, Yong-Xiang; Powell, Kathleen; Omar, Ali; Rodier, Sharon; Hunt, William; Kar, Jayanta; Tackett, Jason; Getzewich, Brian; Lee, Kam-Pui

    2016-06-01

    Backscatter and extinction from water clouds are well-understood, both theoretically and experimentally, and thus changes to the expected measurement of layer-integrated attenuated backscatter can be used to infer the optical properties of overlying layers. In this paper we offer a first look at a new retrieval technique that uses CALIPSO measurements of opaque water clouds to derive optical depths and Ångström exponents for overlying aerosol layers.

  13. Monitoring Everglades freshwater marsh water level using L-band synthetic aperture radar backscatter

    USGS Publications Warehouse

    Kim, Jin-Woo; Lu, Zhong; Jones, John W.; Shum, C.K.; Lee, Hyongki; Jia, Yuanyuan

    2014-01-01

    The Florida Everglades plays a significant role in controlling floods, improving water quality, supporting ecosystems, and maintaining biodiversity in south Florida. Adaptive restoration and management of the Everglades requires the best information possible regarding wetland hydrology. We developed a new and innovative approach to quantify spatial and temporal variations in wetland water levels within the Everglades, Florida. We observed high correlations between water level measured at in situ gages and L-band SAR backscatter coefficients in the freshwater marsh, though C-band SAR backscatter has no close relationship with water level. Here we illustrate the complementarity of SAR backscatter coefficient differencing and interferometry (InSAR) for improved estimation of high spatial resolution water level variations in the Everglades. This technique has a certain limitation in applying to swamp forests with dense vegetation cover, but we conclude that this new method is promising in future applications to wetland hydrology research.

  14. High-frequency attenuation and backscatter measurements of rat blood between 30 and 60 MHz

    NASA Astrophysics Data System (ADS)

    Huang, Chih-Chung

    2010-10-01

    There has recently been a great deal of interest in noninvasive high-frequency ultrasound imaging of small animals such as rats due to their being the preferred animal model for gene therapy and cancer research. Improving the interpretation of the obtained images and furthering the development of the imaging devices require a detailed knowledge of the ultrasound attenuation and backscattering of biological tissue (e.g. blood) at high frequencies. In the present study, the attenuation and backscattering coefficients of the rat red blood cell (RBC) suspensions and whole blood with hematocrits ranging from 6% to 40% were measured between 30 and 60 MHz using a modified substitution approach. The acoustic parameters of porcine blood under the same conditions were also measured in order to compare differences in the blood properties between these two animals. For porcine blood, both whole blood and RBC suspension were stirred at a rotation speed of 200 rpm. Three different rotation speeds of 100, 200 and 300 rpm were carried out for rat blood experiments. The attenuation coefficients of both rat and porcine blood were found to increase linearly with frequency and hematocrit (the values of coefficients of determination (r2) are around 0.82-0.97 for all cases). The average attenuation coefficient of rat whole blood with a hematocrit of 40% increased from 0.26 Nepers mm-1 at 30 MHz to 0.47 Nepers mm-1 at 60 MHz. The maximum backscattering coefficients of both rat and porcine RBC suspensions were between 10% and 15% hematocrits at all frequencies. The fourth-power dependence of backscatter on frequency was approximately valid for rat RBC suspensions with hematocrits between 6% and 40%. However, the frequency dependence of the backscatter estimate deviates from a fourth-power law for porcine RBC suspension with hematocrit higher than 20%. The backscattering coefficient plateaued for hematocrits higher than 15% in porcine blood, but for rat blood it was maximal around a

  15. Laser transmission-backscattering through inhomogeneous cirrus clouds.

    PubMed

    Ou, Szu-Cheng; Takano, Yoshihide; Liou, Kuo-Nan; Lefevre, Randy J; Johnson, Michael W

    2002-09-20

    We have developed a two-dimensional (2D) model for inhomogeneous cirrus clouds in plane-parallel and spherical geometries for the analysis of the transmission and backscattering of high-energy laser beams. The 2D extinction-coefficient and mean effective ice-crystal size fields for cirrus clouds can be determined from a combination of the remote sensing of cirrus clouds by use of the Advanced Very High Resolution Radiometer on board National Oceanic and Atmospheric Administration satellites and the vertical profiling of ice-crystal size distributions available from limited measurements. We demonstrate that satellite remote sensing of the position and the composition of high cirrus can be incorporated directly in the computer model developed for the transmission and backscattering of high-energy laser beams in realistic atmospheres. The results of laser direct transmission, forward scattering, and backscattering are analyzed carefully with respect to aircraft height, cirrus cloud optical depth, and ice-crystal size and orientation. Uncertainty in laser transmission that is due to errors in the retrieved ice-crystal size is negligible. But uncertainty of the order of 2% can be produced if the retrieved optical depth has errors of +/-0.05. With both the aircraft and the target near the cloud top, the direct transmission decreases, owing to the propagation of the laser beam through the curved portion of the cloud top. This effect becomes more pronounced as the horizontal distance between the aircraft and the target increases.

  16. Dependence of radar backscatter on coniferous forest biomass

    SciTech Connect

    Dobson, M.C.; Ulaby, F.T. ); LeToan, T.; Beaudoin, A. ); Kasischke, E.S. ); Christensen, N. )

    1992-03-01

    This paper discusses two independent experimental efforts which have examined the dependence of radar backscatter on aboveground biomass of mono specie conifer forests using polarimetric airborne SAR data at P-, L- and C-bands. Plantations of maritime pines near Landes, France range in age from 8 to 46 years with aboveground biomass between 5 and 105 tons/ha. Loblolly pine stands established on abandoned agricultural fields near Duke, NC range in age from 4 to 90 years and extend the range of aboveground biomass to 560 tons/ha for the older stands. These two experimental forests are largely complementary with respect to biomass. Radar backscatter is found to increase approximately linearly with increasing biomass until it saturates at a biomass level that depends on the radar frequency. The biomass saturation level is about 200 tons/ha at P-band and 100 tons/ha at L-band, and the C-band backscattering coefficient shows much less sensitivity to total aboveground biomass.

  17. Organic aerosols

    SciTech Connect

    Penner, J.E.

    1994-01-01

    Organic aerosols scatter solar radiation. They may also either enhance or decrease concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the sources of organic aerosol matter. The anthropogenic sources of organic aerosols may be as large as the anthropogenic sources of sulfate aerosols, implying a similar magnitude of direct forcing of climate. The source estimates are highly uncertain and subject to revision in the future. A slow secondary source of organic aerosols of unknown origin may contribute to the observed oceanic concentrations. The role of organic aerosols acting as cloud condensation nuclei (CCN) is described and it is concluded that they may either enhance or decrease the ability of anthropogenic sulfate aerosols to act as CCN.

  18. Beta Backscatter Measures the Hardness of Rubber

    NASA Technical Reports Server (NTRS)

    Morrissey, E. T.; Roje, F. N.

    1986-01-01

    Nondestructive testing method determines hardness, on Shore scale, of room-temperature-vulcanizing silicone rubber. Measures backscattered beta particles; backscattered radiation count directly proportional to Shore hardness. Test set calibrated with specimen, Shore hardness known from mechanical durometer test. Specimen of unknown hardness tested, and radiation count recorded. Count compared with known sample to find Shore hardness of unknown.

  19. Interrelationships Between Aerosol Characteristics and Light Scattering During Late-winter in a Eastern Mediterranean Arid Environment

    NASA Technical Reports Server (NTRS)

    Ichoku, C.; Andreae, M. O.; Meixner, F. X.; Schebeske, G.; Formenti, P.; Maenhaut, W.; Cafmeyer, J.; Ptasinski, J.; Karnieli, A.; Orlovsky, L.

    1999-01-01

    An intensive field campaign involving measurement of various aerosol physical, chemical, and radiative properties was conducted at Sde Boker in the Negev Desert of Israel, from 18 February to 15 March 1997. Nephelometer measurements gave average background scattering coefficient values of about 25 M/m at 550 nm wavelength, but strong dust events caused the value of this parameter to rise up to about 800 M/m Backscattering fractions did not depend on aerosol loading, and generally fell in the range of 0.1 to 0.25, comparable to values reported for marine and Arctic environments. Chemical analysis of the aerosol revealed that, in the coarse size range (2 - 10 micrometer equivalent aerodynamic diameter (EAD)), calcium (Ca) was by far the most abundant element followed by silicon (Si), both of which are indicators for mineral dust. In the fine size fraction (< 2 micrometers EAD), sulfur (S) generally was the dominant element, except during high dust episodes when Ca and Si were again the most abundant. Furthermore, fine black carbon (BC) correlates with S, suggesting that they may have originated from the same sources or source regions. An indication of the short-term effect of aerosol loading on radiative forcing was provided by measurements of global and diffuse solar radiation, which showed that during high turbidity periods (strong dust events) almost all of the solar radiation reaching the area is scattered or absorbed.

  20. Cloud-Driven Changes in Aerosol Optical Properties - Final Technical Report

    SciTech Connect

    Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

    2007-09-30

    The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles’ lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

  1. Cloud Scavenging Effects on Aerosol Radiative and Cloud-nucleating Properties - Final Technical Report

    SciTech Connect

    Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

    2009-03-05

    The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles’ lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

  2. Optical and microphysical characterization of aerosol layers over South Africa by means of multi-wavelength depolarization and Raman lidar measurements

    NASA Astrophysics Data System (ADS)

    Giannakaki, Elina; van Zyl, Pieter G.; Müller, Detlef; Balis, Dimitris; Komppula, Mika

    2016-07-01

    Optical and microphysical properties of different aerosol types over South Africa measured with a multi-wavelength polarization Raman lidar are presented. This study could assist in bridging existing gaps relating to aerosol properties over South Africa, since limited long-term data of this type are available for this region. The observations were performed under the framework of the EUCAARI campaign in Elandsfontein. The multi-wavelength PollyXT Raman lidar system was used to determine vertical profiles of the aerosol optical properties, i.e. extinction and backscatter coefficients, Ångström exponents, lidar ratio and depolarization ratio. The mean microphysical aerosol properties, i.e. effective radius and single-scattering albedo, were retrieved with an advanced inversion algorithm. Clear differences were observed for the intensive optical properties of atmospheric layers of biomass burning and urban/industrial aerosols. Our results reveal a wide range of optical and microphysical parameters for biomass burning aerosols. This indicates probable mixing of biomass burning aerosols with desert dust particles, as well as the possible continuous influence of urban/industrial aerosol load in the region. The lidar ratio at 355 nm, the lidar ratio at 532 nm, the linear particle depolarization ratio at 355 nm and the extinction-related Ångström exponent from 355 to 532 nm were 52 ± 7 sr, 41 ± 13 sr, 0.9 ± 0.4 % and 2.3 ± 0.5, respectively, for urban/industrial aerosols, while these values were 92 ± 10 sr, 75 ± 14 sr, 3.2 ± 1.3 % and 1.7 ± 0.3, respectively, for biomass burning aerosol layers. Biomass burning particles are larger and slightly less absorbing compared to urban/industrial aerosols. The particle effective radius were found to be 0.10 ± 0.03, 0.17 ± 0.04 and 0.13 ± 0.03 µm for urban/industrial, biomass burning, and mixed aerosols, respectively, while the single-scattering albedo at 532 nm was 0.87 ± 0.06, 0.90 ± 0.06, and 0.88 ± 0.07 (at 532

  3. On recent (2008-2012) stratospheric aerosols observed by lidar over Japan

    NASA Astrophysics Data System (ADS)

    Uchino, O.; Sakai, T.; Nagai, T.; Nakamae, K.; Morino, I.; Arai, K.; Okumura, H.; Takubo, S.; Kawasaki, T.; Mano, Y.; Matsunaga, T.; Yokota, T.

    2012-09-01

    An increase in stratospheric aerosols caused by the volcanic eruption of Mt. Nabro (13.37° N, 41.70° E) on 12 June 2011 was first detected by lidar at Tsukuba (36.05° N, 140.13° E) and Saga (33.24° N, 130.29° E) in Japan. The maximum backscattering ratios at a wavelength of 532 nm were 2.0 at 17.0 km on 10 July 2011 at Tsukuba and 3.6 at 18.2 km on 23 June 2011 at Saga. The maximum integrated backscattering coefficients (IBCs) above the first tropopause height were 4.18 × 10-4 sr-1 on 11 February 2012 at Tsukuba and 4.19 × 10-4 sr-1 on 23 June 2011 at Saga, respectively. A time series of lidar observational results at Tsukuba have also been reported from January 2008 through May 2012. Increases in stratospheric aerosols were observed after the volcanic eruptions of Mt. Kasatochi (52.18° N, 175.51° E) in August 2008 and Mt. Sarychev Peak (48.09° N, 153.20° E) in June 2009. The yearly averaged IBCs at Tsukuba were 2.60 × 10-4 sr-1, 2.52 × 10-4 sr-1, 2.45 × 10-4 sr-1, and 2.20 × 10-4 sr-1 for 2008, 2009, 2010, and 2011, respectively. These values were about twice the IBC background level (1.21 × 10-4 sr-1) from 1997 to 2001 at Tsukuba. We briefly discuss the influence of the increased aerosols on climate and the implications for analysis of satellite data.

  4. On recent (2008-2012) stratospheric aerosols observed by lidar over Japan

    NASA Astrophysics Data System (ADS)

    Uchino, O.; Sakai, T.; Nagai, T.; Nakamae, K.; Morino, I.; Arai, K.; Okumura, H.; Takubo, S.; Kawasaki, T.; Mano, Y.; Matsunaga, T.; Yokota, T.

    2012-12-01

    An increase in stratospheric aerosols caused by the volcanic eruption of Mt. Nabro (13.37° N, 41.70° E) on 12 June 2011 was detected by lidar at Tsukuba (36.05° N, 140.13° E) and Saga (33.24° N, 130.29° E) in Japan. The maximum backscattering ratios at a wavelength of 532 nm were 2.0 at 17.0 km on 10 July 2011 at Tsukuba and 3.6 at 18.2 km on 23 June 2011 at Saga. The maximum integrated backscattering coefficients (IBCs) at 532 nm above the first tropopause height were 4.18×10-4 sr-1 on 11 February 2012 at Tsukuba and 4.19×10-4 sr-1 on 23 June 2011 at Saga, respectively. A time series of lidar observational results at Tsukuba have also been reported from January 2008 through May 2012. Increases in stratospheric aerosols were observed after the volcanic eruptions of Mt. Kasatochi (52.18° N, 175.51° E) in August 2008 and Mt. Sarychev Peak (48.09° N, 153.20° E) in June 2009. The yearly averaged IBCs at Tsukuba were 2.54×10-4 sr-1, 2.48×10-4 sr-1, 2.45×10-4 sr-1, and 2.20×10-4 sr-1 for 2008, 2009, 2010, and 2011, respectively. These values were about twice the IBC background level (1.21×10-4 sr-1) from 1997 to 2001 at Tsukuba. We briefly discuss the influence of the increased aerosols on climate and the implications for analysis of satellite data.

  5. Simulation of positron backscattering and implantation profiles using Geant4 code

    NASA Astrophysics Data System (ADS)

    Huang, Shi-Juan; Pan, Zi-Wen; Liu, Jian-Dang; Han, Rong-Dian; Ye, Bang-Jiao

    2015-10-01

    For the proper interpretation of the experimental data produced in slow positron beam technique, the positron implantation properties are studied carefully using the latest Geant4 code. The simulated backscattering coefficients, the implantation profiles, and the median implantation depths for mono-energetic positrons with energy range from 1 keV to 50 keV normally incident on different crystals are reported. Compared with the previous experimental results, our simulation backscattering coefficients are in reasonable agreement, and we think that the accuracy may be related to the structures of the host materials in the Geant4 code. Based on the reasonable simulated backscattering coefficients, the adjustable parameters of the implantation profiles which are dependent on materials and implantation energies are obtained. The most important point is that we calculate the positron backscattering coefficients and median implantation depths in amorphous polymers for the first time and our simulations are in fairly good agreement with the previous experimental results. Project supported by the National Natural Science Foundation of China (Grant Nos. 11175171 and 11105139).

  6. Aerosol model development for environmental monitoring in the coastal atmosphere surface layer

    NASA Astrophysics Data System (ADS)

    Kaloshin, Gennady A.; Matvienko, Gennady G.

    2007-06-01

    Extinction of radiation in the marine boundary layer is dominated by scattering and absorption due to atmospheric aerosol. It is known, that the extinction of optical radiation visible and near IR spectra in the marine surface layer is determined mainly by scattering and absorption atmospheric aerosol. It influences on a dependence of spectral transmission and extinction both natural, and artificial light that is of interest for a wide range of problems, in particular for radiating problems at studying laws of climate formation, and for lines of the applications connected to the forecast of a signal power in coastal conditions at an estimation of EO systems characteristics. This is important to optical retrievals from satellite, remote sensing at environmental monitoring, backscatter of light to space (including climate forcing), cloud properties etc. In unpolluted regions the greatest effects on near shore scattering extinction will be a result of sea-salt from breaking waves and variations in relative humidity. The role of breaking waves appears to be modulated by wind, tide, swell, wave spectra and coastal conditions. These influences will be superimposed upon aerosol generated by open ocean sea-salt aerosol that varies with wind speed. The focus of our study is the extinction and optical effects due to aerosol in a specific coastal region. This involves linking coastal physical properties to oceanic and meteorological parameters in order to develop predictive algorithms that describe 3-D aerosol structure and variability. The aerosol microphysical model of the marine and coastal atmosphere surface layer is considered. The model distinctive feature is parameterization of amplitude and width of the modes as functions of fetch and wind speed. In the paper the dN/dr behavior depending at change meteorological parameters, heights above sea level, fetch, wind speed and RH is show. On the basis of the developed model with usage of Mie theory for spheres the

  7. Vertical distribution of aerosol extinction cross section and inference of aerosol imaginary index in the troposphere by lidar technique

    NASA Technical Reports Server (NTRS)

    Spinhirne, J. D.; Reagan, J. A.; Herman, B. M.

    1980-01-01

    The paper reports on vertical profiles of aerosol extinction and backscatter in the troposphere which were obtained from multi zenith angle lidar measurements. It is reported that a direct slant path solution was found to be not possible due to horizontal inhomogeneity of the atmosphere. Attention is given to the use of a regression analysis with respect to zenith angle for a layer integration of the angle dependent lidar equation in order to determine the optical thickness and aerosol extinction-to-backscatter ratio for defined atmospheric layers and the subsequent evaluation of cross-section profiles.

  8. Lidar backscatter signal recovery from phototransistor systematic effect by deconvolution.

    PubMed

    Refaat, Tamer F; Ismail, Syed; Abedin, M Nurul; Spuler, Scott M; Mayor, Shane D; Singh, Upendra N

    2008-10-10

    Backscatter lidar detection systems have been designed and integrated at NASA Langley Research Center using IR heterojunction phototransistors. The design focused on maximizing the system signal-to-noise ratio rather than noise minimization. The detection systems have been validated using the Raman-shifted eye-safe aerosol lidar (REAL) at the National Center for Atmospheric Research. Incorporating such devices introduces some systematic effects in the form of blurring to the backscattered signals. Characterization of the detection system transfer function aided in recovering such effects by deconvolution. The transfer function was obtained by measuring and fitting the system impulse response using single-pole approximation. An iterative deconvolution algorithm was implemented in order to recover the system resolution, while maintaining high signal-to-noise ratio. Results indicated a full recovery of the lidar signal, with resolution matching avalanche photodiodes. Application of such a technique to atmospheric boundary and cloud layers data restores the range resolution, up to 60 m, and overcomes the blurring effects.

  9. Feasibility of using Backscattered Mueller Matrix Images for Bioaerosol Detection

    NASA Astrophysics Data System (ADS)

    Li, Changhui; Kattawar, George W.

    2006-03-01

    It has been shown that by looking at the backscattered radiance from an object illuminated by a laser beam one could effectively distinguish different morphologies from one another. However, if one wants to obtain all the information possible from elastic scattering either from a single particle or an ensemble of particles then one must use the Mueller matrix which contains all the polarization and radiance information available. In this talk, we will show that if we take advantage of the polarization information of the object, many more images related to the overall morphology as well as the internal structure of the object can be obtained. We will present images of the complete Mueller matrix to show the sensitivity of its sixteen components to both external and internal particle properties. We will also show that by using only one or two elements of this matrix one might be able to distinguish bioaerosols such as anthrax from more benign aerosols. We also show that the backscattering Mueller images contain more information than the forward scattering ones.

  10. Quantitative Analysis of Venus Radar Backscatter Data in ArcGIS

    NASA Technical Reports Server (NTRS)

    Long, S. M.; Grosfils, E. B.

    2005-01-01

    Ongoing mapping of the Ganiki Planitia (V14) quadrangle of Venus and definition of material units has involved an integrated but qualitative analysis of Magellan radar backscatter images and topography using standard geomorphological mapping techniques. However, such analyses do not take full advantage of the quantitative information contained within the images. Analysis of the backscatter coefficient allows a much more rigorous statistical comparison between mapped units, permitting first order selfsimilarity tests of geographically separated materials assigned identical geomorphological labels. Such analyses cannot be performed directly on pixel (DN) values from Magellan backscatter images, because the pixels are scaled to the Muhleman law for radar echoes on Venus and are not corrected for latitudinal variations in incidence angle. Therefore, DN values must be converted based on pixel latitude back to their backscatter coefficient values before accurate statistical analysis can occur. Here we present a method for performing the conversions and analysis of Magellan backscatter data using commonly available ArcGIS software and illustrate the advantages of the process for geological mapping.

  11. The effect of leaf size on the microwave backscattering by corn

    NASA Technical Reports Server (NTRS)

    Paris, J. F.

    1986-01-01

    Attema and Ulaby (1978) proposed the cloud model to predict the microwave backscattering properties of vegetation. This paper describes a modification in which the biophysical properties and microwave properties of vegetation are related at the level of the individual scatterer (e.g., the leaf or the stalk) rather than at the level of the aggregated canopy (e.g., the green leaf area index). Assuming that the extinction cross section of an average leaf was proportional to its water content, that a power law relationship existed between the backscattering cross section of an average green corn leaf and its area, and that the backscattering coefficient of the surface was a linear function of its volumetric soil moisture content, it is found that the explicit inclusion of the effects of corn leaf size in the model led to an excellent fit between the observed and predicted backscattering coefficients. Also, an excellent power law relationship existed between the backscattering cross section of a corn leaf and its area.

  12. Lidar determination of the composition of atmosphere aerosols

    NASA Technical Reports Server (NTRS)

    Wright, M. L.

    1980-01-01

    Theoretical and experimental studies of the feasibility of using DIfferential SCatter (DISC) lidar to measure the composition of atmospheric aerosols are described. This technique involves multiwavelength measurements of the backscatter cross section of aerosols in the middle infrared, where a number of materials display strong restrahlen features that significantly modulate the backscatter spectrum. The theoretical work indicates that a number of materials of interest, including sulfuric acid, ammonium sulfate, and silicates, can be discriminated among with a CO2 lidar. An initial evaluation of this procedure was performed in which cirrus clouds and lower altitude tropospheric aerosols were developed. The observed ratio spectrum of the two types of aerosol displays structure that is in crude accord with theoretical expectations.

  13. Retrieving the Vertical Structure of the Effective Aerosol Complex Index of Refraction from a Combination of Aerosol in Situ and Remote Sensing Measurements During TARFOX

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Turco, R. P.; Liou, K. N.; Russell, P. B.; Bergstrom, R. W.; Schmid, B.; Livingston, J. M.; Hobbs, P. V.; Hartley, W. S.; Ismail, S.; Ferrare, R. A.; Browell, E. V.

    2000-01-01

    The largest uncertainty in estimates of the effects of atmospheric aerosols on climate stems from uncertainties in the determination of their microphysical properties, including the aerosol complex index of refraction, which in turn determines their optical properties. A novel technique is used to estimate the aerosol complex index of refraction in distinct vertical layers from a combination of aerosol in situ size distribution and remote sensing measurements during the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX). In particular, aerosol backscatter measurements using the NASA Langley LASE (Lidar Atmospheric Sensing Experiment) instrument and in situ aerosol size distribution data are utilized to derive vertical profiles of the "effective" aerosol complex index of refraction at 815 nm (i.e., the refractive index that would provide the same backscatter signal in a forward calculation on the basis of the measured in situ particle size distributions for homogeneous, spherical aerosols). A sensitivity study shows that this method yields small errors in the retrieved aerosol refractive indices, provided the errors in the lidar-derived aerosol backscatter are less than 30% and random in nature. Absolute errors in the estimated aerosol refractive indices are generally less than 0.04 for the real part and can be as much as 0.042 for the imaginary part in the case of a 30% error in the lidar-derived aerosol backscatter. The measurements of aerosol optical depth from the NASA Ames Airborne Tracking Sunphotometer (AATS-6) are successfully incorporated into the new technique and help constrain the retrieved aerosol refractive indices. An application of the technique to two TARFOX case studies yields the occurrence of vertical layers of distinct aerosol refractive indices. Values of the estimated complex aerosol refractive index range from 1.33 to 1.45 for the real part and 0.001 to 0.008 for the imaginary part. The methodology devised in this study

  14. YAG aerosol lidar

    NASA Technical Reports Server (NTRS)

    Sullivan, R.

    1988-01-01

    The Global Atmospheric Backscatter Experiment (GLOBE) Mission, using the NASA DC-8 aircraft platform, is designed to provide the magnitude and statistical distribution of atmospheric backscatter cross section at lidar operating wavelengths. This is a fundamental parameter required for the Doppler lidar proposed to be used on a spacecraft platform for global wind field measurements. The prime measurements will be made by a CO2 lidar instrument in the 9 to 10 micron range. These measurements will be complemented with the Goddard YAG Aerosol Lidar (YAL) data in two wavelengths, 0.532 and 1.06 micron, in the visible and near-infrared. The YAL, is being designed to utilize as much existing hardware, as feasible, to minimize cost and reduce implementation time. The laser, energy monitor, telescope and detector package will be mounted on an optical breadboard. The optical breadboard is mounted through isolation mounts between two low boy racks. The detector package will utilize a photomultiplier tube for the 0.532 micron channel and a silicon avalanche photo detector (APD) for the 1.06 micron channel.

  15. Snow backscatter in the 1-8 GHz region

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.

    1976-01-01

    The 1-8 GHz microwave active spectrometer system was used to measure the backscatter response of snow covered ground. The scattering coefficient was measured for all linear polarization combinations at angles of incidence between nadir and 70 deg. Ground truth data consisted of soil moisture, soil temperature profile, snow depth, snow temperature profile, and snow water equivalent. The radar sensitivity to snow water equivalent increased in magnitude with increasing frequency and was almost angle independent for angles of incidence higher than 30 deg, particularly at the higher frequencies. In the 50 deg to 70 deg angular range and in the 6 to 8 GHz frequency range, the sensitivity was typically between -0.4 dB/.1 g/sq cm and -0.5 dB/,1 g/sq cm, and the associated linear correlation coefficient had a magnitude of about 0.8.

  16. Multiply scattered aerosol lidar returns: inversion method and comparison with in situ measurements.

    PubMed

    Bissonnette, L R; Hutt, D L

    1995-10-20

    A novel aerosol lidar inversion method based on the use of multiple-scattering contributions measured by a multiple-field-of-view receiver is proposed. The method requires assumptions that restrict applications to aerosol particles large enough to give rise to measurable multiple scattering and depends on parameters that must be specified empirically but that have an uncertainty range of much less than the boundary value and the backscatter-to-extinction ratio of the conventional single-scattering inversion methods. The proposed method is applied to cloud measurements. The solutions obtained are the profiles of the scattering coefficient and the effective diameter of the cloud droplets. With mild assumptions on the form of the function, the full-size distribution is estimated at each range position from which the extinction coefficient at any visible and infrared wavelength and the liquid water content can be determined. Typical results on slant-path-integrated optical depth, vertical extinction profiles, and fluctuation statistics are compared with in situ data obtained in two field experiments. The inversion works well in all cases reported here, i.e., for water clouds at optical depths between ~0.1 and ~4.

  17. Averaging of Backscatter Intensities in Compounds

    PubMed Central

    Donovan, John J.; Pingitore, Nicholas E.; Westphal, Andrew J.

    2002-01-01

    Low uncertainty measurements on pure element stable isotope pairs demonstrate that mass has no influence on the backscattering of electrons at typical electron microprobe energies. The traditional prediction of average backscatter intensities in compounds using elemental mass fractions is improperly grounded in mass and thus has no physical basis. We propose an alternative model to mass fraction averaging, based of the number of electrons or protons, termed “electron fraction,” which predicts backscatter yield better than mass fraction averaging. PMID:27446752

  18. Simultaneous Retrieval of Effective Refractive Index and Density from Size Distribution and Light Scattering Data: Weakly-Absorbing Aerosol

    SciTech Connect

    Kassianov, Evgueni I.; Barnard, James C.; Pekour, Mikhail S.; Berg, Larry K.; Shilling, John E.; Flynn, Connor J.; Mei, Fan; Jefferson, Anne

    2014-10-01

    We propose here a novel approach for retrieving in parallel the effective density and real refractive index of weakly absorbing aerosol from optical and size distribution measurements. Here we define “weakly absorbing” as aerosol single-scattering albedos that exceed 0.95 at 0.5 um.The required optical measurements are the scattering coefficient and the hemispheric backscatter fraction, obtained in this work from an integrating nephelometer. The required size spectra come from a Scanning Mobility Particle Sizer and an Aerodynamic Particle Sizer. The performance of this approach is first evaluated using a sensitivity study with synthetically generated but measurement-related inputs. The sensitivity study reveals that the proposed approach is robust to random noise; additionally the uncertainties of the retrieval are almost linearly proportional to the measurement errors, and these uncertainties are smaller for the real refractive index than for the effective density. Next, actual measurements are used to evaluate our approach. These measurements include the optical, microphysical, and chemical properties of weakly absorbing aerosol which are representative of a variety of coastal summertime conditions observed during the Two-Column Aerosol Project (TCAP; http://campaign.arm.gov/tcap/). The evaluation includes calculating the root mean square error (RMSE) between the aerosol characteristics retrieved by our approach, and the same quantities calculated using the conventional volume mixing rule for chemical constituents. For dry conditions (defined in this work as relative humidity less than 55%) and sub-micron particles, a very good (RMSE~3%) and reasonable (RMSE~28%) agreement is obtained for the retrieved real refractive index (1.49±0.02) and effective density (1.68±0.21), respectively. Our approach permits discrimination between the retrieved aerosol characteristics of sub-micron and sub-10micron particles. The evaluation results also reveal that the

  19. Simultaneous retrieval of effective refractive index and density from size distribution and light scattering data: weakly absorbing aerosol

    NASA Astrophysics Data System (ADS)

    Kassianov, E.; Barnard, J.; Pekour, M.; Berg, L. K.; Shilling, J.; Flynn, C.; Mei, F.; Jefferson, A.

    2014-05-01

    We propose here a novel approach for retrieving in parallel the effective density and real refractive index of weakly absorbing aerosol from optical and size distribution measurements. Here we define "weakly absorbing" as aerosol single-scattering albedos that exceed 0.95 at 0.5 μm. The required optical measurements are the scattering coefficient and the hemispheric backscatter fraction, obtained in this work from an integrating nephelometer. The required size spectra come from a Scanning Mobility Particle Sizer and an Aerodynamic Particle Sizer. The performance of this approach is first evaluated using a sensitivity study with synthetically generated but measurement-related inputs. The sensitivity study reveals that the proposed approach is robust to random noise; additionally the uncertainties of the retrieval are almost linearly proportional to the measurement errors, and these uncertainties are smaller for the real refractive index than for the effective density. Next, actual measurements are used to evaluate our approach. These measurements include the optical, microphysical, and chemical properties of weakly absorbing aerosol which are representative of a variety of coastal summertime conditions observed during the Two-Column Aerosol Project (TCAP; http://campaign.arm.gov/tcap/). The evaluation includes calculating the root mean square error (RMSE) between the aerosol characteristics retrieved by our approach, and the same quantities calculated using the conventional volume mixing rule for chemical constituents. For dry conditions (defined in this work as relative humidity less than 55%) and sub-micron particles, a very good (RMSE ~ 3%) and reasonable (RMSE ~ 28%) agreement is obtained for the retrieved real refractive index (1.49 ± 0.02) and effective density (1.68 ± 0.21), respectively. Our approach permits discrimination between the retrieved aerosol characteristics of sub-micron and sub-10

  20. Lidar effective multiple-scattering coefficients in cirrus clouds.

    PubMed

    Nicolas, F O; Bissonnette, L R; Flamant, P H

    1997-05-20

    We delimit a regime, valid for most ground-based lidar probings of cirrus clouds, in which the field-of-view dependence of multiple scattering reaches a plateau. In this regime and assuming the phase function to be constant around pi, we formally demonstrate Platt's modification of the single-scattering lidar equation, with a parameter eta(P) accounting for the reduction of the effective scattering coefficient defined so that (1 - eta(P)) is the amount of energy scattered in the forward peak. Then, to cope with nonconstant backscattering functions, we discuss the introduction of an effective backscattering coefficient that is an average of the scattering probabilities around pi.

  1. Initial Verification of GEOS-4 Aerosols Using CALIPSO and MODIS: Scene Classification

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Colarco, Peter R.; Hlavka, Dennis; Levy, Robert C.; Vaughan, Mark A.; daSilva, Arlindo

    2007-01-01

    A-train sensors such as MODIS and MISR provide column aerosol properties, and in the process a means of estimating aerosol type (e.g. smoke vs. dust). Correct classification of aerosol type is important because retrievals are often dependent upon selection of the right aerosol model. In addition, aerosol scene classification helps place the retrieved products in context for comparisons and analysis with aerosol transport models. The recent addition of CALIPSO to the A-train now provides a means of classifying aerosol distribution with altitude. CALIPSO level 1 products include profiles of attenuated backscatter at 532 and 1064 nm, and depolarization at 532 nm. Backscatter intensity, wavelength ratio, and depolarization provide information on the vertical profile of aerosol concentration, size, and shape. Thus similar estimates of aerosol type using MODIS or MISR are possible with CALIPSO, and the combination of data from all sensors provides a means of 3D aerosol scene classification. The NASA Goddard Earth Observing System general circulation model and data assimilation system (GEOS-4) provides global 3D aerosol mass for sulfate, sea salt, dust, and black and organic carbon. A GEOS-4 aerosol scene classification algorithm has been developed to provide estimates of aerosol mixtures along the flight track for NASA's Geoscience Laser Altimeter System (GLAS) satellite lidar. GLAS launched in 2003 and did not have the benefit of depolarization measurements or other sensors from the A-train. Aerosol typing from GLAS data alone was not possible, and the GEOS-4 aerosol classifier has been used to identify aerosol type and improve the retrieval of GLAS products. Here we compare 3D aerosol scene classification using CALIPSO and MODIS with the GEOS-4 aerosol classifier. Dust, smoke, and pollution examples will be discussed in the context of providing an initial verification of the 3D GEOS-4 aerosol products. Prior model verification has only been attempted with surface mass

  2. Evaluation of vegetation fire smoke plume dynamics and aerosol load using UV scanning lidar and fire-atmosphere modelling during the Mediterranean Letia 2010 experiment

    NASA Astrophysics Data System (ADS)

    Leroy-Cancellieri, V.; Augustin, P.; Filippi, J. B.; Mari, C.; Fourmentin, M.; Bosseur, F.; Morandini, F.; Delbarre, H.

    2013-08-01

    Vegetation fires emit large amount of gases and aerosols which are detrimental to human health. Smoke exposure near and downwind of fires depends on the fire propagation, the atmospheric circulations and the burnt vegetation. A better knowledge of the interaction between wildfire and atmosphere is a primary requirement to investigate fire smoke and particle transport. The purpose of this paper is to highlight the usefulness of an UV scanning lidar to characterize the fire smoke plume and consequently validate fire-atmosphere model simulations. An instrumented burn was conducted in a Mediterranean area typical of ones frequently concern by wildfire with low dense shrubs. Using Lidar measurements positioned near the experimental site, fire smoke plume was thoroughly characterized by its optical properties, edge and dynamics. These parameters were obtained by combining methods based on lidar inversion technique, wavelet edge detection and a backscatter barycenter technique. The smoke plume displacement was determined using a digital video camera coupled with the Lidar. The simulation was performed using a meso-scale atmospheric model in a large eddy simulation configuration (Meso-NH) coupled to a fire propagation physical model (ForeFire) taking into account the effect of wind, slope and fuel properties. A passive numerical scalar tracer was injected in the model at fire location to mimic the smoke plume. The simulated fire smoke plume width remained within the edge smoke plume obtained from lidar measurements. The maximum smoke injection derived from lidar backscatter coefficients and the simulated passive tracer was around 200 m. The vertical position of the simulated plume barycenter was systematically below the barycenter derived from the lidar backscatter coefficients due to the oversimplified properties of the passive tracer compared to real aerosols particles. Simulated speed and horizontal location of the plume compared well with the observations derived from

  3. Evaluation of wildland fire smoke plume dynamics and aerosol load using UV scanning lidar and fire-atmosphere modelling during the Mediterranean Letia 2010 experiment

    NASA Astrophysics Data System (ADS)

    Leroy-Cancellieri, V.; Augustin, P.; Filippi, J. B.; Mari, C.; Fourmentin, M.; Bosseur, F.; Morandini, F.; Delbarre, H.

    2014-03-01

    Vegetation fires emit large amount of gases and aerosols which are detrimental to human health. Smoke exposure near and downwind of fires depends on the fire propagation, the atmospheric circulations and the burnt vegetation. A better knowledge of the interaction between wildfire and atmosphere is a primary requirement to investigate fire smoke and particle transport. The purpose of this paper is to highlight the usefulness of an UV scanning lidar to characterise the fire smoke plume and consequently validate fire-atmosphere model simulations. An instrumented burn was conducted in a Mediterranean area typical of ones frequently subject to wildfire with low dense shrubs. Using lidar measurements positioned near the experimental site, fire smoke plume was thoroughly characterised by its optical properties, edge and dynamics. These parameters were obtained by combining methods based on lidar inversion technique, wavelet edge detection and a backscatter barycentre technique. The smoke plume displacement was determined using a digital video camera coupled with the lidar. The simulation was performed using a mesoscale atmospheric model in a large eddy simulation configuration (Meso-NH) coupled to a fire propagation physical model (ForeFire), taking into account the effect of wind, slope and fuel properties. A passive numerical scalar tracer was injected in the model at fire location to mimic the smoke plume. The simulated fire smoke plume width remained within the edge smoke plume obtained from lidar measurements. The maximum smoke injection derived from lidar backscatter coefficients and the simulated passive tracer was around 200 m. The vertical position of the simulated plume barycentre was systematically below the barycentre derived from the lidar backscatter coefficients due to the oversimplified properties of the passive tracer compared to real aerosol particles. Simulated speed and horizontal location of the plume compared well with the observations derived from

  4. Iterative method to determine an averaged backscatter-to-extinction ratio in cirrus clouds.

    PubMed

    Elouragini, S; Flamant, P H

    1996-03-20

    An iterative method to determine an average backscatter-to-extinction ratio and extinction coefficient simultaneously in cirrus clouds is proposed. The method is based on Klett's inversion, which is constrained by the total optical depth. A signal-to-noise ratio greater than 3 at the cloud top is required for an error in the backscatter-to-extinction ratio lower than 20% to result. The method has been tested with simulated lidar signals. An application to an experimental lidar signal is discussed.

  5. Backscatter and extinction measurements in cloud and drizzle at CO2 laser wavelengths

    NASA Technical Reports Server (NTRS)

    Jennings, S. G.

    1986-01-01

    The backscatter and extinction of laboratory generated cloud and drizzle sized water drops were measured at carbon dioxide laser wavelengths (predominately at lambda = 10.591 micrometers). Two distinctly different drop size regimes were studied: one which covers the range normally encompassed by natural cloud droplets and the other representative of mist or drizzle sized drops. The derivation and verification of the relation between extinction and backscatter at carbon dioxide laser wavelengths should allow the determination of large cloud drop and drizzle extinction coefficient solely from a lidar return signal without requiring knowledge of the drop size distribution. This result will also apply to precipitation sized drops so long as they are spherical.

  6. Global Aerosol Distributions Derived From the CALIPSO Observations

    NASA Astrophysics Data System (ADS)

    Kittaka, C.; Winker, D.; Omar, A.; Liu, Z.; Vaughan, M.; Trepte, C.

    2008-12-01

    Since June 2006, CALIPSO continues to provide routine and systematic measurements of lidar backscatter at two wavelengths, 532 and 1064 nm. As an active sensor, the quality of the measurement is nearly insensitive to surface properties allowing quantitative measurements in regions that are problematic to passive sensors. In particular, aerosol and cloud observations in the polar regions and desert areas are possible with the CALIPSO lidar through the different seasons of a year. The CALIPSO level 2 products, which include aerosol and cloud vertical profiles along tracks, reveal, for the first time, the multi-layer structure of aerosols and clouds on a global scale. This allows not only a depiction of aerosols in relation to clouds, but also the investigation of the interaction between aerosols and clouds. In this study, we present global distributions of aerosol in terms of season, layer height, aerosol species, and in relation to clouds using two years of CALIPSO observations. The CALIPSO aerosol extinction data sets under clear sky are evaluated against the AERONET aerosol optical depth (AOD) and the MODIS AOD collection 5 data sets. The agreement and discrepancies from these comparisons are characterized regionally and investigated using other CALIPSO observable and retrieved parameters. Furthermore, aerosols above clouds and in the vicinity of clouds are examined on a global scale. The implications for aerosol radiative forcing are discussed, highlighting the new and interesting aerosol features obtained from CALIPSO observations.

  7. Chamber LIDAR measurements of aerosolized biological simulants

    NASA Astrophysics Data System (ADS)

    Brown, David M.; Thrush, Evan P.; Thomas, Michael E.; Siegrist, Karen M.; Baldwin, Kevin; Quizon, Jason; Carter, Christopher C.

    2009-05-01

    A chamber aerosol LIDAR is being developed to perform well-controlled tests of optical scattering characteristics of biological aerosols, including Bacillus atrophaeus (BG) and Bacillus thuringiensis (BT), for validation of optical scattering models. The 1.064 μm, sub-nanosecond pulse LIDAR allows sub-meter measurement resolution of particle depolarization ratio or backscattering cross-section at a 1 kHz repetition rate. Automated data acquisition provides the capability for real-time analysis or recording. Tests administered within the refereed 1 cubic meter chamber can provide high quality near-field backscatter measurements devoid of interference from entrance and exit window reflections. Initial chamber measurements of BG depolarization ratio are presented.

  8. Retrieving the Vertical Structure of the Effective Aerosol Complex Index of Refraction from a Combination of Aerosol in Situ and Remote Sensing Measurements During TARFOX

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Turco, R. P.; Liou, K. N.; Russell, P. B.; Bergstrom, R. W.; Schmid, B.; Livingston, J. M.; Hobbs, P. V.; Hartley, W. S.; Ismail, S.

    2000-01-01

    The largest uncertainty in estimates of the effects of atmospheric aerosols on climate stems from uncertainties in the determination of their microphysical properties, including the aerosol complex index of refraction, which in turn determines their optical properties. A novel technique is used to estimate the aerosol complex index of refraction in distinct vertical layers from a combination of aerosol in situ size distribution and remote sensing measurements during the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX). In particular, aerosol backscatter measurements using the NASA Langley LASE (Lidar Atmospheric Sensing Experiment) instrument and in situ aerosol size distribution data are utilized to derive vertical profiles of the 'effective' aerosol complex index of refraction at 815 nm (i.e., the refractive index that would provide the same backscatter signal in a forward calculation on the basis of the measured in situ particle size distributions for homogeneous, spherical aerosols). A sensitivity study shows that this method yields small errors in the retrieved aerosol refractive indices, provided the errors in the lidar derived aerosol backscatter are less than 30% and random in nature. Absolute errors in the estimated aerosol refractive indices are generally less than 0.04 for the real part and can be as much as 0.042 for the imaginary part in the case of a 30% error in the lidar-derived aerosol backscatter. The measurements of aerosol optical depth from the NASA Ames Airborne Tracking Sunphotometer (AATS-6) are successfully incorporated into the new technique and help constrain the retrieved aerosol refractive indices. An application of the technique to two TARFOX case studies yields the occurrence of vertical layers of distinct aerosol refractive indices. Values of the estimated complex aerosol refractive index range from 1.33 to 1.45 for the real part and 0.001 to 0.008 for the imaginary part. The methodology devised in this study

  9. Retrieving seawater-backscattering profiles from coupling Raman and elastic lidar data.

    PubMed

    Malinka, Aleksey V; Zege, Eleonora P

    2004-07-01

    We propose a technique for retrieving seawater-backscattering profiles that is based on the joint use of elastic and Raman lidar returns. We suggest using two lidar channels: the Raman channel and the elastic channel with a light frequency equal to a half-sum of initial and Raman-shifted frequencies of the Raman channel. These specific wavelengths provide the same attenuation laws for elastic and Raman signals if absorption and scattering spectra can be approximated by a power law. In particular, seawater supplies such a possibility in the region of 400-500 nm if extremely bioproductive waters are not considered and the chlorophyll absorption peak at 440 nm does not come out of the background of dissolved organic matter absorption. With these specific initial wavelengths, the elastic and Raman lidar returns differ only in the backscattering coefficients. Because the Raman-backscattering coefficient is constant along the profile, the (elastic-to-Raman) ratio of these lidar returns directly produces the profile of the elastic-backscattering coefficient. This technique stays valid even under multiple-scattering conditions, which is of great importance for seawater sounding.

  10. On observing acoustic backscattering from salinity turbulence.

    PubMed

    Goodman, Louis; Sastre-Cordova, Marcos M

    2011-08-01

    It has been hypothesized that at sufficiently high levels of oceanic salinity turbulence it should be possible to observe acoustic backscattering. However, there have been limited in situ measurements to confirm this hypothesis. Using an autonomous underwater vehicle equipped with upward and downward looking 1.2 MHz acoustic Doppler current profilers and with turbulence and fine scale sensors, measurements were performed in a region of intense turbulence and a strong salinity gradient. The approach taken was to correlate variations in the backscattered acoustic intensity, I, with a theoretical acoustic backscattering cross section per volume for salinity turbulence, σ(s), to obtain an estimated scattering cross section per volume, σ(e). Results indicated that of order 50% of the observed region was characterized by salinity turbulence induced backscattering. PMID:21877785

  11. On observing acoustic backscattering from salinity turbulence.

    PubMed

    Goodman, Louis; Sastre-Cordova, Marcos M

    2011-08-01

    It has been hypothesized that at sufficiently high levels of oceanic salinity turbulence it should be possible to observe acoustic backscattering. However, there have been limited in situ measurements to confirm this hypothesis. Using an autonomous underwater vehicle equipped with upward and downward looking 1.2 MHz acoustic Doppler current profilers and with turbulence and fine scale sensors, measurements were performed in a region of intense turbulence and a strong salinity gradient. The approach taken was to correlate variations in the backscattered acoustic intensity, I, with a theoretical acoustic backscattering cross section per volume for salinity turbulence, σ(s), to obtain an estimated scattering cross section per volume, σ(e). Results indicated that of order 50% of the observed region was characterized by salinity turbulence induced backscattering.

  12. Haze event monitoring and investigation in Penang Island, Malaysia using a ground-based backscatter Lidar

    NASA Astrophysics Data System (ADS)

    Hee, W. S.; Tan, F.; Lim, H. S.; Matjafri, M. Z.

    2014-06-01

    During 24th July 2013 to 1st August 2013, a haze event struck Penang Island, causing the visibility to decrease and increase in Air Pollution Index (API). A ground-based backscatter Lidar, operate at 355 nm which was setup at the roof top of the School of Physics, Universiti Sains Malaysia. It was used to monitor and investigate the haze event. For this work, we studied the daytime variation of the aerosol intensity, distribution, planetary boundary layer (PBL) height and the aerosol optical depth (AOD) values during these days. We found that the aerosol are very intense during the first two days of the haze event and slowly decline as time passed. Finally the haze event died off on 1st August 2013. As for daily aerosol distribution, aerosols are generally more intense during the afternoon. Its intensity is slightly lower in the morning and evening. Similar trends were observed for AOD values as they increase from morning to afternoon and slowly decrease in the evening. Most aerosols are found contained below the PBL which generally found at around 1000 - 2000 m in height.

  13. Autumn-time post-harvest biomass burning in Punjab causing aerosol perturbation over Central Himalayas

    NASA Astrophysics Data System (ADS)

    Sahai, S.; Naja, M. K.; Singh, N.; Phani, D. V.; Dumka, U. C.; Pant, V.; Jefferson, A.; Pant, P.; Sagar, R.; Satheesh, S.; Moorthy, K.; Kotamarthi, V. R.

    2013-12-01

    Extensive in-situ observations of aerosol absorption, scattering and number-concentration, along with back-air trajectories and satellite based fire-counts, have been used to demonstrate the influence of Punjab-region post-harvest biomass burning (PHBB) over the Central Himalayan region during autumn (2011). As part of Ganges Valley Aerosol Experiment (GVAX), aerosol (sub-10 μm size) absorption and scattering coefficients (σap and σsp; 19×13 Mm-1 and 235×196 Mm-1 ), back-scatter fraction (β; 0.09×0.01), single scattering albedo (ω; 0.91×0.02), absorption angstrom exponent (åap; 1.12×0.14; 3rd Quartile value: 1.25), scattering angstrom exponent (åsp; 0.89×0.15) and number concentration (NCN; 2608×1146 cm-3) over Manora Peak (Nainital, India; 29.37°N, 79.45°E, 1958 m amsl) during the autumn 2011, were found to be moderate compared to those over highly polluted urban centres in the region, but significantly different than those observed over similar mountain sites in the region. Aerosol carbonaceous components are estimated, and aerosols with contrasting physico-chemistry, demonstrating organic enrichment and secondary nature have been identified during the season over Manora Peak. This enrichment resulted in aerosol size-scaling to predominantly accumulation mode, causing them to get brighter during the season. Statistically significant seasonal and size variations in σap, σsp, ω, β, åap and åsp supports the autumn-time typicalities observed over the site. Back-air trajectory arrays distinctly represent ';Punjab region' as the potential air-mass source-region during the season. The dependency of σsp (over Manora Peak) on the satellite fire-count (over Punjab region) has been established that confirms the impact of the autumn-time PHBB over the Central Himalayan site. The event has been shown to be annually recurring. In this instance, the entrapment of the organically rich air mass over the Central Himalayan region extending up to the winter

  14. Satellite stratospheric aerosol measurement validation

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Mccormick, M. P.

    1984-01-01

    The validity of the stratospheric aerosol measurements made by the satellite sensors SAM II and SAGE was tested by comparing their results with each other and with results obtained by other techniques (lider, dustsonde, filter, and impactor). The latter type of comparison required the development of special techniques that convert the quantity measured by the correlative sensor (e.g., particle backscatter, number, or mass) to that measured by the satellite sensor (extinction) and quantitatively estimate the uncertainty in the conversion process. The results of both types of comparisons show agreement within the measurement and conversion uncertainties. Moreover, the satellite uncertainty is small compared to aerosol natural variability (caused by seasonal changes, volcanoes, sudden warmings, and vortex structure). It was concluded that the satellite measurements are valid.

  15. Satellite stratospheric aerosol measurement validation

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Mccormick, M. P.

    1984-01-01

    The validity of the stratospheric aerosol measurements made by the satellite sensors SAM II and SAGE was tested by comparing their results with each other and with results obtained by other techniques (lider, dustsonde, filter, and impactor). The latter type of comparison required the development of special techniques that convert the quantity measured by the correlative sensor (e.g. particle backscatter, number, or mass) to that measured by the satellite sensor (extinction) and quantitatively estimate the uncertainty in the conversion process. The results of both types of comparisons show agreement within the measurement and conversion uncertainties. Moreover, the satellite uncertainty is small compared to aerosol natural variability (caused by seasonal changes, volcanoes, sudden warmings, and vortex structure). It was concluded that the satellite measurements are valid.

  16. Spectral variability of the particulate backscattering ratio

    NASA Astrophysics Data System (ADS)

    Whitmire, A. L.; Boss, E.; Cowles, T. J.; Pegau, W. S.

    2007-05-01

    The spectral dependency of the particulate backscattering ratio is relevant in the fields of ocean color inversion, light field modeling, and inferring particle properties from optical measurements. Aside from theoretical predictions for spherical, homogeneous particles, we have very limited knowledge of the actual in situ spectral variability of the particulate backscattering ratio. This work presents results from five research cruises that were conducted over a three-year period. Water column profiles of physical and optical properties were conducted across diverse aquatic environments that offered a wide range of particle populations. The main objective of this research was to examine the behavior of the spectral particulate backscattering ratio in situ, both in terms of its absolute magnitude and its variability across visible wavelengths, using over nine thousand 1-meter binned data points for each of five wavelengths of the spectral particulate backscattering ratio. Our analysis reveals no spectral dependence of the particulate backscattering ratio within our measurement certainty, and a geometric mean value of 0.013 for this dataset. This is lower than the commonly used value of 0.0183 from Petzold’s integrated volume scattering data. Within the first optical depth of the water column, the mean particulate backscattering ratio was 0.010.

  17. Separating Dust Mixtures and Other External Aerosol Mixtures Using Airborne High Spectral Resolution Lidar Data

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Ferrare, R. A.; Vaughan, M.; Hostetler, C. A.; Rogers, R. R.; Hair, J. W.; Cook, A. L.; Harper, D. B.

    2013-12-01

    Knowledge of aerosol type is important for source attribution and for determining the magnitude and assessing the consequences of aerosol radiative forcing. The NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL-1) has acquired considerable datasets of both aerosol extensive parameters (e.g. aerosol optical depth) and intensive parameters (e.g. aerosol depolarization ratio, lidar ratio) that can be used to infer aerosol type. An aerosol classification methodology has been used extensively to classify HSRL-1 aerosol measurements of different aerosol types including dust, smoke, urban pollution, and marine aerosol. However, atmospheric aerosol is frequently not a single pure type, but instead occurs as a mixture of types, and this mixing affects the optical and radiative properties of the aerosol. Here we present a comprehensive and unified set of rules for characterizing external mixtures using several key aerosol intensive parameters: extinction-to-backscatter ratio (i.e. lidar ratio), backscatter color ratio, and depolarization ratio. Our mixing rules apply not just to the scalar values of aerosol intensive parameters, but to multi-dimensional normal distributions with variance in each measurement dimension. We illustrate the applicability of the mixing rules using examples of HSRL-1 data where mixing occurred between different aerosol types, including advected Saharan dust mixed with the marine boundary layer in the Caribbean Sea and locally generated dust mixed with urban pollution in the Mexico City surroundings. For each of these cases we infer a time-height cross section of mixing ratio along the flight track and we partition aerosol extinction into portions attributed to the two pure types. Since multiple aerosol intensive parameters are measured and included in these calculations, the techniques can also be used for cases without significant depolarization (unlike similar work by earlier researchers), and so a third example of a

  18. Aerosol profiling by Raman lidar in Nanjing, China

    NASA Astrophysics Data System (ADS)

    Cao, Nianwen; Yang, Shaobo; Xie, Yinhai; Zhu, Cunxiong

    2015-10-01

    Aerosol profiles at 607 nm over ranges from 2 to 20 km were obtained using Raman lidar in Nanjing, China. The measured aerosol extinction coefficient was largely stable at about 1.5-2.5 × 10-4 m-1 after noise and Rayleigh corrections were applied. The noise effect in Raman lidar aerosol measurements is analyzed, and a formula relating aerosol extinction coefficient error and noise is presented in detail. Simulation and experimental results are in good agreement, indicating that the noise-related calculation for the Raman lidar aerosol measurement error is reasonable.

  19. C-band backscatter signatures of old sea ice in the central Arctic during freeze-up

    SciTech Connect

    Carlstroem, A.; Ulander, L.M.H. . Dept. of Radio and Space Science)

    1993-07-01

    Radar backscatter signatures of old sea ice in the central Arctic have been measured and analyzed. A ship-mounted scatterometer was used to acquire backscattering coefficients at 5.4 GHz in the four linear polarization states and at incidence angles between 20[degree] and 60[degree]. Detailed in situ characterizations of the snow and ice were also made to enable comparison with theoretical backscatter models. Freeze-up conditions were prevalent during the experiments period with air temperatures a few degrees below the freezing point and decreasing. The average backscattering coefficient was found to increase when the temperature of the ice surface layer decreased. The semiempirical backscatter model is used to evaluate the measurements and shows that the backscatter increase is due to an increasing penetration depth causing the volume scattering to increase. In the paper, model predictions also show that both surface and volume scattering contribute significantly for the incidence angles of the ERS-1 SAR, i.e., 20[degree] to 26[degree]. At these incidence angles, the dominating scattering mechanism changes from surface to volume scattering as the ice surface temperature decreases during freeze-up.

  20. [Ultraviolet Mie lidar observations of aerosol extinction in a dust storm case over Macao].

    PubMed

    Liu, Qiao-jun; Cheng, A Y S; Zhu, Jian-hua; Fong, S K; Chang, S W; Tam, K S; Viseu, A

    2012-03-01

    Atmospheric aerosol over Macao was monitored by using a 355 nm Mie scattering lidar during the dust event on March 22nd, 2010. Vertical profiles of aerosol extinction coefficients were obtained and correlated with local PM10 concentration. The near-surface aerosol extinction coefficients have good agreement with PM10 concentration values. The aerosol extinction vertical profiles showed that there were distinct layers of dust aerosol concentration. The source and tracks of dust aerosol were analyzed by back-trajectory simulation. Observations showed that this lidar could run well even in dust storm episode, and it would help to further the study on aerosol properties over Macao. PMID:22582620

  1. Comparisons of Airborne HSRL and Modeled Aerosol Profiles

    NASA Astrophysics Data System (ADS)

    Ferrare, R. A.; Burton, S. P.; Hostetler, C. A.; Hair, J. W.; Ismail, S.; Rogers, R. R.; Notari, A.; Berkoff, T.; Butler, C. F.; Collins, J. E., Jr.; Fenn, M. A.; Scarino, A. J.; Clayton, M.; Mueller, D.; Chemyakin, E.; Fast, J. D.; Berg, L. K.; Randles, C. A.; Colarco, P. R.; daSilva, A.

    2014-12-01

    Aerosol profiles derived from a regional and a global model are compared with aerosol profiles acquired by NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidars (HSRLs) during recent field missions. We compare simulated aerosol profiles obtained from the WRF-Chem regional model with those measured by the airborne HSRL-2 instrument over the Atlantic Ocean east of Cape Cod in July 2012 during the Department of Energy Two-Column Aerosol Project (TCAP). While deployed on the LaRC King Air during TCAP, HSRL-2 acquired profiles of aerosol extinction at 355 and 532 nm, as well as aerosol backscatter and depolarization at 355, 532, and 1064 nm. Additional HSRL-2 data products include profiles of aerosol type, mixed layer depth, and aerosol microphysical parameters (e.g. effective radius, concentration). The HSRL-2 and WRF-Chem aerosol profiles are compared along the aircraft flight tracks. HSRL-2 profiles acquired during the NASA Deriving Information on Surface Conditions from COlumn and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) mission over Houston during September 2013 are compared with the NASA Goddard Earth Observing System global model, version 5 (GEOS-5) profiles. In addition to comparing backscatter and extinction profiles, the fraction of aerosol extinction and optical thickness from various aerosol species from GEOS-5 are compared with aerosol extinction and optical thickness contributed by aerosol types derived from HSRL-2 data. We also compare aerosol profiles modeled by GEOS-5 with those measured by the airborne LaRC DIAL/HSRL instrument during August and September 2013 when it was deployed on the NASA DC-8 for the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) mission. DIAL/HSRL measured extinction (532 nm), backscatter (532 and 1064 nm), and depolarization profiles (532 and 1064 nm) in both nadir and zenith directions during long transects over the

  2. Concentration measurement of yeast suspensions using high frequency ultrasound backscattering.

    PubMed

    Elvira, Luis; Vera, Pedro; Cañadas, Francisco Jesús; Shukla, Shiva Kant; Montero, Francisco

    2016-01-01

    This work proposes the use of an ultrasound based technique to measure the concentration of yeasts in liquid suspension. This measurement was achieved by the detection and quantification of ultrasonic echoes backscattered by the cells. More specifically, the technique was applied to the detection and quantification of Saccharomyces cerevisiae. A theoretical approach was proposed to get the average density and sound speed of the yeasts, which were found to be 1116 kg/m(3) and 1679 m/s, respectively. These parameters were needed to model the waves backscattered by each single cell. A pulse-echo arrangement working around 50 MHz, being able to detect echoes from single yeasts was used to characterize experimentally yeast solutions from 10(2) to 10(7)cells/ml. The Non-negative Matrix Factorization denoising technique was applied for data analysis. This technique required a previous learning of the spectral patterns of the echoes reflected from yeasts in solution and the base noise from the liquid medium. Comparison between pulse correlation (without denoising) and theoretical and experimental pattern learning was made to select the best signal processing. A linear relation between ultrasound output and concentration was obtained with correlation coefficient R(2)=0.996 for the experimental learning. Concentrations from 10(4) to 10(7)cells/ml were detected above the base noise. These results show the viability of using the ultrasound backscattering technique to detect yeasts and measure their concentration in liquid cultures, improving the sensitivity obtained using spectrophotometric methods by one order of magnitude.

  3. Study on backscattering spectral polarization characteristics of turbid medium

    NASA Astrophysics Data System (ADS)

    Wang, Xuezhen; Wang, Qinghua; Lai, Jiancheng; Li, Zhenhua

    2015-10-01

    Noninvasive monitoring of blood glucose is the current international academic research focus. Near-infrared (NIR) spectroscopy is the most prospective method of the present study, however, with the flaw of insufficient specificity to glucose. Tissue polarimetry has recently received considerable attention due to its specificity to glucose. Thus the glucose predicting accuracy would be improved by combining spectral intensity and polarization characteristics. However the backscattering spectral polarization characteristics of turbid media have not been reported within the wavelength range from visible to near-infrared light. In this paper, we simulated the backscattering spectral Mueller matrix of turbid medium by vector Monte Carlo. And the polarization characteristics, which are linear/circular degree of polarization (DOP) and linear/circular diattenuation, can be extracted from the simulated Mueller matrix by polar decomposition. Circular diattenuation is not discussed because it remains almost zero on the backscattering plane. While reduced scattering coefficient increases linearly with increasing wavelength, the spectral curves show distinct wavelength dependencies. Interestingly, the wavelength dependencies at center position are different from those at off-center position for linear/circular DOP and linear diattenuation. As expected, it is shown that both linear DOP and linear diattenuation increase with the increasing wavelength. However it is not the case for linear DOP in the central area around the incident point. In this area linear DOP decays approximately exponentially with increasing wavelength. As for circular DOP, it varies with wavelength non-monotonically. These results should be meaningful when spectral polarization characteristics are used to combine with spectral intensity to extract glucose concentration by chemometrics.

  4. Concentration measurement of yeast suspensions using high frequency ultrasound backscattering.

    PubMed

    Elvira, Luis; Vera, Pedro; Cañadas, Francisco Jesús; Shukla, Shiva Kant; Montero, Francisco

    2016-01-01

    This work proposes the use of an ultrasound based technique to measure the concentration of yeasts in liquid suspension. This measurement was achieved by the detection and quantification of ultrasonic echoes backscattered by the cells. More specifically, the technique was applied to the detection and quantification of Saccharomyces cerevisiae. A theoretical approach was proposed to get the average density and sound speed of the yeasts, which were found to be 1116 kg/m(3) and 1679 m/s, respectively. These parameters were needed to model the waves backscattered by each single cell. A pulse-echo arrangement working around 50 MHz, being able to detect echoes from single yeasts was used to characterize experimentally yeast solutions from 10(2) to 10(7)cells/ml. The Non-negative Matrix Factorization denoising technique was applied for data analysis. This technique required a previous learning of the spectral patterns of the echoes reflected from yeasts in solution and the base noise from the liquid medium. Comparison between pulse correlation (without denoising) and theoretical and experimental pattern learning was made to select the best signal processing. A linear relation between ultrasound output and concentration was obtained with correlation coefficient R(2)=0.996 for the experimental learning. Concentrations from 10(4) to 10(7)cells/ml were detected above the base noise. These results show the viability of using the ultrasound backscattering technique to detect yeasts and measure their concentration in liquid cultures, improving the sensitivity obtained using spectrophotometric methods by one order of magnitude. PMID:26361271

  5. Effect of species structure and dielectric constant on C-band forest backscatter

    NASA Technical Reports Server (NTRS)

    Lang, R. H.; Landry, R.; Kilic, O.; Chauhan, N.; Khadr, N.; Leckie, D.

    1993-01-01

    A joint experiment between Canadian and USA research teams was conducted early in Oct. 1992 to determine the effect of species structure and dielectric variations on forest backscatter. Two stands, one red pine and one jack pine, in the Petawawa National Forestry Institute (PNFI) were utilized for the experiment. Extensive tree architecture measurements had been taken by the Canada Centre for Remote Sensing (CCRS) several months earlier by employing a Total Station surveying instrument which provides detailed information on branch structure. A second part of the experiment consisted of cutting down several trees and using dielectric probes to measure branch and needle permittivity values at both sites. The dielectric and the tree geometry data were used in the George Washington University (GWU) Vegetation Model to determine the C band backscattering coefficients of the individual stands for VV polarization. The model results show that backscatter at C band comes mainly from the needles and small branches and the upper portion of the trunks acts only as an attenuator. A discussion of variation of backscatter with specie structure and how dielectric variations in needles for both species may affect the total backscatter returns is provided.

  6. Characterizing the vertical profile of aerosol particle extinction and linear depolarization over Southeast Asia and the Maritime Continent: The 2007-2009 view from CALIOP

    NASA Astrophysics Data System (ADS)

    Campbell, James R.; Reid, Jeffrey S.; Westphal, Douglas L.; Zhang, Jianglong; Tackett, Jason L.; Chew, Boon Ning; Welton, Ellsworth J.; Shimizu, Atsushi; Sugimoto, Nobuo; Aoki, Kazuma; Winker, David M.

    2013-03-01

    Vertical profiles of 0.532 μm aerosol particle extinction coefficient and linear volume depolarization ratio are described for Southeast Asia and the Maritime Continent. Quality-screened and cloud-cleared Version 3.01 Level 2 NASA Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) 5-km Aerosol Profile datasets are analyzed from 2007 to 2009. Numerical simulations from the U.S. Naval Aerosol Analysis and Predictive System (NAAPS), featuring two-dimensional variational assimilation of NASA Moderate Resolution Imaging Spectroradiometer and Multi-angle Imaging SpectroRadiometer quality-assured datasets, combined with regional ground-based lidar measurements, are considered for assessing CALIOP retrieval performance, identifying bias, and evaluating regional representativeness. CALIOP retrievals of aerosol particle extinction coefficient and aerosol optical depth (AOD) are high over land and low over open waters relative to NAAPS (0.412/0.312 over land for all data points inclusive, 0.310/0.235 when the per bin average is used and each is treated as single data points; 0.102/0.151 and 0.086/0.124, respectively, over ocean). Regional means, however, are very similar (0.180/0.193 for all data points and 0.155/0.159 when averaged per normalized bin), as the two factors offset one another. The land/ocean offset is investigated, and discrepancies attributed to interpretation of particle composition and a-priori assignment of the extinction-to-backscatter ratio (“lidar ratio”) necessary for retrieving the extinction coefficient from CALIOP signals. Over land, NAAPS indicates more dust present than CALIOP algorithms are identifying, indicating a likely assignment of a higher lidar ratio representative of more absorptive particles. NAAPS resolves more smoke over water than identified with CALIOP, indicating likely usage of a lidar ratio characteristic of less absorptive particles to be applied that biases low AOD there. Over open waters except within the Bay of

  7. Characterizing the Vertical Profile of Aerosol Particle Extinction and Linear Depolarization over Southeast Asia and the Maritime Continent: The 2007-2009 View from CALIOP

    NASA Technical Reports Server (NTRS)

    Campbell, James R.; Reid, Jeffrey S.; Westphal, Douglas L.; Zhang, Jianglong; Tackett, Jason L.; Chew, Boon Ning; Welton, Ellsworth J.; Shimizu, Atsushi; Sugimoto, Nobuo; Aoki, Kazuma; Winker, David M.

    2012-01-01

    Vertical profiles of 0.532 µm aerosol particle extinction coefficient and linear volume depolarization ratio are described for Southeast Asia and the Maritime Continent. Quality-screened and cloud-cleared Version 3.01 Level 2 NASA Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) 5-km Aerosol Profile datasets are analyzed from 2007 to 2009. Numerical simulations from the U.S. Naval Aerosol Analysis and Predictive System (NAAPS), featuring two-dimensional variational assimilation of NASA Moderate Resolution Imaging Spectroradiometer and Multi-angle Imaging Spectro- Radiometer quality-assured datasets, combined with regional ground-based lidar measurements, are considered for assessing CALIOP retrieval performance, identifying bias, and evaluating regional representativeness. CALIOP retrievals of aerosol particle extinction coefficient and aerosol optical depth (AOD) are high over land and low over open waters relative to NAAPS (0.412/0.312 over land for all data points inclusive, 0.310/0.235 when the per bin average is used and each is treated as single data points; 0.102/0.151 and 0.086/0.124, respectively, over ocean). Regional means, however, are very similar (0.180/0.193 for all data points and 0.155/0.159 when averaged per normalized bin), as the two factors offset one another. The land/ocean offset is investigated, and discrepancies attributed to interpretation of particle composition and a-priori assignment of the extinction-to-backscatter ratio ("lidar ratio") necessary for retrieving the extinction coefficient from CALIOP signals. Over land, NAAPS indicates more dust present than CALIOP algorithms are identifying, indicating a likely assignment of a higher lidar ratio representative of more absorptive particles. NAAPS resolvesmore smoke overwater than identified with CALIOP, indicating likely usage of a lidar ratio characteristic of less absorptive particles to be applied that biases low AOD there. Over open waters except within the Bay of Bengal

  8. Generalized model for beam-path variation in ring resonator and its applications in backscattering coupling effect

    NASA Astrophysics Data System (ADS)

    Chen, Meixiong; Yuan, Jie; Long, Xingwu; Kang, Zhenglong; Li, Yingying

    2012-02-01

    A generalized model for beam-path variation analyzed with vector method in square ring resonators is established. The model can be applied to analyze beam-path variation in various ring resonators induced by all the possible perturbation sources. The generalized model is useful for the cavity design, cavity improvement, alignment of planar ring resonators and research on backscattering coupling effect. Backscattering coupling effect in square ring resonator has been chosen as examples to show its application. Backscattering coupling coefficient r is obtained as a function of mirror's axial displacements. Some novel results of backscattering coupling effect have been acquired. The results indicate that r can not be reduced to zero because of the initial machining errors of surfaces of plane mirrors. However, r can be reduced to zero almost when stabilizing frequency of laser gyro by take the suitable values of axial displacements of plane mirrors. These results are important for high precision laser gyro.

  9. The Advective Flux and Temporal Evolution of Aerosols from the Western Pacific Rim as Observed during TRACE-P

    NASA Astrophysics Data System (ADS)

    Anderson, B. E.; Jordan, C. E.; Grant, W. B.; Browell, E. V.; Hudgins, C. H.; Winstead, E. L.; Thornhill, K. L.

    2002-12-01

    The 2001, NASA Transport and Chemical Evolution over the Pacific (TRACE-P) experiment was conducted during late winter and early spring, the time of year when eastward transport of dust and pollution from southern and central Asia reaches a maximum. From bases of operation in Hong Kong, Japan, and Hawaii, extensive measurements of trace species concentrations and characteristics were made from aboard a P-3B and DC-8 aircraft as they flew coordinated sampling missions within air masses at varying distances from the Asian coast and at altitudes ranging from near surface to over 12 km. Data recorded aboard the DC-8 included total condensation nuclei (CN) number densities and fractional volatility; aerosol size distributions, composition and optical properties; and multi-wavelength profiles of polarized, aerosol backscatter. Examining these data in light of simultaneous meteorological and chemical species measurements, we have calculated the advective flux and mean values of aerosol mass and physical properties at various locations within the Western Pacific Basin. At distances >100 km offshore, we find that the highest fluxes of sub-micron particles occurred below 2 km in the region downwind of Shanghai. These air masses exhibited CN concentrations approaching 50,000 cm-3 and visible scattering coefficients in excess of 200 Mm-1. For near-shore sampling between 26° and 36°N within this height range, these parameters averaged ~8,000 cm-3 and 130 Mm-, respectively, . As a result of dilution, surface deposition, and precipitation scavenging, these values rapidly diminished during eastward transport so that parcels sampled at low altitudes >1500 km from land typically contained ~1000 cm-3 CN and exhibited scattering coefficients <30 Mm-1. Because of the decreased strength of loss processes and greater atmospheric stability, parcels sampled in the 2- to 7-km height range were more apt to maintain their initial aerosol signatures during long-range transport.

  10. North-south cross sections of the vertical aerosol distribution over the Atlantic Ocean from multiwavelength Raman/polarization lidar during Polarstern cruises

    PubMed Central

    Kanitz, T; Ansmann, A; Engelmann, R; Althausen, D

    2013-01-01

    Shipborne aerosol lidar observations were performed aboard the research vessel Polarstern in 2009 and 2010 during three north-south cruises from about 50°N to 50°S. The aerosol data set provides an excellent opportunity to characterize and contrast the vertical aerosol distribution over the Atlantic Ocean in the polluted northern and relatively clean southern hemisphere. Three case studies, an observed pure Saharan dust plume, a Patagonian dust plume east of South America, and a case of a mixed dust/smoke plume west of Central Africa are exemplarily shown and discussed by means of their optical properties. The meridional transatlantic cruises were used to determine the latitudinal cross section of the aerosol optical thickness (AOT). Profiles of particle backscatter and extinction coefficients are presented as mean profiles for latitudinal belts to contrast northern- and southern-hemispheric aerosol loads and optical effects. Results of lidar observations at Punta Arenas (53°S), Chile, and Stellenbosch (34°S), South Africa, are shown and confirm the lower frequency of occurrence of free-tropospheric aerosol in the southern hemisphere than in the northern hemisphere. The maximum latitudinal mean AOT of 0.27 was found in the northern tropics (0– 15°N) in the Saharan outflow region. Marine AOT is typically 0.05 ± 0.03. Particle optical properties are presented separately for the marine boundary layer and the free troposphere. Concerning the contrast between the anthropogenically influenced midlatitudinal aerosol conditions in the 30– 60°N belt and the respective belt in the southern hemisphere over the remote Atlantic, it is found that the AOT and extinction coefficients for the vertical column from 0–5km (total aerosol column) and 1–5km height (lofted aerosol above the marine boundary layer) are a factor of 1.6 and 2 higher at northern midlatitudes than at respective southern midlatitudes, and a factor of 2.5 higher than at the clean marine southern

  11. Analysis of microwave backscatter measured by radar altimeter on land to study surface aerodynamic roughness

    NASA Astrophysics Data System (ADS)

    Yang, Le; Liu, Qinhuo

    2012-10-01

    The aerodynamic surface roughness z0 is a key parameter for climate and land-surface models to study surfaceatmosphere exchanges of mass and energy. The roughness length is difficult to estimate without wind speed profile data, which is intractable at regional to global scale. Theoretical formulations of roughness have been developed in terms of canopy attributes such as frontal area, height, and drag coefficient. This paper discusses the potential of radar altimetry, which provides the backscatter coefficient of the land surface at nadir view, to characterise the surface roughness at km scale. The AIEM model and ProSARproSIM are employed to simulate the backscatter coefficient under different surface condition and different observation geometry at bare soil and at pine forest, respectively. The altimetry backscatter decreases with increase of geometric roughness. The microwave backscatter measured at the nadir view is more sensitive to the surface roughness than that at the oblique observation, especially for the smooth surface. The direct forest return is the dominated scattering mechanism for normal incidence at forest area. Since we failed to collect the z0 measurement at arid and semi-arid area with sparse vegetation, the backscatter measurements at Ku and C band of altimeter Jason1 were analyzed with the ground measured aerodynamic surface roughness at three vegetated sites (Da yekou, Yin ke, and Chang Baisan) of China. The relationships we found between Jason1 sigma0 and z0 is not significant, since Jason1 lost track seriously at the three sites. Further research using the altimeter data of Jason2 and Cryosat is possible to demonstrate the potential to map z0 from orbit using radar altimeters.

  12. Aerosol optical absorption measurements with photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Kun; Wang, Lei; Liu, Qiang; Wang, Guishi; Tan, Tu; Zhang, Weijun; Chen, Weidong; Gao, Xiaoming

    2015-04-01

    Many parameters related to radiative forcing in climate research are known only with large uncertainties. And one of the largest uncertainties in global radiative forcing is the contribution from aerosols. Aerosols can scatter or absorb the electromagnetic radiation, thus may have negative or positive effects on the radiative forcing of the atmosphere, respectively [1]. And the magnitude of the effect is directly related to the quantity of light absorbed by aerosols [2,3]. Thus, sensitivity and precision measurement of aerosol optical absorption is crucial for climate research. Photoacoustic spectroscopy (PAS) is commonly recognized as one of the best candidates to measure the light absorption of aerosols [4]. A PAS based sensor for aerosol optical absorption measurement was developed. A 532 nm semiconductor laser with an effective power of 160 mW was used as a light source of the PAS sensor. The PAS sensor was calibrated by using known concentration NO2. The minimum detectable optical absorption coefficient (OAC) of aerosol was determined to be 1 Mm-1. 24 hours continues measurement of OAC of aerosol in the ambient air was carried out. And a novel three wavelength PAS aerosol OAC sensor is in development for analysis of aerosol wavelength-dependent absorption Angstrom coefficient. Reference [1] U. Lohmann and J. Feichter, Global indirect aerosol effects: a review, Atmos. Chem. Phys. 5, 715-737 (2005) [2] M. Z. Jacobson, Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols, Nature 409, 695-697 (2001) [3] V. Ramanathan and G. Carmichae, Global and regional climate changes due to black carbon, nature geoscience 1, 221-227 (2008) [4] W.P Arnott, H. Moosmuller, C. F. Rogers, T. Jin, and R. Bruch, Photoacoustic spectrometer for measuring light absorption by aerosol: instrument description. Atmos. Environ. 33, 2845-2852 (1999).

  13. Time domain attenuation estimation method from ultrasonic backscattered signals

    PubMed Central

    Ghoshal, Goutam; Oelze, Michael L.

    2012-01-01

    Ultrasonic attenuation is important not only as a parameter for characterizing tissue but also for compensating other parameters that are used to classify tissues. Several techniques have been explored for estimating ultrasonic attenuation from backscattered signals. In the present study, a technique is developed to estimate the local ultrasonic attenuation coefficient by analyzing the time domain backscattered signal. The proposed method incorporates an objective function that combines the diffraction pattern of the source/receiver with the attenuation slope in an integral equation. The technique was assessed through simulations and validated through experiments with a tissue mimicking phantom and fresh rabbit liver samples. The attenuation values estimated using the proposed technique were compared with the attenuation estimated using insertion loss measurements. For a data block size of 15 pulse lengths axially and 15 beamwidths laterally, the mean attenuation estimates from the tissue mimicking phantoms were within 10% of the estimates using insertion loss measurements. With a data block size of 20 pulse lengths axially and 20 beamwidths laterally, the error in the attenuation values estimated from the liver samples were within 10% of the attenuation values estimated from the insertion loss measurements. PMID:22779499

  14. Classification of kidney and liver tissue using ultrasound backscatter data

    NASA Astrophysics Data System (ADS)

    Aalamifar, Fereshteh; Rivaz, Hassan; Cerrolaza, Juan J.; Jago, James; Safdar, Nabile; Boctor, Emad M.; Linguraru, Marius G.

    2015-03-01

    Ultrasound (US) tissue characterization provides valuable information for the initialization of automatic segmentation algorithms, and can further provide complementary information for diagnosis of pathologies. US tissue characterization is challenging due to the presence of various types of image artifacts and dependence on the sonographer's skills. One way of overcoming this challenge is by characterizing images based on the distribution of the backscatter data derived from the interaction between US waves and tissue. The goal of this work is to classify liver versus kidney tissue in 3D volumetric US data using the distribution of backscatter US data recovered from end-user displayed Bmode image available in clinical systems. To this end, we first propose the computation of a large set of features based on the homodyned-K distribution of the speckle as well as the correlation coefficients between small patches in 3D images. We then utilize the random forests framework to select the most important features for classification. Experiments on in-vivo 3D US data from nine pediatric patients with hydronephrosis showed an average accuracy of 94% for the classification of liver and kidney tissues showing a good potential of this work to assist in the classification and segmentation of abdominal soft tissue.

  15. Control of collective FSBS and backscatter SRS through plasma composition

    NASA Astrophysics Data System (ADS)

    Rose, Harvey; Lushnikov, Pavel

    2005-10-01

    Nominal NIF parameters are near the collective forward SBS (FSBS) threshold (P. M. Lushnikov and H. A. Rose, Phys. Rev. Lett. 92, 255003 (2004), ``L&R''). It will be shown that being on this instability edge can be used as a control lever: a small amount of high Z dopant may lead to qualitative change in FSBS regime at fixed laser intensity, possibly reducing backscatter instability losses (Such results have already been observed, but absent SSD, a key aspect of our theory: R. M. Stevenson et al., Phys. Plasmas 11, 2709 (2004); L. J. Suter et al., 2738, ib.). Ponderomotive FSBS regimes are determined by the parameter I=F^2( vosc / vosc ve . - ve )^2( ne / ne nc . - nc ) / ( ne / ne nc . - nc ) ν . - ν, with ν the dimensionless ion acoustic damping coefficient and F the optic f/#. Analytical results will be presented which show a decrease of I1pt's threshold value through the addition of high Z dopant to low Z plasma, owing to increased thermal contribution to FSBS. Alternatively, one may raise the threshold by managing the value of νby, e.g., adding He to SiO2. For nominal NIF parameters, a range of He fraction in SiO2 plasma is predicted to suppress backscatter SRS while maintaining control of forward SBS.

  16. The effect of inhomogeneous roughness on radar backscattering from slightly deformed sea ice

    SciTech Connect

    Dierking, W.; Carlstroem, A.; Ulander, L.M.H.

    1997-01-01

    This paper focuses on the spatially varying backscattering signature of an area of refrozen brash ice observed by a ship based scatterometer. The measurements were carried out as part of the Baltic Experiment for ERS-1 in 1994. The scatterometer was operated at 5.4 GHz at different incidence angles and polarizations. By analyzing the scatterometer data over azimuth scans, it was found that the backscattering variabilities are not only due to fading but also contain a textural component. Surface height profiles were measured using a laser. The observed ice surface roughness was nonstationary over the measurement area. The ice surface can be approximated by adjacent patches of stationary roughness with patch dimensions of about 4.5 m. From the roughness spectra of different stationary patches, two roughness classes can be distinguished. The implications of estimating the roughness parameters from relatively short profile lengths is discussed and the effect on theoretical predictions of the backscattering coefficient is investigated. The texture variance is evaluated theoretically on the basis of the simulated backscattering coefficients of the two observed roughness classes and is found to compare with the scatterometer data.

  17. Dependence of light attenuation and backscattering on collagen concentration and chondrocyte density in agarose scaffolds

    NASA Astrophysics Data System (ADS)

    Puhakka, P. H.; Ylärinne, J. H.; Lammi, M. J.; Saarakkala, S.; Tiitu, V.; Kröger, H.; Virén, T.; Jurvelin, J. S.; Töyräs, J.

    2014-11-01

    Optical coherence tomography (OCT) has been applied for high resolution imaging of articular cartilage. However, the contribution of individual structural elements of cartilage on OCT signal has not been thoroughly studied. We hypothesize that both collagen and chondrocytes, essential structural components of cartilage, act as important light scatterers and that variation in their concentrations can be detected by OCT through changes in backscattering and attenuation. To evaluate this hypothesis, we established a controlled model system using agarose scaffolds embedded with variable collagen concentrations and chondrocyte densities. Using OCT, we measured the backscattering coefficient (µb) and total attenuation coefficient (µt) in these scaffolds. Along our hypothesis, light backscattering and attenuation in agarose were dependent on collagen concentration and chondrocyte density. Significant correlations were found between µt and chondrocyte density (ρ = 0.853, p < 0.001) and between µt and collagen concentration (ρ = 0.694, p < 0.001). µb correlated significantly with chondrocyte density (ρ = 0.504, p < 0.001) but not with collagen concentration (ρ = 0.103, p = 0.422) of the scaffold. Thus, quantitation of light backscattering and, especially, attenuation could be valuable when evaluating the integrity of soft tissues, such as articular cartilage with OCT.

  18. Dependence of light attenuation and backscattering on collagen concentration and chondrocyte density in agarose scaffolds.

    PubMed

    Puhakka, P H; Ylärinne, J H; Lammi, M J; Saarakkala, S; Tiitu, V; Kröger, H; Virén, T; Jurvelin, J S; Töyräs, J

    2014-11-01

    Optical coherence tomography (OCT) has been applied for high resolution imaging of articular cartilage. However, the contribution of individual structural elements of cartilage on OCT signal has not been thoroughly studied. We hypothesize that both collagen and chondrocytes, essential structural components of cartilage, act as important light scatterers and that variation in their concentrations can be detected by OCT through changes in backscattering and attenuation. To evaluate this hypothesis, we established a controlled model system using agarose scaffolds embedded with variable collagen concentrations and chondrocyte densities. Using OCT, we measured the backscattering coefficient (µb) and total attenuation coefficient (µt) in these scaffolds. Along our hypothesis, light backscattering and attenuation in agarose were dependent on collagen concentration and chondrocyte density. Significant correlations were found between µt and chondrocyte density (ρ = 0.853, p < 0.001) and between µt and collagen concentration (ρ = 0.694, p < 0.001). µb correlated significantly with chondrocyte density (ρ = 0.504, p < 0.001) but not with collagen concentration (ρ = 0.103, p = 0.422) of the scaffold. Thus, quantitation of light backscattering and, especially, attenuation could be valuable when evaluating the integrity of soft tissues, such as articular cartilage with OCT. PMID:25310088

  19. Aerosols in coastal and inland areas in the equatorial African belt.

    PubMed

    Ssenyonga, Taddeo; Muyimbwa, Dennis; Okullo, Willy; Chen, Yi-Chun; Frette, Øvyind; Hamre, Børge; Steigen, Andreas; Dahlback, Arne; Stamnes, Jakob J

    2014-05-10

    Aerosols affect the climate directly through absorption and reflection of sunlight back to space and indirectly by acting as cloud condensation nuclei. This paper is based on more than three decades of satellite data (1979-1994 and 1996-2012) from total ozone mapping spectrometer (TOMS) and ozone monitoring instrument (OMI), which have provided measurements of backscattered radiances in the wavelength range from 331 to 380 nm. These data have been used to determine the aerosol climatology and to investigate the influence of the aerosol index (AI) on the ultraviolet index (UVI) in coastal land areas in Serrekunda (13.28°N, 16.34°W), The Gambia, and Dar-es-Salaam (6.8°S, 39.26°E), Tanzania, as well as in inland areas in Kampala (0.19°N, 32.34°E), Uganda. Heavy aerosol loadings were found to occur in the dry seasons at all three locations. To reduce the influence of clouds, we disregarded TOMS and OMI data for days during which the UV reflectivity was larger than 9% and investigated the correlation of the AI with the UVI for the remaining days at the three locations. We found a high correlation coefficient of 0.82 for Serrekunda, but poor correlation for Kampala and Dar-es-Salaam. The average AI for Serrekunda was found to be about three times higher than that for Kampala or Dar-es-Salaam, and a positive trend was found for the AI in Kampala and Dar-es-Salaam, whereas a negative trend was found for the AI in Serrekunda.

  20. Reducing parametric backscattering by polarization rotation

    NASA Astrophysics Data System (ADS)

    Barth, Ido; Fisch, Nathaniel J.

    2016-10-01

    When a laser passes through underdense plasmas, Raman and Brillouin Backscattering can reflect a substantial portion of the incident laser energy. This is a major loss mechanism, for example, in employing lasers in inertial confinement fusion. However, by slow rotation of the incident linear polarization, the overall reflectivity can be reduced significantly. Particle in cell simulations show that, for parameters similar to those of indirect drive fusion experiments, polarization rotation reduces the reflectivity by a factor of 5. A general, fluid-model based analytical estimation for the reflectivity reduction agrees with simulations. However, in identifying the source of the backscatter reduction, it is difficult to disentangle the rotating polarization from the frequency separation based approach used to engineer the beam's polarization. Although the backscatter reduction arises similarly to other approaches that employ frequency separation, in the case here, the intensity remains constant in time.

  1. Wind-driven influences on aerosol light scattering in north-east Atlantic air

    NASA Astrophysics Data System (ADS)

    Vaishya, Aditya; Jennings, S. Gerard; O'Dowd, Colin

    2012-03-01

    Ten years (2001-2010) of aerosol light-scattering measurements in N.E. Atlantic marine air are analysed to determine wind-speed related influences on scattering properties. The scattering coefficient and the backscattering coefficient dependency on wind speed (U) was determined for the winter (Low Biological Activity-LBA) and the summer seasons (High Biological Activity-HBA), and was found to be dependent on ˜U2. In spite of having a U2 dependency, scattering properties for the LBA-period are approximately twice those of the HBA-period. 96% of the LBA-HBA scattering difference can be explained by the combined effects of size distribution and refractive index differences while 70% of the scattering difference can be attributed to a difference in refractive index alone resulting from organic-matter enrichment during the HBA period. The 550 nm scattering coefficient was ˜70 Mm-1 for ˜25 ms-1 wind speeds, which is considerably higher than that encountered under polluted air masses in the same region.

  2. A microwave backscattering model for precipitation

    NASA Astrophysics Data System (ADS)

    Ermis, Seda

    A geophysical microwave backscattering model for space borne and ground-based remote sensing of precipitation is developed and used to analyze backscattering measurements from rain and snow type precipitation. Vector Radiative Transfer (VRT) equations for a multilayered inhomogeneous medium are applied to the precipitation region for calculation of backscattered intensity. Numerical solution of the VRT equation for multiple layers is provided by the matrix doubling method to take into account close range interactions between particles. In previous studies, the VRT model was used to calculate backscattering from a rain column on a sea surface. In the model, Mie scattering theory for closely spaced scatterers was used to determine the phase matrix for each sublayer characterized by a set of parameters. The scatterers i.e. rain drops within the sublayers were modelled as spheres with complex permittivities. The rain layer was bounded by rough boundaries; the interface between the cloud and the rain column as well as the interface between the sea surface and the rain were all analyzed by using the integral equation model (IEM). Therefore, the phase matrix for the entire rain column was generated by the combination of surface and volume scattering. Besides Mie scattering, in this study, we use T-matrix approach to examine the effect of the shape to the backscattered intensities since larger raindrops are most likely oblique in shape. Analyses show that the effect of obliquity of raindrops to the backscattered wave is related with size of the scatterers and operated frequency. For the ground-based measurement system, the VRT model is applied to simulate the precipitation column on horizontal direction. Therefore, the backscattered reflectivities for each unit range of volume are calculated from the backscattering radar cross sections by considering radar range and effective illuminated area of the radar beam. The volume scattering phase matrices for each range interval

  3. Bathymetry and acoustic backscatter: Estero Bay, California

    USGS Publications Warehouse

    Hartwell, Stephen R.; Finlayson, David P.; Dartnell, Peter; Johnson, Samuel Y.

    2013-01-01

    Between July 30 and August 9, 2012, scientists from the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC), acquired bathymetry and acoustic-backscatter data from Estero Bay, San Luis Obispo, California, under PCMSC Field Activity ID S-05-12-SC. The survey was done using the R/V Parke Snavely outfitted with a multibeam sonar for swath mapping and highly accurate position and orientation equipment for georeferencing. This report provides these data in a number of different formats, as well as a summary of the mapping mission, maps of bathymetry and backscatter, and Federal Geographic Data Committee (FGDC) metadata.

  4. Microwave backscattering and emission model for grass canopies

    NASA Technical Reports Server (NTRS)

    Saatchi, Sasan S.; Lang, Roger H.; Levine, David M.

    1991-01-01

    A two-layer model is developed that treats the grass canopy as a collection of randomly oriented elliptical dielectric discs over a layer of thatch with underlying soil surface. The distorted Born approximation in conjunction with the Peake formulation is used to calculate the backscattering coefficient and the emissivity from the canopy. Two particular features of this model which are unique for grass canopies are the variation of the canopy structure and the presence of the thatch layer. The basic parameters in the model such as the size and orientation of grass blades, dielectric constant of soil and vegetation, and thickness and water content of the thatch layer have been obtained from ground truth data. To interpret the available experimental observations of grasslands, numerical results from both passive and active models at L-band (1.4 GHz) are generated and various scattering and emission properties of the grass canopies are discussed.

  5. An overview of the first decade of PollyNET: an emerging network of automated Raman-polarization lidars for continuous aerosol profiling

    NASA Astrophysics Data System (ADS)

    Baars, Holger; Kanitz, Thomas; Engelmann, Ronny; Althausen, Dietrich; Heese, Birgit; Komppula, Mika; Preißler, Jana; Tesche, Matthias; Ansmann, Albert; Wandinger, Ulla; Lim, Jae-Hyun; Ahn, Joon Young; Stachlewska, Iwona S.; Amiridis, Vassilis; Marinou, Eleni; Seifert, Patric; Hofer, Julian; Skupin, Annett; Schneider, Florian; Bohlmann, Stephanie; Foth, Andreas; Bley, Sebastian; Pfüller, Anne; Giannakaki, Eleni; Lihavainen, Heikki; Viisanen, Yrjö; Hooda, Rakesh Kumar; Nepomuceno Pereira, Sérgio; Bortoli, Daniele; Wagner, Frank; Mattis, Ina; Janicka, Lucja; Markowicz, Krzysztof M.; Achtert, Peggy; Artaxo, Paulo; Pauliquevis, Theotonio; Souza, Rodrigo A. F.; Prakesh Sharma, Ved; Gideon van Zyl, Pieter; Beukes, Johan Paul; Sun, Junying; Rohwer, Erich G.; Deng, Ruru; Mamouri, Rodanthi-Elisavet; Zamorano, Felix

    2016-04-01

    A global vertically resolved aerosol data set covering more than 10 years of observations at more than 20 measurement sites distributed from 63° N to 52° S and 72° W to 124° E has been achieved within the Raman and polarization lidar network PollyNET. This network consists of portable, remote-controlled multiwavelength-polarization-Raman lidars (Polly) for automated and continuous 24/7 observations of clouds and aerosols. PollyNET is an independent, voluntary, and scientific network. All Polly lidars feature a standardized instrument design with different capabilities ranging from single wavelength to multiwavelength systems, and now apply unified calibration, quality control, and data analysis. The observations are processed in near-real time without manual intervention, and are presented online at http://polly.tropos.de/. The paper gives an overview of the observations on four continents and two research vessels obtained with eight Polly systems. The specific aerosol types at these locations (mineral dust, smoke, dust-smoke and other dusty mixtures, urban haze, and volcanic ash) are identified by their Ångström exponent, lidar ratio, and depolarization ratio. The vertical aerosol distribution at the PollyNET locations is discussed on the basis of more than 55 000 automatically retrieved 30 min particle backscatter coefficient profiles at 532 nm as this operating wavelength is available for all Polly lidar systems. A seasonal analysis of measurements at selected sites revealed typical and extraordinary aerosol conditions as well as seasonal differences. These studies show the potential of PollyNET to support the establishment of a global aerosol climatology that covers the entire troposphere.

  6. Multibeam Sonar Backscatter Data Acquisition and Processing: Guidelines and Recommendations from the GEOHAB Backscatter Working Group

    NASA Astrophysics Data System (ADS)

    Heffron, E.; Lurton, X.; Lamarche, G.; Brown, C.; Lucieer, V.; Rice, G.; Schimel, A.; Weber, T.

    2015-12-01

    Backscatter data acquired with multibeam sonars are now commonly used for the remote geological interpretation of the seabed. The systems hardware, software, and processing methods and tools have grown in numbers and improved over the years, yet many issues linger: there are no standard procedures for acquisition, poor or absent calibration, limited understanding and documentation of processing methods, etc. A workshop organized at the GeoHab (a community of geoscientists and biologists around the topic of marine habitat mapping) annual meeting in 2013 was dedicated to seafloor backscatter data from multibeam sonars and concluded that there was an overwhelming need for better coherence and agreement on the topics of acquisition, processing and interpretation of data. The GeoHab Backscatter Working Group (BSWG) was subsequently created with the purpose of documenting and synthetizing the state-of-the-art in sensors and techniques available today and proposing methods for best practice in the acquisition and processing of backscatter data. Two years later, the resulting document "Backscatter measurements by seafloor-mapping sonars: Guidelines and Recommendations" was completed1. The document provides: An introduction to backscatter measurements by seafloor-mapping sonars; A background on the physical principles of sonar backscatter; A discussion on users' needs from a wide spectrum of community end-users; A review on backscatter measurement; An analysis of best practices in data acquisition; A review of data processing principles with details on present software implementation; and finally A synthesis and key recommendations. This presentation reviews the BSWG mandate, structure, and development of this document. It details the various chapter contents, its recommendations to sonar manufacturers, operators, data processing software developers and end-users and its implication for the marine geology community. 1: Downloadable at https://www.niwa.co.nz/coasts-and-oceans/research-projects/backscatter-measurement-guidelines

  7. Global CALIPSO Observations of Aerosol Changes Near Clouds

    NASA Technical Reports Server (NTRS)

    Varnai, Tamas; Marshak, Alexander

    2011-01-01

    Several recent studies have found that clouds are surrounded by a transition zone of rapidly changing aerosol optical properties and particle size. Characterizing this transition zone is important for better understanding aerosol-cloud interactions and aerosol radiative effects, and also for improving satellite retrievals of aerosol properties. This letter presents a statistical analysis of a monthlong global data set of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) lidar observations over oceans. The results show that the transition zone is ubiquitous over all oceans and extends up to 15 km away from clouds. They also show that near-cloud enhancements in backscatter and particle size are strongest at low altitudes, slightly below the top of the nearest clouds. Also, the enhancements are similar near illuminated and shadowy cloud sides, which confirms that the asymmetry of Moderate Resolution Imaging Spectroradiometer reflectances found in an earlier study comes from 3-D radiative processes and not from differences in aerosol properties. Finally, the effects of CALIPSO aerosol detection and cloud identification uncertainties are discussed. The findings underline the importance of accounting for the transition zone to avoid potential biases in studies of satellite aerosol products, aerosol-cloud interactions, and aerosol direct radiative effects.

  8. LASE measurements of aerosols and water vapor during TARFOX

    NASA Technical Reports Server (NTRS)

    Ferrare, Richard A.; Ismail, Syed; Browell, Edward V.; Brackett, Vincent G.; Kooi, Susan A.; Clayton, Marian B.; Melfi, Harvey; Whiteman, David N.; Schwenner, Geary; Evans, Keith D.; Hobbs, Peter V.; Veefkind, J. Pepijn; Russell, Philip B.; Livingston, John M.; Hignett, Philip; Holben, Brent N.; Remer, Lorraine A.

    1998-01-01

    The TARFOX (Tropospheric Aerosol Radiative Forcing Observational Experiment) intensive field campaign was designed to reduce uncertainties in estimates of the effects of anthropogenic aerosols on climate by measuring direct radiative effects and the optical, physical, and chemical properties of aerosols [1]. TARFOX was conducted off the East Coast of the United States between July 10-31, 1996. Ground, aircraft, and satellite-based sensors measured the sensitivity of radiative fields at various atmospheric levels to aerosol optical properties (i.e., optical thickness, phase function, single-scattering albedo) and to the vertical profile of aerosols. The LASE (Lidar Atmospheric Sensing Experiment) instrument, which was flown on the NASA ER-2 aircraft, measured vertical profiles of total scattering ratio and water vapor during a series of 9 flights. These profiles were used in real-time to help direct the other aircraft to the appropriate altitudes for intensive sampling of aerosol layers. We have subsequently used the LASE aerosol data to derive aerosol backscattering and extinction profiles. Using these aerosol extinction profiles, we derived estimates of aerosol optical thickness (AOT) and compared these with measurements of AOT from both ground and airborne sun photometers and derived from the ATSR-2 (Along Track and Scanning Radiometer 2) sensor on ERS-2 (European Remote Sensing Satellite-2). We also used the water vapor mixing ratio profiles measured simultaneously by LASE to derive precipitable water vapor and compare these to ground based measurements.

  9. Aerosolized Antibiotics.

    PubMed

    Restrepo, Marcos I; Keyt, Holly; Reyes, Luis F

    2015-06-01

    Administration of medications via aerosolization is potentially an ideal strategy to treat airway diseases. This delivery method ensures high concentrations of the medication in the targeted tissues, the airways, with generally lower systemic absorption and systemic adverse effects. Aerosolized antibiotics have been tested as treatment for bacterial infections in patients with cystic fibrosis (CF), non-CF bronchiectasis (NCFB), and ventilator-associated pneumonia (VAP). The most successful application of this to date is treatment of infections in patients with CF. It has been hypothesized that similar success would be seen in NCFB and in difficult-to-treat hospital-acquired infections such as VAP. This review summarizes the available evidence supporting the use of aerosolized antibiotics and addresses the specific considerations that clinicians should recognize when prescribing an aerosolized antibiotic for patients with CF, NCFB, and VAP.

  10. Global Aerosols

    Atmospheric Science Data Center

    2013-04-19

    ... sizes and from multiple sources, including biomass burning, mineral dust, sea salt and regional industrial pollution. A color scale is ... desert source region. Deserts are the main sources of mineral dust, and MISR obtains aerosol optical depth at visible wavelengths ...

  11. A three-part geometric model to predict the radar backscatter from wheat, corn, and sorghum

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T. (Principal Investigator); Eger, G. W., III; Kanemasu, E. T.

    1982-01-01

    A model to predict the radar backscattering coefficient from crops must include the geometry of the canopy. Radar and ground-truth data taken on wheat in 1979 indicate that the model must include contributions from the leaves, from the wheat head, and from the soil moisture. For sorghum and corn, radar and ground-truth data obtained in 1979 and 1980 support the necessity of a soil moisture term and a leaf water term. The Leaf Area Index (LAI) is an appropriate input for the leaf contribution to the radar response for wheat and sorghum, however the LAI generates less accurate values for the backscattering coefficient for corn. Also, the data for corn and sorghum illustrate the importance of the water contained in the stalks in estimating the radar response.

  12. Lidar monitoring of regions of intense backscatter with poorly defined boundaries.

    PubMed

    Kovalev, Vladimir A; Petkov, Alexander; Wold, Cyle; Hao, Wei Min

    2011-01-01

    The upper height of a region of intense backscatter with a poorly defined boundary between this region and a region of clear air above it is found as the maximal height where aerosol heterogeneity is detectable, that is, where it can be discriminated from noise. The theoretical basis behind the retrieval technique and the corresponding lidar-data-processing procedures are discussed. We also show how such a technique can be applied to one-directional measurements. Examples of typical results obtained with a scanning lidar in smoke-polluted atmospheres and experimental data obtained in an urban atmosphere with a vertically pointing lidar are presented.

  13. Lidar monitoring of regions of intense backscatter with poorly defined boundaries.

    PubMed

    Kovalev, Vladimir A; Petkov, Alexander; Wold, Cyle; Hao, Wei Min

    2011-01-01

    The upper height of a region of intense backscatter with a poorly defined boundary between this region and a region of clear air above it is found as the maximal height where aerosol heterogeneity is detectable, that is, where it can be discriminated from noise. The theoretical basis behind the retrieval technique and the corresponding lidar-data-processing procedures are discussed. We also show how such a technique can be applied to one-directional measurements. Examples of typical results obtained with a scanning lidar in smoke-polluted atmospheres and experimental data obtained in an urban atmosphere with a vertically pointing lidar are presented. PMID:21221167

  14. Backscattering and vegetation water content response of paddy crop at C-band using RISAT-1 satellite data

    NASA Astrophysics Data System (ADS)

    Kumar, Pradeep; Prasad, Rajendra; Choudhary, Arti; Gupta, Dileep Kumar; Narayan Mishra, Varun; Srivastava, Prashant K.

    2016-04-01

    The study about the temporal behaviour of vegetation water content (VWC) is essential for monitoring the growth of a crop to improve agricultural production. In agriculture, VWC could possibly provide information that can be used to infer water stress for irrigation decisions, vegetation health conditions, aid in yield estimation and assessment of drought conditions (Penuelas et al., 1993). The VWC is an important parameter for soil moisture retrieval in microwave remote sensing (Srivastava et al., 2014). In the present study, the backscattering and VWC response of paddy crop has been investigated using medium resolution (MRS) radar imaging satellite-1 (RISAT-1) synthetic aperture radar (SAR) data in Varanasi, India. The VWC of paddy crop was measured at its five different growth stages started from 15 July 2013 to 23 October 2013 from the transplanting to maturity stage during Kharif season. The whole life of paddy crop was divided into three different major growth stages like vegetative stage, reproductive stage and ripening stage. During vegetative stage, the backscattering coefficients were found increasing behaviour until the leaves became large and dense due to major contribution of stems and the interaction between the stems and water underneath the paddy crop. During reproductive stage, the backscattering coefficients were found to increase slowly due to random scattering by vertical leaves. The increase in the size of leaves cause to cover most of the spaces between plants resulted to quench the contributions from the stems and the water underneath. At the maturity stage, the backscattering showed its decreasing behaviour. The VWC of paddy crop was found increasing up to vegetative to reproductive stages (28 September 2013) and then started decreasing during the ripening (maturity) stage. Similar behaviour was obtained between backscattering coefficients and VWC that showed an increasing trend from vegetative to reproductive stage and then lowering down at

  15. Study of diffusion of indocyanine green as a photodynamic dye into skin using backscattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Genina, E. A.; Bashkatov, A. N.; Tuchin, V. V.

    2014-07-01

    One of the lines of development of modern medicine is theranostics consisting in simultaneous diagnosis and laser treatment with the use of multifunctional agents such as fluorescent indocyanine green that has photodynamic and photothermal properties. Diffusion of indocyanine green dissolved in water and aqueous solutions of alcohols (glycerol, propylene glycol and ethanol) into the dermis is studied by using backscattering spectroscopy. The coefficients of the dye diffusion into the dermis are obtained for the first time by using these solvents.

  16. Study of diffusion of indocyanine green as a photodynamic dye into skin using backscattering spectroscopy

    SciTech Connect

    Genina, E A; Bashkatov, A N; Tuchin, V V

    2014-07-31

    One of the lines of development of modern medicine is theranostics consisting in simultaneous diagnosis and laser treatment with the use of multifunctional agents such as fluorescent indocyanine green that has photodynamic and photothermal properties. Diffusion of indocyanine green dissolved in water and aqueous solutions of alcohols (glycerol, propylene glycol and ethanol) into the dermis is studied by using backscattering spectroscopy. The coefficients of the dye diffusion into the dermis are obtained for the first time by using these solvents. (laser biophotonics)

  17. Near Real Time Vertical Profiles of Clouds and Aerosols from the Cloud-Aerosol Transport System (CATS) on the International Space Station

    NASA Astrophysics Data System (ADS)

    Yorks, J. E.; McGill, M. J.; Nowottnick, E. P.

    2015-12-01

    Plumes from hazardous events, such as ash from volcanic eruptions and smoke from wildfires, can have a profound impact on the climate system, human health and the economy. Global aerosol transport models are very useful for tracking hazardous plumes and predicting the transport of these plumes. However aerosol vertical distributions and optical properties are a major weakness of global aerosol transport models, yet a key component of tracking and forecasting smoke and ash. The Cloud-Aerosol Transport System (CATS) is an elastic backscatter lidar designed to provide vertical profiles of clouds and aerosols while also demonstrating new in-space technologies for future Earth Science missions. CATS has been operating on the Japanese Experiment Module - Exposed Facility (JEM-EF) of the International Space Station (ISS) since early February 2015. The ISS orbit provides more comprehensive coverage of the tropics and mid-latitudes than sun-synchronous orbiting sensors, with nearly a three-day repeat cycle. The ISS orbit also provides CATS with excellent coverage over the primary aerosol transport tracks, mid-latitude storm tracks, and tropical convection. Data from CATS is used to derive properties of clouds and aerosols including: layer height, layer thickness, backscatter, optical depth, extinction, and depolarization-based discrimination of particle type. The measurements of atmospheric clouds and aerosols provided by the CATS payload have demonstrated several science benefits. CATS provides near-real-time observations of cloud and aerosol vertical distributions that can be used as inputs to global models. The infrastructure of the ISS allows CATS data to be captured, transmitted, and received at the CATS ground station within several minutes of data collection. The CATS backscatter and vertical feature mask are part of a customized near real time (NRT) product that the CATS processing team produces within 6 hours of collection. The continuous near real time CATS data

  18. Snowcover influence on backscattering from terrain

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Abdelrazik, M.; Stiles, W. H.

    1984-01-01

    The effects of snowcover on the microwave backscattering from terrain in the 8-35 GHz region are examined through the analysis of experimental data and by application of a semiempirical model. The model accounts for surface backscattering contributions by the snow-air and snow-soil interfaces, and for volume backscattering contributions by the snow layer. Through comparisons of backscattering data for different terrain surfaces measured both with and without snowcover, the masking effects of snow are evaluated as a function of snow water equivalent and liquid water content. The results indicate that with dry snowcover it is not possible to discriminate between different types of ground surface (concrete, asphalt, grass, and bare ground) if the snow water equivalent is greater than about 20 cm (or a depth greater than 60 cm for a snow density of 0.3 g/cu cm). For the same density, however, if the snow is wet, a depth of 10 cm is sufficient to mask the underlying surface.

  19. Incidence angle normalization of radar backscatter data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    NASA’s Soil Moisture Passive Active (SMAP) satellite (~2014) will include a radar system that will provide L-band multi-polarization backscatter at a constant incidence angle of 40º. During the pre-launch phase of the project there is a need for observations that will support the radar-based soil mo...

  20. Visualization of x-ray backscatter data

    SciTech Connect

    Greenawald, E.C.; Ham, Y.S.; Poranski, C.F. Jr.

    1993-12-31

    Of the several processes which occur when x-rays interact with matter, Compton scattering is dominant in the range of energies commonly used in industrial radiography. The Compton interaction between an x-ray photon and a free or outer shell electron causes the electron to recoil and the photon to be propagated in a new direction with a reduced energy. Regardless of the incident beam energy, some photons are always scattered in the backwards direction. The potential for determining material properties by the detection of x-ray backscatter has been recognized for years. Although work in this area has been eclipsed by the rapid development of computerized tomography (CT), a variety of industrial backscatter imaging techniques and applications have been demonstrated. Backscatter inspection is unique among x-ray methods in its applicability with access to only one side of the object. The authors are currently developing the application of x-ray backscatter tomography (XBT) to the inspection of steel-reinforced rubber sonar domes on US Navy vessels. In this paper, the authors discuss the visualization methods they use to interpret the XBT data. They present images which illustrate the capability of XBT as applied to sonar domes and a variety of other materials and objects. They also demonstrate and discuss the use of several data visualization software products.

  1. Window flaw detection by backscatter lighting

    NASA Technical Reports Server (NTRS)

    Crockett, L. K.; Minton, F. R.

    1978-01-01

    Portable fiber-optic probe detects tiny flaws in transparent materials. Probe transmits light through surface to illuminate interior of material by backscattering off its edges. Light-sensitive contact paper records scratch pattern. Technique can be used for rapid visual checks. Flexible fiber optics are safely used in explosive or flammable areas; they present no hazard of breakage or contamination in controlled environments.

  2. A comparison of measured and calculated optical properties of atmospheric aerosols at infrared wavelengths

    NASA Technical Reports Server (NTRS)

    Rosen, James M.

    1991-01-01

    Measurements of 10.6-micron lidar backscatter were compared with calculated backscatter based on nearly simultaneous observations of stratospheric and tropospheric aerosol size distributions. It was found that there is better agreement in the troposphere, even though the uncertainties of the calculation are greater for this region due to the variables in both the spatial concentration and the physical makeup of the aerosol. A second comparison study was made to test the consistency of the mean tropospheric extinction values at 1.02 micron (as reported by the SAGE satellite) with the values calculated from an ensemble of 400 measured size distributions thought to be representative of midcontinental tropospheric aerosol. The two methods produce consistent results within the expected degree of uncertainty. The ensemble of 400 'proven' size distributions is then used to calculate a statistical relationship between the 1.02-micron extinction and the 10.6-micron backscatter.

  3. Temperature dependence of the diffusion coefficient of nanoparticles

    NASA Astrophysics Data System (ADS)

    Rudyak, V. Ya.; Dubtsov, S. N.; Baklanov, A. M.

    2008-06-01

    The temperature dependence of the diffusion coefficient of nanoparticles in gases has been experimentally studied. It is established that this dependence significantly differs from that predicted by various correlations, in particular, by the Cunningham-Millikan-Davies correlation that is used as an instrumental basis for virtually all methods of measurement of the diffusion coefficient in aerosols.

  4. Separating mixtures of aerosol types in airborne High Spectral Resolution Lidar data

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Vaughan, M. A.; Ferrare, R. A.; Hostetler, C. A.

    2013-09-01

    Knowledge of aerosol type is important for source attribution and for determining the magnitude and assessing the consequences of aerosol radiative forcing. However, atmospheric aerosol is frequently not a single pure type, but instead occurs as a mixture of types, and this mixing affects the optical and radiative properties of the aerosol. This paper extends the work of earlier researchers by using the aerosol intensive parameters measured by the NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL-1) to develop a comprehensive and unified set of rules for characterizing the external mixing of several key aerosol intensive parameters: extinction-to-backscatter ratio (i.e. lidar ratio), backscatter color ratio, and depolarization ratio. We present the mixing rules in a particularly simple form that leads easily to mixing rules for the covariance matrices that describe aerosol distributions, rather than just scalar values of measured parameters. These rules can be applied to infer mixing ratios from the lidar-observed aerosol parameters, even for cases without significant depolarization. We demonstrate our technique with measurement curtains from three HSRL-1 flights which exhibit mixing between two aerosol types, urban pollution plus dust, marine plus dust, and smoke plus marine. For these cases, we infer a time-height cross-section of mixing ratio along the flight track, and partition aerosol extinction into portions attributed to the two pure types.

  5. Separating mixtures of aerosol types in airborne High Spectral Resolution Lidar data

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Vaughan, M. A.; Ferrare, R. A.; Hostetler, C. A.

    2014-02-01

    Knowledge of aerosol type is important for determining the magnitude and assessing the consequences of aerosol radiative forcing, and can provide useful information for source attribution studies. However, atmospheric aerosol is frequently not a single pure type, but instead occurs as a mixture of types, and this mixing affects the optical and radiative properties of the aerosol. This paper extends the work of earlier researchers by using the aerosol intensive parameters measured by the NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL-1) to develop a comprehensive and unified set of rules for characterizing the external mixing of several key aerosol intensive parameters: extinction-to-backscatter ratio (i.e., lidar ratio), backscatter color ratio, and depolarization ratio. We present the mixing rules in a particularly simple form that leads easily to mixing rules for the covariance matrices that describe aerosol distributions, rather than just single values of measured parameters. These rules can be applied to infer mixing ratios from the lidar-observed aerosol parameters, even for cases without significant depolarization. We demonstrate our technique with measurement curtains from three HSRL-1 flights which exhibit mixing between two aerosol types, urban pollution plus dust, marine plus dust, and smoke plus marine. For these cases, we infer a time-height cross-section of extinction mixing ratio along the flight track, and partition aerosol extinction into portions attributed to the two pure types.

  6. Arrange and average algorithm for the retrieval of aerosol microphysical parameters from HSRL-2. Comparison with in-situ measurements during DISCOVER-AQ California and Texas (2013)

    NASA Astrophysics Data System (ADS)

    Chemyakin, E.; Sawamura, P.; Mueller, D.; Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Scarino, A. J.; Hair, J. W.; Berkoff, T.; Cook, A. L.; Harper, D. B.; Seaman, S. T.

    2015-12-01

    Although aerosols are only a fairly minor constituent of Earth's atmosphere they are able to affect its radiative energy balance significantly. Light detection and ranging (lidar) instruments have the potential to play a crucial role in atmospheric research as only these instruments provide information about aerosol properties at a high vertical resolution. We are exploring different algorithmic approaches to retrieve microphysical properties of aerosols using lidar. Almost two decades ago we started with inversion techniques based on Tikhonov's regularization that became a reference point for the improvement of retrieval capabilities of inversion algorithms. Recently we began examining the potential of the "arrange and average" scheme, which relies on a look-up table of optical and microphysical aerosol properties. The future combination of these two different inversion schemes may help us to improve the accuracy of the microphysical data products.The novel arrange and average algorithm was applied to retrieve aerosol optical and microphysical parameters using NASA Langley Research Center (LaRC) High Spectral Resolution Lidar (HSRL-2) data. HSRL-2 is the first airborne HSRL system that is able to provide advanced datasets consisting of backscatter coefficients at 355, 532, and 1064 nm, and extinction coefficients at 355 and 532 nm as input information for aerosol microphysical retrievals. HSRL-2 was deployed on-board NASA LaRC's King Air aircraft during the Deriving Information on Surface Conditions from Column and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field campaigns over the California Central Valley and Houston. Vertical profiles of aerosol optical properties and size distributions were obtained from in-situ instruments on-board the NASA's P-3B aircraft. As HSRL-2 flew along the same flight track of the P-3B, synergistic measurements and retrievals were obtained by these two independent platforms. We will present an

  7. Atmospheric pressure flow reactor / aerosol mass spectrometer studies of tropospheric aerosol nucleat and growth kinetics. Final report, June, 2001

    SciTech Connect

    Worsnop, Douglas R.

    2001-06-01

    The objective of this program was to determine the mechanisms and rates of growth and transformation and growth processes that control secondary aerosol particles in both the clear and polluted troposphere. The experimental plan coupled an aerosol mass spectrometer (AMS) with a chemical ionization mass spectrometer to provide simultaneous measurement of condensed and particle phases. The first task investigated the kinetics of tropospheric particle growth and transformation by measuring vapor accretion to particles (uptake coefficients, including mass accommodation coefficients and heterogeneous reaction rate coefficients). Other work initiated investigation of aerosol nucleation processes by monitoring the appearance of submicron particles with the AMS as a function of precursor gas concentrations. Three projects were investigated during the program: (1) Ozonolysis of oleic acid aerosols as model of chemical reactivity of secondary organic aerosol; (2) Activation of soot particles by measurement deliquescence in the presence of sulfuric acid and water vapor; (3) Controlled nucleation and growth of sulfuric acid aerosols.

  8. Bromine enrichment in the near-surface region of Br-doped NaCl single crystals diagnosed by Rutherford backscattering spectrometry.

    PubMed

    Hess, M; Krieger, U K; Marcolli, C; Huthwelker, T; Ammann, M; Lanford, W A; Peter, Th

    2007-05-24

    Bromine released from sea-salt aerosols and seawater ice is known for its high chemical reactivity. Previous studies have suggested that its availability to the gas-phase could be enhanced by segregation processes increasing Br concentration on the aerosol surface as compared to the bulk. However, little is known about the composition within the near-surface region, that is, the outermost approximately 100 monolayers. We used Rutherford backscattering spectrometry (RBS) to measure Br concentration profiles to a depth of about 750 nm of Br-doped NaCl single crystals to characterize the thermodynamics and kinetics of Br segregation to the near-surface region in moist air. These experiments were carried out on cleavage planes of melt-grown and of annealed solution-grown crystals at room temperature and relative humidities (RH) too low for formation of a stable liquid phase. Segregation of Br was below the detection limit on melt-grown crystals with Br/Cl = 0.01. In the case of annealed solution-grown crystals with Br/Cl = 0.002, average segregations of (0.24 +/- 0.11) x 10(15) and (0.42 +/- 0.12) x 10(15) Br atoms cm-2 were observed at 50% and 65% RH, respectively. No segregation was found at 20% RH. The observed Br segregation can be explained by the formation of an adsorbed liquid layer (depending on crystal surface properties and relative humidity) and preferential, diffusion-limited dissolution of Br into this layer according to the partition coefficient of Br between aqueous and solid NaCl. The thickness of the adsorbed liquid layer, which depends on crystal surface geometry and on relative humidity, can be estimated to range from 4 to at most 59 nm on the basis of measured Br concentrations and partition coefficients. Applying this concept of partitioning to natural sea salt suggests a Br/Cl molar ratio of up to 0.2 in adsorbed surface water of crystallized natural aerosol particles compared to about 0.0015 in seawater. This would have a major impact on

  9. Application of neural networks for determining optical parameters of strongly scattering media from the intensity profile of backscattered radiation

    SciTech Connect

    Kotova, S P; Maiorov, I V; Maiorova, A M

    2007-01-31

    We analyse the possibilities of simultaneous measuring three optical parameters of scattering media, namely, the scattering and absorption coefficients and the scattering anisotropy parameter by the intensity profile of backscattered radiation by using the neural network inversion method and the method of adaptive-network-based fuzzy inference system. The measurement errors of the absorption and scattering coefficients and the scattering anisotropy parameter are 20%, 5%, and 10%, respectively. (special issue devoted to multiple radiation scattering in random media)

  10. Electromagnetic backscattering from one-dimensional drifting fractal sea surface II: Electromagnetic backscattering model

    NASA Astrophysics Data System (ADS)

    Tao, Xie; William, Perrie; Shang-Zhuo, Zhao; He, Fang; Wen-Jin, Yu; Yi-Jun, He

    2016-07-01

    Sea surface current has a significant influence on electromagnetic (EM) backscattering signals and may constitute a dominant synthetic aperture radar (SAR) imaging mechanism. An effective EM backscattering model for a one-dimensional drifting fractal sea surface is presented in this paper. This model is used to simulate EM backscattering signals from the drifting sea surface. Numerical results show that ocean currents have a significant influence on EM backscattering signals from the sea surface. The normalized radar cross section (NRCS) discrepancies between the model for a coupled wave-current fractal sea surface and the model for an uncoupled fractal sea surface increase with the increase of incidence angle, as well as with increasing ocean currents. Ocean currents that are parallel to the direction of the wave can weaken the EM backscattering signal intensity, while the EM backscattering signal is intensified by ocean currents propagating oppositely to the wave direction. The model presented in this paper can be used to study the SAR imaging mechanism for a drifting sea surface. Project supported by the National Natural Science Foundation of China (Grant No. 41276187), the Global Change Research Program of China (Grant No. 2015CB953901), the Priority Academic Program Development of Jiangsu Higher Education Institutions, China, the Program for the Innovation Research and Entrepreneurship Team in Jiangsu Province, China, the Canadian Program on Energy Research and Development, and the Canadian World Class Tanker Safety Service Program.

  11. Electromagnetic backscattering from one-dimensional drifting fractal sea surface II: Electromagnetic backscattering model

    NASA Astrophysics Data System (ADS)

    Tao, Xie; William, Perrie; Shang-Zhuo, Zhao; He, Fang; Wen-Jin, Yu; Yi-Jun, He

    2016-07-01

    Sea surface current has a significant influence on electromagnetic (EM) backscattering signals and may constitute a dominant synthetic aperture radar (SAR) imaging mechanism. An effective EM backscattering model for a one-dimensional drifting fractal sea surface is presented in this paper. This model is used to simulate EM backscattering signals from the drifting sea surface. Numerical results show that ocean currents have a significant influence on EM backscattering signals from the sea surface. The normalized radar cross section (NRCS) discrepancies between the model for a coupled wave-current fractal sea surface and the model for an uncoupled fractal sea surface increase with the increase of incidence angle, as well as with increasing ocean currents. Ocean currents that are parallel to the direction of the wave can weaken the EM backscattering signal intensity, while the EM backscattering signal is intensified by ocean currents propagating oppositely to the wave direction. The model presented in this paper can be used to study the SAR imaging mechanism for a drifting sea surface. Project supported by the National Natural Science Foundation of China (Grant No. 41276187), the Global Change Research Program of China (Grant No. 2015CB953901), the Priority Academic Program Development of Jiangsu Higher Education Institutions, China, the Program for the Innovation Research and Entrepreneurship Team in Jiangsu Province, China, the Canadian Program on Energy Research and Development, and the Canadian World Class Tanker Safety Service Program.

  12. Light beam attenuation and backscattering properties of particles in the Bohai Sea and Yellow Sea with relation to biogeochemical properties

    NASA Astrophysics Data System (ADS)

    Wang, Shengqiang; Qiu, Zhongfeng; Sun, Deyong; Shen, Xiaojing; Zhang, Hailong

    2016-06-01

    This study reports the first results of the variability in light beam attenuation and the backscattering properties of particles and their controlling factors during the summer in the Bohai Sea (BS) and Yellow Sea (YS), which are two typical shallow and semienclosed seas. We observe large variations in the particulate beam attenuation (cp) and backscattering coefficients (bbp); such variations are mainly attributed to changes in the total suspended matter, while the cross-sectional area concentration shows tighter relationships with both cp and bbp. The mass-specific beam attenuation (cp*) and backscattering coefficients (bbp*) vary more widely over about two orders of magnitude. The attenuation (Qce) and backscattering efficiencies (Qbbe) are important factors that control cp* and bbp*, which clearly separate all the samples into two types. Type 1 samples show low Qce and Qbbe and contain relatively high proportions of organic or large particles, while type 2 samples have high Qce and Qbbe and mainly contain relatively small mineral particles. The majority of the variability in cp* and bbp* within each type is related to the inverse of the product of particle apparent density (ρa) and mean diameter (DA); ρa plays a major role, while DA exerts only a slight impact. Overall, this study provides general knowledge of particulate beam attenuation and the backscattering properties in the BS and YS, which may improve our understanding of underwater radiative transfer processes, marine biogeochemical processes and ocean color algorithms.

  13. Estimating Vertical Diffusion Coefficients By Lidar

    NASA Technical Reports Server (NTRS)

    Culkowski, Walter M.; Swisher, Searle D.

    1973-01-01

    The Atmospheric Turbulence and Diffusion Laboratory at Oak Ridge, Tennessee has been conducting routine probing of the lower troposphere and comparing the results with those obtained with turbidity photometers and a distant suspended particulate station. The change in scale height, K (sub z) divided by v (sub s), with time permits the vertical turbulence coefficient K (sub z) to be estimated if v (sub